
A Concurrent Tuple Set Architecture for Call Level Interfaces

Óscar Mortágua Pereira
1
, Rui L. Aguiar

2

Instituto de Telecomunicações

DETI – University of Aveiro

Aveiro, Portugal

{omp
1
, ruilaa

2
)@ua.pt

Maribel Yasmina Santos

Centro Algoritmi

DSI – University of Minho

Guimarães, Portugal

maribel@dsi.uminho.pt

Abstract— Call Level Interfaces (CLI) are low level API

aimed at providing services to connect two main components

in database applications: client applications and relational

databases. Among their functionalities, the ability to manage

data retrieved from databases is emphasized. The retrieved

data is kept in local memory structures that may be

permanently connected to the host database. Client

applications, beyond the ability to read their contents, may

also execute Insert, Update and Delete actions over the local

memory structures, following specific protocols. These

protocols are row (tuple) oriented and, while being executed,

cannot be preempted to start another protocol. This

restriction leads to several difficulties when applications

need to deal with several tuples at a time. The most

paradigmatic case is the impossibility to cope with

concurrent environments where several threads need to

access to the same local memory structure instance, each one

pointing to a different tuple and executing its particular

protocol. To overcome the aforementioned fragility, a

Concurrent Tuple Set Architecture (CTSA) is proposed to

manage local memory structures. A performance assessment

of a Java component based on JDBC (CLI) is also carried

out and compared with a common approach. The main

outcome of this research is the evidence that in concurrent

environments, components relying on the CTSA may

significantly improve the overall performance when

compared with solutions based on standard JDBC API.

Keywords-Call Level Interfaces, O/RM, Concurrency,

databases, software architecture.

I. INTRODUCTION

Database applications comprise at least two main
components: database components and application
components. In our context, application components are
developed in the object-oriented paradigm and database
components rely on the relational paradigm. The two
paradigms are simply too different to bridge seamlessly,
leading to difficulties informally known as impedance
mismatch [1]. The diverse foundations of both paradigms
are a major hindrance for their integration, being an open
challenge for more than 50 years [2]. In order to overcome
the impedance mismatch issue, several solutions have
emerged such as, embedded SQL (SQLJ [3]), language
extensions (LINQ [4]), Call Level Interfaces [5] (CLI)
(JDBC [6], ODBC [7]), object/relational mappings
(O/RM) (Hibernate [8], TopLink [9], LINQ) and persistent
frameworks (JDO [10], JPA [11], SDO [12], ADO.NET

[13]). Despite their individual advantages, these solutions
have not been designed to manage concurrency on the
client side of database applications. Currently,
concurrency is managed by database management systems
through database transactions. Moreover, whenever the
same data is needed by different client-threads, each thread
behaves as an independent entity requesting its own data
set. In other words, instead of sharing the data returned by
a unique execution of a Select expression, each thread
executes a Select expression independently from other
threads. This leads to a waste of resources, namely it
requires more memory, it requires more power
computation, and performance is very probably affected
negatively. Current tools use local memory structures
(LMS) to manage the data returned by Select expressions.
Beyond services to read the data kept by LMS, LMS
provide services to execute three additional main protocols
on their in-memory data: update data, insert new data and
delete data. Thus, client-applications are able to update
data, insert data and delete data without the need to
explicitly execute Update, Insert and Delete expressions,
respectively. Once again, these protocols are not thread-
safe not promoting this way the use of LMS on concurrent
environments. Listing 1 and Listing 2 present a typical
case where one table attribute needs to be updated. The
value to be used to update the attribute is dependent on the
table primary key (PKs). Listing 1 presents the current
approach and Listing 2 presents an approach based on
thread-safe LMS. In Listing 1 each thread is created and
then it runs (doIt) to execute a task. Each thread has its
own LMS this way preventing any concurrency at the
LMS level. Listing 2 presents the equivalent solution
based on an approach where all threads share the same

void begin() {
 foreach thread
 creat thread
 thread.doIt(PKs)
 end
}
void doIt(PKs) {
 LMS=execute Select expression
 while more rows on the LMS
 if PK is in PKs
 then update row
 move to the next row
 end while
}

Listing 1. Current approach to update data concurrently.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55625345?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

void begin() {
 LMS=execute Select expression
 foreach thread
 create thread
 doIt(LMS,PKs)
 end
}
void doIt(LMS, PKs) {
 while more rows on the LMS
 if PK is in PKs
 then update row
 move to the next row
 end while

}

Listing 2. Alternative approach to update data concurrently.

