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facts; but a pile of stones is not a house, and a collection of facts is not 

necessarily science. “ 
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Abstract 

This work aimed at the development and optimization of systems and techniques for 

microalgae cultivation, in order to make the process economically and environmentally 

sustainable. Three different strategies were adopted: i) maximize productivity through 

the optimization of culture conditions, ii) maximize productivity and decrease costs by 

the use of agro-industrial waste as cultivation medium; iii) development of a new, low 

cost and highly productive microalgae cultivation system. 

Carbon dioxide (CO2) is the most widely used carbon source for photoautotrophic 

growth of microalgae. The rate of CO2 fixation (RCO2) by Chlorella vulgaris was 

maximized by defining the values of CO2 concentration in air feed and aeration rate. 

The results revealed that the maximum RCO2 (2.22 g L-1 d-1) was obtained using 6.5% 

(v/v) CO2 and 0.5 vvm. Although biomass concentration and mass productivity were 

affected by growth conditions, no differences were obtained in the biochemical 

composition of cells. 

The optimization of specific productivity (starch and lipids for the production of 

bioethanol and biodiesel, respectively) was performed using strategies of nutrient 

limitation. Starch accumulation in C. vulgaris cells was evaluated under different initial 

concentrations of urea (nitrogen source) and FeNa-EDTA (iron source) in the medium. 

Based on the results, a two-stage process for obtaining culture cells with high 

concentrations of starch (> 40%) was proposed: a first stage of cultivation with initial 

urea and FeNa-EDTA concentrations of 1 and 0.08 g L-1, respectively, which aims at 

maximizing biomass productivity, followed by a second stage of cultivation in the 

absence of these nutrients to induce starch accumulation. 

The increase of lipid content in Parachlorella kessleri cells was induced using a 

culture medium dilution strategy. Photosynthetic carbon partitioning into starch and 

neutral lipid, as well as the influence of nutrient depletion and repletion on growth and 

pigment content in the green microalga P. kessleri were studied. The study revealed that 

P. kessleri used starch as a primary carbon and energy storage, but the stress caused by 

the decrease of nutrients concentration made the microalgae to shift the fixed carbon 

into reserve lipids as a secondary storage product. These findings indicate that 

nutritional limitation can be used in P. kessleri cultivation as a very effective and cheap 
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strategy to increase lipid productivity, for biofuel production. 

Growth parameters and biochemical composition of the green microalga C. vulgaris 

cultivated under different mixotrophic conditions were determined and compared to 

those obtained from a photoautotrophic control culture. Supplementation of the 

inorganic culture medium with hydrolysed cheese whey powder solution, when 

compared photoautotrophic growth, led to a significant improvement in microalgal 

biomass production (from 0.10 ± 0.01 to 0.75 ± 0.01 g L d-1) and an increase in 

carbohydrate utilization when compared with the culture enriched with a mixture of 

pure glucose and galactose (from 80.5 and 49.5% of glucose and galactose utilization, 

respectively, to an utilization of 100% of these carbohydrates), possibly due to the 

presence of growth promoting nutrients in cheese whey. Mixotrophic cultivation of C. 

vulgaris using the main dairy industry by-product could be considered a feasible 

alternative to reduce the costs of microalgal biomass production, since it does not 

require the addition of expensive carbohydrates to the culture medium. 

A characterization of liquid and gas phases was performed, the mass transfer 

coefficient was determined, together with the light distribution profiles and flow 

patterns of three different photobioreactors (PBRs), namely bubble column (BC), split 

cylinder airlift photobioreactor (SCAPBR) 75 and SCAPBR 50. The effect of these 

parameters on biomass productivity was discussed. The developed SCAPBRs proved to 

be extremely suitable for microalgae cultivation. The design of photobioreactors (PBR), 

particularly the designed gas sparger, allowed meeting the needs of microalgae in terms 

of efficient mixing and good mass transfer coefficients (efficient supply and removal of 

CO2 and O2, respectively). SCAPBR 50 (at UGr = 0.0044 m s-1) showed, among the 

tested PBRs, the highest value of biomass productivity (0.75 g L-1 d-1). This result has 

been attributed to a higher efficiency of light distribution inside the PBR and to a 

regular and defined flow pattern, which allows exposing cells to regular light-dark 

periods, as demonstrated in the present work. 

 

Keywords: Microalgae; specific productivity; photoautotrophy; mixotrophy; SCAPBR; light regime; 

gas and liquid phase hydrodynamic characterization. 
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Resumo 

A realização deste trabalho visou o desenvolvimento e optimização de sistemas e 

técnicas de cultivo de microalgas de forma a tornar o processo económica e 

ambientalmente sustentável. Três estratégias distintas foram adoptadas: i) maximização 

da produtividade recorrendo à optimização das condições de cultivo; ii) maximização da 

produtividade e diminuição de custos recorrendo à utilização resíduos agroindustriais 

como meio de cultivo; iii) desenvolvimento de um novo sistema de cultivo de baixo 

custo e elevada produtividade. 

O dióxido de carbono (CO2) é a fonte de carbono mais utilizada no crescimento 

fotoautotrófico de microalgas. A taxa de fixação de CO2 (RCO2) por parte da Chlorella 

vulgaris, foi optimizada através da definição dos valores de concentração de CO2 e taxa 

de arejamento. Os resultados obtidos revelaram que a RCO2 máxima (2,22 g L-1 d-1) foi 

observada  utilizando 6,5 % CO2 e 0,5 vvm. Apesar da concentração de biomassa e 

produtividade mássica terem sido afectadas pelas condições de cultivo, não foram 

obtidas diferenças na composição bioquímica das células. 

A optimização da produtividade específica (amido e lípidos destinados à produção de 

bioetanol e biodiesel, respectivamente) foi efectuada recorrendo a estratégias de 

limitação nutricional. A acumulação de amido em células de C. vulgaris foi avaliada 

sob diferentes concentrações iniciais de ureia (fonte de azoto) e FeNa-EDTA (fonte de 

ferro) no meio de cultivo. Com base nos resultados obtidos, foi proposto um processo 

de cultivo para a obtenção de células com elevadas concentrações de amido (> 40%), 

composto por duas fases: uma primeira fase de cultivo com concentrações iniciais de 

ureia e FeNa-EDTA de 1,1 e 0,08 g L-1, respectivamente, que tem como objectivo 

maximizar a produtividade em biomassa; seguida por uma segunda etapa de cultivo sem 

a presença destes nutrientes, induzindo a acumulação de amido nas células. 

O aumento do teor de lípidos em células Parachlorella kessleri foi induzida 

utilizando como estratégia a diluição do meio de cultura. A partição do carbono 

fotossintético em amido e lípidos neutros, bem como a influência da depleção e 

repleção de nutrientes no crescimento e teor de pigmentos na microalga P. kessleri foi 

estudada. O estudo revelou que a P. kessleri utiliza amido como fonte primária de 

armazenamento de carbono e energia, mas o stress causado pela diminuição da 



Universidade do Minho  Abstract/Resumo  

 

X 

concentração de nutrientes faz a microalga direcionar o seu metabolismo para a 

acumulação de lípidos, sendo estes reserva energética secundária. Estes resultados 

indicam que a limitação nutricional pode ser usada na P. kessleri cultivo como uma 

estratégia muito eficaz e barata para aumentar a produtividade de lípidos. 

Foram determinados os parâmetros de crescimento e composição bioquímica da 

microalga C. vulgaris, cultivada em diferentes condições de mixotrofia, e comparados 

com os obtidos no cultivo padrão, efectuado em condições fotoautotróficas. A 

suplementação do meio de crescimento com soro de queijo hidrolisado levou a um 

aumento muito significativo da produtividade em termos de biomassa quando 

comparado com o crescimento fotoautotrófico (de 0,10 ± 0,01 para 0,75 ± 0,01 g L d-1)  

e a um aumento da utilização dos hidratos de carbono presentes no meio quando 

comparado com uma cultura enriquecida apenas com glucose e galactose (de 80,5 e 

49,5% de consumo de glucose e galactose, respectivamente, para 100% de utilização 

destes hidratos de carbono), possivelmente devido à presença de nutrientes do soro de 

queijo que promovem o crescimento. O cultivo mixotrófico de C. vulgaris recorrendo 

ao principal subproduto da indústria dos lacticínios, pode ser considerada como uma 

alternativa bastante promissora para a redução de custos da produção de microalgas. 

A caracterização das fases líquida e gasosa, bem como a determinação do coeficiente 

de transferência de massa, a determinação do perfil de distribuição da luz e do padrão 

de fluxo foi efectuada em três fotobioreactores diferentes (BC, SCAPBR 75 e 50). Os 

SCAPBRs desenvolvidos revelaram-se extremamente adequados para o cultivo de 

microalgas. O design do SCAPBR, particularmente o sistema de arejamento 

desenvolvido, permitiu colmatar na totalidade as necessidades da microalga em termos 

de coeficientes de massa de mistura eficientes (fornecimento eficiente e remoção de 

CO2 e O2, respectivamente). SCAPBR 50 (com UGr = 0,0044 m s-1) apresentou o valor 

mais elevado de produtividade (0,75 g L-1 d-1). Este resultado deveu-se a uma maior 

eficiência da distribuição de luz no interior da PBR e um padrão de fluxo regular e 

definido, o que permite expor as células a ciclos regulares de  luz e sombra.  

 

Palavras-chave: microalgas; produtividade específica; fotoautotrofia; mixotrofia; SCAPBR; regime 

de luz; caracterização hidrodinâmica da fase líquida e gasosa. 
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1.1 Thesis Motivation 

 The driving force for the development of microalgae-related technology is the fact 

that these microorganisms are one of the most promising feedstocks for biofuel 

production since they are able to convert solar energy to chemical energy via carbon 

dioxide (CO2) fixation (Ahmad et al. 2011). These photosynthetic microorganisms 

accumulate significant quantities of lipids and carbohydrates over short periods of time 

that can be subsequently processed into biodiesel and bioethanol, respectively. 

Microalgae can also produce a wide range of other different valuable compounds, and 

currently they are being exploited industrially as a source of long-chain polyunsaturated 

fatty acids (PUFAs), polysaccharides, vitamins (e.g. tocopherols), pigments 

(carotenoids, phycobiliproteins), and aquaculture feed for rotifers. Despite all these 

options, much of the interest in microalgae cultivation is due to its great potential as 

feedstock for biofuel production. 

Comparing with other energy crops, microalgae have several advantages such as: i) 

faster growth, higher photosynthetic efficiency and biomass production; ii) they need 

less water; iii) possibility of being cultivated in seawater or brackish water on non-

arable land, while not competing for resources with conventional agriculture; iv) 

possibility of combining microalgae biomass production with direct bio-fixation of 

waste CO2 (1 kg of dry algal biomass requiring about 1.8 kg of CO2); v) nutrients for 

microalgae cultivation (especially nitrogen and phosphorus) can be obtained from 

wastewaters; vi) no need for herbicides or pesticides during microalgae cultivation; vii) 

the residual algal biomass after oil extraction may be used as feed or fertilizer, or 

fermented to produce ethanol or methane (Liu et al., 2008; Rodolfi et al., 2009; 

Fernandes et al., 2010; Huang et al., 2010; Amaro et al., 2010; Dragone et al., 2011). 

Another important fact is that the microalgal biomass composition can be influenced via 

different cultivation conditions, in order to achieve better outputs e.g. reserve materials 

(starch, oil) (Fernandes et al., 2010). 

In spite of the huge interest in microalgae cultivation, the economic aspects of the 

process are still to be satisfactorily solved, thus requiring the reduction of costs 

associated with microalgae mass production. Assuming that the best microalgal specie 

for the process is identified and selected, the next quest remaining is an optimal design 
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of the microalgae cultivation system and the selection of cultivation techniques that lead 

to a productivity increase.  

1.2 Research Aims 

The main objective of this thesis was the development and optimization of a 

cultivation system and techniques that would overcome the existing technology, for an 

economical and environmental sustainable microalgae mass production. In order to 

attain this main goal some, more concrete, objectives were established: 

- Optimization of CO2 supply conditions in order to maximize its biofixation 

rate by microalgal cells; 

- Optimization of culture medium composition in order to increase the 

cultivation system productivity; 

- Development of low cost strategies in order to achieve high specific 

productivities (e.g. starch and lipid productivities);  

- Implementation of techniques to allow the utilization of agro-industrial 

wastes as cheap culture medium for microalgae cultivation; 

- Design, test and characterize a PBR that overcome the limitations of the 

existing cultivation systems, namely in terms of efficient light utilization, mass 

transfer and temperature control.  

All these objectives should be accomplished taking in mind the need to use materials 

and technologies with reasonable investments and maintenances costs.  

1.3 Thesis Outline 

Based on these objectives, this thesis was organized in eight chapters. Chapter 2 

provides a literature review about microalgae production. Chapters 3 to 7 contain the 

main experimental results and each one is divided in: Abstract, Introduction, Material 

and Methods, Results and Discussion and Conclusions. Chapter 8 presents the overall 

conclusions and future perspectives. 

Chapter 2 provides an overview of state of the art on microalgae applications, 

existing cultivation systems and its main design concerns and finally, cost/effectiveness 



Universidade do Minho  Chapter 1 
 

 

5 

considerations that are important in order to achieve a sustainable process for 

microalgae mass production.  

In Chapter 3 CO2 supply conditions, namely CO2 concentration and aeration rate, are 

optimized in order to obtain a maximum CO2 biofixation rate, and thus a maximum 

biomass productivity;  

In Chapter 4 two different strategies are explored in order to maximize biomass and, 

specially, starch and lipid productivities. These strategies are nutrient depletion and 

nutrient limitation. 

In Chapter 5 the utilization of a dairy industry waste (cheese whey) is tested as an 

inexpensive carbon source for mixotrophic growth of microalgae, as a cheap and more 

productive alternative to typical photoautotrophic growth. 

In Chapter 6 the selection and design process of a new cultivation system for the 

production of microalgae is presented. The proposed cultivation system is a Split 

Cylinder Airlift Photobioreactor (SCAPBR). Photobioreactor geometry selection is 

made based on studies using optical fibre technology. 

In Chapter 7, three different photobioreactors (SCAPBR 75, SCAPBR 50 and a 

bubble column) are characterized and tested. A full description in terms of gas and 

liquid phase characterization, mass transfer, light distribution and flow patterns inside 

the photobioreactors is performed. 

Finally, Chapter 8 presents the overall conclusions, recommendations and 

suggestions for future work. 
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2.1 Microalgae and their applications 

Microalgae are recognised as one of the oldest forms of life. They are thallophytes 

(plants lacking roots, stems, and leaves) that have chlorophyll a as their primary 

photosynthetic pigment and lack a sterile covering of cells around the reproductive cells 

(Brennan and Owende, 2010). Although the mechanism of photosynthesis in microalgae 

is similar to that of higher plants, they are generally more efficient converters of solar 

energy because of their simple cellular structure. In addition, because the cells grow in 

aqueous suspension, they have more efficient access to water, CO2, and other nutrients 

(Chisti, 2007).  

Traditionally microalgae have been classified according to their colour and this 

characteristic continues to be of a certain importance. Some major groups of microalgae 

are shown in Table 2.1. 

Table 2.1 Main microalgae groups based on their colours (Alam et al., 2012) 

Colour Group 

Yellow-green algae Xanthophyceae 

Red algae Rhodophyceae 

Golden algae Chrysophyceae 

Green algae Chlorophyceae 

Brown algae Phaeophyceae 

Cyanobacteria Cyanophyceae 

 

The current systems of microalgae classification are based on the following main 

criteria: kinds of pigments, chemical nature of storage products and cell wall 

constituents. Additional criteria take into consideration the following cytological and 

morphological characters: occurrence of flagellate cells, structure of the flagella, 

scheme and path of nuclear and cell division, presence of an envelope of endoplasmic 

reticulum around the chloroplast, and possible connection between the endoplasmic 

reticulum and the nuclear membrane (Tomaselli, 2004). There are two basic types of 

microalgae cells, prokaryotic and eukaryotic. Prokaryotic cells lack membrane-bounded 

organelles (plastids, mitochondria, nuclei, Golgi bodies, and flagella) and occur in the 

cyanobacteria. The remainder of the microalgae are eukaryotic and have organelles 

(Lee, 2008). Microalgae can be either autotrophic or heterotrophic. If they are 
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autotrophic, they use inorganic compounds as a carbon source. Autotrophs can be 

photoautotrophic, using light as a source of energy, or chemoautotrophic, oxidizing 

inorganic compounds for energy. If they are heterotrophic, microalgae use organic 

compounds for growth. Heterotrophs can be photoheterotrophs, using light as a source 

of energy, or chemoheterotrophs, oxidizing organic compounds for energy. Some 

photosynthetic microalgae are mixotrophic, combining heterotrophy and autotrophy by 

photosynthesis (Lee, 2008).  

For autotrophic microalgae, photosynthesis is a key component of their survival, 

whereby they convert solar radiation and CO2 absorbed by chloroplasts into adenosine 

triphosphate (ATP) and O2, the usable energy currency at cellular level, which is then 

used in respiration to produce energy to support growth (Brennan and Owende, 2010).  

Microalgae are able to fix CO2 efficiently from different sources, including the 

atmosphere, industrial exhaust gases, and soluble carbonate salts. Fixation of CO2 from 

atmosphere is probably the most basic method to sink carbon, and relies on the mass 

transfer from the air to the microalgae in their aquatic growth environments during 

photosynthesis. Industrial exhaust gases such as flue gas contain up to 15% CO2, 

providing a CO2-rich source for microalgal cultivation and a potentially more efficient 

route for CO2 bio-fixation. 

Microalgae are present in all existing earth ecosystems living in a wide range of 

environmental conditions. It is estimated that more than 50,000 species exist, but only a 

limited number, of around 30,000, have been studied and analysed (Richmond, 2004a) 

and a very limited number is mass cultured for commercial purposes (Figure 2.1). One 

of the world’s largest microalgae collections is the freshwater microalgae collection of 

University of Coimbra (Portugal) having more than 4,000 strains and 1,000 species 

(Mata et al., 2010). Microalgal biomass contains three main components: proteins, 

carbohydrates, and lipids. The biomass composition of various microalgae in terms of 

those main components is shown in Table 2.2. 
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Figure 2.1 Some of the microalgae strains currently mass cultivated. 1 - Spirulina (Arthrospira 

platensis); 2 - Dunaliella salina; 3 - Chlorella vulgaris; 4 - Haematococcus pluvialis (adapted from 

Benemann, 2008). 

Microalgae have a wide range of potential applications ranging from direct use of 

biomass (e.g. aquaculture feed) or indirect use for the production of high-value 

compounds (e.g. vitamins and pigments) and for environmental applications (e.g. 

biofuel production and CO2 mitigation). Biomolecules expressed by microalgae are 

generally regarded as safe (GRAS) for human consumption; consequently nutritional 

and medical applications are especially suitable for these microorganisms (Rosenberg et 

al., 2008). Beside other uses, microalgae are exploited industrially as a source of long-

chain polyunsaturated fatty acids (PUFAs), polysaccharides, vitamins (e.g. 

tocopherols), β-carotene and pigments (carotenoids, phycobiliproteins) (Abalde et al., 

1991; Molina Grima et al., 1994; Chini Zittelli et al., 1999; Arad and Richmond, 2004). 

Also, microalgae cultivation has been carried out throughout the world as essential 

aquaculture feed (constituting both a source of energy as well as the essential vitamins 

and PUFAs (Sandnes et al., 2006) for rotifers, and as very important live food for larvae 

of marine fish, filter-feeding invertebrates. In 1999, the production of microalgae for 

aquaculture was 1,000 ton: 62% for molluscs, 22% for shrimps and 16% for fish 

(Muller, 2000). More recently, microalgae have been used for wastewater treatment, 

CO2 mitigation, or as a feedstock for biofuel production (Brennan and Owende, 2010).  

As it can be seen in Table 2.3 some of the most successful commercial utilization of 
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microalgae has been established in low-volume, high-value derivatives such as 

nutritional supplements, antioxidants, cosmetics, natural dyes, and polyunsaturated fatty 

acids (PUFA) (Spolaore et al., 2006). 

Table 2.2 Biomass composition of microalgae expressed on a dry matter basis (modified from Um 

(2009); Sydney et al., (2010)) 

Strain Protein (%) Carbohydrates (%) Lipid (%) 

Anabaena cy l indr ica  43–56 25–30 4–7 

Botryococcus  brauni i  40 2  33  

Chlamydomonas  rhe inhardi i  48 17  21  

Chlore l la  pyrenoidosa  57 26  2  

Chlore l la  vu lgar is  41–58 12–17 10–22 

Dunal ie l la  b iocula ta  49 4  8  

Dunal ie l la  sa l ina  57 32  6  

Dunal ie l la  ter t io lec ta  29 14  11  

Euglena graci l i s  39–61 14–18 14–20 

Porphyr id ium cruentum 28–39 40–57 9–14 

Prymnes ium parvum 28–45 25–33 22–39 

Scenedesmus  d imorphus  8–18 21–52 16–40 

Scenedesmus  obl iquus  50–56 10–17 12–14 

Scenedesmus  quadr icauda 47 –  1 .9  

Spirogyra  sp .  6–20 33–64 11–21 

Spiru l ina  maxima 60–71 13–16 6–7 

Spiru l ina  p la tens is  42–63 8–14 4–11 

Synechoccus  sp .  63 15  11  

Tetrase lmis  macula ta  52 15  3  

 

The worldwide annual production of algal biomass is estimated to be 8,000 – 10,000 

ton year-1 (Brennan and Owende, 2010) with an average market value of about 330 

USD kg-1 (Pulz and Gross, 2004). Commercial production of microalgae is primarily 

intended to direct use of biomass as aquaculture feed (approximately one-fifth of 

produced biomass) or indirect use for the production of speciality chemicals and high-

value compounds (Muller-Fuega, 2004). Presently, the development of pharmaceutical 

compounds and biofuels is a priority of the industry (Rosenberg et al., 2008). 

In this work the emphasis is going to be given to microalgae cultivation for biofuel 



Universidade do Minho  Chapter 2 
 

 

13 

production (biodiesel and bioethanol) and CO2 mitigation. Thus, all studies performed 

in this work will take into account the composition of microalgae in terms of energy-

rich materials and continuous CO2 utilization. 

Table 2.3 Products synthesized by microalgae (adapted from Spolaore et al., 2006) 

Product Microalgae Price (USD) Producer 
- β - carotene Dunaliella 300 – 3000 /kg - AquaCarotene (USA) 

- Cognis Nutrition & Health (Australia) 
- Cyanotech (USA) 
- Nikken Sohonsha Corporation (Japan) 
- Tianjin Lantai Biotechnology (China) 
- Parry Pharmaceuticals (India) 

- Astaxanthin Haematococcus 10,000 /kg - AlgaTechnologies (Israel)    
- Bioreal (Hawaii, USA) 
- Cyanotech (Hawaii, USA) 
- Mera Pharmaceuticals (Hawaii, USA) 
- Parry Pharmaceuticals (India 

-Whole-cell dietary 
supplements 

Spirulina 
Chlorella 
Chlamydomonas 

50 /kg  - BlueBiotech International GmbH 
(Germany) 
- Cyanotech (USA) 
- Earthrise Nutritionals (USA) 
- Phycotransgenics (USA) 

- Whole-cell 
aquaculture feed 

Tetraselmis 
Nannochloropsis 
Isochrysis 
Nitzschia 

70 /L - Aquatic Eco-Systems (USA) 
- BlueBiotech International GmbH 
(Germany) 
- Coastal BioMarine (USA 
- Reed Mariculture (USA) 

- Polyunsaturated 
fatty acids 

Crypthecodinium 
Schizochytrium 

60 /g - BlueBiotech International GmbH 
(Germany) 
- Spectra Stable Isotopes (USA) 
- Martek Biosciences (USA) 

- Heavy isotope 
labeled metabolites 

N/A 1000 – 20,000 /g - Spectra Stable Isotopes (USA) 

- Phycoerythrin 
(fluorescente label) 

Red Algae 
Cyanobacteria 

15 /mg - BlueBiotech International GmbH 
(Germany) 
- Cyanotech (USA) 

- Anticancer drugs N/A N/A - PharmaMar (Spain) 
- Pharmaceutical 
proteins 

Chlamydomonas N/A - Rincon Pharmaceuticals (USA) 

- Biofuels Botryococcus 
Chlamydomonas 
Chlorella 
Dunaliella 
Neochloris 

N/A - Cellana (USA) 
- GreenFuel Technologies (USA) 
- LiveFuels, Inc. (USA) 
- PetroAlgae (USA) 
- Sapphire Energy (USA) 
- Solazyme, Inc. (USA) 
- Solix Biofuels (USA) 
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2.1.1 Microalgae as a source of biofuel 

Biofuel production from renewable sources is widely considered to be one of the 

most sustainable alternatives to petroleum-sourced fuels and a viable means for 

environmental and economic sustainability. Microalgae are currently being promoted as 

an ideal third generation biofuel feedstock because of their rapid growth rate, CO2 

fixation ability and high production capacity of lipids; they also do not compete with 

food or feed crops, and can be produced on non-arable land. Microalgae have broad 

bioenergy potential as they can be used to produce liquid transportation and heating 

fuels, such as biodiesel and bioethanol (Figure 2.2). Therefore, third generation biofuels 

derived from microalgae are considered to be a viable alternative energy resource that is 

devoid of the major drawbacks associated with first and second generation biofuels 

(Chisti, 2007; Li et al., 2008; Nigam and Singh, 2010). 

 

Figure 2.2 Conversion processes for biofuel production from microalgal biomass (modified from Wang 

et al., 2008). 

Microalgae are able to produce 15 – 300 times more oil for biodiesel production than 

traditional crops on an area basis. Furthermore compared with conventional crop plants, 

which are usually harvested once or twice a year, microalgae have a very short 

harvesting cycle (≈ 1 – 10 days depending on the process), allowing multiple or 
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continuous harvests with significantly increased yields (Schenk et al., 2008). 

There are several ways to convert microalgal biomass to energy sources, which can 

be classified into biochemical conversion, chemical reaction, direct combustion, and 

thermochemical conversion (Figure 2.2).  

The idea of using microalgae as a source of biofuel is not new, but it is now being 

taken seriously because of the rising price of petroleum and, more significantly, the 

emerging concern about global warming that is associated with burning of fossil fuels 

(Chisti, 2007). The utilization of microalgae for biofuels production offers the following 

advantages over higher plants (Um and Kim, 2009; Brennan and Owende, 2010; Mata 

et al., 2010): 

1. microalgae synthesize and accumulate large quantities of neutral lipids 

(20 – 50% dry weight of biomass) and grow at high rates;  

2. microalgae are capable of all year round production, therefore, oil yield 

per area of microalgae cultures could greatly exceed the yield of best oilseed 

crops;  

3. microalgae need less water than terrestrial crops therefore reducing the 

load on freshwater sources;  

4. microalgae cultivation does not require herbicides or pesticides 

application;  

5. microalgae can sequester CO2 from flue gases emitted from fossil fuel-

fired power plants and other sources, thereby reducing emissions of a major 

greenhouse gas (1 kg of dry algal biomass utilise about 1.83 kg of CO2);  

6. wastewater bioremediation by removal of NH4
+, NO3

-, PO4
3- from a 

variety of wastewater sources (e.g. agricultural run-off, concentrated animal 

feed operations, and industrial and municipal wastewaters);  

7. combined with their ability to grow under harsher conditions and their 

reduced needs for nutrients, microalgae can be cultivated in saline/brackish 

water/coastal seawater on non-arable land; 

8.  microalgae cultivation do not compete for resources with conventional 

agriculture. 
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9. depending on the microalgae species other compounds may also be 

extracted, with valuable applications in different industrial sectors, including a 

large range of fine chemicals and bulk products, such as polyunsaturated fatty 

acids, natural dyes, polysaccharides, pigments, antioxidants, high-value 

bioactive compounds, and proteins. 

Recent studies have shown that microalgal biomass is one of the most promising 

sources of renewable biodiesel that is capable of meeting the global demand for 

transport fuels. Biodiesel production by microalgae will not compromise production of 

food, fodder and other products derived from crops (Chisti, 2007). Much of the on-

going research work is focused on a small number of fast-growing microalgal species 

which have been found to accumulate substantial quantities of lipids, though under 

specific conditions. Within the green algae, typical species include Chlamydomonas 

reinhardtii, Dunaliella salina, and various Chlorella species, as well as Botryococcus 

braunii, which although slow growing can accumulate large quantities of lipids (Scott et 

al., 2010).  

While many microalgae strains naturally have high lipid content, it is possible to 

increase that concentration by optimising growth-determining factors such as the 

control of nitrogen level, light intensity, temperature, salinity, CO2 concentration and 

harvesting procedure. However, increasing lipid accumulation could not result in 

increased lipid productivity as biomass productivity and lipid accumulation are not 

necessarily correlated. Lipid accumulation refers to increased concentration of lipids 

within the microalgae cells without consideration of the overall biomass production. 

Lipid productivity takes into account both the lipid concentration within cells and the 

biomass produced by these cells and is therefore a more useful indicator of the potential 

costs of liquid biofuel production (Brennan and Owende, 2010). 

An integrated production of biofuels from microalgae (Figure 2.3) includes a 

microalgal cultivation step, followed by the separation of the cells from the growth 

medium and subsequent lipid extraction for biodiesel production through 

transesterification. Following oil extraction, amylolytic enzymes are used to promote 

starch hydrolysis and formation of fermentable sugars. These sugars can be fermented 

and distilled into bioethanol using conventional ethanol distillation technology.  
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Figure 2.3 Integrated process for biodiesel and bioethanol production from microalgae. 

2.1.1.1 Biodiesel production 

After the extraction processes, the resulting microalgal oil can be converted into 

biodiesel through a process called transesterification. The transesterification reaction 

consists of transforming triglycerides into fatty acid alkyl esters, in the presence of an 

alcohol, such as methanol or ethanol, and a catalyst, such as an alkali or acid, with 

glycerol as a by-product (Vasudevan and Briggs, 2008). 

For user acceptance, microalgal biodiesel needs to comply with existing standards, 

such as ASTM Biodiesel Standard D 6751 (United States) or Standard EN 14214 

(European Union). Microalgal oil contains a high degree of polyunsaturated fatty acids 

(with four or more double bonds) when compared to vegetable oils, which makes it 

susceptible to oxidation in storage and therefore reduces its acceptability for use in 

biodiesel. However, the extent of unsaturation of microalgal oil and its content of fatty 

acids with more than four double bonds can be reduced easily by partial catalytic 

hydrogenation of the oil, the same technology that is commonly used in making 

margarine from vegetable oils (Chisti, 2007). Nevertheless, microalgal biodiesel has 

similar physical and chemical properties to petroleum diesel, first generation biodiesel 

from oil crops and compares favourably with the international standard EN14214 

(Brennan and Owende, 2010). 
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2.1.1.2 Bioethanol production 

The current interests in producing bioethanol are focusing on microalgae as a 

feedstock for fermentation process. Microalgae provide carbohydrates (in the form of 

glucose, starch and other polysaccharides) and proteins that can be used as carbon 

sources for fermentation by bacteria, yeast or fungi (Harun et al., 2010a). For instance, 

Chlorella vulgaris has been considered as a potential raw material for bioethanol 

production because it can accumulate high levels of starch (Hirano et al., 1997). 

Chlorococum sp. was also used as a substrate for bioethanol production under different 

fermentation conditions. Results showed a maximum bioethanol concentration of 3.83 g 

L-1 obtained from 10 g L-1 of lipid-extracted microalgae debris (Harun et al., 2010b). 

Production of bioethanol by using microalgae can also be performed via self-

fermentation. Previous studies reported that dark fermentation in the marine green algae 

Chlorococcum littorale was able to produce 450  µmol ethanol g -1 at 30 ºC (Ueno et al., 

1998). 

Even though limited reports on microalgal fermentation are available, a number of 

advantages were detected in order to produce bioethanol from microalgae. Fermentation 

process requires less consumption of energy and simplified process compared to 

biodiesel production system. Besides, CO2 produced as by-product from fermentation 

process can be recycled as carbon sources to microalgae in cultivation process thus 

reducing the greenhouse gases emissions. However, the production of bioethanol from 

microalgae is still under investigation and this technology has not yet been 

commercialized (Harun et al., 2010a). 

2.1.2 Microalgae as a CO2 biological mitigation system 

The increasing concentration of anthropogenic CO2 in the atmosphere appears to be 

the major cause of global warming, which may have catastrophic consequences for the 

environment and the climate (Chiu et al., 2009). The amount of CO2 in the atmosphere 

was 390.9 ppm in 2011, increasing on average 2 ppm per year for the past 10 years and 

reaching 140% of the pre-industrial level (280 ppm) (WMO, 2012). In order to reduce 

its atmospheric concentration, different abiotic (physical) methods have been evaluated, 

including injection into geological formations/deep oceans or utilization of absorbent 
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materials (Kumar et al., 2010). These methods, however, require significant space of 

storage associated with elevated costs of monitoring, operation, and maintenance, 

raising serious concerns about potential CO2 leakage over time (Bilanovic et al., 2009).  

On the other hand, biological mitigation of atmospheric CO2 has been deemed as a 

sustainable approach to physical methods (Kumar et al., 2011). Biofixation of CO2 can 

be performed either by plants or photosynthetic microorganisms. Nevertheless, the 

process of CO2 sequestration by plants can be viewed as an inadequate strategy of 

mitigation, since its contribution to CO2 capture has been estimated to only 3 – 6% of 

fossil fuel emissions, mainly because of slow growth rates of terrestrial vegetation 

(Wang et al., 2008). Alternatively, microalgae have received renewed attention in recent 

years due to their faster growth rates and higher photosynthetic efficiency than 

terrestrial plants (Chiu et al., 2009; Dragone et al., 2011). These photosynthetic 

microorganisms can efficiently convert CO2 from a point source into O2 and biomass 

(Tang et al., 2011).  

Phototrophic microalgal growth requires a continuous supply of CO2 as a carbon 

source, and the CO2 supply also contributes to control the pH of the culture. Chemical 

analysis has shown that algal biomass consists of 40% to 50% carbon, which indicates 

that approximately 1.5 to 2.0 kg of CO2 is required to produce 1.0 kg of microalgal 

biomass (Sobczuk et al., 2000). For these reasons, cultivation of microalgae can be 

exploited as an additional step in flue gas treatment, aiming the reduction of CO2 levels 

in the exhaust flue gas. Previous studies have demonstrated that microalgae can be 

successfully employed for the treatment of simulated flue gases (Lee et al., 2000) or 

flue gases emitted from municipal waste incinerators (Douskova et al., 2009), coal-fired 

power plants (McGinn et al., 2011), industrial heater using kerosene as fuel (Chae et al., 

2006) and gas boiler (Doucha et al., 2005).  
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2.2 Cultivation systems, design considerations and downstream 

processes 

2.2.1 Cultivation systems 

After selecting the microalgae strain to obtain the product of interest, it becomes 

necessary to develop a whole range of bioprocesses that make viable its 

commercialization. Thus, the design and optimization of adequate bioreactors to 

cultivate these microorganisms is a major step in the strategy that aims at transforming 

scientific findings into a marketable product. Despite of many possible applications, 

only a few species of microalgae are cultured commercially because of poorly 

developed microalgal bioreactor technology. 

