
Typed Linear Algebra for Weighted (Probabilistic) Au-
tomata

J.N. Oliveira

Ref. [Ol12] — 2012

J.N. Oliveira. Typed linear algebra for weighted (probabilistic) automata. In CIAA, volume 7381 of LNCS, pages

52–65, 2012. Invited paper.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55624869?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Typed linear algebra for weighted (probabilistic)
automata

(Extended abstract)

José N. Oliveira

High Assurance Software Laboratory
INESC TEC and University of Minho

Braga, Portugal
(jno@di.uminho.pt)

Abstract. There is a need for a language able to reconcile the recent
upsurge of interest in quantitative methods in the software sciences with
logic and set theory that have been used for so many years in capturing
the qualitative aspects of the same body of knowledge. Such a lingua
franca should be typed, polymorphic, diagrammatic, calculational and
easy to blend with traditional notation.
This paper puts forward typed linear algebra (LA) as a candidate notation
for such a role. Typed LA emerges from regarding matrices as morphisms
of suitable categories whereby traditional linear algebra is equipped with
a type system.
In this paper we show typed LA at work in describing weighted (prob-
abilistic) automata. Some attention is paid to the interface between the
index-free language of matrix combinators and the corresponding index-
wise notation, so as to blend with traditional set theoretic notation.

Keywords: Weighted automata, linear algebra, categories of matrices.

“Quantitative Formal Methods deals with systems whose
behaviour of interest is more than the traditional Boolean
“correct” or “incorrect” judgment. (...) The aim of the
workshop was to create a new forum where current and
novel theories and application areas of quantitative meth-
ods could be discussed, together with the verification tech-
niques that might apply to them.

Andova et al. [2]

1 Introduction

There is a trend towards quantitative methods in computing. Further to pre-

dicting that something “may happen”, going quantitative should allow one to

anticipate “how often or costly it will happen”. Or, looking from the negative

side of things, if something bad can take place one wishes to know how likely is

it to occur.

2 J.N. Oliveira

As happened with other sciences in the past (eg. physics), computer science
is in some sense becoming probabilistic. However, traditional notation for proba-
bilities is too descriptive and not meant for proving and calculating software as
we understand this activity today. Quoting Hehner [14]:

Perhaps a thousand years ago the philosophers of the time [might give] reasons
why their answer is right. Now we don’t argue; we formalize, calculate, and
unformalize.

There has been work on tuning probabilistic notation and reasoning to soft-
ware design. McIver and Morgan [22] develop a method for rigorous reasoning
about probabilistic programs that includes a calculus which, in the Hoare style,
operates at the level of the program text. At programming level, Erwig and Koll-
mansberger [11] give a collection of modules that make up a probabilistic func-
tional programming library in Haskell based on the (finite) distribution monad.
More recently, Gibbons and Hinze [13] have shown how to perform equational
reasoning about programs that exploit both nondeterministic and probabilistic
choice as part of a more ambitious plan to reason about effectful computations
in general.

Sokolova [26] presents a coalgebraic analysis of probabilistic systems in a
way that connects two main-stream research areas: coalgebraic reasoning and
probabilistic modeling and verification. This work builds upon foundational work
by Larsen and Skou [15] on probabilistic bisimulation. Broadening scope, recent
work by Bonchi et al. [8] gives a coalgebraic perspective on so-called linear
weighted automata, which generalize the probabilistic ones.

Weighted automata. Weighted automata [9, 10, 8] are a generalisation of finite
state, non-deterministic automata where each state transition, in addition to
some input, involves a quantity indicative of the weight (expressing eg. cost or
probability) of its execution. The minimal structure for expressing weights is
a semiring (S; +,×, 0, 1) where (S; +, 0) is a commutative monoid, (S;×, 1) is a
monoid, multiplication distributes over addition and 0 annihilates multiplication
(0× s = s× 0 = 0).

