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Abstract—Due to their relatively simple nervous system,
insects are an excellent way through which we can inves-
tigate how visual information is acquired and processed in
order to trigger specific behaviours, as flight stabilization,
flying speed adaptation, collision avoidance responses, among
others. From the behaviours previously mentioned, we are
particularly interested in visually evoked collision avoidance
responses. These behaviors are, by necessity, fast and robust,
making them excellent systems to study the neural basis of
behavior. On the other hand, artificial collision avoidance is a
complex task, in which the algorithms used need to be fast to
process the captured data and then perform real time decisions.
Consequently, neurorobotic models may provide a foundation
for the development of more effective and autonomous devices.

In this paper, we will focus our attention in the Lobula
Giant Movement Detector (LGMD), which is a visual neuron,
located in the third layer of the locust optic lobe, that responds
selectively to approaching objects, being responsible for trigger
collision avoidance maneuvers in locusts. This selectivity of
the LGMD neuron to approaching objects seems to result
from the dynamics of the network pre-synaptic to this neuron.
Tipically, this modelation is done by a conventional Difference of
Gaussians (DoG) filter. In this paper, we propose the integration
of a different model, an Inversed Difference of Gaussians (IDoG)
filter, which preserves the different level of brightness in the
captured image, enhancing the contrast at the edges. This
change is expected to increase the performance of the LGMD
model. Finally, a comparative analysis of both modelations, as
well as its effect in the final response of the LGMD neuron,
will be performed.

I. INTRODUCTION

Visual neurons that respond selectively to approach-
ing objects have been studied across very different animal
species, as humans, monkeys, pigeons, turtles, flies, locusts,
among others[1]. From the animals previously mentioned,
insects, as flies and locusts, are particularly interesting from
an engineer point-of-view: many insects are able to perform,
fast and robustly, different behaviours, despite their low-
resolution vision and limited neural resources [2]. Due to
these reasons, they became rich sources of inspiration to
engineers seeking to emulate insect-level performance with
low computational resources[3].
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Unlike vertebrates, insects have immobile eye with fixed-
focus optics. Due to this reason, they can not infer the dis-
tance of an object from the extent to which the directions of
gaze must converge to see the object, neither by monitoring
the refractive power needed to bring the object’s image into
focus on the retina [4]. Consequently, insects have evolved
alternative visual strategies to drive their behaviour in the
three-dimensional world: insects usually use cues extracted
from the image motion experienced as they move in the
environment[5]. For example, image expansion, which is a
visual cue generated by an approaching object, is used by
insects to avoid imminent collisions [6], [7]. So, certain
neural mechanisms in insect visual system must be tuned
to detect image expansion.

One of these neural mechanisms, part of the locust visual
system, is the Lobula Giant Movement Detector (LGMD)
neuron. This neuron generates a vigorous and prolonged train
of spikes in response to an approaching object [8], [9], [10].
However, images of receding or translating objects generate
only brief responses. According to literature[11], this pref-
erence of the LGMD neuron to approaching objects could
result from the dynamics of the its pre-synaptic network. In
consequence to this previous consideration, two inevitable
reserach questions arise:

How is the LGMD pre-synaptic network able to compute
image expansion?

Does different modelation of early vision processing
affect the final response of the LGMD neuron?

According to literature, the first physiological and
anatomical LGMD model was developed by Bramwell in
[12]. The model continued to evolve [13], [14], [15], [16] and
it was used in mobile robots and deployed in automobiles for
collision detection. However, to the best of our knowledge,
no attention was given on the effect that different modelations
of early stages of visual processing in the locust optic lobe
have in the final response of the LGMD model.

In this paper we propose the implementation of two
different filters to model the first stage of visual processing
in the locust optic lobe: a Difference of Gaussians filter
(DoG), used previously within a LGMD model [11]; and an
innovative approach, using an Inverted Difference of Gaus-
sians filter (IDoG) [17]. This innovative approach introduces
disinhibition within our model, leading to a preservation of
the different level of brightness in the captured image, as
well as to an enhancement in the contrast at the edges.

