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Effects of prenatal exposure to glucocorticoids in impulsivity and 

novelty-seeking behavior 

Abstract 

Early life stress (ELS) or elevated levels of glucocorticoids (GCs) may result in persistent 

effects in the central nervous system that can lead to maladaptive behavior in adult life and 

increase the vulnerability to develop psychiatric disorders, such as anxiety, depression or drug 

addiction. 

In clinics, synthetic GCs are often prescribed in pregnancies in risk of pre-term labor, to 

ensure fetal lung maturation. Regardless of its beneficial effect, elevated levels of GCs during this 

period can lead to deleterious and permanent effects on brain function and development. The 

mesocorticolimbic dopaminergic circuit, also known as the ‘reward’ system, seems to be a key 

target of stress/GCs, since it has been shown that animals exposed to GC in utero (iuGC) have 

structural and molecular alterations in several brain regions of this pathway. Importantly, such 

changes may underlie the observed addictive-like behavior of iuGC animals. 

Vulnerability for addictive behavior may be modulated by individual emotional condition 

and/or specific personality traits. iuGC animals present anxious and depressive-like behavior, but 

less is known about their novelty-seeking and impulsivity traits, two behavioral dimensions that 

contribute substantially to drug-seeking behavior. In this perspective, we evaluated iuGC animals 

in novelty-dependent behavioral tests. iuGC animals did not present major differences in novelty-

induced locomotor activity nor in general exploratory behavior (Novelty Place Preference and 

Novel Object Recognition). However, iuGC rats explore familiar and novel objects similarly in the 

24h retention time test, suggesting long-term memory impairment. In addition, we assessed 

impulsive action, using the 5-Choice Serial Reaction Time Task (5-CSRTT) and impulsive choice, 

using the Delay Discounting (DD) test. Whereas no significant differences were found in 5-CSRTT 

performance, iuGC animals present alterations in the DD task. Since DD task is strongly 

dependent on the prefrontal cortex (PFC) and also the amygdala, we analyzed the neuronal 

activation pattern of these brain regions upon task performance. iuGC treatment induced 

significant changes in c-fos positive cell density in the orbitofrontal cortex, medial PFC and less so 

in the amygdala, which could potentially explain the observed behavioral differences. Altogether, 

our results suggest that iuGC treatment does not seem to affect novelty-seeking behavior, but it 

has an effect in impulsive choice, which may contribute for the observed enhanced drug-seeking 

behavior.  
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Efeitos da exposição pré-natal a glucocorticóides na impulsividade e 

comportamento de procura de novidade 

Resumo 

Exposição a stress pré-natal ou a níveis elevados de glucocorticóides (GC) podem 

resultar em alterações persistentes no sistema nervoso central, aumentando a vulnerabilidade 

para o desenvolvimento de doenças psiquiátricas tais como a ansiedade, depressão ou 

dependência de drogas.   

Na clínica, os GCs sintéticos são vulgarmente prescritos em casos de risco de parto 

prematuro, para assegurar a maturação pulmonar fetal. Independentemente do seu efeito 

benéfico, níveis elevados de GCs durante este período podem levar a efeitos nefastos e 

permanentes na função e desenvolvimento cerebral. O circuito mesocorticolímbico, conhecido 

como o sistema de recompensa, parece ser um alvo preferencial do stress /GCs, uma vez que 

foi demonstrado que animais expostos in útero a GCs (iuGC) têm alterações estruturais e 

moleculares neste circuito. De salientar que tais mudanças podem ser a base do 

comportamento aditivo observado nestes animais. 

