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Abstract

Many sensor fusion algorithms for analyzing human motion information collected with inertial 

measurement units have been reported in the scientific literature. Selecting which algorithm to use 

can be a challenge for ergonomists that may be unfamiliar with the strengths and limitations of 

the various options. In this paper, we describe fundamental differences among several algorithms, 

including differences in sensor fusion approach (e. g., complementary filter vs. Kalman Filter) 

and gyroscope error modeling (i.e., inclusion or exclusion of gyroscope bias). We then compare 

different sensor fusion algorithms considering the fundamentals discussed using laboratory-based 

measurements of upper arm elevation collected under three motion speeds. Results indicate peak 

displacement errors of <4.5° with a computationally efficient, non-proprietary complementary 

filter that did not account for gyroscope bias during each of the one-minute trials. Controlling 

for gyroscope bias reduced peak displacement errors to <3.0°. The complementary filters were 

comparable (<1° peak displacement difference) to the more complex Kalman filters.
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1. Introduction

Inertial measurement units (IMUs) are appealing for capturing human motion in 

unconstrained environments due to their ability to reliably record information about worker 

kinematics across full working shifts with minimal worker obtrusion (Douphrate et al., 

2012). As such, IMUs have been increasingly used by ergonomists and those in related 

fields to quantify human motion in the workplace (Schall et al., 2016a; Kersten and Fethke, 

2019; Granzow et al., 2018). IMU-based motion measurements, however, are subject to a 
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variety of error sources, such as magnetic disturbances (Bachmann et al., 2004; Fan et al., 

2017; Ligorio and Sabatini, 2016; Robert-Lachaine et al., 2017; de Vries et al., 2009) and 

high motion speeds (Chen et al., 2017; Ricci et al., 2016; Lebel et al., 2013). In general, 

three-dimensional (3D) full-body motion capture is possible under nominal conditions, but 

full-shift 3D motion capture in unconstrained environments may be unattainable based on 

current hardware capabilities (Robert-Lachaine et al., 2017; Chen et al., 2017).

Much of the biomechanics and ergonomics literature regarding IMUs entails validation and 

application of commercially available inertial-based motion capture systems (Lebel et al., 

2013; Robert-Lachaine et al., 2016; Robert-Lachaine et al., 2019; Kim and Nussbaum, 2014; 

Lebel et al., 2015; Blair et al., 2018; Cloete and Scheffer, 2008; Godwin et al., 2009; 

Zhang et al., 2013; Sers et al., 2020). While these studies have thoroughly documented 

the inherent limitations of IMU-based motion capture systems, both IMU error magnitudes 

and characteristics can deviate substantially among sensor models and manufacturers (Lebel 

et al., 2013). Consequently, the error magnitudes reported in these studies have limited 

generalizability beyond a certain manufacturer and/or model of IMUs, and perhaps even 

software versions. The differences in error characteristics among the manufacturers may, in 

part, be attributed to differences in signal processing methods (Chen et al., 2017; Chang et 

al., 2016; Filippeschi et al., 2017; Miezal et al., 2016). For this reason, we advocate for the 

use of non-proprietary sensor fusion algorithms, given that known error characteristics and 

failure modes may be more advantageous to a practicing ergonomist than potential increases 

in accuracy that may come from a proprietary algorithm. To our knowledge, the literature 

describing various sensor fusion methods available for IMU-based motion capture has not 

been synthesized for practicing ergonomists.

In this paper, we review the fundamentals of IMU-based motion capture and discuss the 

differences among several sensor fusion algorithms for IMU-based motion capture. This 

synthesis of the literature provides readers information to consider when selecting a sensor 

fusion algorithm for occupational ergonomics applications. Additionally, we evaluate the 

accuracy of four different sensor fusion algorithms, consisting of differences in sensor fusion 

approach and gyroscope error model, using laboratory-based measurements of upper arm 

elevation and velocity under a variety of motion speeds during a controlled experiment.

2. Fundamentals of inertial-based motion capture

An IMU used for human motion capture contains a miniature gyroscope, accelerometer, 

and, sometimes, a magnetometer. The gyroscope measures angular velocities, which are 

subsequently integrated with respect to time to obtain orientation (Bergamini et al., 2014; 

