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Abstract

The ability to forecast the future based on past data is a key tool to sup-
port individual and organizational decision making. In particular, the goal
of Time Series Forecasting (TSF) is to predict the behavior of complex sys-
tems by looking only at past patterns of the same phenomenon. In recent
years, several works in the literature have adopted Evolutionary Artificial
Neural Networks (EANN) for TSF. In this work, we propose a novel EANN
approach, where a weighted n-fold validation fitness scheme is used to build
an ensemble of neural networks, under four different combination methods:
mean, median, softmax and rank-based. Several experiments were held, us-
ing six real-world time series with different characteristics and from distinct
domains. Overall, the proposed approach achieved competitive results when
compared with a non-weighted n-fold EANN ensemble, the simpler 0-fold
EANN and also the popular Holt-Winters statistical method.
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1. Introduction

The use of Soft Computing Models in Industrial and Environmental Ap-
plications (SCMIEA) is a key research field due to its effectiveness in human
life [1, 2, 3, 4, 5]. In particular, Time Series Forecasting (TSF), the predic-
tion of a time ordered variable, is an important SCMIEA domain. In effect,
TSF is often used to support decision making (e.g. planning production
resources) in distinct industrial and environmental areas, such as agricul-
ture, finance, management, sales and control [6]. Due to its importance,
several TSF methods have been developed, mainly statistical methods (e.g.
Holt-Winters) [7]. However, these classical statistical methods were devel-
oped decades ago, when there were higher computational restrictions (e.g.
memory and computational power). More recently, Soft Computing based
methods, such as fuzzy techniques [8] and Artificial Neural Networks (ANN)
[9, 10, 11] were proposed for TSF. In this paper, we focus on ANNs, which
are natural candidates since they are flexible nonlinear models and they do
not require the use of a priori knowledge. Since time series often exhibit
noise and nonlinear components (e.g. due physical processes), ANNs have
the potential to outperform classic TSF methods, as shown by several works
[9, 10, 11].

Modeling ANN for TSF involves the design of the network structure (e.g.
number of input and hidden nodes) and setting of the training algorithm
parameters. If a manual design is carried out, several ANN setups (e.g. with
different number of inputs neurons and learning rates) need to be tested.
Typically, this involves a model selection phase, where several ANNs are
trained in order to select the best configuration (i.e. with higher general-
ization capacity) to forecast the future values. As an alternative, automatic
design methods have been proposed. In particular, EANN algorithms are
becoming a popular solution, since they perform a global multipoint search,
quickly locating areas of high quality, even when the search space is very
complex [12, 13, 14]. Given the interest in TSF, EANNs have been rapidly
applied to this domain [10]. As EANN engine, in this work, we adopt the
recently proposed Automatic Design of ANN (ADANN) system [11], which
evolves a single ANN (0-fold) and obtains good forecasting results.

Another crucial issue when modeling ANNs for TSF, is related with the
quality of the data provided to the ANN. This issue is particularly relevant
when dealing with short time series (i.e with few elements), as there are less
training patterns and it is more difficult for the ANN to learn how to gen-
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eralize well. In this paper, we focus on this second issue, by proposing the
use of a fitness weighted n-fold cross-validation learning scheme to create an
ensemble of ANNs. Such scheme has the advantage of allowing the forecast-
ing system to obtain more training patterns and thus may be more suited
for producing more accurate forecasts when modeling short time series. To
combine the individual ANN responses, we test four combination methods
(mean, median, softmax and rank-based combinations). Furthermore, we
compare the proposed approach with non-weighted n-fold EANN ensembles,
the simpler 0-fold EANN and a classic statistical method, the Holt-Winters
method.

The paper is organized as follows. Section 2 describes how to address
TSF tasks with EANN and weighted cross-validation ensembles. Next, we
describe the experiments held and analyze the obtained results (Section 3).
Finally, closing conclusions are drawn in Section 4.

2. Time series forecasting with artificial neural networks

2.1. Automatic design of artificial neural networks

We adopt the fully connected multilayer perceptron with logistic activa-
tion functions. Let y1, y2, . . . , yt denote the time series to be modeled. When
using a feedforward ANN, TSF is achieved by using a sliding time window,
according to [9, 10]:

yt = ANN(yt−1, yt−2, . . . , yt−k) + et (1)

where {t-1, t-2, . . . , t-k} is a set of time lags used, t is the current time period,
ANN is the function modeled by the ANN, ŷt is the value predicted by the
ANN and et = yt − ŷt is the forecasting error. As the first step, the original
values of the time series need to be normalized (within [0,1]). After training,
the inverse process is carried out, transforming the ANN responses back to
the original scale. Only one neuron is chosen at the output layer. Multi-
step forecasts (1 to N ahead forecasts) are built by iteratively using 1-ahead
predictions as inputs. By adopting a sliding time window of size k, the time
series is transformed into a pattern set, where each pattern consists of:

• k input values - corresponding to the k normalized previous values:
yt−1, yt−2, . . . , yt−k.