A vulnerabilidade para o comportamento aditivo pode ser modulada pela condição 

emocional e/ou características da personalidade do indivíduo. Os animais iuGC são ansiosos e 

apresentam características do tipo depressivo, mas pouco se sabe sobre o seu efeito em 

características como a procura de sensação/novidade e impulsividade, duas dimensões 

comportamentais que contribuem substancialmente para o comportamento aditivo. Nesta 

perspectiva, estes animais foram avaliados em testes comportamentais baseados na resposta à 

novidade. Os animais iuGC não apresentam diferenças substanciais na atividade locomotora 

induzida pela novidade nem no comportamento exploratório geral (Novelty Place Preference e 

Novel Object Recognition). Contudo, os indivíduos iuGC exploram objectos familiares e novos de 

forma semelhante no teste com tempo de retenção de 24h. Adicionalmente, avaliámos a acção 

impulsiva, através do 5-Choice Serial Reaction Time Task (5-CSRTT) e a escolha impulsiva, 

utilizando o teste Delay Discounting (DD). O grupo iuGC apresenta alterações na tarefa DD, mas 

não na performance no 5-CSRTT. Como o teste DD é dependente do córtex pré-frontal (PFC) e 

da amígdala, foi analisado o padrão de activação neuronal destas regiões usando 

imunohistoquímica para c-fos. O tratamento iuGC induziu alterações na densidade de células c-

fos positivas no córtex orbito frontal e PFC medial, com menor efeito na amígdala, o que pode 

ajudar a explicar as diferenças observadas. Em suma, os nossos resultados sugerem que o 

tratamento iuGC não parece afetar o comportamento exploratório, mas tem um efeito deletério 

na memória de longo prazo. Em simultâneo, os animais iuGC apresentam maior escolha 

impulsiva, o que pode contribuir para a maior vulnerabilidade para comportamentos aditivos.  
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1. Introduction 

The maintenance of a dynamic equilibrium, or homeostasis, during exposure to internal 

or external threats, is required for life (Chrousos and Gold, 1992; Charmandari et al, 2005). 

These threats or stressors induce a cascade of reactions that reflect in a complex and constant 

adaptation of several endocrine, autonomic and behavioral systems that help preserve viability 

through change or allostasis (McEwen and Seeman, 1999).  

The stressor type influences the repertoire of neuronal populations that perceive it, as 

well as the molecular mediators that are involved in the adaptive response. A physical stressor, 

such as trauma, recruits brainstem and hypothalamic regions (Ulrich-Lai and Herman, 2009; 

Joëls and Baram, 2009), whereas a psychological one, e.g., social embarrassment, recruits brain 

regions that mediate emotion (the amygdala and the prefrontal cortex (PFC)), learning and 

memory (hippocampus) and decision making (PFC) (De Kloet et al, 2005; McEwen, 2007; Joëls 

and Baram, 2009). Though the type of stressor may differ, physical stressors often have 

psychological features and vice versa. In addition, the age of an individual affects the magnitude 

of the stress response, since the molecular cascades that are activated by stress in the 

hypothalamus and hippocampus in adult life differ from those activated in the infant phase, 

changing again with aging (Lupien et al, 2009; Joëls and Baram, 2009).  The duration of the 

stress also impacts the elicited response. The system is able to adapt with one type of stressor, 

whereas chronic stress can cause inhibition of neurogenesis, disruption of neuronal plasticity and 

neurotoxicity. Other aspects, such as sex and even genetic factors can also contribute to the 

diversity and impact of the stressors in the brain (Joëls and Baram, 2009). 

Studies in both animals and humans have shown that the brain is particularly sensitive to 

stress in the prenatal period and early childhood, since it undergoes important changes during 

these periods. Additionally, there seems to be a relation between exposure to early life stress 

(ELS) and increased reactivity to stress in adulthood, suggesting a ‘programming’ effect in the 

circuits involved in the stress response (Lupien et al, 2009).  

 

1.1. The stress response 

The stress response is mediated by two distinct systems, the sympathetic-

adrenomedullary (SAM) and the hypothalamic-pituitary-adrenocortical (HPA) systems 