Following [10], a weighted finite automaton W = (A,Q;λ, µ, γ) consists of an
input alphabet A, a finite set of states Q and three functions: λ, γ : Q → S are
weight functions for entering and leaving a state, respectively, and µ : A → S

Q×Q

is such that µ(a)(p, q) indicates the cost of transition p
a !! q . Cost 0 means

that there is no transition from p to q labelled a.
For S the Boolean algebra B of truth values, a weighted automaton becomes a

(non-deterministic) labelled transition system (LTS), or non-deterministic finite-
state automaton (FSA): µ(a) ∈ B

Q×Q is the state-transition relation associated
to input a, λ is the set of initial states and γ the set of terminal states. For S

the interval [0, 1] of the real numbers (R) W can be regarded as a probabilistic
automaton under certain conditions 1. Bonchi et al. [8] only consider µ and
the output function γ. Their coalgebraic perspective twists the type of µ into

1 For a comprehensive analysis and taxonomy of probabilistic systems see eg. [26].

Typed linear algebra for weigthed automata 3

Q → (SQ)
A

and then amalgamates γ and µ into a coalgebra of functor FX =

S× (SX)
A
.

State transition matrices. For each a ∈ A, µ(a) ∈ S
Q×Q can be regarded as a

Q-indexed matrix expressing the cost of each state transition in which input a

participates. In the same way, λ and γ can be regarded as Q-indexed vectors. It is
therefore no wonder that the work on weighted automata often resorts to matrix
terminology and operations such as matrix-matrix multiplication and matrix-
vector multiplication. However, linear algebra (LA) is seldom assumed explicitly
as the central notation and calculus — such reasoning takes place episodically,
where convenient, conventional set theory doing the main job. This means that
the main advantage of LA — the conciseness of blocked, index-free notation
and its powerful algebra — is (partially) lost. There are, however, approaches in
which LA is the main notational device, see eg. references [9, 28] which follow the
tradition of Bloom et al. [7]. But such notation is untyped and therefore hard to
combine with that of the relations, predicates and functions which are around.

Typed versus untyped mathematics. What does (un)typed mean in the previous
sentence? It is a commonplace in mathematics to regard functions as special
cases of relations (the deterministic, total ones) and relations as special cases of
matrices (the Boolean ones, provided addition is trimmed to 1). Yet the three
classes of object are treated in disparate ways, unrelatedly and with incompatible
(if not contradictory) notation.

For instance, one writes y = f(x) to define a function and (x, y) ∈ Graph(f)
— note how x and y swap position — to express the input/output pairs of the
graph of function f , which is a relation. As far as typing is concerned, most
people accept notation f : A → B for defining the signature of a function (as we
have seen above) but only reluctantly will accept the same notation R : A → B

to define the type of relation R, writing R ⊆ A× B instead. As far as matrices
are concerned, writing M : m → n to declare the type of a matrix with m

columns and n rows will look surprising — textbooks simply tell that M is of
order m × n (or is it n × m?), with loose typing rules. As for type checking,
results are stated as “valid only for matrices of the same order” [1] and the like.
Polymorphic functions are well-accepted. But telling that the identity matrix is
as polymorphic as the identity function will sound odd to many people.

Relational mathematics [24] is a step forward towards conceptual unification
between relations and matrices. But it is first and foremost category theory [20]
which provides for successful unification, by regarding functions, relations and
matrices as morphisms (arrows) of suitable categories. The category of functions
is well known, that of relations less known and those of matrices by and large
ignored.

In the sequel we will show how weighted automata can be described and
reasoned about in the typed LA which emerges from regarding matrices as mor-
phisms (rather than objects) of suitable categories, as pioneered by MacLane [20]
and MacLane and Birkhoff [21]. This is part of a research line which started in
[16] and whose aim is to provide evidence of the usefulness of changing notation

4 J.N. Oliveira

(and reasoning style) and adopting typed LA as the lingua franca of quantitative
methods in computer science.

2 Typed linear algebra

Computer scientists tend to regard matrices as rectangular shaped data struc-
tures implemented as bidimensional arrays, lists of lists and the like. Mathemati-
cians tend to regard them as linear transforms, i.e. vector-to-vector operations.
Yet matrices are abstract entities independent of either such views: they can be
regarded as arrows of particular categories, whereby they become typed. This
answers questions such as: what is the type of a matrix? What are their basic
constructors? In what measure are these related to standard matrix operations
and algebra?