• one output value - corresponding to the normalized time series at period
t that is forecasted.
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To access the generalization ANN capability, the pattern set is split into
training and validation data. The former, with first x% of the pattern set
elements (training), is used to adjust the connection weights of the ANN,
while the latter (validation), with the remaining patterns, is used to estimate
the ANN generalization capabilities.

The problem of designing the best ANN can be seen as a search problem
within the space of all possible setups. EANN systems use evolutionary
computation algorithms to perform this search, such as Genetic Algorithms
(GA) [15], which use both exploitation and exploration. Recently, we have
proposed an EANN system for TSF, called ADANN [16] and that works as
follows:

1. Each chromosome consists of 16 decimal digits (from 0 to 9), where:
the first two digits set the number inputs of the ANN, the next two
digits set the number of hidden nodes, the next two digits set up the
backpropagation learning rate (η = (d1 · 10 + d2)/100, di ∈ {0, ..9});
finally, the remaining digits set the random initialization seed of the
ANN (useful to avoid local minima and store the best ANN).

2. A randomly generated population (with 50 individuals) is obtained.

3. The phenotype, or ANN architecture, and fitness value of each indi-
vidual of the current generation is obtained. To obtain the phenotype
associated to a chromosome and its fitness value:

(a) The topology of an individual i from the actual generation is ob-
tained.

(b) Then, the training and validation patterns subsets for this ANN i
are obtained from time series data.

(c) Once each ANN is initialized with its topology and connection
weights values with the information from the chromosome, it is
trained with the backpropagation algorithm, using an early stop-
ping scheme that stores the best ANN [17] and with a maximum
of 5000 epochs. The validation pattern subset is used to estimate
the ANN generalization capability, obtaining its fitness value. In
this paper, this fitness is given by the Mean Squared Error (MSE).
The aim is to reduce extreme errors (e.g. outliers) that may highly
affect multi-step ahead forecasts.
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4. Once the fitness values for whole population have been already ob-
tained, the GA operators such as elitism, selection, one-point crossover
and mutation (with a 0.07% rate) are applied in order to generate the
population of the next generation, translated into a new set of chromo-
somes.

The steps 3 and 4 are iteratively executed until a maximum number of
generations is reached. Finally, the best individual from the last generation
is used to compute the 1 to N ahead forecasts.

2.2. Cross-validation ensembles

Cross-validation, sometimes called rotation estimation, is a technique for
assessing how a learning model will generalize to an independent data set.
It is mainly used when the goal is prediction and one wants to estimate how
accurately a predictive model will perform in practice. One round of cross-
validation involves partitioning a sample of data into complementary subsets,
fitting the model on one subset (called training set) and validating predictive
results on the other subset (called validation set). To reduce variability,
multiple rounds of cross-validation are performed using different partitions,
and the validation results are aggregated over all rounds. Cross-validation
is important in guarding against testing hypotheses suggested by the data
(called Type III errors [18]), especially when further samples are hazardous,
costly or difficult to collect. Cross-validation has been used in previous TSF
works [19, 20]. In [19] it was used to determine densities of noise terms
when applying a Kalman smoother, which is a classical statistical tool to
forecast time series. More closed to what is proposed in this work, in [20]
a time ordered cross-validation is used to validate the training process of
ANN when forecasting time series, by testing different number of pattern
subsets (or folds), ranging from 2 to 8. Every time a unique fold is used as
validation subset, the remaining pattern examples are used to train the ANN.
In the next round, another fold is selected for validation and this process is
repeated as many times as folds we have. Fig. 1 shows an example of a 5-fold
cross-validation.

While one individual (genotype) leads to a single ANN topology (phe-
notype), applying cross-validation to this individual results in n different
ANNs (i.e. different connection weights for the same topology), where n is
the number of folds. Given such scheme, there are two relevant issues:

1. How to evaluate the fitness of these n ANNs.
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Figure 1: Example of a 5-fold cross-validation.