(Frankenhaeuser, 1986; Stratakis and Chrousos, 1995). The SAM system is comprised by the 
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autonomic nervous system and upon stimulation, releases catecholamines, predominantly 

epinephrine, but also norepinephrine (NE) (Vollmer, 1996). NE and epinephrine increase heart 

rate, vasodilatation in muscles and constriction of blood vessels in the skin, ensuring blood 

supply to the brain and muscles, thus playing an important role in the fight/flight response. Even 

though neither of these two catecholamines are able to cross the blood brain barrier, alongside 

their peripheral action, the locus coeruleus produces NE in the brain, supporting vigilance and 

attention and participating in processes that activate the HPA axis (Morilak et al, 2005; Gunnar 

and Quevedo, 2007). Corticotropin-releasing hormone (CRH) and arginine vasopressin (AVP) are 

released by cells in the paraventricular nuclei of the hypothalamus, upon activation of the HPA 

axis (Figure 1) (Plotsky et al, 1993). These hormones act on the anterior pituitary, leading to the 

release of adrenocorticotropic hormone (ACTH), which interacts with receptors on the cortex of 

adrenal glands, stimulating the production and release of glucocorticoids (GC; cortisol in humans 

and corticosterone in rodents) and some mineralocorticoid steroid hormones, into the 

bloodstream (Plotsky et al, 1993; Stratakis and Chrousos, 1995; Checkley, 1996; Gunnar and 

Quevedo, 2007). Upon release of GCs, these hormones also participate in the termination of the 

stress response by exerting a negative feedback in the secretion of CRH and ACTH, in the 

paraventricular nuclei of the hypothalamus and the anterior pituitary, respectively. Also, the GCs 

feedback inhibition acts upon the medial prefrontal cortex (mPFC) and hippocampus, thus 

limiting the tissue exposure to GCs (Charmandari et al, 2005).  
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Figure 1. The anatomy of the HPA system and the important structures in its regulation (A). The activation (+) and negative 

feedback inhibition (-) pathways of the HPA system is also represented (B). Increase in glucocorticoids (GCs) is initiated by the 

release of corticotropin-releasing hormone/arginine vasopressin (CRH/AVP) from the paraventricular nucleus (PVN) in the 

hypothalamus. Through GCs, a negative feedback inhibition occurs in the pituitary, hypothalamus (HYP), and hippocampus (HC). 

ACTH, adrenocorticotropic hormone; AMY, amygdala; GABA, gamma aminobutyric acid; HC, hippocampus; HYP, hypothalamus; 

PFC, prefrontal cortex. Adapted from Gunnar and Quevedo, 2007. 

 

The Central Nervous System (CNS), through its activity, coordinates both the SAM and 

HPA systems. For short term periods, balanced activation of these systems tends to support 

adaptive functioning. However, over chronic activation, the suppressive impact of constant 

elevated, or even decreased, levels of GCs and frequent SAM responses can have deleterious 

effects on physical and mental health, affecting behavior as well as growth, metabolism, 

circulation, reproduction and the inflammatory/immune response, increasing the vulnerability to 

a variety of disorders, including heart disease, hypertension, type II diabetes, anxiety, depression, 

post-traumatic stress disorder (PTSD), eating and sleeping disorders and addiction (Chrousos 

and Gold, 1992; Charmandari et al, 2005; Gunnar and Quevedo, 2007; Chrousos, 2009). 

  

1.2. Stress and glucocorticoids action 

Glucocorticoids have a variety of effects in target systems in the organism, aiming to 

increase the availability of energy substrates and allow optimal adaptation to changes in the 

environment. Under basal conditions, GCs are secreted in a 24h circadian rhythm, with a 
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morning maximum concentration (circadian peak), that slowly declines throughout the day and 

night, with an abrupt elevation after the first hours of sleep (Sapolsky et al, 2000; Lupien et al, 

2005). Once released into general circulation, GCs enter the cytoplasm of cells throughout the 

body and brain, where they bind to two receptor subtypes: the high affinity mineralocorticoid 

receptor (MR), or type I receptor, and the low affinity glucocorticoid receptor (GR), or type II 

receptor (De Kloet, 1991). The activation of these receptors is responsible for the activation of 

transcription of genes with GC-responsive regions (Sapolsky et al, 2000). 

