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Abstract

Purpose: Metamodels are simplified approximations of more complex models that can be used 

as surrogates for the original models. Challenges in using metamodels for policy analysis arise 

when there are multiple correlated outputs of interest. We develop a framework for metamodeling 

with policy simulations to accommodate multivariate outcomes.

Methods: We combine two algorithm adaptation methods – multi-target stacking and regression 

chain with maximum correlation – with different base learners including linear regression 

(LR), elastic net (EE) with second-order terms, Gaussian process regression (GPR), random 

forests (RFs), and neural networks. We optimize integrated models using variable selection 

and hyperparameter tuning. We compare accuracy, efficiency, and interpretability of different 

approaches. As an example application, we develop metamodels to emulate a microsimulation 

model of testing and treatment strategies for hepatitis C in correctional settings.

Results: Output variables from the simulation model were correlated (average ρ=0.58). Without 

multioutput algorithm adaptation methods, in-sample fit (measured by R2) ranged from 0.881 

for LR to 0.987 for GPR. The multioutput algorithm adaptation method increased R2 by an 

average 0.002 across base learners. Variable selection and hyperparameter tuning increased R2 by 

0.009. Simpler models such as LR, EE, and RF required minimal training and prediction time. 

LR and EE had advantages in model interpretability, and we considered methods for improving 

interpretability of other models.

Conclusions: In our example application, the choice of base learner had the largest impact 

on R2; multioutput algorithm adaptation and variable selection and hyperparameter tuning had 

modest impact. While advantages and disadvantages of specific learning algorithms may vary 

across different modeling applications, our framework for metamodeling in policy analyses with 

multivariate outcomes has broad applicability to decision analysis in health and medicine.
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INTRODUCTION

Simulation modeling is commonly used in health policy analyses, including cost-

effectiveness analyses (CEA). Increasingly complex simulation-based CEA models have 

been developed as computational power and data availability have increased. Greater model 

complexity often translates into longer computation times. For example, many runs may 

be needed to reduce the Monte Carlo error in a complex stochastic simulation model 

or to perform sensitivity analyses that provide insights from models with large numbers 

of parameters. At the same time, stakeholders often want model-based tools to support 

decision making in their local environments, which might not be readily available or easily 

translated from a policy model published in a peer-reviewed article. Local contextualization 

of modeling studies may be facilitated by web-based applications that accommodate more 

flexible real-time model adaptations. Key factors for the successful deployment of such 

a tool are a user-friendly interface and fast model run-time, as well as the suitability 

and validity of the model to answer the question at hand.1 Model interpretability is also 

critical so that stakeholders can understand a model’s inputs and assumptions, identify 

relationships between model inputs and outputs, and avoid the perception of the model as a 

‘black-box.’2–4

The Second Panel on Cost-effectiveness in Health and Medicine stressed the importance 

of efficient model emulators, or metamodels, as a means of reducing computational cost.5 

A metamodel is a statistical approximation of an originally constructed model. In addition 

to serving as a proxy model that can replace a more complex model to predict outputs, 

metamodels can also be used to improve interpretability6 and aid in model calibration.7 

For example, linear regression, which can serve as a metamodel for the original simulation 

model if prediction accuracy is satisfactory, can improve the interpretability of the original 

model by identifying a clear (albeit approximate) relationship between model inputs and 

outputs.1 Computational requirements for such a metamodel are small, thereby facilitating 

tasks such as model calibration and probabilistic sensitivity analysis and increasing the 

potential for use of the metamodel in a web-based modeling tool.

Metamodels have a long history of use as surrogates for more complex original models, 

within a range of areas including public health, energy and the environment, and queueing 

systems.8–10 In health policy research, use of metamodels has been driven by the need to 

reduce computational complexity, facilitate value-of-information analysis, and help reduce 

decision uncertainty given model input uncertainty.11–18 To build a good approximation of 

an original model, various methods, such as linear regression, logistic regression, Gaussian 

process regression, and artificial neural networks have been used.11, 13, 14, 19–21 Degeling et 

al. recently provided a step-by-step guide to developing metamodels in the health economics 

research setting.22

A limitation of existing methods for metamodeling is that such methods typically do not 

consider the challenges that arise when multiple output variables are relevant to a particular 

policy analysis, and when those outputs are correlated (e.g., the costs and health effects 

of different policy choices).1, 21, 23 When outputs are correlated, an approach that does 

not account explicitly for these correlations could lead to invalid conclusions, for example 

Zhong et al. Page 2

Med Decis Making. Author manuscript; available in PMC 2022 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



when comparisons between the outcomes are salient (as in the ranking of alternatives on a 

particular measure) or when the key quantity of interest depends on multiple outcomes.