LMS and update the attribute concurrently. In order to
overcome the limitations of CLI, this paper proposes a
Concurrent Tuple Set Architecture (CTSA). The CTSA,
unlike current solutions, provides thread-safe protocols to
interact with the data returned by Select expressions.

JDBC and ODBC are two of the most representative
standards of CLI. JDBC and ODBC provide, respectively,
ResultSet [14] interface and RecordSet [15] interface as
their internal implementations of LMS.

The main contributions of this paper are twofold: 1) to
present the CTSA based on CLI and with embedded
concurrency at the level of LMS; 2) to carry out a
performance assessment of a case study based on a JDBC
component derived from the proposed architecture. It is
expected that the outcome of this paper may contribute to
open a new approach to improve the performance of
database applications whenever several threads need to
share the same LMS instances.

Throughout this paper all examples are based on Java,
SQL Server 2008 and JDBC (CLI) for SQL Server
(sqljdbc4.jar). The presented source code may not execute
properly, since we will only show the relevant parts for the
points under discussion.

The paper is structured as follows: section II presents
the required background; section III presents the related
work; section IV presents the proposed architecture;
Section 4 presents the CTSA; section V presents the
performance assessment and Section VI presents the
conclusion.

II. BACKGROUND

LMS have been loosely presented and some properties
have also been already described. Next follows a more
detailed description about the features of LMS.

LMS are instantiated by CLI to manage the data
returned by Select expressions. As such, at this point it is
advisable to discuss some LMS features that are relevant
to this research. Figure 1 presents a general LMS
containing 5 tuples (1 to 5) and 6 attributes (a, b, c, d, e, f).
This LMS could have been instantiated to manage the data
returned by the following CRUD expression: Select a, b, c,
d, e, f from Table Where …. In this case, the CRUD
expression has returned 5 tuples (rows) and the current
selected tuple is row number 2. The access to LMS

1

2

3

4

5

a b c d e f

Selected tuple

Figure 1. LMS with 5 tuples (rows) and 6 attributes (a till f).

attributes is accomplished by selecting a tuple and then,
through an index or through a label (usually the attribute
name), by selecting one attribute at a time. For example, to
execute an action action (read, insert or update) on
attribute c of tuple 2 the following steps are necessary:
select tuple 2 and then execute action(index of attribute c)
or action(label of attribute c). CLI are responsible for
providing services to allow applications to scroll on LMS,
to read their contents and to modify (insert, update, delete)
their internal contents. Other services are also available but
they are not relevant for this research. Services may be
split in two categories: basic services and advanced
services. Basic services comprise two groups of protocols:
the scrolling protocols are aimed at scrolling on tuples and
the read protocol is aimed at reading the tuples’ attributes.
Advanced services are available only if LMS are
updatable. In this case applications are allowed to change
the internal state of LMS. Advanced services comprise
three protocols: insert protocol to add new tuples, update
protocol to update existent in-memory tuples and, finally,
delete protocol to delete existent tuples. After being
committed, the new states of LMS are automatically
committed into the host database. To execute any of the
previous services it is necessary to know that the access to
LMS is simultaneously tuple oriented and protocol
oriented. This has two main implications. First, at any time
only one tuple may be selected as the target tuple. Second,
if a protocol is being executed, applications should not
start any other protocol. If this rule is not fulfilled, LMS
may lose their previous states. For example, if an advanced
service is being executed and another protocol is triggered,
LMS discard all changes made during the first protocol.
TABLE I concisely presents four protocol that are used to
interact with data of LMS.

TABLE I. MAIN PROTOCOLS OF LMS.

