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ARTICLE INFO ABSTRACT

Article history: Objective: The main aim of this in vitro study was to evaluate the influence of Streptococcus
Received 2 January 2013 mutans on the corrosion of titanium.

Received in revised form Methods: S. mutans biofilms were formed on commercially pure titanium (CP-Ti) square
19 March 2013 samples (10 mm x 10 mm x 1 mm) using a culture medium enriched with sucrose. Open
Accepted 26 March 2013 circuit potential (OCP) and electrochemical impedance spectroscopy (EIS) measurements

were used to evaluate the corrosion behaviour of CP-Ti in the presence of S. mutans in
Fusayama’s artificial saliva. The corrosion of biofilm-free CP-Ti samples was also evaluated

Keywords: in artificial saliva. Biofilms biomass was measured by spectrophotometry, using crystal
Streptococcus mutans violet staining, after 1, 2 and 7 days.

Biofilm Results: The OCP values recorded on CP-Tiin the presence of S. mutans (0.3 £+ 0.02 V vs. SCE)
Fluorides was lower than those on biofilm-free CP-Ti (—0.1 + 0.01 V vs. SCE) after 2 h of immersion in
Titanium artificial saliva (p < 0.05). That reveals a high reactivity of titanium in presence of S. mutans.
Corrosion Impedance spectra revealed the formation of a compact passive film on titanium in artificial

saliva or in the presence of a 2 days old S. mutans biofilm even though the corrosion
resistance of CP-Ti has decreased in presence of a S. mutans biofilm.
Conclusion: The presence of bacterial colonies, such as S. mutans, negatively affected the
corrosion resistance of the titanium.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction accumulation is an important factor that can cause failures of

oral rehabilitation systems, especially considering the patho-
A biofilm consists of a well-organized community of microbial genic potential of some bacteria such as Streptococcus mutans,
cells, including one or multi-species agglomerates, surrounded Porphyromonas gingivalis and Prevotela intermedia which promote
by an extracellular matrix composed of polysaccharides, dental caries or periodontal diseases.’™ Since specific types of
nucleic acids, H,0, proteins and other substances.’™ Biofilm acid-producing bacteria can promote the degradation of hard

* Corresponding author at: Universidade do Minho, Centre for Mechanical and Materials Technologies (CT2M), Departamento de
Engenharia Mecénica, Campus Azurém, P-4800-058 Guimardes, Portugal. Tel.: +351 253 510231, fax: +351 253 516007.
E-mail addresses: lrocha@dem.uminho.pt, jsouza@dem.uminho.pt (Jalio C.M. Souza).
0300-5712/$ - see front matter © 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.jdent.2013.03.008


https://core.ac.uk/display/55625264?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.jdent.2013.03.008
mailto:lrocha@dem.uminho.pt
mailto:jsouza@dem.uminho.pt
http://www.sciencedirect.com/science/journal/03005712
http://dx.doi.org/10.1016/j.jdent.2013.03.008

JOURNAL OF DENTISTRY 41 (2013) 528-534 529

tooth structures, restorative materials, such as dental compo-
sites or dental amalgam, can also be deteriorated during a bio-
corrosion process.”® ™ Among the several microorganisms
present in the oral cavity, Streptococcus mutans is one of the
utmostimportant due toits capacity toreleaselactic acid and to
grow in acidic environments becoming a powerful corrosive
microorganism.>**> Moreover, it grows in both aerobic and
anaerobic environments, and can be found at different habitats
in the oral cavity."* In fact, oral biofilms with a high proportion
of S. mutans cause a pH decrease in the oral cavity promoting the
demineralization of enamel, dentine, and cementum as well as
the corrosion of dental restorative materials.>*'*> However, the
corrosive role of S. mutans depends on the sucrose concentra-
tion present on its environment and in its adhesion to the oral
surfaces.*” Although S. mutans is not directly responsible for
periodontal inflammations, it is known that oral biofilms
consist in consortia of other species depending on environ-
mental conditions like oxygen, nutrients, and pH.%7?? In
addition, the biofilm structure can pick up external acidic
substances from dietary, as well as acidic substances produced
from microbial metabolism."?*>!

