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Abstract

The objective of this study was to evaluate the accuracy of various sensor fusion algorithms 

for measuring upper arm elevation relative to gravity (i.e., angular displacement and velocity 

summary measures) across different motion speeds. Thirteen participants completed a cyclic, short 

duration, arm-intensive work task that involved transfering wooden dowels at three work rates 

(slow, medium, fast). Angular displacement and velocity measurements of upper arm elevation 

were simultaneously measured using an inertial measurement unit (IMU) and an optical motion 

capture (OMC) system. Results indicated that IMU-based inclinometer solutions can reduce root-

mean-square errors in comparison to accelerometer-based inclination estimates by as much as 

87%, depending on the work rate and sensor fusion approach applied. The findings suggest 

that IMU-based inclinometers can substantially improve inclinometer accuracy in comparison to 

traditional accelerometer-based inclinometers. Ergonomists may use the non-proprietary sensor 

fusion algorithms provided here to more accurately estimate upper arm elevation.
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1. Introduction

Measuring human motion with accuracy is critical for many applications in occupational 

ergonomics, such as estimating exposure to non-neutral working postures (Douphrate et 

al., 2012) and evaluating workplace designs (Fethke et al., 2011). Human motion is most 

accurately quantified using laboratory-based electromagnetic or optical motion capture 

systems (OMC). However, high equipment costs and constrained recording areas generally 

prevent such systems from use in field-based occupational research (Cuesta-Vargas et al., 

2010; Sabatini, 2006).
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Dual-axis and tri-axial piezoresistive accelerometers are commonly used as inclinometers 

in field-based applications to estimate posture and movements of the trunk and upper 

arm with respect to the gravity vector (Amasay et al., 2009; Bernmark and Wiktorin, 

2002; Douphrate et al., 2012; Fethke et al., 2016; Wahlström et al., 2010). Accelerometer-

based inclinometers, however, are (i) less accurate as motion speeds increase and 

(ii) cannot accurately capture rotation about the gravity vector (Amasay et al., 2009; 

Bernmark and Wiktorin, 2002; Korshøj et al., 2014). In theory, inertial measurement units 

(IMUs) overcome the limitations inherent to accelerometer-based measurement through 

the addition of gyroscopes, magnetometers, and sensor fusion algorithms (e.g., Kalman 

filter, complementary filter, or particle filter) to estimate body segment orientation in three-

dimensional space (Madgwick et al., 2011; Roetenberg et al., 2005; Sun et al., 2013; Valenti 

et al., 2015; Yadav and Bleakley, 2014; Yun et al., 2008).

Previous research suggests that IMU-based motion capture can be highly accurate in 

controlled, laboratory settings (Bergamini et al., 2014; Faber et al., 2013; Kim and 

Nussbaum, 2013; Plamondon et al., 2007; Robert-Lachaine et al., 2016). However, local 

magnetic field disturbances can lead to joint angular displacement measurement errors 

of 180° (Bachmann et al., 2004). Strategies such as magnetic field rejection (Ligorio 

and Sabatini, 2016; Sabatini, 2006; Sun et al., 2013), zero velocity updating (Schiefer 

et al., 2014), and kinematic modeling (El-Gohary and McNames, 2012, 2015; Miezal 

et al., 2016) have been implemented with sensor fusion algorithms to improve IMU-

based motion capture accuracy. Such approaches, however, can only compensate for 

magnetic field disturbances over short measurement durations (i.e., minutes) (El-Gohary 

and McNames, 2015; Ligorio and Sabatini, 2016). Consequently, and despite considerable 

research concerning IMU-based motion capture and continued improvements to IMU 

hardware, systems capable of recording full three-dimensional motion for longer time 

periods (i.e., hours) in unconstrained environments have been largely elusive. Given the 

current limitations of IMU-based motion capture systems, sensor fusion algorithms that 

focus on inclination estimates (i.e., IMU-based inclinometers) rather than spatial orientation 

have instead been used to improve the accuracy of trunk inclination and upper arm elevation 

measurements with promising results (Lee et al., 2012; Ligorio and Sabatini, 2015; Schall et 

al., 2015, 2016).

