
Weighted automata as coalgebras in categories of ma-
trices

J.N. Oliveira

Ref. [Ol13] — 2013

J.N. Oliveira. Weighted automata as coalgebras in categories of matrices. International Journal of Foundations of

Computer Science, 2013. Accepted for publication

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55624867?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

April 2, 2013 8:47 WSPC/INSTRUCTION FILE ijfcs12

International Journal of Foundations of Computer Science
c© World Scientific Publishing Company

Weighted automata as coalgebras in categories of matrices

José N. Oliveira

High Assurance Software Laboratory
INESC TEC and University of Minho

Braga, Portugal

jno@di.uminho.pt
http://www.di.uminho.pt/˜jno

Received (Day Month Year)

Accepted (Day Month Year)
Communicated by (xxxxxxxxxx)

The evolution from non-deterministic to weighted automata represents a shift from qual-
itative to quantitative methods in computer science. The trend calls for a language able

to reconcile quantitative reasoning with formal logic and set theory, which have for so
many years supported qualitative reasoning. Such a lingua franca should be typed, poly-

morphic, diagrammatic, calculational and easy to blend with conventional notation.
This paper puts forward typed linear algebra as a candidate notation for such a

unifying role. This notation, which emerges from regarding matrices as morphisms of
suitable categories, is put at work in describing weighted automata as coalgebras in such
categories.

Some attention is paid to the interface between the index-free (categorial) language
of matrix algebra and the corresponding index-wise, set-theoretic notation.

Keywords: Weighted automata; linear algebra; categories of matrices.

1. Introduction

There is a trend towards quantitative methods in computing. Further to predict-

ing that something may happen, going quantitative should allow one to anticipate

how often or costly it will happen. Or, looking from the negative side of things, if

something bad can take place one wishes to know how likely it is.

As happened with other sciences in the past (eg. physics), computer science is

in some sense becoming quantitative or probabilistic. Take reliability as an example.

From a qualitative perspective, a software system is reliable if it can successfully

carry out its own task as specified [8]. But our italicized text is a inexact quotation

of [8], the exact one being: reliability [is] defined as a probabilistic measure of the

system ability to successfully carry out its own task as specified.

From a functional perspective, this means moving from specifications (in-

put/output relations) and implementations (functions) to something which lives in

between, for instance probabilistic functions expressing the propensity, or likelihood

of multiple, possibly erroneous outputs [19].

1

April 2, 2013 8:47 WSPC/INSTRUCTION FILE ijfcs12

2 J.N. Oliveira

Quantitative software reliability analysis is more complex in practice because,

as is well-known, software systems are nowadays built component-wise. Cortellessa

and Grassi [8] quantify component-to-component error propagation in terms of a

matrix whose entry (i, j) gives the probability of component i transferring control

to component j — a kind of probabilistic call-graph.

Component-oriented design has been successfully formalized under the compo-

nents as coalgebras motto (see eg. [4]), which builds on top of extensive work on

automata using coalgebra theory [20]. This theory can be regarded as a generic

approach to transition systems, described by functions of type

Q→ FQ

where Q is a set of states and FQ captures the future behaviour of the system

according to evolution “pattern” F which is, technically, a functor. Mealy machines,

for instance, are captured by FQ = B(Q × O)I for I, O input/output types, while

Moore machines are captured by FQ = (BQ)I × O. In both definitions, B is a

behaviour monad — eg. the powerset (P) monad capturing non-determinism, the

distribution (D) monad capturing probabilistic behaviour, and so on.

Coalgebras have followed the trend and become quantitative too [24, 23]. Re-

search in this area builds upon foundational work by Larsen and Skou [11] on

probabilistic bisimulation. Broadening scope, recent work by Bonchi et al. [6] gives

a coalgebraic perspective of so-called linear weighted automata. There is, however, a

price to pay for such weighted approaches, as functors now need to handle quantities

explicitly while states become vectors and coalgebras become linear maps.

In the current paper we wish to obtain the same quantitative effect while keeping

the simplicity of the original (qualitative) coalgebra approach. The idea is to keep

weighting and quantification implicit rather than explicit, the trick being a change

of category: instead of the category of sets where traditional coalgebra theory finds

its room, we change to suitable categories of matrices tuned to the specific weighting

mechanism. That is, we replace set-theoretical operations and weight calculations

by matrix operations which hide such calculations. This entails a change of notation,

as linear algebra rather than set notation becomes the lingua franca. For this shift

to be effective, special care has to be taken with notation issues, as shown in the

current paper. The outcome is, we believe, worthwhile and reassuring.

The remainder of this paper is structured as follows: Section 2 introduces

weighted automata (WA) and sections 3 and 4 introduce typed linear algebra. Sec-

tions 5 and 6 express WA as comorphisms in categories of matrices. This leads to a

coalgebraic treatment of weighted bisimulation and weighted languages in sections

7 and 8. The remaining sections conclude and address related and future work.

2. Weighted automata

Weighted automata [7, 9, 6] are a generalisation of finite state, non-deterministic

automata where each state transition, in addition to some input, involves a quantity

April 2, 2013 8:47 WSPC/INSTRUCTION FILE ijfcs12

Weighted automata as coalgebras in categories of matrices 3

indicative of the weight (typically expressing cost or probability) of its execution.

The minimal structure for managing weights is a semiring (S; +,×, 0, 1) where

(S; +, 0) is a commutative monoid, (S;×, 1) is a monoid, multiplication distributes

over addition and 0 annihilates multiplication (0× s = s× 0 = 0).