Brodie et al., 2008). This is known as dead-reckoning. In theory, joint angles can be 

estimated by calculating the relative orientation between two gyroscopes attached to 

adjacent body segments. In practice, since orientation is obtained by integrating angular 

velocities with respect to time, errors associated with the angular velocities measured by the 

gyroscope are integrated as well, which then compound with time (Lebel et al., 2015). All 

gyroscopes, regardless of size and cost, exhibit this error characteristic, known as gyroscopic 

drift. The advantages of the gyroscopes used for IMU-based motion capture reside in their 

miniature size, low cost, and durability, rather than measurement accuracy.
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Gyroscopic drift is eliminated by leveraging a sensor fusion algorithm to augment gyroscope 

measurements with information provided through additional sensors and assumptions 

about human motion. In general, the gyroscope-derived orientation measurements are 

augmented with information about sensor orientation with respect to both gravity (from an 

accelerometer) and magnetic north (from a magnetometer) (Bergamini et al., 2014; Yun et 

al., 2008; Valenti et al., 2015; Schiefer et al., 2014). This approach considers a time-invariant 

orientation under the assumption that the accelerometer is responding only to gravity and 

that the magnetometer is responding only to Earth’s local magnetic field. The assumption 

that an accelerometer is responding only to gravity is violated under periods of motion, 

which can cause peak errors exceeding 25° in measurements of upper arm elevation with 

respect to gravity (Chen et al., 2018). The assumption of a homogeneous local magnetic 

field is violated when an IMU is placed within proximity of ferromagnetic objects and 

electronic devices, which can cause errors up to 180° (Bachmann et al., 2004; Ligorio and 

Sabatini, 2016). Thus, while combining accelerometer and magnetometer measurements 

with gyroscope measurements can eliminate the effects of gyroscopic drift, orientation may 

still be adversely affected by increased motion speeds and the presence of ferromagnetic 

disturbances (Chen et al., 2017).

The extent to which errors due to increased motion speeds and magnetic disturbances 

can be mitigated is ultimately bound by the quality of the gyroscope used; accelerometer 

and magnetometer measurements would not be needed with a “perfect” gyroscope. In 

the absence of such a gyroscope, the goal of a sensor fusion algorithm is to provide an 

estimate of orientation that is unaffected by gyroscopic drift as well as motion and magnetic 

disturbances.

Fig. 1 illustrates upper arm inclination (pitch) angles calculated using only accelerometer 

measurements and using a sensor fusion algorithm that combines accelerometer with 

gyroscope measurements. The absence of gyroscopic drift is indicated by the identical 

inclination angles calculated from the accelerometer and fused approaches during static 

periods, acknowledging that slight offsets will sometimes exist as an artifact of the 

sensor fusion process. However, the accelerometer-only measurements deviate relative to 

the fused measurements during periods of motion, especially those with faster motion 

speeds (e.g. seconds 550 to 600). During these periods, fused solutions produced more 

accurate measurements than accelerometer-only measurements due to the mitigation of 

non-gravitational acceleration.

Fig. 2 illustrates how measurements about gravity (heading) calculated using accelerometer 

and gyroscope information differ with and without the inclusion of magnetometer 

information in the fusion algorithm. The time-varying offset between heading measurements 

calculated with and without magnetometer information is characteristic of gyroscopic drift. 

During the first 75 s of the trial, the deviations were minimal (<3° degrees), but exceeded 

60° 14 min (940 s) into the trial.

Many approaches have been described for calculating orientation using combinations of 

gyroscope, accelerometer, and magnetometer measurements. The differentiating factors 

among the various sensor fusion algorithms for IMU-based motion capture entail differences 
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in (i) sensor error models, (ii) sensor fusion approaches, and (iii) mechanisms to mitigate 

errors related to motion and magnetic disturbances.

2.1. Sensor error model considerations

The sensor error model considers the difference between the sensor measurement and its 

nominal value. For gyroscopes, accelerometers, and magnetometers, this difference can 

be explained through scaling, bias (offset), and presence of uncorrelated white Gaussian 

noise (Sabatini, 2006). For magnetometers, scaling and bias are typically pre-determined 

using a calibration procedure performed by the user to account for the presence of static 

magnetic disturbances (e.g. metal screws used to secure a case around the IMU) (Kok and 

Schön, 2016; Gebre-Egziabher et al., 2006). The scaling factors for the accelerometer and 

gyroscope are assumed to be pre-determined at the time of manufacture. The accelerometer 

bias is typically considered negligible when the accelerometer is used to measure the 

direction of the gravity vector. Consequently, accelerometer white noise, magnetometer 

white noise, gyroscope white noise, and gyroscope bias are considered the only error sources 

in the model. Some sensor fusion algorithms (e.g. (Ligorio and Sabatini, 2016; Madgwick 

et al., 2011; Wu et al., 2016; Yun and Bachmann, 2006)) do not account for changes in 

gyroscope bias to simplify filter parameters and achieve faster computation times.

2.2. Sensor fusion approach

The purpose of any sensor fusion algorithm is to attenuate random and systematic 

measurement errors by combining information from multiple sources (Plamondon et 

al., 2007). Perhaps the simplest approach, both conceptually and computationally, is 

the complementary filter, which leverages the high-frequency components of gyroscope 

measurements with the low-frequency components of accelerometer and magnetometer 

measurements (Madgwick et al., 2011; Luinge and Veltink, 2005). The Kalman Filter is 

also a common sensor fusion approach. A Kalman Filter is designed using a pre-defined 

statistical model under an assumption that measurement error is both Gaussian and 

stochastic (Sabatini, 2011).