By studying the categories of matrices of [20], the authors of [16] have iden-
tified typed, algebraically rich constructors aiming to repair the lack just men-
tioned. Backhouse [4] regards matrices as a way of compacting sets of equations
into single equations which is a tremendous improvement in concision that does
not incur any loss of precision! Reference [16] furthermore show how the very
general concept of a biproduct [21] promotes individual values to blocks and
value-level operations to block-level operations, in fact the great conceptual ad-
vantage offered by matrix notation.

Matrices as arrows. A matrix M with n rows and m columns is a function which
tells the value occupying each cell (r, c), for 1 ≤ r ≤ n, 1 ≤ c ≤ m. The type
of such cell-values varies, but the minimal algebraic structure of semirings is
required for matrix operations to make sense. Standard linear algebra operates
over the richer structure of a field (further offering additive and multiplicative
inverses) and the field of real numbers (R) is often taken by default.

Interestingly, what is meant by the type of a matrix in the sequel does not
bear a direct relationship to such algebraic structures: it rather provides (as
in programming) a way of interfacing matrices with each other. The type of a
matrix M with m columns and n rows will be denoted by the arrow m !! n

between the number of columns and the number of rows. By writing m
M !! n

(or the equivalent n m
M"") one declares matrix M and its type.

The most interesting matrix combinator is composition, commonly referred
to as matrix multiplication. Denoting the (r, c)-th cell of a given matrix M by
rMc 2, the (r, c)-th cell of composite matrix M ·N is given by

r(M ·N)c = 〈
∑

x :: (rMx)× (xNc)〉 (1)

where × is the cell-level semiring multiplicative operation and
∑

is the finite
iteration of its additive operation.

2 Rather than the more conventional M(r, c) — we will explain later why we propose
a different notation.

Typed linear algebra for weigthed automata 5

What is x in (1) and what is its range? This will be easy to answer by
inspecting the types of both M and N :

n m
M"" k

N""

M ·N

(2)

Thus 1 ≤ x ≤ m and matrix multiplication can be abstracted by arrow compo-
sition.

For every n there is a matrix of type n n"" which is the unit of com-
position. This is nothing but the identity matrix of size n, indistinguishably

denoted by n n
idn"" or n n

1"" . This is the diagonal of size n, that is 3,

r(id)c ! r = c under the {0, 1} encoding of the Booleans:

idn =

1 0 · · · 0
0 1 · · · 0
...
...
. . .

...
0 0 · · · 1

n n
idn""

Therefore,

idn ·M = M = M · idm m

M

$$

m
idm""

M

$$M%%
n n

idn

""

(3)

where the subscripts m and n can be omitted wherever the underlying type
diagrams are assumed.

Equipped with composition (2) and identity (3), matrices form a category

whose objects are matrix dimensions and whose morphisms (m n
M"" etc) are

the matrices themselves [20, 21]. Strictly speaking, there is one such category per
matrix cell-level algebra. Notation MatS will be used to denote such a category,
parametric on semiring S or any other (richer) algebraic structure.

Vectors as arrows. Vectors are special cases of matrices in which one of the
dimensions is 1, for instance

v =

v1
...
vm

and w =

(

w1 . . . wn

)

Column vector v is of type m 1"" (m rows, one column) and row vector w is

of type 1 n"" (one row, n columns). Our convention is that lowercase letters
(eg. v, w) denote vectors and uppercase letters (eg. M , N) denote arbitrary
matrices.
3 Notation x ! y means x = y by definition.