From a commercial point of view, a microalgae culture system must have as many of 

the following characteristics as possible: high area productivity; high volumetric 

productivity; inexpensiveness (both in terms of investment and maintenance costs); 

easiness of control of the culture parameters (temperature, pH, O2, turbulence); and 

reliability (Olaizola, 2003). Cultivation systems of different designs attempt to achieve 

these characteristics differently (Figure 2.4). Although the term “photobioreactor” 

(PBR) has been applied to open ponds and channels, applied phycologists have 

generally distinguished between open-air systems and PBRs (devices that allow 

monoseptic culture). Thus in this thesis the term PBR is used only for closed systems.  

2.2.1.1  Open-air systems 

Open-air systems were extensively studied in the past few years (Chaumont, 1993; 

Borowitzka, 1999; Tredici 2004), but these algae cultivation systems have been used 

since the 1950s. The classical open-air cultivation systems comprise lakes and natural 

ponds, circular ponds, raceway ponds and inclined systems. Open-air systems are the 

most widespread growth systems, and all very large commercial systems used today are 

of this type. The reasons for this relate to economic and operational issues, since these 

systems are easier and less expensive to build, operate more durably and have a larger 

production capacity than most closed systems; further, they can utilize sunlight and the 



Universidade do Minho  Chapter 2 
 

 

21 

nutrients can be provided through runoff water from nearby land areas or by 

channelling the water from sewage/water treatment plants (Carlsson et al., 2007) 

making it the cheapest method of large-scale algal biomass production.  

Although these systems are the most widely used at industrial level, open-air systems 

still present significant technical challenges. Open ponds are susceptive to weather 

conditions, not allowing control of water temperature, evaporation and lighting, which 

make these systems dependent on the prevailing regional climate conditions (daily and 

annual temperature range, annual rainfall and rainfall pattern, number of sunny days, 

and degree of cloud cover). Furthermore, contamination by predators and other fast 

growing heterotrophs have restricted the commercial production of algae in open 

culture systems to fast growing, naturally occurring or extremophilic species. 

Consequently, this strictly limits the species of algae that can be grown in such systems. 

As a result, only Dunaliella (adaptable to very high salinity), Spirulina (adaptable to 

high alkalinity) and Chlorella (adaptable to nutrient-rich media) have been successfully 

grown in commercial open pond systems (Carlsson et al., 2007).  

Natural and artificial ponds are only viable when a series of conditions are met. The 

existence of favourable climatic conditions and sufficient nutrients in order to the 

microalgae grow is profusely unavoidable and it also requires that the water presents 

selective characteristics (e.g. high salinity, high pH, high nutrients concentration) to 

ensure the existence of a monoculture. Successful examples of this type of cultivation 

are the Arthrospira production in Lake Kossorom (soda lake at the irregular northeast 

fringe of Lake Chad) where the Kanembu people harvest about 40 t year-1 of 

Arthrospira (Spirulina), to use it as food (Abdulqader et al., 2000) and in Myanmar, 

where four old volcanic craters, full of alkaline water are used as cultivation system for 

the production of around 30 t year-1 of Arthrospira that are sold on the local market 

(Thein, 1993). The Australian producer of D. salina (extremely halophilic and highly 

light-tolerant green alga) Betatene Ltd, uses very large ponds (up to 250 ha with an 

average depth of 0.2 to 0.3 m) at the extremely halophilic waters of Hutt-Lagoon, 

Western Australia which are unmixed other than by wind and convection.  

The inclined system (cascade system) is the only open-air system which achieves 

high sustainable cell densities (up to 10 g L-1). This system is very well suited for algae 
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such as Chlorella and Scenedesmus, which can tolerate repeated pumping (Šetlík et al., 

1970). In inclined systems turbulence is created by gravity, the culture suspension 

flowing from the top to the bottom of a sloping surface, thus achieving highly turbulent 

flow and allowing the adoption of very thin culture layers (< 2 cm), facilitating higher 

cell concentrations and a higher surface-to-volume ratio (s/v) compared to raceway 

ponds. 

 

Figure 2.4 Different types of microalgae cultivation systems. A - Raceway pond 

(http://www.makebiofuel.co.uk/biofuel-from-algae); B - Tubular photobioreactor (http:// 

www.sardi.sa.gov.au /aquaculture /aquaculture/AlgaeAndBiofuelsFacility); C - Flat photobioreactor 

(http:// www.oilgae.com/ blog/ 2011 /04/ intel-demonstrates- pilot- model-for- algae-based-carbon-

capture.html); D - Column photobioreactor (Zhu et al., 2013). 

Circular ponds with a centrally pivoted rotating agitator are widely used in 

Indonesia, Japan and Taiwan for the production of Chlorella. Depth is about 0.3 m. The 

design of these systems, however, limits pond size to about 10,000 m2, because mixing 

by the rotating arm is no longer possible in larger ponds. Circular ponds are not 

favoured in commercial plants since they require expensive concrete construction and 

high energy input for mixing (Borowitzka, 2005). Raceway ponds (Figure 2.4 A) are the 

most commonly used artificial system.  
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They are typically made of a closed loop, oval shaped recirculation channels, 

generally between 0.2 and 0.5 m deep, with mixing and circulation required to stabilize 

algae growth and productivity (Table 2.4). In a continuous production cycle, microalgae 

broth and nutrients are introduced in front of the paddlewheel and circulated through the 

loop to the harvest extraction point. The paddlewheel is in continuous operation to 

prevent sedimentation. At water depths of 0.15 - 0.20 m, biomass concentrations of up 

to 1 g L-1 and productivities of 10 - 25 g m-2 day, are possible (Pulz, 2001). The largest 

raceway-based biomass production facility located in Calipatria, CA (USA) occupies an 

area of 440,000 m2 to grow Spirulina (Spolaore et al., 2006). 

2.2.1.2 Photobioreactors 

Photobioreactors (PBRs) are characterized by the regulation and control of nearly all 

the biotechnologically important parameters as well as by a reduced contamination risk, 

no CO2 losses, reproducible cultivation conditions, controllable hydrodynamics and 

temperature, and flexible technical design (Pulz, 2001). These systems receive sunlight 

either directly through the transparent container walls or via light fibres or tubes that 

channel it from sunlight collectors. Despite the relative success of open systems, recent 

advances in microalgal mass culture require closed systems, as many of the new algae 

and algal high-value products for use in the pharmaceutical and cosmetics industry must 

be grown free of pollution and potential contaminants such as heavy metals and 

microorganisms. 

Many different designs have been developed, but the main categories include: (1) 

tubular (e.g. helical, manifold, serpentine, and α-shaped); (2) flat (e.g. alveolar panels 

and glass plates); and (3) column (e.g. bubble columns and airlift). A great amount of 

developmental work has been carried out in order to optimize different PBR systems for 

microalgae cultivation (Chaumont, 1993; Janssen et al., 2003; Tredici, 2004; Carvalho 

et al., 2006). 

Tubular photobioreactors 

Tubular PBRs can be horizontal/serpentine- (Molina et al., 2001), near horizontal- 

(Tredici and Zittelli, 1998), vertical- (Pirt et al., 1983), inclined- (Lee and Low, 1991) 

and conical-shaped (Watanabe and Saiki, 1997). Microalgae are circulated through the 
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tubes by a pump, or preferably with airlift technology. Generally these PBR systems are 

relatively cheap, have a large illumination surface area and have fairly good biomass 

productivities (Figure 2.4 B). Disadvantages include fouling, some degree of wall 

growth, dissolved O2 and CO2 gradients along the tubes, and pH gradients that lead to 

frequent re-carbonation of the cultures, which would consequently increase the cost of 

algal production (Table 2.4).  

The largest closed PBRs are tubular, like the 25 m3 plant at Mera Pharmaceuticals, 

Hawaii, and the 700 m3 plant in Klötze, Germany. A maximum productivity of 25 g m-

2 day-1 (Spirulina) has been achieved in a 10 m3 serpentine bioreactor with intermitted 

culture circulation (Torzillo et al., 1986). Further improvements were obtained by 

constructing a two-plane tubular photobioreactor with mean daylight productivities of 

about 30 g m-2 day (Torzillo et al., 1993). Helical tubular PBRs are a suitable alternative 

to straight tubular PBRs. The most frequently used layout is the Biocoil, currently 

traded by Biotechna (Melbourne, Australia). This reactor is composed of a set of 

polyethylene tubes (3.0 cm of inner diameter) coiled in an open circular framework, 

coupled with a gas exchange tower and a heat exchange system; a centrifugal pump 

drives the culture broth through the long tube to the gas exchange tower (Carvalho et 

al., 2006). A 300 L α-shaped tubular PBR has been used for the cultivation of Chlorella 

pyrenoidosa (Lee et al., 1995). That system comprises of an airlift pump to promote an 

ascending/descending trajectory, with several CO2 injection points along its path.  

 Flat photobioreactors 

Some of the earliest forms of closed systems are flat PBRs which have received 

much research attention due to the large surface area exposed to illumination and high 

densities (> 80 g L-1) of photoautotrophic cells observed (Brennan and Owende, 2010). 

In these PBR a thin layer of very dense culture is mixed or flown across a flat 

transparent panel, which allows radiation absorbance in the first few millimetres 

thickness (Figure 2.4 C). Flat PBRs are suitable for mass cultures of microalgae due to 

the low accumulation of dissolved oxygen and the high photosynthetic efficiency 

achieved when compared to tubular designs (Brennan and Owende, 2010).  

Usually, the panels are illuminated mainly on one side by direct sunlight and have 

the added advantage that they can be positioned vertically or inclined at an optimum 
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angle facing the sun permitting a better efficiency in terms of energy absorbed from 

incident sunlight. Packed flat panels mixed by air bubbling can potentially achieve very 

high overall ground-areal productivities through lamination of solar light. Limitations 

include difficulty in controlling culture temperature, some degree of wall growth, scale-

up requires many compartments and support materials, and possibility of hydrodynamic 

stress to some algal strains (Table 2.4).  

Column photobioreactors 

Column PBRs are occasionally stirred tank reactors (Sobczuk et al., 2006), but more 

often bubble columns (Zittelli et al., 2006), or airlifts (Krichnavaruk et al., 2007). The 

columns are placed vertically, aerated from the bottom, and illuminated through 

transparent walls or internally (Figure 2.4 D). Column bioreactors offer the most 

efficient mixing, the highest volumetric gas transfer rates, and the best controllable 

growth conditions. They are low-cost, compact and easy to operate. Their performance 

(i.e. final biomass concentration and specific growth rate) compares favourably with the 

values typically reported for tubular PBRs.  

Vertical bubble columns and airlift cylinders can attain substantially increased radial 

movement of fluid that is necessary for improved light–dark cycling. These reactor 

designs have a low surface/volume, but substantially greater gas hold-ups than 

horizontal reactors and a much more chaotic gas–liquid flow. Consequently, cultures 

suffer less from photo-inhibition and photo-oxidation, and experience a more adequate 

light–dark cycle.  

2.2.1.3 Photobioreactors versus open-air systems 

Table 2.4 shows a comparison between PBR (tubular, flat and column) and open 

systems for several culture conditions and growth parameters. Selection of a suitable 

production system clearly depends on the purpose of the production facility, microalgae 

strain and product of interest. In conclusion, PBR and open ponds should not be viewed 

as competing technologies.  
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Table 2.4 Advantages and limitations of various microalgae culture systems 
 

 

  

 

Culture Systems Advantages Limitations 

Open systems 

 

 

- Relatively economical 
- Easy to clean up 
- Easy maintenance 
- Utilization of non-agricultural 
land 
- Low energy inputs 
 

- Little control of culture 
conditions 
- Poor mixing, light and CO2 
utilization 
- Difficult to grow algal cultures 
for long periods 
- Poor productivity 
- Limited to few strains 
- Cultures are easily 
contaminated 

Tubular PBR 

 

 

- Relatively cheap 
- Large illumination surface area 
- Suitable for outdoor cultures 
- Good biomass productivities 
 

- Gradients of pH, dissolved 
oxygen and CO2 along the tubes 
- Fouling 
- Some degree of wall growth 
- Requires large land space 
- Photoinhibition 

Flat PBR 

 

 

- Relatively cheap 
- Easy to clean up 
- Large illumination surface area 
- Suitable for outdoor cultures 
- Low power consumption 
- Good biomass productivities 
- Good light path 
- Readily tempered 
- Low oxygen build-up 
Shortest oxygen path 

- Difficult to scale-up 
- Difficult temperature control 
- Some degree of wall growth 
- Hydrodynamic stress to some 
algal strains 
- Low photosynthetic efficiency 

Column PBR 

 

 

- Low energy consumption 
- Readily tempered 
- High mass transfer 
- Good mixing 
- Best exposure to light-dark 
cycles 
- Low shear stress 
- High potentials for scalability 
- Easy to sterilize 
- Reduced photoinhibition 
- Reduced photo-oxidation 
- High photosynthetic efficiency 

- Small illumination surface 
area 
- Sophisticated construction 
materials 
- Shear stress to algal cultures 
- Decrease of illumination 
surface area upon scale-up 
- Expensive compared to open 
ponds 
- Support costs 
- Scalability 
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2.2.2 Design considerations 

Despite various configurations, several essential issues need addressing when 

building a PBR: effective and efficient provision of light; supply of CO2 while 

minimizing desorption; efficient mixing and circulation of the culture; scalable PBR 

technology and the material used in the construction of the PBR. 

2.2.2.1 Light 

Light as the energy source for photoautotrophic life is the principal limiting factor in 

photobiotechnology. The light regimen inside the PBR is influenced by incident light 

intensity, reactor design and dimension, cell density, pigmentation of the cells, mixing 

pattern, etc. In outdoor PBRs the light regimen is also influenced by geographical 

location, time of the day, and weather conditions. Due to the light gradient inside the 

reactor and depending on the mixing properties, microalgae are subjected to light-dark 

cycles where the light period is characterized by a light gradient. These light-dark 

cycles will determine productivity and biomass yield on light energy (Fernandes et al., 

2010). 

Only a fraction of the electromagnetic spectrum of sunlight in the wavelength range 

400 – 700 nm (also known as the photosynthetic active radiation or, PAR) is used in 

photosynthesis, where 8 light photons of mid-wavelength PAR (i.e., 550 nm or green 

light) has the minimum energy requirement to form CH2O. A single ‘green’ photon of 

light (i.e., 550 nm) has 20% more energy than one red photon (i.e., 680 nm) and 15.5% 

less energy than a blue photon (i.e., 470 nm) (Das et al., 2011). Thus, information about 

quantitative (photosynthetic photon flux density) and qualitative (spectral intensity 

distribution) aspects of light patterns in different points of a PBR is vital. This 

information can be obtained by using optical fibre technology (Fernandes et al., 2010). 

In highly dense cultures, while the region close to PBR surface are subject, in certain 

periods of the day, to light intensities that are greater than the saturation value of 

microalgae species, causing photoinibition of cells (Wu and Merchuk, 2002) more inner 

regions remain in the dark due to optical absorption and self-shading of the cells 

causing photolimitation. In this region, the light intensity is too weak to maintain 

positive growth of the cells (Degen et al., 2001). It is known that microalgae 
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productivity can be enhanced if cells are made to repeatedly cycle between the well-lit 

exterior and the dimly lit interior of the PBR, experiencing periodical light/dark cycles 

(Lee and Pirt, 1981; Merchuk et al., 1998; Wu and Merchuk, 2001).  

2.2.2.2 CO2 supply 

The supply of CO2 to microalgal mass culture systems is one of the principal 

difficulties that must be solved (Benemann et al., 1987). The principal point of all 

considerations relating to the CO2 budget is that, on one hand, CO2 must not reach the 

upper concentration that produces inhibition and, on the other hand, must never fall 

below the minimum concentration that limits growth. These maximum (inhibition) and 

minimum (limitation) concentrations varies from one species to another and are not yet 

adequately known, ranging from 2.3 x 10−2 M to 2.3 x 10−4 M. Gas injection as little 

bubbles into a column of a downcoming culture in which the culture velocity is adjusted 

to that of the rising CO2 bubbles may increase the efficiency of absorption of CO2 and 

thus the utilisation efficiency can be increased up to 70% (Molina, 1999). In a dual 

sparging bubble column PBR, the CO2 transfer rate was increased 5 times compared to 

a similar reactor where the CO2 was blended into the aeration air (Eriksen et al., 1998), 

while another study showed that, in the same PBR configuration, CO2 transfer 

efficiencies were 100% at certain conditions (Poulsen and Iversen, 1999). These results 

highlight the need to develop an adequate aeration system in order to increase the 

efficiency of CO2 supply and, consequently the microalgae cultivation systems 

productivity. 

2.2.2.3 Mixing 

The level of mixing in a PBR strongly contributes to the growth of microalgae. 

Mixing is necessary to prevent cells from settling, to avoid thermal stratification, to 

distribute nutrients and break down diffusion gradients at the cell surface, to remove 

photosynthetically generated O2 and to ensure that cells experience alternating periods 

of light and darkness of adequate length (Tredici, 2004). Mixing is the simplest and 

most immediate strategy to attempt distributing radiation evenly to all cells in the 

culture, as well as accelerating growth by reducing diffusion barriers around the cells 

(Richmond, 2004a). 
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The fluid dynamics of the culture medium and the type of mixing influence average 

irradiance and the light regimen to which cells are exposed, which in turn determine 

productivity. Fluctuations in light intensity faster than 1 s-1 enhance specific growth 

rates and productivities of microalgal cultures. In outdoor cultures exposed to 

photosynthetic photon flux densities above 1,000 µE m-2 s-1 light exposure times should 

be as short as 10 ms to maintain high photosynthetic efficiency (Janssen et al., 2001). In 

addition, dissolved O2 builds up in cultures in which mixing is inadequate, inhibiting 

photosynthesis. The positive effect that optimal mixing exerts on the output-rate of 

biomass is accentuated with the increase of cell density and light limitation. Inadequate 

mixing resulting in high O2 tensions and in laminar – instead of turbulent – flows 

resulting in cell precipitation and wall growth, which is one of the main reasons for 

industrial failures of microalgae cultivation (Richmond, 2004a). 

The choice of the mixing device and the intensity of mixing should be dictated by the 

characteristics of the organism to be cultivated.  

2.2.2.4 Scale-up strategies and construction issues 

Tubular PBRs and raceway ponds are suitable for large-scale production (Chisti, 

2007). However the scalability of vertical airlift PBR and bubble columns was 

considered also an advantage of these systems (Miron et al., 1999). Scale-up of closed 

systems is only possible by increasing the number of units in a production scheme. This 

method can become expensive, since each unit requires a variety of devices that control 

the wide range of growth factors (e.g. pH, temperature, aeration, CO2 supply, nutrients 

supply). In addition, maintaining a monoculture in all of the units becomes challenging 

as the number of units to monitor grows (Janssen et al., 2001). Other than scale-up by 

multiplication of identical modules, the only way to increase volume is by increasing 

length or/and diameter or/and the light path of the PBR; however, this strategy is 

limited by the existence of changes in the performance of the PBR. Commercial-scale 

closed PBR have not been widely reported in scientific literature.  

The type of material used is of fundamental importance for a suitable PBR 

construction. Materials such as plastic or glass sheets, collapsible or rigid tubes should 

have high transparency, high mechanical strength, high durability, chemical stability, 
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low cost, must lack toxicity and be easy to clean (Tredici, 2004). The ease of cleaning 

and loss of the plastics transparency exposed outdoors are operational issues to 

consider. The construction materials to build a microalgae cultivation system can vary 

from simple sand or clay, to brick or cement, and to expensive plastics like polyvinyl 

chloride (PVC), glass fibre or polyurethane (Mata et al., 2010). 

Advantages and drawbacks of the most common materials used for building PBR 

have been reported in the literature (Tredici, 1999).  

2.2.3 Downstream processes 

Downstream processes represent an economic limitation to the production of low 

cost commodities (fuels, feeds and foods) and also to higher value products. The 

downstream processes used are highly specific and strongly depend on the desired 

products. This section deals with the main techniques for harvesting/dewatering, drying, 

cell disruption and metabolites extraction from microalgae cells. 

2.2.3.1 Harvesting and dewatering processes  

Given the relatively low biomass concentration obtainable in microalgal cultivation 

systems due to the limit of light penetration (typically in the range of 1 - 5 g L-1) and the 

small size of microalgal cells (typically in the range of 2 - 20 µm in diameter), costs and 

energy consumption for biomass harvesting are a significant concern that needs to be 

addressed properly (Li et al., 2008). In this sense, harvesting of microalgal cultures is a 

major bottleneck towards the industrial-scale processing of microalgae for biofuel 

production. The cost of biomass recovery from the broth can make up to 20 – 30% of 

the total cost of producing the biomass (Molina et al., 2003). Microalgal biomass 

harvesting can be achieved in several physical, chemical or biological ways: 

flocculation, centrifugation, filtration, ultrafiltration, air-flotation, autoflotation, etc. 

Generally, microalgae harvesting is a two-stage process, involving:  

1) Bulk harvesting: aimed at separation of biomass from the bulk suspension. The 

concentration factors for this operation are generally 100 – 800 times to reach 2 – 7% 
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total solid matter. This will depend on the initial biomass concentration and 

technologies employed, including flocculation, flotation or gravity sedimentation;  

2) Thickening: the aim is to concentrate the slurry through techniques such as 

centrifugation, filtration and ultrasonic aggregation; hence, it is generally a more energy 

intensive step than bulk harvesting.  

 Flocculation  

Flocculation can be used as an initial dewatering step in the bulk harvesting process 

that will significantly enhance the ease of further processing. This stage is intended to 

aggregate microalgal cells from the broth in order to increase the effective particle size 

(Harun et al., 2010a). Since microalgae cells carry a negative charge that prevents them 

from self-aggregation in suspension, addition of chemicals known as flocculants 

neutralises or reduces the negative surface charge. These chemicals coagulate the algae 

without affecting the composition and toxicity of the product (Molina et al., 2003). 

Multivalent metal salts like ferric chloride (FeCl3), aluminium sulphate (Al2(SO4)3) and 

ferric sulphate (Fe2(SO4)3) are commonly used (Brennan and Owende, 2010).  

Flotation 

Some strains naturally float at the surface of the water as the microalgal lipid content 

increase. Although flotation has been mentioned as a potential harvesting method, there 

is very limited evidence of its technical or economic viability (Brennan and Owende, 

2010).   

Centrifugation 

Centrifugation involves the application of centripetal acceleration to separate the 

microalgal growth medium into regions of greater and less densities. Once separated, 

the microalgae can be removed from the culture by simply draining the excess medium 

(Harun et al., 2010a). Centrifugal recovery is a rapid method of recovering microalgal 

cells, especially for producing extended shelf-life concentrates for aquaculture 

hatcheries and nurseries (Molina et al., 2003). However, high gravitational and shear 

forces during the centrifugation process can damage cell structure. Additionally, it is not 

cost effective due to high power consumption especially when considering large 

volumes (Harun et al., 2010a).  
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Filtration 

Filtration is the method of harvesting that has proved to be the most competitive 

compared to other harvesting options. There are many different forms of filtration, such 

as dead end filtration, microfiltration, ultra filtration, pressure filtration, vacuum 

filtration and tangential flow filtration. Generally, filtration involves running the broth 

with microalgae through filters on which the microalgae accumulate and allow the 

medium to pass through the filter. The broth continually runs through the microfilters 

until the filter contains a thick algae paste. Although filtration methods appear to be an 

attractive dewatering option, they are associated with extensive running costs and 

hidden pre-concentration requirements (Harun et al., 2010a).  

2.2.3.2 Drying processes 

Harvested microalgae contain 80 – 90% water (Ruiz et al., 2013). Removal of most 

of the water is necessary for long-term storage of the microalgae feedstock and is 

required for many downstream processes such as metabolite extraction (Chen et al., 

2009). The most common methods for microalgae dehydration include spray-drying, 

drum-drying, freeze-drying and sun-drying (Richmond, 2004). These methods increase 

microalgae and the final product shelf-life, particularly if the moisture level is kept 

below 7% (Chen et al., 2009). Because of the high-water content of microalgal biomass 

some methods are not very effective for microalgal powder production (e.g. sun-

drying), while others are not economically feasible for low value products, such as 

biofuel or protein (e.g. spray-drying) (Mata et al., 2010). For example, the conventional 

approach to produce biodiesel requires harvesting of microalgae and subsequent drying 

of the harvested biomass paste, and then solvent extraction of triglycerides from dried 

biomass, all these steps representing up to 90% of the energy needed to synthesize 

biodiesel from microalgae (Lardon et al., 2009).  

2.2.3.3 Cell disruption  

The next step is microalgae cells disruption for release of the metabolites of interest. 

Several methods can be used depending on the microalgae wall and on the nature of the 

product to be obtained (Mata et al., 2010). Most cell disruption methods applicable to 
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microalgae have been adapted from applications to intracellular non-photosynthetic 

bioproducts. Cell disruption methods that have been used successfully include the 

application of mechanical action as glass and ceramic beads, ultrasonication, high-

pressure homogenisers, autoclaving or the application of non-mechanical action as the 

addition of hydrochloric acid, sodium hydroxide, alkaline lysis and enzyme reactions 

(Mendes-Pinto, 2001; Mata et al., 2010).  

Haematococcus cells are typically disrupted using high-pressure homogenisers. 

Disruption greatly enhances the bioavailability of and the assimilation of the pigments 

when cells are used for fish feed. Agitation of microalgal biomass in presence of glass 

and ceramic beads (ca. 0.5 mm of diameter) in bead mills has been used to disrupt cells 

of Scenedesmus obliquus, S. platensis and Monodus subterraneous. Haematococcus 

pluvialis cells that had been autoclaved or mechanically disrupted in a high pressure 

homogenizer, yielded three times as much astaxanthin as biomass treated with chemical 

or enzymatic methods (Grima et al., 2003). 

2.2.3.4 Extraction of microalgae metabolites 

Extracting the oil and converting the oil from microalgae to biodiesel are the primary 

driving force for algae to fuels technology development (Chen et al., 2009) however, as 

stated previously, microalgae have a number of other metabolites of great commercial 

interest that also need to be extracted. Microalgae metabolites such as essential fatty 

acids, β-carotene and astaxanthin can be extracted from the cells using solvent 

extraction. Hexane, ethanol, chloroform and diethyl ether can extract fatty acids such as 

eicosapentaenoic acid (EPA), docosohexaenoic acid (DHA) and arachidonic acid (AA) 

from various microalgae (Grima et al., 2003). Several authors (Robles Medina et al., 

1995; Giménez Giménez et al., 1998; Belarbi et al., 2000) have described fatty acid 

extraction from microalgae. 

The extraction of phycobiliproteins from P. cruentum (Bermejo Román et al., 2001, 

2002) and lutein from C. vulgaris (Li et al., 2001) using aqueous buffers has also been 

reported.  When the objective is to obtain metabolites with high added value, crude 

extracts are generally filtered and purified by various chromatographic methods to 

obtain the metabolite of interest. Astaxanthin, polyunsaturated fatty acids and other 
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compounds can be recovered using supercritical fluid chromatography (Grima et al., 

2003). Some other chromatographic methods that have been used for recovering pure 

fatty acids (or equivalent esters) have included reverse phase chromatography, silica gel 

adsorption chromatography and argentated silica gel chromatography (Robles Medina 

et al., 1995; Giménez Giménez et al., 1998; Belarbi et al., 2000). Proteins are usually 

purified using ion exchange chromatography Bermejo Román et al., 2002). 

Several techniques have been assessed for lipid extraction, which usually requires < 

10% water, including the use of supercritical CO2 or organic solvents (Kumar et al., 

2010). Numerous methods for extraction of lipids from microalgae have been applied; 

but most common methods are expeller/oil press, liquid–liquid extraction (solvent 

extraction), supercritical fluid extraction and ultrasound techniques (Harun et al., 2010; 

Dragone et al., 2010a). Expeller/oil pressing is a mechanical method for extracting oil 

from raw materials such as nuts and seeds. Pressing uses high pressure to squeeze and 

break cells. In order for this process to be effective, algae must first need to be dried. 

Although this method can recover 75% of oil and no special skills are required, it was 

reported less effective due to comparatively longer extraction time (Harun et al., 2010a). 

Solvent extraction proved to be successful in order to extract lipids from microalgae. In 

this approach, organic solvents, such as benzene, cyclo-hexane, hexane, acetone, 

chloroform are added to algae paste. Solvents destroy algal cell wall, and extract oil 

from aqueous medium (Figure 2.5) because of its higher solubility in organic solvents 

than in water (Dragone et al., 2010). 

 
Figure 2.5 Solvent extraction of lipids (http://www.oilgae.com). 

Solvent extract can then be subjected to distillation process to separate oil from 

solvent. Latter can be reclaimed for further use. Hexane is reported to be the most 

efficient solvent in extraction based on its highest extraction capability and low cost 
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(Harun et al., 2010a). Supercritical extraction makes use of high pressures and 

temperatures to rupture the cells. This particular method of extraction has proved to be 

extremely time-efficient and is commonly employed (Harun et al., 2010a). Another 

promising method to be used in extraction of microalgae is the application of 

ultrasounds. This method exposes algae to a high intensity ultrasonic wave, which 

creates tiny cavitation bubbles around cells. Collapse of bubbles emits shockwaves, 

shattering the cell wall and releasing the desired compounds into solution. 

Although extraction of oil from microalgae using ultrasound is already in extensive 

use at laboratory scale, sufficient information on feasibility or cost for a commercial-

scale operation is unavailable. This approach seems to have a high potential, but more 

research is needed (Harun et al., 2010a, Dragone et al., 2010). 

Hydrothermal liquefaction 

High content of water often exists in microalgae after harvesting which requires a 

great deal of energy to remove moisture in the algal cells in the period of pre-treatment. 

Hydrothermal liquefaction has been developed to produce bio-fuel directly without the 

need of drying, disruption or extraction processes. The hydrothermal processing is an 

alternative technology that significantly improves the overall thermal efficiency of the 

process (Patil et al., 2008), as the energy consumption required by hydrothermal 

processing is very low compared to other processes (Shuping et al., 2010; Ruiz et al., 

2013). Hydrothermal liquefaction is a process in which biomass is converted in hot 

compressed water to a liquid bio-crude. Processing temperatures range from 200 to 

350 °C with pressures of around 15 – 20 MPa. At these conditions complex molecules 

are broken down and repolymerise to oily compounds (Peterson et al., 2008). 

Hydrothermal processing offers the advantage that lipids can be extracted while wet and 

upgraded to produce a crude oil-like product. Another major advantage is that the 

conventional lipid extraction methods only produce oil from the lipid fraction while 

hydrothermal processing can produce oil also from the carbohydrate and protein 

fraction (Ruiz et al., 2013). Basically, this process converts the whole cell into bio-

crude.   
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2.3 Cost/effectiveness considerations 

Sustainability is a key principle in natural resource management, and it involves 

operational efficiency, minimization of environmental impact and socio-economic 

considerations, all of which are interdependent (Brennan and Owende, 2010). Despite 

the enormous interest in using microalgae in the energy or commodities markets, 

companies will not be available to make large investments unless the risk-return ratio is 

acceptable (Singh and Gu, 2010). For current cultivation systems, overall processing 

costs are around 5 € kg-1. A conservative conceptual model to assess economics 

anticipates cost reductions to as low as 0.68 € kg-1 within a decade, which would then 

make microalgae a fully competitive alternative for biofuel production (Malcata, 2011). 

In order to reduce the microalgae production cost several issues should be 

considered: 

- Microalgae strain selection; 

- Cultivation system localization; 

- Photobioreactor construction, operation and maintenance costs; 

- Nutrients and CO2 supply costs; 

- High concentration of the product of interest; 

- Biorefinery-based production strategy;  

- Improving capabilities of microalgae through genetic engineering  

Despite the increasing interest in microalgae for the production of biofuels or high 

added-value compounds, the commercial achievements on microalgal biotechnology are 

still modest. However, it is expectable that, within the next 10 – 15 years the microalgae 

production will reach an economical sustainable level. This expectation is based manly 

in recent advances in PBR engineering, systems biology, material science, genetic 

engineering, and biorefining (Wijffels and Barbosa, 2010).  

2.3.1 Microalgae selection 

Microalgae species and strains vary greatly in terms of growth rate, productivity, 
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nutrient and light requirement, ability to accumulate different desirable compounds and 

ability to adapt to adverse conditions. Therefore, usually, the first step in mass 

cultivation of microalgae is to find or engineer right species and strains for specific 

purposes and cultivation systems (Chen et al., 2009).  

There are many screening programs around the world studying microalgae species in 

different locations for suitable strains. However, most of the research work is focused 

on a small number of fast-growing microalgal species which have been found to 

accumulate substantial quantities of lipids. Typical species include Chlamydomonas 

reinhardtii, Dunaliella salina, and various Chlorella species, as well as Botryococcus 

braunii. Other important algal groups include Phaeodactylum tricornutum, 

Thalassiosira pseudonana, Nannochloropsis and Isochrysis spp (Scott et al., 2010). 

According to Chen et al. (2009) there are three main categories that should be taken 

into account in microalgae selection: 

i) Growth physiology – evaluated based on maximum specific growth 

rate, maximum cell density, tolerance to environmental variables 

(temperature, pH, salinity, oxygen levels, CO2 levels). It is also desirable the 

capability of heterotrophic or mixotrophic growth and growing to high cell 

density. 

ii) Metabolite production – assessed for both the unit concentration as 

well as the total yield of the metabolites useful for commercialization. The 

ability of an algal species to secrete metabolites in liquid or volatile forms is 

another feature of potential significance for harvest. 

iii) Robustness - high culture consistency, reasonable resilience, high 

community stability, and low susceptibility to external predators.  

Additionally, the selected microalgae should be susceptible to optimization of its 

performance through genetic manipulation and able to be used in a biorefinery concept. 

For this study the selected microalgae was the freshwater Chlorella vulgaris P12 

provided by the Algal Laboratory (CCALA), Institute of Botany, Academy of Sciences 

of the Czech Republic. C. vulgaris is a single celled, spherical non-motile green 

microalgae with 2.0 – 10.0 µm in diameter. The cells are devoid of flagella, stigma and 
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contractile vacuoles, but contain a centrally located nucleus. Chlorella occurs in both 

fresh and marine water. Some call C. vulgaris ubiquitous since it occurs in various 

different habitats. C. vulgaris is of immense economic importance ranging from human 

food to applications in space travel and biofuels production (Phukan el al., 2011). 