Advantages of complementary filters include computational efficiency and simple tuning 

(Valenti et al., 2015). This approach, therefore, is useful for running on a small 

microprocessor in real-time or when post-processing large data files collected over 

long durations. However, the Kalman Filter provides (i) theoretically more accurate 

measurements given the same input information as the complementary filter and (ii) 

increased flexibility to incorporate extensions to improve measurement accuracy (e.g. human 

kinematic models), but at the expense of increased filter complexity and computational 

costs. Common Kalman Filter variations include Extended Kalman Filters (Sabatini, 2006; 

Yun and Bachmann, 2006; Brigante et al., 2011), Linear Kalman Filters (Ligorio and 

Sabatini, 2015a; Valenti et al., 2016), Unscented Kalman Filters (Kraft, 2003; LaViola, 

2003), and Indirect Kalman Filters (Chang et al., 2016; Luinge and Veltink, 2005; Kortier 

et al., 2014; Nez et al., 2018; Del Rosario et al., 2018). Each variation has been used to 

combine gyroscope, accelerometer, and magnetometer measurements to calculate spatial 

orientation, of which the Extended Kalman Filter is most commonly used in IMU-based 

applications (Sabatini, 2011).
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2.2.1. Mechanisms to mitigate motion disturbances—Many sensor fusion 

implementations contain a mechanism to account for non-gravitational acceleration. Since 

fast (e.g. 100°/s) human motion is unlikely to be sustained, non-gravitational acceleration 

can be modeled as a time-varying decay in linear acceleration (Ligorio and Sabatini, 

2015b; Roetenberg et al., 2005; Lee et al., 2012) or angular velocity (Yun and Bachmann, 

2006). Another approach is to discard or de-weight accelerometer measurements when the 

acceleration vector sum exceeds that of gravity (Sabatini, 2006; Sun et al., 2013), and rely 

on gyroscope dead-reckoning during these periods. In addition, tangential and centripetal 

acceleration can be calculated based on angular velocity and measured segment lengths, and 

then propagated along the kinematic chain (El-Gohary and McNames, 2012; Lin and Kulić, 

2012; Lee and Choi, 2019).

2.2.2. Mechanisms to mitigate magnetic disturbances—Magnetic disturbances 

can be mitigated by considering a time-varying decay of magnetic field fluctuations (Ligorio 

and Sabatini, 2016). Alternatively, magnetometer measurements can be discarded if the 

magnetic field strength and inclination angle (i.e. direction of magnetic field relative 

to gravity) are not within expected ranges at a given geographic location (Ligorio and 

Sabatini, 2016; Sabatini (2006); Sun et al., 2013). Threshold-based mechanisms can mitigate 

‘dynamic’ magnetic disturbances (e.g. walking through a metal door frame), but not, 

however, ‘quasi-static’ magnetic disturbances (e.g. standing under a metal door frame), 

which will result in gyroscopic drift. During periods in which the gyroscope must be dead-

reckoned, ‘still detection’ algorithms can be used to zero the gyroscope when a stationary 

period is observed (e.g. when angular velocities are below a defined threshold for a defined 

duration) (Schiefer et al., 2014). Still detection mitigates but does not eliminate gyroscopic 

drift since the error will continue to compound during periods of movement.

Kinematic models that incorporate measurements from multiple IMUs (e.g. (Miezal et al., 

2016; El-Gohary and McNames, 2012; Zhang et al., 2011; Kok et al., 2014)) can also 

be used to reduce the reliance on magnetometer measurements. It should be noted that 

these additional mechanisms add filter complexity, resulting in the need to monitor and/or 

control additional operational parameters (e.g. segment lengths), higher computational costs, 

and tuning parameters. To our knowledge, a comprehensive comparison of the various 

approaches of combining IMU information with a human kinematic model has not been 

reported.

Given current hardware limitations, the ergonomist has several suboptimal options for 

mitigating measurement errors associated with magnetic disturbances. These include: (i) 

using the system under the assumption of a homogenous magnetic field, which requires 

visual inspection (Robert-Lachaine et al., 2019) or other mechanisms (e.g. machine learning) 

(Lebel et al., 2016) to identify and discard magnetically disturbed data segments; (ii) 

capture data in relatively short timeframes (minutes) relative to a known orientation by 

dead-reckoning the IMU (Schiefer et al., 2014; El-Gohary and McNames, 2015); or (iii) 

use IMUs as inclinometers (Schall et al., 2016a; Kersten and Fethke, 2019; Granzow et al., 

2018; Schall et al., 2014, 2016b; Yang et al., 2017). While using IMUs as inclinometers 

does not provide 3D measurements, more accurate postural summary metrics have been 

reported in comparison to accelerometer-only approaches, particularly under high motion 
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speeds (Chen et al., 2018). This option was explored in our previous paper, in which peak 

errors >25° for accelerometer-based measurement of upper arm elevation were substantially 

reduced (to <3°) through the use of a sensor fusion algorithm (Chen et al., 2018).

