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Abstract— Call Level Interfaces (CLI) are low level API 

aimed at providing services to connect two main components 

in database applications: client applications and relational 

databases. Among their functionalities, the ability to manage 

data retrieved from databases is emphasized. The retrieved 

data is kept in local memory structures that may be 

permanently connected to the host database. Client 

applications, beyond the ability to read their contents, may 

also execute Insert, Update and Delete actions over the local 

memory structures, following specific protocols. These 

protocols are row (tuple) oriented and, while being executed, 

cannot be preempted to start another protocol. This 

restriction leads to several difficulties when applications 

need to deal with several tuples at a time. The most 

paradigmatic case is the impossibility to cope with 

concurrent environments where several threads need to 

access to the same local memory structure instance, each one 

pointing to a different tuple and executing its particular 

protocol. To overcome the aforementioned fragility, a 

Concurrent Tuple Set Architecture (CTSA) is proposed to 

manage local memory structures. A performance assessment 

of a Java component based on JDBC (CLI) is also carried 

out and compared with a common approach. The main 

outcome of this research is the evidence that in concurrent 

environments, components relying on the CTSA may 

significantly improve the overall performance when 

compared with solutions based on standard JDBC API. 

Keywords-Call Level Interfaces, O/RM, Concurrency, 

databases,  software architecture. 

I.  INTRODUCTION 

Database applications comprise at least two main 
components: database components and application 
components.  In our context, application components are 
developed in the object-oriented paradigm and database 
components rely on the relational paradigm. The two 
paradigms are simply too different to bridge seamlessly, 
leading to difficulties informally known as impedance 
mismatch [1]. The diverse foundations of both paradigms 
are a major hindrance for their integration, being an open 
challenge for more than 50 years [2]. In order to overcome 
the impedance mismatch issue, several solutions have 
emerged such as, embedded SQL (SQLJ [3]), language 
extensions (LINQ [4]), Call Level Interfaces [5] (CLI) 
(JDBC [6], ODBC [7]), object/relational mappings 
(O/RM) (Hibernate [8], TopLink [9], LINQ) and persistent 
frameworks (JDO [10], JPA [11], SDO [12], ADO.NET 

[13]). Despite their individual advantages, these solutions 
have not been designed to manage concurrency on the 
client side of database applications. Currently, 
concurrency is managed by database management systems 
through database transactions. Moreover, whenever the 
same data is needed by different client-threads, each thread 
behaves as an independent entity requesting its own data 
set. In other words, instead of sharing the data returned by 
a unique execution of a Select expression, each thread 
executes a Select expression independently from other 
threads. This leads to a waste of resources, namely it 
requires more memory, it requires more power 
computation, and performance is very probably affected 
negatively. Current tools use local memory structures 
(LMS) to manage the data returned by Select expressions. 
Beyond services to read the data kept by LMS, LMS 
provide services to execute three additional main protocols 
on their in-memory data: update data, insert new data and 
delete data. Thus, client-applications are able to update 
data, insert data and delete data without the need to 
explicitly execute Update, Insert and Delete expressions, 
respectively. Once again, these protocols are not thread-
safe not promoting this way the use of LMS on concurrent 
environments. Listing 1 and Listing 2 present a typical 
case where one table attribute needs to be updated. The 
value to be used to update the attribute is dependent on the 
table primary key (PKs). Listing 1 presents the current 
approach and Listing 2 presents an approach based on 
thread-safe LMS. In Listing 1 each thread is created and 
then it runs (doIt) to execute a task. Each thread has its 
own LMS this way preventing any concurrency at the 
LMS level. Listing 2 presents the equivalent solution 
based on an  approach  where  all  threads  share  the  same   

 

void begin() { 
    foreach thread 
        creat thread 
        thread.doIt(PKs) 
    end 
} 
void doIt(PKs) { 
    LMS=execute Select expression   
    while more rows on the LMS 
          if PK is in PKs 
              then update row 
          move to the next row 
    end while 
} 

Listing 1. Current approach to update data concurrently. 
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void begin() { 
    LMS=execute Select expression 
    foreach thread 
        create thread 
        doIt(LMS,PKs) 
    end 
} 
void doIt(LMS, PKs) { 
    while more rows on the LMS 
          if PK is in PKs 
              then update row 
          move to the next row 
    end while 
 
} 

Listing 2. Alternative approach to update data concurrently. 