6 J.N. Oliveira

Converse of a matrix. One of the kernel operations of linear algebra is transposi-
tion, whereby a given matrix changes shape by turning its rows into columns and

vice-versa. Given matrix n m
M"" , notation m n

M◦
"" denotes its transpose,

or converse. The following idempotence and contravariance laws hold:

(M◦)◦ = M (4)

(M ·N)◦ = N◦ ·M◦ (5)

Bilinearity. Given two matrices of the same type n m
M,N"" it makes sense to

add them up index-wise, leading to matrix M+N where symbol + promotes the
underlying semiring additive operator to matrix-level. Likewise, additive unit cell
value 0 is promoted to matrix 0 wholly filled with 0s, the unit of matrix addition
and zero of matrix composition:

M + 0 = M = 0 +M (6)

M · 0 = 0 = 0 ·M (7)

Composition is bilinear relative to +:

M · (N + P) = M ·N +M · C (8)

(N + P) ·M = N ·M + P ·M (9)

In the same way M +N denotes the promotion of addition of matrix cells to
matrix addition, the same promotion can take place with respect to the whole
semiring algebra. For instance, cell value multiplication leads to matrix multi-
plication, denoted M × N or simply MN (for M and N of the same type),
also known as the Hadamard product, which is commutative, associative and
distributive over addition (ie. bilinear). Clearly,

M ×(= (×M = M (10)

where matrix (is of the same type as M and is wholly filled with 1s.

Type generalization. Matrix types (the end points of arrows) can be generalized
to arbitrary, denumerable sets since addition in S is commutative, that is, the
summation of (1) can be evaluated in arbitrary order.

In fact, and as is standard in relational mathematics [24], objects in categories
of matrices can be generalized from numeric dimensions (n, m ∈ N0) to arbitrary
denumerable types (A, B), taking disjoint union A + B for m + n, Cartesian
product A × B for mn, unit type 1 for number 1, the empty set ∅ for 0, etc.
Conversely, dimension n corresponds to the type made of the initial segment of
the natural numbers up to n. Our convention is that lowercase letters (eg. n,
m) denote the traditional dimension types (natural numbers), letting uppercase
letters denote arbitrary other types.

Typed linear algebra for weigthed automata 7

3 Weighted automata as MatS arrows

Following [8], we consider in the sequel a simpler notion of weighted automaton
W = (Q,A;µ, γ) which deals without the input weight function λ. This facili-
tates the comparison between the coalgebraic approach of [8] and our own and
helps in staying with the binary matrix block combinators of [16], to be presented

shortly. For this purpose, we assign the type Q !! 1 to output function γ,
which is therefore regarded as a row vector in MatS. Concerning µ, it can either
be regarded as a matrix of type Q×A !! Q or of type Q !! Q×A , as

these types are isomorphic in MatS
4. We prefer the second (coalgebraic) alter-

native and therefore regard the following diagram as representation of weighted
automaton W = (Q,A;µ, γ):

Q×A Q
µ"" γ !! 1 (11)

Clearly, both µ and γ can be packaged into a single coalgebra (matrix) of type

(Q×A) + 1 Q
W"" and made of two blocks

W =

[

µ

γ

]

(12)

provided we explain what the meaning of combinator
[]

is. This leads into
matrix block notation and its algebra.

Block notation. Two basic binary combinators are available for building matrices
out of other matrices, say M and N :

– [M |N] — M and N side by side (read [M |N] as “M juncN”)
–

[

M
N

]

— M on top of N (read
[

M
N

]

as “M splitN”).

That is, matrices are stacked either vertically (
[

M
N

]

) or horizontally ([M |N]).
Dimensions should agree, as shown in the diagram below, taken from [16], where
m, n, p and t are types:

m

n

M

&&

i1

!! n+ p

[M|N]

''

π1"" π2 !!
p

i2

""

N

((

t

P

((

[

P
Q

]

''

Q

&&

[M |N] = M · π1 +N · π2 (13)

[

P

Q

]

= i1 · P + i2 ·Q (14)

4 This follows from a self-adjunction in MatS which is studied in detail in [19]. The
isomorphism reshapes matrices by reducing the number of columns by the same fac-
tor the number of rows increases, keeping the “rectangular area” and its information
intact.