What remains unknown from our previous work, however, is whether the increased accuracy 

observed was a function of sensor fusion approach, differences in filter implementation, 

the use of a more complex gyroscope model, the inclusion of a motion mitigation 

mechanism, or some combination of these factors. Furthermore, we have since simplified 

our complementary filter design and modified it to account for gyroscope bias. Therefore, 

in the current paper, we evaluate four new sensor fusion algorithms, two complementary 

filters and two Kalman filters, that either account for gyroscope bias or not while controlling 

for filter implementation differences. The study objectives were to (i) improve upon our 

previous complementary filter design, and to (ii) evaluate the effects of sensor fusion 

approach and gyroscope model on the accuracy of upper arm elevation measurements.

3. Methods

3.1. Complementary filter

The complementary filter we previously developed (Chen et al., 2018) was modified to 

simplify its equations and extended to account for gyroscope bias. The new filter design is 

analogous to the work of (Gallagher et al., 2004). Gyroscope bias was considered according 

to (Madgwick et al., 2011).

The structure of the modified complementary filter (without accounting for gyroscope bias) 

is as follows:

g k = (1 − β) g k − 1 + g k × ω kΔt + β a k (1)

where g  is the direction of the gravity estimated by the sensor fusion algorithm in the 

body frame, ω  is the angular velocity (rad/s) measured by the gyroscope, a  is the linear 

acceleration (m/s2) measured by the accelerometer, Δt is the sample period (i.e., the inverse 

of the sampling rate), and × is the cross product at the k and k − 1 iterations. Since the 

output of this filter implementation is a ‘filtered’ gravitation vector, its unit is also in terms 

of linear acceleration (m/s2). g  is subsequently used to calculate upper arm elevation. The 

filter is tuned by assigning the parameter β a value between 0 and 1, where a value of 0 

indicates that the filter is using solely gyroscope measurements and a value of 1 indicates 

that the filter is using solely accelerometer measurements. This filter will be referred to as 

comp hereafter. β was set to 0.006, which was determined experimentally.

The extended complementary filter that accounts for gyroscope bias b  is presented as 

Equation (2):

g k = (1 − β) g k − 1 + g k − 1 × ω k − b k − 1 Δt + β a k (2)

b  is calculated as follows:
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b k = b k − 1 − γ(1 − β) g k × g k − a k Δt (3)

where γ is the bias tuning parameter. A value of 0 means that gyroscope bias is unaccounted 

for in the model. This filter will be referred to as comp-bias hereafter. The filter parameter 

β was set to 0.003 and the parameter γ was set to 1 × 10−5. These parameters were derived 

experimentally.

3.2. Kalman Filter

The process and measurement model for the Kalman Filter analogue of (1) is as follows:

g k = I − ω k − 1 × Δt g k − 1 + g k − 1 × Δt w ω, k (4)

a k = g k + v a, k (5)

where [ u × ] is the skew symmetric operator, w ω, k is the gyroscope white noise, and v a, k is 

the accelerometer white noise.

The process model is as follows when gyroscope bias is considered:

g k

b k
= I − ω k − 1 − b k × Δt 0

0 I

g k − 1

b k − 1

+ g k − 1 × Δt 0
0 IΔt

w ω, k

b ω, k

(6)

where b ω, k is the gyroscope bias noise. The measurement model does not change. These 

are simplified versions of the filter implemented in our previous work (Chen et al., 2018).

The Kalman filter implementations without and with gyroscope bias compensation are 

labeled KF and KF-bias, respectively. For both, the gyroscope white noise standard 

deviation (SD) was set to 0.005 rad/s. For KF, the accelerometer noise SD was set 

to 0.05 m/s2. For KF-bias, the gyroscope bias noise SD was set to 0.0005 rad/s2 and 

the accelerometer white noise SD was set to 0.1 m/s2. These values were derived 

experimentally.

3.3. Upper arm elevation calculation

Upper arm elevation θk in the measurement time series is calculated as follows:

θk = cos−1 gx, k
gx, k

2 + gy, k
2 + gz, k

2 (7)

where gx;k, gy;k, and gz;k are the x, y, and z-axes of the gravity vector from the filter output 

at sample k. This equation assumes that the x-axis is aligned with the upper arm, with 

positive x oriented distally.
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Upper arm angular velocity θ̇ is calculated as follows:

θ̇k = θk − θk − 1
Δt (8)

3.4. Laboratory study

Participants (11 male, 3 female, mean age = 27.2 ± 6.6 years, right-hand dominant) were 

recruited from the University of Iowa community and screened for any self-reported cases 

of: (i) physician-diagnosed musculoskeletal disorders in the previous six months, (ii) pain 

for the previous two weeks prior to enrollment, and (iii) medical history of orthopedic 

surgery in the upper extremity (shoulder, elbow, wrist, hand). Each participant provided 

written informed consent prior to participation. The University of Iowa Institutional Review 

Board approved all study procedures.