In dentistry, commercially pure titanium is the first choice
for dental implants, while titanium alloys (e.g. Ti6Al4V and
Ti15Zr4Nb4Ta) are desirable for removable and fixed dental
prostheses, due to their good corrosion resistance, low
density, high mechanical strength and biocompatibility.?*22
Indeed, titanium is a material with a high corrosion resistance
compared to other metallic materials used in oral rehabilita-
tion thanks to a compact titanium oxide (TiO,) film at its
surface in oxygen containing environments.”*%?°-! However,
the dissolution of the TiO, film may occur in certain media
such as those containing high fluoride concentrations,
hydrogen peroxide (H,0,), and lactic acid, like it can occur
in the oral cavity.”® Moreover, the corrosion of titanium
increases when F~, H,0,, and lactic acid are combined, as
revealed by Mabilleau et al.® Corrosion of titanium results in
the release of metallic ions into the surrounding tissues that
can stimulate an initial inflammatory response, and a
consequent toxic, mutagenic and/or carcinogenic reac-
tion.?>% If severe, the effect of corrosion may be visible
in vivo resulting in a change of surface colouration or
perimplant inflammations due to the released ions.*® Guindy
et al.” reported the failure of six dental implant systems
caused by corrosion of the metallic suprastructure. In that
study, areas with clear signs of localized corrosion on implants
and inner crown surfaces were detected by light and scanning
electron microscopy on all six implants and inner crown
surfaces. Corrosion causes a material loss that leads to a
dimensional misfit between prosthetic crown and abutment
or between abutment and implant.3233

Considering the increased use of titanium in oral rehabili-
tation, corrosion studies of titanium and its alloys in the
presence of microorganisms become very important due to an
enormous number of microorganisms and corrosive sub-
stances present in the oral cavity which vary from patient to
patient and on the oral environmental conditions. The study
of the corrosion resistance of titanium in the presence of
microorganisms can determine the performance of implant-
supported prostheses. As a result, the reduction of restorative
material loss by corrosion phenomena can increase the long-

term success of dental implant systems. The main goal of this
work was to evaluate the influence of S. mutans biofilms
typically present in the oral cavity on the corrosion of
titanium, through electrochemical techniques.

2. Materials and methods

2.1. Preparation of samples and fluoridated artificial
saliva solutions

Square samples (10 mm x 10 mm x 1 mm) were cut from
sheets of commercially pure titanium (CP-Ti) (VSMPO TIRUS,
US, ASTM B 348, Cp-Ti Grade 2). The samples were wet ground
on SiC abrasive papers (Struers A/S, Denmark) down to 1200
Mesh. After grinding, samples were first cleaned in isopropyl
alcohol (Sigma-Aldrich, USA) for 10 min and then in distilled
water for 5 min using an ultrasonic bath. These samples were
stored in a desiccator for 1 day, and sterilized before biofilm
formation or electrochemical measurements by autoclaving at
121 °C for 15 min.

Amodified Fusayama’s artificial saliva formulation®* (Table
1) was used as stock solution in this in vitro corrosion study.
The electrochemical behaviour of metallic materials in that
solution has been reported to be similar as in human saliva.**

2.2.  Bacterial strains and growth conditions

S. mutans ATCC 25175 were microaerophilically grown for 48 h
at 37 °C in agar plates with 32 g/L of BHI agar (Bacto, Difco,
USA) supplemented with 3 g/L of yeast extract and 200 g/L of
sucrose (Bacto, Difco, USA). The bacterial cells were inoculated
in Tryptic Soy Broth (TSB, Bacto, Difco, USA) supplemented
with 3 g/L of yeast extract and 200 g/L of sucrose for 18 h at
37 °C and 150 rpm. After incubation, cells were harvested by
centrifugation for 10 min at 4 °C and 5000 rpm and washed
twice with Phosphate Buffer Solution (PBS, Sigma-Aldrich,
USA). Then, the cells were re-suspended in TSB supplemented
with mucin (2.5 g/L), peptone (5 g/L), urea (1 g/L), yeast extract
(2 g/L) and sucrose (200 g/L) to obtain an optical density (OD) of
about 0.6 at Agso, corresponding to approximately 1 x 10® CFU/
ml.>2°22 The OD at 630 nm was measured using a spectro-
photometer (BioTek, USA). This cell suspension was the
inoculum for biofilm formation assays.