Following Droste and Gastin [9], a weighted finite automatonW = (A,Q;λ, µ, γ)

consists of an input alphabet A, a finite set of states Q and three functions: λ, γ :

Q → S are weight functions for entering and leaving a state, respectively, and

µ : A → S
Q×Q is such that µ(a)(p, q) indicates the cost of transition p

a // q .

Cost 0 means that there is no transition from p to q labelled a.

For S the Boolean algebra B of truth values, weighted automaton W becomes

a (non-deterministic) labelled transition system (LTS) or non-deterministic finite-

state automaton (FSA): µ(a) ∈ B
Q×Q is the state-transition relation associated to

input a, λ is the set of initial states and γ the set of terminal states. For S the interval

[0, 1] of the real numbers R, W can be regarded as a probabilistic automaton under

certain conditions a. Bonchi et al. [6] only consider µ and the output function γ.

Their coalgebraic model twists the type of µ into Q→ (SQ)
A
and then amalgamates

γ and µ into a coalgebra of functor FX = S× (SX)
A
.

Clearly, for each a ∈ A, µ(a) ∈ S
Q×Q can be regarded as a Q-indexed matrix

expressing the cost of each state transition in which input a participates. In the same

way, λ and γ can be regarded asQ-indexed vectors. It is therefore no wonder that the

work on weighted automata often resorts to matrix terminology and operations such

as matrix-matrix and matrix-vector multiplications. However, linear algebra (LA)

is seldom assumed explicitly as the central notation and calculus, as LA reasoning

takes place episodically, where convenient, conventional set theory doing the main

job. The main advantage of LA — the conciseness of blocked, index-free notation

and its powerful algebra — is thus partly lost. There are, however, approaches in

which LA is the main notational device, see eg. references [7, 25] and, in particular,

[5]. But in all these works LA notation is untyped and therefore hard to combine

with that of the relations, predicates and functions which are around.

3. Typed versus untyped mathematics.

What does (un)typed mean in the previous sentence? It is a commonplace in mathe-

matics to regard functions as special cases of relations (the deterministic, total ones)

and relations as special cases of matrices (the Boolean ones, provided addition is

trimmed to 1). Yet the three classes of object are treated in disparate ways, with

incompatible (if not contradictory) notation.

For instance, one writes y = f(x) to define a function and (x, y) ∈ Graph(f) —

note how x and y swap position — to express the input/output pairs of the graph

of function f , which is a relation. As far as typing is concerned, most people accept

notation f : A → B for defining the signature of a function but only reluctantly

aFor a comprehensive analysis and taxonomy of probabilistic systems see eg. [24].

April 2, 2013 8:47 WSPC/INSTRUCTION FILE ijfcs12

4 J.N. Oliveira

will accept the same notation R : A → B to define the type of relation R, writing

R ⊆ A×B instead. As far as matrices are concerned, writing M : m→ n to declare

the type of a matrix with m columns and n rows will look surprising — textbooks

simply tell that M is of order m×n (or is it n×m?), with loose typing rules. As for

type checking, results are stated as “valid only for matrices of the same order” [1]

and the like. Polymorphic functions are well-accepted. But telling that the identity

matrix is as polymorphic as the identity function will sound odd to many people.

Relational mathematics [21] is a step forward towards conceptual unification be-

tween relations and matrices. But it is first and foremost category theory [16] which

provides for successful unification, by regarding functions, relations and matrices as

morphisms (arrows) of suitable categories. The category of functions is well known,

that of relations less known and those of matrices by and large ignored.

This paper shows how weighted automata can be handled in the typed LA which

emerges from regarding matrices as morphisms (rather than objects) of suitable

categories, as pioneered by MacLane [16] and MacLane and Birkhoff [17]. This is

part of a research line which started in [12] and whose aim is to provide evidence

of the usefulness of changing notation (and reasoning style) and adopting typed LA

as the lingua franca of quantitative methods in computer science.

4. Typed linear algebra

Computer scientists tend to regard matrices as rectangular shaped data structures

implemented as bidimensional arrays, lists of lists and the like. Mathematicians tend

to regard them as linear transforms, i.e. vector-to-vector operations. Yet matrices

are abstract entities independent of either such views: they can be regarded as

arrows of particular categories, whereby they become typed.

By studying categories of matrices [16], the authors of [12] have identified type-

rich constructors related to standard matrix operations. Backhouse [3] regards ma-

trices as a way of compacting sets of equations into single equations which is a

tremendous improvement in concision that does not incur any loss of precision! Ref-

erence [12] furthermore shows how the general concept of a biproduct [17] promotes

individual values to blocks and value-level operations to block-level operations, in

fact the great conceptual advantage offered by matrix notation and LA.

Matrices as arrows. A matrix M with n rows and m columns is a function which

tells the value occupying each cell (r, c), for 1 ≤ r ≤ n and 1 ≤ c ≤ m. As the type

of such cell-values varies, the minimal algebraic structure of semirings is required for

matrix operations to make sense. Standard linear algebra operates over the richer

structure of a field (further offering additive and multiplicative inverses) and the

field of real numbers (R) is often taken by default.

Interestingly, what is meant by the type of a matrix in the sequel does not

bear a direct relationship to such algebraic structures: it rather provides (as in

programming) a way of interfacing matrices with each other. The type of a matrix

April 2, 2013 8:47 WSPC/INSTRUCTION FILE ijfcs12

Weighted automata as coalgebras in categories of matrices 5

M with m columns and n rows will be denoted by the arrow m // n between

the number of columns and the number of rows. By writing m
M // n (or the

equivalent n m
Moo) one declares matrix M and its type.