An IMU (Opal, APDM, Inc. Portland, OR; also sold as series SXT, Nexgen Ergonomics, 

Inc., Pointe Claire, Quebec, CA) was secured to the lateral aspect of the dominant upper 

arm midway between the acromion and the lateral epicondyle. Accelerometer and gyroscope 

measurements from the IMU were recorded at a sampling rate of 128 Hz. Spatial orientation 

was also simultaneously recorded using a six-camera optical motion capture (OMC) system 

(Optitrack Flex 13, NaturalPoint, Inc., Corvallis, OR, USA) that tracked four reflective 

markers rigidly attached to the surface of the IMU with double-sided tape. The OMC 

measurements were recorded at 120 Hz. Calibration of the IMU and OMC instrumentation 

systems was performed using manufacturer-specified procedures. Specifically, the IMU 

was placed stationary on a table for >1 min to remove initial gyroscope biases using 

the manufacturer’s software. For the OMC system, camera placement and lens distortion 

were determined and applied using the manufacturer’s software, which associates through 

triangulation the position of the reflective markers registered on each camera to the known 

positions of reflective markers on calibration wand. A manufacturer-provided calibration 

square was used to define the OMC reference coordinate frame.

Each participant completed six trials of a task that required transferring wooden dowels 

(2 cm dia. × 8 cm length) from a waist-high container placed directly in front of the 

participant to a shoulder-height container placed diagonally from the participant (Fig. 3). 

Each participant completed two trials at each of three rates: slow (15 cycles/min), medium 

(30 cycles/min), and fast (45 cycles/min) dictated by a metronome. Experimental conditions 

were randomized to control for potential order effects. Each participant was given time to 

acclimate to the assigned transfer rate before each trial was captured. The trials were 1 

min in duration and each was followed by a 5-min rest period. OMC measurements were 

recorded for the duration of each trial (1 min) while the IMU provided measurements for the 

entirety of each testing session (>30 min).

All post-processing was accomplished using MATLAB (2016a, Mathworks, Natick, MA). 

The IMU data were down sampled to 120 Hz to match the OMC sampling rate after 

executing the sensor fusion algorithms. For each trial, IMU and OMC measurements were 

temporally aligned through visual inspection. The offset between the local coordinate 
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frames of the OMC and the IMU was calculated using angular velocity measurements 

according to (de Vries et al., 2009) and subsequently applied to OMC measurements. 

After applying the local offset, the offset between the global coordinate frames of the 

OMC and the IMU was determined under static conditions using the accelerometer-derived 

inclination measurements. OMC-derived upper arm elevation displacements and velocities 

were calculated after the offsets were added to OMC-derived orientation measurements.

After alignment, the direction of gravity in the body frame was calculated from the OMC as 

follows

gx
gy
gz

= 9.81
2q1q3 − 2q0q2
2q0q1 + 2q2q3

q0
2 − q1

2 − q2
2 + q3

2
(9)

where q0 is the scalar component of the quaternion orientation vector and q1, q2, q3 are the 

vector components of the quaternion orientation vector.

Root-mean-square error (RMS) for upper arm elevation was calculated as follows:

θerr = 1
n ∑ θomc − θimu

2
(10)

where θomc and θimu are the upper arm elevation measurements from the OMC and 

IMU, respectively. Peak error was calculated using the 99th percentile measurement of the 

rectified (absolute value) sample-to-sample difference between the OMC and inclinometer-

derived measurements.

Similarly, RMS for upper arm angular velocity was calculated as follows:

θ̇err = 1
n ∑ θ̇omc − θ̇imu

2
(11)

where θ̇omc and θ̇imu are the upper arm angular velocity measurements from the OMC and 

IMU, respectively. Peak error was calculated using the 99th percentile measurement of the 

rectified (absolute value) sample-to-sample difference between the OMC and inclinometer-

derived measurements.

4. Results

Our four sensor fusion algorithms produced average and peak displacement errors of 

<2.5° and <4.5°, respectively, across all transfer rates. As expected, the measurement error 

increased marginally with increased transfer rates (<0.5° average, <1.5° peak between the 

‘slow’ and fast’ transfer rates). For each transfer rate, the difference in peak error between 

the Complementary and Kalman-based sensor fusion approaches differed by < 1°. The 

inclusion of gyroscope bias reduced peak errors by approximately 1.5° (Table 1).

Similar effects were observed for angular velocities. Errors increased with transfer rates. 

Peak velocity errors were <37.5°/s across all transfer rates and sensor fusion algorithms. The 
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Kalman Filter reduced velocity errors to a lesser extent than inclusion of bias estimation. 