The proposed integration of disinhibion in our model
increases the overlap between the model output and the
biological results to the same visual stimuli. When stimulated
with images containing a high noise level, the LGMD model
with IDoG filter proved to be very robust at the object
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approaching detection. Besides that, when tested in a real
environment, the results were also very satisfactory.

To a better understanding of the work here presented, the
paper was organized in the following way. In section II, we
make a first short description of the locust visual neurons,
which are integrated in the neural network responsible for
trigerring collision avoidance behaviours. In section III, we
make a detailed description of the proposed LGMD model.
In section IV are presented some experimental results on
simulated and recorded video data. Finally, in section V, we
discuss the conclusions of the work here described.

II. VISUAL INFORMATION PROCESSING

At insect level, the interneurons that process visual in-
formation are arranged in a serie of neuropiles, distributed
beneath the compound eye, making up the optic lobe [18].
The visual information flows within and through different
layers in the optic lobe, either sequentially or laterally (by
lateral connections).

The first processing in the locust visual system is done
by photoreceptors, which convey a representation of the
environment[19] to the first neuropile, Lamina. Based on
[20], [21], the role of early sensory processing, performed
by neurons located in the lamina, is to reduce redundancy
and recode the sensory input into an efficient form. This
should be done because natural signals are highly redundant,
due to the tendency towards spatial and temporal uniformity
of these signals[22]. So, a neural direct representation of the
raw image would be inefficient. An important way to achieve
this goal is to perform predictive coding. According to this
approach, neural networks learn the statistical distributions
inherent in images and reduce redudancy by removing the
predictable components of the input, transmitting just what
is not predictable [23]. This is a possible explanation to the
centre-surround antagonism in the receptive fields of visual
interneurons found in very different animals species [20].
The antagonistic surround takes a weighted mean of the
signal in the neighbouring receptors to generate a statistical
prediction of the signal at the centre. Then, the predicted
value is subtracted from the actual centre signal, minimizing
the range of outputs transmitted. This process decorrelates
the input signals by flattening the spatial and temporal power
spectra, leading to a reduction of the output redudancy[21].
This kind of inhibition in sensory system is known as lateral
inhibition. Difference of Gaussians (DoG) filter is usually
used to simulate such process [11].

However, anatomical and physiological experiments have
shown that this centre-surround property may not be strictly
feed-forward: the process involves a recurrent inhibition,
which leads to disinhibition [24]. Hartline et al. [24]used
the Limulus optical cells to demonstrate the lateral inhibi-
tion and disinhibition effects in the receptive fields of the
Limulus visual system. In this paper, it was demonstrated
that disinhibition is able to reduce the amount of inhibition
in the presence of a large area of light input. Based on these
biological considerations, Yue and Choe [17] proposed a new
filter that is able to incorporate the disinhibitory effect. They
named it as an Inverted Difference of Gaussian filter (named
IDoG filter). However, this filter had not yet been attempted
in a LGMD model to achieve collision avoidance. In section

III, we will describe in detail the mathematical formulation
of the IDoG filter.

Based on these two modelations of spatial predictive
coding, we decided to implement both to model the visual
processing at the Lamina level, and analyze the effect that
this different modelation has in the final response of the
LGMD model.

Beyond space domain, predictive coding can also be
applied in time: the current intensity can be predicted as a
weighted linear combination of intensities past history [23].
Based on this principle, we modeled the second layer of the
optic lobe, named Medulla, as a temporal filter that highlights
changes in intensity across time.

At last, the neuron responsible for triggering collision
avoidance reactions in locusts, the LGMD neuron, located in
the third layer of the locust optic lobe, the Lobula, integrates
the output of the neurons from the medulla layer [25].

Taking into account the previous considerations, we
propose a new LGMD model, which integrates predictive
coding, either in spatial and temporal domain. We will make
a comparative analysis between the traditional modelation of
the Lamina neurons (through a DoG filter) and the IDoG
filter proposed in [17], as well as the effect of these different
modelations in the final response of the LGMD neuron.