In this paper, we develop a framework for metamodeling of simulation models that 

accommodates multiple correlated outcomes, and we compare alternatives for the choice 

of base learning algorithm. As an example, we apply our framework to develop a metamodel 

based on a microsimulation model of alternative testing and treatment strategies for hepatitis 

C in correctional settings. We show how metamodeling can provide accurate predictions of 

outputs and improve computational efficiency and model interpretability.

METHODS

In this section, we introduce a general framework for constructing metamodels, present 

details of our method for handling multioutput prediction, describe different base models 

that can be used to emulate the original model, and describe our model-independent variable 

selection scheme. We also present evaluation metrics for the constructed metamodels.

Metamodeling Framework

Creation of a metamodel involves development of standardized input and output variable 

sets, splitting the data into training and testing sets, and then finding the best model to 

approximate the relationships between the inputs and outputs.22

A first step is to generate appropriate data for constructing the metamodels, which comprise 

inputs and outputs from a full ‘original’ model that will be emulated by the metamodel. We 

start with N sets of values for the array of input variables used in the original model. If all 

input variables are independent, random samples can be drawn from the distribution of each 

input variable and integrated into the N sets of values. Otherwise, the joint distribution of 

all input variables must be sampled to generate these sets of input values. Depending on 

the modeler’s knowledge of the study population and context, other more efficient sampling 

methods such as stratified sampling and cluster sampling can be used. Many modelers use a 

Bayesian approach to obtain input variable sets via model calibration, a process that yields 

a joint distribution of values for all parameters that reflects their correlation structure.24 

The necessary number of input variable sets N depends on the complexity of the model as 

reflected by factors such as the number of input variables, the number of outputs of interest, 

and the dynamics of the processes being simulated. For each set of values of the input 

variables, the original model is simulated to generate a corresponding set of output values. 

Via metamodeling we then aim to build a simplified version of the original model that can 

approximately replicate the same relationships between inputs and outputs produced by the 

original model.

Depending on the data, preprocessing may be necessary before a model can be built. If 

the data include categorical variables, they must be converted, either to multiple one-hot 

vectors (these are vectors where all elements except one are set to zero) or to an ordinal 

variable, depending on the relationships between different categories. Such transformation 

is necessary since many machine learning models do not inherently handle categorical 

variables.
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After appropriate transformation of categorical variables to one-hot vectors, input and 

output variables may be standardized.25 This is done using the formula zi
j =

xi
j − xi

si

where xi
j is the j-th xi value in the array of n input variables, and xi and si are the 

sample mean and standard deviation, respectively. We perform a similar standardization 

on the output variables. There are many reasons for performing such scaling, including 

improving the training process of models such as neural network models via stochastic 

gradient descent and improving model stability.26 Another important reason for scaling is 

due to the multioutput structure. Standardization also allows combination of loss functions 

that may have different scales. A disadvantage of standardization is that it can complicate 

interpretation of the relationships between input and output variables.

The final step before building the metamodel is to randomly split the data into training and 

testing datasets. The training phase is divided into two steps: a performance improvement 

phase with hyperparameter tuning and variable selection, and actual training with selected 

variables and specified model hyperparameters. We present details of the variable selection 

scheme below. For the actual training phase, 10-fold cross-validation is utilized.27 Under this 

approach the training dataset is further split into 10 folds, and one at a time each of the 10 

folds is withheld while the other 9 folds are used to build the model. Model performance 

is then evaluated with respect to the withheld data in order to identify the best-performing 

model based on defined evaluation criteria.

Multioutput Regression

Most simulation models in public health generate multiple outputs of interest (e.g., costs 

and multiple health outcomes, possibly in different population groups).1, 21, 23 Because 

metamodeling aims to build a replacement model to link the original simulation inputs and 

outputs, approaches can be generalized from multioutput regression. There are two main 

approaches: problem transformation and algorithm adaptation.28 In problem transformation, 

multioutput regression is transformed to separate single-output predictions. Algorithm 

adaptation methods can be readily integrated with any single-output prediction model 

to predict all the outputs simultaneously.28 Algorithm adaptation methods such as multi-

target stacking (MTS) regression and regression chains have been shown theoretically to 

perform better than problem transformation methods.28 There are several regression chain 

variants. Use of a regression chain with maximum correlation (RCMC), has been shown 

to outperform other methods over a range of different datasets in terms of accuracy and to 

require less computational power than other methods such as ensemble regression chains.29 

We use RCMC and MTS in our study.

We first describe multioutput regression and provide notation that will be used subsequently. 