The most interesting matrix combinator is composition, commonly referred to

as matrix multiplication. Denoting the (r, c)-th cell of a given matrix M by rMc b,

the (r, c)-th cell of composite matrix M ·N is given by

r(M ·N)c = 〈
∑

x :: (rMx)× (xNc)〉 (1)

where × is the cell-level semiring multiplicative operation and
∑

is the finite iter-

ation of its additive operation. What is x in (1) and what is its range? This is easy

to answer by inspecting the types of both M and N :

n m
Moo k

Noo

M ·N

ff (2)

Thus 1 ≤ x ≤ m and matrix multiplication can be abstracted by arrow composition.

idn =











1 0 · · · 0

0 1 · · · 0
...
...
. . .

...

0 0 · · · 1











For every n there is a matrix of type n noo which

is the unit of composition. This is nothing but the identity

matrix of size n, indistinguishably denoted by n n
idnoo or

n n
1oo . This is the diagonal of size n, that is c, r(id)c △

r = c under the {0, 1} encoding of the Booleans. Therefore,

idn ·M = M = M · idm holds, where subscripts such as m and n can be omitted

wherever the underlying type diagrams are assumed (as aside).

m

M

��

m
idoo

M

��M}}
n n

id
oo

Equipped with composition (2) and identity, matrices form

a category whose objects are matrix dimensions and whose

morphisms (m n
Moo etc) are the matrices themselves [16,

17]. Strictly speaking, there is one such category per matrix

cell-level algebra. Notation MatS will be used to denote such

a category, parametric on semiring S or any other (richer) algebraic structure.

Vectors are special cases of matrices in which one of the dimensions is 1, for

instance row vector w =
(

w1 . . . wn

)

of type 1 noo (one row, n columns). Our

convention is that lowercase letters (eg. v, w) denote vectors and uppercase letters

(eg. M , N) denote arbitrary matrices.

Further to composition, another kernel operation of linear algebra is transposi-

tion, whereby a given matrix changes shape by turning its rows into columns and

vice-versa. Given matrix n m
Moo , notation m n

M◦
oo will denote its trans-

bRather than the more conventional M(r, c) — we will explain later why we propose such an infix

notation.
cNotation x △ y means x = y by definition.

April 2, 2013 8:47 WSPC/INSTRUCTION FILE ijfcs12

6 J.N. Oliveira

pose, or converse. The following idempotence and contravariance laws hold:

(M◦)◦ = M (3)

(M ·N)◦ = N◦ ·M◦ (4)

Bilinearity. Given two matrices of the same type n m
M,Noo it makes sense to

add them up index-wise, leading to matrix M + N where symbol + promotes the

underlying semiring additive operator to matrix-level. Likewise, additive unit cell

value 0 is promoted to matrix 0 wholly filled with 0s, the unit of matrix addition,

M+0 = M = 0+M , and zero of matrix composition:M ·0 = 0 = 0·M . Furthermore,

composition is bilinear relative to +, that is, M · (N + P) = M · N + M · C and

(N + P) ·M = N ·M + P ·M hold.

In the same way M + N denotes the promotion of addition of matrix cells to

matrix addition, the same promotion can take place with respect to the whole semir-

ing algebra. For instance, cell value multiplication leads to matrix multiplication,

denoted M ×N or simply MN (for M and N of the same type), also known as the

Hadamard product, which is commutative, associative and distributive over addition

(ie. bilinear). Clearly, M ×⊤ = ⊤×M = M where matrix ⊤ has the same type as

M and is wholly filled with 1s.

Type generalization. Matrix types (the end points of arrows) can be general-

ized to arbitrary, denumerable sets since addition in S is commutative, that is, the

summation of (1) can be evaluated in arbitrary order.

In fact, and as is standard in relational mathematics [21], objects in categories

of matrices can be generalized from numeric dimensions (n, m ∈ N0) to arbitrary

denumerable types (A, B), taking disjoint union A+B for m+n, Cartesian product

A × B for mn, unit (singleton) type 1 for number 1, the empty set ∅ for 0, etc.

Conversely, dimension n corresponds to the type made of the initial segment of the

natural numbers up to n. Our convention is that lowercase letters (eg. n, m) denote

the traditional dimension types (natural numbers), letting uppercase letters denote

arbitrary other types.

5. Weighted automata as MatS arrows

Following [6], we will consider a simpler notion of weighted automaton W =

(Q,A;µ, γ) which deals without the input weight function λ. This facilitates the

comparison between the coalgebraic approach of [6] and our own and helps in stay-

ing with the binary matrix block combinators of [12], to be presented shortly. For

this purpose, we assign the type Q // 1 to output function γ, which is therefore

regarded as a row vector in MatS. Concerning µ, it can either be regarded as a ma-

trix of type Q×A // Q or of type Q // Q×A , as these types are isomor-

phic in MatS
d. We prefer the second (coalgebraic) alternative and therefore regard

dThis follows from a self-adjunction in MatS which is studied in detail in [15]. The isomorphism
reshapes matrices by reducing the number of columns by the same factor the number of rows

April 2, 2013 8:47 WSPC/INSTRUCTION FILE ijfcs12

Weighted automata as coalgebras in categories of matrices 7

the following diagram as representation of weighted automaton W = (Q,A;µ, γ):

Q×A Q
µoo γ // 1 (5)

Clearly, both µ and γ can be packaged into a single coalgebra (matrix) of type

(Q×A) + 1 Q
Woo and made of two blocks

W =

[

µ

γ

]

(6)

provided we explain what the meaning of combinator
[]

is. This leads into matrix

block notation and its algebra.

m

n

M

>>

i1
// n+ p

[M|N]

OO

π1oo π2 //
p

i2
oo

N

``

t

P

``

[

P
Q

]

OO

Q

>>

Block notation. Matrices can be built block-wise. Two

basic combinators are available for building matrices out

of other matrices, say M and N : [M |N], meaning M and

N side by side (read [M |N] as “M junc N”); or
[

M
N

]

,

meaning M on top of N (read
[

M
N

]

as “M splitN”). That

is, the matrices are stacked either vertically (
[

M
N

]

) or hor-

izontally ([M |N]). Dimensions should agree, as shown in

the diagram aside, where m, n, p and t are types.