III. MODEL

The model here proposed is insect based and, conse-
quently, it models several processes performed in different
layers of the insect visual system. It is composed by three
different groups of neurons: Photoreceptor neurons (P layer),
Lamina neurons (L layer), Medulla neurons (M layer); and
by one single neuron: the LGMD neuron (see figure 1).

           P layer

L layer

LGMD cell

M layer

Figure 1. Schematic illustration of the proposed LGMD model.

A. Photoreceptive layer

A grayscale image of the camera current field of view,
represented has a matrix of values (from 0 to 255), is the
input to a matrix of photoreceptor units (P layer). The output
of the P layer is the input of the next layer, the Lamina.

Pf (x, y) = If (x, y) (1)



Pf (x, y) is the output from the Photoreceptor cell at
position (x, y) for frame f and If (x, y) is the intensity of
the the pixel, captured by the camera, at position (x, y) for
frame f.

B. Lamina layer

Lamina cells receive the output of the photoreceptive cells
and, as previously mentioned, model the spatial predictive
coding strategy. In this paper, we will model the spatial
predictive coding through two different strategies:

1. Difference of Gaussians (DoG) filter: the central
receptors produce an excitatory signal, while cells in the
surrounding area send inhibition through lateral connections
to the central area.

2. Inverted Difference of Gaussians (IDoG) filter: based
on the principle that centre-surround property in early visual
processing may not be strictly feed-forward, involving lateral
inhibition and, moreover, disinhibition.

In IDoG filter, the response of n cells can be expressed
in matrix form as:

W × lf = pf (2)

l is the output vector, p is the input vector (pixel inten-
sity), both for frame f, and W is the weight matrix:

lf =

 l1
l2
...
ln

 , pf =

 p1
p2
...
pn

 ,
W =

 1 −w(1) ... −w(n− 1)
−w(1) 1 ... −w(n− 2)
... ... ... ...

−w(n− 1) ... ... 1


(3)

In order to get the value of Wij from neuron j to neuron
i, a classical two-mechanism DoG distribution is applied:

W (i, j) = { −w(|i, j|) when i 6= j
1 when i = j

(4)

w(d) = DoG(d) = kce
(−d/σc)

2

− kse(−d/σs)
2

(5)

where|i, j| is the Euclidian Distance (d) between neuron i
and j; kc and ks are the scaling constants that determine the
relative scale of the excitatory and inhibitory distributions,
and σc and σs their widths[17].

The response vector (l) can be derived from equation 2
as:

lf =W−1 × pf (6)

One limitation of this approach is that the inversed weight
matrix results in a non-local operation, which could lead to an
inefficient computation. In order to overcome this problem,
we use an approximated algorithm, through which we can
use a local convolution operation to process our images[17].

Consequently, the output from each neuron in the Lamina
(L) layer is given by:

Lf (x, y) =

4∑
i=−4

4∑
j=−4

Pf (x+ i, y + j) · F (i, j), (7)

where Lf (x, y) is the Lamina cell value at position (x, y)
for frame f ; Pf (x, y) is the output from the Photoreceptor
cell at position (x, y) for frame f; F is the filter used in the
convolution process, which can be a DoG or an IDoG filter.

In both filters, the parameters used for both filters are
listed in table I. In all the experiments done, the weight of
excitatory and inhibitory contributions should be kept the
same, because following the principles of predictive coding,
the excitation and inhibition should cancell each other and,
consequently, their weights should be the same.

Table I. PARAMETER VALUES OF THE LAMINA MODEL.

Parameter Value

Filter size 9× 9

σc
Filter size

20

σs
Filter size

6

kc = ks 1.0

C. Medulla Layer

In the Medulla level, each neuron computes the actual
intensity level through a temporal prediction, modeled as a
weighted linear combination of the past history of intensity
in each pixel. So, for each frame f, the value of each Medulla
neuron is given by:

Mf (x, y) =

f−j∑
i=0

hi.Lf−i(x, y) (8)

where f indicates the current sample and the set of
temporal coefficients (showed on figure 2) is {hi : i =
0, 1, f−j}, being (f−j+1) the number of samples included
in the filter. {Li : i = j, j+1, ..., f} are the values of Lamina
neurons during the last (f − j + 1) frames, and Lf is the
most recent.
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Figure 2. Temporal coefficients used in the modelation of the Medulla
layer.