C. vulgaris was chosen due to its fast growth (doubling time of 19 h), robustness, 

easier cultivation (Lv et al., 2010), tolerance to high levels of CO2, as well as other 

compounds such as sulphur dioxides, nitrogen oxides, and volatile organic compounds 

(VOCs) (Keffer and Kleinheinz, 2002). C. vulgaris does not secrete any autoinhibitory 

or harmful factors at high-cell concentrations which would inhibit or retard growth. It is 

also known that it is able to grow mixotrophically and heterotrophically, and it is also 

possible to induce the accumulation of high concentrations of energy-rich materials. 

2.3.2 Cultivation system location  

The choice of the location where the cultivation system will be constructed is a major 

consideration to reduce the relation cost/effectiveness. Choosing the appropriate 

location can mean higher system productivity and lower construction and operation 

costs, for example. This can be achieved if the cultivation system is built in a location 

where climatic conditions are ideal for the selected microalgae (optimizing the growth 

and reducing the temperature control costs), or/and a location with CO2 and nutrients 

sources with residual cost (e.g. CO2 emitting industries that produce wastewaters with 

nitrogen and phosphorus). 

According to Mata et al. (2010) the site selection has to be performed considering 

several criteria:  

(i) water supply/ demand, its salinity and chemistry;  

(ii) land topography, geology, and ownership;  

(iii) climatic conditions, temperature, insulation, evaporation, 

precipitation;  

(iv) easy access to nutrients and carbon supply sources. 

The decisions made in terms of location will always be determined by the microalgae 

species selected, the product of interest (e.g. human consumption or production of 
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biofuels), type of cultivation (e.g. photoautotrophic or mixotrophic growth). The 

selected microalgae will determine the type of water used (fresh, marine, or even waste 

water); existence of special nutritional requirements (e.g. mixotrophy); growth 

temperature range; resistance to contamination; if the microalgae is extremophile or not.  

One of the most interesting possibilities is to combine the microalgae growth with a 

pollution control strategy of other industry, for example for the removal of CO2 from 

flue gas emissions or the removal of nitrogen and phosphorus from a wastewater 

effluent (Mata et al., 2010). Power plants and wastewater treatment plants are very 

attractive locations for microalgae cultivation systems construction. Power plants are 

inexpensive CO2 sources, with availability of heat that can be used in downstream 

processes (e.g. drying) and (usually) with availability of large quantities of water. 

Wastewater treatment plants have large amounts of nutrient-rich water and usually 

produce CO2 that can be used in microalgae production.  

Geographical areas with high irradiances along the year and moderate temperatures 

are optimal for microalgae cultivation. Because of the average amount of sunlight hours 

per day (10 – 12 h), and the mean solar irradiance ranging from 400 µE m-2 s-1 (winter 

time) to 1,800 µE m-2 s-1 (summer time), southern Spain (García-González et al., 2003) 

and southern Portugal are considered especially suitable for outdoor cultivation of 

microalgae. 

Most of microalgae commercial cultivation is done in developed countries. In most 

of these regions there are seasonal variations in temperatures and solar light energy 

throughout the year. Due to these constrains, it is difficult to carry out outdoor mass 

cultivation of microalgae all year round in such regions (Ugwu et al., 2008). However, 

in most tropical developing countries, outdoor cultures of microalgae can be maintained 

for relatively long period of time in a year because there is neither winter nor cold 

seasons in those regions. Thus, according to Ugwu et al. (2008) tropical developing 

countries might be potential cultivation sites for commercial production of microalgal 

products. 
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2.3.3 Cultivation system selection 

As previously demonstrated there are a wide variety of microalgae cultivation 

systems. Design and construction of any microalgae culture system should consider the 

type of strain, the target product, geographical location, as well as the overall cost of 

production. Large-scale microalgae culture systems should have large volume and 

occupy less land space, they must have transparent surfaces, high illumination surfaces, 

high mass transfer rates and should as well be able to give high biomass yields (Ugwu 

et al., 2008). 

Efficient and cost effective microalgae culture systems can be characterized as 

having high areal and volumetric productivities. These high productivities can be 

achieved by optimal light regime (i.e. a state in which all the parameters affecting the 

average light exposure of each cell are optimized) and high mass transfer rates. To 

ensure the economic viability of microalgae cultivation systems, it is necessary to 

achieve high volumetric and/or areal productivities, associated with a reduced annual 

investment and simple/cheap PBR operation and maintenance procedures. There are 

practical points in this context that must be addressed during the development and 

design of a cost effective microalgae cultivation system (Richmond, 2004b):  

i) Is the microalgae culture system illuminated through all surfaces, 

providing a high area:volume ratio, allowing a rational and efficient 

utilization of the incident radiation? 

ii) The microalgae culture system allows maintaining continuous 

monocultures with little risk of contamination or deterioration? The 

detection and control of bio-fouling formation is quick, reducing the chances 

of contamination? 

iii) CO2 is supplied efficiently with high mass transfer rates? 

iv) There are mechanisms to prevent that O2 concentration reaches levels 

that cause stress to the cells? 

v) The cooling system is suitable for local climatic conditions? 

vi) The mixing system is efficient and does not cause significant cell 
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stress? 

vii)  The cost per PBR volume unit is reasonable in terms of depreciation 

and maintenance costs? 

2.3.4 CO2 and nutrient supply  

Many elements have to be provided for the growth of microalgae, such as carbon 

(C), oxygen (O), hydrogen (H), nitrogen (N), potassium (K), calcium (Ca), magnesium 

(Mg), iron (Fe), sulphur (S), phosphorous (P), and trace elements. While, C, O and H 

are obtained from water and air, N, P and K have to be absorbed from the culture 

medium (Zhu et al., 2013). Production of biofuels and other bio-products from 

microalgae can be more environmentally sustainable, cost-effective and profitable, if 

combined with bioremediation processes such as wastewater and flue gas treatments. 

Microalgae cultivation using wastewater and flue gases as source of nutrients has 

proven to be a very feasible strategy (Mata et al., 2010). 

2.3.4.1 CO2 supply 

The most common sources of CO2 for microalgae cultivation include: (i) 

atmospheric CO2; (ii) CO2 from industrial exhaust gases (e.g. flue gas and flaring gas); 

and (iii) CO2 chemically fixed in the form of soluble carbonates (e.g. NaHCO3 and 

Na2CO3) (Kumar et al., 2010). CO2 can be supplied to microalgae cultures by previous 

separation from flue gases or by directly injecting the flue gases into the culture. 

Several technologies are available to separate CO2 from flue gases as chemical 

absorption, cryogenic fractionation, membrane separation, and adsorption using 

molecular sieves (Herzog et al., 1997). The cost of CO2 supply has to be considered 

when evaluating the economics of microalgae production. A review by Carvalho et al. 

(2006) suggested that if it is not possible to find a cheap source of CO2, the CO2 supply 

to the cells must be done in a discontinuous way. Direct bubbling of flue gases, without 

CO2 separation, is the only source capable of supplying the CO2 required for the mass 

production of microalgae in an affordable way. 

In order to obtain a cost efficient microalgae culture system, with regard to the CO2 



Universidade do Minho  Chapter 2 
 

 

42 

supply, it is necessary to consider two very important aspects:  

i) Cheap and continuous source of CO2 - microalgae culture system should 

be built near facilities that emit CO2, such as power plants, wastewater treatment 

plants, cement industries or industries with fermentation processes (e.g. 

breweries). Virtually, any industry that produces large amounts of CO2 is a good 

candidate to have a microalgae cultivation system. Previous studies have 

demonstrated that microalgae can be successfully employed for the treatment of 

simulated flue gases (Lee et al., 2000) or flue gases emitted from municipal 

waste incinerators (Douskova et al., 2009), coal-fired power plants (McGinn et 

al., 2011), industrial heater using kerosene as fuel (Chae et al., 2006) and gas 

boiler (Doucha et al., 2005). Flue gas is a desirable source of CO2 because it 

reduces greenhouse gas emissions as well as the cost of microalgae production. 

Flue gas from typical coal-fired power plants contain up to 13% CO2 (Haiduc et 

al., 2009), whereas waste gases from combustion processes, however, typically 

contain >15% (v/v) CO2 (Kumar et al., 2010).  

ii) Optimal CO2 supply conditions - The aeration rate and CO2 

concentration in the gas stream must be optimized to maximize the productivity 

in terms of biomass and/or products of interest. This optimization allows a 

rational management of resources, particularly energetic, and allows that the 

largest possible amount of CO2 is converted into biomass, with a minimum CO2 

release to the atmosphere. One approach to raising microalgae productivity is to 

increase the concentration of CO2, however, an excess of CO2 can also be 

detrimental to photosynthesis and cell growth. Lee and Tay (1991) found that 

microalgae cells exposed to high CO2 concentrations experienced declining 

growth rates. According to Chen et al. (2009) careful regulation of CO2 input 

could maximize CO2 utilization and minimize undesirable CO2 inhibition.  

2.3.4.2 Nutrient supply 

Among many challenges faced in the commercial cultivation of microalgae, low-cost 

water and nutrients availability is crucial. Culturing of microalgae at industrial scale for 

biofuels production requires substantial amount of nutrients, typically nitrogen and 
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phosphorus. These nutrients are normally from inorganic fertilizers. 

With the expansion of the commercial microalgae growing industry, competition 

with the agricultural sector for inorganic fertilisers is expected to increase, this could 

result in the fact that inorganic fertilisers may be an economically unviable source of 

nutrients for micro-algal production systems (Fenton and hUallacháin, 2012). The use 

of chemical fertilizers has the advantage of reducing contamination in culturing medium 

and thus promotes water reutilization to re-culture microalgae. However, a recent life-

cycle assessment study has pointed out that 50% of the overall energy use and green 

house gases emission were associated with utilization of chemical fertilizers (Clarens et 

al., 2010). Thus, in a long run, using chemical fertilizers to culture microalgae for 

biofuel production is definitely not sustainable. Thus, it is necessary to find alternatives 

to the use of fertilizers in microalgae mass cultivation. 

Currently, large amount of waste produced from the intensive livestock and food 

industries worldwide annually creates more greenhouse gas emission and causes more 

environmental problems. Thereby, some of these effluents could be an alternative 

nutrient source for mass microalgae production since contains nutrients such as N and P 

which are suitable for growing microalgae or even organic carbon sources that could be 

used for mixotrophic growth of microalgae. The use of algae for nutrient removal from 
municipal wastewater has been extensively investigated and in general this nutrient 
stream provides a good microalgal growth medium. Other waste streams promise to 
also provide most of the nutrients for abundant microalgal growth (Cabanelas et al. 
2013, Cho et al. 2013).  

Additionally, heterotrophic and mixotrophic microalgae are known to grow much 

faster with higher cellular oil content suitable as biofuels feedstock as compared to 

photoautotrophic cells (García et al., 2000; Miao and Wu, 2004). However, they require 

organic carbon sources like glucose or acetate for growth, which are responsible for 

80% of the medium costs (Li et al., 2007). In order to reduce microalgal production 

costs, it is imperative to find cheap organic substrates that meet the nutritional 

requirements of microalgae. Wastes produced from the intensive livestock and food 

industries are promising candidates as organic carbon sources for mixotrophic and 

heterotrophic cultivation of microalgae. 

From the environmental and economic point of view, utilization of municipal or 
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industrial wastewaters is a very attractive strategy since waste stream is used to generate 

alternative renewable biofuels to mitigate the current energy crisis.  

2.3.5 Induction of specific products’ accumulation in microalgae 

The economic feasibility of microalgae mass cultivation is dependent on the high 

biomass productivity but also on high productivities in terms of product of interest. To 

make microalgae biofuels cost competitive as a liquid fuel, microalgae should be 

capable of high lipid or starch productivities in order to produce biodiesel or bioethanol, 

at low cost. Several studies have demonstrated that it is possible to modify the growth 

and secondary metabolism of microalgae, namely the accumulation of energy-rich 

materials (lipids and starch) (Behrens and Kyle, 1996; Hsieh and Wu, 2009).  

Previous studies reported that accumulation of lipids and starch in some microalgae 

could be induced by various strategies such as nitrogen deprivation (Illman et al., 2000), 

silicon deficiency (Lynn et al., 2000), phosphate limitation (Reitan et al., 1994), high 

salinity (Rao et al., 2007) or increasing the temperature to sub-lethal levels (Douskova 

et al., 2008). Although these strategies may increase up to 10 times the amount of lipid 

or starch in the cells (Dragone et al., 2011), they cause a decrease in biomass 

productivity. It is therefore necessary to find a balance between energy-rich materials’ 

accumulation and biomass productivity, which will result in increased product 

productivity. 

One alternative to overcome this limitation and find a balance between metabolite 

accumulation and biomass growth, is to use a strategy of microalgae cultivation in two 

stages. In the first stage biomass is cultivated under optimal conditions for microalgal 

growth and during the second stage of cultivation the conditions are changed in order to 

slow down or stop the cytoplasmic proteosynthesis, (photosynthesis and metabolism of 

chloroplasts should remain unaffected). During this period of limited proteosynthesis 

and cell growth the algae transform the energy of light and CO2 into reserve materials 

resulting in an increase of intracellular starch or oil content (Douskova et al., 2008). 
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2.3.6 Biorefinery approach 

An integrated biorefinery is capable of producing multiple product streams and thus 

multiple income streams from a single biomass feedstock, therefore being more 

economically viable than single product-based production schemes (Chen et al., 2009). 

Like a petroleum refinery, a biorefinery uses several components of the biomass raw 

material to produce useable products and, because several components of the biomass 

are used, the overall cost of producing any given product is lowered.  

The primary driving force for microalgae cultivation technology development is the 

potential to reduce emerging environmental and economic problems, such as the 

greenhouse effect, industrial water pollution and fuel crisis. However, as has been 

demonstrated above, microalgae biomass also has other valuable components and uses. 

Microalgae product portfolio stretches from straightforward biomass production for 

food and animal feed to valuable products extracted from microalgal biomass, including 

carbohydrates, long chain fatty acids, pigments and proteins. For most of these 

applications, the production process is moderately economically viable and the market 

is developing (Harun et al., 2010a,b). 

Different approaches can be made to the biorefinery concept, depending on the 

selected microalgae, and therefore their metabolites as well as the main product of 

interest. For example, if the products of interest are the lipids (for biodiesel production), 

after lipid extraction some of the residual biomass may be used to produce methane by 

anaerobic digestion, to generate the electrical power necessary for running the 

microalgal biomass production facility. The residual biomass from biodiesel production 

processes can also be used as animal feed or feedstock for bioethanol production. A 

microalgal biorefinery can simultaneously produce biodiesel, animal feed, biogas, 

bioethanol and electrical power (Figure 2.6). Extraction of other high-value products 

may be feasible, depending on the specific microalgae used, but this is probably the 

simplest approach to the microalgae biorefinery concept. 

According to Vanthoor-Koopmans et al. (2012), when the whole potential of 

microalgae ingredients is exploited, the market value will be higher than production 

costs and therefore focus should be put on maximal exploitation of microalgal 

metabolites. However, the application of this concept of biorefinery is neither simple 
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nor straightforward. The main bottleneck of the biorefinery approach is to separate the 

different fractions without damaging one or more of the product fractions. There is a 

need for mild, inexpensive and low energy consumption separation techniques to 

overcome these bottlenecks, and they should also be applicable for a variety of end 

products of sufficient quality at large quantities (Vanthoor-Koopmans et al., 2012). 

 

Figure 2.6 An integrated biorefining scheme for algal biomass utilization  (Chen et al., 2009). 

The conventional techniques for cell disruption and metabolite extraction, like e.g. 

the use of chemicals or very high pressure, are very effective technologies but they are 

not mild and mainly focused on one product. Some of the biorefinery techniques 

appropriate for mild processing are enzymes, pulsed electric field, supersonic flow fluid 

processing, ultrasound (for cell disruption) and ionic liquids or surfactants (for 

metabolite separation and extraction). These techniques are relatively new and should 

therefore be studied thoroughly before commercial use is possible (Vanthoor-

Koopmans et al., 2012). 
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2.3.6.1 Microalgal metabolites and their applications 

Microalgae oils and proteins have the potential to replace and add to the current oil 

and protein markets. Globally the demand is rising due to the rising population. 

Therefore it is necessary to find sustainable sources of lipids and proteins (Vanthoor-

Koopmans et al., 2012) Lipids extracted from the microalgal biomass could be also 

used as a potential feedstock for biodiesel production. In addition, some long chain fatty 

acids (such as DHA and EPA) are important health food supplements. The microalgae-

based carbohydrates consist mainly of cellulose and starch without lignin; thus they can 

be ready carbon sources to replace traditional crop carbohydrates in the fermentation 

industry.  Phycobiliproteins are water-soluble proteins that capture light energy, which 

is then passed on to chlorophylls during photosynthesis. Phycobiliproteins are 

promising fluorescent labelling reagents that can be employed in flow cytometry, 

fluorescence immunoassay, fluorescence microscopy, immuno-histochemistry and other 

biomedical research purposes (Matamala et al., 2007; Waggoner, 2006). The global 

market was estimated to be approximately US$50 million in 1997, with prices varying 

from US $3 mg-1 to US $25 mg-1 (Milledge, 2011; Yen et al., 2012). The three major 

classes of photosynthetic pigments that appear in microalgae are chlorophylls, 

carotenoids and phycobilins. Pigments as chlorophyll can be used as anti-inflammatory 

and wound healing additive to pharmaceuticals, carotenoids reduce the risk of cancer, 

and astaxanthin is a powerful antioxidant (Christaki et al., 2011). These higher valuable 

products make microalgae even more attractive as food and feed additives (Vanthoor-

Koopmans et al., 2012). 

2.3.7 Genetic manipulation 

Genetic manipulation techniques have been developed for some species (e.g. 

Chlamydomonas reinhardtii, Volvox carteri, and the diatom Phaeodactylum 

tricornutum), and are increasingly being applied to optimize biofuel production in 

several microalgal systems (Beer et al., 2009). Although genetic manipulation remains 

limited to a few selected algal laboratory models the expanding interest in algal biofuels 

will likely lead to the development of techniques in other organisms and the 

establishment of new model systems (Beer et al., 2009). 
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Many researchers are seeking to overcome the production and harvesting challenges 

through genetic and metabolic engineering of microalgae. Using nutrient deprivation or 

other stresses to induce a natural lipid trigger is not always beneficial because 

productivity and lipid accumulation are often inversely related. According to Hu et al. 

(2008), an increased understanding of the control mechanisms behind lipid production 

is needed to enable genetic manipulation for simultaneous rapid growth and high lipid 

content (Christenson and Sims, 2011). 

Thus, it is reasonable to conclude that genetic and metabolic engineering are likely to 

have a great impact on improving the economics of mass production of microalgal 

(Roessler et al., 1994; Dunahay et al., 1996). According to Chisti (2007) molecular 

level engineering can be used to potentially:  

1. increase photosynthetic efficiency to enable increased biomass yield on 

light;  

2. enhance biomass growth rate;  

3. increase oil, starch or other products content in biomass;  

4. improve temperature tolerance to reduce the expense of cooling;  

5. eliminate the light saturation phenomenon so that growth continues to 

increase in response to increasing light level;  

6. reduce susceptibility to photooxidation that damages cells.  

Stability of engineered strains and methods for achieving stable production in 

industrial microbial processes are known to be important issues (Zhang et al., 1996), but 

have been barely examined for microalgae.  In combination with increasingly refined 

genetic manipulation tools, the ability of scientists to engineer algae for the 

accumulation of specific metabolites is entering a new era (Beer et al., 2009) 
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3.1 Abstract 

The main objective of the work presented in this chapter was to optimize the rate of 

CO2 fixation (RCO2) by the green microalga Chlorella vulgaris P12 cultivated 

photoautotrophically under different CO2 volumetric concentrations (ranging from 2% 

to 10%) and aeration rates (ranging from 0.1 vvm to 0.7 vvm). Results showed that the 

maximum RCO2 (2.22 g L-1 d-1) was obtained by using 6.5% CO2 and 0.5 vvm after 

7 days of cultivation at 30 ºC. Although final biomass concentration and maximum 

biomass productivity of microalgae were affected by the different cultivation 

conditions, no significant differences were obtained in the biochemical composition of 

microalgal cells for the evaluated levels of aeration and CO2. The present study 

demonstrated that optimization of microalgal cultivation conditions can be considered a 

useful strategy for maximizing CO2 bio-mitigation by C. vulgaris.  

 
Keywords: aeration rate; biological mitigation; carbon dioxide sequestration; microalgae; 

photobioreactors 

3.2 Introduction 

The increasing concentration of anthropogenic CO2 in the atmosphere appears to be 

the major cause of global warming, which may have catastrophic consequences for the 

environment and the climate (Chiu et al., 2009). The amount of CO2 in the atmosphere 

was 390.9 ppm in 2011, increasing on average 2 ppm per year for the past 10 years and 

reaching 140% of the pre-industrial level (280 ppm) (WMO, 2012). In order to reduce 

its atmospheric concentration, different abiotic (physical) methods have been evaluated, 

including injection into geological formations/deep oceans or utilization of absorbent 

materials (Kumar et al., 2010). These methods, however, require significant space of 

storage associated with elevated costs of monitoring, operation, and maintenance, 

raising serious concerns about potential CO2 leakage over time (Bilanovic et al., 2009). 

On the other hand, biological mitigation of atmospheric CO2 has been deemed as a 

sustainable approach to physical methods (Kumar et al., 2011). Biofixation of CO2 can 

be performed either by plants or photosynthetic microorganisms. Nevertheless, the 

process of CO2 sequestration by plants can be viewed as an inadequate strategy of 

mitigation, since its contribution to CO2 capture has been estimated to only 3 – 6% of 
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fossil fuel emissions, mainly because of slow growth rates of terrestrial vegetation 

(Wang et al., 2008). Alternatively, microalgae have received renewed attention in recent 

years due to their faster growth rates and higher photosynthetic efficiency than 

terrestrial plants (Chiu et al., 2009; Dragone et al., 2011). These photosynthetic 

microorganisms can efficiently convert CO2 from a point source into O2 and biomass 

(Tang et al., 2011).  

Cultivation of microalgae can be exploited as an additional step in flue gas treatment, 

aiming the reduction of CO2 levels in the exhaust flue gas. Previous studies have 

demonstrated that microalgae can be successfully employed for the treatment of 

simulated flue gases (Lee et al., 2000) or flue gases emitted from municipal waste 

incinerators (Douskova et al., 2009), coal-fired power plants (McGinn et al., 2011), 

industrial heater using kerosene as fuel (Chae et al., 2006) and gas boiler (Doucha et al., 

2005). 

Gas aeration in photobioreactors serves not only as a supply of CO2 for cell growth, 

but also as a means of pH control, as well as for other important purposes such as 

provision of internal mixing to avoid nutrient concentration gradients, promotion of 

exposure of all cells to light (especially in high density cultures) to minimize self-

shading and phototoxicity, and stripping of accumulated dissolved oxygen to reduce its 

toxicity to microalgae (Kumar et al., 2010). Therefore, aeration rate and CO2 

concentration can be considered as key parameters to improve the performance of 

microalgal photobioreactors.  

The aim of this study was to maximize the CO2 fixation by the green microalga 

Chlorella vulgaris cultivated under different concentrations of CO2 and aeration rates. 

The effect of each culture condition on growth parameters and biochemical composition 

of microalgal cells was also evaluated. 

3.3 Material and Methods 

3.3.1 Microorganism and culture conditions 

The freshwater C. vulgaris (strain P12) was used for cultivation under 

photoautotrophic conditions. All experiments were carried out at 30 ºC in 110 mL glass 
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bubble columns photobioreactors containing 90 mL of medium, during 7 days. 

Agitation during cultivation of microalgae was provided by bubbling CO2-enriched air 

through a needle (inner diameter of 0.8 mm) at the bottom of the photobioreactors. 

Different values of initial CO2 concentration and aeration rates were used in the 

experiments (Table 3.1).  

Table 3.1 Experimental range and levels of the independent process variables according to the 22 full-

factorial central composite design 

Independent variable Symbol Range and levels 

-1 0 +1 

CO2 concentration (%) X1 2 6 10 

Aeration rate (vvm) X2 0.1 0.4 0.7 

 

Illumination was provided by four fluorescent lamps (Sylvania Standard F18 W) on 

one side of the photobioreactors, at an irradiance level of 70 µE m-2 s-1 measured by a 

LI-250 Light Meter with a LI-190 quantum sensor (LI-COR, USA).  

The growth medium based on the elementary composition of algal biomass had the 

following initial composition (mg L−1): 1,100 (NH2)2CO, 237 KH2PO4, 204 

MgSO4.7H2O, 40 C10H12O8N2NaFe, 88 CaCl2, 0.83 H3BO3, 0.95 CuSO4.5H2O, 3.3 

MnCl2.4H2O, 0.17 (NH4)6Mo7O24.4H2O, 2.7 ZnSO4.7H2O, 0.6 CoSO4.7H2O, 0.014 

(NH4)VO3 in distilled water; the initial pH was adjusted to 7.0 by 0.1 M NaOH. 

The initial algal concentration was the same for all the cultivation conditions: 2.0 x 

107 cells mL-1.  

3.3.2 Determination of microalgal cell concentration 

Microalgal concentration in photobioreactors was measured by using an improved 

Neubauer hemocytometer. Biomass was also determined by cell dry weight after 

centrifugation of the sample at 8,750 g (Hettich D-78532, Germany) during 15 min, 

washing with distilled H2O and drying at 105 ºC until constant weight.  
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3.3.3 Determination of biomass productivity and specific growth rate 

Maximum biomass productivity (Pmax, g L−1 d−1) was calculated from Eq. 3.1, where 

Xt was the biomass concentration (g L−1) at the end of the cultivation period (tx) and X0 

the initial biomass concentration (g L−1) at t0 (day).  

!!"# =
!!!  !!
(!!!  !!)

            Eq. 3.1 

Specific growth rate (µmax, day−1) was calculated from Eq. 3.2 according to Abreu et 

al. (2012).  

!!"# = (ln!! − ln!!)  /(!! −   !!)      Eq. 3.2 

where N1 and N2 were the concentration of cells at the beginning (t1) and at the end 

(t2) of the exponential growth phase, respectively. 

3.3.4 Determination of CO2 fixation rate 

Carbon dioxide biofixation rate, RCO2 (g L-1 d-1), was calculated from Eq. 3.3, as 

described by Tang et al. (2011).  

!!"! =   !!   !!"#  (!!"!/!!   )       Eq. 3.3 

where CC was the carbon content of microalgal cells (% w/w), measured by using a 

LECO CHNS-932 Elemental Analyser (USA), Pmax was the maximum biomass 

productivity (g L−1 d−1), MCO2 was the molar mass of CO2 (g mol-1) and MC was the 

molar mass of carbon (g mol-1).  

3.3.5 Biochemical characterization of microalgal cells 

The concentration of microalgal starch was assayed by the hydrolysis of starch to 

glucose with amylolytic enzymes (α-amylase and amyloglucosidase) according to the 

procedure provided by Megazyme (Wicklow, Ireland) and accepted by AOAC (Official 

Method 996.11) and AACC (Method 76.13). Lyophilized microalgae biomass was 

disintegrated with a mortar and pestle, re-suspended in aqueous ethanol and incubated 

in a water bath at 80 – 85 ºC for 5 min, to extract the pigments. Thermostable α-
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amylase (3000 U mL-1) in MOPS buffer (50 mM, pH 7.0) including 5 mM CaCl2, was 

added to each sample. The samples were maintained at 100 ºC during 6 min, followed 

by heating at 50 ºC. Amyloglucosidase (3,300 U mL-1) in sodium acetate buffer was 

then added to each sample. Samples were subsequently maintained at 50 ºC for 30 min, 

and then centrifuged (10 min) at 3,000 rpm. Glucose in the supernatant was assessed by 

glucose oxidase method. Total starch content was determined by multiplying the 

percentage of microalgal starch with the corresponding biomass concentration 

(Fernandes et al., 2012). 

Total lipids were determined by the classic Folch et al. (1957) chloroform-based 

lipid extraction protocol. Total lipids were extracted from lyophilized biomass in 

CHCl3-MeOH (2:1, v/v). Freeze-dried biomass was suspended in CHCl3-MeOH (2:1, 

v/v) solution, extracted for 90 min, being the extract collected by centrifugation at 2,000 

g (Hettich D-78532, Hettich, Germany) for 10 min. The pellet was ressuspended and re-

extracted in CHCl3-MeOH solution twice. The collected extract was evaporated at 40 

ºC, dried at 70 ºC for 2 h, and subsequently weighed after cooling to room temperature. 

Lipid content of microalgae was calculated by dividing the extraction residue weight by 

the freeze-dried cells weight.  

The protein content of microalgal cells was quantified according to the method of 

Lowry et al. (1951). After a predigestion in 0.5 M NaOH at 80 °C for 30 min, protein 

content in microalgae cells was quantified at 750 nm using Foling-Ciocalteau reagent. 

Bovine serum albumin was used as standard protein solution. 

3.3.6 Experimental design and optimization by response surface 

methodology 

The influence of initial CO2 concentration and aeration rate (independent variables) 

on CO2 biofixation rate (dependent variable) by C. vulgaris was assessed through a 22 

full-factorial central composite design (CCD). For statistical analysis, the independent 

variables were coded according to Eq. 3.4, where each independent variable is 

represented by xi (coded value), Xi (real value), X0 (real value at the centre point), and 

ΔXi (step change value). The range and the levels of the variables are given in Table 3.1. 
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!! =
!!!  !!
∆!!

       Eq. 3.4 

The experimental results were fitted with a second-order polynomial equation 

by multiple regression analysis. The quadratic mode for predicting the optimal point 

was expressed according to Eq. 3.5, where ŷ represents the response variable, b0 is the 

interception coefficient, bi, bii and bij are the regression coefficients, n is the number of 

studied variables, and Xi and Xj represent the independent variables. Where possible, the 

model was simplified by elimination of statistically insignificant terms. 

 

 

The quality of the fitted polynomial model was expressed by the coefficient of 

determination R2, and its statistical significance was checked by the F-test. The 

significance of the regression coefficients was tested by t-value. Results were analyzed 

by the Experimental Design Module of the Statistica 8.0 software (Statsoft, USA). The 

model permitted evaluation of the effects of linear, quadratic and interactive terms of 

the independent variables on the chosen dependent variables. 

Data were compared using one-way ANOVA followed by a Tukey’s multiple 

comparison tests with 95% confidence level. 

3.4 Results and discussion 

3.4.1 Effect of CO2 concentration and aeration rate on microalgal growth 

Final biomass concentration (Xmax) and maximum biomass productivity (Pmax) of C. 

vulgaris cultivated under different aeration rates and CO2 concentration in the air stream 

are shown in Table 3.2.   

C. vulgaris was able to grow under all the evaluated levels of aeration and CO2; 

however Xmax and Pmax were significantly influenced by the cultivation conditions. 

Regardless the CO2 level in air, higher values of Xmax and Pmax were obtained under the 

aeration rate of 0.4 vvm when compared with those values obtained at 0.1 vvm.  
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Table 3.2 Growth parameters of C. vulgaris cultivated under different CO2 concentrations and aeration 

rates at 30 ºC 

Cultivation condition Growth parameters 

CO2 concentration 

(%) 

Aeration rate 

(vvm) 

Xmax
a 

(g L−1) 

Pmax
b 

(g L−1 d−1) 

2 

0.1 5.5 ± 1.7 0.7 ± 0.2 

0.4 6.9 ± 1.2 0.9 ± 0.2 

0.7 8.3 ± 2.8 1.1 ± 0.4 

6 

0.1 6.8 ± 0.5 0.9 ± 0.0 

0.4 10.0 ± 0.5 1.3 ± 0.0 

0.7 8.9 ± 0.8 1.2 ± 0.1 

10 

0.1 6.0 ± 1.9 0.8 ± 0.3 

0.4 8.6 ± 2.4 1.2 ± 0.3 

0.7 8.5 ± 0.1 1.2 ± 0.0 
a Final biomass concentration 
b Maximum biomass productivity 

 

These results are in good agreement with a previous study, which reported that cell 

concentration and biomass productivity of Chlorella sp. AG10002 rose when aeration 

rate is increased from 0.1 to 0.4 vvm (Ryu et al., 2009). According to Fan et al. (2007), 

the gas-liquid mass transfer coefficient is strengthened by increasing the feed gas flow 

rate. Moreover, the higher turbulent motion of liquid intensifies the movement of cells 

at the region adjacent to the photobioreactor wall, leading to an enhanced use of light by 

microalgae. 

On the other hand, Xmax and Pmax decreased as the aeration rate was increased from 

0.4 to 0.7 vvm at 6 and 10% CO2 concentrations. It has been suggested that high 

aeration air flux reduces the gas bubble retention time, releasing the gas mixture to the 

outside of the photobioreactor before an efficient mixing occurred (Fan et al., 2007); as 

a consequence, the majority of the supplied CO2 might have not been efficiently used 

by microalgal cells. Additionally, high mixing rates can cause shear damage to 

microalgae (Kumar et al., 2010).   

The final biomass concentration and maximum biomass productivity of C. vulgaris 

were also significantly influenced by the percentage of CO2 in the air stream. It can be 

observed in Table 3.2 that Xmax and Pmax increased nearly 45% when CO2 concentration 
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was raised from 2% to 6% at 0.4 vvm. This result is compatible with previous research 

observations. For example, Ryu et al. (2009) showed that maximum cell concentration 

and biomass productivity of Chlorella increased from 1.78 to 2.02 g L-1 and from 0.295 

to 0.335 g L-1 d-1, respectively, by elevating the CO2 level in air from 2% to 5%.   

It is worth mentioning that the dissolved inorganic carbon in the culture medium 

exists in the forms of CO2, H2CO3, HCO3
- and CO3

2-, usually in an equilibrium, and 

represents the carbon source for microalgae growth (Tang et al., 2011). Therefore, the 

stimulatory effect of CO2 (up to 6%) on growth parameters of C. vulgaris could be 

related to the increased availability of carbon as a result of the higher DIC 

concentration. Beyond that, CO2 abundance influences several key enzymes in carbon 

metabolism, such as carbonic anhydrase and Rubisco. Thus, elevated CO2 concentration 

can enhance the carboxylating activity and repress the oxygenating activity of Rubisco, 

resulting in increased photosynthesis (Yang and Gao, 2003).   

However, high CO2 concentration can also result in low pH. Decrease of pH will 

cause the decrease of the activity of carbonic extracellular anhydrase and inhibit cell 

growth (Tang et al., 2011). The lower values of Xmax and Pmax obtained under 10% CO2 

concentration in air in comparison with those found at 6% CO2 level validate such 

hypothesis. 

Among the different cultivation conditions tested, the highest values of final biomass 

concentration (10.0 ± 0.5 g L−1), maximum biomass productivity (1.3 ± 0.0 g L−1 d−1) 

and maximum specific growth rate (0.95 ± 0.04 d−1) of C. vulgaris P12 were all 

obtained at 6% CO2 and 0.4 vvm.   