LMS and update the attribute concurrently. In order to 
overcome the limitations of CLI, this paper proposes a 
Concurrent Tuple Set Architecture (CTSA). The CTSA, 
unlike current solutions, provides thread-safe protocols to 
interact with the data returned by Select expressions. 

JDBC and ODBC are two of the most representative 
standards of CLI. JDBC and ODBC provide,  respectively, 
ResultSet [14] interface and  RecordSet [15] interface as 
their internal implementations of LMS. 

The main contributions of this paper are twofold: 1) to 
present the CTSA based on CLI and with embedded 
concurrency at the level of LMS; 2) to carry out a 
performance assessment of a case study based on a JDBC 
component derived from the proposed architecture. It is 
expected that the outcome of this paper may contribute to 
open a new approach to improve the performance of 
database applications whenever several threads need to 
share the same LMS instances. 

Throughout this paper all examples are based on Java, 
SQL Server 2008 and JDBC (CLI) for SQL Server 
(sqljdbc4.jar). The presented source code may not execute 
properly, since we will only show the relevant parts for the 
points under discussion. 

The paper is structured as follows: section II presents 
the required background; section III presents the related 
work; section IV presents the proposed architecture; 
Section 4 presents the CTSA; section V presents the 
performance assessment and Section VI presents the 
conclusion. 

II. BACKGROUND 

LMS have been loosely presented and some properties 
have also been already described. Next follows a more 
detailed description about the features of LMS. 

LMS are instantiated by CLI to manage the data 
returned by Select expressions. As such, at this point it is 
advisable to discuss some LMS features that are relevant 
to this research. Figure 1 presents a general LMS 
containing 5 tuples (1 to 5) and 6 attributes (a, b, c, d, e, f). 
This LMS could have been instantiated to manage the data 
returned by the following CRUD expression: Select a, b, c, 
d, e, f from Table Where …. In this case, the CRUD 
expression has returned 5 tuples (rows) and the current 
selected   tuple  is   row   number 2. The   access   to   LMS  
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Figure 1. LMS with 5 tuples (rows) and 6 attributes (a till f). 

attributes is accomplished by selecting a tuple and then, 
through an index or through a label (usually the attribute 
name), by selecting one attribute at a time. For example, to 
execute an action action (read, insert or update) on 
attribute c of tuple 2 the following steps are necessary: 
select tuple 2 and then execute action(index of attribute c) 
or action(label of attribute c). CLI are responsible for 
providing services to allow applications to scroll on LMS, 
to read their contents and to modify (insert, update, delete) 
their internal contents. Other services are also available but 
they are not relevant for this research. Services may be 
split in two categories: basic services and advanced 
services. Basic services comprise two groups of protocols: 
the scrolling protocols are aimed at scrolling on tuples and 
the read protocol is aimed at reading the tuples’ attributes. 
Advanced services are available only if LMS are 
updatable. In this case applications are allowed to change 
the internal state of LMS. Advanced services comprise 
three protocols: insert protocol to add new tuples, update 
protocol to update existent in-memory tuples and, finally, 
delete protocol to delete existent tuples. After being 
committed, the new states of LMS are automatically 
committed into the host database. To execute any of the 
previous services it is necessary to know that the access to 
LMS is simultaneously tuple oriented and protocol 
oriented. This has two main implications. First, at any time 
only one tuple may be selected as the target tuple. Second, 
if a protocol is being executed, applications should not 
start any other protocol. If this rule is not fulfilled, LMS 
may lose their previous states. For example, if an advanced 
service is being executed and another protocol is triggered, 
LMS discard all changes made during the first protocol.  
TABLE I concisely presents four protocol that are used to 
interact with data of LMS.  

TABLE I. MAIN PROTOCOLS OF LMS. 

