
Occupation times of exclusion
processes

Patŕıcia Gonçalves

Abstract In this paper we consider exclusion processes {ηt : t ≥ 0} evolving
on the one-dimensional lattice Z, under the diffusive time scale tn2 and start-
ing from the invariant state νρ - the Bernoulli product measure of parameter
ρ ∈ [0, 1]. Our goal consists in establishing the scaling limits of the additive

functional Γt :=
∫ tn2

0
ηs(0) ds - the occupation time of the origin. We present

a method, recently introduced in [7], from which a local Boltzmann-Gibbs
Principle can be derived for a general class of exclusion processes. In this
case, this principle says that Γt is very well approximated to the additive
functional of the density of particles. As a consequence, the scaling limits
of Γt follow from the scaling limits of the density of particles. As examples
we present the mean-zero exclusion, the symmetric simple exclusion and the
weakly asymmetric simple exclusion. For the latter under a strong asymmetry
regime, the limit of Γt is given in terms of the solution of the KPZ equation.

1 Introduction

In these notes we will explore the answer to the following question: given a
one-dimensional Markov interaction {ηt : t ≥ 0} with state space Ω and a
function f : Ω → R, what is the scaling limit of the additive functional:

Γt(f) :=

∫ t

0

f(ηs)ds.

There is a vast literature on the study of scaling limits of additive func-
tionals of particles systems, but we point out here the seminal work [10], in
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which the authors give a characterization of the functions f , for which Γt

has a Brownian motion as scaling limit. There, the study of Γt was moti-
vated by the analysis of the motion of a tagged particle. The relation is that,
the motion of the tagged particle can be written as a martingale plus an
additive functional. Standard theorems for martingales provide the limit of
the martingale term, so it remains to characterize the limit of the additive
functional, in order to determine the scaling limits of the tagged particle. In
[10] they give an abstract condition on f under which the additive functional
converges. This condition is described as follows. Suppose that {ηt : t ≥ 0} is
a stationary Markov process with state space E, with generator L and that
it is reversible with respect to some probability measure ν. For a function f
such that Eν [f(η)] = 0, θ−1/2Γθt(f) converges to a Brownian motion, as long
as, limt→∞ t−1Eν [(Γt(f))

2] <∞ [10].
By exploring t−1Eν [(Γt(f))

2], last condition is equivalent to requiring that
f ∈ H−1. The Sobolev space H−1 is the dual, with respect to L2(ν), of
the space H1, defined as the set of functions f ∈ L2(ν) such that ||f ||21 =∫
E
−f(η)(Ωf)(η)ν(dη) <∞. Usually, is not easy to verify that f ∈ H−1 and

in [15] they came out with a very simple criterium, which gives the Brownian
motion limit of Γt(f). Following the terminology of [15], a local function
f : E → R whose limiting variance t−1Eν [(Γt(f))

2] is finite (or equivalently
f ∈ H−1) is called an admissible function. In that paper the authors prove
that for the one-dimensional finite range symmetric exclusion, a function f is
admissible for the generator acting on L2(Pρ) (where Pρ is the distribution of
the exclusion process starting from νρ), if and only if, defining for ρ ∈ (0, 1)
φf (ρ) := Eνρ [f(η)], we have that

φj
f (ρ̃)

∣∣∣
ρ̃=ρ

= 0, for j = 0, 1, 2. (1)

This condition is equivalent to saying that the degree of f is greater or equal
to three, namely: f can be written as f(η) := c

∏
x∈A(η(x) − ρ), where c is

a constant and A j Z with |A| ≥ 3. In that paper the same result is proved
for one-dimensional finite range symmetric zero-range processes, under the
condition that, the inverse of the spectral gap for the dynamics restricted to
a finite box of size ℓ has second moment bounded from above by cℓ4, where
c is a constant.