The presence of an enzyme, 11 Beta-hydroxysteroid dehydrogenase (11 β-HSD) prevents 

GCs from binding to MRs, by converting cortisol/corticosterone to its inactive form (cortisone/11 

dehydrocorticosterone). In the brain, 11 β-HSD is minimally expressed and, despite having an 

ability to bind to both MR and GR, GCs have higher affinity to MRs (80%-90% of MRs are occupied 

by GCs) in a basal condition (De Kloet, 1991; Gunnar and Vazquez, 2006). Conversely, GRs are 

occupied either at the peak of the circadian cycle or upon stimulation of the HPA axis by stress. 

Considering the distribution pattern of these receptors in the brain, MRs are exclusively present in 

the limbic system, such as the hippocampus, parahippocampal gyrus, amygdala, entorhinal and 

insular cortices, whereas GRs are present in the nucleus accumbens (NAcc) and cortical 

structures, such as the PFC, along with hypothalamus, hippocampus and parahippocampal gyrus 

(McEwen et al, 1986; Diorio et al, 1993; Lupien et al, 2005).  

The effects mediated by GRs are characterized as suppressive, considering that they are 

necessary for the termination of the HPA stress response and facilitate the recovery of cellular 

homeostasis (Sapolsky et al, 2000). However, when prolonged, these suppressive effects begin 

to exceed their benefit, ultimately leading to increased vulnerability to several neuropsychiatric 

disorders. 

 

1.3. Use of glucocorticoids in clinics 

Synthetic GCs are widely used in clinics for a broad range of disorders, due to their 

pleiotropic effects. Betamethasone (BET) and dexamethasone (DEX) are synthetic glucocorticoids 

commonly administered to pregnant women in case of premature delivery. This type of 

treatment, reported by Liggins and Howie (1972), has long been validated, since it promotes fetal 

lung maturation, ensuring the efficacy and safety against disorders, such as respiratory distress 

syndrome, reducing neonatal morbidity and mortality (Crowley, 1995). Besides the reduction of 
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respiratory distress syndrome occurrences, treatment with either BET or DEX is also known to 

reduce cases of intraventricular hemorrhage (Liggins and Howie, 1972) and congenital adrenal 

hyperplasia, the most frequent being the 21-hydroxylase deficiency (Lunghi et al, 2010), 

preventing genital masculinization in female fetuses. 

Despite the obvious beneficial effects of glucocorticoid usage, one cannot overlook the 

outcome and the long-term consequences that emerge from such hormone treatment, such as 

low birth weight, both in animal models (Nyirenda et al, 1998; Ikegami et al, 1997; French et al, 

1999) and humans (French et al, 1999; Newnham and Moss, 2001; Bloom et al, 2001), which 

escalate and are associated with the development of hypertension, insulin resistance, type 2 

diabetes and cardiovascular disease (Barker et al, 1993; Rich-Edwards et al, 1997; Curhan et al, 

1996a; Curhan et al, 1996b). 

These synthetic GCs differ from their endogenous equivalent in their chemical structure, 

pharmacokinetics and target specificity properties, exhibiting thus an intensified affinity to the GR 

than to the MR (Tegethoff et al, 2009) and possess an ability to cross the placenta easily. In 

normal conditions, fetal GC levels are much lower than maternal ones (Beitens et al, 1973; 

Klemcke, 1995) due to 11 β-HSD activity, that is also expressed in the placenta, and inactivates 

endogenous GCs. However, DEX and BET are poor substrates for 11 β-HSD, hence resulting in 

the crossing of the synthetic hormones through the placenta, from the mother to the fetus 

(Brown et al, 1996; Seckl, 2004), activating GR-induced transcription in the later (Welberg and 

Seckl, 2001). This early high exposure to GC can, potentially and persistently, affect the 

developing brain, programming it in a way that may predispose the system to disease (Welberg 

and Seckl, 2001). 

 

1.4. Early life stress and the ‘programming’ effects of glucocorticoids in the 

brain 

During the early life period, the developing brain is very susceptible and sensitive to a so-

called ‘programming’, i.e., modulation of fetal physiological and metabolic processes by a 

stimulus or an insult during a critical period of development (Barker, 2001). Increasing evidence 

revealed a major role played by the intra-uterine environment in the development of several adult 

diseases. Different early life stress episodes have also been linked  to increased  risk  for  the  

development  of  personality  disorders, attention  deficit  hyperactivity  disorder (ADHD), anxiety, 
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depression, schizophrenia and addictive disorders (Agid et al, 1999; Bernet and Stein, 1999; 

Weiss et al, 1999; Heim and Nemeroff, 2001; Dube et al, 2003;  Chapman et al, 2004). 