D. LGMD neuron

In this paper, the LGMD neuron makes the simple
integration from all cells located in the previous layer, the
Medulla, being mathematically represented by:

LGMDf =
|
∑n
x=1

∑m
y=1Mf (x, y)|
n ·m

, (9)

where n is the number of rows and m is the number of
columns of the matrix representing the captured image.

IV. EXPERIMENTAL RESULTS: COMPARATIVE ANALYSIS

In a way to test the efficiency of the LGMD model
proposed, two experimental scenarios were used. The first
experiment was made on a simulated data set and, in the
second, we used a recorded video to prove the capability of
the LGMD model to deal with a real environment.

A. Simulated environment

We developed a simulation environment in Matlab, which
enables us to assess the effectiveness of the proposed model.
Objects were simulated according to their movement and the
corresponding data was acquired by a simulated camera and
processed by the model. Image sequences were generated by
a simulated camera with a field of view of 60º in both x and
y axis, a sampling frequency of 100 Hz, and a resolution of
100 by 100 pixels.

The simulated environment enables us to adjust several
parameters, such as: image matrix dimensions, camera rate
of acquisition, image noise level, object shape and texture,
among other parameters. The computer used was a Laptop
(Toshiba Portegé R830-10R) with 4 GHz CPUs and Windows
7 operating system.

B. Spatial decorrelation of the input signals through a DoG
and IDoG filter

As previously mentioned, both DoG and IDoG filters,
here modeling the neural processing done by the neurons
in the Lamina layer, have a specific function within the
network: reduce redundancy and recode the sensory input
into an efficient form. This process will decorrelate the input
signal. The minimum possible autocorrelation for a given
signal energy is achieved by equalising the power spectra of
the signal to be similar to that of a white noise signal, which
is a random signal with a flat/constant power spectral density.
Consequently, the lower is the slope of the spatial power
spectrum obtained, more the output redundancy is reduced.

In order to verify which filter decorrelates the input
signal in a more efficient way, i.e., the one which leads to a
higher flattening of the spatial power spectra slope, without
changing the power spectrum (the power spectra should keep
its shape under such process, changing only the slope), we
perform a comparative analysis of the power spectra relative
to the original frame (composed by a black square over a
white background), as well the result obtained from the DoG
and IDoG filter applied to the original frame, respectively.

Observing figure 3, we observe that, when we applied a
IDoG filter, the slope of the relation between the power and
the frequency components of the image was flatenned and
the variations within the power spectrum kept almost equal
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Figure 3. Power spectrum of an original frame (black square over a white
background, slope equal to -2.87), as well as the frame output of the Lamina
layer when using an IDoG (slope equal to -2.26) and a DoG(slope equal to
-1.54) spatial filters, averaged over all orientations.

to the original frame. In relation to the application of the
DoG filter, we verify that the application of this filter has a
higher effect on the flatenning process, but it highly changes
the variations of the power spectra when compared with the
original frame.

In order to analyse the effect that different excita-
tory/inhibitory receptive field contributions have on the
power spectrum obtained, the inhibitory contribution used
by the DoG filter, defined by the parameter ks in equation
5, was progressively decreased in steps of 0.1. The different
power spectra obtained for each ks value showed that the
application of the IDoG filter was always more effective in
reducing the redundancy of the input signal because it flattens
the slope, keeping, at the same time, the variations within the
power spectra (see figure 3).

C. Model validation

Validation is a necessary step for model acceptance. In a
first step, we analysed the response of the LGMD model here
proposed, using, in the lamina layer, both DoG and IDoG
filters, to a set of standard LGMD stimulation protocols. This
process allowed us to validate our model with respect to the
biological system. Firstly, we evaluated the LGMD model,
by using a looming stimulus consisting of a solid square
with 10 repetitions to each size/velocity = l/|v| pair (where l
stands for the half length of the square object and v for its
linear velocity). With these experiments, we wanted to verify
that our model respects the properties verified in biology, as
well as in models previously proposed in literature [7], [11].
These properties, founded in the locust visual system, include
a linear relation between the time of the peak firing rate of
the LGMD neuron and the ratio that correlates the stimulus
object size (l) and the stimulus linear velocity (v) [25], as
well as a near-exponential decay in the peak firing rate as
the l/|v| ratio increases.