2.3. Biofilm formation and analysis

Titanium samples were placed into 24 well-plates, each
containing 2 ml of S. mutans inoculum (1 x 10® CFU/ml) and

Table 1 - Composition of the stock Fusayama’s artificial

saliva solution used in this work.

Compounds (g/1)
NacCl 0.4
KCl 0.4
CaCl,-2H,0 0.795
Na,S-9H,0 0.005
NaH,P0,-2H,0 0.69
Urea 1
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incubated at 37 °C. After 24,48 and 168 h (7 days) of incubation,
the samples were transferred for new well-plates and washed
twice with PBS for the evaluation of biomass by the crystal
violet (CV) staining method.>***' Those time points were
selected in order to be possible to evaluate the initial phases of
biofilm formation immediately after the insertion of titanium-
based abutments or prosthetic frameworks in the oral cavity
up to 48 h. The other time point was selected as a longer one in
order to evaluate the increase of the biofilm density and pH.
The pH of the culture medium containing S. mutans was
measured every day using a pH metre (Mettler Toledo 340,
Brazil). Then, the titanium samples were immersed in 1 ml of
methanol for 15 min to allow cell fixation. After that, methanol
was removed and the titanium samples were dried at room
temperature and 1 ml CV (1%) was added to stain the bacterial
biofilm for 5 min. After that, the titanium samples were dip-
washed in distilled water, dried at room temperature, and
transferred to new 24-well plates containing 1 ml of acetic acid
(33%) in order to remove the CV solution from cells. The
suspension was aspirated (aliquots of 200 ul) and placed in 96-
well plates to determine the OD at 540 nm.

For microscopic analyses, surfaces covered with biofilms
were washed two times in PBS and fixed in glutaraldehyde 2%
for 5 min. Then surfaces were washed three times in PBS, and
dehydrated through a series of graded ethanol solutions (50,
70, 80, 90, 100%). Samples covered with S. mutans biofilms were
sputter-coated with gold, and analyzed by Scanning Electron
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Microscopy (SEM, S360 LEICA CAMBRIDGE) at 15kV and by
Field-Emission Scanning Electron Microscopy (FESEM, FEI
QUANTA 400 FEG) at 5-10 kV at an angle of 60°.

2.4. Corrosion measurements

Samples covered or not with S. mutans biofilms were mounted
in an acrylic electrochemical cell connected to the external
electrical wiring. The electrochemical tests were carried out
with a Voltalab PGZ100 potentiostat (Radiometer Analytical)
coupled to the Voltamaster 4 software used for electrochemi-
cal control and data analyses. The open circuit potential (OCP)
is defined as the potential of an electron conductive material
immersed in an ion conductive electrolyte and measured
against a reference electrode. In this work, a standard calomel
reference electrode (SCE, Radiometer Analytical, XR110 model)
was used. A Pt-electrode (Radiometer Analytical, M231PT
model) was used as counter electrode in impedance and
potentiodynamic polarization tests. The test samples were
connected as working electrode. Since on immersion of a test
sample in the Fusayama’s artificial saliva, the OCP evolves
with time, a waiting time was inserted till the OCP stabilized.
The titanium test samples covered with biofilms were tested
in Fusayama’s artificial saliva solution A group of titanium
samples without biofilms used as control group, was im-
mersed in sterilized growth medium for 48 h before their OCP
was measured in Fusayama’s solution.

Fig. 1 - Crystal violet absorbance (Abs) of S. mutans biofilm biomass formed on titanium surfaces and pH of biofilm medium
after 24, 48, and 168 h (7 days) of growth (growth in TSBMPY20%S, 37 °C, 150 rpm). Images of S. mutans biofilms formed
(grown in TSBMPY20%S, 37 °C, 150 rpm) on titanium surfaces after (C) 24, and (B and D) 48 h. Images obtained by FEGSEM
operated in secondary electrons (SE) mode at 10 kV and an angle of 60°.
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2.5. Statistical analysis

The results were statistically analyzed via one-way analysis of
variance (ANOVA), at a significance level of p < 0.05 by using
the SPSS 17.0 software for Windows (Chicago, IL, USA).

