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Abstract—In many animal species it is essential to recognize
approach predators from complex, dynamic visual scenes and
timely initiate escape behavior. Such sophisticated behaviours
are often achieved with low neuronal complexity, such as in
locusts, suggesting that emulating these biological models in
artificial systems would enable the generation of similar complex
behaviours with low computational overhead. On the other hand,
artificial collision detection is a complex task that requires both
real time data acquisition and important features extraction from
a captured image. In order to accomplish this task, the algorithms
used need to be fast to process the captured data and then
perform real time decisions.

Taking into account the previous considerations, neurorobotic
models may provide a foundation for the development of more
effective and autonomous devices/robots, based on an improved
understanding of the biological basis of adaptive behavior. In
this paper, we make a comparative analysis between the new
computational model of a locust looming-detecting pathway and
the model previously proposed by us. The obtained results proved
the improvement provided by the pixel remapping in the model
performance.

I. INTRODUCTION

Visually evoked collision avoidance behaviors are critical
for the survival of many animals. Due to the robustness,
naturality and probability of the visually evoked escape re-
sponses, they became an excellent tool for studying the neural
mechanisms of sensory-motor integration. The neurons that
respond selectively to approaching objects have been studied
across very different animal species, as humans, pigeons,
monkeys, turtles, flies, locusts, among others [1]. From the
animals previously mentioned, insects, as flies and locusts,
are particularly interesting from an engineer point-of-view:
many insects are able to perform, fast and robustly, different
behaviours, despite their low-resolution vision and limited
neural resources.

The mechanisms of collision detection have been well
studied in the locust collision-avoidance response [2]. In this
insect, the Lobula Giant Movement Detector (LGMD) is a
bilaterally paired motion sensitive neuron that integrates inputs
from the visual system, responding robustly to images of
objects approaching on a collision course, being responsible
for triggering collision avoidance behaviours in locusts [3],
[2].

The first physiological and anatomical LGMD neuron model
was developed by Bramwell in [4]. The model continued to
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evolve [5], [7], [8], [6] and it was used in many applications for
collision detection. However, further work is needed to develop
more robust models that can account for complex aspects of
visual motion.

In this article, we extend our previous LGMD model[9]
which was able to achieve noise immunity[6] and direction
sensitivity [8]. We propose to improve over the existing LGMD
model by introducing a novel pixel mapping on the captured
image that feeds the neural network.

This new remapping is based on the ommatidia distribution
in the locust compound eye. In the locust compound eye, there
are variations in local angular sampling density, with some
regions having higher resolution than others[10]. This pre-
processing enables a considerable reduction of redundant high-
frequency information from the peripheral regions, without a
subsequent loss of perceptual information. Along this paper,
we will highlight the main advantages of the image remap-
ping when integrated in the artificial LGMD model already
proposed by us in [9].

In the future, this bio-inspired control algorithm could
be applied in very different fields: ranging from medical to
automobile applications.

II. PROPOSED LGMD NEURAL NETWORK

The biological inspired neural network here proposed (fig-
ure 1) is based on previous models described on [6], [8].

It is composed by five groups of cells: photoreceptor cells
(P layer), excitatory cells (E layer), inhibitory cells (I layer),
summing cells (S layer) and noise reduction cells (NR layer).
Besides that, it is composed by five single cells: the direction
sensitive system, composed by the approaching cell (A cell),
the receding cell (R cell) and the direction cell (D cell), the
feed-forward inhibition cell (FFI cell) and the LGMD cell.

The first processing step is an innovative approach intro-
duced by us in this paper. A grayscale image of the camera
current field of view, represented has a matrix of values
(from 0 to 255), is remapped according to two main areas:
the fovea, were the pixels maintain the gray level of the
original image; and the surrounding visual area, where each
pixel takes the value of the average of the surrounding pixels
(see figure 2). The main advantages added by the remapping
processing are concerned to: 1) Increase the performance of
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Fig. 1. Schematic illustration of the proposed LGMD model.

the LGMD model when presented with high noise levels, by
attenuating considerably high-frequency information from the
peripheral regions; 2) Reduce the computational cost of the
entire algorithm, by decreasing the number of individual pixels
in the image.
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Fig. 2. Image retinal remapping. Left: Original simulated image of an
approaching black square, with 500 pixels of noise. Middle: remapped image
following the spatial ommatidia distribution in the locust compound eye. Right
graph: surface of the remapped image, showing the gray level difference
between the fovea and the surrounding area.