Taking into account the previous considerations, we
analysed the proposed LGMD model using a black square
looming stimulus. This procedure was repeated to a range
of ten different l/|v| ratios. During this process of validation,
our first step was to verify if the relation between the time
of the peak firing rate, produced by our model(top panel on
figure 4), and the l/|v| ratio of the approaching visual stimuli,
was linear.

Through the obtained results we conclude that the fit of
the TTC (time-to-collision) of the peak firing rate, for both
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Figure 4. Top: Dependence of peak firing time relative to collision on l/|v|
ratio obtained with the LGMD model, using a DoG filter as a model for
the Lamina processing step (gray squares) and using a IDoG filter (black
dots). Bottom: Relation between the peak firing rate obtained in the output
of the LGMD cell and the l/|v| ratio.

DoG and IDoG filters, is consistent with the biological results
(figure 4, top), showing a correlation coefficient (r) near to
0.99.

In the second step of the validation process, we expected
to observe a near-exponential decay in the peak firing rate
in relation to the increment of the l/|v| ratio.

Although no significant differences were found in the
linear regression lines that relate the TTC of the peak firing
rate and l/|v| ratios for the different modelations of Lamina
processing method, considerable differences were found in
the relation of the peak firing rate and the l/|v| ratios when
an IDoG or a DoG filter was implemented (bottom panel
in figure 4). Only when a IDoG filter was used to model
the Lamina processing mechanism, the obtained results were
consistent with the biological ones: in bottom panel of 4,
the black dots amplitude decreases near-exponentially as the
ratio l/|v| increases. The implementation of the DoG filter
kept the peak of the LGMD firing rate constant at very low
levels of spike rate at a high range of different l/|v| ratios.

If, in biology, the LGMD neuron is responsible for
triggering escape responses, the spike rate profile of this
neuron should be encoded independently of the particular
properties of the looming stimuli. In order to verify if this hy-
pothesis, i.e., the invariant properties of the LGMD response
to the shape, texture and approaching angle of the visual
stimulus, is observed in the model here proposed, a serie of
experiments were done. For that, four different stimuli were
developed in Matlab: the first is the one previously described,
a single black square, with a white background, approaching
at different l/|v| ratios. The second stimulus developed is a
black circle, with a white background, approaching also at
different l/|v| ratios. The third visual stimulus is a square
with a checkerboard texture. Finally, the last visual stimulus
is a simple square deviated 50 degrees relatively to the center
of the camera that generates the visual stimuli.

Even though the total amount of the spikes produced by
the LGMD model was reduced for the case of a misalignment
of 50 degrees, resulting from the loss of stimulation by the

looming stimulus (as the object approaches, part of the visual
stimuli remains outside the screen), we verified that the linear
relation between the TTC of peak firing rate and the l/|v| ratio
was not affected by all the different characteristics of visual
stimuli (r ≈ 0.98).

According to the obtained results previously described,
we conclude that the intrinsic linear dependence between the
peak firing time and the l/|v| ratio remains preserved by the
LGMD model here proposed.

D. Results: simulated data set

Despite the better results, previously described in the
validation process, when using the IDoG filter, comparatively
to the DoG filter, we have decided to implement both filters
as the modelation of Lamina layer, in order to compare the
obtained results.

In this step, we fed the LGMD model proposed in this
article, with simulated image sequences, with different signal
to noise ratios (a representation can be observed on figure 5).
Four different simulated visual stimuli of a black approaching
square, over a white background, with l/|v| equal to 50
milliseconds, acquired with a frame rate of 100 Hz, were
produced to verify our aims. Stimuli differ on the noise
level: Simulus 1: no noise was added to the image sequence.
Stimulus 2: has a Signal-to-Noise ratio equal to 9. Stimulus
3: has a Signal-to-Noise ratio equal to 2.33. Stimulus 4: has
a Signal-to- Noise ratio equal to 1.0.