Exposure to stress or glucocorticoids of a pregnant female or even other types of extreme 

conditions, such as undernutrition, lead to an increase in maternal GC secretion (Cadet et al, 

1986; Dean and Matthews, 1999; Maccari et al, 2003). Since a part of the GCs cross the 

placental barrier and reaches the fetus, activity of the fetal HPA axis is increased, affecting brain 

development (Seckl, 2007). It is important to know that throughout pregnancy and fetal 

development, GCs are crucial and play an important role in the normal maturation of the 

developing CNS (Meaney et al, 1996) by initiating terminal maturation, remodeling axons and 

dendrites and cell survival (Meyer, 1983). However, prenatal treatment with GCs is also known to 

delay maturation of neurons, myelination, glia and vasculature (Hung et al, 2001a; Hung et al, 

2001b). Along with these effects, when in utero exposure to GCs is excessive, resulting in the 

programming of the HPA axis and subsequent impairment of the HPA axis function, different 

neurobiological pathways can be affected and altered. Additionally, alterations have been noted in 

the morphology, structure and number of various neuronal areas (Oliveira et al, 2006; Leão et al, 

2007; McArthur et al, 2005; Rodrigues et al, 2011; Oliveira et al, 2012). Several studies revealed 

that prenatal exposure to stress/GCs leads to neurodegeneration in hippocampus (Stein et al, 

1997) and anxiety-like behavior due to altered levels of CRH in the amygdala (Welberg et al, 

2001). Furthermore, a decrease in neuronal numbers in the nucleus accumbens (NAcc) is noted 

(Leão et al, 2007), along with an increase in the number of immature spines. Studies from 

Oliveira et al. (2012) demonstrated an increase in the volume and dendritic length of neurons of 

the bed nucleus of the stria terminalis (BNST), as well as a decrease in the volume of the 

basolateral nucleus of the amygdala (BLA) and central nucleus of the amygdala (CeA). Regarding 

the effects of prenatal exposure to GCs in behavior, individuals developed anxious-like behavior 

(Oliveira et al, 2006; Oliveira et al, 2012), depressive-like behavior (Roque et al, 2011) and 

addictive-like behavior (Rodrigues et al, 2011).  

Altogether these evidences pinpoint the mesocorticolimbic circuit as extremely sensitive 

to GC programming effects, which may explain the appearance of the above mentioned mood 

and reward disorders. 
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1.5. Mesocorticolimbic system and related behaviors 

The mesocorticolimbic system, otherwise known as the reward system, is responsible for 

the processing of the rewards, whether natural, such as sex and food (Kelley and Berridge, 2002) 

or addictive rewards, like drugs of abuse, and where dopamine (DA) plays a major role. 

Increasing evidence suggests that acute DA signaling is critical for the motivational reward, since 

it mediates the attribution of incentive salience to reward-related stimuli, increasing the 

motivation for the reinforcer (Berridge, 2007). It is important to mention the different dimensions 

in the reward system, namely the process of learning the occurrence of the reward, the hedonic 

impact of the reward (‘liking’) and the incentive salience or the motivation attributed to reward-

related stimuli (‘wanting’) to obtain a certain reward. In this way, when incentive salience is 

attributed to the reward-related stimulus, the brain perception of the reward is altered into a 

motivationally potent incentive (Berridge, 2007). Thus, the mesocorticolimbic dopaminergic 

system becomes a key component in the study of addictive behavior. 

The mesocorticolimbic circuit, usually divided in mesolimbic and mesocortical systems, 

arises from the ventral tegmental area (VTA), which projects to the PFC, controlling executive 

function and cognition, and the NAcc, amygdala and hippocampus, regulating memory, 

motivation, reward and addiction (Rodrigues et al, 2010).   