ID Protocol Id Protocol 

1 

Point to a tuple 
Read attributes 

2 

Point to a tuple 
Start update protocol 
Update attributes 
Commit update 

3 
Start insert protocol 
Insert attributes 
Commit insert 

4 
Point to a tuple 
Delete tuple 

 
Read Protocol: During the read protocol, attributes are 
read one by one and always from the current selected 
tuple. If a different tuple is selected, the next attribute 
value will be retrieved from the new selected tuple. Update 



Protocol: During the update protocol, attributes are 
updated one by one on the current selected tuple. The 
protocol may or may not be triggered by invoking a 
specific method. It ends when a specific method is invoked 
to commit the updated attributes. If another tuple or 
protocol (except the read protocol) is selected while it is 
being executed, all previous changes will be discarded. 
Insert Protocol: The    insert    protocol    is    triggered    
by invoking a specific method. Then, each attribute is 
inserted one by one. After all attributes have been inserted, 
the protocol ends when a specific method is invoked to 
commit the inserted tuple. If another tuple or protocol 
(except the read protocol) is selected while it is being 
executed, all previous changes will be discarded. Delete 
Protocol: The delete protocol comprises a single method 
that removes the current selected tuple from the in-
memory of LMS. The delete action is also automatically 
committed in accordance with the established policy. 

III. RELATED WORK 

A research has been carried out around tools aimed at 
integrating client applications and databases. A survey was 
made for the most popular tools, such as Hibernate [8], 
Spring [16], TopLink [17], JPA [11] and LINQ [18]. 
These tools may provide concurrency but always at a very 
high level. Basically, they provide some locking policies 
implemented in order to synchronize read and write 
actions. But these read and write synchronized actions are 
not executed over the same memory location. They are 
executed over distinct objects, such as sessions in 
Hibernate. These objects (sessions) are not thread-safe and 
therefore do not provide any protocol to access 
concurrently the in-memory data. 

[19] presents a concurrent version of the TDS protocol 
[20]. Unlike CTSA, the concurrency is internally 
implemented at the level of the TDS protocol through the 
services stacked above the TDS protocol. Authors have 
achieved significant results for the services they have 
implemented. Unfortunately, the research only addressed a 
restrict number of services not leading to a replicable and 
usable approach. 

To the best of our knowledge no other researches have 
been conducted around concurrency on LMS of CLI. 

IV. CTSA 

In this section we start to present CTSA and then a 
proof of concept is also presented. 

A. CTSA Presentation 

CTSA defines the concept of execution context as the 
information needed to characterize, at any time, the 
interaction between a thread and a component based on the 
CTSA. The execution context of each thread comprises the 
protocol that is being executed and the current selected 
tuple. This concept is very important because it is the basis 
for the concurrent implementation of LMS. In concurrent 
environments, each thread must have a complete control 
on the tuple and on the protocol it is executing. If this is 
not ensured, a running thread may be preempted by 

another thread that changes the execution context.  The 
first thread will never be aware about this situation and 
when it becomes the running thread it will execute its 
actions in a different execution context. In order to keep 
full control on the execution context, each thread needs to 
access the LMS in exclusive mode and also to be able to 
assure that it runs on its own execution context. The 
former condition ensures that other threads are not allowed 
to change the execution context of protocols that are being 
executed. The latter condition ensures that at the beginning 
of any protocol, if necessary, every thread is able to restore 
its execution context. To decide upon which strategy to 
follow to implement both conditions, two possibilities 
were considered and tested: 1) method oriented: execution 
context is managed method by method; 2) protocol 
oriented: execution context is managed at the protocol 
level. TABLE II briefly shows the logic associated with 
each approach. The scrolling process involves one method 
at a time and, therefore, it is implemented as method 
oriented access mode. Access modes for Insert, Update 
and Delete protocols do not have any other alternative but 
be implemented as protocol oriented. This derives from the 
fact, as mentioned before, that these protocols cannot be 
preempted to start a different protocol. Read protocol may 
be implemented in any access mode. To decide upon 
which access mode to implement some tests with the two 
access modes were carried out. The collected results have 
shown, for the same scenarios, that performance and 
concurrency improvement depend on the same variable 
but in opposite ways. They depend on the number of times 
that threads are preempted by other threads. Every time 
this occurs, a change in the execution contexts must be 
performed. When this number increases, performance 
tends to decrease and concurrency tends to increase. When 
this number decreases, performance tends to increase and 
concurrency tends to decrease. Thus, in order to improve 
performance, it was decided to implement the Read 
protocol based on the protocol oriented access mode. 

TABLE II. APPROACHES FOR THE EXCLUSIVE ACCESS MODE. 