Few studies that have evaluated IMU-based inclinometers, however, have also reported 

the accuracy of (i) accelerometer-derived angular displacement measurements, (ii) angular 

velocity measurements, or (iii) posture and movement summary measures used for health-

based decision making in the context of occupational ergonomics. Thus, the ability of IMU-

based inclinometers to improve measurement accuracy relative to established accelerometer-

based approaches remains unclear. Previous work compared accelerometer and IMU-based 

inclinometers to an electrogoniometer used to measure trunk motion (Schall et al., 2015) 

and to a biomechanical-based optical motion capture system (Schall et al., 2016). The 

results indicated (i) errors in the IMU measurements relative to the reference devices on the 

order of 5–9° depending on motion plane and body segment and (ii) marginal differences 

between accelerometer-based and IMU-based inclination measurements. However, error 

sources not reflective of sensor accuracy, such as measurement system misalignment 

(Mecheri et al., 2016) were not fully managed. Furthermore, the similarities in measurement 
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accuracy between accelerometer and IMU-based inclinometers due to motion speed were 

not evaluated.

Acknowledging that field-based IMU measurement of full three-dimensional motion may 

not be achievable in many industrial environments due to magnetic field disturbances, 

we explored the potential benefits of intermediary solutions (IMU-based inclinometers) 

that forgo the use of magnetometer data and instead rely on accelerometer and gyroscope 

data. The specific objective of this laboratory study was to evaluate the effects of motion 

speed and upper arm elevation calculation method (i.e., no sensor fusion and a variety of 

sensor fusion approaches) on the error in measures of upper arm posture and movement. 

In particular, we aimed to isolate the error associated with the sensor (i.e., technological 

error) (Robert-Lachaine et al., 2016). To mimic methods commonly reported in field studies, 

a single IMU secured to the upper arm was used and upper arm elevation was calculated 

with respect to the gravity vector. We hypothesized that sensor fusion would improve 

measurement accuracy, particularly as motion speed increased.

2. Methods

2.1. Participants

Thirteen participants (11 male, mean age 27.2 ± 6.6 years, right-hand dominant) were 

recruited from the University of Iowa community. All participants were screened for any 

self-reported cases of: (i) physician-diagnosed musculoskeletal disorder in the past six 

months, (ii) pain during the previous two weeks prior to enrollment, and (iii) medical 

history of orthopedic surgery in the upper extremity (shoulder, elbow, wrist, hand). Each 

participant provided written informed consent. The University of Iowa Institutional Review 

Board approved all study procedures.

2.2. Task

Each participant completed six trials of a simulated work task that involved transferring 

wooden dowels (2 cm diameter x 8 cm length) from a waist-high container in front of 

the participant to a shoulder-height container located 45° diagonally from the participant 

(Fig. 1). Each transfer required the participant to (i) grasp the dowel, (ii) transfer the dowel 

to the unloading container, and (iii) return their hand to the material feed container. Each 

participant completed two trials at the given material transfer rate: slow (15 cycles/min), 

medium (30 cycles/min), and fast (45 cycles/min). The transfer rate was controlled using 

a metronome and experimental conditions were randomized to control for potential order 

effects. Each participant was given time to acclimate to the assigned motion speed before 

each trial was captured. In preliminary tests, it was difficult for the participants to maintain 

the fastest transfer rate (45 cycles/min) for longer than 1 min due to fatigue. Consequently, 

each trial was 1 min in duration and was followed by a rest period of 5 min.

2.3. Instrumentation

An IMU (series SXT, Nexgen Ergonomics, Inc., Pointe Claire, Quebec, CA) was secured 

to the lateral aspect of the dominant upper arm midway between the acromion and the 

lateral epicondyle (Fig. 2). The IMU was mounted to the upper arm with the x-axis oriented 
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along the longitudinal axis (with positive x directed distally), the y-axis oriented along the 

anterior-posterior axis (with positive y directed anteriorly), and the z-axis oriented along 

the mediolateral axis (with positive z directed laterally). Raw accelerometer, gyroscope, 

and spatial orientation measurements (quaternions from an embedded Kalman filter) were 

captured from the IMU at 128 Hz.

Spatial orientation was also simultaneously recorded using a six-camera OMC system 

(Optitrack Flex 13, NaturalPoint, Inc., Corvallis, OR, USA) that tracked a cluster of 

four reflective markers mounted to the surface of the IMU with double-sided tape (Fig. 

2). This was used in contrast to a biomechanical-based marker set to control for soft-

tissue artifacts in order to isolate sensor error. The OMC measurements were recorded 

at 120 Hz. Initialization and calibration of the IMU and OMC instrumentation systems 

was performed using manufacturer-specified procedures. No additional (biomechanical) 

calibration procedures were performed as our goal was to compare the orientation of the 

IMU to the orientation of the marker cluster affixed to the IMU (i.e., sensor error was 

isolated).

2.4. Data processing

The spatial orientation derived from the OMC marker cluster was calculated using the 

quaternion output of the OMC system software. All post-processing was accomplished using 

MATLAB (2016a, Mathworks, Natick, MA). Data from both the IMU and OMC systems 

were recorded using the maximum available sampling rates. Therefore, the raw IMU data 

(128 Hz sampling rate) were down-sampled to 120 Hz (the OMC sampling rate) to maintain 

sample-to-sample temporal synchronization.