8 J.N. Oliveira

The special matrices i1, i2, π1 and π2 are fragments of the identity matrix as
given by the so-called reflexion laws,

[i1|i2] = id
[

π1

π2

]

= id

which play an important role in explaining the semantics of the two combinators.
In brief, junc (13) and split (14) form a so-called biproduct [20]. The details of
this, however, can be skipped for the purposes of this presentation, sufficing to
be aware of the rich algebra of such combinators of which we single out two
“fusion”-laws,

R · [M |N] = [R ·M |R ·N] (15)
[

M

N

]

·R =

[

M ·R

N ·R

]

(16)

two structural equality laws,

[A|B] = [C|D] ≡ A = C ∧B = D (17)
[

A

B

]

=

[

C

D

]

≡ A = C ∧B = D (18)

and two absorption laws:

[A|B] · (C ⊕D) = [A · C|B ·D] (19)

(C ⊕D) ·

[

A

B

]

=

[

C ·A

D ·B

]

(20)

All these laws emerge as corollaries of the universal properties of biproducts.
Mind the types: the laws are only valid for matrices which typecheck and types
are obtained by unification, as explained in [16].

Weighted automata as matricial coalgebras. As suggested by (12) above, weighted
automaton W can be regarded as a coalgebra for MatS endofunctor FX =
(X ⊗ id) ⊕ id, where ⊕ and ⊗ are the so-called direct sum and Kronecker bi-
functors. The former,

M ⊕N = [i1 ·M |i2 ·N]

is of type

n

M

$$

m

N

$$

n+m

M⊕N

$$
k j k + j

Typed linear algebra for weigthed automata 9

and the latter is of type

n

M

$$

m

N

$$

n×m

M⊗N

$$
k j k × j

Fusion laws

[M |N]⊗ C = [M ⊗ C|N ⊗ C]
[

M

N

]

⊗ C =

[

M ⊗ C

N ⊗ C

]

capture the meaning of Kronecker product block-wise. Index-wise, one has:

(y, x)(M ⊗N)(b, a) = (yMb)× (xNa)

4 Weighted automata homomorphisms

A homomorphism between two weighted automata W and W ′ is a function h

making the following MatS-diagram commute,

FQ

Fh

$$

Q

h

$$

W""

FQ′ Q′

W ′
""

(21)

for FX = (X ⊗ id) ⊕ id (F-coalgebra homomorphism). The reader may wonder
about how does h (a function) fit into a diagram of matrices. The explanation

is easy: every function A
f !! B can be represented in MatS by a matrix [[f]]

of the same type defined by

b[[f]]a ! (b =S f a)

where, in general, y =S x is the unit 1 of S if y = x and 0 otherwise. Thus [[f]]
is the matrix which represents the graph of f : there is a 1 in every entry of [[f]]
addressed by (f(a), a) and 0s everywhere else. As S is always implicit and all
diagrams are drawn in MatS unless otherwise specified, subscript S in =S and
the parentheses in [[f]] can be safely dropped.

Below we show how diagram (21) unfolds into the usual definition of weighted
automata homomorphism [8], which is termed functional simulation in [9]. For
this we will rely on typed, blocked linear algebra:

(Fh) ·W = W ′ · h

≡ { unfold Fh ; W and W ′ are splits defined by (12) }

((h⊗ id)⊕ id) ·

[

µ

γ

]

=

[

µ′

γ′

]

· h

10 J.N. Oliveira

≡ { absorption (20), identity (3) and fusion (16) }
[

(h⊗ id) · µ

γ

]

=

[

µ′ · h

γ′ · h

]

≡ { equality (18) }
{

(h⊗ id) · µ = µ′ · h
γ = γ′ · h

(22)

The reader wishing to convert the equalities of (22) into index-wise formulas
for cross-checking with other sources is invited to do so based on the follow-
ing rules interfacing index-free and index-wise matrix notation, where N is an
arbitrary matrix and f , g are functional matrices:

y(f ·N)x = 〈
∑

z : y = f(z) : zNx〉 (23)

y(g◦ ·N · f)x = (g(y))N(f(x)) (24)

These rules are expressed in the style of the Eindhoven quantifier calculus [3].
Their calculation (deferred to the appendix) provides evidence of the safe mix
among matrix, predicate and function notation in typed LA.