Method oriented Protocol oriented 

1. get exclusive access 

2. set execution context 

3. execute method 

4. store execution context 

5. release exclusive access 

 

1. get exclusive access 

2. set execution context 

3. while protocol is not over 

        execute method 

4. store execution context 

5. release exclusive access 

 
Figure 2 presents the interfaces for the five main 

protocols: IRead (read protocol), IInsert (insert protocol), 
IUpdate (update protocol), IDelete (delete protocol) and 
IScroll (scroll protocol). Only the main methods of IRead, 
IUpdate, IInsert and IScroll have been presented in order 
not to overcrowd the class diagrams. Exclusive access 
modes based on the protocol oriented strategy are started 
by the   execution of an explicit starting method 
(beginRead, beginUpdate and beginInsert) and released 
only after the execution of another explicit method 



(endRead, endUpdate and endInsert). This strategy ensures 
the exclusive access to LMS while the protocol is being 
executed and also the initialization of the correct execution 
context before any access to the LMS. getInt and getString 
methods read attributes (read protocol) of types integer 
and string, respectively, from LMS. setInt and setString 
methods set the values for the attributes  (Update and 
Insert protocols) of type integer and string, respectively. 
Beyond these methods (get and set), there are other 
methods each one suited to deal with one data type of the 
host programming language. Exclusive access mode of 
IScroll methods and IDelete method are method oriented 
and, therefore, no additional methods are needed. 

 
 

+moveNext() : bool

+moveFirst() : bool

+moveAbsolute(in position : int) : bool

+isFirst() : bool

+...()

«interface»

IScroll

+beginRead()

+endRead()

+getInt(in idx : long(idl)) : long(idl)

+getString(in idx : long(idl)) : string(idl)

+...()

«interface»

IRead

+beginUpdate()

+endUpdate()

+cancelUpdate()

+setInt(in idx : long(idl), in value : string(idl))

+setString(in idx : long(idl), in value : string(idl))

+...()

«interface»

IUpdate

+beginInsert()

+endInsert()

+cancelInsert()

+setInt(in idx : long(idl), in value : string(idl))

+setString(in idx : long(idl), in value : string(idl))

+...()

«interface»

IInsert

 

Figure 2. CTSA main protocols. 

Figure 3 presents a simplified CTSA class diagram. 
Concurrent threads sharing the same LMS receive a new 
CTSA instance where all CTSA instances share the same 
LMS. lms is the LMS instance, currentTuple (current 
selected tuple) and protocol (protocol being used) define 
the execution context of the owner thread, setExecution 
restores the execution context of the running thread and 
storeExecution stores the current execution context. 

 

+CTSA(in lms : LMS)

-setExecutionContext()

-storeExecutionContext()

-lms : LMS

-currentTuple : unsigned long(idl)

-protocol : unsigned long(idl)

CTSA

IRead IUpdate
IInsert

IDelete IScroll  
Figure 3. CTSA class diagram. 

B. Proof of Concept 

This section evaluates CTSA using a proof of concept 
implemented in Java and JDBC and it uses the 
ReentrantLock [21] to guarantee exclusive access to shared 
data structures when threads interact with component 
based on the CTSA. Any other java mechanism, such as 
synchronized methods [22], could have been used. Due to 
space limitations we will only present CTSA from users’ 
perspective, see Figure 4. The thread receives a CTSA 
instance (line 23). When the thread enters the running state 
(line 27), it iterates the LMS one tuple at a time (line 30). 

This access mode is method oriented and, as such, there is 
no starting trigger. The tuple is read (line 32-33). The 
access mode of the read protocol is protocol oriented and, 
therefore, there is a trigger to start (line 31) and a trigger to 
stop it (line 34). This example shows that users of 
components based on the CTSA have the advantage of 
using thread safe LMS without any concern about its 
implementation. The use of the remaining protocols is very 
similar to the ones presented in Figure 4 and, therefore, no 
additional examples are needed. 

 

 
Figure 4. CTSA from users’ perspective. 