IMU inclination angles in the pitch (θ) and roll (ø) axes were calculated using five different 

approaches: (i) using accelerometer measurements without sensor fusion, (ii) using a first-

order complementary filter, (iii) using a widely implemented second-order complementary 

filter, (iv) using modifications of a published, non-proprietary Kalman filter, and (v) using 

the quaternion output from the IMU’s embedded and proprietary Kalman filter.

The upper arm elevation displacement (α) was calculated by adding an offset of 90° to θ to 

orientate the local sensor coordinate frame. Upper arm angular velocity α̇  was calculated 

using the derivative of the upper arm elevation displacements with respect to time. IMU 

roll angles, which corresponded to upper arm internal/external rotation in this application, 

were not included in the final analysis due to issues associated with both soft tissue artifact 

(Cutti et al., 2006) and numerical instability when the roll axis approaches the gravity vector 

(i.e., when participants assume a neutral posture) (Pedley, 2013). However, we describe the 

intermediary calculations for the roll axis to provide a comprehensive description of the 

applied sensor fusion algorithms.

α = θ + 90∘ (1)

α̇ = αi − αi − 1 /Δt (2)
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2.4.1. Accelerometer-derived displacements—Pitch θaccel  and roll ϕaccel  angles 

were calculated from the accelerometer output ax, ay, az  as follows:

θaccel = tan−1 −ax/ ay2 + az2 (3)

ϕaccel = tan−1 ay/az (4)

The raw accelerometer data stream was low-pass filtered (2nd order Butterworth, 3 Hz 

corner frequency) prior to the angle calculations. Pitch and roll angles calculated without 

sensor fusion are described using the designation “Accel”.

2.4.2. First-order complementary filter—IMU pitch θc, i  and roll ϕc, i  angles at 

sample i were calculated recursively using a first-order complementary filter that combines 

gyroscope measurements ωx, i, ωy, i, ωz, i  with accelerometer measurements ax, i, ay, i, az, i  as 

follows:

θc, i
ϕc, i

=

1 − βθ θc, i − 1 + ωy, icosϕc, i − 1 − ωz, isinϕc, i − 1 Δt + βθtan−1 −ax, i/ ay, i2 + az, i2

1 − βϕ ϕc, i − 1 + ωx, i + ωy, isinϕc, i − 1tanθc, i − 1 + ωz, icosϕc, i − 1tanθi − 1 Δt + βϕtan−1 ay, i/az, i
(5)

where Δt is the sensor sampling period and β is the filter tuning parameter. β is assigned a 

value between 0 and 1 (0 would rely solely on gyroscope-derived inclination measurements, 

and 1 would rely solely on accelerometer-derived inclination measurements). For this 

study, both βθ and βϕ were assigned a value of 0.01, based on visual inspection of the 

complementary filter results and the OMC data. This value was chosen to sufficiently 

reduce motion-related artifacts without causing time-dependent errors. Pitch and roll angles 

calculated using the first-order complementary filter are described using the designation 

“Comp-1”. The derivation of (5) is provided in Appendix A. The MATLAB code is provided 

in Appendix C.

2.4.3. Second-order complementary filter—The design of the second-order 

complementary filter was a direct implementation of the filter developed by Madgwick et al. 

(2011). A detailed explanation can be found elsewhere (Madgwick et al., 2011; Mourcou et 

al., 2015). Equation (6) was used to convert the quaternion rotation vector output from the 

second-order complementary filter into heading, pitch, and roll angles. For this study, the 

filter parameter β was assigned a value of 0.13. The angles calculated in this manner are 

described with the designation “Comp-2.”
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ψ
θ
ϕ

=
tan−1 2 q0q3 + q1q2 / q0

2 + q1
2 − q2

2 − q3
2

sin−1 2 q0q2 − q1q3

tan−1 2 q0q1 + q2q3 / q0
2 − q1

2 − q2
2 + q3

2

(6)

2.4.4. Kalman filter: non-proprietary—The Extended Kalman filter used in this study 

was designed to discriminate the direction of gravity (gb) from the linear acceleration 