Then, the output of this redistribution is transmitted to the
P layer. This layer calculates the absolute difference between
the luminance of the current and of the previous input images,
mathematical represented by the following equation:

—Lp1(x,y)| (1)

where Pr(x,y) is the output relative to the cell in the (x,y)
position at frame f , Ls(x,y) and Ly_;(x,y) are the captured
luminance at position (x,y) for frames f and f-1 , respectively.
The output of the P layer is the input of two different layers:
the excitatory (E) and the inhibitory (I) layer. The E layer
captures directly the excitation that comes from the P layer
and it is passed directly to the retinotopic counterpart at the S
layer. The inhibition layer (or I layer) receives the output of
the P layer and applies a blur effect on it, using:
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where Ir(x,y) is the inhibition relative to the cell in the
(x,y) position at frame f, W;(i,j), an empirically set kernel,

represents the local inhibition weight. Finally, the excitatory
flux from the E cells and the inhibition that comes from the
I cells are summed by the S cells (summing cells), using the
following equation:

Sf(x7y) :Ef(x7y)_ :Pf(x7y)7 (3)

where w;(a scalar) represents the inhibition strength. Based
on [6], a new mechanism for the LGMD neural network
was added to filter background noise. This mechanism, im-
plemented in the NR layer, takes clusters of excitation in
the S units to calculate the input to the LGMD membrane
potential. These clusters provide higher individual inputs then
the ones of isolated S units. The excitation that comes from
the S layer is then multiplied by a passing coefficient Cey,
whose value depends on the surrounding neighbours of each
pixel, calculated as follows:
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The final excitation level of each cell in the NR (Noise-
Reduction) layer, at frame f (NRy ), is given by:

NR/(x,y) = [Sy(x,y).Cer(x,y).w™!| )
w =max(|Cef|)C,,' + Ac

Cis set to 4, Ac is a small number (0.01) to prevent w from
being zero, and max(|Ces|) is the largest element in matrix

|Cey|. Within the NR layer, a threshold filters the decayed
excitations (isolated excitations), as:

- NR if NR Cqe > T
NRf(X,y) _ f(X7?)),.l f(xay) de — 1de 7 (6)
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where Cy € [0, 1] is the decay coefficient and Ty, is the decay

threshold (set to 20). The decay threshold here used was
experimentally determined. The NR layer is able to filter out
the background detail that may cause excitation. The LGMD
potential membrane Ky, at frame f, is summed after the NR

layer,
n m

LGMD; =Ky =Y Y (NRf(x,y)), (7)
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where n is the number of rows and m is the number of columns
of the captured image. The A (Approaching) and R (Receding)
cells (modified from [8]) are two grouping cells for depth
movement direction recognition. The D cell or Direction cell
(€ {—1,0,1} in case of receding, no movement and approach-
ing object, respectively) is used to calculate the direction of
movement (for further details, see our previous paper [9]).
The LGMD membrane potential Ky is then transformed to a
spiking output ks € [0.5,1] using a sigmoid transformation,

kf — (1 +67Kf-ncell’1)7l’ (8)

where ncell is the total number of cells in the NR layer. The
collision alarm is decided by the spiking of the LGMD cell.
A spiking mechanism was implemented using an adaptable
threshold. This threshold starts with a value experimentally



determined, 7;(0.88) and it is updated at each frame, through
the following process,
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where [T}, T,] defines the lower and upper limits for adaptation
(T; is 0.80 and T, is 0.90) , Ar =0.01 is the increasing step,
I1=0.72 is a threshold that limits the averaged spiking output
Sav, between frame f-5 to frame f-2 ,

a

Finally, a collision is detected when there are ngp spikes in
ngs time steps (nsp < ns) , where ngp is 4 and ng is 5 (values
experimentally determined).

o

The escape behavior is initialized when a collision is
detected. Besides that, the spikes can be suppressed by the
FFI cell when whole field movement occurs. The FFI cell is a
cell which is very similar to the LGMD cell but receives the
output from the P layer, as follows:

Yo ;=1 |Pr—1(x,y)|
ncell
If FFI; exceeds a threshold Trpy (experimentally set to 25),
the spikes produced by the LGMD cell are automatically inhib-
ited. As described in this section, the proposed LGMD model
only involves low level image processing, being independent
of object classification.
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III. RESULTS AND DISCUSSION

In a way to test the efficiency of the LGMD neural network
proposed, two experimental scenarios were used. The first
experiment was made on a simulated data set and, in the
second, we used a recorded video to prove the capacity of
the LGMD neural network to work in a real environment.
In the first experiment, we subjected the model previously
proposed by us in [9] and the new LGMD model to the
same visual stimuli, in order to evaluate the performance
improvement provided by the novel pixel remapping here
introduced, relative to: immunity to highly noisy environments
and reduction of the model processing time.

A. Simulated Environment: Development and Results

We developed a simulation environment in Matlab, which
enables us to assess the effectiveness of the proposed LGMD
neural network. Objects were simulated according to their
movement and the corresponding data was acquired by a
simulated camera and processed by the LGMD neural network.
Image sequences were simulated and by an artificial camera
with a field of view of 60 in both x and y axis, and a
sampling frequency of 100 Hz. The computer used was a

Laptop (Toshiba Porteg R830-10R) with 4 GHz CPU and
Windows 7 operating system.