ID Protocol Id Protocol

1

Point to a tuple
Read attributes

2

Point to a tuple
Start update protocol
Update attributes
Commit update

3
Start insert protocol
Insert attributes
Commit insert

4
Point to a tuple
Delete tuple

Read Protocol: During the read protocol, attributes are
read one by one and always from the current selected
tuple. If a different tuple is selected, the next attribute
value will be retrieved from the new selected tuple. Update

Protocol: During the update protocol, attributes are
updated one by one on the current selected tuple. The
protocol may or may not be triggered by invoking a
specific method. It ends when a specific method is invoked
to commit the updated attributes. If another tuple or
protocol (except the read protocol) is selected while it is
being executed, all previous changes will be discarded.
Insert Protocol: The insert protocol is triggered
by invoking a specific method. Then, each attribute is
inserted one by one. After all attributes have been inserted,
the protocol ends when a specific method is invoked to
commit the inserted tuple. If another tuple or protocol
(except the read protocol) is selected while it is being
executed, all previous changes will be discarded. Delete
Protocol: The delete protocol comprises a single method
that removes the current selected tuple from the in-
memory of LMS. The delete action is also automatically
committed in accordance with the established policy.

III. RELATED WORK

A research has been carried out around tools aimed at
integrating client applications and databases. A survey was
made for the most popular tools, such as Hibernate [8],
Spring [16], TopLink [17], JPA [11] and LINQ [18].
These tools may provide concurrency but always at a very
high level. Basically, they provide some locking policies
implemented in order to synchronize read and write
actions. But these read and write synchronized actions are
not executed over the same memory location. They are
executed over distinct objects, such as sessions in
Hibernate. These objects (sessions) are not thread-safe and
therefore do not provide any protocol to access
concurrently the in-memory data.

[19] presents a concurrent version of the TDS protocol
[20]. Unlike CTSA, the concurrency is internally
implemented at the level of the TDS protocol through the
services stacked above the TDS protocol. Authors have
achieved significant results for the services they have
implemented. Unfortunately, the research only addressed a
restrict number of services not leading to a replicable and
usable approach.

To the best of our knowledge no other researches have
been conducted around concurrency on LMS of CLI.

IV. CTSA

In this section we start to present CTSA and then a
proof of concept is also presented.

A. CTSA Presentation

CTSA defines the concept of execution context as the
information needed to characterize, at any time, the
interaction between a thread and a component based on the
CTSA. The execution context of each thread comprises the
protocol that is being executed and the current selected
tuple. This concept is very important because it is the basis
for the concurrent implementation of LMS. In concurrent
environments, each thread must have a complete control
on the tuple and on the protocol it is executing. If this is
not ensured, a running thread may be preempted by

another thread that changes the execution context. The
first thread will never be aware about this situation and
when it becomes the running thread it will execute its
actions in a different execution context. In order to keep
full control on the execution context, each thread needs to
access the LMS in exclusive mode and also to be able to
assure that it runs on its own execution context. The
former condition ensures that other threads are not allowed
to change the execution context of protocols that are being
executed. The latter condition ensures that at the beginning
of any protocol, if necessary, every thread is able to restore
its execution context. To decide upon which strategy to
follow to implement both conditions, two possibilities
were considered and tested: 1) method oriented: execution
context is managed method by method; 2) protocol
oriented: execution context is managed at the protocol
level. TABLE II briefly shows the logic associated with
each approach. The scrolling process involves one method
at a time and, therefore, it is implemented as method
oriented access mode. Access modes for Insert, Update
and Delete protocols do not have any other alternative but
be implemented as protocol oriented. This derives from the
fact, as mentioned before, that these protocols cannot be
preempted to start a different protocol. Read protocol may
be implemented in any access mode. To decide upon
which access mode to implement some tests with the two
access modes were carried out. The collected results have
shown, for the same scenarios, that performance and
concurrency improvement depend on the same variable
but in opposite ways. They depend on the number of times
that threads are preempted by other threads. Every time
this occurs, a change in the execution contexts must be
performed. When this number increases, performance
tends to decrease and concurrency tends to increase. When
this number decreases, performance tends to increase and
concurrency tends to decrease. Thus, in order to improve
performance, it was decided to implement the Read
protocol based on the protocol oriented access mode.

TABLE II. APPROACHES FOR THE EXCLUSIVE ACCESS MODE.