The angular velocity errors from the complementary and Kalman Filter approaches were 

less than 37.2°/s and 36.3°/s, respectively. When compensation for gyroscope bias, the errors 

were less than 25.2°/s and 23.3°/s, respectively (Table 2).

5. Discussion

5.1. IMU error magnitudes

The observed error magnitudes (<2.5° average error across all algorithms and transfer rates) 

are among the lowest reported to date. The best-performing algorithm (KF-bias) produced 

average errors ≤1.2° across all transfer rates which, to our knowledge, is the lowest error 

reported in the literature. This is in contrast to studies that have reported errors between 

OMC and IMU-based orientation measures ranging from 20° to 40° (Robert-Lachaine et al., 

2016; Godwin et al., 2009). To better understand the variability in reported findings, it is 

important to discuss methods used to assess the accuracy of IMUs, which can vary widely.

In general, the accuracy of an IMU is assessed by simultaneously measuring a motion 

pattern with the sensor and a reference device. An OMC system is generally used as 

the “gold-standard” reference for this application (Cuesta-Vargas et al., 2010). However, 

mechanical gimbals (Lebel et al., 2013; Lebel et al., 2015), robotic arms (El-Gohary 

and McNames, 2015; Martori et al., 2013; Mourcou et al., 2015), pendulums (Godwin 

et al., 2009; Brodie et al., 2008), and human motion (Robert-Lachaine et al., 2017; 

Bergamini et al., 2014; Schall et al., 2016b; Faber et al., 2013; Ligorio et al., 2016; Kim 

and Nussbaum, 2013; Schall et al., 2015a) have also been used as motion sources. The 

advantage of mechanical devices (e.g. gimbals, robotic arms) is a highly repeatable motion 

pattern. However, the motion dynamics (e.g. linear acceleration, angular velocities) may 

not be representative of human motion. Linear acceleration magnitudes below the expected 

magnitudes during human motion will likely result in lower IMU errors than would be 

anticipated when human motion is involved. Additionally, the motors on mechanical devices 

may provide a source of magnetic disturbance.

When IMU accuracy is evaluated using human motion, a wider range of reported errors 

is anticipated. A common approach, for example, is to assess IMU accuracy in the 

context of biomechanics (i.e. joint kinematics) (Sers et al., 2020; Plamondon et al., 2007; 

El-Gohary and McNames, 2012; Martori et al., 2013; Kim and Nussbaum, 2013; Schall 

et al., 2015a, 2015b). For this approach, joint angles calculated using a kinematic model 

based on measurements from an OMC system are compared to joint angles calculated 

using a kinematic model based on measurements from IMUs. A comparison of this type 

is representative of the use of IMUs for occupational exposure assessment applications. 

However, the variation in error magnitudes reported in studies assessing the accuracy of 

IMUs in this manner may reflect differences in methodology rather than sensor error 

(Robert-Lachaine et al., 2016). For example, when using an OMC system, the position 

and orientation of joint segments are typically defined based on the spatial positions of 

established anatomical landmarks (Wu et al., 2005). Because IMUs do not measure spatial 

position, joint coordinate frames cannot be defined in the same manner as the OMC system 

(de Vries et al., 2010). While a calibration fixture can be used to align the orientation 
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of an IMU relative to anatomical landmarks (Picerno et al., 2008), the common approach 

of aligning IMUs to joint segments entails a functional calibration procedure using pre-

defined motions (Ricci et al., 2014; Favre et al., 2009; Bouvier et al., 2015). Differences 

in calibration procedures can lead to discrepancies ranging from 15° to 40° relative to 

established clinical protocols (Robert-Lachaine et al., 2016; de Vries et al., 2010; Ricci et 

al., 2014; Cutti et al., 2007). Soft tissue artifacts (e.g. reflective markers moving differently 

relative to the IMU) as well as the compounding errors of multiple IMUs, may contribute 

to larger error magnitudes. For these reasons, several studies report accuracy in terms of 

sensor error to control for methodological differences (Lebel et al., 2013; Lebel et al., 2015; 

Bergamini et al., 2014; Chen et al., 2018; Faber et al., 2013; Ligorio et al., 2016).

The errors associated with IMU spatial orientation measurements (i. e., heading, pitch 

and roll angles rather than kinematic variables) are relevant for understanding IMU error 

characteristics and the theoretical accuracy of biomechanical-based measurements using 

current sensor technologies. Errors in spatial orientation measurements are often presented 

when (i) developing and comparing sensor fusion algorithms and (ii) assessing factors that 

can negatively affect IMU accuracy (Lebel et al., 2013; Lebel et al., 2015; Bergamini et al., 