In [6, 7, 8] we came across with the study of additive functionals, when
establishing the equilibrium fluctuations of exclusion type models. In those
papers, we establish the limit process governing the fluctuations of particle
systems of exclusion type and when characterizing this process as the solution
of some stochastic partial differential equation we had the need to derive the
Boltzmann-Gibbs Principle. This principle was introduced in [2] and says
that:∫ t

0

1√
n

∑
x∈Z

g(x/n){τxf(ηs)− φf (ρ)− φ′
f (ρ)(ηs(x)− ρ)ds} −−−−−→

n→+∞
0,
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in L2(Pρ). Here g is a test function sufficiently smooth and f is a local
function defined on E - the state space of the Markov process {ηt : t ≥ 0}. In
[6, 7, 8] we establish a stronger Boltzmann-Gibbs Principle under which, we
can identify the limit of the functional above by speeding the processes into
longer time scales/stronger asymmetries. Contrarily to our initial purposes,
in the previous additive functional, the integrand function is no longer local
- since it depends on the process defined on the full lattice. Nevertheless,
the proof of the stronger Boltzmann-Gibbs Principle derived in [6, 7, 8] can
be formulated in terms of local functions and in [9] we derived the local
Boltzmann-Gibbs Principle, for exclusion processes satisfying the conditions
of section 2:

Theorem 1 (Local Boltzmann-Gibbs Principle [9]).
Let f : E → E be a local function, such that supp(f) ⊆ {1, ..., k} and

φf (ρ) = 0. There exists c = c(f, ρ) such that

i) if φ′
f (ρ) ̸= 0, then for any t ≥ 0 and any ℓ ≥ k:

Eρ

[( ∫ t

0

{
f(ηs)− φ′

f (ρ)
(
ηℓs − ρ

)}
ds
)2]

≤ c
(
tℓ+

t2

ℓ2

)
,

ii) if φ′
f (ρ) = 0, then for any t ≥ 0 and any ℓ ≥ k:

Eρ

[( ∫ t

0

{
f(ηs)−

φ′′
f (ρ)

2

((
ηℓs−ρ

)2− ρ(1− ρ)

ℓ

)}
ds
)2]

≤ c
(
t(log ℓ)2+

t2

ℓ3

)
where ηℓ := 1

ℓ

∑ℓ
x=1 η(x) and Eρ denotes the expectation with respect to

Pρ.

We will see below that last result allow us to obtain upper bounds on the
variance of additive functionals for local functions such that φf (ρ) = 0 and
φ′
f (ρ) ̸= 0 or such that φf (ρ) = φ′

f (ρ) = 0 and φ′′
f (ρ) ̸= 0. Notice that

these functions do not satisfy the admissibility condition (1) as stated in
[15]. Moreover, in the case φ′

f (ρ) ̸= 0, we can also identify the limit of Γt(f)
as a fractional Brownian motion of Hurst exponent H = 3/4, for a general
class of exclusion processes.

We recall from [15], that in the symmetric finite range exclusion, for an
admissible function f : E → R as in (1) the variance of Γt(f) is bounded from
above by Ct and the invariance principle for Γt(f) was also established:

1√
θ

∫ θt

0

f(ηs)ds −−−−−→
θ→+∞

B(Ct), (2)

where B is the standard Brownian motion and C is a constant. In that paper,
(2) is also proved for the case of symmetric zero-range processes, under the
condition on the spectral gap mentioned above. In [13, 16], the previous result
was obtained for mean-zero symmetric exclusion processes. In [13] it is also
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proved that for mean-zero simple exclusion processes, the set of admissible
functions are those satisfying condition (1). In the finite range symmetric and
mean-zero exclusion process, for a local function f such that φf (ρ) = 0 and
φ′
f (ρ) ̸= 0, the variance of Γt(f) is bounded from above by Ct3/2 and

1

θ3/4

∫ θt

0

f(ηs)ds −−−−−→
θ→+∞

B3/4(Ct), (3)

where B3/4 is the fractional Brownian motion with Hurst exponent H = 3/4
and C is a constant [13]. For symmetric zero-range processes the limit (3)
was established in [12].