(ab) in the local coordinate frame when gyroscope measurements ω b = ωx, ωy, ωz  and 

accelerometer measurements ax, ay, az  are provided. The process (7) and measurement (8) 

models are as follows:

gib

aib

bω, i

=
I3 × 3 − ωi − 1

b − bω, i − 1 × Δt 03 × 3 03 × 3

03 × 3 caI3 × 3ai − 1
b 03 × 3

03 × 3 03 × 3 I3 × 3

gi − 1
b

ai − 1
b

bω, i − 1

+
gi − 1

b × Δt 03 × 3 03 × 3
03 × 3 cbI3 × 3 03 × 3
03 × 3 03 × 3 ΔtI3 × 3

wi − 1
ω

wi − 1
gm

ḃω

(7)

ax, k
ay, k
az, k

= I3 × 3 I3 × 3
gk

b

ak
b + I3 × 3 I3 × 3 03 × 3

gk
b

ak
b

bω, k

vk
a (8)

Here, 03×3 is a 3 × 3 matrix with zeros, I3×3 is a 3 × 3 identity matrix, [ u × ] is the skew 

symmetric matrix associated for a given vector u , and ca, cb are the parameters of the 

first-order Gauss-Markov process used to account for external acceleration. The gyroscope 

white noise, wω, gyroscope bias, ḃω, and accelerometer noise, va, are each assumed to 

follow a normal distribution of N 0, σω2 , N 0, σωb
2 , and N 0, σa2 , respectively. The white 

Gaussian noise, wgm, is assumed to be zero mean with an identity covariance matrix. The 

assigned filter parameters are shown in Table 1. The angles calculated in this manner are 

described with the designation “Accel-KF”. Pitch and roll measurements from this Kalman 

filter are calculated from gb using (3) and (4), respectively.

The derivation and implementation of (7) and (8) are provided in Appendix B. The 

MATLAB code is provided in Appendix C.

2.4.5. Kalman filter: embedded (proprietary)—Equation (6) was used to convert the 

quaternion rotation vector output from the IMU’s embedded Kalman filter to heading, pitch, 

and roll angles. The angles calculated in this manner are described with the designation 

“Em-KF.” The quaternion rotation vector output from the OMC system software was also 

converted to heading, pitch, and roll angles using (6).
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2.4.6. Inclinometer accuracy—The offset between the local coordinate frames of the 

OMC and the IMU was calculated using angular rate measurements according to de Vries 

et al. (2010). After applying the local offset, the offset between the global coordinate frames 

of the OMC and the IMU was determined under static conditions using Accel-derived 

inclination measurements. OMC-derived upper arm elevation displacements and velocities 

were calculated after the offsets were added to OMC-derived orientation measurements.

Root-mean-square error (RMS) was calculated using (9) to quantify the average error of 

inclinometer measurements αINC  relative to the OMC αOMC . Peak error was calculated 

using the 99th percentile measurement of the rectified (absolute value) sample-to-sample 

difference between the OMC and inclinometer-derived measurements.

RMS = 1
n ∑

n
αOMC − αINC

2
(9)

2.4.7. Statistical analysis—A two-factor repeated measures analysis of variance 

(ANOVA) was used test the main and interactive effects of material transfer rate and upper 

arm elevation calculation method (i.e., Accel, Comp-1, Comp-2, Accel-KF, and Em-KF) on 

(i) RMS displacement error, (ii) peak displacement error, (iii) RMS velocity error, and (iv) 

peak velocity error. Pre-planned pairwise comparisons using Bonferroni corrections were 

used to test, at each level of motion speed, differences between RMS and peak errors (both 

for displacements and velocities) between (i) Accel and Comp-1, (ii) Accel and Comp-2, 

(iii) Accel and Accel-KF, and (iv) Accel and Em-KF. All statistical analyses were performed 

using SPSS (version 24, IBM Corporation, Armonk, NY).

3. Results

3.1. Angular displacements

The cyclic motion pattern and the changes to movement frequency associated with increased 

transfer rates (15, 30, 45 cycles/min) can be observed through the OMC-derived angular 

displacement measurements (Fig. 3). The within-trial acceleration measurements (average 

and variation) across all testing conditions are shown in Table 2. Statistically significant (p 
< 0.01) main effects of material transfer rate, calculation method, and their interaction were 

observed for both RMS and peak displacement error. Regarding the interaction, both RMS 

and peak error magnitudes generally increased with increasing motion speed for all upper 

arm elevation calculation methods. However, the increases were substantially greater for 

the Accel approach compared to the Comp-1, Comp-2, Accel-KF, and Em-KF approaches 

(Table 3). All pre-planned pairwise comparisons within each transfer rate were statistically 

significant for RMS displacement error (p < 0.05) and peak displacement error (p < 0.01). 