 The VTA neurons can be activated by stress and the dopaminergic projections to, not 

only the NAcc, but also the medial PFC (mPFC) are also a target for the stress hormone 

(Abercrombie et al., 1989; McEwen et al. 1986).  Studies developed by Leão and colleagues 

(2007) showed a decrease in proliferating cells in the NAcc core and shell and in the VTA that 

resulted in a reduction of the dopaminergic innervation in this system. Rodrigues et al. (2011) 

showed a decrease on the basal levels of DA in the NAcc and an increase on the mRNA and 

protein expression levels of dopamine receptor 2 (D2), but not dopamine receptor 1 (D1). A 

decrease on DA levels, along with an increase only in the mRNA expression level of D2, but not 

D1, was noted in the amygdala, after prenatal exposure to GCs (Oliveira et al, 2012).  All of these 

structural and molecular changes led to the development of behavioral alterations. Animals that 

were prenatally exposed to GCs revealed to be hyperanxious (Oliveira et al, 2006; Oliveira et al, 

2012), depressive (Roque et al, 2011) and are more vulnerable to the development of an 

addictive-like phenotype (Rodrigues et al, 2011). In this context, it is important to mention that 

there was a correlation between behavioral deficits of animals exposed to prenatal GCs and 

dopaminergic dysfunction, since that after stabilization of the DA levels (through the use of a DA 
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precursor), the drug-seeking behavior was reverted and expression levels of D2 were normalized 

(Rodrigues et al, 2011).  

 Dependent behaviors or addiction are attributed to different brain regions, resulting in a 

complex behavior. Studies from Leão et al. (2007) and Rodrigues et al. (2011) uncovered the 

deleterious effects of prenatal exposure to DEX in the mesolimbic ‘rewarding’ pathway, 

particularly in the NAcc, as aforementioned, highlighting new insights in the mechanism that 

underlies reward-related and addictive behavior. 

 

1.6. Impulsivity and novelty-seeking behavior in substance abuse disorders 

Substance abuse is defined by the American Psychiatric Association in the diagnostic and 

statistical manual of mental disorders (DSM-IV) as a maladaptive pattern of substance use 

leading to significant impairment, manifested by recurrent substance use that may culminate in 

several persistent and recurrent problems, such as increasing dosage intake and compulsive 

drug seeking that persists despite the outcome (1994). Individual genetic/epigenetic and external 

factors seem to contribute for the development of such disorder, even though the mechanisms 

can be substantially different. In this manner, it is plausible to assume that some individuals are 

more vulnerable when initially exposed to addictive drugs (Anthony et al, 1994) and prediction of 

drug intake escalation, followed by compulsive drug seeking and increased propensity to relapse 

after abstinence has been related to behavioral characteristics such as impulsivity and novelty-

seeking (Everitt et al, 2008; Verdejo-Garcia and Perez-Garcia, 2007).  

Impulsivity is a key characteristic of several psychiatric disorders, including personality 

disorders, mania, ADHD and drug addiction, as already mentioned, and is a complex 

multidimensional behavior (Evenden, 1999) that has been defined as an inability to wait, a 

tendency to act without forethought, insensitivity to consequences and an inability to inhibit 

inappropriate behaviors (Ainslie, 1975; Barkley, 1997; Barratt and Patton, 1983; Eysenck, 1993; 

Rachlin and Green, 1972). Thus, this trait can be divided into two categories: behavior that 

results from deficits in the ability to withhold responding, showing poor inhibitory control 

(impulsive action); and behavior that does not result from such inhibitory deficits but from an 

insensitivity to delay of gratification, delay aversion, leading to impulsive decision making, that is 

represented by increased preference for immediate reward over a large but delayed reward 

(impulsive choice) (Winstanley et al, 2006; Diergaarde et al, 2008).  
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Increasing evidence supports the important role of impulsivity in drug addiction and 

disturbances in inhibition of behavior that result from prolonged drug intake have been proposed 

to maintain compulsive drug intake (Jentsh and Taylor, 1999). Various studies reported that high 

impulsive behavior might predispose individuals to initiate or maintain drug seeking and taking in 

animal models (Krishnan-Sarin et al, 2007; Paulus et al, 2006) and humans (Dalley et al, 2007; 