It remains to cover the case of local functions f such that φf (ρ) = φ′
f (ρ) =

0 and φ′′
f (ρ) ̸= 0. In the case of the symmetric simple exclusion in [13] it is

obtained an upper bound for the variance of Γt(f) and in [12] it is proved
that

1√
θ log(θ)

∫ θt

0

f(ηs)ds −−−−−→
θ→+∞

B(Ct). (4)

For symmetric zero-range processes last question is open, but (4) is conjec-
tured to hold for these processes, see [12].

For non zero mean processes, like for example the asymmetric simple ex-
clusion, much less is known. Obviously that, we can get upper bounds on
the variance of Γt(f) using the symmetric part of the generator and the re-
sults presented above. For the asymmetric simple exclusion, it was proved
in [14] that for local functions f such that φf (ρ) = 0 and φ′

f (ρ) ̸= 0 or
φf (ρ) = φ′

f (ρ) = 0 and φ′′
f (ρ) ̸= 0, and for ρ ̸= 1/2, the variance of Γt(f) is

bounded from above by Ct, where C is a constant. In a forthcoming paper [1]
we are able to obtain sharp bounds in the remaining cases for the asymmetric
exclusion and also for asymmetric zero-range processes.

Our approach to these problems is completely different from the ones used
in the papers mentioned above. We consider general exclusion processes and
by using the local Boltzmann-Gibbs Principle, we are able to relate additive
functionals of local functions f with additive functionals of the density of
particles. Then, since for those systems, the Central limit Theorem for the
density of particles is very well studied, we obtain upper bounds on the
variance of Γt(f) and we are able to identify its limit.

This paper is organized as follows. On the second section, we define our
microscopic dynamics, namely one-dimensional exclusion type models whose
dynamics depends on a local function which is assumed to turn the dynam-
ics elliptic and reversible. On the third section, we recall some results on
the scaling limit of the density of particles and we state that the additive
functional of an Ornstein-Uhlenbeck process evaluated in a proper indicator
function, converges and we identify its limit Zt as a fractional Brownian mo-
tion with Hurst exponent H = 3/4. On the fourth section, we state that for
local functions f such that φf (ρ) = 0 and φ′

f (ρ) ̸= 0, n−3/2Γtn2(f) converges
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as n→ +∞ to φ′
f (ρ)Zt. The fifth section is devoted to the sketch of the proof

of the Local Boltzmann-Gibbs Principle and on the sixth section we present
some examples and we discuss the case of symmetric/asymmetric jump rates.

2 Exclusion processes

In this section we describe our microscopic dynamics. Let {ηt : t ≥ 0} be
a Markov process with space state Ω := {0, 1}Z. The occupation variables
are defined in such a way that for x ∈ Z, η(x) = 1 if the site x is occupied,
otherwise η(x) = 0. At each site x ∈ Z, there exists a random time clock,
with exponential distribution with parameter 1. If the clock rings at the site
x, either there is no particle at that site and one has to wait a new random
time, or there is a particle at that site and it jumps according to some rate
function that we define as follows. Let r : Ω → R be a local function that
satisfies:

i) There exists ε0 > 0 such that ε0 < r(η) < ε−1
0 for any η ∈ Ω.

(Ellipticity)
ii) For any η, ξ ∈ Ω, such that η(x) = ξ(x) for x ̸= 0, 1, then r(η) = r(ξ).

(Reversibility)

The dynamics can be formally described by means of a generator, which
is given on local functions f : Ω → R by:

Lf(η) =
∑
x∈Z

r(τxη)(f(η
x,x+1)− f(η))

where

ηx,y(z) =


η(y), z = x

η(x), z = y

η(z), z ̸= x, y

(5)

and τx is the space translation by x, namely, for y ∈ Z τxη(y) := η(x+ y).
The invariant measures for these processes are {νρ : ρ ∈ [0, 1]}, where for