As expected, the accelerometer-derived displacements were similar to the OMC-derived 

displacements for the slowest transfer rate, but deviated substantially for the fastest transfer 

rate (Fig. 4).
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Although statistically significant pairwise comparisons were observed for the RMS and peak 

error measurements associated with the slowest transfer rate, the measurement errors were 

small (2.3° RMS, 6.8° peak for all calculation methods). Under the fastest transfer rate 

(maximum expected error), the errors associated with accelerometer-derived displacements 

were more apparent (11.3° RMS, 28.9° peak). The simple first-order complementary filter 

(Comp-1) reduced RMS error to 3.2°, while the Kalman filters reduced the RMS error 

to <1.5°. Similarly, a first-order complementary filter reduced peak error to 6.5°, while 

the Kalman filters reduced peak error to <3.2°. In general, the accelerometer-derived 

displacements underestimated upper arm elevation as transfer rates increased, as evidenced 

by the 90th percentile measurements. This was mitigated by implementing a sensor fusion 

algorithm. Time-dependent errors were not observed for displacements calculated using 

sensor fusion algorithms (Fig. 5).

3.2. Angular velocities

The increase in amplitude and frequency of OMC-derived angular velocities associated 

with increased material transfer rates can be observed in Fig. 6. Statistically-significant 

(p < 0.01) main effects of material transfer rate, calculation method, and their interaction 

were observed for both RMS and peak velocity error. The nature of the interaction was 

identical to that observed for displacement error (i.e., while error magnitudes increased 

with increasing motion speed for all calculation methods, substantially greater increases 

were observed for the Accel approach compared to the sensor fusion approaches). All 

preplanned pairwise comparisons within each transfer rate were statistically significant 

for RMS velocity error (p < 0.01) and peak velocity error (p < 0.01). As expected, the 

accelerometer-derived velocities were similar to the OMC-derived velocities for the slow 

transfer rate, but deviated substantially for the fast transfer rate (Fig. 7).

Unlike the accelerometer-derived displacements, the RMS and peak angular velocity 

error associated with accelerometer-derived angular velocities were more noticeable 

(13.0°/s RMS and 42.7°/s peak). RMS and peak velocity error for accelerometer-derived 

measurements increased to 81.7°/s and 221.3°/s for the fastest motion condition. The first-

order complementary filter reduced RMS error to 17°/s, while the Kalman filters decreased 

RMS error to ≤9.3°/s. Similarly, the first-order complementary filter reduced peak error to 

46.2°/s, while the Kalman filters reduced peak error to ≤25.2°/s (Table 4).

4. Discussion

The accelerometer-derived displacements were accurate (<2.5° RMS error, <7° peak error) 

for the slowest material transfer rates (15 cycles/min). This test condition corresponded to 

an acceleration average and standard deviation of 9.9 m/s2 and 0.4 m/s2 within each trial, 

respectively. The accelerometer-derived displacements were negatively affected by increased 

motion speeds. Under the fast motion condition, the RMS and peak displacement error 

increased to 11.3° and 28.9°, respectively. This observation was consistent with the expected 

increase in tangential and centripetal acceleration, which are both affected by increased 

angular velocities (Bernmark and Wiktorin, 2002). The results of this study indicate a range 

of displacement errors (RMS <2.5° to >11°) comparable to previous work that assessed (i) 
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accelerometer-based inclinometers under a variety of tasks and arm swing frequencies (RMS 

2.0° to >13°) (Korshøj et al., 2014) and (ii) accelerometer-derived displacements in static 

conditions (<2°) (Amasay et al., 2009). The accelerometer-based displacement RMS error 

for the medium material transfer rate (6.3°) was also consistent with previous work that 

reported an RMS error of 7.2° for upper arm elevation displacements during simulated dairy 

parlor work (Schall et al., 2016).

As expected, the sensor fusion algorithms improved measurement accuracy for upper arm 

elevation displacement. For every transfer rate tested, a statistically significant pairwise 

difference was observed between the accuracy of accelerometer-derived displacements 

and each of the sensor fusion algorithms. However, the improvements in measurement 

accuracy were more apparent with increased motion speeds. For the fast motion condition, 

a simple first-order complementary filter reduced the RMS displacement error from 11.3° 

to 3.2°. However, this filter design did not account for variability in gyroscope bias or non-

gravitational acceleration. The Comp-2 filter, which reduced the RMS displacement error 

to <2.8°, accounted for gyroscope bias variability in the filter design. The modified linear 

Kalman filter accounted for both non-gravitational acceleration as well as gyroscope bias 

variability, which further reduced the error to <1.5°. In general, our errors were consistent 

with other studies (<4° RMS error) that provided inclination estimates using an identical 

comp-2 filter (Bergamini et al., 2014; Mourcou et al., 2015), an identical embedded Kalman 

filter (Lebel et al., 2013, 2015), and a similar linear Kalman filter (Bergamini et al., 2014; 

Ligorio and Sabatini, 2015, 2016).