X denotes the input matrix which consists of d input variables (X1, X2,⋯, Xd). Y denotes the 

output matrix which consists of m output variables (Y1, Y2,⋯, Ym). We have a training set 

D = {( x1, y1), …, (xn, yn)}, and our target is to learn a model H :X Y so that h(x) (x is a 

random input vector) best approximates y (the corresponding output vector).
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To build an MTS model, we follow a two-stage approach. In the training phase, we first 

build m single-output prediction models. Then we stack input variables to m −1 output 

variables (X1, X 2,⋯, Xd, Y1, ⋯, Yk ― 1, Yk + 1, ⋯, Ym) to predict Yk. In the testing phase, 

we use the first stage single-output prediction models to obtain a predicted Ŷ. We then use 

the predicted Ŷ together with X to predict the final Ŷ.

To build an RCMC model, we calculate the correlation coefficients between output 

variables, ρij (where i and j indicate different output variables Yi and Yj with 1 ≤ i ≠ j 

≤ m) and calculate the average correlation coefficient ρi =
∑j = 1

m ρij
m − 1  (where i ≠ j) for each 

variable, averaged across all j covariables. We rank the average correlations in descending 

order and use the order to determine the sequence of prediction, represented by (Y′1, Y′2⋯
Y′m). If there are only two output variables (Y1 and Y2), we would randomly order these 

two outcome variables since ρ1 and ρ2 are equal. For the first prediction model, we build a 

single-output prediction based on the inputs (X1, X2,⋯, Xd) and (Y′1 ). Subsequently, we 

use inputs (X1, X2,⋯, Xd) and the previously used output variables (Y1′, Y2′, ⋯, Y′k ― 1) 

together to predict the new output variable (Y′k). One caveat is that Y′1 will not be available 

in the prediction task after the model is constructed. Therefore, the prediction model will use 

previously predicted outputs. In other words, to predict Y ′k , the values (X1, X2,⋯, Xd) and 

Y ′1, Y ′2, ⋯, Y ′k − 1  are used.

Base Learners

The regression chain introduced above adapts to the base learner ℎk′ :X Y ′k. A wide 

range of choices exists for the base learner. After reviewing other metamodels constructed 

for health economics studies1, 30, we chose the following five widely used methods: 

linear regression, elastic net with second-order terms, Gaussian process regression, random 

forest, and neural network. For each method, we record the performance of the method in 

predicting individual outcomes one at a time ℎk:X Yk  as well as the performance when 

using RCMC or MTS together with the base learner.

Linear Regression (LR)—Linear regression (LR) is a popular metamodeling method 

because of its fast implementation and easy interpretability. The performance of LR can be 

comparable to or even better than more sophisticated statistical models when data are sparse 

or scarce. For our setting, data sparsity is not a problem since we can use the original model 

to generate a sufficient number of data points. We use LR as a baseline for performance 

evaluation.

Elastic Net with Second-Order Terms (EE)—Elastic net is a linear regression that 

includes penalty terms that help overcome the problem of overfitting and reduce model 

complexity.25 To increase prediction power, second-order terms are added to the original 

input space together with the elastic net model (EE) to capture non-linear relationships 

between inputs and outputs. We choose elastic net regularization to overcome the problem 

of over-fitting and to allow for flexibility between first-order (Lasso) and second-order 
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(Ridge) regularizations, since the relative performance of Lasso and Ridge will depend on 

the distribution of true regression coefficients.31

Gaussian Process Regression (GPR)—Gaussian process regression (GPR) is 

a Bayesian non-parametric kernel-based probabilistic model. GPR assumes that the 

distribution of output data f x , x ∈ ℝd  is a joint Gaussian distribution specified by mean 

function mean(x) and covariance/kernel function kernel(x, x′). In general, similar input data 

will have similar output values. We use GPR with a Matérn kernel due to its flexibility in 

allowing for control of smoothness and because it can replicate different kernels by changing 

model hyperparameters.32

Random Forest (RF)—Random forest (RF) is an ensemble machine learning method that 

constructs multiple decision trees and uses maximum voting or averages over all individual 

trees to obtain the outputs. RF imposes no assumptions on the data and usually produces 

high prediction accuracy even without hyperparameter tuning.33

Neural Network (NN)—Neural networks (NN) are a class of machine learning models 

and algorithms that use connected, hierarchical functions.34 We use multilayer perceptron, 

a technique that employs backpropagation for training: a feedforward neural network model 

comprises an input layer, a changeable number of middle layers, and an output layer. 

Each input/output variable is modeled by a neuron in the NN. Each neuron node value is 

determined by all connected neurons from the last layer which follows as f x = ϕ ∑wixi . 