3.4.2 Optimization of CO2 biofixation rate 

In order to calculate the carbon dioxide biofixation rate (RCO2), the elemental 

composition of C. vulgaris cultivated under different growth conditions was 

determined. No statistically significant differences were found in terms of carbon, 

hydrogen and nitrogen content of cells cultivated under different CO2 concentrations 

and aeration rates (data not shown). This result ratifies previous findings of Tang et al. 

(2011), where the carbon content of C. pyrenoidosa SJTU-2 was nearly 50%, without 
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greatly changes under CO2 concentrations between 0.03% and 50%. In our study, the 

carbon content of C. vulgaris was 45.6 ± 0.5% in average (Table 3.3).  

Table 3.3 Elemental composition of C. vulgaris cells 

Element Content (wt. %) 

C 45.6 ± 0.5 

H 6.9 ± 0.1 

N 2.7 ± 0.2 

C = carbon; H = hydrogen; N = nitrogen 
 

Regarding the rate of CO2 fixation by C. vulgaris, RCO2 was calculated according to Eq. 

3.3, and the results are shown in Table 3.4. 

Table 3.4 Experimental matrix and results of RCO2 (g L-1 d-1) with coded levels of CO2 concentration (X1) 

and aeration rate (X2) according to the 22 full-factorial central composite design 

Runs Independent variables RCO2 (g L-1 d-1) 

 X1 X2 Experimental Predicted 

1 -1 -1 1.15 1.10 

2 -1 +1 1.87 1.79 

3 +1 -1 1.35 1.55 

4 +1 +1 1.92 2.10 

5 -1 0 1.50 1.69 

6 +1 0 1.93 2.07 

7 0 -1 1.54 1.64 

8 0 +1 2.08 2.26 

9 0 0 2.10 2.20 

10 0 0 2.07 2.20 

11 0 0 2.18 2.20 

12 0 0 2.29 2.20 

 

It can be noted that RCO2 varied under the different cultivation conditions. The 

highest values of RCO2 were obtained when C. vulgaris was cultivated at 6% CO2 

concentration and 0.4 vvm. 

Due to the differences observed among values, a statistical analysis was carried out 

aiming at identifying which independent variable had significant influence on RCO2. The 

statistical significance of CO2 concentration and aeration rate on the response variable 

(RCO2) is given in Table 3.5.  
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Table 3.5 Effect estimates, standard errors and t-test for RCO2 by C. vulgaris according to the 22 full-

factorial central composite design 

Variables and interactions Estimated effects Standard errors tvalue p 

X1 0.227 0.101 2.237 0.067 

X1
2 -0.683 0.152 -4.491 0.004a 

X2 0.610 0.101 6.021 0.001a 

X2
2 -0.493 0.152 -3.241 0.018a 

X1X2 -0.075 0.124 -0.604 0.568 

X1 = CO2 concentration; X2 = aeration rate 
a Significant influence at 95% confidence level 

 

According to this analysis, the linear term of aeration rate as well as the quadratic 

terms of CO2 concentration and aeration rate showed significant influence on RCO2 at 

95% confidence level. 

After identification of the terms affecting RCO2, the experimental values were fitted 

to a second-order equation (Eq. 3.6) obtained by multiple regression analysis. The 

coefficients of the proposed equation are given below: 

!!"! = 0.27 + 0.30  ! − 0.02  !! + 3.39  ! − 2.74  !! − 0.03  !  !    (!! = 0.94)      Eq. 3.6 
 

where C represents the CO2 concentration in air and A represents the aeration rate. 

The quality of the quadratic fit was represented by the coefficient of determination 

R2. As can be noted, the model explains more than 90% of the dependent variable’s 

variability (R2 > 0.90). The high R2 means that the quadratic model is able to represent 

values in the experimental region in an accurate manner. The values predicted by the 

model are displayed in Table 3.4 along with the observed values. Comparison of these 

data indicates that there is a good agreement between the experimental and predicted 

values for the proposed range. Therefore, the experimental factorial design and 

regression analysis were effective to identify the optimal conditions for maximum 

biofixation of CO2 by microalgae under the different levels of CO2 in air and aeration 

rates. 
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The relation between independent variables and RCO2 can be best visualized by 

examining the surface plot presented in Figure 3.1. 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 Response surface of RCO2 by C. vulgaris P12 as a function of CO2 concentration in air and 

aeration rate. 

Figure 3.1 clearly shows that RCO2 rate was not linearly increased when the process 

variables were increased, but there was an optimum point after which the use of higher 

CO2 concentration and aeration rate did not improve RCO2. This is in agreement with the 

analysis presented in Table 3.5, which showed significant effect of the quadratic terms 

of both variables on RCO2. An estimate of the critical point revealed that 6.5% CO2 and 

0.5 vvm were the conditions able to maximize RCO2. Under these conditions the model 

predicts a rate of CO2 fixation by C. vulgaris of 2.29 g L−1 d−1.  Assays for validation of 

this model were then performed under the established operating conditions and the 

obtained values of RCO2, Xmax and Pmax were 2.22 g L-1 d-1, 9.97 ± 0.05 g L-1 and 1.33 ± 

0.02 g L-1 d-1, respectively.  

The results achieved in our study compare favourably with others reported in the 

literature. For example, the RCO2 by C. vulgaris LEB-104 cultivated under 5% CO2 

concentration was 0.25 g L-1 d-1 (Sydney et al., 2010). A maximum RCO2 of 0.87 g L-1 d-

1 was obtained for Chlorella sp. UK00l using a gaseous mixture (CO2:O2:N2 = 10:3:87 

(v/v)) at a constant flow rate of 0.05 vvm (Hirata et al., 1996). 
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3.4.3 Influence of CO2 concentration and aeration rate on the biochemical 

composition of C. vulgaris  

The content of starch, proteins and lipids of microalgae cultivated under different 

CO2 concentration in air and aeration rates were determined and depicted in Figure 3.2. 

Despite differences in values of growth parameters and CO2 fixation rates presented 

above, no statistically significant differences were observed in the biochemical 

composition of microalgal cells cultivated under different growth conditions. Such 

behaviour could be explained by mild conditions in terms of CO2 concentration and 

aeration rates used in our study.  

 

Figure 3.2 Contents of starch, proteins and lipids of C. vulgaris cultivated in bubble column 

photobioreactors under different CO2 concentrations (2% (a), 6% (b), 10% (c) and 6.5% (d)) and aeration 

rates. 

It is known that only extreme/stressful cultivation conditions tend to promote 

changes in the accumulation of starch or lipids in C. vulgaris P12 cells (Dragone et al., 

2011). The conditions used in this study were far to be stressful to the cells, as 
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demonstrated by the growth parameters presented in Table 3.2.  

C. vulgaris P12 was able to accumulate about 37% starch, 41% proteins and 11% 

lipids under the evaluated cultivated conditions. 

3.5 Conclusions 

The present study revealed that growth parameters and CO2 uptake by C. vulgaris 

P12 were significantly affected by CO2 concentration in air stream (ranging from 2% to 

10%) and aeration rate (ranging from 0.1 vvm to 0.7 vvm). The highest rate of CO2 

fixation by microalgae (2.22 g L-1 d-1) was obtained under 6.5% CO2 and 0.5 vvm.  This 

study constitutes an important step in the development of strategies to mitigate CO2 in 

an environmentally sustainable manner by using a biological approach.   
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4.1 Nutrient limitation as a strategy for increasing starch 

accumulation in microalgae 

4.1.1 Abstract 

Increasing microalgal starch content by nutrient limitation has been regarded as an 

affordable approach for the production of third generation bioethanol. This work 

evaluated starch accumulation in Chlorella vulgaris P12 under different initial 

concentrations of nitrogen (0 – 2.2 g of urea L-1) and iron (0 – 0.08 g of FeNa-EDTA L-

1) sources, using a central composite design (CCD) for two factors. The obtained model: 

starch content (%) = 8.220 - 16.133X1 + 13.850X1
2, relating starch accumulation in 

microalgae with the coded level for initial urea concentration in the growth medium 

(X1), presented a good agreement between predicted and experimental values (R2
 = 

0.94). Since accumulation of starch occurred at nitrogen depletion conditions under 

which the cell growth was much slower than that observed during nitrogen 

supplemented cultivations, a two-stage cultivation process for high starch accumulation 

(> 40%) and cell growth of C. vulgaris was proposed: a first cultivation stage using 

nitrogen- and iron-supplemented medium (initial urea and FeNa-EDTA concentrations 

of 1.1 and 0.08 g L-1, respectively), followed by a second cultivation stage in a nitrogen- 

and iron-free medium. The high starch content obtained suggests C. vulgaris P12 as a 

very promising feedstock for bioethanol production. 

 

Keywords: Bioethanol; biofuel; Chlorella vulgaris; starch; nutrient limitation. 

4.1.2 Introduction 

The microalga Chlorella vulgaris has been recognized as a potential feedstock for 

bioethanol production due to its capacity to accumulate high levels starch (up to 60% 

dry weight) (Brányiková et al., 2011). Several studies have demonstrated that alteration 

in nutrient concentrations can modify the growth and secondary metabolism of 

microalgae (Behrens, 1996; Hsieh and Wu, 2009). Furthermore, microalgae growth 

depends not only on an adequate supply of essential macronutrient elements (carbon, 
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nitrogen, phosphorus, silicon) and major ions (Mg2+, Ca2+, Cl-, and SO2
-4) but also on a 

number of micronutrient metals such as iron, manganese, zinc, cobalt, copper, and 

molybdenum (Sunda et al, 2005). Iron is needed for the growth of all phytoplankton. It 

serves essential metabolic functions in photosynthetic electron transport, respiratory 

electron transport, nitrate and nitrite reduction, sulphate reduction, dinitrogen (N2) 

fixation, and detoxification of reactive oxygen species (e.g., superoxide radicals and 

hydrogen peroxide) (Sunda and Huntsman, 1997). Although numerous reports have 

shown that cell composition of microalgae can be affected by a single chemical or 

physical factor, the effectiveness of such treatment is usually poor, and the change is 

slow (Hu, 2004). In fermentation processes, where several variables have to be 

simultaneously contemplated, it is necessary that the optimization method take their 

interactions in consideration (Dragone et al, 2003). The statistical optimization 

technique through factorial design and response surface analysis satisfies this 

requirement. The use of factorial design is advantageous as it allows obtaining 

maximum information of the process by performing a reduced number of experiments 

(Dragone et al, 2004). In this sense, central composite design (CCD), a useful 

methodology that is employed for sequential experimentation, provides reasonable 

amount of information for testing the goodness of fit from a fewer number of assays, 

therefore reducing the overall cost associated with the analysis (Sharma et al, 2009). 

CCDs are 2k factorial treatment designs with 2k additional treatment combinations 

called axial points and n0 replications at the centre of design. The property of 

rotatability developed for CCD requires the variance of estimated values to be constant 

at points equally distant from the centre of design (Djoudi et al, 2007). Thus, our study 

evaluated the effect of initial concentrations of nitrogen and iron sources on starch 

accumulation in C. vulgaris using a central composite design (CCD) for two factors. 

Starch productivity and cell growth were also considered for optimization of the culture 

medium.  

4.1.3 Material and Methods 

4.1.3.1 Microorganism and culture conditions  

Chlorella vulgaris (P12) obtained from the Culture Collection of Algal Laboratory 
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(CCALA, Czech Republic), was used for cultivation. All culture experiments were 

performed at 30 ºC in 50 mL glass bubble column photobioreactors containing 40 mL 

of medium. The carbon source and agitation during cultivation of microalgae were 

supplied by bubbling CO2-enriched air (2% v/v CO2) through a tube (inner diameter, 2 

mm) that ended near the bottom of the column, at an aeration rate of 0.833 vvm 

(volume of gases per volume of culture suspension per minute). Illumination was 

provided by four fluorescent lamps (Sylvania Standard F18 W) on one side of the 

photobioreactor, at an irradiance level of 70 µE m-2 s-1. The original growth medium 

(OGM) based on chemical components present in the microalgal biomass (Douskova et 

al, 2009) had the following composition (mM): 18.32 (NH2)2CO, 1.74 KH2PO4, 0.83 

MgSO4.7H2O, 0.79 CaCl2, 0.11 FeNa-C10H12O8N2, 0.017 MnCl2.4H2O, 0.013 H3BO3, 

0.009 ZnSO4.7H2O, 0.004 CuSO4.5H2O, 0.002 CoSO4.7H2O, 0.0001 

(NH4)6Mo7O24.4H2O and 0.0001 (NH4)VO3 in distilled water. Prior to the main 

experiments, microalgae were cultivated in the OGM to the late-exponential growth 

phase, then centrifuged at 6,000 rpm for 15 min, washed in distilled H2O and re-

suspended in culture medium with a nutrient composition defined by the experimental 

design. The starting algal density was the same in all experiments of the central 

composite design: 2 x 107 cells mL-1.  

4.1.3.2 Biomass concentration  

Microalgae and culture medium were withdrawn from the photobioreactors 

throughout the assay. Microalgal density was measured microscopically using an 

improved Neubauer hemocytometer. The growth rate of microalgae was 

complementarily measured by cell dry weight. Microalgae were harvested by 

centrifugation at 6,000 rpm during 15 min, washed with distilled H2O, and dried at 105 

ºC until constant weight (24 h).  

4.1.3.3 Starch determination  

The concentration of microalgal starch at the beginning of the stationary growth 

phase was assayed by the hydrolysis of starch to glucose with amylolytic enzymes (α-

amylase and amyloglucosidase) according to the procedure described previously in 

section 3.3.5. The productivity of starch was calculated by Eq. 4.1:  
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!!"#$%!   !  !!!  !"#!! =
!!"#$%! % ×  !   !  !!!

!  (!"#)
         Eq. 4.1 

,where PStarch is the starch productivity, CStarch is the mass percentage of microalgal 

starch, W is the dry weight of microalgae, and T is the time of cultivation. 

4.1.3.4 Statistical analysis of the design of experiments (DoE) 

The influence of the initial concentration of nitrogen and iron sources (independent 

variables) on starch content (dependent variable) in C. vulgaris was assessed through a 

full central composite design (CCD) for two factors. The coding used for these variables 

is shown in Eq. (4.2). 

!! =
!!!  !!
∆!!

      Eq. 4.2 

where vi is the coded variable, Vi is the real value, V0 is the real value at the central point 

and ΔVi the step change value. Table 4.1 presents the range of real and coded values of 

the independent variables used in this study. The experimental results were fitted with a 

second-order polynomial equation by multiple regression analysis.  

Table 4.1 Levels and range of the independent variables (initial concentration of nitrogen and iron 

sources) based on full CCD for two factors 

Independent variable Symbol Range (g L-1) and levels 

-1 0 +1 

Initial nitrogen  source (urea) concentration X1 0 1.1 2.2 

Initial iron source (FeNa-EDTA) concentration  X2 0 0.04 0.08 

 

The quadratic mode for predicting the optimal point was expressed according to Eq. 

4.3, where ŷi represents the response variable, b0 is the interception coefficient, bi, bii 

and bij are the regression coefficients, n is the number of studied variables, and Xi and Xj 

represent the independent variables. Where possible, the model was simplified by 

elimination of statistically insignificant terms.  

        
Eq. 4.3 

The quality of the fitted polynomial model was expressed by the coefficient of 

determination R2, and its statistical significance was checked by the F-test. The 
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significance of the regression coefficients was tested by t-value. The statistical analysis 

of the results was carried out with the Experimental Design Module of the software 

Statistica 8.0 (Statsoft, USA). The model permitted evaluation of the effects of linear, 

quadratic and interactive terms of the independent variables on the chosen dependent 

variables. 

4.1.4 Results and discussion 

4.1.4.1 Starch accumulation in C. vulgaris P12 

 The experimental results obtained by the cultivation of C. vulgaris under different 

nutritional conditions based on the CCD for two factors, are shown in Table 4.2. It can 

be noted that C. vulgaris was able to accumulate starch under all the evaluated 

conditions; however, the amount of starch produced strongly varied according to the 

levels employed for the independent variables. The highest starch contents (41.0%, 

40.5% and 39.8%) were obtained under nitrogen-deprived conditions (initial urea 

concentration = 0 g L-1) and initial FeNa-EDTA concentrations of 0.04, 0 and 0.08 g L-

1, respectively (Runs 5, 1 and 2).  

Table 4.2 Experimental matrix and results of microalgal starch accumulation (%) with coded levels of 

initial urea concentration (X1) and initial FeNa-EDTA concentration (X2) according to the 22 full-factorial 

CCD 

Runs Independent variables Starch content (%) 

 X1 X2 Experimental Predicted 

1 -1 -1 40.5 38.2 

2 -1 +1 39.8 38.2 

3 +1 -1 9.9 5.9 

4 +1 +1 3.2 5.9 

5 -1 0 41.0 38.2 

6 +1 0 11.5 5.9 

7 0 -1 23.0 8.2 

8 0 +1 8.4 8.2 

9 0 0 4.8 8.2 

10 0 0 5.6 8.2 

11 0 0 5.9 8.2 
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The results obtained in our study were remarkable when compared with previously 

reported data, some of which are summarized in Table 4.3. As shown in this table, the 

microalgal starch content obtained in this study (41.0%) was the highest in comparison 

with those values reported in the literature resulting from the photoautotrophic 

cultivation of other C. vulgaris species. 

This content of starch in C. vulgaris P12 was almost the double of the starch yield 

found in Chlorella sp. TISTR 8485 and Chlorella sp. TISTR 8593 (Rodjaroen et al, 

2007). It is worth mentioning that higher starch accumulations than those attained in our 

work were already reported by Hirano et al. (1997) and Choi et al. (2010) during the 

cultivation of Chlamydomonas reinhardtii species. However, the higher light intensity 

used for those experiments in comparison with that employed in our study could explain 

such differences (Table 4.3).  

Table 4.3 Starch content of green microalgal species cultivated under photoautotrophic conditions 

Species Starch 
(%) 

Illuminance 
(lx) 

Irradiance 
(µmol m-2 s-1) 

References 

Chlorella sp. TISTR 8485 21 - 60 Rodjaroen et al., 2007 
Chlorella sp. TISTR 8485 27 - 60 Rodjaroen et al., 2007 
Chlorella sp. TISTR 8593 22 - 60 Rodjaroen et al., 2007 
Chlorococcum sp. TISTR 
8583 

26 - 60 Rodjaroen et al., 2007 

Chlorococcum sp. TISTR 
8973 

17 - 60 Rodjaroen et al., 2007 

Scenedesmus sp. TISTR 8579 20 - 60 Rodjaroen et al., 2007 
Scenedesmus sp. TISTR 8982 13 - 60 Rodjaroen et al., 2007 
S. acuminatus TISTR 8457 7 - 60 Rodjaroen et al., 2007 
S. acutiformis TISTR 8495 16 - 60 Rodjaroen et al., 2007 
S. acutus TISTR 8447 19 - 60 Rodjaroen et al., 2007 
S. arcuatus TISTR 8587 13 - 60 Rodjaroen et al., 2007 
S. armatus TISTR 8591 15 - 60 Rodjaroen et al., 2007 
S. obliquus TISTR 8522 24 - 60 Rodjaroen et al., 2007 
S. obliquus TISTR 8546 23 - 60 Rodjaroen et al., 2007 
Nannochlorum sp. Tit-1 25 - - Hon-nami et al., 1998 
Chlamydomonas sp. YA-SH-1 30 - 39 - - Hon-nami et al., 1998 
C. vulgaris IAM C-534 37 15,000 - Hirano et al., 1997 
Chlamydomonas reinhardtii 
UTEX2247 

45 15,000 - Hirano et al., 1997 

Chlamydomonas reinhardtii 
UTEX 90 

44 - 450 Choi et al., 2010 

C. vulgaris P12  41 - 70 (This study) 
a Illuminance: the total luminous flux incident on a surface, per unit area. 
b Irradiance: the power per unit area of electromagnetic radiation at a surface. 
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High light intensities tend to enhance the production of polysaccharides in 

microalgae. Friedman et al. (1991) demonstrated that 0.6- and 3- fold increases in 

polysaccharide content were obtained in cultures of Porphyridium sp. and 

Porphyridium aerugineum, respectively, when the growth light intensity was raised 

from 75 to 300 µE m-2
 s-1. Tredici et al. (1991) reported that carbohydrate synthesis in 

Spirulina platensis grown outdoors was significantly higher on sunny days than on 

cloudy days. Due to the large differences observed in the amount of starch produced by 

C. vulgaris strain P12, a statistical analysis was carried out aiming at identifying which 

independent variable had significant influence on starch accumulation. 

The statistical significance of the initial nitrogen and iron sources on the response 

variable (starch content) is given in Table 4.4.  

According to this analysis, the initial urea concentration was the only variable with 

significant influence on starch content at 95% confidence level. Such effect was 

negative, indicating that starch content was enhanced by decreasing the initial 

concentration of nitrogen source. This result ratifies previous findings of Behrens et al. 

(1989), where starch accumulation in C. vulgaris increased under nitrogen-starvation 

conditions. The possible reason could be that under nitrogen deficiency/limitations the 

available nitrogen is utilized for synthesis of enzymes and essential cell structures. Any 

carbon dioxide subsequently fixed is therefore converted into carbohydrate or lipid 

rather than protein (Richardson et al, 1969; Zittelli et al, 2009). 

Table 4.4 Effect estimates, standard errors and t-test for starch accumulation in C. vulgaris according to 

the 22 full-factorial central composite design 

Variables and interactions Estimated effects Standard errors tvalue p 

X1 -32.267 4.559 -7.078 0.001* 

X1
2 27.700 7.016 3.948 0.011* 

X2 -7.327 4.559 -1.607 0.169 

X2
2 6.660 7.016 0.949 0.386 

X1X2 -3.015 5.583 -0.540 0.612 

X1 = coded values of initial urea concentration; X2 = coded values of initial FeNa-EDTA concentration 

* Significant influence at 95% confidence level 

 

The initial iron source concentration did not present a statistically significant effect 

on starch content, implying that chelated Fe(III) did not affect the starch accumulation 
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in C. vulgaris. Interaction effects among the studied variables were also not significant 

at 95% confidence level. After identification of the variable affecting the starch 

accumulation, the experimental values were fitted to a second-order equation (Eq. 4.4) 

obtained by multiple regression analysis. The coefficients of the proposed equation are 

given below:   

!"#$%ℎ  !"#$%#$   % =   8.220− 16.133  !! + 13.850  !!              ! (!! = 0.94)      Eq. 4.4 

where X1 represents the coded level for initial urea concentration. The quality of the 

quadratic fit, simplified by elimination of statistically insignificant terms, was 

represented by the coefficient of determination R2. As can be noted, the model explains 

at least 90% of the dependent variable’s variability (R2 > 0.90). The high R2 means that 

the quadratic model is able to represent values in the experimental region in an accurate 

manner. The values predicted by the model are displayed in Table 4.2 along with the 

observed values. Comparison of these data indicates that there is a good agreement 

between the predicted and experimental values for the proposed range. Therefore, the 

central composite design and regression analysis were effective in identifying the 

optimal conditions for maximum accumulation of microalgal starch for the different 

nutritional conditions. The relation between independent variables and starch content in 

C. vulgaris can be best visualized by examining the surface plot presented in Figure 4.1. 

Figure 4.1 clearly shows that decreasing initial urea concentration resulted in higher 

starch accumulation, with maxima values (≥ 40%) being achieved under the minimum 

urea concentration (0 mg L-1). These results implicate that the optimization using a 

response surface methodology based on the CCD can save the time and effort by the 

estimation of the variables that significantly influenced the starch accumulation in C. 

vulgaris.  
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Figure 4.1 Response surface of starch accumulation in C. vulgaris as a function of initial urea 

concentration and initial FeNa-EDTA concentration. 

4.1.4.2 Microalgal cell growth 

To explore the influence of the initial nitrogen source concentration and initial chelated 

Fe(III) concentration on microalgal cell growth, the conditions of the experimental 

design which yielded higher starch content in microalgae (values of starch content 

>8.4%), were considered. The time-course profiles of cell growth obtained with 

different initial urea concentrations are depicted in Figure 4.2. 

As shown in Figure 4.2 a and b, the cell growth of C. vulgaris improved significantly 

when urea concentration increased from 0 to 1.1 g L-1 (0 – 18 mM, respectively). This 

result is compatible with previous research observations. For example, Hsieh and Wu 

(2009) reported that higher initial urea concentration (from 0.025 to 0.200 g L-1) of the 

nutrient medium resulted in an increased biomass yield of Chlorella sp. However, cell 

growth did not show significant differences when urea concentration further increased 

from 1.1 to 2.2 g L-1 (18 – 37 mM, respectively) (Figure 4.2 b and c). 
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Figure 4.2 Cell growth of C. vulgaris with different urea concentrations (a) 0 g L-1, (b) 1.1 g L-1 and (c) 

2.2 g L-1. Initial FeNa-EDTA concentration: (■) 0 g L-1, (◊) 0.04 g L-1 and (○) 0.08 g L-1. 

Cell concentration reached the highest value at 1.1 and 2.2 g L-1 initial urea 

concentration, which was 1.6 x 108 cell mL-1 when initial FeNa-EDTA concentrations 

were 0.08 and 0.04 g L-1, respectively. Although final cell concentration rose from 3.7 x 

107 to 5.3 x 107 cell mL-1 when the concentration of FeNa-EDTA increased in the range 

0 – 0.08 g L-1 (0 – 190 µM) under nitrogen-deprived conditions (initial urea 

concentration = 0 g L-1), there was no significant difference among them according to a 

Tukey’s test (p < 0.05) (Figure 4.2 a). On the other hand, growth of microalgae was 

positively influenced as the initial concentration of the iron source was raised from 0 to 
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0.04 g L-1, maintaining the initial urea concentration at the highest level (2.2 g L-1) 

(Figure 4.2 c). The results described above suggest that the optimum concentration of 

urea required for the growth of microalgae was 1.1 g L-1, while the lowest 

concentrations of nitrogen and iron sources led to the highest starch productivity (0.199 

g L-1 day-1). These data imply that a two-stage cultivation process would likely be 

optimal for a high starch yield from C. vulgaris strain P12: a first cultivation stage using 

a N- and Fe-supplemented medium (initial urea and FeNa-EDTA concentrations of 1.1 

and 0.08 g L-1, respectively) to attain a maximum growth rate and concentration of 

biomass, followed by a second stage that involves cell cultivation in a N and Fe-free 

medium for a few days.  

4.1.5 Conclusions 

In this work, starch content of freshwater microalga C. vulgaris strain P12 reached 

up to 41.0% of dry cell weight, which was 8-fold higher than the control (central points 

of the experimental design). This result was achieved simply by altering the initial 

concentrations of urea and FeNa-EDTA in the culture medium. Since accumulation of 

starch occurred at nitrogen depletion conditions under which the cell growth was much 

slower than that observed during nitrogen supplemented cultivations, compromising 

between increasing starch content and cell growth will be necessary in order to attain 

high values of both biomass concentration and starch productivity.  
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4.2 Study of relationship between accumulation of starch and lipids in 

the microalga Parachlorella kessleri induced by nutrient depletion 

and their repletion 

4.2.1 Abstract 

Photosynthetic carbon partitioning into starch and neutral lipids, as well as the 

influence of nutrient depletion and repletion on growth and pigment content in the green 

microalga Parachlorella kessleri were studied. The study revealed that P. kessleri used 

starch as primary carbon and energy storage source, but the stress caused by the 

decrease of nutrients concentration makes the microalgae to shift the fixed carbon into 

reserve lipids as a secondary storage product. The depletion of minerals in diluted 

media inhibited both cellular division and growth, and very low content of chlorophylls 

and starch were found at the end of cultivations. On the other hand, the reserve lipids 

content was very high, approaching 30% of DW under given experimental conditions. 

All these parameters changed markedly after the transfer of cells from depleted into 

repleted mineral medium. Particularly, a tremendous decrease of lipid reserves from 

about 30% to 0% of DW was observed. The large lipid bodies decreased, fragmented 

into numerous small ones and finally disappeared. The cells recovered growth shortly 

after repleting medium and grew synchronously into large mother cells with high 

concentration of chlorophyll. 

These findings indicate that a high content of lipid and starch reserves accumulated 

during starvation can serve as a sole source of energy and carbon for all recovering 

growth and reproductive processes. Additionally, these findings indicate that nutritional 

limitations can be used in P. kessleri cultivation as a very effective and cheap strategy 

to increase lipid productivity, for biofuel production. 

 

Keywords: Parachlorella kessleri; energy-rich reserves; nutrient depletion; nutrient repletion 
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4.2.2 Introduction 

During the photosynthetic process, microalgae accumulate significant quantities of 

lipids and carbohydrates over short periods of time that can be subsequently processed 

into biofuels, namely biodiesel and bioethanol (Fernandes et al., 2012). Several studies 

have demonstrated that it is possible to control cell metabolism to produce high contents 

of energy-rich compounds, either starch (Brányiková et al., 2011; Dragone, 2011) 

and/or lipids (Deng et al., 2009; Chen et al., 2011; Lee, 2011). Although the 

mechanisms of induction of lipid accumulation can be different from starch, there are 

several common approaches to induce both starch and lipid overproduction (Brányiková 

et al., 2011; Li et al., 2013). Lipid content could be increased by nitrogen or phosphate 

limitation (Liang et al., 2009; Hsie et al., 2009, Rodolfi et al., 2009, Mutlu, et al., 2011) 

high salt concentration (Takagi et al., 2006), high iron concentration (Liu et al., 2008) 

and the utilization of heterotrophic and mixotrophic culture conditions (Heredia-Arroyo 

et al, 2010; Shen et al., 2010). 

Regarding starch, its accumulation can be induced by nitrogen depletion (Dragone et 

al., 2011), sulphur depletion and high light intensity (Brányiková et al., 2011), or high 

CO2 concentration (Izumo et al., 2007). 

It was also shown that the algal strains appropriate for overproduction of starch are 

not usually suitable for overproduction of lipids and vice versa (Brányiková et al., 2011; 

Li et al., 2010). 

The microalga Parachlorella kessleri, strain CCALA 255 is characterized by a high 

growth rate, tolerance to high temperature (40 ºC), resistance to shear stress, low 

adhesion to bioreactor surfaces and low tendency to form aggregates. These are positive 

characteristics for its use in large-scale production bioreactors with potential for biofuel 

production (Li et al., 2013). Under optimal conditions, is characterized by storage 

energy in the form of starch rather than lipids (Přibyl et al., 2012; Li et al., 2013). If 

untreated, the cultures propagated rapidly, producing large amounts of biomass in a 

relatively short time. The cells contained negligible lipid reserves (1 – 10 % of DW) but 

it is possible to induce hyperproduction of storage lipids in P. kessleri biomass by 

different methods (Přibyl et al., 2012; Li et al., 2013). 
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Under favourable growth conditions, algae synthesize fatty acids principally for 

esterification into glycerol-based polar lipids, the major constituents of intracellular 

membranes. However, under unfavourable environmental or stress conditions many 

algae alter their lipid biosynthetic pathways for the formation and accumulation of 

neutral lipids, mainly in the form of triacylglycerol (TAG) (Li et al., 2011; Breuer et al., 

2012). These reserve neutral lipids (specially TAGs) are the preferred lipid class for 

most applications, mainly biodiesel production, since they can be readily converted to 

biodiesel through the existing oil refining processes (Hu et al., 2008).  

It is known that alteration in nutrient concentrations can modify both growth and 

secondary metabolism of microalgae (Behrens, 1996; Hsieh, 2009). Furthermore, 

microalgae growth depends not only on an adequate supply of essential macronutrient 

elements (carbon, nitrogen, phosphorus, silicon) and major ions (Mg2+, Ca2+, Cl-, and 

SO2
-4) but also on a number of micronutrient metals such as iron, manganese, zinc, 

cobalt, copper, and molybdenum (Sunda, 2005; Dragone, 2011). Thus, and since the 

reduction of nutrients is a simple and cheap method to increase lipid content in P. 

kessleri cells, we used in this work medium dilution (5 and 10 times) as a method to 

increase lipids content in P. kessleri cells. 

However, the regulatory mechanism that controls the accumulation of starch and 

lipids in response to changes in growth conditions and the possible interaction between 

the two pathways, namely the interrelationship between storage and consumption of 

starch and lipids, remains unclear (Rawsthorne, 2002; Weselake et al., 2009; Li et al., 

2010). According to Siaut et al. (2011) improving microalgal strain performances 

requires a good understanding of the mechanisms and regulations of carbon fixation, 

carbon allocation between biosynthetic pathways and induction by adverse growth 

conditions. Therefore, the aim of this work is to reveal the photosynthetic carbon 

partitioning into starch and neutral lipids, i.e. the temporal relationship between 

accumulation/consumption of starch and lipids, in P. kessleri cells, as a response to 

nutrient depletion and subsequent repletion. The profile of variation of starch and lipids 

concentration will be compared to the concentration of pigments and cell growth 

parameters in order to elucidate how photosynthetic carbon partitioning into starch and 

lipids is altered by different growth conditions, which are known to induce neutral lipids 

production.  
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4.2.3 Material and Methods 

4.2.3.1 Strains and growth conditions 

The green microalga Parachlorella kessleri (Krienitz et al., 2004), strain CCALA 

255, was provided by the Culture Collection of Autotrophic Organisms (CCALA) in 

Třeboň, Czech Republic (http://www.butbn.cas.cz/ccala/index.php). In the collection, 

the strain has been maintained on agar slants under irradiance of about 23 µE m-2 s-1, 

12/12 h (light/dark) regime and at a temperature of 12 – 15 oC.  

The cultures for experiments were prepared by transfer of algal inoculum from agar 

slant into liquid mineral medium and pre-cultured in laboratory photobioreactors (see 

section 4.2.3.2) at 30 °C in continuous light (1,200 µE m-2 s-1) in order to obtain a 

sufficient concentration of cell for the experiments. A quantum/radiometer/photometer 

(LI-COR, Inc., U.S.A.) was used to measure light intensity.  

The resulting cultures (“starting inocula”) were transferred into fresh complete 

mineral medium (medium 1) or 5-fold (medium 0.2) or 10-fold (medium 0.1) diluted 

medium in order to obtain an initial cell concentration of 0.2 g mL-1. The control growth 

medium based on chemical components present in the microalgal biomass (Douskova et 

al., 2009) had the following composition (mM): 18.32 (NH2)2CO, 1.74 KH2PO4, 0.83 

MgSO4.7H2O, 0.79 CaCl2, 0.11 FeNa-C10H12O8N2, 0.017 MnCl2.4H2O, 0.013 H3BO3, 

0.009 ZnSO4.7H2O, 0.004 CuSO4.5H2O, 0.002 CoSO4.7H2O, 0.0001 

(NH4)6Mo7O24.4H2O and 0.0001 (NH4)VO3 in distilled water. All culture experiments 

were performed at 30 ºC. 

4.2.3.2 Laboratory photobioreactor 

The cultures were grown in 2.5 L glass plate cuvettes containing 2.0 L of suspension. 

Continuous irradiance of 1,200 µE m-2 s-1 on the photobioreactor surface was provided 

by a panel of light tubes Osram L 36W/830 Lumilux (Osram, Germany); a temperature 

of 30 ± 0.5 °C was maintained using a thermostatic water bath (Figure 4.3 A). Cultures 

were aerated vigorously with air enriched with 2% CO2 (v/v) from a pressure can. 