2. How to combine the outputs of the n different ANNs (explained in
Section 2.3).

To measure the fitness of a cross-validation ensemble, the most common
procedure is to weight equally each fold fitness, i.e. calculate the fitness value
(fav) as the average of all n validation set errors (Fig. 1) [20]:

fav =
n∑

i=1

1

n
fi (2)

where fi denotes the MSE fitness value for the i-th ANN, as measured over
the respective validation set (Fig. 1). Yet, in the forecasting domain, recent
patterns should have a higher importance when compared with older ones.
Following this rational, in this paper, we propose the following weighted
cross-validation fitness fcv:

wcvj =

{
1−

∑n
i=2wcvi , j = 1

1
2n+1−j , j 6= 1

fcv =
∑n

i=1wcvifi

(3)

For example, when n = 5, wcv1 = wcv2 = 0.0625, wcv3 = 0.125, wcv4 = 0.25
and wcv5 = 0.5.

2.3. Ensemble combination functions

An ensemble combines several individual models in order to output a
single response. Ensembles are often used to improve the predictive perfor-
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mance of classification or regression tasks, since aggregated responses tend
to perform better than individual ones [21, 22]. Usually, an ensemble is built
using variations of the same base learner (e.g. ANN). Unlike most EANN
systems, which optimize a single ANN, in this work we propose the use of
ADANN to return the best ANN ensemble. Such ensemble is built using the
time ordered n-fold cross-validation scheme described in Section 2.2.

To combine the outputs of the n-fold ANN ensemble, simpler solutions
are the use of the mean or median of the n responses. Another alternative
is to consider differences between individuals by using a linear combination
of the responses, taking into account a weight vector (wi) that depends on
the individual fitnesses:

ANNE =
n∑

i=1

wiANNi (4)

where ANNE is the output of the ensemble and ANNi is the response of the
i-th ANN. In this paper, we explore two alternatives to compute the weights:
softmax (wsmi) and rank-based (wrbi). The softmax combination works
as:

f ′′i =
f ′i−min(f ′)

max(f ′)−min(f ′)

wsmi = e(f ′′i )Pn
k=1 e

(f ′′
k

)
(softmax function)

(5)

where f ′i = 1/fi, min(f ′) and max(f ′) denote the minimum and maximum
of all f ′ values and f ′′i is a scaled transformation of f ′i . The inverse of the
validation error (f ′i) is used since the lower the MSE the better is the gener-
alization. Also, we compute a soft weight of the scaled f ′ values, such that∑n

i=1wsmi = 1.
The rank-based combination function was proposed in [23] and requires

more computation. The training series, without test data, is first split (using
time order) into two internal training and validation subsets. First, the
internal training subset is used as the training data of an initial EANN n-
fold validation ensemble run. Then, the internal validation subset is used to
tune a β scaling factor. The weighting function assumes that the n ANNs
are ranked according to their fitness values (increasing MSE) and the ranked-
based weights are computed using:

wrbi = e(β(n+1−i))Pn
k=1 e(fok)

ANNE =
∑n

i=1wrbiANNoi

(6)
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where fok andANNok denote the fitness and output values of the k-th ordered
ANN respectively. In this paper, we used a simple hill-climbing method to
optimize the β value that provided the lowest error for the internal validation
subset. After setting β, another run of the EANN n-fold system is executed,
using the whole training series.

3. Experiments and results

3.1. Time series data and forecasting evaluation

We selected six short to medium-sized time series from distinct real-world
domains (Table 1) [24]. The series were classified into three groups, according
to their seasonal and trended characteristics: the first two are seasonal (with
a period of K = 12) and trended; the next two contain only a seasonal
component (K = 12); and the last two are only trended. For all series, we
perform from 1 to 19 ahead forecasts (e.g. for paper, the training and test
series contain 101 and 19 elements). The global forecasting performance is
evaluated the popular Symmetric Mean Absolute Percentage Error (SMAPE)
metric [25]:

SMAPE = 1
N

∑P+N
i=P+1

|yi−ŷi|
(|yi|+|ŷi|)/2

× 100% (7)

where P is the index of the last element of the training series and N is the
number of forecasts (here, N = 19). When compared with MSE, SMAPE
has the advantage of being scale independent and less sensitive to outliers.
The SMAPE values range from 0% to 200% and low values suggest a high
quality model.

Table 1: Time series data.