The activation function ϕ( ∙ ) is a predefined non-linear function to capture the non-linearity 

in the data.

Performance Improvement Scheme

We consider two ways of improving model performance: model-free variable selection and 

hyperparameter tuning for different base models. With RCMC, we have one regression 

model for each output variable but the input variable set is modified since we need to include 

the previous predicted output variables in the subsequent models. Variable selection works 

on the newly constructed input variable set, which includes both the original input variables 

plus the new predicted output variables.

Variable Selection—To improve model performance, as well as interpretability, we 

implement a variable selection scheme that is model-free and can be integrated into the 

training process. The objective is to search for the subset of input variables that will result 

in the best model performance. However, because of limitations on computational power and 

the typically large number of input features in simulation models in public health, it is not 

feasible to perform an exhaustive search over all potential subsets of input variables.

We therefore use the following greedy search algorithm (i.e., an algorithm that follows the 

problem-solving heuristic of making the locally optimal choice at each stage) for variable 

selection:

• Step 1: Start with the full input variable set.
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• Step 2: Remove the least important input variable according to the following 

steps.

– Randomly permute each input variable (i.e., randomly arrange the order 

of the values for the chosen variable).

– Compute the resulting accuracy reduction from having each permuted 

input variable rather than the actual values for that variable in the 

validation dataset.

– Remove the input variable with the smallest reduction in prediction 

accuracy.

• Step 3: Compute model performance by calculating the average of coefficient 

of determination (average R2) for the remaining subset of input variables. Go to 

Step 2 if the number of variables is more than 1; otherwise, go to step 4.

• Step 4: Select the optimal subset of input variables based on model performance 

(R2 value).

By permuting an input variable, we remove the relationship between that input variable and 

the outcome variables. If the input variable is important, the accuracy of the model will 

decrease because of the loss of information from that input variable. In this way, we aim to 

identify the most important input variables.

Hyperparameter Tuning—A hyperparameter is a parameter whose value is set before 

the learning process begins (e.g., the number of trees considered in an RF algorithm). In 

hyperparameter tuning, hyperparameters are varied to determine the best hyperparameters 

for a learning algorithm. Table 1 shows the hyperparameters for each of the five base 

models that we examined. Due to limited computational power, we chose a fixed set of 

hyperparameters based on a review of the literature and experience of modelers.10, 35, 36

Evaluation Metrics

Model Accuracy—To compare the performance of different models over multiple 

outcome variables, we calculate the average R2.29 This is calculated as:

average   R2 = ∑j = 1
m 1 −

∑i = 1
n yj

i − fj x i 2

∑i = 1
n yj

i − yj
2

where yj
i  is the i-th data point for the j-th output variable, fj( ∙ ) is the trained metamodel 

for the j-th output variable, yj is the average over the j-th output variable and x(i) is 

the i-th input variable. Since we focus on overall average performance across different 

outcome variables when choosing the metamodels, we do not analyze model performance on 

individual outcome variables.

Computational Efficiency—In addition to accuracy, we assess computational efficiency, 

which we characterize by the CPU time required for training and prediction as a function of 
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the number of input variables and the number of data points in the respective dataset. Our 

model was developed and run on a 2.5GHz quad-core Intel Core i7 processor. For reference, 

the original analytic model, implemented in C++ and R, took approximately 70 minutes 

to evaluate a single set of parameter input values. Over 2,000 unique parameter sets, the 

runtime was an estimated 17 hours when distributed across 150 nodes of a high-performance 

computing cluster.

Model Interpretability—Model interpretability is frequently an important goal of 

metamodeling, especially for models used in public health. We consider model 

interpretability in terms of how well a model accommodates understanding of the 

relationships between inputs and outputs, which is important for models that aim to inform 

policy decisions. Some models are intrinsically interpretable, but others are too complex to 

understand and require post-hoc methods to improve interpretability.

For model interpretability, LR and EE have clear advantages. LR is the most interpretable 

since regression provides a closed-form solution with calculated coefficients that 

characterize the relationship between inputs and outputs. However, if the relationship 

between inputs and outputs is not linear, making linear inferences based on coefficient 

values could be misleading. EE has slightly less interpretability compared to LR because 

of the regularization terms (i.e., terms that add penalties for complexity): for instance, 

no closed-form solutions on standard error estimates are provided. RF is an aggregation 

of single decision trees. Even though the decision trees are intrinsically interpretable, 

the ensemble of multiple trees distorts the original simple interpretable structure. GPR 

is conceptually easy to understand and its probabilistic structure can provide uncertainty 

bounds around predictions, but the inclusion of different kernels obscures the relationship 

between outputs and inputs. NN models are the least interpretable due to the addition of 

multiple layers and different activation functions.