V. CTSA ASSESSMENT 

Performance assessment was carried out comparing 
two entities known as the Component CTSA (C-CTSA) 
and the Concurrent JDBC (C-JDBC). C-CTSA is 
responsible for evaluating components relying on the 
CTSA architecture and it is based on a component derived 
from the proof of concept here presented. C-JDBC is 
responsible for evaluating a concurrent approach based on 
the standard JDBC. The evaluation of both entities 
comprises a single façade: performance. Three scenarios 
were defined for both components: Select (s), Update (u) 
and Insert (i). Each scenario comprises a set of several 
numbers of tuples to be processed [nr] and a set of several 
numbers of simultaneous running threads [nt]. In order to 
formalize the entities’ representation we define E(α,p,γ) 
([nt], [nr]) where α{c-ctsa,c-jdbc}, p is for performance 
façade and γ{s,u,i}. To simplify, E(α,p,γ) ([nt], [nr]) is 
represented by default as E(α,p,γ). Each scenario comprises a 
specific goal which is known as a task. A task represents a 
particular case for the use of C-CTSA and C-JDBC 
regarding the LMS. The tasks to be performed are: Read 
(read [nr] tuples from the LMS), Update (update [nr] 
tuples of a LMS) and Insert (insert [nr] tuples into a 
LMS). It was decided to create a favorable environment to 
C-JDBC and an unfavorable environment for C-CTSA to 
execute the defined tasks. This way, the minimum 
performance of real scenarios should be delimited by the 
collected measurements. This issue will be addressed in 
more detail after explaining the SQL Server behavior 
about LMS. 

The test-bed comprises two computers: PC1 - Dell 
Latitude E5500, Intel Duo Core P8600 @2.40GHz, 4.00 



GB RAM, Windows Vista Enterprise Service Pack 2 
(32bits), Java SE 6, JDBC (sqljdbc4); PC2 – Asus-P5K-
VM, Intel Duo Core  E6550 @2,33 GHz, 4.00 GB RAM, 
Windows XP Professional Service Pack 3, SQL Server 
2008. C-JDBC and C-CTSA are executed in PC1 and SQL 
Server runs in PC2. In order to promote an ideal 
environment the following actions were taken: the running 
threads were given the highest priority and all non-
essential processes/services were cancelled in both PCs; a 
direct and dedicated network cable connecting PC1 and 
PC2 has been used in exclusive mode and performing 
100MBits of bandwidth. Transactions were not used and 
auto-Commit has been always enabled. A new database 
was created in conformance with the schema presented in 
Figure 5 to assess both entities. In order to avoid any 
overhead added by SQL Server, some default SQL Server 
database properties were changed as, Auto Update 
Statistics = false and Recovery Model = Simple. 

 

 
Figure 5. Std_Student schema. 

Some important aspects are out of the scope of this 
study. Aspects as database server performance, network 
delays and memory consumption are not individually 
addressed but considered as part of the overall 
environment. This has been assumed because both entities 
share the same infrastructure. 

It is essential to have some knowledge about SQL 
Server behavior, which is similar to most of the other 
relevant relational database management systems, to 
completely understand the details of each defined task and 
also to understand the collected results. When a Select 
statement is executed using a scrollable or an updatable 
LMS, SQL Server creates a server cursor with all the 
selected tuples. These tuples are dynamically transferred in 
blocks, from the server to LMS, whenever necessary. This 
means that at any time LMS may not have all the tuples 
but only a sub-set of all tuples. When users point to a tuple 
that is not present in the LMS, the TDS protocol discards 
the current LMS content and fetches the block containing 
the desired tuple. This has a deep implication. If threads 
are always requesting tuples that are not present in the 
LMS, SQL Server has to transfer the correspondent block 
for each request. In an extreme scenario, each individual 
action over the LMS could imply a new transference of 
tuples. From the previous statements, it is expected that the 
number of blocks to be transferred will increase when the 
number of tuples, inside server cursors, increases and also 

when the dispersion of the used policy to select tuples, 
contained by server cursors, increases. Thus, to create the 
environments for both entities, the following decisions 
were taken: 
C-JDBC (favorable environment):  each thread will always 
access tuples sequentially from the first one till the last 
one. 
C-CTSA (unfavorable environment): two conditions were 
implemented: 1) after accessing a tuple, each thread will 
give the opportunity for other threads to become the 
running thread. This will maximize the number of changes 
in the execution context; 2) each thread will have its own 
set of tuples, not shared with any other thread. This will 
maximize the number of blocks of tuples to be transferred 
from the server cursor to LMS. 
 