Distilled water was daily added to the cultures to replenish that lost by evaporation.  
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4.2.3.3 Biomass determination 

For dry weight determination, biomass was separated from the medium by 

centrifugation of 2 mL of the cell suspension in pre-weighed microtubes at 3,000 g for 5 

min (Janetzki T23, Janetzki Maschinenbau, Germany); the sediment was dried at 105 ºC 

for 12 h and weighed on an analytical balance (Sartorius 1601 MPB, Sartorius, 

Germany. Cell volume and concentration were measured using a Beckman Coulter 

Multisizer III (Coulter Corporation, Miami, FL) by diluting 10 - 50 µL of fixed (0.2 % 

glutaraldehyde) cell suspension into 10 mL of 0.9 % NaCl (w/v) electrolyte solution. 

4.2.3.4 Transfer to control medium 

After reaching the maximum concentration of total lipids in the cells, the original 

mineral medium (initially with 20 or 10% of the control nutrient concentration) was 

removed from the cell suspension by centrifugation and the cells were re-suspended in 

control complete mineral medium (medium 1). 

4.2.3.5 Starch quantification 

Starch content was quantified according to Brányiková et al., (2011). Briefly, 10 mL 

of cell suspension was withdrawn and cells were recovered after centrifugation. The cell 

pellet was mixed with an equal volume of glass beads (0.1 mm of diameter) and 0.25 

mL of distilled water and cells were disrupted by vortexing for 5 min (Vortex Genie 2, 

Scientific Industries, Inc., Bohemia, NY). Pigments in the cells were extracted using 

80% ethanol pre-warmed at 50 ºC and cell pellet containing starch was suspended in 

0.15 mL of distilled water after centrifugation. For starch hydrolysis, the cell suspension 

was kept in a water bath at 100 ºC for 15 min and then mixed with 0.25 mL of 60% 

perchloric acid after cooling down. After stirring the suspension for 15 min, the 

suspension was mixed with 0.6 mL of distilled water and centrifuged. Subsequently, 0.4 

mL of the supernatant was mixed well with 2 mL of anthrone solution (0.2 g of 

anthrone in 100 mL of 75% H2SO4). The mixture was kept in a water bath at 100 ºC for 

8 min. It was cooled to room temperature and the absorbance at 625 nm was measured 

using a spectrophotometer (Shimadzu UV-1800 S, Shimadzu, Japan). Calibration was 

carried out simultaneously using glucose as the standard. The experiments were 
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repeated three times. 

4.2.3.6 Lipid quantification   

Visualization of lipids using Nile Red fluorescence 

Intracellular lipid droplets were stained using the neutral lipid specific dye, Nile Red 

(9-diethylamino-5H-benzo(a)phenoxazine-5-one), following the protocol described 

earlier (Eltgroth et al., 2005) with slight modifications. Briefly, 1 mL of the cell 

suspension was fixed with glutaraldehyde at a final concentration of 0.25% (v/v) and 

stained with 4 µL of Nile Red (Sigma, N3013) stock solution (0.5 mg mL-1 of acetone) 

that was stored in the dark at 48 oC. Samples were observed after 10 min using an 

epifluorescence OLYMPUS BX 51 microscope equipped with the filter combination 

U-MNU2 (360–370 nm excitation and > 420 nm emission). Photomicrographs were 

taken with a digital camera OLYMPUS DP72 and processed using Adobe Photoshop 7. 

Nile Red fluorescence determination of lipids 

The algal suspension was fixed with glutaraldehyde to a final concentration of 0.25% 

(v/v) and loaded into wells (100 mL per well) of a 96-well plate. 4 µL of Nile Red 

solution were added to wells, fluorescence intensity was measured using a 96-well plate 

luminometer (Tecan infinite 200, Switzerland) with the following filters: excitation 485 

nm (bandwidth 20 nm), emission 595 nm (bandwidth 10 nm). Glyceryl trioleate (Sigma, 

T7140) was used as lipid standard to obtain a calibration curve.  

Gravimetric lipid determination 

Algal cultures were harvested by centrifugation at 5,000 rpm for 5 min. Cell pellets 

were stored frozen at -20 °C. Before analysis pellets were dried at 50 °C for at least 3 

days. Lipids were extracted with 100 mL chloroform in a Soxhlet extractor from 

approximately 0.03 g dry cells. The dry biomass was grounded to powder and then put 

in the thimble of the Soxhlet extractor for extraction with reflux at 100 °C for 4 h. At 

the end of extraction, the extractant was distilled at 60 °C to evaporate chloroform, 

followed by drying the residue at 40 °C for 1 h and weighing after cooling to room 

temperature. Lipid content was calculated by dividing the residue weight by the dry 

weight before extraction.  
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4.2.3.7 Determination of pigments content  

The algal suspension (10 mL) was centrifuged at 4,000 g for 3 min and the sediment 

was collected. Phosphate buffer, 7.7 pH (1 mL), a pinch of MgCO3, and Zircon beads 

(500 µL, size 0.7) were added to the sediment, which was then disintegrated by 

vortexing (Vortex Genie 2, Scientific Industries, Inc., Bohemia, NY) for 10 min. 

Acetone (4 mL, 100%) was added, mixed well and centrifuged at 4,000 g (Janetzki T23, 

Janetzki Maschinenbau, Germany) for 3 min. The supernatant was drained into a 

calibrated test tube using an exhauster/air pump, closed with a stopper and left standing 

in a dark-block. Another 4 mL of acetone (80%) were added to the sediment, mixed 

well and centrifuged at 4,000 g for 3 min. Using an exhauster/air pump, the supernatant 

was drained off to the same calibrated test tube used in the preceding step and topped up 

with 80% acetone up to 10 mL. Absorbances at 750, 664, 647, 470, 450 nm were 

measured in a 1 cm path length cuvette using a spectrophotometer (Shimadzu UV-1800 

S, Shimadzu, Japan). Calculation of chlorophyll content was based on absorbances at 

different wavelengths and was carried out according to equations published previously 

(MacKinney, 1941). 

4.2.4 Results and discussion 

Cultures of the microalgae Parachlorella kessleri were grown in complete (medium 

1), five-fold (medium 0.2) and ten-fold (medium 0.1) diluted mineral medium. The 

microalgae cells were, after depleting medium, transferred into complete mineral 

medium.  

During two independent experiments the following parameters were monitored: 

chlorophyll (a+b) (pg cell -1 and mg L-1), cell number (per mL), mean cell volume 

(µm3), dry weight (g L-1); relative starch content (% of dry weight (DW)); relative total 

lipid content (% of DW) and reserve (or neutral) lipids content (% of DW). 

4.2.4.1 Effect of depleting and repleting of mineral medium on chlorophyll content 

The green colour of microalgal suspension seen at the beginning of the experiments 

(Figure 4.3 A) had a yellowish appearance after 7.5 days of growth in 10-fold diluted 
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medium (medium 0.1) and 1 day later also in 5-fold diluted medium (medium 0.2) 

(Figure 4.3 B, cuvettes 0.2 and 0.1), while culture in complete medium became dark-

green during continuous growth and chlorophyll synthesis (Figure 4.3 B, cuvette 1). 

These colour changes, from dark green to yellow-green, observed in the 

photobioreactores in which the nutrient concentration was 5 and 10 times lower than in 

the control medium, are in agreement with results obtained in previous studies with 

nutrient limitation (Richardson et al., 1969; Rodolfi et al., 2009; Siaut et al., 2011). 

When the cells, cultivated in the media 0.2 and 0.1, were transferred to complete 

medium (medium 1), it was possible to observe that the yellowish colour of cultures 

(Figure 1B), which occurred as an effect of depleting media, changed into a green 

colour within 24 h (Figure 4.3 D). 

 

Figure 4.3 Laboratory photobioreactor used for the experiments. A: Cultures at the beginning of 

experiment; B: Cultures after 7.5 days of the growth. C: Cultures were transferred into complete mineral 

medium and diluted to have the same initial biomass concentrations. D: Recovery from starvation in 

complete mineral medium. Cuvettes in Figure 1A and 1B - 1: complete mineral medium; 0.2: 5-fold 

diluted medium; 0.1: 10-fold diluted medium. Cuvettes in Figure 1C and 1D - 1: complete mineral 

medium with cells from previous complete mineral medium; 0.2: complete mineral medium with cells 

cultivated in 5-fold diluted medium; 0.1: complete mineral medium with cells cultivated in 10-fold 

diluted medium 

The determination of chlorophyll content (Figure 4.4) confirms the visual 

observations made in Figure 4.3. In microalgae cells cultivated in medium 0.2 (Figure 

4.4 A) chlorophyll content increased during the first 0.5 day to approximately 3.6 pg 

cell -1, whereas cells cultivated in medium 0.1 (Figure 4.4 B) reached in the same time 
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period 0.8 pg of chlorophyll per cell. The low initial concentration of chlorophyll in 

both situations is probably due to the conditions under which the inoculum was 

cultivated: high light intensity (1,200 µE m-2 s-1) and batch cultivation (which leads to 

the continuous decrease of nutrient concentration in the medium). In both situations 

chlorophyll concentration continuously decreased to a very low value (about 0.2 pg cell-

1), during the period of cultivation. This low value was attained after about 7 days 

(Figure 4.4 A) in medium 0.2 (5-fold diluted medium) and after 5 days (Figure 4.4 B) in 

medium 0.1 (10-fold diluted medium). 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4 Changes in chlorophyll content in cultures of Parachlorella kessleri cultivated in medium 0.2 

(Figure 2 A) and medium 0.1 (Figure 2 B) and then replaced in medium 1 (complete mineral medium). 

The chlorophyll content is expressed in mg L-1 (l) and in pg cell-1 (r). 

The fact that in the medium 0.2 a higher chlorophyll concentration was achieved in 

the first 0.5 day is probably explained by the higher initial nutrient concentration (two-

fold concentrated) compared with medium 0.1. This difference in nutrient concentration 

of the medium is also the reason why cells cultivated in medium 0.1 reached the 

minimum chlorophyll concentration (0.2 pg cell-1) two days before the cells cultivated 

in medium 0.2.  

This decrease in pigment content, known as chlorosis, was also reported in several 
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previous studies as a result of nutrient limitation or depletion (mainly nitrogen 

limitation), and high light intensity in different microalgae species, such as Neochloris 

oleoabundans or Cryptomonas maculate (Rhiel et al., 1985; Falkowski and LaRoche, 

1991; Turpin, 1991; Mandalam and Palsson, 1998; Klok et al., 2013). Rodolfi et al. 

(2009) refer that under nitrogen deprivation, at suitable irradiances, photosynthesis 

continues, although at a reduced rate, which explains the reduction in photosynthetic 

machinery. Also low magnesium concentration can contribute to these results since it is 

known that microalgae cells need magnesium to synthesize chlorophyll (Mandalam and 

Palsson, 1998).  Bogorad (1962) reported that microalgae cells loose chlorophyll when 

grown in magnesium deficient cultures. Since, in this study, we use 5 and 10 fold 

diluted medium it is very probable that the decrease in chlorophyll content was due to 

low nutrient concentration, mainly nitrogen and magnesium. Ledford and Niyogi 

(2005), justify the decrease in pigment concentration with the nutrient shortage that 

disturbs the anabolic processes in the cells that need these nutrients. Subsequently, the 

energy demand for anabolism will decrease, as the need for energy supply through 

photosynthesis. This, ultimately, will lead to over-reduction of the photosynthetic 

machinery. 

The transfer of depleted microalgae cells into complete medium (medium 1) (Figure 

4.4 A and B) caused very fast synthesis of chlorophylls from values about 0.3 pg cell -1 

to more than ten-fold higher content (3.6 pg cell -1) within 1 day in both situations. 

These findings are matching those reported by Siaut et al. (2011) in nitrogen-deprived 

strains of Chlamydomonas reinhardtii.   

4.2.4.2 Effect of depleting and repleting of mineral medium on cell number, cell size, 

and dry weight 

Data shown in Figure 4.5A represent a typical synchronized microalgal growth, 

taking place under favourable growth conditions. Observing the dry weight (DW) and 

cell number (No) curve we can conclude that, during the first 6.5 days there was no 

limitation to cell growth. After this period, it is possible to check stagnation in DW and 

decrease in No. Regarding the mean cell volume (V) and its relationship with DW and 

No, it is possible to observe that cells are growing synchronously to the size of mother 

cells and then divided into daughter cells, which can be concluded by the sharp increase 
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of V in 3 different moments. These increases in V occur in periods in which No is 

stable, while when No increases a decrease in V is observed. This is because large-

volume mother cells are divided into daughter cells. The results observed in Figure 

4.5A are in agreement with the results presented by Mandalam and Palsson (1998), 

using C. vulgaris. 

 

Figure 4.5 Changes in dry weight (DW) (l), mean cell volume (V) (¡) and cell number (No) (r) in 

cultures of Parachlorella kessleri. Cultures were grown either in complete mineral medium (medium 1) 

(A); 5-fold diluted medium (medium 0.2) (B) and; 10-fold diluted medium (medium 0.1) (C). After 9 

days (B) or 7.5 days (C) cells were transferred into complete mineral medium (medium 1). 

A relatively high growth rate illustrated by increases in both No and DW occurred 

during the first 4 and 2 days in both 5-fold (medium 0.2) (Figure 4.5 B) and 10-fold 
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(medium 0.1) (Figure 4.5 C) diluted cultures. Thereafter, no or very low increase of No 

indicated blockage of cellular division. Several authors report that growth continues 

very slowly for some time in a medium which is depleted or with deficient 

concentrations of nutrients, namely nitrogen or sulphur, and then the cell division is 

blocked after a short period in these conditions (Hase, 1962; Richardson et al., 1969; 

Mandalam and Palsson, 1998). No remarkable changes in V curve (Figure 4.5 B and C) 

indicated that the cultures were asynchronous during this part of the experiment. 

The transfer of P. kessleri cells cultivated in diluted medium into complete medium 

(medium 1) remarkably affected all measured growth parameters (Figure 4.5 B and C). 

Rapid increase of DW within 0.5 days was followed in the subsequent 0.5 days by an 

increase of cell number. The sharp increase of V concomitantly with DW and its 

decrease when cell division started indicated that cells started growing synchronously to 

the size of mother cells and then divided in to daughter cells. 

4.2.4.3 Effect of depleting and repleting of mineral medium on starch and lipids 

content 

In order to monitor the photosynthetic carbon flow into different storage compounds, 

starch, total lipid and reserve lipids content of P. kessleri were measured under the 

culture conditions previously described. To distinguish between total lipid cellular 

content and those accumulated as reserves in lipid droplets, gravimetrical methods using 

Soxhlet apparatus were used for determination of total lipid content while fluorometric 

measurement of lipid droplets stained by Nile Red was applied for determination of 

neutral or reserve lipids. 

In the control, P. kessleri cells grown in complete mineral medium (medium 1) 

accumulated basal amounts of starch (2 ‒ 5% of DW), total lipids (6 ‒ 10% of DW) and 

reserve lipids (2 ‒ 5% of DW) (Figure 4.6 A). Lipid content has not changed 

significantly over the 10 days of cultivation, however, starch had a very significant 

increase in the first 0.5 days. This increase in starch concentration is concomitant with a 

sharp increase in the mean cell volume (V), and stagnation of cell number (No) shown 

in Figure 4.5 A. Changes in the parameters No, V, DW (Figure 4.5 A), and the content 

of storage materials (Figure 4.6 A), indicate that cells were synchronized and, in an 
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initial phase (first 0.5 days), there was no cell multiplication and cells accumulated 

large amounts of starch (25% of DW), which resulted in a large increase in cell volume. 

Between 0.5 and day 1 cells began to multiply, which resulted in a large decrease in cell 

volume and starch content. These findings are in agreement with the variations in starch 

content in C. vulgaris verified by Brányiková et al. (2011), where relative starch content 

reached a maximum just prior to the first cell division (first 10 h), and when the cell 

division started the relative starch content decreased. Since the nutrients concentration 

in the medium were enough to prevent cell stress, from 1.5 days there were no major 

changes in the concentrations of storage materials (Figure 4.6 A). 
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Figure 4.6 Changes in relative starch (r), total lipid (¡) and, reserve (or neutral) lipid (l) content in 

cultures of Parachlorella kessleri. Cultures were grown either in complete mineral medium (medium 1) 

(A) or 5-fold (medium 0.2) (B) or 10-fold (medium 0.1) (C) diluted medium. After 9 days (B) or 7.5 days 

(C) cells were transferred into complete mineral medium (medium 1). 

Figure 4.6 B shows that in cells grown in 5-fold diluted medium (medium 0.2) there 

is a quite different pattern in starch and lipids content variation compared to that 

observed in cells grown in medium 1 (Figure 4.6 A). In cells cultivated in medium 0.2 

starch content remained relatively constant until day 3. As noted in Figure 4.5 C, 

microalgae cells were not synchronized, which may explain the lack of peaks in starch 

content, unlike observed in Figure 4.6 A. While in cells cultured in medium 1, starch 

content begins to decrease after the first cell division, the cells cultured in medium 0.2 

maintain very high levels of starch (25% of DW) which remains practically constant 

until day 3, even after cell division has started. Likewise, the reserve lipids content 
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remains constant at very low levels until day 3. From day 3 onwards the concentration 

of reserve lipids increases continuously up to day 9, while starch content follows the 

opposite path until day 7, remaining almost constant until day 9 (Figure 4.6 B).  

The high starch content at an initial stage, which decreases over time with a 

concomitant increase in the content of reserve lipids, is in agreement with the results 

and explanations of several authors regarding photosynthetic carbon flow into these two 

storage compounds. Mizuno et al. (2013) observed, under sulphur-deficient conditions, 

a sequential accumulation of starch and lipid in Chlorella and Parachlorella species. Li 

et al. (2011) cultivated Pseudochlorococcum under nitrogen limited conditions, 

reporting that this microalgae used starch as a primary storage product for the 

photosynthetically assimilated carbon while little or no neutral (or reserve) lipids were 

found in Pseudochlorococcum cells. These authors also report that, after nitrogen 

depletion, starch content decreased while neutral lipids rapidly increased. These results 

suggest that Pseudochlorococcum (in Li et al. (2011) study) and Parachlorella kessleri 

(in this study) used starch as a primary carbon and energy storage product. Li et al. 

(2011) found that as nitrogen was depleted for an extended period of time, cells shift 

carbon partitioning into neutral lipid as a secondary storage product. Roessler (1990) 

explains this shift between the primary carbon storage product (starch) to a secondary 

storage product (reserve lipids), by the fact that these reserve lipids are composed 

primarily of saturated and monounsaturated fatty acids that can be efficiently packed in 

the cells and generate more energy than starch upon oxidation, thus constituting the best 

reserve for rebuilding the cell after stress conditions.  

In our study, P. kessleri cells shift from starch to lipids after 3 days of cultivation 

(Figure 4.6 B), which may mean that the concentration of nutrients (particularly 

nitrogen) in the third day was already at levels that induce a change in carbon 

partitioning mechanism. Li et al. (2011) also mentioned that partial inhibition of starch 

synthesis and degradation enzymes resulted in a decrease of neutral lipids content, 

indicating that conversion of starch into neutral lipids may contribute to overall neutral 

lipids accumulation.  

Although the hypothesis that starch is converted into reserve lipids is in agreement 

with the results shown in Figure 4.6 B, this hypothesis seems not to be the only 
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explanation for the large increase in reserve lipids content under conditions of 

nutritional limitation and/or depletion. In Figure 4.6 B it is possible to detect a large 

increase in reserve lipids content between days 7 and 9, however, in these days the 

starch content remains practically constant, which suggests that reserve lipids are not 

only produced at the expense of starch. However, it is known that there are several 

pathways for TAGs (major reserve lipids) synthesis by microalgae and the relative 

contribution of individual pathways to overall TAGs formation depends on 

environmental and culture conditions. Alternative pathways that convert membrane 

lipids to TAGs have been demonstrated in plants and yeast, but these have not yet been 

found in microalgae (Dahlqvist et al., 2000; Arabolaza et al., 2008; Zhu et al., 2013). 

Additionally, cells cultivated in medium 0.2 revealed a large increase in reserve lipids 

content between days 8 and 9, becoming the larger fraction of lipids present in P. 

kessleri cells, i.e. the total lipids content stabilized and the reserve lipids content 

continued to increase until it becomes a very considerable fraction of all lipids present 

in the cells. Rodolfi et al. (2009) reveal that there are also indications that cellular lipids 

accumulation during stress conditions may derive from newly fixed carbon. The 

capacity for de novo lipid synthesis seems a characteristic of some oleaginous 

microalgae which, when grown under stress conditions, channel the excess of carbon 

and energy into storage lipids (mainly TAGs).  

The results presented in Figure 4.6 B suggest that reserve lipids accumulation can be 

due to a combination of the three previously proposed pathways: i.e. part of reserve 

lipids are obtained from starch conversion, while the other part is obtained from 

conversion of membrane lipids or de novo lipid synthesis. 

After placing the cells in complete medium (medium 1) a sharp decline in the levels 

of lipids (in days) and starch (two days) content was observed. The values of starch and 

lipid content tend to the final values observed in Figure 4.6 A, where the cells were 

grown in complete medium. This large decrease in reserve compounds coincides with a 

large increase observed in No, DW and V (Figure 4.5 B) and an increase in chlorophyll 

concentration (Figure 4.4 B). These results indicate that after cultivation in a depleted 

medium, P. kessleri cells are able to recover their characteristics if they are placed in a 

complete mineral medium. 
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The variation of starch and lipids content in P. kessleri cells cultivated in 10-fold 

diluted medium (medium 0.1) (Figure 4.6 C) exhibit very similar behaviour to the one 

seen in Figure 4.6 B. However, the time scale in which the variations take place is quite 

different. In this case the decrease of starch and an increase of reserve lipids content 

started on day 1.5, i.e. 1.5 days earlier than in the medium 0.2. This result indicates that, 

since the initial nutrient concentration in medium 0.1 is 2 times lower, the nutrient 

limitation is felt earlier than in medium 0.2.  

The decrease in starch content and the increase in reserve lipids content are much 

sharper than the one observed in medium 0.2 cultivation. After day 1.5 the starch 

content decreases steadily until day 6 and lipid content increases continuously during 

the 7.5 days of cultivation. The final contents of starch and lipids are quite similar to 

those seen in medium 0.2. Although, using medium 0.1 it is possible to obtain the same 

amount of reserve lipids content (about 30% of DW) in fewer days, the biomass 

obtained with medium 0.2 cultivation (about 6 g L-1) compared with that obtained with 

medium 0.1 (3.5 g L-1) leads to a higher lipid productivity (0.20 against 0.14 g of 

reserve lipids L-1 d-1) of cells cultivated on medium 0.2. 

Similarly to medium 0.2 (Figure 4.6 B), in medium 0.1 starch content remains 

constant in the period of greatest increase in reserve lipids content, and wherein the 

amount of total lipids is constant. When the amount of total lipids becomes constant, the 

lipids accumulated in lipid bodies as reserve continues to increase and becomes the 

major lipid constituent of cells (Figure 4.7 A). After placing the cells in medium 1 (Fig. 

4.6 C), the evolution of analysed parameters was very similar to that shown in Figure 

4.6 B.  
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Figure 4.7 Fluorescence (A-C) and light microscopy (D) photomicro-graphs of the cell population of the 

microalga of Parachlorella kessleri initially grown in medium 0.1. Lipid bodies were stained using Nile 

Red (yellow). A: Cells grown for 7.5 days in 10-fold diluted mineral medium, B: 1 day after transfer the 

cells into complete mineral medium, degradation of lipid bodies started. The cells grew more or less 

synchronously to a large size. C, D: 2 days after transfer into complete mineral medium. The large cells 

with several small oil bodies (C) started to divide (D). Scale bar = 10 µm. 

Cells recovered growth shortly after repleting medium (Fig. 4.5 B and C) and grew 

synchronously into large mother cells (Figure 4.7 B). Thereafter, they divided 

synchronously and the large lipid bodies decreased, fragmented into numerous small 

ones and finally disappeared (Figure 4.7 B and C). 

 As described by Přibyl et al., (2013) the recovery of growth and cell division in 

complete medium can occur even in dark conditions. This finding indicates that a high 

content of lipid and starch reserves accumulated during starvation can serve as an 

exclusive source of energy and carbon for all recovering growth and reproductive 

processes. 

The time during which cells retain their lipid content is a very important economic 

parameter in microalgae large-scale production. If the cells are capable of maintaining 

their lipid content for long periods of time, this allows cells storage thus reducing 

processing costs. In order to test this hypothesis, cells cultivated in 10-fold diluted 

medium (medium 0.2) were placed in a transparent vessel and allowed to sediment for 

22 days. The results of the total lipid content are shown in Table 4.5. 

 

Table 4.5 Evolution of total lipid content in cells kept in sedimentation vessel, for 22 days 

Nº of days Total lipid content (% DW) 

1 32.1 ± 0.8 

8 31.1 ± 2.0 

15 30.4  ± 2.1 

22 32.0 ± 1.6 

 

The results demonstrate that it is possible to store cells until 22 days without a 
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decrease in lipid content, which may reveal a very interesting element for the economic 

viability of the process. 

4.2.5 Conclusions 

Parachlorella kessleri cells use starch as a primary carbon and energy storage source 

under the first days of cultivation, but the stress caused by the decrease of nutrients 

concentration lead microalgae to shift the fixed carbon into reserve lipids as a secondary 

storage product. The cells recovered growth shortly after repleting medium and grew 

synchronously into large mother cells with high concentration of chlorophyll. These 

findings indicate that a high content of lipid and starch reserves accumulated during 

starvation can serve as a sole source of energy and carbon for all recovering growth and 

reproductive processes. Additionally, these findings indicate that nutritional limitation 

can be used in P. kessleri cultivation as a very effective strategy to increase lipid 

productivity for biofuel production. 
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5.1 Abstract 

Growth parameters and biochemical composition of the green microalga Chlorella 

vulgaris cultivated under different mixotrophic conditions were determined and 

compared to those obtained from a photoautotrophic control culture. Mixotrophic 

microalgae showed higher specific growth rate, final biomass concentration and 

productivities of lipids, starch and proteins than microalgae cultivated under 

photoautotrophic conditions. Moreover, supplementation of the inorganic culture 

medium with hydrolysed cheese whey powder solution led to a significant improvement 

in microalgal biomass production and carbohydrate utilization when compared with the 

culture enriched with a mixture of pure glucose and galactose, due to the presence of 

growth promoting nutrients in cheese whey. Mixotrophic cultivation of C. vulgaris 

using the main dairy industry by-product could be considered a feasible alternative to 

reduce the costs of microalgal biomass production, since it does not require the addition 

of expensive carbohydrates to the culture medium.  

 

Keywords: Biofuels; cheese whey; Chlorella vulgaris; microalgae; mixotrophy. 

5.2 Introduction 

Photoautrophic cultivation is the most common technique used for microalgae mass 

cultivation. However photoautotrophic cultivation presents some constrains, including 

low cell densities and long cultivation periods. Hence, heterotrophic and mixotrophic 

growth regimes have been proposed as feasible alternatives for the production of 

microalgal biomass (Yu et al., 2009). Heterotrophic cultivation of microalgae involves 

the utilization of organic compounds as sole carbon source, while mixotrophic 

cultivation use simultaneously inorganic (for example CO2) and organic compounds as 

carbon source (Dragone et al., 2010). Therefore, microorganisms cultivated under 

mixotrophic conditions synthesize compounds characteristic of both photosynthetic and 

heterotrophic metabolisms at high production rates. Additionally, lower energy costs 

have been associated with mixotrophic cultivation in comparison with photoautotrophic 

cultures, due to its relatively lower requirements for light intensities (Cerón García et 

al., 2005). Despite mixotrophic cultivation of microalgae provides higher biomass and 

lipid productivities than cultivation under photoautotrophic conditions, the cost of the 
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organic carbon substrate is estimated to be about 80% of the total cost of the cultivation 

medium (Bhatnagar et al., 2011). As a result, less costly organic sources have to be 

found in order to overcome the high carbon cost resulting from mixotrophic culture 

conditions (Liang et al., 2009). Cost reduction of growth media preparation with 

minimal undesired effects is crucial for a potential commercial application (Abad and 

Turon, 2012). In this context, crude glycerol from biodiesel production, acetate from 

anaerobic digestion, and carbohydrates from agricultural and industrial wastes offer 

great promise as inexpensive organic substrates for the cultivation of microalgae on 

mixotrophic mode (Bhatnagar et al., 2011; Heredia-Arroyo et al., 2011). Cheese whey 

(CW), the liquid by-product remaining from the cheese manufacturing process 

constitutes a serious environmental problem of dairy industries due to its high organic 

matter content (Dragone et al., 2009). Among the major components of whey, the 

disaccharide lactose, which on hydrolysis yields glucose and galactose, is greatly 

responsible for its high Biochemical Oxygen Demand (BOD = 30,000 – 50,000 mg L-1) 

and Chemical Oxygen Demand (COD = 60,000 – 80,000 mg L-1). In addition to this 

carbohydrate, CW also contains proteins, lipids, water-soluble vitamins and minerals 

(González Siso, 1996). Exogenous sugars, such as glucose, galactose, mannose, 

fructose, sucrose and lactose have been commonly used for mixotrophic and 

heterotrophic cultivation of microalgae (Shi et al., 1999). However, these carbohydrates 

are transported and assimilated by microalgae with different efficiencies (Sun et al., 

2008). A previous study revealed, for example, that some strains of Chlorella 

successfully utilize glucose and galactose during growth at different light intensities 

(Dvoráková-Hladká, 1966). Furthermore, recent reports indicate that Chlorella vulgaris 

grown on glucose medium may provide microalgal biomass for biofuel production and 

biorefinery (Kong et al., 2012). 

The objective of this work was to study the mixotrophic growth of C. vulgaris, using 

a hydrolysed CW solution as an alternative approach to photoautotrophic microalgal 

cultivation. To our knowledge, no similar study has been previously carried out using 

this dairy by-product for cultivation of C. vulgaris.  



Universidade do Minho  Chapter 5 
 

 

115 

5.3 Material and Methods 

5.3.1 Microalgal strain and inoculum preparation  

The freshwater microalga C. vulgaris (strain P12) was used in all experiments. The 

microalgal inoculum was prepared according to the protocol described in section 3.3.1 

and conducted at 30 ºC under photoautotrophic conditions. The culture was aerated with 

CO2-enriched air (2% v/v CO2) at a rate of 0.4 vvm and illuminated with continuous 

light (70 µE m-2 s-1) as also described in section 3.3.1.  

5.3.2 Media and culture conditions 

Experiments consisted of four different cultivation conditions performed in duplicate 

(Table 5.1). The organic carbon sources used for mixotrophic cell growth were: a non-

hydrolysed CW powder solution, a mixture of pure glucose and galactose and a 

hydrolysed CW powder solution. 

Table 5.1 Different cultivation conditions of C. vulgaris and respective carbon sources 

Growth condition Carbon Source 

Photoautotrophic CO2 

Mixotrophic nhCW CO2 + Non-hydrolyzed CW solution (10 g L-1 lactose) 

Mixotrophic hCW CO2 + Hydrolyzed CW solution (5 g L-1glucose + 5 g L-1 galactose) 

Mixotrophic G+G CO2 + Glucose (5 g L-1) + Galactose (5 g L-1) 

 

CW powder was supplied by Lactogal (Porto, Portugal). Its composition included 

(w/w): > 73% lactose, 12% proteins, 1.5% lipids and < 5% moisture. Non-hydrolysed 

CW powder solution (nhCW) was prepared with distilled water and deproteinised by 

heat treatment as described elsewhere (Dragone et al., 2011b). Hydrolysed CW solution 

(hCW) containing glucose and galactose was obtained by hydrolysing nhCW with β-

galactosidase (> 8.0 units mg-1, Sigma-Aldrich) from Aspergillus oryzae.  

All assays were carried out at 30 ºC in 0.5 L glass photobioreactors containing 

400 mL of medium under a light intensity of approximately 70 µE m-2 s-1, measured by 

a LI-250 Light Meter with a LI-190 quantum sensor (LI-COR, USA). Agitation during 
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cell growth was supplied by sparging CO2-enriched air (2% v/v CO2) from the base of 

the photobioreactors at an aeration rate of 0.400 vvm. Initial cell concentration was 

about 0.5 g L-1 for all the cultivation conditions. 

After reaching the stationary growth phase, cells were collected and centrifuged 

(Sigma 4K15, Germany) at 8,750 g for 10 min, washed with distilled water and then 

freeze-dried for further biochemical characterization. The supernatant was also 

collected and frozen for subsequent sugar analyses. 

5.3.3 Determination of microalgal cell concentration 

Cell concentration of the culture in the photobioreactors was measured regularly by 

using an improved Neubauer hemocytometer. Biomass concentration was estimated by 

cell dry weight. Triplicate samples were centrifuged (8,750 g for 10 min), washed with 

distilled water and dried at 105 ºC until constant weight.  

5.3.4 Determination of carbohydrate concentration in culture media 

Glucose, galactose and lactose concentrations in culture media were determined by 

High-Performance Liquid Chromatography (HPLC) in a Jasco chromatograph equipped 

with a refractive index (RI) detector (Jasco 830-RI, Japan) and a 300 × 6.5 mm 

Chrompack column (Chrompack, The Netherlands) at 60 ºC, using 5 mM sulphuric acid 

as the eluent at a flow rate of 0.5 mL min-1 and a sample volume of 20 µL.  

5.3.5 Determination of microalgal starch  

The starch content of C. vulgaris was assayed by enzymatic hydrolysis of the 

microalgal starch to glucose with α-amylase and amyloglucosidase, according to section 

3.3.5.  

5.3.6 Measurement of lipid and protein content in microalgae  

According to the protocol described in section 3.3.5, total lipids were determined by 
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the classic Folch chloroform-based lipid extraction protocol (Folch et al., 1957) and the 

protein content of microalgae was quantified according to Lowry et al. (1951). 

5.3.7 Measurement of chlorophylls and total carotenoids concentration  

Chlorophylls and carotenoids in C. vulgaris were extracted with methanol and 

spectrophotometrically determined as described by Dere et al. (1998).  

Microalgae cells were placed in 96% methanol (50 ml for each gram) and homogenized 

with an Ultra Turrax (IKA T25D, Germany) at 1,000 rpm for one minute. The 

homogenate was filtered through two layer cheese cloths and was centrifuged (Hettich 

D-78532, Germany) at 2,500 rpm for 10 min. The supernatant was separated and the 

absorbances were read at 470, 642 and 662 nm on a Jasco V-560 (Japan) 

spectrophotometer. The experiments were repeated three times. The pigment content 

was calculated according to the formulas described by Dere et al. (1998): i) Ca = 15.65 

Abs666 - 7.340 Abs653; ii) Cb = 27.05 Abs653 - 11.21 Abs666; iii) Cx+c = 1000 Abs470 - 

2.860 Ca - 129.2 Cb/245, where Ca = chlorophyll a; Cb = chlorophyll b; Cx+c = total 

carotene. Total pigment content was obtained by summing chlorophylls and carotenoids 

contents. 