We start by unfolding the first equality of (22):

(h⊗ id) · µ = µ′ · h

≡ { index-wise equality on matrices of type Q′
×A Q"" }

(q′, a)((h⊗ id) · µ)q = (q′, a)(µ′ · h)q

≡ { (24) on the right hand side, for g,N, f := id, µ′, h }

(q′, a)((h⊗ id) · µ)q = (q′, a)µ′(h(q))

≡ { (23) for f,N := h⊗ id, µ }

〈
∑

(p, b) : (q′, a) = (h⊗ id)(p, b) : (p, b)µq〉 = (q′, a)µ′(h(q))

≡ { since (h⊗ id)(p, b) = (h(p), b); one-point rule [3] over a = b }

〈
∑

p : q′ = h(p) : (p, a)µq〉 = (q′, a)µ′(h(q))

≡ { liberally writing p q
a"" for the weight of the corresponding transition }

〈
∑

p : q′ = h(p) : p q
a"" 〉 = q′ h(q)

a""

In words: the weight associated to transition q′ h(q)
a"" in the target au-

tomaton is the accumulation of the weights of all transitions p q
a"" in the

source automaton for all p which h maps to q′.

Typed linear algebra for weigthed automata 11

Unfolding the other matrix equality in (22) is simpler: as γ, γ′ are row vectors,
we get, for all q ∈ Q, 1γq = 1(γ′ · h)q, since there is only one row. By (24) this
becomes 1γq = 1γ′(h(q)), that is γ(q) = γ′(h(q)) once γ, γ′ are regarded back
as functions.

Summing up, both calculations show that weighted automata homomor-
phisms defined in a category of matrices coincide with those defined by Bonchi
et al. [8] in the category of sets. We regard this as just the beginning of a typed
LA approach to weighted automata to be developed comprehensively in the near
future.

5 Summary

This abstract addresses on-going work. Since the research presented in [16, 19],
typed LA calculational techniques have been successfully applied to data mining
[17] and probabilistic program calculation [23], the latter extending the algebra
of programming of Bird and de Moor [6].

In the case of weighted automata, LA is a natural choice already identified by
other researchers. Buchholz [9], for instance, praises matrix notation because it
allows an elegant and compact formulation of the theory. Trčka [28] writes that
matrices (...) increase clarity and compactness, simplify proofs, make known
results from linear algebra directly applicable and also mentions their didactic
advantage.

In broad terms, the approach put forward in this abstract proposes that
LA be typed on the basis of a categorial approach in which index-free ma-
trix terms form the main notation, diagrammatic representations and proofs
included. That is to say, rather than accepting LA arguments embedded in ordi-
nary set-theoretical reasoning, we propose that typed LA be regarded as a lingua
franca for computing, the other approaches coming as suitable instantiations 5.

We should say we are not the first proposing this strategy. The acronym
LAoP, for “linear algebra of programming” has been put forward already, al-
beit in a somewhat different setting, by Sernadas et al. [25], the key idea being
“to adopt linear algebra as the lingua franca of software verification” [27]. Our
contribution is the emphasis on LA polymorphic types. For this to work in prac-
tice, we believe the interfaces with standard logic, set theory and relation algebra
should not be neglected. Schmidt [24] already relies on matrix notation for do-
ing relation algebra. Our experiments eg. with the Eindhoven quantifier notation
show that the interface between functions, relations, predicates and matrices is
(at least pedagogically) relevant. The infix notation we adopt for matrix entries
— yMx rather than M(y, x) — intends to bridge with that commonly used for
binary relations. For instance, y ≤ x is preferred to ≤ (y, x).

5 Even so general a framework as that of an allegory [12] arises from matrices whose
data values form locales.

12 J.N. Oliveira

6 Current and related work

One of our targets is the linear algebra of components which, anticipated in [18],
promises a quantitative expansion of the coalgebraic approach of Barbosa [5] on
software components.