2014; Ligorio et al., 2016; Sessa et al., 2012). Average sensor errors on the order of <6° 

have been observed (Chen et al., 2017; Lebel et al., 2013; Bergamini et al., 2014; Chen et 

al., 2018; Faber et al., 2013; Ricci et al., 2016). Faber et al. reported errors <1.5° (Faber et 

al., 2013), which is consistent with the current study findings. Variations in sensor accuracy 

can be attributed to how well the IMU and OMC systems were aligned both spatially and 

temporally (Sessa et al., 2012; Mecheri et al., 2016), the accuracy of the sensor hardware, 

and the performance of the sensor fusion algorithm (Chen et al., 2017). The experimental 

setup can also affect sensor error. A static pose (e.g., an n, T, or I-pose) followed by a 

short sampling timeframe (e.g. <1 min), for example, should produce minimal gyroscopic 

drift. When using a static positioning procedure, it is unknown whether certain algorithms 

can thoroughly mitigate or eliminate magnetic disturbance (e.g. (El-Gohary and McNames, 

2012)) since the algorithms may perform identically to a dead-reckoned solution. Small 

linear acceleration magnitudes due to slow movement speeds and sensors on the trunk and 

proximal body segments as well as mitigation of magnetic disturbances can also minimize 

sensor errors. These methods result in the risk of developing a test environment that is 

unrepresentative of the desired operating environment for the sensors (Schiefer et al., 2014). 

Controlling for magnetic disturbance, for example, can be accomplished in a laboratory 

setting, but may be unattainable in a work environment. It should also be noted that OMC 

and other reference devices are also subjected to measurement errors. In particular, the OMC 

is designed to track the positions of reflective markers in Cartesian space. Orientation is 

subsequently derived from a minimum of three markers attached to the same rigid body 

(Yun et al., 2008; Faber et al., 2013). Consequently, the accuracy and precision of the 

OMC-derived orientation measurements is dependent on the spacing of the markers.

In this study, we explicitly examined upper arm elevation. As such, we did not use 

information from the IMU’s magnetometer. Also, the linear acceleration magnitudes were 

lower compared to those from an IMU on the distal upper extremity. We believe, however, 

that the range of motion speeds chosen based on our selection of the transfer rates 

were representative of typical sustained motion speeds for the upper extremity. From a 
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technical perspective, the capability of the presented sensor fusion algorithms to mitigate 

displacement errors due to increased motion speeds is apparent through comparison with 

our previous study (Chen et al., 2018), which showed that the peak displacement error 

for accelerometer-derived upper arm elevation measurements exceeded 25° under the 

‘fast’ transfer rate. The simplest of the sensor fusion algorithms presented in this paper 

(complementary filter without bias compensation) produced peak displacement errors <4.5° 

for upper arm elevation across all motion speeds. In comparison, the two complementary 

filter implementations in our previous paper produced peak errors of <6.5° (‘Comp-1’) and 

<5.7° (‘Comp-2’). The discrepancy in error magnitudes is likely attributed to differences in 

filter implementation since not all three filters accounted for gyroscope bias in the sensor 

model. We hypothesize that the numerical instabilities associated with Euler formulation for 

the ‘Comp-1’ algorithm and slow numerical convergence in the ‘Comp-2’ algorithm in our 

previous paper were both alleviated with the current complementary filter implementation.

Accounting for gyroscope bias within the sensor fusion algorithm reduced peak 

displacement errors from <4.5° to <3.0° for the complementary filter and from <4.0° to 

<2.6° for the Kalman Filter. This finding indicates that the improvements in accuracy 

associated with the Kalman Filter-based approach were marginal. We hypothesize, however, 

that this difference would increase when the sensors are mounted on the distal extremities, 

which will cause higher linear acceleration magnitudes. While the difference may, in part, 

be attributed to a suboptimal implementation and tuning of the Kalman-based approaches 

relative to the Complementary-based approaches, the proprietary embedded Kalman filter 

within the IMU produced peak errors <2.5° across all motion conditions (Chen et al., 2018). 

The ‘inc-KF’ filter in our previous work, which accounted for gyroscope bias, and modeled 

non-gravitational acceleration as a time-varying decay, produced peak errors <3.2°. This 

indicates that the inclusion of an additional motion mitigation method was not necessary for 

the arm elevations present in the laboratory study.

5.2. Study limitations

Perhaps the most important limitation of this study was that the scope of our analysis was 

constrained to upper arm elevation measurements. The principles discussed here, however, 

hold for other body segments that may be of interest (e.g., the trunk, elbow, wrist). As 

discussed previously, error magnitudes will likely increase for IMUs attached to distal 

body segments as linear acceleration magnitudes increase with distance from the axis of 

rotation. Additionally, accurately quantifying kinematics in all three planes of motion is 

likely not possible without either dead reckoning of gyroscope measurements or inclusion 

of magnetometer measurements. Another limitation is that our results are reported in 

terms of sensor error, which does not consider the methodological differences between 

a clinical laboratory-based OMC system and our field-based inclination measurement 

device. Finally, the trial duration was limited to 1 min, which limits the extent to which 

our results generalize to longer sampling durations. However, the desired cycle time for 

the ‘fast’ transfer rate was difficult for participants to maintain beyond 1 min during 

preliminary testing. Regardless, given that the IMU was recording continuously across 

all six experimental trials, we did not observe time-dependent error manifesting over the 

progression of the experimental session.
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5.3. Summary and recommendations

For ergonomists considering using commercially available IMU-based motion capture 

systems, it is important to understand that magnetic disturbance, gyroscopic drift, soft tissue 

artifacts, and differences in biomechanical modeling will all contribute to measurement 

error relative to a gold-standard OMC system with a biomechanical-based marker set. 