3. Results

3.1.  Biofilm analysis

The biomass of S. mutans biofilms formed on titanium samples
was determined after 24, 48, and 168h by absorbance
measurements after CV staining (Fig. 1). A significant increase
(p < 0.05) of biomass occurs after 48 h of incubation. However,
no statistically significant differences (p < 0.05) were found
between the biomass present after 48 and 168 h (7 days) of
incubation. Also, as shown in Fig. 1A, the pH of the growth
medium becomes acidic (pH ca. 4) during the growth of the
biofilm. The morphology of S. mutans biofilms formed on
titanium surfaces is shown in Fig. 1B-D. A higher biofilm
accumulation is noticed after 48 h of growth than after 24 h.
Additionally, a higher production of extracellular polysac-
charides and the existence of canals below and inside a biofilm
grown for 48 h, are observed (Fig. 1). SEM images did not reveal
the presence of a localized corrosion on the titanium surfaces
after a biofilm growth for 48 h.

3.2. Corrosion measurements in artificial saliva solutions
in the presence of S. mutans biofilms

A decrease of the OCP was recorded on titanium covered with
S. mutans biofilms grown for 48 h as shown in Fig. 2. After an
immersion for 2 days in a sterile growth medium, the OCP
values recorded on titanium samples without biofilms evolve
towards more noble values (0 V vs. SCE) in artificial saliva.
Also, EIS tests were performed for 48 h to evaluate the state
of the titanium passive film in the presence of biofilms
(Fig. 3A). The EIS spectra (Fig. 3A) for titanium surfaces free of
biofilms reveal values of the phase angle approach from —90°
and a higher inclination of the slopes ([Z] vs. Frequency) than
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Fig. 2 - Evolution of open circuit potential (OCP) recorded on
titanium covered or not with S. mutans biofilms grown
during 48 h in TSBMPY20%S (37 °C, 150 rpm), and
immersed in Fusayama’s artificial saliva.

those recorded on titanium covered with S. mutans. That
indicates higher values of the total impedance for titanium
without biofilms than in presence of biofilms (p < 0.05).

An equivalent circuit was derived from non-linear square
fitting of EIS spectra, as shown in Fig. 3B. That circuit known as
Randle’s circuit consists of a passive film capacitance (Cy) in
parallel with a polarization resistance of the passive film (Rpy)
in series with a solution resistance (R;). Randle’s circuit
indicates a capacitive behaviour of titanium surface in
presence of a compact titanium oxide film in both cases
(Fig. 3B). In other words, there was no formation of defects
such as pits on the titanium surfaces with and without
biofilms.

The values of Rprand Cyobtained by fitting of EIS spectra are
shown in Fig. 4. The equivalent electrical circuits as well as
experimental and theoretical values showed an adequate
fitting in agreement to chi-square values (x?) between 10~*and
10°. After analyzes of C;and Rpyvalues by ANOVA, significant
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Fig. 3 - (A) EIS spectra (bode representation) for titanium covered or not with S. mutans biofilms (48 h of growth in
TSBMPY20%S, 37 °C, 150 rpm) and (B) the corresponding electrical circuit.
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Fig. 4 - (A) Polarization resistance (Rpy) and (B) capacitance of titanium passive film (C;) with and without S. mutans biofilms
grown for 48 h in TSBMPY20%S (37 °C, 150 rpm) when immersed in artificial saliva.

differences (p < 0.05) were found between the two groups of
titanium samples. The lowest values of Rpy (Fig. 4A) were
observed for titanium covered with biofilms what confirms the
decreased corrosion resistance in presence of S. mutans. As
shown in Fig. 4B, the values of Cs for titanium without biofilms
are lower than those for titanium covered with biofilms,
although in both cases the impedance results indicate the
presence of a passive film. Additionally, these values of Cs
suggest a higher thickness of the TiO,-film in absence of
biofilms compared to titanium covered with biofilms.