To facilitate model interpretation, we can use different model-agnostic tools, which can 

be divided into global and local interpretation methods. Global interpretation methods aim 

to illuminate the relationship between input and output variables. The variable importance 

calculation determined from the variable selection scheme is a good way to assess the 

magnitude of the impact of each input variable on the output variables.

To further understand the relationships between input and output variables, we can use 

a partial dependence plot, which is similar to one-way or two-way sensitivity analysis in 

health policy analysis. The partial function fxs (where xs is the input variable of interest) is 

estimated by calculating over the training data: fxs = 1
n ∑i = 1

n f xs, xc
i  where the terms xc

i

are all other input variables. Another way to achieve global interpretability is to generate 

a global surrogate model, which is an interpretable model (like a decision tree or linear 

regression) that can replicate the prediction of the original analytical model to the greatest 

extent.37

Local model interpretation provides insights into an individual prediction of any black-box 

model. Similar to a global surrogate model, a local surrogate model (LIME, or local 
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interpretable model-agnostic explanation) aims to replicate the prediction of the original 

analytical model at individual data points by weighting permuted samples based on 

proximity to the data point of interest.

Case Study: Hepatitis C Virus Testing and Treatment

We illustrate our methods with an individual-based microsimulation model that assesses 

the clinical outcomes, cost-effectiveness, and budgetary impact of various hepatitis C virus 

(HCV) testing and treatment strategies in US prisons.38 Our goal was to develop a simplified 

model that can be used as a tool by local and regional planners to develop HCV testing and 

treatment strategies by correctional facilities in their jurisdictions.

For the metamodeling analysis, we considered five outcomes: 1) the number of HCV cases 

identified (by risk-based testing or testing all individuals, depending on the strategy), 2) 

the number of HCV cases cured, 3) testing cost, 4) treatment cost, and 5) total cost. 

The original microsimulation analysis considered 15 different HCV testing and treatment 

strategies, in addition to the status quo of no testing and no treatment. After discussions 

with stakeholders, we narrowed our focus to six strategies to evaluate using metamodeling, 

all compared to the status quo: risk-based testing, treating only individuals whose HCV 

infection has progressed to fibrosis stage F3 or higher (F3+); risk-based testing, treating 

only individuals whose HCV infection has progressed to fibrosis stage F2 or higher (F2+); 

risk-based testing, treating all patients with HCV (treat all); test all, treat F3+; test all, treat 

F2+; test all, treat all. We considered two different time horizons (1 year and 2 years). 

This yielded a total of 60 output variables (five outcomes for six strategies over two time 

horizons).

To determine which of the 50 simulation input variables to use, we first ran the simulation 

model to determine the relative importance of the different variables. We used this 

information to shorten the list of input variables. We consulted with stakeholders to 

understand how likely it was that they could provide estimates for each of the remaining 

input variables. We thereby selected 37 of 50 input variables from the simulation model 

that stakeholders and the modelers who developed the simulation model deemed the most 

important. Preliminary analyses indicated that some of these 37 variables had no impact on 

the 60 output variables, so we further shortened the list to 22 input variables (Supplemental 

Table S1).

We created datasets using a random design. We drew 2,000 independent samples from each 

of the specified distributions for the 22 input variables, holding all other parameters fixed at 

their mean values, and fed these 2,000 input variable sets into the original simulation model. 

To minimize Monte Carlo noise, we ran the simulation model with 1,000,000 individuals for 

each input variable set. We randomly divided the 2,000 sets of input and output variables 

into a training set with 1,600 sets and a test set with 400 sets. The 10-fold cross validation 

procedure described above was used within the training dataset, and the final performance of 

the model selected through that procedure was evaluated using the test set.

We implemented five single-prediction models corresponding to five base learners: LR, EE, 

GPR, RF, and NN. We then implemented MTS and RCMC for each base learner. The final 
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two sets of models focused on improving the performance of MTS and RCMC models with 

variable selection and hyperparameter tuning.

RESULTS

The output variables from the simulation model were correlated (average ρ=0.58), 

suggesting a potential need for our methods.

Model Accuracy

Table 2 shows the average coefficient of determination (average R2) for each model 

considered. Looking at the single-output case – that is, without multioutput algorithm 

adaptation methods – the worst-performing model was simple linear regression, with an 

R2 of 0.881. Next best were EE and RF, which both had an R2 of 0.954 for the single-output 

case, followed by NN with an R2 of 0.965, and GPR with an R2 of 0.987. The single output 

GPR model outperformed all other models except for NN with MTS and variable selection. 