We used four different simulated visual stimuli to fed our
neural network. All the visual stimuli are composed by a black
approaching square, with a ratio between object size (/) and
velocity (v) equal to 50 milliseconds, over a white background,
only varying the noise level in the image sequence, as well
as the approaching angle. By varying the parameters between
different stimuli, we pretend to analyze the advantages of the
remapped image previously mentioned, as well as to test the
robustness of the model to approaching objects located outside
the remapped “acute zone”. For that, the following visual
stimuli were generated: Stimulus 1: 500 noise pixels added
to the image sequence, corresponding to 5% of image pixels
; Stimulus 2: 1000 noise pixels added to the image sequence,
corresponding to 10% of image pixels. Stimulus 3: 500 noise
pixels added to the image sequence and an approaching angle
50 degrees deviated from the image center. Stimulus 4: 1000
noise pixels added to the image sequence and an approaching
angle 50 degrees deviated from the image center.

T =
-0.25 -02 -0.05 0

-0.35 -03

-0.15 -01

Collision LGMD
qetected ajterTs

oo
v

Time to collision (seconds)

Fig. 3. LGMD model response to Stimulus 1. Spike Rate: Blue dash graph:
is obtained by the ratio of the A cell value and the total number of cells
in the NR layer, produced by the new LGMD model; Blue continuous line:
produced by the previous LGMD model proposed in [9]. D cell: output of
the direction cell: 1: approaching, 0: no significant movement, -1: receding.
Ts: adaptive threshold represented by the red line; the gray points represent
the sav output. LGMD after Ts: represents the output of the LGMD cell after
the application of the threshold Ts and taking into account the output of the
D cell. Collision detected: the output of this graph is one when it is detected
four successive spikes in five successive time-steps. In all these graphs, the
zero value corresponds to the time of collision.

Figure 3 represents the output of the LGMD model when
stimulated with Stimulus 1. In this figure, at each time step we
can observe the result of different mathematical processing
(described in section 2). In the top graph, it is represented
the spike rate of the previous LGMD model proposed [9]
by a continuous line and the spike rate of the new proposed
model is represented by a dashed line. Observing both graphs,
we automatically notice a big difference between the mean
spike rate produced by each different LGMD model. At ¢=-
0.5 seconds, the existing spikes are mainly a result of the
excitation produced by noise pixels. By this reason, we notice
that the new LGMD model is more robust to the noise presence
because the excitation level produced by the noise pixels is



very low compared to the previous model [9]. This fact will
decrease the probability to wrongly detect collisions.

In order to make a clear comparison between both LGMD
models, we evaluate their performance by measuring: the
processing time (Ptime), the Mean Spike Rate in the A cell
produced as a response to noise (MSR) as well as the distance
at which the LGMD models detected collisions (Coll. D.) .

Relatively to the other simulated visual stimuli, table I
summarizes the obtained results.

TABLE I
RESPONSES OBTAINED WITH LGMD MODEL [9] AND LGMD MODEL HERE
PROPOSED.
Previous model Proposed model

STIM. | Ptime | MSR | Coll. D. Ptime | MSR | Coll. D.

1 0.020 13.2 15 cm 0.018 7.15 11 cm

2 0.022 13.3 18 cm 0.020 7.25 11 cm

3 0.038 22.7 84 cm 0.028 10.1 12 cm

4 0.039 22.8 78 cm 0.029 10.1 11 cm

According to this table, we observe a significant difference
between the results (P.time, MSR and Coll. D.) obtained with
the previous and the current LGMD model. In all the situations
tested, the processing time and mean spike rate is lower in
the proposed model. Additionally, we observe an increase in
the noise robustness provided by the new model, which was
able to detect collisions (Coll. D.) for all the situations tested,
when the object was near to the camera (~ 1lcm, contrary
to the previous model which was not able to work correctly
in environments with very high noise levels - Stim 3 and 4,
detecting prematurely collisions).

B. Real Environment: Registration and Results

In order to test the capability of the proposed LGMD model
in a more realistic environment, we subjected it to a real
video sequence showing an approaching ball,with //v~30 ms.
A PlayStation Eye digital camera was used to obtain the
video clip. The resolution of the video images was 640 x 480
pixels, with an acquisition frequency of 70 frames per second.
The background of the real image sequence is composed by
multiple and different static objects.

Fig. 4. Selected frames from the recorded image sequence used in the
experiment.

Despite the complexity of the environment showed by
the real image sequence, both LGMD models were able to
correctly detect a collision when the approaching ball was
located at 20 cm to the camera. Although, as a consequence
of the lower processing time, provided by the remapping
introduced in the new model, the model here proposed showed
a faster response, which is an important factor for real time
applications. With this, we prove the capability of the model

to be implemented in a device moving freely within a complex
environment.

IV. CONCLUSIONS

In this paper, we propose a modified LGMD model based
on the LGMD neuron of the locust brain. This model has a
mechanism that remappes the captured images, leading to the
improvement of the capabilities shown by a previous model[9].
Using artificial and real image sequences, we showed that the
remapping here introduced leads to an increase in the noise
immunity of the new LGMD model when compared to [9],
which is a very important factor that provides robustness to
the model, as well as a decrease in the processing time needed,
which is preponderant when a real time response is needed.

The results illustrate the benefits of the LGMD based
neural network here proposed, and, in the near future, we are
proposed to continue enhancing this approach, using, for that,
a combination of physiological and anatomical studies of the
locust visual system, in order to improve our understanding
about the relation between the LGMD neuron output and the
locust muscles related to the avoidance manoeuvres.
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