Similar error trends appeared in velocity measurements since velocity was calculated by 

taking the derivative of the angular displacements with respect to time. As expected, 

accelerometer-derived angular velocities were unusable for the fast motion conditions 

(81.7°/s RMS error). This was mitigated considerably using a sensor fusion algorithm, 

which resulted in RMS errors between 7.3°/s and 17.0°/s for the fastest transfer rate, 

depending on the sensor fusion algorithm. Few studies have published accuracy of angular 

velocity measurements. In general, our results are consistent with previous studies. For 

the accelerometer-derived angular velocities, Schall et al. (2015) reported angular velocity 

errors <10°/s compared to measurements from a tri-axial lumbar spine electrogoniometer, 

which was consistent the current study (13°/s RMS) with regards to the slow transfer rate. 

For IMU-based angular velocity measurements, Kim and Nussbaum, 2013 reported errors 

<10°/s for the vast majority of joint angle velocities across all body segments through 

comparisons against an OMC (Kim and Nussbaum, 2013). Plamondon et al. (2007) reported 

angular velocity errors <13°/s (Plamondon et al., 2007) and Schall et al. (2015) reported 

RMS angular velocity errors <10.1°/s, which is consistent with our observations (<9.2°/s 

using a Kalman filter).

4.1. Study limitations

The relatively short sampling duration limits the extent to which the observed results can 

be applied to workplace exposure assessment practices. However, given the simplistic and 

cyclic motion (which was highly repeatable, as demonstrated in Figs. 3 and 6) and the 

absence of time-dependent error (which, if apparent, would be observed within a 1-min 
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timeframe), it is unlikely that a longer sampling duration would influence the RMS and 

peak error magnitudes reported in the current study. Time-dependent errors were likely 

not observed due, in part, to the somewhat conservative tuning parameters that perhaps 

relied on accelerometer data to greater extent than necessary (and leading to increased error 

magnitudes at increased motion speeds). While several studies examining IMU accuracy 

have used similar sampling durations (Bergamini et al., 2014; Brodie et al., 2008; El-Gohary 

and McNames, 2012; Faber et al., 2013; Ligorio and Sabatini, 2016; Ricci et al., 2016), 

sampling durations for workplace exposure assessment are generally considerably longer 

(e.g., up to a full shift). While the influence of sampling duration on RMS and peak error, 

as calculated in this study, is difficult to predict, it is reasonable to expect larger error 

magnitudes in practice (particularly peak error as a consequence of transient, high-speed 

movements).

A cyclic task was chosen to provide the maximum influence of motion on error magnitudes. 

However, the nature of the cyclic task precludes rest/recovery metrics that are also used 

to quantify motion-related exposures (e.g., the percentage of time with neutral posture 

and low velocity [Kazmierczak et al., 2005]). Furthermore, this study focused on accuracy 

of inclinometers and disregarded the issue of magnetic disturbance. The use of relatively 

standard sensor fusion algorithms in this experiment facilitates comparisons across other 

studies. However, differences in sensor specifications and tuning parameters may provide 

different error magnitudes. Finally, this study considers strictly sensor error. A recent 

study, for example, demonstrated that accelerometer-based inclinometers may underestimate 

inclination measurements under static conditions, particularly at angles >60° (Jackson et 

al., 2015). Differences in error magnitudes due to measurement methodology, such as 

differences in the local coordinate frame defined using anatomical landmarks in comparison 

to the sensor local coordinate frame and errors due to soft tissue artifacts, were not 

considered.

4.2. Methodological considerations for future studies

In general, the findings of this study suggest that the dynamics associated with 

upper arm motion are more than capable of adversely affecting accelerometer-derived 

angular displacement and velocity measurements commonly reported in the occupational 

ergonomics literature. Importantly, we observed underestimation of the extreme upper 

arm postures and velocities (i.e., 90th percentiles) at increased motion speeds. This result 

has meaningful implications for both researchers and practitioners when considering the 

use of accelerometers to identify and mitigate work activities that impose the greatest 

biomechanical loading. Moreover, in epidemiologic studies, underestimation of upper arm 

elevation during fast motion speeds may impact observed associations between summary 

measures of exposure to non-neutral posture and musculoskeletal health outcomes. If fast 

motion speeds are experienced randomly among those with and without outcomes, then any 

underestimation of upper arm elevation would lead to an attenuation of risk estimates. On 

the other hand, if those experiencing outcomes are more likely engaged in work with fast 

motion speeds in comparison to those not experiencing outcomes (or vice versa), then risk 

estimates become more difficult to interpret and operationalize.
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5. Conclusion