Although this observation might be limited to this case study, GPR has been shown in many 

metamodeling studies to provide highly accurate predictions that are robust to changes in 

data.10, 14, 16, 19

Inclusion of the multioutput algorithm adaptation methods increased R2 for all models, as 

expected, although the improvements were small. RCMC and MTS increased R2 by 0.002 

on average across all base learners, and variable selection and hyperparameter tuning added 

0.009 on average. The best performing model, GPR, had an R2 of 0.992 with RCMC, 

variable selection, and hyperparameter tuning – an extremely high level of accuracy.

Although we measured accuracy using average R2 across all five output variables, we note 

that there were some differences in performance with respect to different outcomes. For 

example, the prediction of number of HCV cases identified had a higher R2 value than the 

prediction of total costs.

Computational Efficiency

Figure 1 summarizes key results relating to computational efficiency for each model. Figures 

1a and 1b show the relationships between training time and the number of variables and 

the size of training dataset. For a dataset of size 1600, training the neural network was 

the most time-consuming task, requiring a maximum of 58.6 seconds to train one output 

variable when the number of input variables equaled 80, whereas linear regression only 

took 0.009 seconds to train one output variable (Figure 1a). NN is time-consuming to train. 

Its run time is positively correlated with the number of input variables and the size of the 

training dataset because of an increase in the number of edges from input neurons to hidden 

layers (in our model, the number of hidden neurons was also positively correlated with the 

number of input variables) and the number of data points to be used in the training. With 

22 input variables, training GPR was the most time-consuming task, requiring a maximum 

of 15 seconds to train on a dataset of size 1600, whereas LR only required 0.002 seconds 

(Figure 1b). The training time for GPR is greatly affected by the number of input data 

points because of the difficult operations on large kernel matrices used to handle large 

training data size. The training time of RF was lower than that of NN and GPR. EE and 
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LR had the lowest average training times. Because we might need to use hundreds or 

even thousands of training runs to cover different output variables and employ different 

performance improvement schemes, the total amount of time spent in the training phase can 

be very lengthy for GPR and NN.

Figures 1c and 1d show the relationships between prediction run times and the number 

of variables and the size of the training dataset for a testing dataset of size 400. For the 

prediction task, NN required the most time of the five methods we tested. With 80 input 

variables, NN took a maximum of 11.4 seconds to finish the prediction task, whereas LR 

only took 0.0002 seconds (Figure 1c). With 22 input variables, NN required a maximum of 

1.3 seconds for prediction whereas LR required 10−7 seconds (Figure 1d). The prediction 

time of NN increases with the number of input variables due to the increased neural net 

complexity and with the size of the training set. The other four models have a very short 

prediction time for the testing dataset size of 400. In all cases, the prediction time was on 

the order of seconds. This is in contrast to the original microsimulation model where a single 

run took approximately 70 minutes of computation time.

Model Interpretability

To facilitate model interpretation, we examined variable importance, as calculated in the 

variable selection process (using the greedy search algorithm), for predicting the number 

of HCV cases identified by risk-based testing in one year. After the selection process, 3 

variables were retained in RF and 11 variables were retained in GPR. For both RF and GPR, 

the most important variable in determining the number of HCV cases identified was the 

percentage of current injection drug users (IDUs) in the population (Table 3). This is not 

surprising since risk-based testing strategies defined eligibility for testing using IDU status. 

The second influential variable was the prevalence of chronic HCV infection in prison. All 

other variables had far less importance.

To further understand the relationship between the input and output variables, we examined 

the partial dependence plots for IDU prevalence and chronic HCV prevalence. The 

horizontal axes in Figures 2a and 2b are input variables – prevalence of chronic HCV 

and IDU prevalence (after standardization in the preprocessing step); the vertical axis is 

the output variable – the number of HCV cases identified (after standardization) in one 

year under the risk-based testing strategy. The number of HCV cases identified increases 

as chronic HCV and IDU prevalence increase, for both RF (Figure 2a) and GPR (Figure 

2b). The change in the number of HCV cases identified is more sensitive to changes in 

IDU prevalence than to changes in chronic HCV prevalence because these examples assume 

risk-based testing.

Figure 3 shows the weight for each variable in the local approximation (or LIME) model 

to explain one test data point for RF (Figure 3a) and GPR (Figure 3b) in predicting the 

number of HCV cases identified in one year. The LIME algorithm finds a linear regression 

model that fits to neighboring points around the point of interest. The coefficients for each 

input variable are shown on the horizontal axis. The size of the bar indicates the coefficient 

magnitude and the color of the bar indicates positivity of the coefficient. Figures 3a and 

3b both show that each unit increase in IDU prevalence had a larger impact on the output 

Zhong et al. Page 11

Med Decis Making. Author manuscript; available in PMC 2022 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



variable than a unit increase in chronic HCV prevalence, with the effect significantly larger 

for RF. This matches the observations from the partial dependence plots shown in Figure 2.