5.3.8 Determination of specific growth rate 

The specific growth rate (μ , day-1) was calculated from Eq. 5.1: 

! = (!"!! −   !!)  /  (!! −   !!)        Eq. 5.1 

where N1 and N2 were the concentration of cells at the beginning (t1) and at the end 

(t2) of the exponential growth phase, respectively. 

5.3.9 Determination of productivity of biomass, starch, lipids and proteins  

Biomass productivity (Pmax, g L-1 d) during the culture period was calculated from 

Eq. 5.2: 

!!"#   =
!!!  !!
(!!!  !!)

        Eq. 5.2 
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where Xt was the biomass concentration (g L-1) at the end of the exponential growth 

phase (tx) and X0 the initial biomass concentration (g L-1) at t0 (day).  

Productivity of starch, lipids and proteins at the end of cultivation were calculated 

from Eq. 5.3: 

!!"#$"%&%' =   !!"#  ×  !!"#$"%&%'      Eq. 5.3 

where Pcomponent was the productivity of starch, lipids or proteins, Pmax was the 

biomass productivity and Fcomponent was the mass fraction (w/w) of each component.  

Data were compared using one-way ANOVA followed by a Tukey’s multiple 

comparison test with a 95% confidence level. 

5.4 Results and discussion 

5.4.1 Growth parameters of microalgae cultivated under photoautotrophic 

and mixotrophic conditions 

Specific growth rate, final biomass concentration and biomass productivity of C. 

vulgaris cultivated under photoautotrophic and mixotrophic conditions were compared 

and summarized in Table 5.2. The highest specific growth rates of C. vulgaris were 0.43 

and 0.47 day-1 when microalgae were cultivated under mixotrophic conditions using 

hydrolysed CW powder solution, and a mixture of glucose and galactose as organic 

carbon sources, respectively. These values were almost 3.5 times higher than those 

obtained when cells were grown in inorganic medium supplemented with non-

hydrolysed CW powder solution, and under photoautotrophic mode of nutrition. 

Biomass concentration at the end of cultivation and biomass productivity were also 

significantly influenced by the nutritional conditions. It can be observed in Table 5.2 

that the highest values of Xmax (3.58 g L-1) and Pmax (0.75 g L-1 d-1) achieved in the 

mixotrophic culture using hydrolysed CW powder solution resulted in 2.9- and 7.5-fold 

increase respectively, when compared to the values obtained in the photoautotrophic 

culture.  

These results are in agreement with a previous study, which reported that 

mixotrophic C. vulgaris growth in glucose yielded higher biomass content and 
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productivity than cells grown under photoautotrophic conditions (Kong et al., 2011). 

Mixotrophic cell cultivation utilizing both light and an organic carbon source has been 

considered the most efficient process for the production of microalgal biomass (Lee et 

al., 1996). 

Table 5.2 Growth parameters of C. vulgaris cultivated under photoautotrophic and mixotrophic 

conditions at 30 ºC 

Growth condition 
Growth Parameters 

μmax (day-1)  Xmax (g L-1)  Pmax (g L-1 d-1)  

Photoautotrophic 0.13 ± 0.01 a 1.22 ± 0.12 a 0.10 ± 0.01 a 

Mixotrophic  nhCW  0.12 ± 0.00 a 1.98 ± 0.43 b 0.32 ± 0.13 ab 

Mixotrophic  hCW  0.43 ± 0.00 b 3.58 ± 0.12 c 0.75 ± 0.01 c 

Mixotrophic  G+G 0.47 ± 0.05 b 2.24 ± 0.34 b 0.46 ± 0.09 bc 

Data are expressed as mean ± standard error. 

Means in the same column followed by different letters represent significant differences (p < 0.05). 

 

When the light energy used for CO2 fixation is decreased in mixotrophic cultures, 

most of the energy is used for carbon assimilation. Therefore, since the amount of 

energy dissipated is minimal, mixotrophy provides higher energetic efficiency than 

other cultivation modes (Lalucat et al., 1984). On the other hand, Shi et al. (1999) 

reported that glucose could be considered the best organic C-substrate for the growth of 

Chlorella. It is worth mentioning that the organic substrate played an important role in 

promoting biomass accumulation of C. vulgaris during microalgae cultivation. As 

shown in Table 5.2, supplementation of the inorganic culture medium with hydrolysed 

CW powder solution led to higher biomass concentration than supplementation with a 

mixture of glucose and galactose. The stimulatory effect of hydrolysed CW powder 

solution on biomass production is probably related to the presence of some nutrients in 

CW powder composition, such as phosphorous and calcium. Ozmihci and Kargi (2007) 

reported that CW powder contains approximately 0.96% total phosphorous on dry 

weight basis. Phosphorous is a macronutrient that plays a vital function in cellular 

metabolic processes by forming many structural and functional components required for 

normal growth and development of microalgae (Richmond, 2004). It should be stated 

that the mineral content in whey depends upon the processing techniques used for 

casein removal from liquid milk. Consequently, a higher microalgal biomass 
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concentration than that found in our study could have been obtained by using acid CW 

powder due to the higher concentrations of calcium and phosphorous presented in that 

type of whey (Mavropoulou and Kosikowski, 1973). The presence of nutrients might 

have also supported C. vulgaris growth when using non-hydrolysed CW powder 

solution, which showed a specific growth rate similar to the photoautotrophic control 

but with a higher final biomass concentration (Table 5.2). Due to the high content of 

nutrients, other valorisation pathways for CW have recently been proposed. Viitanen et 

al. (2003) showed that CW can be applied as an alternative inducer in recombinant 

high-cell density fermentations. According to these authors, CW can be directly used 

without any pre-treatment, not causing a dilution of the fermentation medium. 

Therefore, a potential application of hCW could be related with its use as a fermentation 

additive for microbial cultivation.  

5.4.2 Consumption of glucose and galactose by C. vulgaris  

The above-presented results demonstrated that the microalgal species used in this 

study is able to grow mixotrophically in the presence of glucose and galactose. 

Therefore, consumption of both carbohydrates by C. vulgaris cultivated under 

mixotrophic conditions is shown in Table 5.3.  

Table 5.3 Consumption of glucose and galactose by C. vulgaris cultivated under mixotrophic conditions 

at 30 ºC 

Growth condition 
Carbohydrate consumption (%) 

Glucose Galactose 

Mixotrophic  nhCW  - - 

Mixotrophic  hCW  100.0 96.0 

Mixotrophic  G+G 80.5 49.5 

 

It was found that glucose and galactose were consumed in larger quantities during 

microalgal growth in the presence of the hydrolysed CW powder solution, in 

comparison to the culture supplemented with a mixture of pure sugars. In particular, 

glucose was completely consumed and only 4% of the initial galactose concentration 

remained in the growth medium at the end of cultivation when hydrolysed CW powder 
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solution was used as carbon source. On the other hand, after nearly 90 h of cultivation, 

initial contents of glucose and galactose dropped 80.5% and 49.5%, respectively, in the 

culture supplemented with both sugars. As discussed above, additional inorganic 

elements provided by hydrolysed CW might have been responsible for the increased 

consumption of glucose and galactose derived from CW by C. vulgaris. These 

observations are in good agreement with a previous study where it was demonstrated 

that some components of hydrolysed cheese whey enhanced carbohydrate utilization by 

microalgae (e.g. Euglena gracilis) (Freyssinet and Nigon, 1980).  

Regardless of the media used, glucose was more efficiently assimilated than 

galactose by C. vulgaris cells grown under mixotrophic conditions. Higher consumption 

of glucose compared to galactose for mixotrophic C. pyrenoidosa cultures was already 

described by Rodríguez-López (1966). A greater contribution to maintenance 

metabolism could explain the lesser assimilation of galactose when compared to 

glucose (Samejima and Myers, 1958). 

5.4.3 Influence of nutritional modes on biochemical composition of C. 

vulgaris  

The lipid content and lipid productivity of C. vulgaris under different growth 

conditions were compared and depicted in Figure 5.1.  

 

 

 

 

 

 

 

 

Figure 5.1 Lipid content and lipid productivity of C. vulgaris under different nutritional conditions. 

When compared with mixotrophic cultures, higher lipid content (42%) was obtained 

in photoautotrophic mode at the beginning of the stationary growth phase 
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(approximately 190 h). Other authors (Liang et al., 2009) have also shown that the 

amount of lipids accumulated in C. vulgaris under photoautotrophic growth conditions 

may surpass that from mixotrophic growth. On the other hand, the highest lipid 

productivity (253 mg L-1 d-1) was achieved when cells were grown in culture medium 

supplemented with hydrolysed CW powder solution, due to the highest growth rate and 

cell density. Mixotrophic microalgal cultivation with hCW yielded six times higher 

lipid productivity than photoautotrophic culture (42 mg L-1 d-1). These results were 

remarkable in comparison with values presented in previous studies (Liang et al., 2009). 

Different nutritional conditions had also different effects on starch content and starch 

productivity of C. vulgaris (Figure 5.2). Although microalgal cells cultured 

photoautotrophically yielded the highest value of starch content (5.1%), maximum 

starch productivities were achieved mixotrophically using a mixture of pure glucose and 

galactose, and a hydrolysed CW powder solution, as a consequence of the highest 

biomass productivity obtained under mixotrophic conditions. The lower content of 

nutrients in the medium containing pure carbohydrates as compared to that in 

hydrolysed CW medium, promoted lower biomass growth and sugar consumption, and 

as a consequence of this stress condition, microalgal cells accumulated higher levels of 

starch. 

 

Figure 5.2 Comparison of starch content and starch productivity of C. vulgaris grown under 

photoautotrophic and mixotrophic conditions. 

We have previously demonstrated (Dragone et al., 2011a) that higher starch 

accumulation in C. vulgaris P12 can be obtained under stressful growth conditions (e.g. 

by nutrient limitation). Therefore, since the starch productivity was calculated by 
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multiplying the biomass productivity by the starch content (w/w) in microalgae, no 

differences on the values of this parameter were observed for the cells cultivated under 

mixotrophic conditions using hydrolysed CW powder solution, and a mixture of glucose 

and galactose as organic carbon sources. The protein content and protein productivity of 

photoautotrophic and mixotrophic microalgal cells were compared in Figure 5.3. 

Cultivation of C. vulgaris P12 using hydrolysed CW powder solution as organic carbon 

source led to the highest protein content (63.5%) and protein productivity (474 mg L-1 

d-1). The highest protein content obtained in our study was significantly higher than that 

(26 %) found in C. vulgaris (strain 31 #) cultivated in optimized mixotrophic medium 

with pure glucose as carbon source (Kong et al., 2012). The amount of total pigments in 

C. vulgaris cultured under photoautotrophic and mixotrophic conditions was also 

determined. As summarized in Table 5.4, the maximum pigment content (0.74%) was 

obtained in the photoautotrophic culture. It has been suggested that the formation of 

photosynthetic apparatus in Chlorella may be disturbed by the presence of organic 

substrates (Yang et al., 2000), resulting in a decreased production of photosynthetic 

pigments when compared with that obtained in photoautotrophic mode. 

 

 

 

 

 

 

 

Figure 5.3 Effect of nutritional mode on protein content and protein productivity of C. vulgaris. 

The higher content of chlorophylls obtained in the photoautotrophic culture when 

compared to mixotrophic cultures confirms such observation. The enhancement of 

chlorophyll biosynthesis by photoautotrophic Chlorella strains compared with that 

resulting from mixotrophic cells have been previously reported by several authors (Ip et 

al., 2004; Kong et al., 2011). On the other hand, Yan et al. (2012) reported that low 

chlorophyll content in mixotrophic cells decreases the dependence on light. Therefore, 
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reduced amount of chlorophylls in microalgae may relieve photoinhibition.  

Among the different nutritional modes tested, the highest carotenoids content 

(0.23%) was also found in the photoautotrophic culture. This value dropped to 0.04% 

and 0.08% when cells were grown in inorganic medium supplemented with hydrolyzed 

CW powder solution, and with a mixture of pure glucose and galactose, respectively. 

Table 5.4 Total pigment (chlorophylls + carotenoids) content of C. vulgaris cultivated under 

photoautotrophic and mixotrophic conditions at 30 ºC 

Growth condition 
Pigment content (%) 

Chlorophylls (a + b) Carotenoids Total pigments 

Photoautotrophic 0.51 ± 0.09 c 0.23 ± 0.04 b 0.74 ± 0.09 c 

Mixotrophic  nhCW  0.60 ± 0.17 c 0.09 ± 0.03 a 0.69 ± 0.17 c 

Mixotrophic  hCW  0.22 ± 0.07 a 0.04 ± 0.02 a 0.26 ± 0.07 a 

Mixotrophic  G+G 0.37 ± 0.05 b 0.08 ± 0.02 a 0.46 ± 0.05 b 

Data are expressed as mean ± standard error. 

Means in the same column followed by different letters represent significant differences (p < 0.05). 

These results are consistent with those of Liu et al. (2009) who found lower amount 

of carotenoids in mixotrophic cells when compared to cells grown on photoautotrophic 

culture.  

5.5 Conclusions 

When compared with the photoautotrophic control culture, mixotrophic microalgae 

grew faster, providing higher productivities of biomass, lipids, starch and proteins. 

Furthermore, microalgal biomass production and carbohydrate consumption were 

enhanced by supplementing the inorganic culture medium with hydrolysed CW powder 

solution, than supplementing with a mixture of pure glucose and galactose, as a 

consequence of stimulatory effects arising from growth-promoting nutrients in CW. 

Mixotrophic cultivation of C. vulgaris using CW can be considered as a feasible 

strategy to reduce the costs of microalgal biomass production, while also contributing to 

solve the environmental problem caused by CW disposal in dairy industries.  
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6.1 Abstract 

The design of a microalgae culture system involves a series of sequential 

decisions. The options made (Figure 6.1) in order to develop a more cost effective 

and productive culture system were based mainly on literature review. For PBR 

geometry selection the decision was made based on experimental work in order to 

select the geometry that allows a more efficient light distribution inside the 

cultivation system. 

 

Figure 6.1 Schematic representation of sequential decisions made to select the most appropriate 

cultivation system for microalgae mass production (LR – literature review; EW – experimental work). 

After analysis of all the variables presented, the selected cultivation system was a 

split cylinder airlift photobioreactor (SCAPBR) with circular geometry. 

Keywords: Cultivation system design; SCAPBR; light regime characterization; optical fibres. 



Universidade do Minho  Chapter 6 
 

 

132 

6.2 Cultivation system selection 

A variety of cultivation systems have been proposed or used for microalgae 

cultivation (see section 2.2.1). These cultivation systems are, in general, either too 

complex or too costly to be applied in large-scale production. Of the various possible 

culture methods, outdoor culture using sunlight appears to be the only viable option 

for many microalgae (Mirón et al., 2003) so, indoor cultivation using artificial 

lighting will not be even considered in this study. 

Throughout this chapter the evaluations made in the microalgae cultivation system 

selection, the design process and the justification for the options made will be 

described. The first decision that must be made is between the use of open ponds or 

PBRs. 

6.2.1 Open pond versus photobioreactor 

Chen (1996) and Singh and Sharma (2012) states that enclosed PBRs have the 

following advantages over open pond production: 

1. Better control of algal culture conditions such as pH, temperature, light and 

CO2 concentration; 

2. Large surface-to-volume ratio; 

3. Better control of gas transfer that lead to less CO2 loss; 

4. Reduction in evaporation of growth medium; 

5. More uniform temperature; 

6. Better protection from outside contamination allowing axenic algal 

cultivation of monocultures; 

7. Higher algal cell densities are possible; 

8. Enables the production of complex biopharmaceuticals. 

Culture in PBRs becomes mandatory especially if the desired product is to be 

used in pharmaceutical applications or the microalgae require a culture environment 

that is not highly selective (Miron et al. 2003). 
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Based on the above features, PBRs seem to be the best choice for microalgae 

mass cultivation. However, there are a wide variety of PBRs, and the next decision 

that has to be taken is between the two main classes of PBRs: horizontal and vertical. 

6.2.2 Horizontal versus vertical PBRs 

Closed horizontal continuous-run tubular loop PBRs are usually used in 

commercial mass monoculture of microalgae. These horizontal PBRs are made of 

tubes that are typically less than 0.08 m in diameter (Tredici, 1999; Grima et al., 

1999; Mirón et al., 1999). Although the horizontal tubular systems have notable 

advantages relative to conventional facilities (e.g., open ponds), they also have 

serious limitations. These photobioreactors occupy a large land surface and are 

expensive to build and operate (Mirón et al., 2002).  They also have other serious 

limitations that imply additional costs, such as difficult temperature control, the need 

for frequent recarbonation because of the tube length, growth inhibition by dissolved 

oxygen, foaming and fouling. These limitations make the utilization of horizontal 

PBRs only justifiable for high-value products (Weissman et al., 1988).  

An alternative for overcoming the noted constrains of horizontal PBRs may be the 

vertical PBRs. Vertical PBRs can differ in their designs, possessing internal-loops, 

external-loops or divided column airlift systems and bubble columns (Figure 6.2). 

The constant agitation of the medium in vertical PBR caused by the gas bubbles also 

mixes the culture gently with very little shear stress (Mirón et al., 2002) compared to 

impellers and pumps (Wang et al., 2012). Consequently, very little cell damage is 

associated with vertical column PBRs except at extreme superficial gas velocities 

(Vega-Estrada et al., 2005).  

Various microalgae species have been tested in different pneumatically mixed 

PBRs by different authors (Tsavalos and Young, 1996; Lee, 1997; Csogor et al., 

1999; Petkov, 2000; Borja et al., 2001; Lee et al., 2002; Barbosa et al., 2003a; Chisti 

et al., 2003; Walter et al., 2003; Oncel and Sukan, 2008) with different results and 

variable degrees of success. Vertical PBR orientation has been proposed to enhance 

productivity by avoiding or reducing the photosaturation, as can be concluded from 

the work of Hu et al. (1996, 1998) and Cuaresma et al., (2011). By placing the 
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photobioreactors vertical the sunlight falling on a given ground area is spread over a 

larger reactor surface area. As a result, more algae are exposed to lower intensities, 

being able to maximize their photosynthetic efficiency (Posten and Shaub, 2009).    

 

Figure 6.2 Schematic diagrams of: bubble column PBR (A); internal-loop (draft-tube) airlift PBR (B); 

split cylinder airlift PBR (C); external-loop airlift PBR (D) (adapted from Wang et al., 2012). 

Mirón et al. (2002) reveal that biomass in the vertical column reactors did not 
experience photoinhibition under conditions (photosynthetically active daily 
averaged irradiance value of 1,150 µEm−2 s−1) that are known to cause 

photoinhibition in conventional thin-tube horizontal loop reactors. Cuaresma et al. 

(2011) tested outdoor vertical and horizontal PBRs and concluded that the highest 

photosynthetic efficiency was found for the vertical simulation, 1.3 g of biomass 

produced per mol of PAR photons supplied, against 0.85 g mol-1 of horizontal PBR 

and the theoretical maximal yield (1.8 g mol-1).  

If, under high light intensity, vertical reactors experience less photoinhibition, 

under low light intensity a vertical orientation captures more reflected light (Mirón et 

al., 1999). According to Cuaresma et al. (2011) these results prove that productivity 

per unit of ground area could be greatly enhanced by placing the photobioreactors 

vertically. Sánchez Mirón et al. (1999) concluded that vertical reactors performed 

better than tubular reactors because they are supposedly more suited for scale-up, 

require less energy for cooling because of the low surface to volume ratio, and 

overall outperform tubular reactors throughout the year.  

Both the type of arrangement and then distance between the units has a profound 

influence on reactor productivity, and must be carefully planned. The closer the 
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reactors, the higher will be the decrease of productivity (Zittelli et al., 2006). Zittelli 

et al. (2006) cultivated Tetraselmis suecica in outdoors annular columns placed in 

two different arrangements: 1) columns placed at the vertices of equilateral triangles 

or 2) in parallel rows. In the first experiment, the mean volumetric productivity of the 

full-scale column was approximately the same, and in the second experience was 

slightly lower than that achieved by the isolated column. 

Because of their simpler construction and absence of moving, mechanical parts, 

bubble column and airlift photobioreactors are less vulnerable to technical 

malfunctions (Eriksen, 2008), a very important feature for reactors used for long-

term continuous cultivation of microalgae, and are therefore a best option than 

horizontal PBRs for mass production of microalgae.  

As mentioned above, there is an array of vertical PBRs, namely bubble columns 

and airlifts, among which it is necessary to make a choice. 

6.2.3 Bubble column versus airlift PBRs 

Vertical PBRs are usually cylinders with diameter of up to 0.4 m and heights of 

up to 4 m. These columns must have relatively small diameters to increase the 

surface–volume ratio. The height restriction is associated with the gas transfer 

limitations (can lead to CO2 and pH gradients and O2 accumulation) and the strength 

of the transparent materials used to construct the columns (Wang et al., 2012). 

Vertical column PBRs are characterized by their high volumetric gas transfer 

coefficients. The bubbling of gas from the bottom of the column enables efficient 

CO2 utilization and optimal O2 removal (Wang et al., 2012). Consequently algal 

growth is often limited by other parameters such as light efficient utilization. 

It is well known that both the quantity and the quality of the light delivered to the 

cells are significant to the cells’ growth (Fernandes et al., 2010; Lou et al., 2003). As 

described by Lambert–Beer’s law, light intensity decays exponentially as it 

penetrates into an optically dense culture. In highly dense cultures, while the region 

close to PBR surface receives plenty of light, some zones in the reactor may remain 

in the dark due to optical absorption and self-shading of the cells, causing 
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photolimitation. In this region, the light intensity is too weak to maintain positive 

growth of the cells, and the net biomass production would be negative. Moreover, in 

certain periods of the day, the regions close to the surface are subject to light 

intensities that are greater than the saturation value of microalgae species, causing 

photoinibition of cells (Wu and Merchuk, 2004). 

Several strategies have been proposed in order to overcome these two opposite 

limitations that result in an inefficient utilization of available light and consequently, 

in productivities that are significantly lower than the theoretical productivity values.  

Increasing the volumetric surface area (reducing the culture depth) to limit the 

fraction of culture without sufficient light is one of the alternatives, but this strategy 

results in higher installation costs and does not solve the photoinibition problem (Wu 

and Merchuk, 2004). The solution to this problem is to find a solution to prevent high 

residence time of microalgae cells under conditions of photoinibition or 

photolimitation.  

It is known that the conversion of light energy to biomass can be enhanced if algal 

cells are made to repeatedly cycle between the well-lit exterior and the dimly lit 

interior of the photobioreactor. Ordered mixing forces the cells to experience 

periodical light/dark cycles. The effect of the light/dark cycles has been studied 

previously (Lee and Pirt, 1981; Merchuk et al., 1998; Wu and Merchuk, 2001), and it 

was found that periodical light/dark cycles might enhance growth (Wu and Merchuk, 

2004). Random mixing does not enhance productivity as much as a regular light–

dark cycle (Degen et al., 2001).  

According to Wang et al. (2012), generally, airlift PBRs can sustain better 

biomass production of different microalgae in comparison to other vertical column 

PBRs, probably due to this regular mixing, as opposed to random mixing found in 

bubble columns.  

The only PBRs that combine the capacity to provide the cells with regular light–

dark cycles and the vertical disposition are the PBRs that work under the airlift 

principle, making them the elected among the vertical PBRs. However, as seen in 

Figure 6.2, there are several types of airlift reactors. 
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6.2.4 Airlift PBR type selection  

Although there is a wide variety of airlift reactors, they have characteristics that 

are common to all them. Airlift reactors are vessels with two interconnecting zones. 

The zone where the gas mixture is sparged is called riser whereas the other region, 

that does not receive the gas, is called downcomer (Figure 6.2 A, B and C). 

Generally airlifts exist in two main types: internal loop and external loop. In the 

internal loop reactor, riser and downcomer sections are separated either by a draft 

tube or a split-cylinder. In the external loop, riser and downcomer are separated 

physically by two different tubes (Singh and Sharma, 2012). 

Concentric tube airlift PBRs (Figure 6.2 B) typically comprise a transparent 

column, an internal draft tube (riser), and an air sparger. Air or CO2 enriched air is 

introduced inside the riser at the bottom; and degassing occurs in the freeboard 

regime, which locates on the top of the internal column. Since the gas holdup inside 

the riser is much larger than that in the degassed liquid outside of the internal 

column, an upward flow of the liquid/gas mixture will be created inside the internal 

column while a downward flow of degassed liquid is generated outside of it (Wang 

et al., 2012). 

In split column airlift PBRs (SCAPBR) (Figure 6.2 C), a flat plate splits the 

diameter of the column and separates the column into two parts: the riser and the 

downcomer regions. As in concentric tube airlifts, air is introduced at the bottom of 

the riser region to carry the liquid upwards. Liquid/gas separation occurs at the top of 

the column and the heavier degassed liquid falls downward. Mixing is also achieved 

with aeration and liquid circulation (Wang et al., 2012). 

In external loop airlift PBRs (Figure 6.2 D) degassing occurs in a gas/liquid 

separation region on the top of the column and circulation of degassed liquid is 

achieved through an external circulation column (Wang et al., 2012). 

Regardless the type of airlift PBR, it is clear that the largest advantage of an airlift 

PBR is the excellent and non-chaotic mixing it offers, which allows good and regular 

exposure of cells to light radiation even with a relatively large diameter of column 

and high cell density. However, airlift bioreactors have other several advantages such 
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as well-defined fluid flow patterns, (Fernandes et al., 2010) simplicity of design and 

construction, lower power inputs, low shear-stress field (respectful of the 

microorganisms’ cellular integrity), high gas-liquid mass transfer coefficients (supply 

of CO2 and degassing of oxygen produced by photosynthesis), low capital and 

operating costs (Loubière et al., 2011). Because of good gas-liquid mass transfer, the 
dissolved oxygen concentration in the reactors at peak photosynthesis remained < 
120% of air saturation; thus, oxygen inhibition of photosynthesis and photo-
oxidation of the biomass did not occur (Mirón et al., 2002). The mixing efficiency of 

swirling flows ensures a good homogenization of nutrients inside the culture, but also 

promotes the microalgae displacement and renewal along the light gradient. In 

addition, the high shear stresses generated at walls are interesting for limiting the 

biofilm formation at the optical surfaces (Pruvost et al., 2002, 2004; Loubière et al., 

2009). 

The concentric tube airlift is the most commonly used airlift for microalgae 

cultivation (Camacho et al., 1999; Barbosa et al., 2003b; Krichnavaruk et al., 2005; 

Vunjak-Novakovic et al., 2005; Ranjbar et al., 2008; Oncel and Sukan, 2008), 

however it has some limitations, such as difficult temperature control and large 

fraction of dark zones inside the PBR, mainly due to the presence of the internal 

column which limits light penetration.  

The only PBR that seems to have the potential to overcome the limitations of the 

concentric tube airlift, maintaining all the benefits inherent to an airlift PBR 

utilization, is the Split Column Airlift PBR (SCAPBR). 

However, to achieve the maximization of SCAPBR potential it is necessary to 

select the wall geometry (circular or planar) that maximizes the light distribution 

inside the SCAPBR. The selection of the best geometry was based on the 

measurement of light distribution along different points of the PBR. 
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6.3 Geometry selection based on light regime characterization 

6.3.1 Abstract 

The slow development of microalgal biotechnology is due to the failure in the 

design of large-scale photobioreactors (PBRs) where light energy is efficiently 

utilized. In this work, both the quality and the amount of light reaching a given point 

of the PBR were determined and correlated with cell density, light path length, and 

PBR geometry. This was made for two different geometries of PBRs (circular and 

planar) using optical fibre technology that allows obtaining information about 

quantitative and qualitative aspects of light patterns. This is important since the 

ability of microalgae to use the energy of photons is different, depending on the 

wavelength of the radiation.  

The results show that the circular geometry allows a more efficient light 

penetration, especially in the locations with a higher radial coordinate (r) when 

compared to the planar geometry; these observations were confirmed by the 

occurrence of a higher fraction of illuminated volume of the PBR for this geometry. 

An equation is proposed to correlate the relative light intensity with the penetration 

distance for both geometries and different microalgae cell concentrations. It was 

shown that the attenuation of light intensity is dependent on its wavelength, cell 

concentration, geometry of PBR, and the penetration distance of light. 

6.3.2 Introduction 

Due to the light gradient inside the PBR and depending on the mixing properties, 

microalgae cells are subjected to light/dark cycles where the light period is 

characterized by a light gradient. These light/dark cycles will determine productivity 

and biomass yield on light energy. Productivity is determined by the growth rate, 

which, for fixed fluid dynamics and temperature, is a function of the light profile 

within the reactor and the light regime to which the cells are subject to. In dense 

microalgal cultures, light penetration is impeded by self-shading and light absorption 

(Rabe and Benoit, 1962; Frohlich et al., 1983; Erickson and Lee, 1986). These 
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effects affect the radiation profile inside the culture (Grima et al., 1999). Airlift 

bioreactors have been indicated as attractive alternatives for cell cultivation (Gordon 

and Polle, 2007). This might be due to several main advantages such as good mixing, 

well-defined fluid flow patterns, relatively high gas–liquid mass transfer rate, and 

low capital and operating costs. If the volumes enclosed by annulus and draft tube 

can be regarded as illuminated and dark regions, respectively, this flow pattern gives 

defined light/dark cycles for photosynthetic cells culture. However, because of the 

nature of the decay in illuminance mentioned above, the description of the annulus as 

an “illuminated region” is in most cases an oversimplification. Local differences in 

photon flux density (PFD) will appear as one departs from the illuminated surface. 

Hence, identification of cell trajectories in the light and dark zones is required in 

order to describe properly the light history of a photosynthetic cell (Wu and 

Merchuk, 2004). In order to develop a mathematical model predicting microalgal 

photosynthesis or growth in a photobioreactor (PBR), it is a prerequisite to 

quantitatively and qualitatively describe light penetration through the microalgal 

suspension (Wu and Merchuk, 2004). To relate the light supply with the culture 

growth, light attenuation in the biological turbid medium must be accurately 

described. This determination is not trivial and is highly correlated to the PBR 

geometry (Cornet et al., 1998; Pruvost et al., 2006).  

The utilization of optical fibre technology allows obtaining information about 

quantitative (photosynthetic photon flux density) and qualitative (spectral intensity 

distribution) aspects of light patterns, which is important since the ability of 

microalgae to use the energy of photons is different, depending on the wavelength of 

the radiation. This technology was used in the present work aiming to determine both 

the quality and the amount of light at different points of two alternative geometries of 

an airlift PBR as a function of the microalgae cell concentration and of the light 

penetration distance. The final goal is to characterize the light regime of the airlift 

PBR in view of its future utilization for the production of microalgae. 
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6.3.3 Material and methods 

Microorganism and growth medium 

The microalgae Chlorella vulgaris P12 was grown in 1 L Schott flasks with 400 

ml of medium, using the composition described by Douskova et al. (2008). The 

original growth medium based on the elementary composition of algal biomass had 

the following initial composition (mg L−1): 1,100 (NH2)2CO, 237 KH2PO4, 204 

MgSO4.7H2O, 40 C10H12O8N2NaFe, 88 CaCl2, 0.83 H3BO3, 0.95 CuSO4.5H2O, 3.3 

MnCl2.4H2O, 0.17 (NH4)6Mo7O24.4H2O, 2.7 ZnSO4.7H2O, 0.6 CoSO4.7H2O, 0.014 

(NH4)VO3 in distilled water; the initial pH was adjusted to 7.0 by 0.1 M NaOH. 

Photobioreactor 

The culture was transferred into a set of acrylic PBRs (Figure 6.3) that represent 

the cross section of two different geometries (circular (PBRC) and planar (PBRP)) of 

an airlift PBR. 

 

Figure 6.3 Top view of a PBR: a PBRC, a’ PBRP, and b lateral view of a PBR section with an optical 

fibre attached; the position of the measuring points is indicated by circles. All dimensions are in mm. 

The PBRs were illuminated by a set of four fluorescent lamps (Sylvania Standard 

F18W) placed horizontally and uniformly distributed around the reactor walls at ca. 

15 cm from its surface with an incident light intensity or photosynthetic photon flux 

density (PPFD) of 70 µE m−2 s−1. The PPFD was determined, in the absence of the 

microalgal culture, behind the front surface of the reactor, by averaging the values of 

light intensities measured with a LI-COR Quantum/Radiometer/Photometer Model 

LI-250 Light Meter (San Diego, CA, USA). This value was taken as the reference 

value when calculating the relative light intensity (RLI) (see below) (Ranjbar et al., 
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2008). 

The quantitative and qualitative characterization of light regime was performed 

using a fibre optic spectrometer AvaSpec-2048-4-DT (2048 pixel, 200 – 1,100 nm) 

coupled with a standard transmission probe, model T300-RT-VIS/NIR, controlled by 

AvaSoft 6.0 software. Data were acquired between 200 and 1,100 nm, but only the 

range between 400 and 700 nm (Photosynthetically Active Radiation - PAR) was 

used for calculations, for two reactor configurations (circular and planar) at 14 cell 

concentrations (ranging from 0.18 to 2.29 kg m−3), three different radial positions for 

the circular geometry bioreactor, two different radial positions for the plane 

geometry bioreactor, and six or seven light penetration distances, depending on the 

probe radial position and the reactor configuration. 

The quantification of the light penetrating in the algal culture was made through 

the calculation of the relative light intensity (RLI), which is expressed as the ratio of 

the light intensity (LI) measured at a given point and the reference light intensity (LIR 

= 70 µE m−2s−1), measured at the inside wall of the vessel filled with medium in the 

absence of algae (Eq. 6.1). 

!"#   =    !"
!"!
  ×  100     Eq. 6.1 

The concentration of suspended algal biomass was determined both by optical 

density measurement (700 nm) and oven drying at 60 °C for 24 h (Jacob-Lopes et al., 

2009). All measurements were made in triplicate, and in all experiments, the standard 

deviation was always below 5%. 

6.3.4 Results and discussion 

Overall Characterization of Light Intensity 

Light intensity distribution within the culture vessel (Figure 6.4) shows cross-

sectional distributions of RLI within the two different geometries filled with the algal 

suspension at different cell concentrations (0.95 and 2.67 kg m−3). It can be observed 

in Figure 6.4 that for both evaluated cell densities, the irradiance within the two 

different geometries varied as a function of position. Cells nearer the light-receiving 

surface experienced a higher irradiance than cells elsewhere in the vessel. Cells 
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closer to the light source shade those further away; hence, productivity varies with 

position and time (Laws, 1980; Ree and Gotham, 1981). Figure 6.4 also shows that 

for both PBR geometries, the relative light intensity at the same distance from the 

light-receiving surface decreased as the cell density was increased. Such behaviour 

was also observed for cell densities lower than 0.95 kg m−3
 (Figure 6.5). Figure 6.4 b, 

b’ clearly shows that the planar geometry leads to a more uniform light distribution 

(this is more evident for higher cell concentrations - Figure 6.4 b’); the circular 

geometry allows a more efficient light penetration, especially in the locations with a 

higher radial coordinate (r). For low cell concentrations (Figure 6.4 a, b), the 

differences between the geometries are negligible, possibly due to the low intensity 

of the scattering phenomena; in this case, those small differences might be attributed, 

mainly, to the light incidence angle at the reactor surface. 