TABLE III shows the algorithm for the assessment of    
E(c-ctsa,p,γ). The same ResultSet is shared by all [nt] threads. 
Each thread executes its scenario for a group of ψ=[nr] 
adjacent tuples and auto-suspends itself after accessing 
each tuple. The intersection of all ψ= . 

TABLE III. ALGORITM FOR E(C-CTSA,P,Γ) ASSESSMENT. 

1. Delete all rows from Std_Student 

2. Fill Std_Student with [nr]*[nt] rows (zero rows for insert) 

3. Start counter 

4. Select all rows from Std_Student into one single ResultSet 

5. Create all threads. Each thread (ψ tuples) 

       5.1 for each tuple 

            5.1.1 read/update/insert (tuple) 

            5.1.2 suspend thread 

       5.2 dies 

6. Wait all threads to die 

7. Stop counter 

 
TABLE IV shows the algorithm for the assessment of 

E(c-jdbc,p,γ). Each thread creates its own ResultSet (LMS) 
containing/inserting a group of ψ=[nr] adjacent tuples. 
The intersection of all ψ= . 

TABLE IV. ALGORITHM FOR E(C-JDBC,P,Γ) ASSESSMENT. 

1. Delete all rows from Std_Student 
2. Fill Std_Student with [nr]*[nt] rows (zero rows for insert) 
3. Start counter 
4. Create all threads. Each thread: 
     4.1  select ψ tuples into its own ResultSet 
     4.2  for each tuple 
         4.2.1 read/update/insert a tuple 
     4.3  dies  
5. Wait all threads to die 
6. Stop counter 

 
To contextualize the performance assessment 

environment some initial measurements were carried out 
to delimit the range of [nt] and [nr] to be used. In order to 
emphasize concurrency mechanisms, priority was given to 
the range of [nt] in detriment of [nr]. Values for these 
metrics were collected by empirical experimentation based 



on an iterative process. The idea is to gather a set of values 
for [nt] and [nr] that may be used to assess and compare 
the performance of both E(α,p,γ) entities. To accomplish this, 
both entities, E(c-ctsa,p,γ) and E(c-jdbc,p,γ) were executed under 
several combinations of [nt] and [nr] until the collected 
values comprise a range of behaviors considered 
satisfactory to accurately assess and compare the 
performance of both entities. After several iterations it was 
decided that a reliable execution environment should be 
defined as: 
    [nt]={1, 5, 10, 25, 50, 75, 100, 150, 200, 250, 350, 500} 
    [nr]={5, 10, 25, 50, 75, 100} 
 

In accordance with the requirements, this execution 
environment evaluates the performance by maximizing the 
number of simultaneous running threads in detriment of 
the number of tuples. With 500 threads and 100 tuples it 
was possible to accurately assess and foresee the 
performance of both entities. This was the main reason for 
their acceptance. The intermediate collected values 
showed to be enough to obtain well defined charts for the 
behaviors of both entities.  Just as a final note, some 
scenarios took some minutes to setup and to process the 
highest values of [nt] and [nr]. This knowledge was also 
considered to delimit the two top values (nr=100 and 
nt=500), this way avoiding any risk to successfully 
accomplish the collecting process of all necessary 
measurements. 25 raw measures were collected for each 
E(α,p,γ)([nt],[nr]) leading to (2x3x12x6)x25=10,800 raw 
measurements. Intermediate measurements were computed 
from the average of the 5 best measures of each 
E(α,p,γ)([nt],[nr]) leading to a total of 2x3x12x6=432 
measurements. The final measurements used in the next 
charts represent the ratios between E(c-jdbc,p,γ) and E(c-ctsa,p,γ) 
for each ([nt],[nr]). In all charts the vertical axis is for the 
ratios and the horizontal axis is for the [nt]. 