The special matrices i1, i2, π1 and π2 are fragments of the identity matrix as

given by the so-called reflexion laws, [i1|i2] = id and
[

π1

π2

]

= id. In brief, junc

and split form a so-called biproduct [16], whereby [M |N] = M · π1 + N · π2 and
[

P
Q

]

= i1 · P + i2 · Q hold. The details of this, however, can be skipped for the

purposes of this paper, sufficing to be aware of the rich algebra of such combinators,

of which we single out divide-and-conquer,

[A|B] ·

[

C

D

]

= A · C +B ·D (7)

two “fusion”-laws,

R · [M |N] = [R ·M |R ·N] (8)
[

M

N

]

·R =

[

M ·R

N ·R

]

(9)

two structural equality laws,

[A|B] = [C|D] ≡ A = C ∧B = D (10)
[

A

B

]

=

[

C

D

]

≡ A = C ∧B = D (11)

and two absorption laws,

[A|B] · (C ⊕D) = [A · C|B ·D] (12)

(C ⊕D) ·

[

A

B

]

=

[

C ·A

D ·B

]

(13)

increases, keeping the “rectangular area” and its information intact.

April 2, 2013 8:47 WSPC/INSTRUCTION FILE ijfcs12

8 J.N. Oliveira

where ⊕ is the so-called direct sum bifunctor, M ⊕ N = [i1 ·M |i2 ·N], of type

k + j n+moo for k n
Moo and j moo . Mind the types: the laws above

are only valid for matrices which typecheck, types being obtained by unification as

explained in [12].

Back to (5) and (6) above, we are in position to regard weighted automaton

Q×A+ 1 Q
Woo as a coalgebra for MatS endofunctor FX = (X ⊗ id) ⊕ id

which, further to direct sum, resorts to the so-called Kronecker product ⊗, an-

other MatS bifunctor: given matrices n
M // k and m

N // j , M ⊗ N is of

type n×m // k × j and obeys fusion laws [M |N]⊗ C = [M ⊗ C|N ⊗ C] and
[

M
N

]

⊗ C =
[

M⊗C
N⊗C

]

. These laws capture the meaning of Kronecker product block-

wise. Index-wise, one has:

(y, x)(M ⊗N)(b, a) = (yMb)× (xNa) (14)

6. Weighted automata comorphisms

A homomorphism between two weighted automataW andW ′ is a function hmaking

the following MatS-diagram commute,

FQ

Fh

��

Q

h

��

Woo

FQ′ Q′

W ′
oo

(15)

for FX = (X ⊗ id)⊕ id. We say that h is an F-coalgebra homomorphism or, abbre-

viating text, an F-comorphism.

The reader may wonder about how does h (a function) fit into a diagram of ma-

trices (15). The explanation is easy: every function A
f // B can be represented

in MatS by a matrix [[f]] of the same type defined by b[[f]]a △ (b =S f a) where,

in general, y =S x is the unit 1 of S if y = x and 0 otherwise. Thus [[f]] is the matrix

which represents the graph of f : there is a 1 in every entry of [[f]] addressed by

(f(a), a) and 0s everywhere else. As S is always implicit and all diagrams are drawn

in MatS unless otherwise specified, subscript S in =S and the parentheses in [[f]]

can be safely dropped.

Below we show how diagram (15) unfolds into the usual definition of weighted

automata homomorphism [6], which is termed functional simulation in [7]. For this

we will rely on typed, blocked linear algebra:

(Fh) ·W = W ′ · h

≡ { unfold Fh ; W and W ′ are splits defined by (6) }

((h⊗ id)⊕ id) ·

[

µ

γ

]

=

[

µ′

γ′

]

· h

April 2, 2013 8:47 WSPC/INSTRUCTION FILE ijfcs12

Weighted automata as coalgebras in categories of matrices 9

≡ { absorption (13), identity and fusion (9) }
[

(h⊗ id) · µ

γ

]

=

[

µ′ · h

γ′ · h

]

≡ { equality (11) }
{

(h⊗ id) · µ = µ′ · h

γ = γ′ · h
(16)

Converting the equalities of (16) into index-wise formulas for cross-checking with

other sources is greatly helped by the following rules interfacing index-free and

index-wise matrix notation, where N is an arbitrary matrix and f , g are functional

matrices:

y(f ·N)x = 〈
∑

z : y = f(z) : zNx〉 (17)

y(g◦ ·N · f)x = (g(y))N(f(x)) (18)

These rules are expressed in the style of the Eindhoven quantifier calculus [2]. Their

calculation [18] provides evidence of the safe mix among matrix, predicate and

function notation in typed LA. We start by unfolding the first equality of (16):

(h⊗ id) · µ = µ′ · h

≡ { index-wise equality on matrices of type Q′
×A Qoo }

(q′, a)((h⊗ id) · µ)q = (q′, a)(µ′ · h)q

≡ { (18) on the right hand side, for g,N, f := id, µ′, h }

(q′, a)((h⊗ id) · µ)q = (q′, a)µ′(h(q))

≡ { (17) on the left hand side, for f,N := h⊗ id, µ }

〈
∑

(p, b) : (q′, a) = (h⊗ id)(p, b) : (p, b)µq〉 = (q′, a)µ′(h(q))

≡ { since (h⊗ id)(p, b) = (h(p), b); one-point rule [2] over a = b }

〈
∑

p : q′ = h(p) : (p, a)µq〉 = (q′, a)µ′(h(q))

≡ { liberally writing p q
aoo for the weight of the corresponding transition }

〈
∑

p : q′ = h(p) : p q
aoo 〉 = q′ h(q)

aoo

In words: the weight associated to transition q′ h(q)
aoo in the target automa-

ton is the accumulation of the weights of all transitions p q
aoo in the source

automaton for all p which h maps to q′.