Method oriented Protocol oriented

1. get exclusive access

2. set execution context

3. execute method

4. store execution context

5. release exclusive access

1. get exclusive access

2. set execution context

3. while protocol is not over

 execute method

4. store execution context

5. release exclusive access

Figure 2 presents the interfaces for the five main

protocols: IRead (read protocol), IInsert (insert protocol),
IUpdate (update protocol), IDelete (delete protocol) and
IScroll (scroll protocol). Only the main methods of IRead,
IUpdate, IInsert and IScroll have been presented in order
not to overcrowd the class diagrams. Exclusive access
modes based on the protocol oriented strategy are started
by the execution of an explicit starting method
(beginRead, beginUpdate and beginInsert) and released
only after the execution of another explicit method

(endRead, endUpdate and endInsert). This strategy ensures
the exclusive access to LMS while the protocol is being
executed and also the initialization of the correct execution
context before any access to the LMS. getInt and getString
methods read attributes (read protocol) of types integer
and string, respectively, from LMS. setInt and setString
methods set the values for the attributes (Update and
Insert protocols) of type integer and string, respectively.
Beyond these methods (get and set), there are other
methods each one suited to deal with one data type of the
host programming language. Exclusive access mode of
IScroll methods and IDelete method are method oriented
and, therefore, no additional methods are needed.

+moveNext() : bool

+moveFirst() : bool

+moveAbsolute(in position : int) : bool

+isFirst() : bool

+...()

«interface»

IScroll

+beginRead()

+endRead()

+getInt(in idx : long(idl)) : long(idl)

+getString(in idx : long(idl)) : string(idl)

+...()

«interface»

IRead

+beginUpdate()

+endUpdate()

+cancelUpdate()

+setInt(in idx : long(idl), in value : string(idl))

+setString(in idx : long(idl), in value : string(idl))

+...()

«interface»

IUpdate

+beginInsert()

+endInsert()

+cancelInsert()

+setInt(in idx : long(idl), in value : string(idl))

+setString(in idx : long(idl), in value : string(idl))

+...()

«interface»

IInsert

Figure 2. CTSA main protocols.

Figure 3 presents a simplified CTSA class diagram.
Concurrent threads sharing the same LMS receive a new
CTSA instance where all CTSA instances share the same
LMS. lms is the LMS instance, currentTuple (current
selected tuple) and protocol (protocol being used) define
the execution context of the owner thread, setExecution
restores the execution context of the running thread and
storeExecution stores the current execution context.

+CTSA(in lms : LMS)

-setExecutionContext()

-storeExecutionContext()

-lms : LMS

-currentTuple : unsigned long(idl)

-protocol : unsigned long(idl)

CTSA

IRead IUpdate
IInsert

IDelete IScroll
Figure 3. CTSA class diagram.

B. Proof of Concept

This section evaluates CTSA using a proof of concept
implemented in Java and JDBC and it uses the
ReentrantLock [21] to guarantee exclusive access to shared
data structures when threads interact with component
based on the CTSA. Any other java mechanism, such as
synchronized methods [22], could have been used. Due to
space limitations we will only present CTSA from users’
perspective, see Figure 4. The thread receives a CTSA
instance (line 23). When the thread enters the running state
(line 27), it iterates the LMS one tuple at a time (line 30).

This access mode is method oriented and, as such, there is
no starting trigger. The tuple is read (line 32-33). The
access mode of the read protocol is protocol oriented and,
therefore, there is a trigger to start (line 31) and a trigger to
stop it (line 34). This example shows that users of
components based on the CTSA have the advantage of
using thread safe LMS without any concern about its
implementation. The use of the remaining protocols is very
similar to the ones presented in Figure 4 and, therefore, no
additional examples are needed.

Figure 4. CTSA from users’ perspective.