Series K Tr. Size Description (region, years)
paper 12 Yes 120 Monthly sales of paper (France, 1963-72)
pass. 12 Yes 144 Monthly int. airline passengers (1949-60)
ozone 12 No 180 Ozon concentration (Azusa, 1956-70)
temperature 12 No 240 Monthly air temp. (Nottingham, 1920-39)
Dow-Jones – Yes 157 Dow-Jones index monthly closings (1968-81)
IBM – Yes 369 Daily IBM closing stock prices (1961-1962)
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3.2. Cross-validation ensemble results
For each time series, we applied the ADANN system using cross-validation

with (fcv) and without (fav) weighted fitnesses. The number of folds (or sub-
sets) was ranged from 2 to 8. For both cross-validation fitness schemes,
we computed the four ensemble combination methods described in Section
2.3: mean, median, softmax and rank-based. Since a large number of
experiments was conducted and due to space limitations, only aggregated re-
sults are presented for all ensemble combinations. Table 2 shows the average
SMAPE value (over all six series) for the distinct ANN ensemble strategies
and number of folds. For benchmark purposes, we also tested the no cross-
validation scheme (0 folds), which uses the simpler time order holdout split,
where the validation set contains the most recent 30% elements of the whole
training series and the remaining data is used to fit the model.

Each ensemble combination is evaluated by its average value over all 2 to
8 folds (Folds) and also according to the number of wins against the 0 fold
benchmark. In Table 2, bold in column Folds denotes better than the 0 fold
benchmark, while in column Folds denotes the best value. The two cases
where SMAPE=7.3 (e.g. last row, 5-folds) are in bold (i.e. better than the
benchmark) since the table presents round values (e.g. 7.28). An analysis to
Table 2 shows that weighted cross-validation fcv outperforms the averaging
method fav for computing the ensemble fitness. For all four combination
functions, the Folds value is always lower for fcv when compared with fav.
Also, the weighted fitnesses present more fold setups that outperform the 0
fold benchmark. Turning to the combination function comparison, the rank-
based combination is the best option for both fitness calculation methods,
followed by the median. Overall, the best ensemble is given by the fcv and
rank-based combination. Such combination achieves the smallest Folds
value and also presents 5 wins against the benchmark. Moreover, the non
parametric Mann-Whitney test was applied to compare the fcv and rank-
based combination against the remaining methods, showing a statistical
significance (p-value<0.05) in all comparisons except for the average rank-
based ensemble (Table 2 ).

The full SMAPE results (i.e. for all time series ) for the best ensem-
ble strategy (fcv, ranked-based) are presented in Table 3. In the table,
underline denotes the best value for each row and bold denotes values that
outperform the baseline (0 folds). The last row presents the average over all
series (the same row values that appear in Table 2). The cross-validation
ANN ensemble outperforms the benchmark in almost all series (the excep-
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Table 2: Forecasting results (average % SMAPE).

ANN Ensemble Folds Folds
Strategy 0 2 3 4 5 6 7 8
fav, mean 7.3 9.3 8.5 8.1 7.6 8.2 6.9 8.8 8.2†

fav, median 7.3 9.3 8.3 7.9 7.5 7.9 7.1 7.5 7.9†

fav, softmax 7.3 9.4 8.4 8.4 7.4 8.1 6.9 8.8 8.2†

fav, rank-based 7.3 8.7 7.9 7.4 7.1 7.4 6.6 7.8 7.5
fcv, mean 7.3 8.4 8.7 7.1 8.1 7.8 7.3 7.1 7.8†

fcv, median 7.3 8.4 8.4 7.2 8.0 7.7 7.2 7.2 7.7†

fcv, softmax 7.3 9.4 8.8 6.9 8.5 7.8 7.1 7.3 8.0†

fcv, rank-based 7.3 8.0 8.1 6.4 7.3 6.8 6.5 6.4 7.0

† - significantly worst than fcv and rank-based, under a Mann-Whitney test.

tion is passengers). In particular, in series ozone, temperature and IBM, all
2 to 8 fold setups provide better forecasts when compared with the simpler
holdout ANN method.

Regarding the best number of folds (n), it is dependent on the time series
considered. For instance, in Table 3 using 4 folds is the best option for paper
and Dow-Jones series, while the 8-folds method gets the best results for the
temperature and IBM data. For fcv and ranked-based (Table 2), the 4-fold
setup obtains the second best overall performance: SMAPE =6.37%, which
is only slightly higher than SMAPE =6.35% for the 8-fold ensemble. Turning
to the computational complexity, the higher the number of folds used, the
higher is the computational effort required. For example, for IBM series
(the largest dataset), fcv and ranked-based ensemble, and under the same
computer processor, running the EANN for 0-fold required 1140 minutes, a
value that increased to 2004 minutes for 4-fold and 6875 minutes for 8-fold.
Given this trade-off, we suggest the 4-fold setup as a reasonable balance
between accuracy and computational effort. Under the Mann-Whitney test,
the 4-fold ensemble is significantly better (p-value<0.05) than the 2, 3 and
6-fold variants. When compared against the 0-fold setup, the test does not
show statistical significance of the 4-fold (p-value of 0.22) and 8-fold (p-
value of 0.16) methods. Nevertheless, the respective p-values are much lower
than the ones obtained in the remaining comparisons (e.g. p-value of 0.84
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for 4-fold vs 8-fold). For demonstration purposes, Table 4 shows the best
models’ parameters (e.g. number of input nodes) evolved by ADANN for the
ranked-based 4-fold and weighted fitness cross-validation method.