April 2, 2013 8:47 WSPC/INSTRUCTION FILE ijfcs12

10 J.N. Oliveira

Fig. 1. Transition table µ of weighted automaton of type Q × A← Q. Columns are indexed by
input type Q and rows by Cartesian product type Q×A.

Unfolding the other matrix equality in (16) is simpler: as γ, γ′ are vectors, we

get, for all q ∈ Q, 1γq = 1(γ′ ·h)q, since there is only one row. By (18) this becomes

1γq = 1γ′(h(q)), that is γ(q) = γ′(h(q)) once γ, γ′ are regarded back as functions.

Summing up, both calculations show that weighted automata comorphisms de-

fined in a category of matrices coincide with those defined by Bonchi et al. [6] in the

category of sets. As in the standard (set-theoretic) setting, id is an F-comorphism

and F-comorphisms compose; thus coalgebraic weighted automata are the objects

of a category whose arrows are F-comorphisms in MatS.

7. Weighted bisimulation
0

a, 13

��

a, 13
��

a, 13

��
1

b,1

��

2

b,1

��

3

1

��4

1

��

5

1

��

Having laid a basis for a coalgebraic, typed LA approach

to weighted automata, we can experiment with further

constructions. As a follow up example, this section aims

at a purely quantitative definition of WA bisimulation,

taking the WA aside from [7] as illustrative example.

The matrix µ which describes this automaton, of type

Q×A Qoo for Q = {0, ..., 5} and A = {a, b}, is

shown in Figure 1 . Transitions leading nowhere and la-

belled with 1s correspond to γ =
(

0 0 0 1 1 1
)

, a vector

of type 1 Qoo . This is an example of a simple, probabilistic automaton inMatS
(Markov chain), instantiating the general definition: S is the interval [0, 1] in R, and

µ is such that ! · µ is a (0, 1)-vector, where row vector ! is wholly filled with 1s.

(Thus ! ·M adds all columns of M) [19].

Is the equivalence relation depicted in Figure 2 (a) a bisimulation? It has four

classes which can be represented by a quotient automaton using a suitable surjective

homomorphism Q′ Q
hoo depicted in Figure 2(b) for Q′ = {0, i, ii, iii}. It can

April 2, 2013 8:47 WSPC/INSTRUCTION FILE ijfcs12

Weighted automata as coalgebras in categories of matrices 11

(a) (b)

(c) (d)

(e) (f)

Fig. 2. Equivalence relation K (a) on state space Q is the kernel of surjection h (b) mapping Q to
another state space Q′ = {0, i, ii, iii}. The image h · h◦ of h is a diagonal (c) which tells how much
non-injective h is. The inverse h• (d) is used to compute reduced-state automaton (f), fixing (e)
in which converse h◦ is used.

be observed that its kernel [10], K = Q Q
h◦·hoo , is the given equivalence e.

Diagram (15) suggests a first attempt to build the quotient automaton, W ′ =

W/K = (Fh) ·W ·h◦, that is µ′ = µ/K = (h⊗ id) ·µ ·h◦ focusing on µ, µ′ only. But

this doesn’t work because, in MatS, h
◦ is not a “true” converse of h, as the image

of h (h · h◦) is not below id. In fact, h · h◦ > id is a diagonal counting “how much

non-injective” h is, cf. Figure 2(c).

Fortunately, a surjective function h has inverses such as eg. h• = h◦ · (h · h◦)−1,

obtained by standard inversion of diagonal h ·h◦, see Figure 2(d). Using h• instead

of h◦ one defines W ′ = W/K = (Fh) ·W ·h•, that is, µ′ = µ/K = (h⊗ id) ·µ ·h• and

γ′ = γ/K = γ · h•, leading to the automaton pictured below. Matrix µ′ is shown in

Figure 2(f).

eKernels of functions are always equivalence relations, that is, {0, 1}-matrices.

April 2, 2013 8:47 WSPC/INSTRUCTION FILE ijfcs12

12 J.N. Oliveira

0
a, 23

��

a, 13

��
i

b,1
��

ii

1

��
iii

1

��

This leads into the following pointfree definition

of weighted bisimulation equivalence: equivalence relation

Q Q
Koo is a bisimulation for weighted automaton

FQ Q
Woo provided any surjection Q′ Q

hoo that rep-

resents K, ie. such that K = h◦ · h, is such that

Fh ·W = Fh ·W ·K• (19)

where K• is the “weighted (kernel) equivalence” K• = h• · h. (Clearly, K• = K

for injective h.) Composing both terms of (19) with Fh◦ we obtain the following

consequence of the definition,

FK ·W = FK ·W ·K• (20)

expressing the fact that FK ·W is an invariant of the weighted kernel K•.