ρ ∈ [0, 1], νρ denotes the Bernoulli product measure of constant parameter ρ.
Under this measure the occupation variables {η(x) : x ∈ Z} are independent
and νρ(η : η(x) = 1) = ρ. Here and in the sequel, for T > 0, we denote
by D([0, T ], Ω) (C([0, T ], Ω)) the space of càdlàg (continuous) trajectories
from [0, T ) to Ω. We denote by Eρ the expectation with respect to Pρ - the
distribution of {ηt : t ≥ 0} in the space D([0, T ], Ω) starting from νρ.
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3 Scaling Limits of the density of particles

As mentioned in the introduction, our approach is to related the additive
functional of local functions f such that φf (ρ) = 0 and φ′

f (ρ) ̸= 0, with
the additive functional of the density of particles. Then, by using the known
results on the scaling limits of the density of particles we are able to deduce
the corresponding scaling limits for the additive functional of f . We start by
recalling the results that concern the density of particles for the exclusion
processes that we have defined above.

3.1 Hydrodynamic Limit

For each configuration η we denote by πn(η; du) the empirical measure given
by:

πn(η; du) =
1

n

∑
x∈Z

η(x)δx/n

where δx/n is the Dirac measure at x/n and πn
t (η, du) := πn(ηt, du).

Under a diffusive scaling of time tn2 and for a set of initial meaures associ-
ated to a sufficiently smooth profile, the hydrodynamic limit for {ηt : t ≥ 0}
was obtained by [5]. The hydrodynamic limit is a Law of Large Numbers
for the empirical measure in the following sense. Fix an initial profile suf-
ficiently smooth γ : R → [0, 1]. If for an initial distribution {µn : n ≥ 1}
(η0 ∼ µn) associated to the profile γ(·), the empirical measure at time t = 0
converges to the deterministic measure γ(u)du, then for any time t > 0, the
empirical measure at time t converges to the deterministic measure ρ(t, u)du,
where ρ(t, u) is the unique weak solution of the corresponding hydrodynamic
equation with initial condition γ(·).

3.2 Equilibrium fluctuations

Now we recall the Central Limit Theorem for the empirical measure for the
exclusion processes described above and starting from the invariant state νρ.
Let S(R) denote the Schwarz space of test functions and let S′(R) be its dual.
For g ∈ S(R), the density fluctuation field is defined as

Yn
t (g) :=

1√
n

∑
x∈Z

g
(x
n

)
{ηtn2(x)− ρ}. (6)

It was proved in [3] that {Yn
t : t ∈ [0, T ]} converges in distribution with

respect to the Skorohod topology of D([0, T ], S′(R)) to the stationary solution



Occupation times 7

of the Ornstein-Uhlenbeck equation

dYt = D(ρ)∆Ytdt+
√
2D(ρ)ρ(1− ρ)∇dBt, (7)

where Bt is a S′(R)-valued Brownian motion and D(ρ) is the diffusion co-
efficient. In particular, this means that the trajectories of the limit field Yt

are in C([0, T ], S′(R)) and that Y0 is a white noise of variance ρ(1 − ρ) -
namely for any g ∈ S(R), the real-valued random variable Y0(g) has a normal
distribution of mean zero and variance ρ(1− ρ)

∫
(g(x))2dx.

Now, we state a fundamental result in which we state the convergence of
the additive functional of Yt solution of (7):

Theorem 2. Fix a stationary solution {Yt : t ∈ [0, T ]} of (7). For x ∈ R, let
iε(x) : y 7→ ε−11(0,1]((y − x)ε−1). For each ε ∈ (0, 1), let {Zε

t : t ∈ [0, T ]} be
defined as

Zε
t =

∫ t

0

Ys(iε)ds.

Then, the process {Zε
t : t ∈ [0, T ]} converges in distribution with respect to the

uniform topology of C([0, T ],R), as ε → 0, to a fractional Brownian motion
{Zt : t ∈ [0, T ]} of Hurst exponent H = 3/4.