V. CTSA ASSESSMENT

Performance assessment was carried out comparing
two entities known as the Component CTSA (C-CTSA)
and the Concurrent JDBC (C-JDBC). C-CTSA is
responsible for evaluating components relying on the
CTSA architecture and it is based on a component derived
from the proof of concept here presented. C-JDBC is
responsible for evaluating a concurrent approach based on
the standard JDBC. The evaluation of both entities
comprises a single façade: performance. Three scenarios
were defined for both components: Select (s), Update (u)
and Insert (i). Each scenario comprises a set of several
numbers of tuples to be processed [nr] and a set of several
numbers of simultaneous running threads [nt]. In order to
formalize the entities’ representation we define E(α,p,γ)
([nt], [nr]) where α{c-ctsa,c-jdbc}, p is for performance
façade and γ{s,u,i}. To simplify, E(α,p,γ) ([nt], [nr]) is
represented by default as E(α,p,γ). Each scenario comprises a
specific goal which is known as a task. A task represents a
particular case for the use of C-CTSA and C-JDBC
regarding the LMS. The tasks to be performed are: Read
(read [nr] tuples from the LMS), Update (update [nr]
tuples of a LMS) and Insert (insert [nr] tuples into a
LMS). It was decided to create a favorable environment to
C-JDBC and an unfavorable environment for C-CTSA to
execute the defined tasks. This way, the minimum
performance of real scenarios should be delimited by the
collected measurements. This issue will be addressed in
more detail after explaining the SQL Server behavior
about LMS.

The test-bed comprises two computers: PC1 - Dell
Latitude E5500, Intel Duo Core P8600 @2.40GHz, 4.00

GB RAM, Windows Vista Enterprise Service Pack 2
(32bits), Java SE 6, JDBC (sqljdbc4); PC2 – Asus-P5K-
VM, Intel Duo Core E6550 @2,33 GHz, 4.00 GB RAM,
Windows XP Professional Service Pack 3, SQL Server
2008. C-JDBC and C-CTSA are executed in PC1 and SQL
Server runs in PC2. In order to promote an ideal
environment the following actions were taken: the running
threads were given the highest priority and all non-
essential processes/services were cancelled in both PCs; a
direct and dedicated network cable connecting PC1 and
PC2 has been used in exclusive mode and performing
100MBits of bandwidth. Transactions were not used and
auto-Commit has been always enabled. A new database
was created in conformance with the schema presented in
Figure 5 to assess both entities. In order to avoid any
overhead added by SQL Server, some default SQL Server
database properties were changed as, Auto Update
Statistics = false and Recovery Model = Simple.

Figure 5. Std_Student schema.

Some important aspects are out of the scope of this
study. Aspects as database server performance, network
delays and memory consumption are not individually
addressed but considered as part of the overall
environment. This has been assumed because both entities
share the same infrastructure.

It is essential to have some knowledge about SQL
Server behavior, which is similar to most of the other
relevant relational database management systems, to
completely understand the details of each defined task and
also to understand the collected results. When a Select
statement is executed using a scrollable or an updatable
LMS, SQL Server creates a server cursor with all the
selected tuples. These tuples are dynamically transferred in
blocks, from the server to LMS, whenever necessary. This
means that at any time LMS may not have all the tuples
but only a sub-set of all tuples. When users point to a tuple
that is not present in the LMS, the TDS protocol discards
the current LMS content and fetches the block containing
the desired tuple. This has a deep implication. If threads
are always requesting tuples that are not present in the
LMS, SQL Server has to transfer the correspondent block
for each request. In an extreme scenario, each individual
action over the LMS could imply a new transference of
tuples. From the previous statements, it is expected that the
number of blocks to be transferred will increase when the
number of tuples, inside server cursors, increases and also

when the dispersion of the used policy to select tuples,
contained by server cursors, increases. Thus, to create the
environments for both entities, the following decisions
were taken:
C-JDBC (favorable environment): each thread will always
access tuples sequentially from the first one till the last
one.
C-CTSA (unfavorable environment): two conditions were
implemented: 1) after accessing a tuple, each thread will
give the opportunity for other threads to become the
running thread. This will maximize the number of changes
in the execution context; 2) each thread will have its own
set of tuples, not shared with any other thread. This will
maximize the number of blocks of tuples to be transferred
from the server cursor to LMS.

TABLE III shows the algorithm for the assessment of
E(c-ctsa,p,γ). The same ResultSet is shared by all [nt] threads.
Each thread executes its scenario for a group of ψ=[nr]
adjacent tuples and auto-suspends itself after accessing
each tuple. The intersection of all ψ= .

TABLE III. ALGORITM FOR E(C-CTSA,P,Γ) ASSESSMENT.