The overall goal of this study was to evaluate the capability of IMU-based inclinometers 

to provide accurate measurements of upper arm elevation displacement and velocity. In 

general, the accelerometer-derived displacements were accurate (<2.5° RMS error, <7° 

peak error) for slow movement speeds. However, both accelerometer-derived displacements 

and velocities were negatively affected by increased motion speeds. Under the fast 

motion speeds, the RMS and peak displacement errors increased to 11.3° and 28.9°, 

respectively. More importantly, the RMS and peak errors associated with accelerometer-

derived velocities were substantial (81.7°/s and 221.3°/s, respectively). A Kalman filter 

reduced peak displacement and velocity errors to <3.5° and <25.1°/s, respectively across 

all testing conditions. The results indicate that IMU-based inclinometers, in particular when 

implemented using a Kalman filter, can substantially improve inclinometer accuracy for the 

assessment of upper arm elevation during fast motion speeds.

APPENDIX

Appendix

Appendix A. First-order complementary filter design

The first-order complementary filter contains the following structure (Roan et al., 2012):

ϑcomp, i = (1 − β) ϑcomp, i − 1 + ϑ̇iΔt + βϑaccel, i (10)

where ϑcomp, i is the angle derived from the complementary filter, ϑaccel, i is the angle derived 

from the accelerometer measurements, ϑ̇i is the rotational velocity, Δt is the sensor sampling 

period, and α is the filter tuning parameter. The tuning parameter, α is assigned a value 

between 0 and 1 (0 would rely solely on gyroscope-derived inclination measurements, and 

1 would rely solely on accelerometer-derived inclination measurements). Equation (10) is 

written in terms of pitch and roll measurements as follows:

θi
ϕi

=
1 − βθ 0

0 1 − βϕ

θi − 1 + θ̇Δt
ϕi − 1 + ϕ̇Δt

+
βθ 0
0 βϕ

θaccel
ϕaccel

(11)

where θ̇ and ϕ̇ are calculated using gyroscope measurements ωx, ωy, ωz  and the 

complementary filtered inclination measurements, as shown in (12).

θ̇
ϕ̇

=
ωycosϕ − ωzsinϕ

ωx + ωysinϕtanθ + ωzcosϕtanθ (12)

The final equation of the first-order complementary filter (5) was obtained by substituting 

(3), (4), and (12) into (11).
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Appendix B. Kalman filter design

The Extended Kalman Filter used in this study contains the generic process model (13) 

and measurement model (14). The process model estimates xk, a column vector containing 

the parameters of interest, from prior estimate xk − 1 with a random variation of wk − 1. 

The matrices F and W relate xk − 1 and wk − 1 to xk, respectively. The measurement model 

compares xk to sensor measurements zk, where G is a matrix that relates xk to zk, and 

vk is the random variation within the measurement model. The random parameters wk-1 

and vk are assumed to follow normal distributions of p(w) ∼ N(0, Q) and p(v) ∼ N(0, R), 
respectively.

xk = Fxk − 1 + W k − 1wk − 1 (13)

zk = Gxk − 1 + V kvk (14)

The implementation of the Kalman filter consists of a series of five recursive equations:

xk− = Fxk − 1 (15)

Pk
− = APk − 1AT + W kQW k

T (16)

Kk = Pk
−HT HPk

−HT + V kQkV k
T −1

(17)

xk = xk− + Kk zk − Gxk− (18)

Pk = I − KkH Pk
− (19)

where I is the identity matrix, Pk is the estimation error covariance, and Kk is the Kalman 

gain calculated from Q and R. Matrices A, W, H, and V are all Jacobin matrices. Matrix A 

contains the partial derivatives of F with respect x, W contains the partial derivatives of F 
with respect to w, H contains the partial derivatives of G with respect to x, and V contains 

the partial derivatives of G with respect to v.

The Kalman Filter implemented was modified from a validated Linear Kalman Filter 

(Ligorio and Sabatini, 2015). The filter was designed to discriminate the direction of 

gravity (gb) from the linear acceleration (ab) in the local coordinate frame when gyroscope 

measurements ω b = ωx, ωy, ωz  and accelerometer measurements ax, ay, az  are provided. 