4 Additive functionals

As mentioned in the introduction, our goal consists in obtaining functional
limit theorems for observables of the processes {ηt : t ≥ 0} as defined in
section 2. For these processes it holds that:

Theorem 3. For a local function f : Ω → R, the process {Γtn2(f) : t ∈
[0, T ]} defined as

Γtn2(f) =
1

n3/2

∫ tn2

0

(
f(ηs)− φf (ρ)

)
ds (8)

converges in distribution with respect to the uniform topology of C([0, T ],R)
to {φ′

f (ρ)Zt : t ∈ [0, T ]}, where {Zt : t ∈ [0, T ]} is the same as in Theorem 2.

The proof of this result is a consequence of the local Boltzmann-Gibbs Prin-
ciple whose proof is sketched in the next section.
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5 Proof of the Local Boltzmann-Gibbs Principle

The proof of the local Boltzmann-Gibbs Principle as stated in Theorem 1
is divided into four steps. The main ingredients that we use are the Kipnis-
Varadhan inequality (see [10]) and the spectral gap inequality (see [11]).

1. Firstly, we compare the additive functional of f with the additive func-
tional of ψf (ℓ) := Eρ[f |

∑ℓ
x=1 η(x)], using the:

Lemma 1 (One-block estimate).
Let f : Ω → R be a local function such that φf (ρ) = 0. Then, there exists

c = c(f, ρ) such that for any ℓ ≥ k and any t ≥ 0:

Eρ

[( ∫ t

0

{f(ηs)− ψf (ℓ; ηs)}ds
)2]

≤ ctℓ2Var(f ; νρ),

where Var(f ; νρ) denotes the variance of f with respect to νρ.

2. Secondly, we compare the additive functional of ψf (ℓ) with the additive
functional of ψf (2ℓ), using the:

Lemma 2 (Renormalization step).
Let f : Ω → R be a local function such that φf (ρ) = 0. There exists

c = c(f, ρ) such that for any ℓ ≥ k and any t ≥ 0:

Eρ

[( ∫ t

0

{ψf (ℓ; ηs)− ψf (2ℓ; ηs)}ds
)2]

≤

{
ctℓ, if φ′

f (ρ) ̸= 0,

ct, if φ′
f (ρ) = 0.

3. Thirdly, we compare the additive functional of ψf (ℓ) with the additive
functional of ψf (2

mℓ), using the renormalization step m times.

Lemma 3 (Two-blocks estimate).
Let f : Ω → R be a local function such that φf (ρ) = 0. Then, there exists

c = c(f, ρ) such that for any ℓ ≥ k and any t ≥ 0:

Eρ

[( ∫ t

0

ψf (k; ηs)− ψf (ℓ; ηs)ds
)2]

≤

{
ctℓ, if φ′

f (ρ) ̸= 0,

ct(log ℓ)2, if φ′
f (ρ) = 0.

4. Finally, we replace ψf (2
mℓ) by the corresponding function of η2

mℓ using
the:

Proposition 1 (Equivalence of Ensembles).
Let f : Ω → R be a local function. Then there exists a constant c = c(f, ρ)

such that for any ℓ ≥ k:∫ (
ψf (ℓ, η)− φ′

f (ρ)
(
ηℓ − ρ

)
−
φ′′
f (ρ)

2

((
ηℓs − ρ

)2 − ρ(1− ρ)

ℓ

))2

dνρ ≤ c

ℓ3
.
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6 Examples

In this section we present some examples for which we can derive the precise
statement of the theorems given above. We start by the mean-zero exclusion
process.

6.1 Mean-Zero Exclusion

The mean-zero exclusion process is defined as in section 2 , but in this case
after an exponential time of parameter 1, a particle at the site x jumps to
the site x + y with probability p(y). We assume the following conditions on
the probability measure p : Z \ {0} → [0, 1]:

1) p(·) has finite range, that is, there exists M > 0 such that p(z) = 0
whenever |z| > M ;

2) p(·) is irreducible, i.e. Z = span{z ∈ Z; p(z) > 0};
3) p(·) has mean-zero:

∑
z∈Z zp(z) = 0.