1. Delete all rows from Std_Student

2. Fill Std_Student with [nr]*[nt] rows (zero rows for insert)

3. Start counter

4. Select all rows from Std_Student into one single ResultSet

5. Create all threads. Each thread (ψ tuples)

 5.1 for each tuple

 5.1.1 read/update/insert (tuple)

 5.1.2 suspend thread

 5.2 dies

6. Wait all threads to die

7. Stop counter

TABLE IV shows the algorithm for the assessment of

E(c-jdbc,p,γ). Each thread creates its own ResultSet (LMS)
containing/inserting a group of ψ=[nr] adjacent tuples.
The intersection of all ψ= .

TABLE IV. ALGORITHM FOR E(C-JDBC,P,Γ) ASSESSMENT.

1. Delete all rows from Std_Student
2. Fill Std_Student with [nr]*[nt] rows (zero rows for insert)
3. Start counter
4. Create all threads. Each thread:
 4.1 select ψ tuples into its own ResultSet
 4.2 for each tuple
 4.2.1 read/update/insert a tuple
 4.3 dies
5. Wait all threads to die
6. Stop counter

To contextualize the performance assessment

environment some initial measurements were carried out
to delimit the range of [nt] and [nr] to be used. In order to
emphasize concurrency mechanisms, priority was given to
the range of [nt] in detriment of [nr]. Values for these
metrics were collected by empirical experimentation based

on an iterative process. The idea is to gather a set of values
for [nt] and [nr] that may be used to assess and compare
the performance of both E(α,p,γ) entities. To accomplish this,
both entities, E(c-ctsa,p,γ) and E(c-jdbc,p,γ) were executed under
several combinations of [nt] and [nr] until the collected
values comprise a range of behaviors considered
satisfactory to accurately assess and compare the
performance of both entities. After several iterations it was
decided that a reliable execution environment should be
defined as:
 [nt]={1, 5, 10, 25, 50, 75, 100, 150, 200, 250, 350, 500}
 [nr]={5, 10, 25, 50, 75, 100}

In accordance with the requirements, this execution
environment evaluates the performance by maximizing the
number of simultaneous running threads in detriment of
the number of tuples. With 500 threads and 100 tuples it
was possible to accurately assess and foresee the
performance of both entities. This was the main reason for
their acceptance. The intermediate collected values
showed to be enough to obtain well defined charts for the
behaviors of both entities. Just as a final note, some
scenarios took some minutes to setup and to process the
highest values of [nt] and [nr]. This knowledge was also
considered to delimit the two top values (nr=100 and
nt=500), this way avoiding any risk to successfully
accomplish the collecting process of all necessary
measurements. 25 raw measures were collected for each
E(α,p,γ)([nt],[nr]) leading to (2x3x12x6)x25=10,800 raw
measurements. Intermediate measurements were computed
from the average of the 5 best measures of each
E(α,p,γ)([nt],[nr]) leading to a total of 2x3x12x6=432
measurements. The final measurements used in the next
charts represent the ratios between E(c-jdbc,p,γ) and E(c-ctsa,p,γ)
for each ([nt],[nr]). In all charts the vertical axis is for the
ratios and the horizontal axis is for the [nt].

Select scenario: the chart for the select scenario is
shown in Figure 6. From it, it is clear that the ratios
decrease whenever the number of tuples increases and
whenever the number of threads increases. E(c-jdbc,p,γ) have
[nt] server cursors and each thread sequentially reads its
own tuples from the first one till the last one. Thus, the
transference of block of tuples only happens when a thread
tries to read the next tuple that is after the last one
contained in the ResultSet. Moreover, for this entity
different threads do not compete for the same ResultSet
this way avoiding any randomness in the tuples to be
selected. Regarding E(c-ctsa,p,γ) there is only one server
cursor shared by all threads. The implemented Read task
significantly increases the possibility of each thread to be
requesting a tuple that is not present in the ResultSet and,
therefore, to trigger a new transference of block of tuples.
With other strategies where threads read shared sets of
tuples, the block transference rate should be much lower,
this way increasing the ratios between the two entities.
Another relevant issue is that the Select scenario is a light
scenario mainly because the Select expression and the read
protocol are very efficient when compared with the other
CRUD expressions and other protocols. Thus, the