DISCUSSION

Prediction accuracy is one important metric for assessing a metamodel. For some simulation 

models, including the example used in this paper, there may be a clear relationship between 

input and output variables that even simple learners like LR can approximate (R2 = 0.8812 

for our case study). In our analyses, two factors improved prediction accuracy: the choice 

of base learner and the employment of a multioutput algorithm adaptation method. Moving 

from LR to GPR increased the prediction accuracy from 0.8812 to 0.9865, indicating the 

importance of selecting a good base learner. Achieving such an improvement is important in 

health policy settings since decisions informed by a metamodel can have profound effects on 

individual health as well as overall population costs and benefits.

Inclusion of the multioutput algorithm adaptation methods MTS and RCMC in our study 

increased R2 by 0.002 on average across the five base learners we considered. One possible 

reason for the small increase is that our dataset of inputs and outputs, generated from a 

carefully constructed simulation model, already exhibits strong correlations between certain 

input and output variables, so the transformation of the input variable set by including output 

variables does not provide sufficient additional information for improvement. The simplest 

model (LR) achieved an R2 of 0.89, limiting the potential improvement from alternative base 

learners and performance improvement schemes. In general, we expect that the magnitude of 

the benefit will vary across different applications, as RCMC and MTS have been shown to 

significantly improve regression model accuracy in other applications.28

Variable selection and hyperparameter tuning added 0.009 on average to R2 in our case 

study. Variable selection improved model accuracy while also shortening the list of variables 

that end-users need to consider. Depending on the metamodeling application, there may 

be additional criteria that are important to consider in determining final variable selection, 

including face validity, and such criteria may counterbalance our emphasis on parsimonious 

predictive validity. Hyperparameter tuning can also improve model accuracy, but the results 

will depend on the number of different hyperparameters searched, potentially requiring very 

high computational power.

In addition to model accuracy, other factors such as model efficiency and interpretability are 

also important in our setting. All of the metamodels had very short computation times, much 

shorter than the computation time required for the original model, and thus any of them 

could be instantiated as a tool for decision makers. The importance of computation time may 

depend on the use-case for the metamodel: for example, an interactive model operationalized 

as a web-based tool may require a different level of real-time responsiveness to changing 

inputs than a model used for more circumscribed investigations in which interactive 

functionality may be less central. LR has an advantage in its simplicity, versatility, and 

interpretability. Another advantage of LR is that it is easy to obtain a prediction interval. 

This is useful in public health where stakeholders and policy makers often want to know 

the range of possible outcomes when assessing the impact of proposed strategies. For 
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other types of models, we have shown that various methods can be used to improve 

interpretability.

Our study has several limitations. We have illustrated our proposed metamodeling 

framework for a specific simulation model. Application of our framework to other 

simulation models might yield different findings. Nevertheless, we have shown that 

metamodels can run quickly with a high degree of accuracy, and this is likely to also be true 

for other metamodels of simulation models. Because of limited computational power, we 

limited our search space for hyperparameter tuning. However, considering the high values of 

R2 that were obtained, the potential for additional improvement is very limited. Finally, the 

usefulness and suitability of any metamodel is limited by the usefulness and suitability of 

the original model for answering the questions of interest.

Metamodeling is an important tool for making results from complex models accessible to 

decision makers. This study provides a framework for metamodeling in policy analyses 

with multivariate outcomes, extending the framework proposed by Degeling et al.22 While 

the advantages and disadvantages of specific learning algorithms may vary across different 

modeling applications, we expect that the general framework presented here will have broad 

applicability to decision analytic models in health and medicine.
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Figure 1/. 
Average training and prediction times for the five base models Top Left (a): Average training 

time for each model versus number of input variables (D) when training data size (N_train) 

= 1600; Top Right (b): Average training time for each model versus training data size 

(N_train) when number of input variables (D) = 22; Bottom Left (c): Average prediction 

time for each model versus number of input variables (D) when testing data size (N_test) 

= 400; Bottom Right (d): Average prediction time for each model versus training data size 

when number of input variable (D) = 22 and testing data size (N_test) = 400

LR = linear regression, EE = elastic net, GPR = Gaussian process regression, RF = random 

forest, NN = neural network
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Figure 2/. 
Partial dependence plots from (A) random forest and (B) Gaussian process regression for 

predicting the number of hepatitis C virus (HCV) cases identified in one year by risk-based 

testing. Within each row of figures, the first figure shows the partial dependence on the 

prevalence of chronic HCV in the initial cohort, and the second shows partial dependence on 

the prevalence of current IDU in the initial cohort. The blue shaded region in each graph is 

the 95% confidence interval.