Select scenario: the chart for the select scenario is 
shown in Figure 6. From it, it is clear that the ratios 
decrease whenever the number of tuples increases and 
whenever the number of threads increases. E(c-jdbc,p,γ) have 
[nt] server cursors and each thread sequentially reads its 
own tuples from the first one till the last one. Thus, the 
transference of block of tuples only happens when a thread 
tries to read the next tuple that is after the last one 
contained in the ResultSet. Moreover, for this entity 
different threads do not compete for the same ResultSet 
this way avoiding any randomness in the tuples to be 
selected. Regarding E(c-ctsa,p,γ) there is only one server 
cursor shared by all threads. The implemented Read task 
significantly increases the possibility of each thread to be 
requesting a tuple that is not present in the ResultSet and, 
therefore, to trigger a new transference of block of tuples. 
With other strategies where threads read shared sets of 
tuples, the block transference rate should be much lower, 
this way increasing the ratios between the two entities. 
Another relevant issue is that the Select scenario is a light 
scenario mainly because the Select expression and the read 
protocol are very efficient when compared with the other 
CRUD expressions and other protocols. Thus, the 

overhead induced by the blocks transference have a deeper 
impact in the overall performance. The impact increases 
with the number of tuples and the number of threads as 
expected. Anyway, the collected results show that for 
lower values of number of tuples and lower values of 
number of threads the ratios vary between 1.02 and 3.44 
times, as shown in Figure 7. It may also be seen that the 
worst ratio achieves 0.80 for nt=100 and nr=25. These 
results show that despite the unfavorable test conditions 
for C-CTSA, C-CTSA still achieves significant results. 
For example, the relative highest gain in performance 
(3.44) is much more significant than the relative highest 
lost in performance (0.8).  Figure 7 presents a detailed 
vision for the ratio between both entities for all 
combinations of [nr] and [nt]. 

 

 
Figure 6. E(c-jdbc,p,s) / E(c-ctsa,p,s) chart. 

 
Figure 7. E(c-jdbc,p,s) / E(c-ctsa,p,s) details. 

Update scenario: the chart for the update scenario is 
shown in Figure 8. The comments made to the Select 
scenario are also applied to the Update scenario regarding 
the transference rate of block of tuples. The most 
significant differences are: 1) the update protocol is a 
heavy protocol and, thus, its overhead has a deep impact 
on both entities and in the collected measurements; 2) the 
E(c-jdbc,p,γ) entity has [nr] server cursors, each one 
competing with the others to update the same requested 
attributes while E(c-ctsa,p,γ) entity has only one server cursor 
and the competition is performed at the client side. Despite 
the unfavorable conditions for C-CTSA, in this scenario, 
the ratio is always significantly greater than 1. It increases 
in the range 1 < nt < 10 and for nt > 10 the ratios are 
practically stable for each individual [nr] (except for 
nr=5). Another   relevant  issue is  that the  ratios  decrease  



 
Figure 8. E(c-jdbc,p,u) / E(c-ctsa,p,u) chart. 

when [nr] increases for every [nt]. 
Insert scenario: the chart for the insert scenario is 

shown in Figure 9. The most relevant aspect is the slight 
but constant ratios increase with [nt] for each [nr]. In the 
initial stage, ResultSets are empty and tuples are 
sequentially inserted and committed one by one in the host 
database table. In this scenario, in opposite to the others, 
all E(c-ctsa,p,γ) threads insert adjacent tuples this way 
minimizing the number of blocks to be transferred. In spite 
of being a very heavy scenario for both entities, the 
differences between C-CSTA and C-JDBC are enough to 
be noticed in the ratios. It is always greater than 1 and 
higher values of [nr] cause a decreasing in the ratios. 

 

 
Figure 9. E(c-jdbc,p,i) /E(c-ctsa,p,i) chart. 

VI. CONCLUSION 

In this paper an architecture for a concurrent LMS, 
herein known as CTSA, has been presented. A proof of 
concept has also been presented based on a standard JDBC 
API. In order to assess CTSA performance in a concurrent 
environment and compare it with an equivalent 
environment based on a standard JDBC solution, a test-
bed has been defined and implemented with two 
concurrent entities: C-JDBC and C-CTSA. C-CTSA was 
assessed in unfavorable conditions and C-JDBC has been 
assessed in favorable conditions in order to delimit and 
evaluate C-CTSA performance minimum gain. In spite of 
these conditions, C-CTSA always gets better scores for the 
update and for the insert scenarios.  In the Select scenario, 

C-CTSA obtained significant scores in the range of lower 
values of [nr] and [nt]. Anyway, for higher values of [nr] 
and [nt] the minimum ratio did not go below 0.8 which is 
still a remarkable score. 

The outcome of this research should encourage CLI 
providers to release CLI with internal embedded 
concurrency. Embedded concurrency has the advantage of 
accessing the LMS’s internal data structures to optimize 
the implementation of the different protocols. 
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