Diergaarde et al, 2008; Perry et al, 2005). For instance, impulsive choice is increased in 

smokers as compared with nonsmoking individuals (Bickel et al, 1999; Mitchell, 1999) and an 

association between elevated impulsivity and increased self-administration behavior has been 

reported for cocaine (Dalley et al, 2007; Perry et al, 2005). However, the findings for a given 

drug have not always been consistent; as studies from Ortner et al. (2003) showed that alcohol 

reduced impulsive choice in humans, while Richards et al. (1999) found no effect of alcohol and 

other experiments revealed alcohol-induced impulsive choice in rats (Evenden and Ryan, 1999; 

Tomie et al, 1998). These discrepancies may in some cases be because the drugs have a 

situation and choice dependent effect (Cardinal, 2006). 

Considering that novelty/sensation seeking are constructs useful in predicting human 

risk-taking behaviors, it is plausible to link these traits with addictive behavior. Novelty is 

associated with events not previously experienced, as well as new combinations of familiar 

stimuli (Bevins, 2001). Different studies revealed an association between the sensation/novelty-

seeking trait and cocaine abuse or addiction (Franques et al, 2000; Franques, 2003; Kreek et al, 

2005). For that, individuals that are novelty/sensation seekers are also more prone to experience 

addictive drugs, similar to several risky activities (Zuckerman et al, 1990; Horvath and 

Zuckerman, 1993; Kalichman et al, 1994; Wills et al, 1994; Jonah, 1997; Sher et al, 2000; 

Zuckerman and Kuhlman, 2000; Woicik et al, 2009). Some individuals may present increased 

novelty-seeking behavior, predisposing them to consume drugs of abuse for the first time or 

increased impulsive behavior, presenting a higher probability to engage in dangerous behaviors 

(Belin et al, 2010). Regarding spontaneously high impulsive (HI) rodent studies, a significant 

escalation of intravenous cocaine and nicotine self-administration has been shown (Dalley et al, 

2007; Diergaarde et al, 2008) and, interestingly, no differences in anxious-like behavior nor in the 

reactivity to novelty were detected (Molander et al, 2011). Taking into account these results, it is 

possible to separate HI animals from the high responder (HR) phenotype described by Piazza 

and colleagues (1991) that revealed increased exploratory activity and a greater propensity to 

acquire drug self-administration. In this way, it is possible to differentiate the novelty-seeking 
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dimension from the impulsive one, despite the general preference of impulsive rats for novelty 

(Molander et al, 2011), since HI rats show persistent responding for cocaine despite punishment 

(Belin et al, 2008), together with an increased propensity to escalate sucrose-seeking behavior 

and intravenous cocaine and nicotine self-administration (Dalley et al, 2007; Diergaarde et al, 

2008, 2009). This indicates that impulsive rats may be more reactive to positive reinforcement 

than negative one, highlighting the trait-like impulsivity as a core behavior underlying vulnerability 

for stimulant addiction (Molander et al, 2011).  Alterations in novelty-seeking or sensation-seeking 

behaviors are also associated with a variety of psychiatric disorders including alcoholism and 

drug addiction (Zuckerman and Neeb 1979; Zuckerman 1990; Wills et al, 1994; Woicik et al, 

2009) and Belin and colleagues (2010) showed a clear distinction between two vulnerable 

phenotypes predisposing to cocaine addiction: a ‘drug use prone’ phenotype such as high 

responder which brings an individual to develop drug use and an ‘addiction prone’ phenotype, 

such as high-novelty-preference, which facilitates the shift from sustained to compulsive drug 

intake and addiction.  

Taken together, studies performed seem to point out that both novelty/sensation-seeking 

and impulsive traits are associated with addictive behavior, not necessarily independently from 

one and another, thus making imperative a behavioral assessment, in individuals prenatally 

exposed to GCs and with increased vulnerability to drug-seeking behavior, which we will tackle in 

the next section.    