overhead induced by the blocks transference have a deeper
impact in the overall performance. The impact increases
with the number of tuples and the number of threads as
expected. Anyway, the collected results show that for
lower values of number of tuples and lower values of
number of threads the ratios vary between 1.02 and 3.44
times, as shown in Figure 7. It may also be seen that the
worst ratio achieves 0.80 for nt=100 and nr=25. These
results show that despite the unfavorable test conditions
for C-CTSA, C-CTSA still achieves significant results.
For example, the relative highest gain in performance
(3.44) is much more significant than the relative highest
lost in performance (0.8). Figure 7 presents a detailed
vision for the ratio between both entities for all
combinations of [nr] and [nt].

Figure 6. E(c-jdbc,p,s) / E(c-ctsa,p,s) chart.

Figure 7. E(c-jdbc,p,s) / E(c-ctsa,p,s) details.

Update scenario: the chart for the update scenario is
shown in Figure 8. The comments made to the Select
scenario are also applied to the Update scenario regarding
the transference rate of block of tuples. The most
significant differences are: 1) the update protocol is a
heavy protocol and, thus, its overhead has a deep impact
on both entities and in the collected measurements; 2) the
E(c-jdbc,p,γ) entity has [nr] server cursors, each one
competing with the others to update the same requested
attributes while E(c-ctsa,p,γ) entity has only one server cursor
and the competition is performed at the client side. Despite
the unfavorable conditions for C-CTSA, in this scenario,
the ratio is always significantly greater than 1. It increases
in the range 1 < nt < 10 and for nt > 10 the ratios are
practically stable for each individual [nr] (except for
nr=5). Another relevant issue is that the ratios decrease

Figure 8. E(c-jdbc,p,u) / E(c-ctsa,p,u) chart.

when [nr] increases for every [nt].
Insert scenario: the chart for the insert scenario is

shown in Figure 9. The most relevant aspect is the slight
but constant ratios increase with [nt] for each [nr]. In the
initial stage, ResultSets are empty and tuples are
sequentially inserted and committed one by one in the host
database table. In this scenario, in opposite to the others,
all E(c-ctsa,p,γ) threads insert adjacent tuples this way
minimizing the number of blocks to be transferred. In spite
of being a very heavy scenario for both entities, the
differences between C-CSTA and C-JDBC are enough to
be noticed in the ratios. It is always greater than 1 and
higher values of [nr] cause a decreasing in the ratios.

Figure 9. E(c-jdbc,p,i) /E(c-ctsa,p,i) chart.

VI. CONCLUSION

In this paper an architecture for a concurrent LMS,
herein known as CTSA, has been presented. A proof of
concept has also been presented based on a standard JDBC
API. In order to assess CTSA performance in a concurrent
environment and compare it with an equivalent
environment based on a standard JDBC solution, a test-
bed has been defined and implemented with two
concurrent entities: C-JDBC and C-CTSA. C-CTSA was
assessed in unfavorable conditions and C-JDBC has been
assessed in favorable conditions in order to delimit and
evaluate C-CTSA performance minimum gain. In spite of
these conditions, C-CTSA always gets better scores for the
update and for the insert scenarios. In the Select scenario,

C-CTSA obtained significant scores in the range of lower
values of [nr] and [nt]. Anyway, for higher values of [nr]
and [nt] the minimum ratio did not go below 0.8 which is
still a remarkable score.

The outcome of this research should encourage CLI
providers to release CLI with internal embedded
concurrency. Embedded concurrency has the advantage of
accessing the LMS’s internal data structures to optimize
the implementation of the different protocols.

REFERENCES

[1] M. David, "Representing database programs as objects," Advances
in Database Programming Languages, F. Bancilhon and P.
Buneman, eds., pp. 377-386, N.Y.: ACM, 1990.

[2] W. Cook, and A. Ibrahim, "Integrating programming languages
and databases: what is the problem?," 2011 May: ODBMS.ORG,
Expert Article, 2005.

[3] Part 1: SQL Routines using the Java (TM) Programming
Language, 1999.