4, Discussion

In this work, the corrosive effect S. mutans on titanium was
evaluated by electrochemical techniques associated to biofilm
density and microscopic analyses. S. mutans agglomerates
surrounded by their extracellular matrix could be detected on
titanium over a period of 48 h of growth (Fig. 1). Considering
that S. mutans agglomeration, the colonization of different
kinds of surfaces and materials by S. mutans has been
investigated in previous studies.”®® S. mutans has been
classified as hydrophobic performing its initial adhesion on
titanium surfaces supported by glycoprotein as e.g., mucin or
polysaccharides extracellular matrix.»**"*® Electrostatic inter-
actions on the adsorption of mucin to titanium as well as
between mucin and S. mutans, are responsible for the initial
adhesion of S. mutans cells™'¢*8 (Fig. 1B and C). Also, S. mutans
growth can be enhanced by high sucrose concentration, so
that the production of extracellular matrix leads to biofilm
agglomeration™***° (Fig. 1D). The stabilization of biofilm
growth noticed after 48 h, Fig. 1A, instead of an increase,
could be explained by a detachment of some parts of the
biofilm biomass to the surrounding environment, which is a
characteristic of mature biofilms."*”:?*

Even though the growth conditions used in this study
allowed the agglomeration of S. mutans on titanium surface at
high density, it was not detected a localized corrosion of
titanium in the presence of S. mutans over a period of 48 h of
growth. Nevertheless, the decrease of OCP noticed during
electrochemical tests indicated an increase of the chemical

reactivity of titanium or else a higher corrosion susceptibility
of titanium in the presence of biofilms.

Impedance tests confirmed the OCP results indicating a
decrease of the corrosion resistance in presence of S. mutans
(Fig. 4). The amount of electric charge stored on the titanium
surface (in an electric field) immersed in an electrolyte is
represented by C.'® The dielectric properties of the passive
film can be estimated from the equivalent electrical circuit
once an increase of capacitance results in a decrease of the
dielectric properties of the passive film. On the other side, Rps
indicates the ability of the passive film to resist of a current
flow on its surface, or else the corrosion resistance of the
passive film.'° The decreased corrosion resistance can be due
to the release of lactic acid from S. mutans metabolism at high
sucrose concentrations to the surrounding environment® as
shown by pH measurements (Fig. 1A). Also, formic and acetic
acids can be released from S. mutans metabolism at low
sucrose concentration during prolonged periods without
nutrients® what can contribute to a decrease of pH in the
surrounding. The presence of acidic substances, produced by
S. mutans, on titanium could significantly decrease the pH of
the growth medium (Fig. 1A). Thus, the continuous decrease
of pH might corrode titanium surfaces located below and
around the biofilms. Also, a higher decrease of the corrosion
resistance of titanium can be noticed in the presence of
mixed biofilms than in the presence of mono-species
biofilms.

Considering that the pH of the growth medium was at 4 in
presence of high density biofilms, one may assume that the pH
within the biofilm could be much lower than the one resulting
from a gradual diffusion of acidic substances through the
biofilm biomass up to titanium surface.

As reported in previous studies,”*? the dissolution rate of
the titanium oxide film at low pH is associated to the H*
concentration in the solution. That results in the formation of
hydrated Ti oxides as Ti(OH)s", and further in a release of Ti-
ions and TiO, ultra-fine particles to the surrounding environ-
ment. Titanium ions might prevent or decrease bacterial
growth due to their toxicity on bacterial cells. In fact, a high
concentration of Ti particles at 500 ppm can decrease the
microbial cell viability.! However, Ti ions and TiO, ultra-fine
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particles (diameter up to 100 nm) have been reported as toxic
for human cells.?>* In addition, the release of Ti ions and
particles results in a material loss that can promotes failures
in titanium-based structures of dental prostheses and implant
connections.

5. Conclusions

Concerning the presence of biofilms, the growth of S. mutans
onto titanium surfaces stabilizes after 2 days of incubation in
an enriched medium with a high sucrose concentration.
Titanium surfaces covered with a biofilm grown for 2 days,
exhibited a capacitive behaviour revealing the presence of a
compact titanium passive film without the occurrence of
localized corrosion when immersed in artificial saliva.
However, the presence of S. mutans colonies on the titanium
surface negatively affected the corrosion resistance as
revealed by the polarization resistance of the titanium passive
film. In fact, the decrease of pH caused by acidic substances
released from S. mutans metabolism can induce the corrosion
of titanium-based frameworks and implant-abutment joints
during a prolonged period at high sucrose concentration, or in
association with other acidic substances and fluorides in the
oral cavity.
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