Measurement error associated with magnetic disturbances cannot currently be eliminated 

without discarding the magnetometer measurements from the sensor fusion algorithm, which 

was the approach adopted for the current study. However, certain algorithms may be better 

at mitigating the effects of magnetic disturbance relative to others. Gyroscopic drift is likely 

to be observed during periods of time when magnetometer measurements are de-weighted 

or discarded. Gyroscopic drift may be further minimized through the development of new 

algorithms and/or higher-quality gyroscopes. In the absence of these improvements, the 

performance of IMU systems using magnetometers will continue to be highly dependent 

on the environments in which they are applied. If, however, magnetometers are not used 

and heading information is discarded, gyroscopic drift is eliminated. The IMU effectively 

functions as an inclinometer under such an approach, but with the advantage of providing 

more accurate metrics without being subject to errors associated with gyroscopic drift nor 

magnetic disturbance.

When possible, it is recommended that ergonomists capture accelerometer, gyroscope, and 

magnetometer measurements since algorithms (both proprietary and open source) will likely 

continue to improve. We also recommend inspecting the data to ensure that gyroscopic drift 

and/or magnetic disturbance is identified in the raw sensor data before calculating kinematic 

information of interest. This can be accomplished through simple visual inspection, or 

possibly advanced machine learning approaches (Robert-Lachaine et al., 2019; Lebel et al., 

2016).

For practitioners interested in using open-source algorithms, we believe that choosing 

application-specific algorithms will provide better measurement accuracy along with known 

error characteristics and failure modes. When a full 3D orientation solution is required (e.g., 

joint angles of the distal extremities), using an algorithm that does not reject magnetic 

disturbance and careful visual inspection of data segments that may be subject to magnetic 

disturbance should lead to improved measurement accuracy. In the event that an inclination 

measurement (e.g. upper arm elevation, trunk flexion/extension and lateral bending) is 

sufficient, using a sensor fusion algorithm such as those presented here should help avoid 

underestimation of exposure, in particular when needing to identify/quantify the ‘most 

extreme’ postures when motion speeds are ‘fast.’ For this purpose, any of the algorithms 

we presented, as well as other widely available algorithms (e.g. (Madgwick et al., 2011; 

Kok and Schön, 2019)), would likely be sufficient. The improved accuracy resulting from 

inclusion of additional motion mitigation mechanisms, gyroscope modeling, and more 

accurate estimation methods would likely be minimal.

For validation of IMU-based motion capture systems, it is recommended that sensor and 

biomechanical errors are reported to inform other researchers and practitioners of their 

error sources (Robert-Lachaine et al., 2017; Robert-Lachaine et al., 2016). Repeatable 

protocols on how to align IMUs to various body segments would be beneficial for 
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consistent use of IMUs among the ergonomics community. With regards to improving 

sensor fusion algorithms, new methods to identify and mitigate magnetic disturbances is 

an important area for continued research. This may entail leveraging kinematic models 

that include measurements from multiple IMUs (e.g. (Miezal et al., 2016; El-Gohary and 

McNames, 2012; Zhang et al., 2011; Kok et al., 2014)). It is hypothesized that incorporating 

kinematic models that integrate measurements from multiple IMUs (e.g. (Miezal et al., 

2016; El-Gohary and McNames, 2012; Zhang et al., 2011; Kok et al., 2014)) into a single 

over-arching sensor fusion algorithm may be used to reduce the reliance of magnetometer 

measurements.
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Fig. 1. 
[Top:] Inclination (pitch) angles calculated using only accelerometer measurements 

(acc) and using a sensor fusion algorithm that combines accelerometer with gyroscope 

measurements (acc + gyr) under varying motion conditions (static, slow, medium, fast) 

across 1100 s [Bottom:] Detailed views (5-s intervals) of inclination measurements at 

various periods of the trial under different motion conditions.
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Fig. 2. 
Heading (direction about gravity vector) angle calculated using a sensor fusion algorithm 

with magnetometer measurements (acc + gyr + mag) and without magnetometer 

measurements (acc + gyr).
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Fig. 3. 
Experimental setup. Each transfer cycle consisted of (1) grasping a wooden dowel, (2) 

transferring the dowel to the unloading container, and (3) returning the hand back to the 

material feed container to grasp the next dowel.
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