 

Figure 6.4 Cross-sectional distribution of light intensity within the airlift downcomer filled with algal 

cell suspension as a function of the light penetration distance (Pd) and radial coordinate (r), where r = 

0 corresponds to the axis of the reactor, where: a PBRC with 0.95 kg m−3; a’ PBRC with 2.67 kg m−3; b 

PBRP with 0.95 kg m−3 and; b’ PBRP with 2.76 kg m−3. 

However, for higher cell concentrations (Figure 6.4 a’, b’), the effect of the 

geometry becomes more evident, and a clear difference can be observed in the RLI 
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that reaches zones of the reactor with the same light penetration distance (Pd) but 

with different axial coordinates (r). The fact that this difference is almost inexistent 

for the points at r = 0 and increases for increasing values of |r| is a clear indication 

that the influence of the curved surface of the circular reactor in the availability of 

the light inside the vessel is a positive one, when compared to the planar geometry. 

Such differences are the result of both the effect of the curved surface of the circular 

reactor and of the higher intensity of the scattering phenomena due to the higher 

concentration of cells present in the reactor. For the planar geometry, all the points at 

a given distance from the light source will have the same light penetration distance 

(independently of their radial coordinate) and therefore, will be essentially under the 

same RLI (Figure 6.4 b’). 

 

Figure 6.5 Relative light intensity distribution (in percent) in the two airlift downcomer geometries 

(closed symbols circular geometry and open symbols planar geometry) filled with algal cell 

suspension (¿,¯ 0.35 kg m−3, ¢,£ 0.50 kg m−3 and; p, r 0.95 kg m−3) as a function of the light 

penetration distance (Pd). These data points correspond to measurements made for r = 0 mm. 

On the contrary, for the circular geometry, to the same distance from the light 

source, there will be different light penetration distances depending on the radial 

coordinate; this will have obvious consequences on the value of RLI (Figure 6.4 a’) 

once the points at the same distance from the light source will have improved RLI 

values for increasing values of the modulus of the radial coordinate. As mentioned 

before, this effect is much more evident at higher cell concentrations due to the light 
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scattering effects provoked by the cells: In a limiting case, if no cells are present and 

if no light refraction occurs at the acrylic reactor wall, virtually no differences would 

be observed between the two geometries (Figure 6.4 a, b). 

Figure 6.5 shows the attenuation of the light intensity as a function of the 

penetration distance for different microalgae concentrations and for the two reactor 

geometries under consideration, along the central radial coordinate (r = 0). These 

results confirm the analysis made from the data of Figure 6.4, but they also allow 

establishing correlations Eq. 6.2 and Table 6.1 between the RLI and the penetration 

distance (Pd) for both geometries. 

!"#   = !! +
!
!"

+ !
!"!

+ !
!"!

     Eq. 6.2 

where RLI is in %, Pd is in mm, and y0, a, b, and c are the regression coefficients, 

the values of which are presented in Table 6.1.  

Table 6.1 Coefficients from Equation 2 for the circular and planar geometries and for different 

microalgae cell concentrations, with the respective value of R2 

PBR 
[Cell] 

(kg.m-3) 

Coefficient (x10-2) 
R2 

y0 a b c 

Circular 

0.35 -0.1147 9.9044 -22.023 -17.7474 0.999 

0.50 -0.0221 1.0641 53.426 -209.136 0.999 

0.95 -0.0154 0.01973 18.3721 -56.1530 0.999 

Planar 

0.35 -0.1284 9.9721 -25.1507 -13.2912 0.999 

0.50 -0.0207 0.9085 50.9146 -193.400 1.00 

0.95 0.0356 -2.1538 44.9657 -130.148 0.999 

 

This equation is a third-order inverted polynomial, which was chosen among six 

other possible models available in SigmaPlot (trial version, Systat software, Inc; 

Germany). These correlations will be useful when establishing the final design of the 

airlift bioreactor and, later on, during scaling up procedures. 

It is generally accepted that a culture can be considered under darkness conditions 

when the light intensity is below a certain limit (between 0 and 15 µE m−2s−1, 

according to Suh and Lee (2003), in the present work, an intermediate value of 7.0 

µE m−2 s−1 was used, which corresponds to 10% of the light intensity used as 

reference). The volume fraction of the reactor above the limit of darkness was, thus, 
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calculated based on the axial relative light intensity distribution represented in Figure 

6.4. This volume fraction was calculated for both reactor geometries and is compared 

in Figure 6.6. 

For instance, at a cell concentration of 0.5 kg m−3, the volume which receives a 

light intensity above 7.0 µE m−2s−1 corresponds to 94% and 71% of the total volume 

of the PBRC and PBRP, respectively, while those values are reduced to 43% and 

23%, respectively, at a cell concentration of 1.5 kg m−3. 

 
Figure 6.6 Volume fraction of the PBR (referred to the total culture volume) where the RLI is higher 

than 10% of the reference intensity (70 µE m−2 s−1); l PBRC, p PBRP 

 

The results in Figure 6.6, thus, show that the circular geometry allows a better 

light penetration for similar microalgae cell concentrations than the planar geometry, 

which means that a higher volume fraction of the reactor will be receiving sufficient 

amounts of light to avoid darkness conditions. Based on Figure 6.6 and considering 

all the other constant variables, the volumetric productivity is expected to be higher 

in a PBR with a circular geometry. 

Qualitative characterization of light 

Microalgal pigments change with algal variety, and therefore, the influences of 

different light qualities upon the physiological properties of different algae, such as 

growth, photosynthesis, and cellular metabolism, are diverse. Figure 6.7 shows the 

changes in the quality of the light reaching different depths inside the PBR. The 

depletion of light at certain wavelengths is obvious and, e.g., for a cell concentration 

of 0.95 kg m−3, almost all the radiation in the range of 400 – 450 and 650 – 680 nm is 

absorbed/scattered in the first 5 mm of cell suspension. The attenuation of light was 



Universidade do Minho  Chapter 6 
 

 

147 

higher for the blue (400 – 500 nm) and red (650 – 700 nm) regions of the spectrum 

than for the green region (500 – 650 nm), which was more obvious at a higher cell 

concentration. This is because blue and red lights are mostly consumed by the 

microalgae, while the green light could penetrate further into the algal suspension 

(Yun and Park, 2001).  

These results are due to the fact that the main pigments present in the cells of C. 

vulgaris (carotenoids and chlorophylls) absorb preferentially in the “blue” region and 

in the “red” region in the case of chlorophyll. C. vulgaris is known to be deficient in 

pigments absorbing light around 550 nm (green light) (Janssen et al., 2003). 

Apparently, only when preferred wavelengths are “consumed” will the system 

start to use other less-preferred wavelengths. This hypothesis is supported by Figure 

6.8, where it is shown that while the relative intensity in the blue and red regions is 

still considerable (above 20%), the less-preferred wavelengths remain with very high 

intensities (close to 100%). 

 
Figure 6.7 Relative light intensity spectra for different light penetration distances within the PBRC 

(cell concentration=0.95 kg m−3); a 5 mm, b 10 mm, c 15 mm, d 20 mm, e 25 mm, f 30 mm, and g 35 

mm. 

However, when the blue and red regions are almost totally absorbed, the system 

seems to effectively start absorbing in the green region of the spectrum. Regardless 

of the wavelength of the light, the RLI declined with increasing cell concentration 

and eventually, reached zero when the cell concentration was higher (Yun and Park, 
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2001). Since photons are particles, the light is not only absorbed but also scattered 

randomly in the medium. Light scattering, thus, justifies that despite not being 

absorbed by the microalgae cells, green light was considerably attenuated in the algal 

suspension. 

 

Figure 6.8 Relative light intensity spectra for different cell concentrations within PBRC (light 

penetration distance=5 mm); a 0.18 kg m−3, b 0.50 kg m−3, c 0.95 kg m−3, and d 1.99 kg m−3. 

6.3.5 Conclusions 

Optical fibre technology was used as a new methodology for the characterization 

of light regime in a PBR, thus allowing the quantitative and qualitative 

characterization of light in two different geometries of a PBR. It was concluded that 

when compared with the planar geometry, the circular geometry allows a more 

efficient light penetration and a higher fraction of illuminated volume inside the 

PBR. It was shown that the attenuation of light intensity is dependent on its 

wavelength, cell concentration, geometry of PBR, and the penetration distance of 

light. An equation to correlate the RLI with the penetration distance (Pd) for both 

geometries, and different microalgae cell concentrations is now available. These 

results and methodologies presented here will be determinant to improve the design 

of the PBR towards a more efficient utilization of light energy with expected 

improvements of biomass yield.  
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6.4 Split Cylinder Airlift Photobioreactor (SCAPBR) description 

After reviewing all the elements presented (subchapters 6.1 – 6.3), it was 

concluded that the split column airlift PBR (SCAPBR) with circular geometry is the 

most suitable cultivation system for mass production of microalgae. 

 

 

Figure 6.9 The geometry of SCAPBR and air sparger (frontal and top view). Sparger (a); baffle (b); 

heat exchanger inlet and outlet (c). 

In the proposed SCAPBR (Figure 6.9), a flat plate splits the diameter of the 

column and separates the column into two parts (the riser and the downcomer 

regions), acting also as a heat exchanger and an internal light guide, as will be 

explained below. The SCAPBR selection and the options made in the project design 

had as objective to overcome some of the main limitations of existing microalgae 

cultivation systems.  

The first, and probably the most important project consideration, is the issue of 

light distribution inside the PBR and its efficient utilization by the microalgae cells. 

The fact that this PBR operates using the airlift principle ensures that the cells will 

experience regular cycles of light and dark due to their regular movement pattern 

inside the PBR. As previously mentioned, these regular cycles of light/dark reduce 
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effects of photolimitation and photoinibition, causing an increase of biomass 

productivity. Additionally, the fact that it is a SCAPBR instead of a concentric tube 

airlift decreases the volume of PBR subjected to total darkness. 

Secondly, since the flat plate that splits the column into the riser and the 

downcomer regions is made of a transparent material and fully filled with water, it 

also acts as a light conductor and distributor inside the SCAPBR (Figure 6.10), 

thereby significantly increasing the PBR illuminated surface.  

 

Figure 6.10 Schematic representation of top view (A) and front view (B) of SCAPBRs baffle, acting 

as heat exchanger and light guide. Cold water inlet (a); warm water outlet (b). 

Thus, the central area of the PBR which normally would be completely devoid of 

light (specially for higher cell concentrations) will have a continuous supply of light. 

The presence of this central baffle also allows using diameters in the SCAPBR scale-

up which would be otherwise impossible due to a substantial increase of dark zones 

within the PBR. This idea of supplying light via conducting structures inside the 

reactor volume is not new. A long list of authors have been using fibre optics as light 

guides and fibre optics light concentration systems (Feuermann and Gordon, 1999; 

An and Kim, 2000; Gordon, 2002; Ono and Cuello, 2004; Chen et al., 2006, 2008) in 

order to deliver light inside the PBR. Also Zijffers et al. (2008a, 2008b) present some 

solutions to deliver light inside the PBR such as vertical plastic light guides and 

Fresnel lens. However these solutions are too expensive, difficult to implement or 
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have some influence in PBR hydrodynamics. The proposed design for this SCAPBR, 

in turn, does not require the use of expensive technologies/materials or the 

introduction of elements that disturb the normal PBR hydrodynamics and can be 

used easily without compromising the cultivation sterility. 

Thirdly, besides allowing the existence of an airlift principle (by dividing the riser 

from the downcomer) and a larger illuminated reactor surface, the central wall of the 

PBR also functions as heat exchanger (Figure 6.10), thus ensuring an efficient 

cooling of the medium without the need of a large technical apparatus nor the use of 

large amounts of water. 

Typical cooling mechanisms are submersion of the entire culture in a water pool, 

spraying with water, shading, or incorporating a heat exchanger within the PBR for 

cooling (Mehlitz, 2009). These methods, however, are often expensive, inefficient 

and with high spending of water. The proposed incorporated cooling system (Figure 

6.10) is of major importance because it is known that, during outdoor cultivation 

with sun as the light source, biomass productivity is strongly affected by 

temperature. The temperature of microalgal culture broths in photobioreactors can 

increase to about 40 - 50 ºC by irradiation of sunlight. The microalgal growth would 

be highly inhibited at such temperatures if the cultivation is not provided with an 

efficient cooling system (Ong et al., 2010). 

To ensure an efficient mass transfer inside the SCAPBR an aeration system was 

developed (Figures 6.11 and 7.1). The sparger was built with a set of needles (0.25 

mm of internal diameter) with the objective of guaranteeing high mass transfer 

coefficients, while ensuring that the O2 concentration within the PBR does not reach 

levels that may cause cell growth inhibition. 

More detailed technical information about SCAPBR, the aeration system and its 

dimensions are given in Chapter 7. Considering all the characteristics presented 

(subchapters 6.2 – 6.3), SCAPBR have the potential to provide conditions for an 

ideal microalgae cultivation: proper exposition to light energy, good mass exchange 

between the gas and the liquid, flow mixing, low shear stress over the cells and a 

proper temperature control. In order to provide the best conditions for microalgae in 

SCAPBR, it is of interest to determine and optimize all the parameters that 
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characterize SCAPBR operation.  

 

Figure 6.11 Schematic representation of the aeration system used in the tested PBRs. Mass flow 

controller (a); gas mixing chamber (b); air filter (c); pressure chamber (d); needle sparger (e). 

In Chapter 7 an extensive characterization of gas and liquid phases, as well as 

mass transfer, light distribution profile and flow pattern characterization will be 

made in order to evaluate SCAPBR performance and to correlate these parameters 

with the obtained productivity in each of the tested operation conditions. 
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7.1 Abstract 

An extensive characterization of PBRs must be made in order to optimize their 

operational conditions, operate design improvements and perform scale-up. It was 

performed a hydrodynamic characterization of liquid and gas phases, as well as the 

determination of mass transfer coefficient, light distribution profile and flow pattern 

of three different PBRs (bubble column (BC), and two SCAPBRs: SCAPBR 75 and 

SCAPBR 50). The effect of these parameters on biomass productivity was 

evaluated. 

The developed SCAPBRs proved to be extremely suitable for microalgae 

cultivation. The design of the PBR, particularly the designed gas sparger, allowed 

meeting the needs of microalgae in terms of mixing and mass transfer (efficient 

supply and removal of CO2 and O2, respectively). SCAPBR 50 (at UGr = 0.0044 m 

s-1) showed, among the tested PBRs, the highest value of biomass volumetric 

productivity (0.75 g L-1 d-1). This result is due to higher efficiency of light 

distribution inside the PBR and to a regular and defined flow pattern, which allows 

exposing cells to regular light - dark periods. 

 

Keywords: SCAPBR; bubble column; hydrodinamic; cells’ light history; biomass productivity. 

7.2 Introduction 

Unlike other biological systems in which, usually, there is a factor that is clearly 

predominant compared to all the others (e.g. efficient mass transfer or medium 

composition), in microalgae cultivation the balance between different factors (e.g. 

light supply, fluid dynamics and mass transfer) must be achieved in order to 

optimize the system productivity. If the PBR operation conditions are optimized to 

maximize mass transfer this will conduct to an efficient CO2 supply to the cells and 

an effective O2 removal, reducing, by this way, the potential stress and theoretically 

increasing the productivity. However, if this increase in mass transfer coefficient 

was achieved at the expense of a modification in the pattern of cells exposure to 

light, this might cause a decrease in the system productivity. This occurs because 

light availability in vertical PBRs is influenced by several factors such as aeration 
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rate, gas holdup, and liquid velocity (mixing and turbulence) (Miron et al., 2000).  

In Chapter 6 a novel split cylinder airlift photobioreactor (SCAPBR) was 

proposed as a very promising microalgae cultivation system, due to a number of 

characteristics: vertical arrangement; a regular cells pattern movement; integrated 

temperature control system and transport of light to the centre of PBR. At this stage 

it is necessary to prove some of the assumptions on which its design was based. 

Several authors like Lee and Pirt (1981), Merchuk et al. (1998), Wu and 

Merchuk (2001) refer to the regular and defined pattern flow offered by airlift 

PBRs as a very important factor for increasing productivity, however to our 

knowledge none of them fully proved this statement. Increased productivity caused 

by a regular and defined pattern flow of cells within the airlifts can only be 

confirmed by firstly ensuring that all the requirements in terms of mixing efficiency 

and mass transfer (mainly CO2 supply and O2 removal) are met and that none of 

these elements is a limiting factor to growth. After these requisites are assured, it is 

necessary to analyse the flow patterns of the airlift PBR in order to check the 

pattern of movements to which the cells are subjected within the PBR. 

Subsequently the cells flow pattern within the PBR will be correlated with light 

regime inside the PBR and with the obtained productivity, in order to be able to 

assess if the flow pattern is actually a key factor to increase microalgal productivity 

in SCAPBRs. 

This kind of study requires a deep knowledge of the cultivation system fluid 

dynamics and light distribution (Fernandes et al., 2010). Hydrodynamics and mass 

transfer characteristics that are applicable include: the mass transfer coefficient 

(KLa), mixing time , liquid velocity, gas bubble velocity and gas holdup. The 

nutritional and light requirements of photosynthetic microorganisms may be 

covered in PBRs with larger light paths, if hydrodynamic and mass transfer 

conditions are optimized in these PBRs (Velarde et al., 2010). Knowledge on fluid 

trajectories in the PBR is required in order to describe properly the light history of a 

photosynthetic cell (Fernandes et al., 2010). Only taking into account this point will 

allow to predict correctly the effects of scale-up on the performance of the 

SCAPBR. In this chapter a full characterization of two different SCAPBRs 
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(SCAPBR 50 and SCAPBR 75) and a bubble column (BC) (used as a control PBR) 

will be carried out. 

7.3 Material and methods 

7.3.1 Description of tested photobioreactors 

Three different PBRs were used: a bubble column (BC) and two different 

SCAPBRs, as shown schematically in Figure 7.1.  

 

Figure 7.1 The geometry of photobioreactors and air spargers (frontal and top view). Sparger (a); 

baffle (b); heat exchanger inlet and outlet (c). 

All vessels were made of 3.8 mm thick, transparent poly(methyl methacrylate) 

with 90 mm of internal diameter. The liquid height was 600 mm, for a working 

volume of 3.7 L. All the three PBRs have a total height of 700 mm. The riser-to-

downcomer cross sectional area ratio was 1.0 for the SCAPBR 50 and 3.0 for the 
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SCAPBR 75. The baffles, with 4.0 mm of thickness, were located 50 mm from the 

bottom of the PBRs and 50 mm below the liquid level and were also made of 

transparent poly(methyl methacrylate) to allow light penetration. 

7.3.1.1 Description of aeration system 

The fluid was mixed by sparging with CO2-enriched air (2% v/v CO2) through a 

sparger composed by 45, 26 and 19 uniformly spaced needles (with an inner 

diameter (dn) of 0.25 mm) in the BC, SCAPBR 75 and SCAPBR 50, respectively. 

In all the spargers, needles were placed with a spacing (Ln) of 5.0 mm between 

them (Figure 7.1). The shape and size of the needles ensure the formation of small 

and well-defined bubbles. Needles’ disposal enables a uniform bubble distribution 

along the PBRs, which enhances the suspension of low-density solids. 

The aeration system consists of two mass flow controllers that determine the 

CO2 and air flow rates; these gases are subsequently mixed in a gas mixing 

chamber and filter before being delivered into the PBR by the sparger. Between the 

filter and the gas sparger there is a pressure chamber, which allows a homogeneous 

gas distribution through all needles even at low flow rates (Figure 6.11). 

7.3.2 Hydrodynamic and mass transfer characterization of PBRs 

All the hydrodynamic and mass transfer tests were performed at different 

superficial gas velocities (UGr) (0.001 – 0.01 m s-1) based on the riser cross-section 

of the reactors. The superficial gas velocity UGr is easily derived from the air flow 

rate by dividing this last one by the cross-sectional area of the aerated zone. 

All the measurements were made at 25 ºC with tap water and microalgae growth 

medium. The viscosities of growth medium and tap water were approximately the 

same (0.998 x 10-3 Pa s). The viscosities were measured at 25 ºC using a Cannon–

Fenske viscometer. The surface tension of the fluids was also approximately the 

same (72.3 x 10-3 N m-1). The surface tension was measured at 25 ºC using a 

tensiometer (Kruss K6 GmBH, Germany). The conductivity (Conductivity Meter 

LF 538, WTW, Germany) of water and growth medium was 2.07 and 516.67 µS 
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cm-1, respectively. 

7.3.2.1 Liquid phase characterization 

Mixing and circulation time 

For determination of mixing time and circulation time, 1 mL of saturated NaCl 

aqueous solution was injected as a pulse near the bottom of the riser in the central 

region through a 1 mm stainless steel capillary by means of a syringe. The tracer 

influence in the system was measured by a conductivity probe (Conductivity Meter 

LF 538, WTW, Germany) placed near the top of the riser (Baten et al., 2003). For 

each operating condition, experiments were run five times. The liquid phase was 

changed after each three runs.  

Mixing time was defined as the time needed to reach 95% of complete mixing. 

The circulation time was computed by averaging the time spans between maximum 

consecutive peaks in the conductivity probe response curve (Freitas et al., 2000). 

Liquid circulation velocity 

The mean liquid circulation velocity in the riser was obtained using a thermal 

tracer method, which gives the fastest response time among the various tracer 

methods available. The thermal tracer method involves injecting a pulse of 5 cm3 of 

hot water into the flowing liquid and plotting the time-temperature profile at two 

given points in the riser by means of two thermocouples connected to a computer. 

The liquid linear velocity in the riser was then obtained by the ratio of the distance 

between the two thermocouples and the differences in response times between the 

two sensors as described by Garcia-Calvo et al. (1999). 

7.3.2.2 Gas phase characterization 

Gas holdup 

Riser gas holdup in the PBRs was determined by the use of monofibre optical 

probe technology described by Mena et al. (2008). Briefly, the optical probe is used 

to locally detect the presence of the gas phase in a multiphase system. A 

monochromatic light is transmitted through an optical fibre to the tip of the probe. 
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When the tip is dipped into a gas phase, the light is mainly reflected, travels back to 

the detector through a Y junction and is converted into an electrical signal (high 

level signal). This signal is converted to a digital signal which is then interpreted by 

the So2_4 software (Mena et al., 2008), which finally provides the values of gas 

holdup. In order to obtain values with a statistical meaning, about 2000 bubbles 

were analysed for each experimental condition.  

Bubble characterization  

In order to obtain the bubble size distribution (Sauter mean diameter (d32)), 

bubble elongation (Fmax/Fmin) and bubble complexity degree (BCD), a chamber with 

a flat straight section, filled with water was coupled to the PBRs. The chamber was 

designed in order to minimize the problems related with the effect of bubble 

position in the column on bubble size measurement using image analysis 

techniques. In this way, it was possible to reduce the error associated to this effect. 

Sets of images, obtained at 200 mm from the gas sparger, were grabbed with a 

black and white high speed digital video camera (frame rate of 250 images s-1) 

connected to a PC, and used to study the bubble shape and size distribution. After 

the acquisition a set of images (about 5 images s-1), these were automatically treated 

and the bubbles were identified and classified. For that, the image analysis 

technique and the discriminant factorial analysis were combined as described by 

Ferreira et al. (2012). In order to obtain values with a statistical meaning, about 600 

bubbles were analysed for each experimental condition, this number is in 

accordance with the values presented by Ferreira et al. (2012). 

Bubble gas velocity in the BC and in the SCAPBRs riser were also measured by 

means of the optic probe technique, previously described by Mena et al. (2008) and 

used for gas holdup determination. In order to obtain values with a statistical 

meaning, about 2000 bubbles were analysed for each experimental condition. 

7.3.2.3 Mass transfer coefficient (KLa) of carbon dioxide  

In microalgae cultivation, gas-liquid mass transfer of CO2 is of major 

importance, because CO2 is the main carbon source. Therefore, it is necessary to 

determine the volumetric mass transfer coefficient KLa (CO2) that allows 
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characterizing the CO2 transfer rate between gas and liquid phases. 

According to the literature (Nielsen and Villadsen, 1994; Baquerisse et al., 

1999), volumetric mass transfer coefficients depend on the physical properties of 

the liquid, on the liquid flow and on system and gas injector geometries. Thus, the 

calculation of KLa of CO2 has been done according to Eq. 7.1 from the 

determination of the KLa of O2 : 

!!! !"! =    !!!
!!!!

   .!!! !!       Eq. 7.1 

Oxygen mass transfer experiments were performed in a two-phase system at 

different superficial aeration velocities (UGr) (0.001 – 0.008 m s-1) and liquids 

(water and mineral growth medium). Air was used as gas phase. The liquid height 

was h0 = 600 mm for all experiments (no liquid throughput). Initially the liquid was 

deoxygenated by bubbling nitrogen. When the dissolved oxygen concentration was 

practically zero, humidified air is fed into the column. Dissolved oxygen 

concentration values were measured online using an O2 electrode (CellOx 325, 

WTW, Germany), located 200 mm from the gas sparger and 30 mm from the wall, 

and recorded directly in a PC, through a data acquisition board. In this way, 

dissolved oxygen concentration data versus time, t, were obtained, and KLa was 

calculated according to Ferreira et al. (2012). 

7.3.3 Evaluation of PBRs biomass productivity 

Chlorella vulgaris (P12) obtained from the Culture Collection of Algal 

Laboratory (CCALA, Czech Republic), was used for cultivation.  The inoculum for 

the photobioreactors was grown under artificial light (250 µE.m −2 s−1 light flux at 

the vessel’s surface) in a 1 L bubble column aerated at 0.5 vvm. The preculture 

medium was identical to that used in the final reactor cultivation. The carbon source 

and agitation during cultivation of microalgae were supplied by bubbling CO2-

enriched air (2% v/v CO2) through a needle sparger (Figure 6.11 and 7.1).  

The three tested PBRs were placed in a fully closed compartment with 

controlled temperature, in order to maintain cultures at 30 ºC.  Illumination was 

provided by 8 fluorescent lamps (Sylvania Standard 36 FW) on one side of the 



Universidade do Minho  Chapter 7 
 

 

166 

photobioreactors, at an irradiance level of 250 µE.m−2 s−1, measured using a LI-

COR Quantum/Radiometer/Photometer Model LI-250 Light Meter (San Diego, 

CA, USA). 

The growth medium based on chemical components present in the microalgal 

biomass (Douskova et al., 2009) had the following composition (mM): 18.32 

(NH2)2CO, 1.74 KH2PO4, 0.83 MgSO4.7H2O, 0.79 CaCl2, 0.11 FeNa-C10H12O8N2, 

0.017 MnCl2.4H2O, 0.013 H3BO3, 0.009 ZnSO4.7H2O, 0.004 CuSO4.5H2O, 0.002 

CoSO4.7H2O, 0.0001 (NH4)6Mo7O24.4H2O and 0.0001 (NH4)VO3 in distilled water. 

The medium was inoculated using inoculum in the late exponential growth phase 

after cell synchronization. Biomass concentration in the freshly inoculated PBRs 

was about 0.05 kg.m−3. 

In order to determine how the hydrodynamic and mass transfer parameters affect 

the system productivity, microalgae cultivations were made at 3 different 

conditions (UGr = 0.0011; 0.0044 and; 0.0077 m s-1) in each of the 3 different tested 

PBRs. 

Biomass concentration was estimated by cell dry weight after centrifugation of 

the sample (8,750 g for 10 min), washing with distilled water and drying at 105 ºC 

until constant weight. 

Biomass productivity (Pmax, g L-1 d-1) during the culture period was calculated 

from Eq. 7.2, where Xt is biomass concentration (g L-1) at the end of the exponential 

growth phase (tx) and X0 is the initial biomass concentration (g L-1) at t0 (day). 

!!"#   = !! −   !! /(!! −   !!)      Eq. 7.2 

7.3.4 Determination of cells’ light history  

In order to know the cells’ light history inside the PBRs, light regime 

characterization inside the PBRs and particle tracking movement were performed. 

7.3.4.1 Light regime characterization 

Light regime characterization was performed in the three different PBRs at three 

different cell concentrations (0.25; 0.50 and, 1.0 g L-1) using the previously 



Universidade do Minho  Chapter 7 
 

 

167 

described methodology (section 6.3.3).  

7.3.4.2 Flow visualisation by particle tracking 

For flow pattern visualization, particle tracking of one alginate (0.5% w/v) 

sphere having mean size of 4.0 mm with riboflavin (R4500, Sigma-Aldrich) 

incorporated (0.001% w/v) was used. This particle had a relative density of 0.998 

(using water at 25 ºC as reference). The particle was placed in the liquid phase and 

illuminated at 90 degrees to the camera by two fluorescent black lights 

(F20T9/BLB) in order to make the incorporated riboflavin glow.  

In order to visualize particle flow, sets of images were grabbed with a Canon 

EOS 600D camera (frame rate of 50 images/s) connected to a PC. A sequence of at 

least 12,000 image snapshots was taken at 3 different values of UGr in the 3 

different PBRs.  The frames were then processed through a number of image 
processing steps in order to obtain a clear image of the trajectory made by the 
particle inside the PBR, by overlapping consecutive frames. This image processing 

steps were carried out using Adobe Photoshop CS5.  

These films allowed determining the particle’s circulation time in the SCAPBRs 

for each of the tested conditions. Particle circulation time was obtained by the 

average of ten circulations in the SCAPBRs. 

7.4 Results and Discussion 

7.4.1 Liquid phase characterization  

The liquid phase characterization was performed for all the PBRs at different 

values of superficial gas velocity in the riser (UGr) using tap water and growth 

medium. No significant differences in liquid phase characterization parameters 

were found between water and growth medium suggesting that changes in ionic 

strength above a certain minimal value did not significantly affect mixing 

behaviour. This is in agreement with the results obtained by Mirón et al. (2004). 

Thus, the results presented in this section (7.4.1) refer only to results obtained with 

growth medium. 
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7.4.1.1 Liquid circulation velocity 

The liquid circulation velocity is an important factor for assessing SCAPBR 

mixing efficiency, since the mixing time in an airlift reactor is expected to be 

affected by the relative velocity between the gas and the liquid phases. This 

happens because gas bubbles rising in a liquid stream produce axial mixing by 

transporting liquid elements in their wakes (Molina et al., 1999). The liquid 

circulation velocity determines the partial gas holdups in the cultivation medium 

(and therefore the mass-and heat-transfer rates), the extent of mixing, the shear-

stress field, and the flow regimes of gas and solid phases (Guieysse et al., 2011). 

The liquid circulation velocity is a meaningless parameter in bubble columns, thus 

it was only determined for the SCAPBRs (Figure 7.2). 

In both SCAPBRs the increase of UGr causes a pronounced increase in liquid 

circulation velocity for UGr < 0.005 m s-1, meaning by this that liquid circulation 

velocity is very dependent on UGr. However, for higher values of UGr, liquid 

circulation velocity appears to be nearly independent of UGr. 

 

Figure 7.2 Liquid velocity for SCAPBR 50 (p) and SCAPBR 75 (¢), at different values of UGr. 

Comparing the SCAPBRs it is clear that SCAPBR 50 shows higher liquid 

circulation velocity than SCAPBR 75 for all UGr, which is most probably explained 

by differences in the PBRs geometry, namely the different riser:downcomer ratios.  

7.4.1.2 Mixing and circulation time 

Several authors claim that the level of mixing in a reactor strongly contributes to 
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the growth of microalgae (Suh and Lee, 2003; Lou and Al-Dahhan, 2004). Mixing 

improves productivity by increasing the frequency of cell exposure to light and dark 

volumes of the reactor and by increasing mass transfer between nutrients and cells, 

maintaining uniform pH and eliminating thermal stratification. Mixing is also 

necessary to prevent algae sedimentation at the same time avoiding cell attachment 

to the reactor walls. Poor mixing will permit clumping of cells into aggregates of 

varying sizes, hence leading to the development of a three- phase system (solid–

liquid–gas) inside the reactor that is prone to decreased mass transfer (Panda et al., 

1989).  

Mixing times vs UGr data for the three PBRs are shown in Figure 7.3  

 

Figure 7.3 Mixing time for SCAPBR 50 (p), SCAPBR 75 (¢) and BC (l), at different values of 

UGr. 

For a given UGr, the BC always has a lower mixing time compared with the 

SCAPBRs. These results are in agreement with Guieysse et al. (2011) who reported 

that analysis of mixing in bubble columns showed that they have shorter mixing 

times than airlift reactors. In fact, compared with the chaotic flow in the bubble 

column, the organized cyclic flow in the airlift reactors inhibits bulk mixing (Mirón 

et al., 2004). In the three tested PBRs, the general tendency was a decline of mixing 

time with increasing UGr. At low aeration flow rates, the mixing time in the 

SCAPBRs was much more sensitive to aeration rate than the mixing time in the 

bubble column (Figure 7.3).  

Comparing the two SCAPBRs it is clear that, for UGr < 0.002 m s-1 mixing times 
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are almost the same, whereas for UGr > 0.002 m s-1 SCAPBR 75 requires less time 

to achieve complete mixture. This result allows assuming that, in general, SCAPBR 

75 could guarantee a more efficient transport of nutrients for the cells than 

SCAPBR 50 at high UGr. The reason for the fact that SCAPBR 75 shows lower 

mixing times than SCAPBR 50 can be its higher riser:downcomer ratio, that allows 

a more chaotic flow in SCAPBR 75 riser, promoting bulk mixing and, 

consequently, reducing mixing time.  

The dependence of circulation time on UGr in SCAPBRs (Figure 7.4) was quite 

similar to mixing time profiles in the same reactors (Figure 7.3). Circulating time is 

defined as the average time needed for particles to circulate one cycle in the 

bioreactor; it can be also used to evaluate mixing performance of bioreactors 

(Nagata, 1975). Circulation time is a meaningless parameter in bubble columns, 

thus it was only determined for SCAPBRs (Figure 7.4). 

 

Figure 7.4 Circulation time for SCAPBR 50 (p) and SCAPBR 75 (¢), at different values of UGr. 

At low gas flow rates, the circulation time decreased sharply with increasing 

UGr. However, at UGr > 0.005 m s-1 circulation time dependence on UGr becomes 

very small. This observation is common to both SCAPBRs and is quite typical of 

airlift reactors (Mirón et al., 2004). This phenomenon is associated with 

micronization of gas bubbles because of increasing turbulence and a consequent 

build up of these smaller bubbles in the downcomer zone. The consequently 

reduced difference between gas holdup values in the riser and downcomer reduces 

the driving force for liquid circulation (Chisti, 1989; Mirón et al., 2004). Although 
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the shape of the curves circulation time versus UGr is similar in both SCAPBRs, 

circulation time values differ considerably, since SCAPBR 50 shows lower 

circulation times for all values of UGr tested. However, it is clear that the difference 

between the circulation time of these two SCAPBRs decreases with increasing UGr. 