Example: If we take p(1) = 2/3, p(−2) = 1/3 and p(z) = 0 if z ̸= −2, 1,
then the process is an example of an asymmetric mean-zero exclusion.

We define the Markov process {ηext : t ≥ 0}, whose generator acts over
local functions f : Ω → R as

Lexf(η) =
∑
x,y∈Z

p(y)η(x)(1− η(x+ y))(f(ηx,x+y)− f(η)),

with p(·) satisfying 1), 2) and 3) and ηx,x+y as in (5). The measures {νρ : ρ ∈
[0, 1]} are invariant, but they are not necessarily reversible (that is true if and
only if p(·) is symmetric). Thus, asymmetric mean-zero exclusion processes
are diffusive and non-reversible systems. We can define the density fluctuation
field {Yn

t : t ∈ [0, T ]} as in (6) and we have that:

Proposition 2. The process {Yn
t : t ∈ [0, T ]} converges in distribution with

respect to the Skorohod topology of D([0, T ], S′(R)) to the stationary solution
of the Ornstein-Uhlenbeck equation

dYt = D(ρ)∆Ytdt+
√
2D(ρ)ρ(1− ρ)(ρ)∇dBt,

where D(ρ) is the diffusion coefficient.

The results presented above allow us to get the scaling limits of additive
functionals as in Theorem 3. We notice that in spite of having stated the
theorem for reversible systems (see condition ii) on r), we can prove the
local Boltzmann-Gibbs Principle for non-reversible systems, since the Kipnis-
Varadhan inequality also fits these systems, see [4] for details.
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6.2 Symmetric simple exclusion

Consider Lex as above with p(·) such that p(1) = p(−1) = 1/2 and p(z) = 0
for z ̸= −1, 1. We notice that for this process the measures {νρ : ρ ∈ [0, 1]}
are invariant and reversible. In this case we have that:

Proposition 3. The process {Yn
t : t ∈ [0, T ]} converges in distribution with

respect to the Skorohod topology of D([0, T ], S′(R)) to the stationary solution
of the Ornstein-Uhlenbeck equation

dYt =
1

2
∆Ytdt+

√
ρ(1− ρ)∇dBt.

The results presented above allow us to get the scaling limits of additive
functionals as stated in Theorem 3.

6.3 The weakly asymmetric simple exclusion

Now, we introduce an exclusion type process which has a drift towards the
right. For that purpose, take Lex as above with p(·) given by pn(1) =

1
2 +

an

2 ,
pn(−1) = 1

2 − an

2 and pn(z) = 0 if z ̸= −1, 1. The measures {νρ : ρ ∈ [0, 1]}
are invariant but not reversible.

6.3.1 The hydrodynamic scaling

If an := 1
n , then we have that

Proposition 4. The process {Yn
t : t ∈ [0, T ]} converges in distribution with

respect to the Skorohod topology of D([0, T ], S′(R)) to the stationary solution
of the Ornstein-Uhlenbeck equation

dYt =
1

2
∆Ytdt+ (1− 2ρ)∇Ytdt+

√
ρ(1− ρ)∇dBt.

In this case the Ornstein-Uhlenbeck process has a drift, nevertheless one
can get the same result as stated in Theorem 3.

6.3.2 The KPZ scaling

Fix a density ρ = 1/2. Then, inserting this in the previous stochastic partial
differential equation, we can see that the limit field is the same as in the
symmetric simple exclusion (so a weak asymmetry does not have influence!),
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see [8]. In this case the ”correct” strength asymmetry is an = 1/
√
n. In this

case we have

Proposition 5. The process {Yn
t : t ∈ [0, T ]} converges in distribution with

respect to the Skorohod topology of D([0, T ], S′(R)) to the stationary solution
of the stochastic Burgers equation:

dYt =
1

2
∆Ytdt+

(
∇Yt

)2
dt+

√
ρ(1− ρ)∇dBt. (9)