Let us now relate the bisimulation construction above with the standard defini-

tion originating from [11]. Equalities

(K ⊗ id) · µ = (K ⊗ id) · µ ·K• (21)

γ = γ ·K• (22)

are obtained from (20) by unfolding F and simplifying. Noting that FK is an equiv-

alence relation (as K is so and F is a functor), we start by unfolding the invariant

component (K ⊗ id) · µ:

(q, a)((K ⊗ id) · µ)p

= { composition rule (1) }

〈
∑

q′, a′ :: (q, a)(K ⊗ id)(q′, a′)× ((q′, a′)µ(p)〉

= { Kronecker (14) }

〈
∑

q′, a′ :: (qKq′)× (a = a′)× ((q′, a′)µ(p)〉

= { term qKq′ is Boolean ; one-point a = a′ }

〈
∑

q′ : qKq′ : (q′, a′)µ(p)〉

= { let [q]K denote the equivalence class of q }

〈
∑

q′ : q′ ∈ [q]K : q′ p
aoo 〉

Thus 〈
∑

q′ : q′ ∈ [q]K : q′ p
aoo 〉 is the accumulated cost (eg. probability) of

transitions within the same equivalence class, which should be invariant for equiv-

alent initial states according to the original definition [11]. To check this, first of

all note that equivalence of initial states is captured by weight q1 K• q2 which un-

April 2, 2013 8:47 WSPC/INSTRUCTION FILE ijfcs12

Weighted automata as coalgebras in categories of matrices 13

folds to (h(q1))(h · h
◦)−1(h(q2)), recall (18)

f . Assuming a finite number of states,

standard diagonal inversion makes weighted equivalence be of the form

p′K• p =
1

|p|K
p′K p (23)

where |p|K is the cardinal of equivalence class [p]K . This helps in the following

expansion of the right hand side of (21):

(q, a)((K ⊗ id) · µ ·K•)p

≡ { composition (1) ; (23) }

〈
∑

p′ :: (q, a)((K ⊗ id) · µ)p′ ×
1

|p|K
p′K p〉

≡ { linearity ; p′K p is Boolean }

1

|p|K
〈
∑

p′ : p′K p : (q, a)((K ⊗ id) · µ)p′〉

≡ { recall the calculation of (K ⊗ id) · µ above }

1

|p|K
〈
∑

p′ : p′K p : 〈
∑

q′ : q′ ∈ [q]K : q′ p
aoo 〉〉

≡ { rearranging the summations }

1

|p|K
〈
∑

p′, q′ : p′ ∈ [p]K ∧ q′ ∈ [q]K : q′ p
aoo 〉

The following notation abbreviation, for R, S subsets of Q,

S R
aoo = 〈

∑

p, q : p ∈ R ∧ q ∈ S : q p
aoo 〉 (24)

will help in putting everything together in an easy-to-read equality: equivalence K

is a weighted bisimulation provided

[q]K p
aoo =

1

|p|K
× ([q]K [p]K

aoo) (25)

holds, which renders not only (21) but also (22) pointwise, as this amounts to S = ∅

in (24), ie. poo = 1
|p|K
× ([p]Koo) where poo is weight γ(p). As the

equality is universally quantified on p, it abbreviates a system of equations whose

unique solution forces all weights the same within the same equivalence class. The

same reasoning applied to (25) will lead to

〈∀q, p, p′, a : p K p′ : [q]K p
aoo = [q]K p′

aoo 〉

which recovers the original definition by Larsen and Skou [11].

fNote in passing that diagonal (h · h◦)−1 represents the weight vector [which] is well known in
stochastic modeling [7].

April 2, 2013 8:47 WSPC/INSTRUCTION FILE ijfcs12

14 J.N. Oliveira

8. Weighted languages

WA semantics is usually characterized by the weights they assign to finite action

sequences [7]. This can be expressed in LA in terms of weighted languages [6]. A

weighted language over A is a function σ : A⋆ → S assigning a weight to each word

in A⋆. The function LW : Q → S
A⋆

which associates to each state in Q of W its

recognized weighted language [6] can, as before, be encoded into a MatS matrix of

type Q // A⋆ , ie. into the MatS F-comorphism

Q×A+ 1

FLW

��

Q
Woo

LW

��
A⋆ ×A+ 1 A⋆

out
oo

where out = [cons|nil]◦

nil = ǫ

cons(x, a) = a : x

(26)

Function nil is the constant function which outputs the empty language ǫ, and a : x

denotes the outcome of prefixing word x by a.

What does comorphism LW mean? As earlier on, we start by unfolding the

matrix equality described by diagram (26):

out · LW = (FLW) ·W

≡ { unfolding definitions ; converses }
[

cons◦

nil◦

]

· LW = ((LW ⊗ id) ⊕ id) ·

[

µ

γ

]

≡ { fusion (9) and absorption (13) }
[

cons◦ · LW

nil◦ · LW

]

=

[

(LW ⊗ id) · µ

γ

]

≡ { equality (11) }
{

cons◦ · LW = (LW ⊗ id) · µ

nil◦ · LW = γ

≡ { matrix extensional equality }
{

(w, a)(cons◦ · LW)q = (w, a)((LW ⊗ id) · µ)q

1(nil◦ · LW)q = 1γq

≡ { thumb rule (18) twice; definitions of cons and nil }
{

(a : w) LW q = (w, a)((LW ⊗ id) · µ)q

ǫ LW q = γ(q)

≡ { composition (1) }
{

(a : w) LW q = 〈
∑

q′, a′ :: (w, a)(LW ⊗ id)(q′, a′)× (q′, a′)µ q〉

ǫ LW q = γ(q)

April 2, 2013 8:47 WSPC/INSTRUCTION FILE ijfcs12

Weighted automata as coalgebras in categories of matrices 15

(a) LW (b) LW/K

Fig. 3. Weighted languages recognized by automata W and W/K in matrix format.