The work by Bonchi et al. [8] on a coalgebraic perspective on weighted au-
tomata promises a similar outcome but their use of linear algebra is on a different
plan: triggered by the need to extend the powerset functor quantitatively, they
introduce a vector space which weights (quantifies) multi-way state evolution.
(In a sense, powersets become “metric”.) Because this is carried in the category
of sets, their coalgebras involve functor W = K×(K−

ω)
A over a field K, where K−

ω

is the so-called field valuation (exponential) functor. Our approach flattens such
exponentials by changing category: the category of sets and functions gives room
to the category of matrices built on top of K. Thus ()A within sets becomes
()×A within matrices. In this way, weights no longer need to be taken explicitly
into account, as the underlying matrix algebra circumspectly takes care of them.

Much remains to be done, in particular calling for the unification with related
work. For instance, we would like to relate our ideas with those of Trčka [28],
who presents a matrix approach to the notions of strong, weak and branching
bisimulation ranging from labeled transition systems to Markov reward chains.
This already is the aim of Buchholz [9], who targets at a universal definition of
bisimulation which can be applied to a wide class of model types such that the
different forms of bisimulation can all be seen as specific cases, helping to unify
system analysis.

We believe matrix types will improve the approaches of both [9] and [28] in
a significant way. But, above all, in its use of matrix categories our strategy is
close to the iteration theory MatL(X∗) of Bloom et al. [7] whose morphisms are
matrices with entries in the semiring of languages. We intend to investigate the
relationship between both approaches in a thorough way.

Acknowledgements

The author is indebted to Nelma Moreira for her comments on an earlier draft
of this extended abstract. This research was carried out in the context of the
QAIS (Quantitative analysis of interacting systems: foundations and algorithms)
project funded by the ERDF through the Programme COMPETE and by the
Portuguese Government through FCT (Foundation for Science and Technology)
contract PTDC/EIA-CCO/122240/2010.

Appendix

To calculate (23) we let M := f in (1):

y(f ·N)x

= { definition (1) }

Typed linear algebra for weigthed automata 13

〈
∑

z :: (y = f(z))× (zNx)〉

= { rule (25) below }

〈
∑

z : y = f(z) : zNx〉

The rule used above,

〈
∑

x : p(x) : e(x)〉 = 〈
∑

x :: (p(x))× (e(x))〉 (25)

is illustrative of the interface between predicate logic and the semiring algebra
underneath: on the left hand side, p(x) is a predicate expressing the range of
a summation; on the right hand side it is encoded into S: 1 if p(x) holds, 0
otherwise. Since 0× s = 0, all terms such that p(x) doesn’t hold boil down to 0
and don’t affect the summation 6.

Similarly, for M := g◦ in (1):

y(g◦ ·N)x

= { definition (1) ; y(g◦)z = z =S g(y) }

〈
∑

z :: (z = g(y))× (zNx)〉

= { rule (25) }

〈
∑

z : z = g(y) : zNx〉

= { one-point rule [3] }

(g(y))Nx

Thus y(g◦ · N)x = (g(y))Nx. The calculation of y(N · f)x = yN(f(x)) follows
the same steps. Rule (24) puts these two equalities together.

6 For S the Boolean semiring,
∑

is existential quantification, × is conjunction and
equality (25) becomes an instance of the trading rule of existential quantification [3].

References

[1] Abadir, K., Magnus, J.: Matrix algebra. Econometric exercises 1. Cambridge
University Press (2005)

[2] Andova, S., McIver, A., D’Argenio, P.R., Cuijpers, P.J.L., Markovski, J.,
Morgan, C., Núñez, M. (eds.): Proceedings First Workshop on Quantitative
Formal Methods: Theory and Applications, EPTCS, vol. 13 (2009)

[3] Backhouse, R., Michaelis, D.: Exercises in quantifier manipulation. In:
Uustalu, T. (ed.) MPC’06, LNCS, vol. 4014, pp. 70–81. Springer (2006)

[4] Backhouse, R.: Mathematics of Program Construction. Univ. of Nottingham
(2004), draft of book in preparation. 608 pages

[5] Barbosa, L.: Towards a Calculus of State-based Software Components. Jour-
nal of Universal Computer Science 9(8), 891–909 (August 2003)