In this case, the limit density field is no longer an Ornstein-Uhlenbeck
process, so Theorem 2 is not useful in this case. Nevertheless, for Yt solution
of (9) we can also prove that:

Theorem 4. Let {Yt : t ∈ [0, T ]} be a stationary solution of (9). For ε > 0,

let Z̃ε
t =

∫ t

0
Ys(iε)ds. Then there exists {Z̃t : t ∈ [0, T ]} such that, {Z̃ε

t :
t ∈ [0, T ]} converges in distribution with respect to the uniform topology of
C([0, T ],R), as ε→ 0, to {Z̃t : t ∈ [0, T ]}.

And as a consequence we have that

Theorem 5. Let f : Ω → R be a local function such that φf (1/2) = 0. Then,
{Γtn2(f) : t ∈ [0, T ]} as defined in (8) converges in distribution with respect
to the uniform topology of C([0, T ],R) to {φ′

f (1/2)Z̃t : t ∈ [0, T ]}, where Z̃t

is the same as in Theorem 4.

6.4 Symmetric simple exclusion/Asymmetric simple
exclusion

Here we discuss the differences between the bounds on the variance of additive
functionals of the symmetric simple exclusion (ssep) and the asymmetric
simple exclusion process (asep), both defined on Z. The latter process is
defined through Lex as above, but with p(1) := p, p(−1) := 1 − p with
p ̸= 1/2 and p(z) = 0 for z ̸= −1, 1.

Let f be a local function.

1) If φf (ρ) = 0 and φ′
f (ρ) ̸= 0, then:

Var(Γt(f); νρ) ≤ Ct3/2 in ssep

and

Var(Γt(f); νρ) ≤

{
Ct4/3, ρ = 1

2

Ct, ρ ̸= 1
2

in asep.

With the results presented above one gets the correct upper bound for the
ssep. The method presented above does not give the correct upper bound in
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the asep. In [1, 14] it is proved the correct bound in the asep when ρ ̸= 1/2
and in [1] the upper bound t3/2 is obtained when ρ = 1/2. The correct upper
bound when ρ = 1/2 is still out of reach.

2) If φf (ρ) = φ′
f (ρ) = 0, φ′′

f (ρ) ̸= 0, then:

Var(Γt(f); νρ) ≤ Ct log(t) in ssep

and
Var(Γt(f); νρ) ≤ Ct in asep.

With the results presented above one gets the upper bound Ct(log(t))2 in
the ssep. The correct upper bound was obtained in [12]. In the asep, in [14]
([1]) the correct upper bound was obtained for ρ ̸= 1/2 (ρ = 1/2).

3) If φf (ρ) = φ′
f (ρ) = φ′′

f (ρ) = 0, φ′′′
f (ρ) ̸= 0, then Var(Γt(f); νρ) ≤ Ct

for both ssep and asep.

This bound was firstly obtained in [15] and with the results presented
above we can also get the correct upper bound in these cases. Above C is a
constant.
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9. Gonçalves, P. and Jara, M. (2011): Scaling limits of additive functionals of interacting
particle systems, available online at arXiv:1103.3722 and submitted.

10. Kipnis, C. and Varadhan, S. (1986): Central limit theorem for additive functionals of
reversible Markov processes and applications to simple exclusions, Communications
on Mathematical Physics, 104 (1), 1–19.

11. Quastel, J. (1992): Diffusion of color in the simple exclusion process, Comm. Pure

Appl. Math., 45 (6), 623–679.



Occupation times 13

12. Quastel, J.; Jankowski, H.; Sheriff, J. (2002): Central limit theorem for zero-range

processes, Special issue dedicated to Daniel W. Stroock and Srinivasa S. R. Varadhan
on the occasion of their 60th birthday, Methods Appl. Anal., 9 (3), 393–406.

13. Sethuraman, S. (2000): Central Limit Theorems for Additive Functionals of the Sim-
ple Exclusion Process, Annals of Probability, 28, 277-302.
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