≡ { simplification (as before) }
{

(a : w) LW q = 〈
∑

q′ :: (wLW q′)× (q′ q
aoo)〉

ǫ LW q = γ(q)

In words: every state q recognizes the empty language ǫ with weight γ(q); and it

recognizes sentence a : w for all states which a leads to and which recognize w,

accumulating the weights. Another way to look at matrix LW is:

out · LW = ((LW ⊗ id) ⊕ id) ·W

≡ { out is an isomorphism ; W (6) ; converses (3) }

LW = [cons|nil] ·

[

(LW ⊗ id) · µ

γ

]

≡ { divide and conquer (7) }

LW = cons · (LW ⊗ id) · µ+ nil · γ

This shows how LW is (recursively) filled up over type A⋆ Qoo , adding to nil·γ

(the matrix with γ as first row and 0s everywhere else) successive rows as dictated

by cons. Using this definition for the example automaton of Figure 1 we obtain LW

as the fixpoint depicted in Figure 3 (a), and L′
W (b) for the reduced state automaton

where, clearly, bisimilar states assign the same weights to the same words. This fact

can be asserted in general: for all q, q′, qKq′ implies LW (q) = LW (q′) [6]. This is

expressed quantitatively by LW ·K• = LW , as we show next:

LW ·K• = LW

≡ { out is an isomorphism }

out · LW ·K• = out · LW

≡ { out · LW = FLW ·W (26) }

FLW ·W ·K• = out · LW

April 2, 2013 8:47 WSPC/INSTRUCTION FILE ijfcs12

16 J.N. Oliveira

≡ { L′
W · h = LW (out is final) ; functor F }

FL′
W · Fh ·W ·K• = out · LW

≡ { Fh ·W ·K• = Fh ·W (19) }

FL′
W · Fh ·W = out · LW

≡ { functor F ; L′
W · h = LW }

FLW ·W = out · LW

≡ { (26) }

true

Finality of out is handled in [6] by deriving linear weighted automaton W# from

W , whose states are vectors of type Q←1. Thus W#, a coalgebra in the category of

vector spaces, is expressed in typed LA by γ#(v) = γ ·v and µ#(v)(a) = (id⊗a)·µ·v,

for state vector Q 1
voo and 1 A

aoo the membership of label a in A.

9. Conclusions

The evolution from non-deterministic to weighted automata witnesses a shift from

qualitative to quantitative methods in computer science. In such a trend there seem

to be two main approaches: either reinvent (extend) the original definitions in the

same mathematical setting (category), or keep the original (categorial) definitions

but change to an enriched category. Most approaches stay with the first alternative;

in the current paper we argue in favour of the latter by proposing categories of

matrices as the natural evolution of the category of sets towards quantification.

Category MatS of all matrices over semiring S offers a quantifier-free, typed

linear algebra (LA) coalgebraic approach to weighted automata which retains the

original simplicity of the corresponding qualitative approach. This adds to previous

work [12, 15] in which the same techniques are applied to areas as diverse as eg.

data mining [13] or probabilistic recursive program calculation [19].

In the case of weighted automata, LA is a natural choice already identified

by other researchers. Buchholz [7], for instance, praises matrix notation because

it allows an elegant and compact formulation of the theory. Trcka [25] writes that

matrices (...) increase clarity and compactness, simplify proofs, make known results

from linear algebra directly applicable and also mentions their didactic advantage.

Both [7, 25] have influenced the approach of the current paper. But the main

inspiration comes from [6], in which coalgebras and linear algebra are used on a

different plan: triggered by the need to extend the powerset functor quantitatively,

vector spaces are introduced to weight multi-way state evolution. In a sense, pow-

ersets become “metric”. Thus coalgebras in [6] involve functors W = K × (K−
ω)

A

over a field K, where K
−
ω is the so-called field valuation (exponential) functor, and

April 2, 2013 8:47 WSPC/INSTRUCTION FILE ijfcs12

Weighted automata as coalgebras in categories of matrices 17

L = K× (−)A on vector spaces. Our approach flattens such exponentials by chang-

ing category: sets and functions (and linear transformations) give room to matrices

built on top of K. As ()A with sets becomes ()×A with matrices, by successively

dropping Ks and flattening exponentials, weights no longer need to be taken ex-

plicitly into account, as the underlying matrix algebra circumspectly takes care of

them.

In broad terms, this paper proposes that LA be typed on top of a categorial

setting in which index-free matrix terms form the main notation, diagrammatic

representations and proofs included. That is to say, rather than accepting LA argu-

ments embedded in ordinary set-theoretical reasoning, we propose that typed LA be

regarded as a lingua franca for computing, the other approaches coming as suitable

instantiations.

We should say we are not the first proposing this kind of strategy. The acronym

LAoP, for “linear algebra of programming” has been put forward already, albeit

in a somewhat different setting, by Sernadas et al. [22], the key idea being to adopt

linear algebra as the lingua franca of software verification.

Our main contribution is the emphasis on LA polymorphic typing. For this to

work in practice, we believe that LA interfacing with standard logic, set theory

and relation algebra should not be neglected [18]. Schmidt [21] already relies on

matrix notation for doing relation algebra. Our experiments with eg. the Eindhoven

quantifier notation show that the interface between functions, relations, predicates

and matrices is (at least pedagogically) relevant. The infix notation we adopt for

matrix entries — yMx rather thanM(y, x) — intends to bridge with that commonly

used for binary relations, eg. y ≤ x preferred to ≤ (y, x).

10. Future work

Much remains to be done, in particular calling for the unification with related work.

In particular, we would like to relate our ideas with those of Trcka [25], who presents

a matrix approach to the notions of strong, weak and branching bisimulation ranging

from labeled transition systems to Markov reward chains g. This already is the aim

of Buchholz [7], who targets at a universal definition of bisimulation which can be

applied to a wide class of model types such that the different forms of bisimulation

can all be seen as specific cases, helping to unify system analysis.