[6] Bird, R., de Moor, O.: Algebra of Programming. Series in Computer Science,
Prentice-Hall International (1997)

[7] Bloom, S., Sabadini, N., Walters, R.: Matrices, machines and behaviors.
Applied Categorical Structures 4(4), 343–360 (1996)

[8] Bonchi, F., Bonsangue, M., Boreale, M., Rutten, J., Silva, A.: A coalgebraic
perspective on linear weighted automata. Information and Computation
211, 77–105 (2012)

[9] Buchholz, P.: Bisimulation relations for weighted automata. Theoretical
Computer Science 393(1-3), 109–123 (2008)

[10] Droste, M., Gastin, P.: Weighted automata and weighted logics. In:
Kuich, W., Vogler, H., Droste, M. (eds.) Handbook of Weighted Automata,
chap. 5, pp. 175–211. EATCSMonographs in Theoretical Computer Science,
Springer (2009)

[11] Erwig, M., Kollmansberger, S.: Functional pearls: Probabilistic functional
programming in Haskell. J. Funct. Program. 16, 21–34 (January 2006)

[12] Freyd, P., Scedrov, A.: Categories, Allegories, Mathematical Library, vol. 39.
North-Holland (1990)

[13] Gibbons, J., Hinze, R.: Just do it: simple monadic equational reasoning.
In: Proceedings of the 16th ACM SIGPLAN international conference on
Functional programming. pp. 2–14. ICFP’11, ACM, New York, NY, USA
(2011)

[14] Hehner, E.: A probability perspective. Formal Aspects of Computing 23,
391–419 (2011)

[15] Larsen, K., Skou, A.: Bisimulation through probabilistic testing. Inf. Com-
put. 94(1), 1–28 (1991)

[16] Macedo, H., Oliveira, J.: Matrices As Arrows! A Biproduct Approach to
Typed Linear Algebra. In: MPC’10. LNCS, vol. 6120, pp. 271–287. Springer
(2010)

[17] Macedo, H., Oliveira, J.: Do the middle letters of “OLAP” stand for linear
algebra (“LA”)? Technical Report TR-HASLab:04:2011, INESC TEC and
University of Minho, Gualtar Campus, Braga (2011)

Typed linear algebra for weigthed automata 15

[18] Macedo, H., Oliveira, J.: Towards linear algebras of components. In: FACS
2010. LNCS, vol. 6921, pp. 300–303. Springer (2011)

[19] Macedo, H., Oliveira, J.: Typing linear algebra: A biproduct-oriented ap-
proach (2011). Accepted for publication in SCP

[20] MacLane, S.: Categories for the Working Mathematician. Springer-Verlag,
New-York (1971)

[21] MacLane, S., Birkhoff, G.: Algebra. AMS Chelsea (1999)
[22] McIver, A., Morgan, C.: Abstraction, Refinement And Proof For Proba-

bilistic Systems. Monographs in Computer Science, Springer-Verlag (2005)
[23] Oliveira, J.: Towards a linear algebra of programming. Accepted for publi-

cation in Formal Aspects of Computing (2012)
[24] Schmidt, G.: Relational Mathematics. No. 132 in Encyclopedia of Mathe-

matics and its Applications, Cambridge University Press (November 2010)
[25] Sernadas, A., Ramos, J., Mateus, P.: Linear algebra techniques for deciding

the correctness of probabilistic programs with bounded resources. Tech.
rep., SQIG - IT and IST - TU Lisbon, 1049-001 Lisboa, Portugal (2008),
short paper presented at LPAR 2008, Doha, Qatar. November 22-27

[26] Sokolova, A.: Coalgebraic Analysis of Probabilistic Systems. Ph.D. disser-
tation, Tech. Univ. Eindhoven, Eindhoven, The Netherlands (2005)

[27] SQIG-Group: LAP: Linear algebra of bounded resources programs (2011),
http://sqig.math.ist.utl.pt/work/LAP, iT & Tech. Univ. Lisbon

[28] Trčka, N.: Strong, weak and branching bisimulation for transition systems
and Markov reward chains: A unifying matrix approach. In: [2], pp. 55–65