Table 3: Best ANN ensemble (fcv, ranked-based) forecasting results (%SMAPE values).

Time Folds
Series 0 2 3 4 5 6 7 8
paper 8.2 7.9 8.4 7.5 7.8 7.5 7.5 8.8
passengers 3.2 11.4 10.7 5.1 10.2 5.5 4.1 3.4
ozone 16.6 15.3 16.1 15.2 13.8 15.6 15.7 15.4
temp. 4.3 3.7 3.7 3.6 3.7 3.8 3.7 3.5
Dow-Jones 6.7 7.0 7.0 4.5 4.9 6.1 5.6 4.9
IBM 5.1 2.8 2.5 2.4 3.3 2.4 2.2 2.1
Average 7.3 8.0† 8.1† 6.4 7.3 6.8† 6.5 6.4

† - significantly worst than 4-fold, under a Mann-Whitney test.

Table 4: Best ANN structures and learning rate evolved by ADANN for 4-folds and fcv.

Time Input Hidden Learning
Series Nodes Nodes Rate
paper 37 67 0.19
passengers 50 48 0.52
ozone 48 52 0.63
temperature 75 58 0.42
Dow-Jones 45 98 0.56
IBM 10 20 0.92

3.3. Comparison with exponential smoothing

As a baseline comparison, we adopted the Holt-Winters method, from the
family of exponential smoothing methods and often used to predict series
with trended and seasonal factors [6]. The predictive model is based on
underlying patterns, such as trends and seasonality, that are distinguished
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from random noise by averaging the historical values [7]. Its popularity is
due to advantages such as reduced computational demand, simplicity of use
and accuracy of the forecasts, specially with seasonal series. In this paper,
we tested the multiplicative seasonal Holt-Winters model (with 3 internal
parameters ) for the seasonal series, with a period of K = 12, while for the
non seasonal series (Dow-Jones and IBM) we used the exponential with trend
version (with 2 internal parameters). To optimize the Holt-Winters internal
parameters, we adopt a 0.05 grid search for the best training error (MSE),
which is a common procedure within the forecasting field.

For the comparison, we selected the setup proposed in the Section 3.2:
the weighted and rank-based 4 − fold ANN ensemble. The forecasting re-
sults are presented in Table 5 and show a competitive performance of the
ensemble. While the average SMAPE value is identical for both methods,
the ensemble outperforms Holt-Winters in 4 of the 6 tested series, namely
paper, temperature, Dow-Jones and IBM. This is an interesting outcome, as
the Holt-Winters was specifically developed for series with seasonal and/or
trended components. Furthermore, the ensemble approach does not use any
a priori knowledge (e.g. the model does not know that seasonal series are
monthly ones). Hence, if computation power is available, our proposed en-
semble can be a valuable forecasting alternative for short or medium-sized
time series with seasonal or trended components.

Table 5: Comparison of the suggested approach versus Holt-Winters (SMAPE%).

Time Series Ensemble Holt-Winters
paper 7.5 8.4
passengers 5.1 3.0
ozone 15.2 12.3
temperature 3.6 3.6
Dow-Jones 4.5 7.7
IBM 2.3 3.1
Average 6.4 6.4
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4. Conclusions

In this paper, we proposed an evolutionary artificial neural network en-
gine to evolve a fitness weighted n-fold cross-validation artificial neural net-
work ensemble scheme for time series forecasting. To combine the n ANN
outputs into a single response, we explored four distinct combination func-
tions. Experiments held with six time series, with different characteristics
and from different domains. As the main outcome of this work, we show that
the fitness weighted n-fold ensemble improves the accuracy of the forecasts,
outperforming both the no weight n−fold ensemble and the simpler holdout
validation (0-fold) EANN. Also, as a compromise between accuracy and com-
putational cost, based on the presented results, we advise the use of a 4-fold
ANN ensemble that is evolved using weighted cross-validation and that uses a
rank-based combination method to build the final forecasts. Moreover, when
compared with a classical method like Holt-Winters, competitive forecasting
results were achieved by the proposed approach, showing that it can be an
interesting alternative. In future work, we intend to use the EANN engine to
evolve ensembles of sparsely connected ANNs [10]. We also intend to apply a
similar approach to evolve ensembles of other base learners, such as support
vector machines [26].
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