Figure 5. Selected frames from the simulated image sequence, for different
noise levels. From left no right: Signal to noise-ratio (S/N)=∞; S/N=9;
S/N=2.33; S/N=1.0.

The obtained results can be seen in figure 6.
Observing the spike rate profile of the LGMD model here

proposed, when implementing the IDoG filter (top panel on
figure 6) and comparing it to the biological LGMD neuron
spike rate described in literature [7], [6], [26], [27], we
conclude that they are quite similar, even for very low signal-
to-noise ratios (stimulus 3 and 4). Even when using Stimulus
4, the ratio between the peak spike rate (at t=-0.08 seconds)
and the highest value of spike rate produced by noise (at t=-
0.48 seconds) is 12. However, for the same situation tested,
but replacing the IDoG by a DoG filter (middle panel on
figure 6), the firing rate profile is no longer similar to the
biological one.

Besides that, when using stimulus 4, the ratio between the
peak spike rate (at t=-0.08 seconds) and the highest value of
spike rate produced by noise (at t=-0.46 seconds) decreases to
3.4. Through this difference, we verify the robustness added
to the model when a IDoG filter is used, comparatively to
the modelation done by a DoG filter.

By applying a simple threshold mechanism to the output
of this model using the IDoG filter, we could easily create a
collision avoidance artificial mechanism.



−1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

S
p
ik

e 
ra

te

−1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1
0

10

20

30

40

50

60

Time to collision (seconds)

A
n
gu

la
r 

si
ze

 (
d
eg

)

−1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1
0

5

10

15

20

25

S
p
ik

e 
ra

te

 

 

Stim   1
Stim 2  
Stim 3 
Stim 4 

Figure 6. Top panel: LGMD model response to an approaching object
with l/|v| set at 50 milliseconds, with four different signal-to-noise ratios
for IDoG filter. Middle panel: LGMD model response to an approaching
object with l/|v| set at 50 milliseconds, with four different signal-to-noise
ratios for DoG filter. Bottom panel: angular size of the approaching object.

E. Results: Real recorded data

In order to test the capability of the proposed LGMD
model to work in a realistic environment, we subjected it
to a real video sequence showing an approaching ball, with
l/|v| ' 30 ms (see figure 7). A PlayStation Eye digital
camera was used to obtain the video clip. The resolution of
the video images was 640× 480 pixels, with an acquisition
frequency of 70 frames per second. The background of the
real image sequence is composed by multiple and different
static objects.

Despite the complexity of the environment (see figure
7), the LGMD model has produced the expected spike rate,
which peak ocurred before the predicted time of collision
(indicated by a red line in figure 7)

These results indicate that this model could easily be
deployed as a collision detector in robotic applications.
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Figure 7. Selected frames from the recorded image sequence used in the
experiment and the respective spike rate obtained (red vertical line indicates
the time of collision).

V. CONCLUSIONS

In this paper, we propose a different model of the LGMD
neuron, introducing concepts of spatial and temporal predic-
tive coding. In order to achieve spatial redudancy reduction,
we proposed two spatial filters: the DoG and IDoG filter.
A recent published research[11], discussed that the non-
linearity of the LGMD neural responses results as an emer-
gent property of affererent networks. We base ourselves on
these findings, and decided to analyze the difference between
the application of an DoG and IDoG filter and the effect
that it has on the final response of the LGMD model. After
a deep validation, we observed that, when we implement
a DoG filter, the final response of the LGMD model was
quite different from the biologic responses. However, the
implementation of the IDoG filter led to a very similar
response of both artificial and real LGMD neurons.

After the model validation, using artificial and real image
sequences, we showed the capability of the model to continue
producing good results even in very low signal-to-noise
ratios. This property endow, to our model, a very high
robustness to complex environments.

As future work, we propose to continue enhancing this
approach, using, for that, a combination of physiological and
anatomical studies of the locust visual system, in order to
improve our undertanding about the relation between the
LGMD neuron output and the locust muscles related to
avoidance manoeuvres.
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