A. Partial dependence plots from random forest (RF)

B. Partial dependence plots from Gaussian process regression (GPR)
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Figure 3/. 
Prediction of the number of hepatitis C virus (HCV) cases identified in one year by risk-

based testing. LIME (local interpretable model agnostic) models from RF (random forest) 

and GPR (Gaussian process regression) for one test data point when limiting the local linear 

regression variables to variables found by variable selection. The bar width is the weight 

of each variable in the local regression. The local regression has a bias term. Variable 

definitions are as follows: age_mon_miu = mean age in months; age_mon_sd = standard 

deviation of age in months; chronic_hcv_v2 = % of people with chronic HCV infection; 

idu_status_current = % of people who are current drug injectors; idu_status_former 

= % of people who are former drug injectors; idu_status_none = % of people who 

are not drug injectors; lab_test = type of fibrosis staging test (APRI or fibroscan); 

sentence_dur_mon_miu = mean sentence duration in months; sentence_dur_mon_sd = 

standard deviation of sentence duration in months; sex_male_prev_v2 = % males in the 

cohort; test_specif = specificity of fibrosis staging test.

A. LIME model from random forest (RF)

B. LIME model from Gaussian process regression (GPR)
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Table 1

Summary of explored hyperparameters (default parameters are bolded)

Model Explored Hyperparameters

Linear regression None

Elastic net 1. α = [0.01, 0.1, 1]
2. ρ = [0.1, 0.5, 0.9]

Gaussian process regression 1. Kernel: [Radial Basis Function, Matérn with γ = 1/2,3/2, 5/2]

Random forest
1. # of variables to sample: log2D, D , 1

2D, D
2. # of trees: [100, 500, 1000]

Neural network 1. # of hidden layers: [1,2]
2. # of neurons in hidden layer:
1 Layer: [D, 2 D]
2 Layers: [(D,16), (2D, 16), (D,8), (2D,8)]
3. Activation functions: ReLU, tanh, sigmoid
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Table 2

Summary of model performance (average R2) on test dataset for hepatitis C virus model

Model LR EE GPR RF NN

Single Output 0.8812 0.9536 0.9865 0.9536 0.9651

RCMC 0.8814 0.9539 0.9875 0.9552 0.9672

RCMC + VS 0.8822 0.9571 0.9917 0.9598 0.9809

RCMC + VS + HT - 0.9598 0.9921 0.9605 0.9833

MTS 0.8815 0.9541 0.9874 0.9556 0.9679

MTS + VS 0.8824 0.9564 0.9917 0.9584 0.9871

MTS + VS + HT - 0.9592 0.9919 0.9608 0.9829

LR = linear regression, EE = elastic net, GPR = Gaussian process regression, RF = random forest, NN = neural network, RCMC = regression chain 
with maximum correlation, VS = variable selection, HT = hyperparameter tuning (LR does not have HT), MTS = multi-target stacking
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Table 3.
Variable importance results from RF (random forest) and GPR (Gaussian process 
regression) for predicting the number of hepatitis C virus (HCV) cases identified in one 
year by risk-based testing.

Weights are defined as mean decrease in R2. Variable definitions are as follows: idu_status_current = % 

of people who are current drug injectors; idu_status_none = % of people who are not drug injectors; 

idu_status_former = % of people who are former drug injectors; chronic_hcv_v2 = % of people with 

chronic HCV infection; sex_male_prev_v2 = % males in the cohort; age_mon_miu = mean age in months; 

age_mon_sd = standard deviation of age in months; sentence_dur_mon_miu = mean sentence

A. Variable importance for RF

Variable Weight (mean ± std)

idu_status_current 0.8846 ± 0.0774

chronic_hcv_v2 0.2392 ± 0.0121

age_mon_miu 0.0205 ± 0.0015

B. Variable importance for GPR

Variable Weight (mean ± std)

idu_status_current 0.8592 ± 0.0600

chronic_hcv_v2 0.3865 ± 0.0553

idu_status_none 0.0323 ± 0.0007

idu_status_former 0.0303 ± 0.0024

age_mon_miu 0.0156 ± 0.0014

sentence_dur_mon_miu 0.0103 ± 0.0030

sentence_dur_mon_sd 0.0094 ± 0.0015

age_mon_sd 0.0033 ± 0.0005

test_specif 0.0022 ± 0.0007

lab_test 0.0021 ± 0.0003

sex_male_prev_v2 0.0005 ± 0.0001
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