[4] D. Kulkarni, L. Bolognese, M. Warren et al., "LINQ to SQL: .NET
Language-Integrated Query for Relational Data," Microsoft.

[5] ISO. "ISO/IEC 9075-3:2003," [2011 May;
http://www.iso.org/iso/catalogue_detail.htm?csnumber=34134.

[6] M. Parsian, JDBC Recipes: A Problem-Solution Approach, NY,
USA: Apress, 2005.

[7] Microsoft. "Microsoft Open Database Connectivity," Jul, 2012;
http://msdn.microsoft.com/en-us/library/ms710252(VS.85).aspx.

[8] B. Christian, and K. Gavin, Hibernate in Action: Manning
Publications Co., 2004.

[9] Oracle. "Oracle TopLink," Oct, 2011;
http://www.oracle.com/technetwork/middleware/toplink/overview/
index.html.

[10] Oracle. "Java Data Objects (JDO)," 2011 Nov;
http://www.oracle.com/technetwork/java/index-jsp-135919.html.

[11] D. Yang, Java Persistence with JPA, pp. 390: Outskirts Press,
2010.

[12] IBM. "Introduction to Service Data Objects," [2011 Nov;
http://www.ibm.com/developerworks/java/library/j-sdo/.

[13] G. Mead, and A. Boehm, ADO.NET 4 Database Programming
with C# 2010, USA: Mike Murach & Associates, Inc., 2011.

[14] Oracle. "ResultSet," 2012 Jul;
http://docs.oracle.com/javase/6/docs/api/java/sql/ResultSet.html.

[15] Microsoft. "RecordSet (ODBC)," 2011 Jun;
http://msdn.microsoft.com/en-us/library/5sbfs6f1.aspx.

[16] Spring. "Spring," 2011; http://www.springsource.org/.

[17] "Oracle Database," 2010 May;
http://www.oracle.com/us/products/database/index.html.

[18] M. Erik, B. Brian, and B. Gavin, “LINQ: Reconciling Object,
Relations and XML in the .NET framework,” in ACM SIGMOD
Intl Conf on Management of Data, Chicago,IL,USA, 2006, pp.
706-706.

[19] D. Gomes, Ó. M. Pereira, and W. Santos, “JDBC (Java DB
connectivity) concorrente,” DETI, University of Aveiro, ria -
institutional repository, http://hdl.handle.net/10773/7359, 2011.

[20] Microsoft. "[MS-TDS]: Tabular Data Stream Protocol
Specification," 2012 Jul; http://msdn.microsoft.com/en-
us/library/dd304523(v=prot.13).aspx.

[21] Orcale. "Call ReentrantLock," 2012 Nov;
http://docs.oracle.com/javase/6/docs/api/java/util/concurrent/locks/
ReentrantLock.html.

[22] Oracle. "Synchronized Methods," 2012 Nov;
http://docs.oracle.com/javase/tutorial/essential/concurrency/syncm
eth.html.

http://www.iso.org/iso/catalogue_detail.htm?csnumber=34134
http://msdn.microsoft.com/en-us/library/ms710252(VS.85).aspx
http://www.oracle.com/technetwork/middleware/toplink/overview/index.html
http://www.oracle.com/technetwork/middleware/toplink/overview/index.html
http://www.oracle.com/technetwork/java/index-jsp-135919.html
http://www.ibm.com/developerworks/java/library/j-sdo/
http://docs.oracle.com/javase/6/docs/api/java/sql/ResultSet.html
http://msdn.microsoft.com/en-us/library/5sbfs6f1.aspx
http://www.springsource.org/
http://www.oracle.com/us/products/database/index.html
http://hdl.handle.net/10773/7359
http://msdn.microsoft.com/en-us/library/dd304523(v=prot.13).aspx
http://msdn.microsoft.com/en-us/library/dd304523(v=prot.13).aspx
http://docs.oracle.com/javase/6/docs/api/java/util/concurrent/locks/ReentrantLock.html
http://docs.oracle.com/javase/6/docs/api/java/util/concurrent/locks/ReentrantLock.html
http://docs.oracle.com/javase/tutorial/essential/concurrency/syncmeth.html
http://docs.oracle.com/javase/tutorial/essential/concurrency/syncmeth.html