A comparison between Figure 7.3 and 7.4 suggests that, in each SCAPBR, 

mixing time improves when circulation time is reduced. This is because rapid 

cycling causes the fluid to pass more frequently through the relatively well-mixed 

head zone of the reactor (i.e. the zone above the upper edge of the baffle) (Chisti, 

1989; Mirón et al., 2004). However, comparing the two SCAPBRs it is clear that 

this relationship between the mixing time and circulation time is not valid between 

these two different PBRs. SCAPBR 50, despite having a lower circulation time 

(Figure 7.4), shows a higher mixing time (Figure 7.3) than SCAPBR 75. Again, the 

explanation may lie in the fact that SCAPBR 75 allows bulk mixing in a greater 

extent due to its larger riser, which behaves somehow as a bubble column. 

Although it reduces mixing time when compared to SCAPBR 50, this bulk mixing 

in the riser of SCAPBR 75 increases the residence time in the riser and 

consequently increases the circulation time. This relation between circulation and 

mixing time will be analised and explained by the results of flow pattern 

visualization (section 7.4.5.2). 

It is known that mixing time depends primarily on reactor geometry and 

circulation time is also sensitive to geometric variables (Chisti et al., 1988; Chisti 

and Moo-Young, 1993), which explain the observed differences in mixing and 

circulation times, between the three tested PBRs. 

7.4.2 Gas phase characterization  

As in liquid phase characterization, gas phase characterization was performed 

for all PBRs at different values of superficial gas velocity in the riser (UGr) using 

tap water and growth medium. Also in this case, no significant differences in liquid 

phase characterization parameters were found between water and growth medium 

suggesting that changes in ionic strength above a certain minimal value did not 

significantly affect gas phase behaviour. These conclusions are in close agreement 
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with similar observations about the effects of ionic strength on gas holdup made by 

Chisti (1989, 1998) and Sánchez Mirón et al. (1999). Thus, the results presented in 

this sub-chapter (7.4.2) refer only to results obtained with growth medium. 

7.4.2.1 Gas holdulp  

Gas holdup (ε) is one of the most important parameters characterizing PBRs 

hydrodynamics since the difference between gas holdup in the riser and in the 

downcomer is responsible for the circulation in the reactor. In this work, gas holdup 

was measured in the riser, for different UGr (Figure 7.5). 

 

Figure 7.5 Riser gas holdup for SCAPBR 50 (p), SCAPBR 75 (¢) and BC (l), at different values 

of UGr. 

In all the three tested PBRs riser gas holdup increased almost linearly with the 

increase of UGr. Probably due to its large riser fraction, SCAPBR 75 shows very 

similar ε values to BC. SCAPBR 50 displays considerable lower ε values. Xu et 

al. (2002) claims that in airlift reactors, holdup is influenced by the induced liquid 

circulation rate that depends on the geometry of the flow path, the gas-liquid 

separating ability of the head zone of the reactor (Chisti and Moo-Young, 1993), 

and also the height of the airlift column (Chisti 1989).  

7.4.2.2 Bubble characterization 

In combination with gas holdup, bubble size and shape influence the gas-liquid 

interfacial area available and consequently the mass transfer coefficient (Chisti, 
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1989). Interfacial area may be enhanced either by increasing gas holdup or by 

decreasing the prevailing bubble size. However there are limits for bubble size 

decrease since it is known that small bubbles induce more shear stress to cells than 

larger bubbles.  

Sauter mean diameter (d32) 

Bubble size is a crucial factor to minimize shear damage to cells and optimize 

mass transfer. Rocha et al. (2003) grew Nannochloropsis gaditana using small vs. 

large bubbles and they found better microalgal growth with larger bubbles and as 

air flow rate was increased the cells suffered more shear with smaller than with 

larger bubbles. Since, in practice, a diameter distribution of bubble sizes exists in 

the PBR, the Sauter mean bubble diameter (d32) is used as a bubble size 

quantification parameter. The Sauter mean diameter refers to the diameter of a 

sphere with the same volume-to-surface ratio as the gas bubble (Chisti, 1989). 

For all tested PBRs, bubbles’ Sauter mean diameter (d32), in general, increases 

with UGr (Figure 7.6). 

 
Figure 7.6 Bubble Sauter mean diameter (d32) for SCAPBR 50 (p), SCAPBR 75 (¢) and BC (l), at 

different values of UGr. 

The dependence of d32 to UGr is lower for higher values of UGr. Although the 

difference is not very defined, it is possible to conclude that the largest bubbles are 

observed in BC and the smallest in SCAPBR 50 for all tested values of UGr. 
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Maximum (Fmax) and minimum (Fmin) Feret diameters were obtained (the Feret 

diameter is the smallest distance between two parallel tangents to the object, the 

tangent position being defined by the angle between them and the horizontal axis) 

in order to calculate the elongation (Fmax/Fmin) of bubbles (Ferreira et al., 2001). 

It is known that the shape of bubbles is influenced by superficial gas velocity. 

Depending on UGr, bubbles can be more or less elongated. Figure 7.7 shows the 

Fmax/Fmin ratio (i.e. elongation), which gives the bubble shape for different UGr in 

the three tested PBRs. 

 

Figure 7.7 Bubbles elongation for SCAPBR 50 (p), SCAPBR 75 (¢) and BC (l), at different 

values of UGr. 

In the three tested PBRs, it was found that for UGr < 0.005 m s-1 bubble shape (in 

terms of Fmax/Fmin ratio) is strongly dependent on the UGr value. However, for UGr > 

0.005 m s-1 bubble shape becomes constant. In BC, bubbles have a slightly higher 

elongation than in both SCAPBRs, which have very similar results in this 

parameter. According to Fmax/Fmin values and using the classification described by 

Mena et al. (2005), the bubbles present in all tested PBRs are classified as flattened 

spheroids. Flattened spheroids are known to have higher oscillation amplitudes that 

influence mass transfer. Montes et al. (1999) show that oscillating bubbles improve 

mass transfer due to the variation of contact times and concentration profiles 

surrounding the bubbles.  

Bubble complexity degree (BCD) 

The complexity of the bubble system can be determined through a parameter 
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called “bubble complexity degree” (BCD). The higher the value of BCD, the higher 

the tendency of bubbles to flow in groups (Ferreira et al., 2012) which typically, 

above BCD certain levels, means that mass transfer is reduced (Deckwer, 1992). 

 

Figure 7.8 Bubbles mean complexity degree (BCD) for SCAPBR 50 (p), SCAPBR 75 (¢) and BC 

(l), at different values of UGr. 

The values of BCD of the three tested PBRs (Figure 7.8) increased almost linearly 

with the increase of UGr, with the exception of BC at higher values of UGr. The 

SCAPBR 50 shows for all UGr a lower value of BCD, whereas the BC has, for UGr < 

0.07 m s-1 higher BCD values than those obtained in SCAPBRs. For UGr > 0.07 m s-1 

SCAPBR 75 shows the higher bubble complexity degree. 

Gas bubble velocity  

Gas bubble velocity determination (Figure 7.9) shows that in SCAPBR, this 

parameter is almost independent of UGr since it remains almost constant over the 

different values of UGr. In the BC, bubble velocity decreases with the increase of 

UGr (probably due to an increase of turbulence), keeping constant from UGr > 0.03 

m s-1 onwards. These results are not in agreement with what would be expected by 

the analysis of Figure 7.6. Typically, larger bubbles tend to have higher rising 

velocities, which was not observed in this case. Possibly the fact that bubbles in BC 

have a more flattened geometry (as shown in Figure 7.7) has a major influence in 

the calculation of their size: they are actually sized as being bigger than they 

effectively are. When comparing bubbles’ velocity in the different PBRs, it is 

expected that the BC shows the best mass transfer performance followed by 
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SCAPBR 75 and SCAPBR 50. 

 

Figure 7.9 Gas velocityRiser for SCAPBR 50 (p), SCAPBR 75 (¢) and BC (l), at different values of 

UGr. 

This happens because the lower bubbles’ velocity means a higher residence time 

in the PBR and, consequently, a better mass transfer. These differences between BC 

and SCAPBR are in agreement with those reported by Contreras et al. (1998). 

7.4.3 Mass transfer of CO2 

As in liquid and gas phase characterization, in volumetric mass transfer 

coefficient determination (KLa) no statistically significant differences were obtained 

between the tests performed with water and mineral growth medium. Microalgae 

cultivation systems, especially at a large scale, are limited by the transfer of CO2 

from the gas to the liquid phase. Mass transfer can be evaluated by means of the 

volumetric mass-transfer coefficient (KLa). The results shown in Figure 7.10 are in 

close agreement with results obtained for mixing time (Figure 7.3), gas holdup 

(Figure 7.5) and gas bubble velocity (Figure 7.9). All of these previous results 

indicated that the BC would probably have the best mass-transfer capability 

followed by SCAPBR 75 and SCAPBR 50, respectively. 

Among these factors, gas holdup seems to be the one that most influences KLa, 

since as for gas holdup (Figure 7.5), also KLa increases almost linearly with UGr. 

The increase verified in Sauter mean diameter (Figure 7.6) (perhaps because it was 

not a very marked increase) does not appear to have had a negative effect on KLa. 
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Figure 7.10 KLa for SCAPBR 50 (p), SCAPBR 75 (¢) and BC (l), at different values of UGr. 

The very high KLa values obtained for all PBRs must be highlighted. KLa values 

ranged between 0.007 – 0.04 s-1 in BC; 0.005 – 0.03 s-1 in SCAPBR 75 and; 0.003 – 

0.02 s-1 in SCAPBR 50.  Through literature review (Table 7.1) it was not possible to 

find such high values of KLa in microalgae cultivation systems. The key to these 

KLa values seems to lie in the aeration system developed (Figure 6.11 and 7.1) 

more than in PBRs design, since comparing KLa values obtained in the BC with the 

results obtained by Merchuk et al. (2000) (also with a bubble column) there is a one 

order of magnitude difference in the values. 

Table 7.1 KLa values obtained in different cultivation systems (adapted from Ugwu et al., 2003) 

PBR UG (m s-1) KLa (s-1) Reference 

Concentric tube airlift 0.055 0.02 Contreras et al., 1998 

Stirred tank 0.009 0.02 Ogbonna et al., 1998 

Inclined tubular 0.02 0.003 Ugwu et al., 2002 

Bubble-column 0.008 0.005 Merchuk et al., 2000 

Flat plate 0.009 0.002 Zhang et al., 2002 

Split cylinder airlift 0.024 0.009 Vega-Estrada et al., 2005 

Airlift tubular horizontal 0.16 0.014 Camacho Rubio et al., 1999 

External-loop airlift tubular 0.25 0.006 Acién Fernández et al., 2001 

 
This excellent mass transfer capability of all the three PBRs will contribute to an 

efficient CO2 delivery to cells, and an effective removal of O2 from the culture.  
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7.4.4 Biomass productivity  

Although extremely important for characterization, optimization and scale-up of 

PBRs, none of the previously analysed parameters allows concluding which is the 

most productive PBR. To make that evaluation, C. vulgaris was grown in the three 

PBRs (BC, SCAPBR 75 and SCAPBR 50) at three different values of UGr (0.0011, 

0.0044 and, 0.0077 m s-1). 

The maximum biomass productivities (Pmax) obtained in each of the conditions 

are reported in Figure 7.11. Contrary to what the results of liquid and gaseous phase 

characterization as well as mass transfer suggested (Figures 7.2 – 7.10), SCAPBR 

50 presents itself as the PBR with best volumetric productivity (0.60 – 0.72 g L-1 d-

1), exceeding BC’s volumetric productivity in 15 – 36% and SCAPBR 75’s 

volumetric productivity in 5 – 22%, depending on the UGr. Additionally it was 

found that in all the PBRs the highest value of Pmax was achieved at UGr = 0.0044 m 

s-1, and the lowest at UGr = 0.0077 m s-1. In all the situations the maximum cell 

concentration was around 6 g L-1 (data not shown). 

More important than comparing the Pmax values obtained in this study with those 

obtained in other studies, it is relevant to compare the relationship established 

between the Pmax of BC and SCAPBRs with the relation found by other authors 

when comparing bubble columns with airlifts as PBRs. The comparison between 

Pmax obtained in this study with those obtained in other studies using different PBRs 

(or even similar) would not provide any relevant information in terms of PBRs 

performance comparison for several reasons: i) the strain used was not the same in 

most of the studies; ii) the culture conditions (culture medium, CO2 concentration, 

aeration flow rates, temperature, intensity and frequency of light supply) are very 

diverse; iii) cultivation systems used have a wide range of dimensions (from 

millilitres to hundreds of litres); iv) the productivity determination is not always 

performed in the same way (mean productivity, maximum productivity, areal 

productivity, volumetric productivity). For the above-mentioned reasons, it only 

makes sense checking in earlier studies which PBRs register the best performance 

(when used in the same conditions) and from there trying to establish a parallel with 

the results obtained in this study. Published literature shows no unanimous 
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conclusions when it comes to comparing the performance of airlift and bubble 

column PBRs. In a review by Janssen et al. (2003) the authors concluded that 

bubble column and air-lift reactors, in general, appear to have similar 

productivities, however bubble column reactors perform better at UGr > 0.05 m s-1. 

 

Figure 7.11 Biomass productivity for SCAPBR 50 (p), SCAPBR 75 (¢) and BC (l), at three 

different values of UGr. 

Mirón et al. (2002) used pilot scale (0.19 m column diameter, 2 m tall, 0.06 m3 

working volume) outdoor bubble column and airlift bioreactors (a split-cylinder and 

a draft-tube airlift device) for Phaeodactylum tricornutum cultivation. The three 

PBRs produced similar biomass versus time profiles and final biomass 

concentration (∼4 g L-1). In a different study (Mirón et al., 2003), using the same 

PBRs and the same microalgae but with different growth conditions, the volumetric 

productivity of the three PBRs was approximately 0.30 d L-1 d-1 with UGr = 0.01 m 

s−1. Krichnavaruk et al. (2007) examined the cultivation of Chaetoceros calcitrans 

in airlift and bubble column PBRs and biomass productivity was about the double 

in an airlift device than in a bubble column. These differences in the conclusions of 

different studies show that it is not possible to establish one particular type of PBR 

as being the most suitable for microalgae cultivation. PBR performance depends on 

factors such as PBR geometry, aeration system and operational conditions (e.g. UGr 

or light supply). 

The results shown in Figure 7.11 seem to indicate that none of the previously 

discussed parameters (Figures 7.2 - 7.10) appear to be the limiting factor to PBR 

productivity, since SCAPBR 50 showed the least favourable values for all 
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parameters, while apparently being the one with the best results in terms of Pmax. 

The only factor that has remained unchanged was the fact that the SCAPBR 75 is 

invariably displayed as the intermediate element between the two “extremes” in 

terms of design (SCAPBR 50 and BC). This leads to the conclusion that the fact 

that SCAPBR 75 has a large ratio riser:downcomer puts it in a position where, 

invariably, it shows characteristics that are between those of an airlift and a bubble 

column. 

The fact that the highest value of Pmax occurs for all PBRs at UGr = 0.0044 m s-1 

followed by a sharp decrease in productivity for UGr = 0.0077 m s-1 does not seem 

to find an explanation in the parameters previously discussed, since higher values 

of UGr and KLa usually lead to higher productivities (Barbosa et al., 2003; Zhang et 

al., 2002).	
  None of the parameters analyzed before (Figures 7.2 - 7.10) showed an 

inversion of behaviour at UGr = 0.0044 m s-1 (or indeed at any value of UGr).	
  

One of the possible explanations for the decline in productivity at UGr = 0.0077 

m s-1 is the shear stress caused by a higher flow rate, but for various reasons this 

does not seem plausible: i) the tested values of UGr are below the values reported in 

the literature as being capable of causing stress in microalgae (Mirón et al. (2007) 

reported that Phaeodactylum tricornutum were susceptible to aeration-associated 

hydrodynamic stress only when UGr exceeds 0.01m s−1; also, Camacho et al. (2001) 

claimed cell damage in Phaeodactylum tricornutum cells at 0.01 < UGr < 0.05 m s-1 

(much higher than the UGr values used in this study)); ii) Sánchez Mirón et al. 

(1999) claimed that cell damage occurs when the turbulence is so intense that the 

fluid microeddy size approaches cellular dimension. However, in this study the 

bubbles present average sizes of 0.28 < d32 < 0.52 mm. Additionally, bubble size 

increases slightly with UGr and not the contrary (Figure 7.6); iii) C. vulgaris is 

described as a very robust and resistant to shear stress. Thus, the hydrodynamic 

stress may be discarded as a factor that led to a decrease in biomass productivity in 

all the PBRs. 

From the results it is clear that mass transfer was not a limiting factor in the 

present work, since SCAPBR 50 is the PBR with lower values of KLa while the BC 

shows the highest values for this parameter (Figure 7.10). Additionally, there is a 
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decrease in productivity between UGr = 0.0044 and 0.0077 m s-1, which is in 

opposite direction to KLa variation in all PBRs (Figure 7.10). Thus, it seems 

reasonable to conclude that none of the parameters discussed earlier (Figures 7.2 – 

7.10) is by itself a limiting factor for the tested PBR productivities. It is also 

plausible to conclude that provided conditions (mainly in terms of mixing, mass 

transfer and hydrodynamic stress) are very suitable, in all three PBRs, and cannot 

be considered as limiting factors as a whole to obtain higher productivities in these 

PBRs.  

The only parameters that have not been studied yet and, therefore, were not 

taken into account when evaluating the PBRs productive performance are light 

distribution inside PBRs and microalgal cells light history (frequency and pattern). 

It is known that these factors may be of great importance to define PBRs’ 

productivity. 

7.4.5 Determination of cells’ light history   

In photobioreactors, turbulent flow conditions and light gradients frequently 

occur. Thus, algal cells cultivated in such reactors experience fluctuations in light 

intensity that can change in extent and frequency, depending on hydrodynamic 

conditions and PBR geometry. It has been previously shown that light patterns 

influence microalgal growth and product formation (Lee and Pirt, 1981; Laws et 

al., 1983; Terry, 1986; Merchuk et al., 1998; Jannsen et al., 1999). Light intensity 

and duration of light-dark (LD) intervals are also very relevant parameters 

(Richmond et al., 2003). 

The following part of the work presents a method to visualize how cells are 

subject to these light-dark patterns. The research is focused on temporal and spatial 

aspects of light patterns, which may affect the photosynthetic reaction. The method 

combines light regime characterization inside the PBR (using fibre optic 

technology) with particle tracking (using image analysis). These determinations 

were performed using growth medium. 
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7.4.5.1 Light regime characterization 

It is known that for C. vulgaris cells the light compensation point (i.e. the 

irradiance below which there is no net photosynthesis) is between 5 and 10 µE m−2 

s−1 and the light saturation intensity is about 250 µE m−2 s−1 (Degen et al., 2001). 

For that reason, cell growth experiments were performed at an incident light 

intensity of 250 µE m−2 s−1, in order to avoid introducing more stress elements to 

the cells. 

Figure 7.12 only shows light intensity (L.I.) variation profiles at three different 

concentrations, once above 1.0 g L-1 no changes in light profile were observed (data 

not shown) because the light does not penetrate more than the first 5 mm.  

 

Figure 7.12 Light intensity (L.I.) profiles inside the PBRs (SCAPBR 50, SCAPBR 75 and BC) at 

different C. vulgaris cell concentrations (0.25, 0.50 and, 1.0 g L-1). 

This observation is in line with those reported by Degen et al. (2001). These 

authors claimed that, in Chlorella cultures with 1.8 g L-1, with 980 µE m−2 s−1 

illumination, less than 1% of the light remained at a culture depth of 3 mm.Figure 

7.12 shows that, compared to BC, SCAPBRs allow (due to their central wall) the 
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existence of a larger illuminated volume fraction for all tested concentrations. 

Comparing the two SCAPBRs it is possible to verify that, for low cell 

concentrations (0.25 and 0.50 g L-1), there is no clear advantage for any SCAPBR. 

However, at 1.0 g L-1, SCAPBR 50 enables delivery of light to a region of the PBR 

(central region) that in the other PBRs is in complete darkness. 

Table 7.2 Continuously illuminated PBRs surface area 

PBR Illuminated surface area (m2) 

SCAPBR 50 0.290 

SCAPBR 75 0.265 

BC 0.190 

 

At cell concentrations higher than 1.0 g L-1, the cells only have access to light 

when they circulate along the PBRs walls (in all the PBRs) and along both sides of 

the central wall (in SCAPBRs only). Therefore, the surface area that is continuously 

illuminated in the BC is 0.190 m2, while in SCAPBR 75 the illuminated surface is 

39% higher (0.265 m2). The SCAPBR 50 has the largest illuminated surface area 

(0.290 m2) which is 53 and 9% higher than those presented by BC and SCAPBR 

75, respectively (Table 7.2). 

This information about light intensity profiles inside the PBRs provides very 

useful information, however it is not possible to use the full potential of this 

information while not knowing the cells’ flow pattern. 

7.4.5.2 Flow pattern visualization  

Lou et al., (2003) claimed that moving the cells in and out of illuminated zones 

at suitable frequencies can improve biomass productivity. Thus, a flow examination 
is required for a better understanding and optimization of PBR productivity. Flow 
visualization studies such as those shown in Figure 7.13 and 7.14 provide a useful 
insight into PBRs circulation patterns, identification of dead zones and regions of 
intense turbulence.  

Figures 7.13 and 7.14 show the alginate particle flow pattern inside the three 

tested PBRs at three different values of UGr (0.0011, 0.0044 and, 0.0077 m s-1), the 

same used in C. vulgaris growth tests. Figure 7.13 was obtained in a plane parallel 
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to the light source (used for growth), i.e. a plane perpendicular to the central wall of 

SCAPBRs (riser is on the left side and downcomer on the right side of each 

individual SCAPBR image). Figure 7.14 was obtained in a plane perpendicular to 

the illumination, i.e. a plane parallel to the central wall of SCAPBRs (riser is on the 

foreground and downcomer on the background of each individual SCAPBR image). 

In both Figures 7.13 and 7.14 three representative assays (represented by 

different colours) are shown in each individual image. Though more assays were 

performed, only three are shown for each tested condition to allow an easy 

interpretation of the figures. 

The results related to flow patterns inside the PBRs (Figures 7.13 and 7.14) 

allow understanding many of the results obtained previously in terms of gas and 

liquid phase characterization as well as mass transfer characterization. 

Thus, the analysis of flow pattern results allows understanding why the 

SCAPBR 75, despite having a higher circulation time (Figure 7.2) shows better 

results in terms of mixing time (Figure 7.3). The existence of a higher turbulence 

induced by radial movement in the riser of SCAPBR 75 improves mixing time, but 

causes a higher circulation time. This conclusion is further supported by the results 

listed in Table 7.3, representing the mean time that the particle takes to complete a 

circulation (average of 10 measurements). KLa increase seen in Figure 7.10 is also 

supported by increased turbulence (Figures 7.13 and 7.14) and consequent radial 

mixing that follows exactly the same trend according to the UGr and type of PBR 

used. Matching the results obtained in the characterization of light distribution 

profile (Figure 7.12) with the flow pattern inside the PBRs (Figures 7.13 and 7.14), 

allows understanding and (at least partially) explaining the productivity obtained in 

each of PBRs (Figure 7.11). 

Figure 7.11 shows that the highest Pmax obtained for BC (UGr = 0.0044 m s-1) is 

still lower than any of the Pmax values obtained for the SCAPBRs in the different 

tested conditions. Observing the particle tracking images concerning the BC 

(Figure 7.13), it is clear that in all tested conditions there is a chaotic movement of 

the particle. Mostly at UGr = 0.0011 m s-1 the particle tends to circulate only in a 

very specific zone of this PBR. 
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Figure 7.13 Particle tracking inside the three different PBRs at three different values of UGr (riser is 

on the left side and downcomer on the right side of each individual SCAPBR image, as represented 

in Figure 7.1). 
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This type of flow pattern is typical in bubble columns and is likely to cause 

unequal cell density along the length of the reactor, which may induce cell 

sedimentation, algal starvation and death (Fan et al., 2007), which in turn can lead 

to a productivity reduction. Considering the regions near the walls of the BC as 

light areas and the innermost region as dark area, it is clear that in the BC the light-

dark movement was mostly chaotic and did not have a well-defined frequency. 

Additionally, results show that cells may reside in high or in low light intensity 

regions for a long time without circulation. The flow patterns found in association 

with the profile of light distribution within the BC justify why this PBR, although 

presenting the best results in terms of mixing and mass transfer, has lower 

productivities than those determined for SCAPBRs. 

The flow patterns in SCAPBRs is relatively simpler than those in the BC. The 

particle flows in a defined circulation pattern through the channels defined by 

SCAPBRs’ geometry, being driven to pass the riser and the downcomer 

successively.  

In agreement with the observed in previous results (Figures 7.2 - 7.11), also in 

relation to the flow pattern inside the PBRs, SCAPBR 75 presents a behaviour that 

is somewhat halfway between those shown by the BC and SCAPBR 50. The 

SCAPBR 75, despite showing a typical airlift circulation pattern (the particle passes 

successively between riser and downcomer) shows also, in the riser, a typical 

bubble column chaotic movement with radial mixing. At UGr = 0.0011 m s-1 the 

SCAPBR 75 riser shows a flow pattern (7.13 and 7.14) that has some similarities 

with the typical BC flow pattern, mainly in the upper region of the riser. That kind 

of motion is reflected in the mean particle circulation time (Table 7.3), which is the 

highest among the three PBRs tested (12.72 ± 4.57 s). At UGr = 0.0044 and 0.0077 

m s-1 that kind of near-chaotic movement is displaced to the bottom of SCAPBR 75, 

greatly increasing the turbulence in this region. Under all conditions tested, the 

particle has a linear movement in the SCAPBR 75 downcomer with virtually no 

radial motion. Increasing the value of UGr had hardly any effect on downcomer 

radial mixing. Considering the walls of SCAPBR 75 and both sides of the central 
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wall surface as light regions and the innermost area of riser and downcomer as dark 

region, it was observed that: i) in SCAPBR 75 riser occurs, albeit in a lesser extent 

than in BC, a near chaotic light-dark movement with a not well-defined frequency; 

ii) in SCAPBR 75 downcomer, the linear movement of the particle means that it 

can make the entire dowcomer path only in light or dark areas without any light 

intensity fluctuation. 

 

Figure 7.14 Particle tracking inside the two different SCAPBRs at three different UGr (riser is on the 

foreground and the downcomer on the background of each individual SCAPBR image, 

perpendicular perspective of Figure 7.13). 

Comparing to BC, in SCAPBR 75 cells typically remain more uniformly 
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suspended in the medium, thus reducing the chances of occurrence of cell 

sedimentation or unequal cell density along the length of the reactor. Due to its 

more clearly defined flow pattern and higher illuminated surface area (Table 7.2), 

cells are subjected to a more regular frequency of exposure to light and dark 

conditions in the SCAPBR 75. Although the frequency at which such light-dark 

fluctuations occur is much greater than that seen in the BC, this frequency is not 

regular (due to the chaotic motion observed in the riser). 

Table 7.3 Particle mean circulation time inside SCAPBRs 

UGr (m s-1) 
Circulation time (s) 

SCAPBR 50 SCAPBR 75 

0.0011 8.08 ± 0.69 12.72 ± 4.57 

0.0044 3.63 ± 0.77 6.98 ± 2.42 

0.0077 3.64 ± 0.56 8.83 ± 1.71 

The SCAPBR 50, in contrast, presents a much more regular and defined flow 

pattern than the other two tested PBRs. At UGr = 0.0011 m s-1 there is a well-

defined particle movement without any kind of chaotic motion. The existence of a 

regular alternation between light regions (outer wall and central wall of SCAPBR 

50) and dark regions (the innermost region of riser and downcomer) can be 

identified both in the riser and in the downcomer (Figure 7.13). When UGr = 0.0044 

m s-1 these regular alternating movements remain and they take place at a higher 

spatial (i.e., the walls are hit by the cells more often while travelling through the 

riser – Figure 7.13) and temporal (i.e. the cells hit the walls more times per second 

due to their higher velocity – Table 7.3) frequencies. At UGr = 0.0077 m s-1 the 

basic features of flow patterns remain present, however a phenomenon of increased 

turbulence arises at the upper section of SCAPBR 50 which, due to the absence of 

central wall, displays a larger dark fraction than most of SCAPBR 50 volume. This 

turbulence verified at UGr = 0.0077 m s-1 may be the explanation for a reduction in 

SCAPBR 50 productivity at this UGr. The defined mixing pattern in SCAPBR 50 

effectively simulated a regular flashing-light effect (i.e. light-dark cycles). These 

regular light-dark cycles in addition to the reduction of exposure time to a 

continuous dark period are known to enhance the photosynthetic efficiency of algal 

cells and, consequently, biomass productivity (Grima et al., 2001; Janssen et al., 
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2001).  

Through the analysis of all the results obtained in Chapter 7 it is clear that the 

maximum biomass productivity displayed by SCAPBR 50 at UGr = 0.0044 m s-1 in 

comparison with the other PBRs at different UGr, appears to be the result of two 

main characteristics: i) efficient light distribution inside SCAPBR 50, which results 

in a higher illuminated surface area, higher illuminated volume fraction and higher 

mean light intensity (Figure 7.12 and Table 7.2); ii) regular and defined flow 

patterns which result into the absence of chaotic movement and the existence of a 

regular frequency of exposure to light and dark areas. 

Because the flow patterns in the three PBRs are obviously different, a bigger 

difference between Pmax values would possibly be expected. However, as Mirón et 

al. (2002) reported, fairly different hydrodynamic regimes can lead to cells 

receiving more approximate values of cumulative average irradiance over a given 

period, which can result in productivities that are not as different as the differences 

in flow patterns would suggest.  

7.5 Conclusions  

The developed SCAPBRs proved to be extremely suitable for microalgae 

cultivation. The design of PBRs, particularly the design of the gas sparger, allowed 

meeting the needs of microalgae in terms of efficient mixing and good mass 

transfer coefficients (efficient supply and removal of CO2 and O2, respectively). 

SCAPBR 50 (at UGr = 0.0044 m s-1) showed, among the tested PBRs, the highest 

value of biomass volumetric productivity (0.75 g L-1 d-1). This result is due to a 

more effective light distribution inside the PBR and to a regular and defined flow 

pattern, which allows exposing cells to regular light and dark periods. 

The statistical analysis of productivity results (data not shown) suggests that 

SCAPBR productivity can be improved by decreasing the riser:downcomer ratio. 
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8.1 General conclusions 

Three different strategies were adopted in order to make the microalgae mass 

cultivation an economically and environmentally sustainable process: i) maximize 

productivity through optimization of culture conditions, ii) maximize productivity and 

decrease costs by the use of agro-industrial waste as a cultivation medium; iii) 

development of a new, low cost and highly productive microalgae cultivation system. 

Growth parameters and CO2 uptake by C. vulgaris P12 were significantly affected by 

CO2 concentration in air stream (ranging from 2% to 10%) and aeration rate (ranging 

from 0.1 vvm to 0.7 vvm). The highest rate of CO2 fixation by microalgae (2.22 g L-1 d-

1) was obtained under 6.5% CO2 and 0.5 vvm. These results are an important step in the 

development of strategies to mitigate CO2 in an environmentally sustainable manner by 

using a biological approach.   

Starch content of C. vulgaris strain P12 reached up to 41.0% of dry cell weight, 

which was 8-fold higher than the control (central points of the experimental design). 

This result was achieved simply by altering the initial concentrations of urea and FeNa-

EDTA in the culture medium. Since accumulation of starch occurred at nitrogen 

depletion conditions under which the cell growth was much slower than that observed 

during nitrogen supplemented cultivations, compromising between increasing starch 

content and cell growth will be necessary in order to attain high values of both biomass 

concentration and starch productivity.  

Parachlorella kessleri uses starch as a primary carbon and energy storage source 

under the first days of cultivation, but the stress caused by decreased concentrations of 

nutrients make the microalgae to shift the fixed carbon into reserve lipids as a secondary 

storage product. The cells recovered growth shortly after repleting medium and grew 

synchronously into large mother cells with high concentration of chlorophyll. These 

findings indicate that nutritional limitation can be used in P. kessleri cultivation as a 

very effective strategy to increase lipid productivity, e.g. for biofuel production. 

When compared with the photoautotrophic control culture, mixotrophically 

cultivated microalgae grew faster, providing higher productivities of biomass, lipids, 

starch and proteins. Furthermore, microalgal biomass production and carbohydrate 
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consumption were enhanced by supplementing the inorganic culture medium with 

hydrolysed CW powder solution, than supplementing with a mixture of pure glucose 

and galactose, as a consequence of stimulatory effects arising from growth-promoting 

nutrients in CW. Mixotrophic cultivation of C. vulgaris using CW can be considered as 

a feasible strategy to reduce the costs of microalgal biomass production, while also 

contributing to solve the environmental problem caused by CW disposal in dairy 

industries.  

The developed SCAPBRs proved to be extremely suitable for microalgae cultivation. 

The design of PBRs, particularly the design of the gas sparger, allowed meeting the 

needs of microalgae in terms of efficient mixing and good mass transfer coefficients 

(efficient supply and removal of CO2 and O2, respectively). SCAPBR 50 (at UGr = 

0.0044 m s-1) showed, among the tested PBRs, the highest value of biomass volumetric 

productivity (0.75 g L-1 d-1). This result is due to a more effective light distribution 

inside the PBR and to a regular and defined flow pattern, which allows exposing cells to 

regular light and dark periods. The statistical analysis of productivity results suggests 

that SCAPBR productivity can be improved by decreasing the riser:downcomer ratio. 

8.2 Suggestions for future work 

The results obtained during this PhD show that SCAPBRs are systems with 

enormous potential for large-scale cultivation of microalgae. There is a clear need to 

explore the potentialities of SCAPBRs, namely by decreasing the riser:downcomer ratio 

to obtain a flow pattern which allows a further increase in biomass productivity. 

It is suggested to carry out SCAPBR scale-up to a pilot scale (up to 4 m high and 

0.20 in diameter) to operate under real conditions, i.e., outdoor cultivation with natural 

illumination. This process is imperative to validate SCAPBR design. Such up-scale 

should include the construction of SCAPBR with a low cost, transparent material (e.g. 

polyethylene or PVC). Due to SCAPBR characteristics it would be also very interesting 

to carry out tests of microalgae cultivation in continuous regime. 

All the techniques optimized during this PhD (e.g. nutrient limitation, two-step 

cultivation strategy or mixotrophic cultivation) should be tested in this SCAPBR. 
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