The generic process (13) and measurement (14) models were provided by Ligorio and 

Sabatini (2015) as follows:
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gk
b

ak
b =

expm − ωi − 1
b × Δt 03 × 3

03 × 3 caI3 × 3ai − 1
b

gk − 1
b

ak − 1
b

+
−Δt gi − 1

b × 03 × 3
03 × 3 cbI3 × 3

wk − 1
ω

wk − 1
gm

(20)

ax, k
ay, k
az, k

= I3 × 3 I3 × 3
gk

b

ak
b + I3 × 3vk

a (21)

where 03×3 is a 3 × 3 matrix with zeros, I3×3 is a 3 × 3 identity matrix, [ u × ] is the skew 

symmetric matrix associated for a given vector u , and ca, cb are the parameters of the 

first-order Gauss-Markov process used to account for external acceleration. The gyroscope 

noise wω and accelerometer noise va are assumed to follow a normal distribution of N 0, σω2

and N 0, σa2 , respectively. The white Gaussian noise wgm is assumed to be zero mean with 

an identity covariance matrix.

This process model was modified into a first-order approximation (22) to reduce 

computation time. The gyroscope bias was also added to the process model (23) to improve 

measurement estimates, which is consistent with other Kalman Filter designs (Brigante et 

al., 2011; Chang et al., 2008; Gośliński et al., 2015 ). The gyroscope bias was modeled as a 

random walk, where ḃω is assumed to follow a normal distribution of N 0, σωb
2 .

expm − ωi − 1
b × Δt ≈ I3 × 3 − ωi − 1

b × Δt (22)

bω, i = bω, i − 1 + ḃωΔt (23)

Based on these changes, (20) and (21) becomes (24) and (25), respectively.

gib

aib

bω, i

=
I3 × 3 − ωi − 1

b − bω, i − 1 × Δt 03 × 3 03 × 3

03 × 3 caI3 × 3ai − 1
b 03 × 3

03 × 3 03 × 3 I3 × 3

gi − 1
b

ai − 1
b

bω, i − 1

+
gi − 1

b × Δt 03 × 3 03 × 3
03 × 3 cbI3 × 3 03 × 3
03 × 3 03 × 3 ΔtI3 × 3

wi − 1
ω

wi − 1
gm

ḃω

(24)
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ax, k
ay, k
az, k

= I3 × 3 I3 × 3
gk

b

ak
b + I3 × 3 I3 × 3 03 × 3

gk
b

ak
b

bω, k

vk
a (25)

Given that F is non-linear, A is defined as follows:

A =
I3 × 3 − ωi − 1

b − bω, i − 1 × Δt 03 × 3 − gib × Δt

03 × 3 caI3 × 3ai − 1
b 03 × 3

03 × 3 03 × 3 I3 × 3

(26)

The process covariance matrix (Q) and the measurement covariance matrix (R) is defined as 

follows:

Q =
I3 × 3σω2 03 × 3 03 × 3

03 × 3 I3 × 3 03 × 3

03 × 3 03 × 3 I3 × 3σωb
2

(27)

R = I3 × 3σa2 (28)

Appendix C. Source code

The MATLAB files for the filters in this paper are freely available using the following 

address:

https://github.com/how-chen/Biomech/tree/master/IMU/Inclination Other code within this 

git-hub are freely-available to use as well. However, they are in varying stages of 

development, and may not function properly at all times.
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Fig. 1. 
Placement of the waist-height container holding the wooden dowels and the shoulder-height 

container.
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Fig. 2. 
IMU and its associated marker cluster attached to the upper arm of a participant.

Chen et al. Page 19

Appl Ergon. Author manuscript; available in PMC 2022 October 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
OMC-derived upper arm elevation displacements (°) for one participant across three 

different material transfer rates: slow (15 cycles/min), medium (30 cycles/min), and fast 

(45 cycles/min).
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Fig. 4. 
Upper arm elevation displacements across two cycles at two material transfer rates: slow 

(15 cycles/min), and fast (45 cycles/min). Displacements were measured by the optical 

motion capture system (OMC) and calculated using an accelerometer (Accel), first-order 

complementary filter (Comp-1), and a modified linear Kalman filter (Accel-KF).
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Fig. 5. 
Sample-to-sample displacement difference between OMC and IMU using a modified linear 

Kalman filter across two material transfer rates: slow (15 cycles/min) and fast (45 cycles/

min).
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Fig. 6. 
OMC-derived upper arm elevation velocities (one participant) across three material transfer 

rates: slow (15 cycles/min), medium (30 cycles/min), and fast (45 cycles/min).
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Fig. 7. 
Upper arm elevation velocities (°/s) for one participant across two material transfer rates: 

slow (15 cycles/min), and fast (45 cycles/min). Angular velocities were derived using 

displacements measured from the optical motion capture (OMC) calculated using an 

accelerometer (Accel), first-order complementary filter (Comp-1), and a modified linear 

Kalman filter (Accel-KF).
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Table 1

Kalman filter parameters.

Gyro White Noise Gyro Bias Accel White Noise ca cb

Accel-KF 0.005 rad/s 0.0005 (rad/s2) 0.005 m/s2 0.001 0.1
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