We believe matrix types will improve the approaches of both [7] and [25] in a

significant way. But, above all, in its use of matrix categories our strategy is close

to the iteration theory MatL(X∗) of Bloom et al. [5] whose morphisms are matrices

with entries in the semiring of languages. We intend to investigate the relationship

between both approaches in a thorough way.

Last but not least, another target is the linear algebra of components which,

gNote that the matrices of [25] are of the form Q×Q→ PA and therefore not truly “quantitative”,
in the sense that the additive operation over PA is idempotent.

April 2, 2013 8:47 WSPC/INSTRUCTION FILE ijfcs12

18 REFERENCES

anticipated in [14], promises a quantitative expansion of the coalgebraic approach

of Barbosa [4] on software components. We believe that quantitative software re-

liability [8] can be approached coalgebraicly and hope this paper contributes with

foundations for such follow-up research.

Acknowledgements

This paper is an expanded version of extended abstract [18]. The author is in-

debted to Nelma Moreira for comments on an earlier draft. This research was car-

ried out in the QAIS (Quantitative analysis of interacting systems) project funded

by the ERDF through the Programme COMPETE and by the Portuguese Govern-

ment through FCT (Foundation for Science and Technology) contract PTDC/EIA-

CCO/122240/2010.

References

[1] Abadir, K., Magnus, J.: Matrix algebra. Econometric exercises 1. C.U.P. (2005)

[2] Backhouse, R., Michaelis, D.: Exercises in quantifier manipulation. In: Uustalu,

T. (ed.) MPC’06, LNCS, vol. 4014, pp. 70–81. Springer (2006)

[3] Backhouse, R.: Mathematics of Program Construction. Univ. of Nottingham

(2004), draft of book in preparation. 608 pages

[4] Barbosa, L.: Towards a Calculus of State-based Software Components. JUCS

9(8), 891–909 (August 2003)

[5] Bloom, S., Sabadini, N., Walters, R.: Matrices, machines and behaviors. Ap-

plied Categorical Structures 4(4), 343–360 (1996)

[6] Bonchi, F., Bonsangue, M., Boreale, M., Rutten, J., Silva, A.: A coalgebraic

perspective on linear weighted automata. Inf. & Comp. 211, 77–105 (2012)

[7] Buchholz, P.: Bisimulation relations for weighted automata. Theoretical Com-

puter Science 393(1-3), 109–123 (2008)

[8] Cortellessa, V., Grassi, V.: A modeling approach to analyze the impact of error

propagation on reliability of component-based systems. In: Component-Based

Software Engineering, LNCS, vol. 4608, pp. 140–156 (2007)

[9] Droste, M., Gastin, P.: Weighted automata and weighted logics. In: Kuich, W.,

Vogler, H., Droste, M. (eds.) Handbook of Weighted Automata, chap. 5, pp.

175–211. EATCS Mon. in TCS, Springer (2009)

[10] Gumm, H., Schröder, T.: Products of coalgebras. Algebra Universalis 46, 163–

185 (2001)

[11] Larsen, K., Skou, A.: Bisimulation through probabilistic testing. Inf. Comput.

94(1), 1–28 (1991)

[12] Macedo, H., Oliveira, J.: Matrices As Arrows! A Biproduct Approach to Typed

Linear Algebra. In: MPC’10. LNCS, vol. 6120, pp. 271–287. Springer (2010)

[13] Macedo, H., Oliveira, J.: Do the middle letters of “OLAP” stand for linear

algebra (“LA”)? TR-HASLab:04:2011, INESC TEC & U.Minho (2011)

April 2, 2013 8:47 WSPC/INSTRUCTION FILE ijfcs12

REFERENCES 19

[14] Macedo, H., Oliveira, J.: Towards linear algebras of components. In: FACS

2010. LNCS, vol. 6921, pp. 300–303. Springer (2011)

[15] Macedo, H., Oliveira, J.: Typing linear algebra: A biproduct-oriented approach

(2011), (Accepted for publication in SCP)

[16] MacLane, S.: Categories for the Working Mathematician. Springer (1971)

[17] MacLane, S., Birkhoff, G.: Algebra. AMS Chelsea (1999)

[18] Oliveira, J.: Typed linear algebra for weighted (probabilistic) automata. In:

CIAA. LNCS, vol. 7381, pp. 52–65 (2012)

[19] Oliveira, J.N.: Towards a linear algebra of programming. Formal Asp. Comput.

24(4-6), 433–458 (2012)

[20] Rutten, J.: Universal coalgebra: A theory of systems. Theor. Comp. Sci. 249(1),

3–80 (2000), (Revised version of CWI Techn. Rep. CS-R9652, 1996)

[21] Schmidt, G.: Relational Mathematics. No. 132 in Encyclopedia of Mathematics

and its Applications, Cambridge University Press (November 2010)

[22] Sernadas, A., Ramos, J., Mateus, P.: Linear algebra techniques for deciding

the correctness of probabilistic programs with bounded resources. Tech. rep.,

TU Lisbon, 1049-001 Lisboa, Portugal (2008)

[23] Silva, A., Bonchi, F., Bonsangue, M., Rutten, J.: Quantitative Kleene coalge-

bras. Inf. Comput. 209(5), 822–849 (2011)

[24] Sokolova, A.: Coalgebraic Analysis of Probabilistic Systems. Ph.D. dissertation,

Tech. Univ. Eindhoven, Eindhoven, The Netherlands (2005)

[25] Trcka, N.: Strong, weak and branching bisimulation for transition systems and

Markov reward chains: A unifying matrix approach. EPTCS, vol. 13, pp. 55–65

(2009)