 

1.7. Assessment of impulsive behavior 

The different aspects of impulsivity can be measured using paradigms that focus on 

different aspects of the impulsive response, dividing them in tasks that evaluate response 

inhibition, which involves premature or difficult to suppress actions (impulsive action) and 

impulsive choice response, that comprises actions that fail to take into account other outcomes 

and that may be sub-optimal. This type of behavior can be measured in experimental animals 

using tests that are based on equivalent tasks in humans (Dalley and Roiser, 2012).  

Assessment of impulsive choice is usually accomplished by performing a delay 

discounting (DD) task, where subjects are trained to choose between small immediate rewards 

and larger but delayed rewards (Cardinal et al, 2001). Moreover, abnormally steep delay 

discounting has been demonstrated in drug addicts, including alcoholics (Petry, 2001; Vuchinich 
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and Calamas, 1997), cocaine users (Coffey et al, 2003; Kirby and Petry, 2004), opiate users 

(Kirby and Petry, 2004; Kirby et al, 1999; Madden et al, 1997), and smokers (Bickel et al, 1999; 

Mitchell, 1999; Ohmura et al, 2005; Reynolds et al, 2004). 

Additionally, impulsive action can be evaluated by the 5-Choice Serial Reaction Time Task 

(5-CSRTT) paradigm, in which subjects are trained to detect the spatial location of a brief visual 

stimuli presented in one of five recesses in an operant chamber (Robbins, 2002), and, similar to 

the analogous performance test in humans, it evaluates sustained and selective attention. This 

form of impulsivity is associated with ‘restraint’ and defined by the inability of an individual to 

withhold a strong behavioral tendency (Schachar et al, 2007). Furthermore, impulsive action is 

measured by the number of premature or anticipatory responses made before the onset of the 

target stimulus and increases with the extension of the pre-stimulus interval.  

Correlational studies have been performed in order to associate questionnaire measures 

of impulsivity and performance on behavioral tests, such as delay discounting (Reynolds et al, 

2006) and further analysis of the behavioral measures revealed two independent latent variables: 

one corresponded to impulsive action measures and the other corresponded to impulsive choice 

measures (delay discounting; risk taking). Moreover, studies that scored individuals as ‘‘high’’ 

impulsive in the questionnaires have been reported to perform worse on decision-making tests 

(Crean et al, 2000; Franken et al, 2008).  

 

1.8. Assessment of novelty-seeking behavior 

The sensation/novelty-seeking behavior trait can be divided in different dimensions and 

can be studied in rodents both by high locomotor reactivity to a new inescapable environment, 

corresponding in different studies to the HR animal phenotype (Dellu et al, 1996; Blanchard et al, 

2009). However, they do not predict the vulnerability to switch from sustained drug use to 

addiction (Belin et al, 2008; Belin et al, 2010). Also, it is possible to assess high propensity to 

visit a new environment in a free-choice procedure, i.e. novelty-induced in a conditioned place 

preference (CPP) apparatus, which are typically seen in the high novelty preferring (HNP) 

phenotype (Bardo et al, 1996; Cain et al, 2005) or even the preference for a novel object, in 

comparison to a familiar one (Bardo et al, 1990; Molander et al, 2011). These two behavioral 

measurements are suggested to be different (Bardo et al, 1996; Cain et al, 2005) and predict 

different dimensions of drug reward (Bardo et al, 1996). In this way, it has been shown that HR 
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animals are more vulnerable than low responder (LR) ones in their propensity to acquire drug 

self-administration (Piazza et al, 1990; Piazza et al, 2000), whereas HNP animals differ from 

their low novelty preferring (LNP) littermates in their vulnerability to express place preference for 

amphetamine (Bardo et al, 1996) but not in their propensity to acquire drug self-administration 

(Klebaur et al, 2001). Hence, these different novelty traits may differently contribute to the 

vulnerability to addiction, revealing a dissociation between the propensity to acquire drug 

administration and compulsive drug use (Belin et al, 2008). 

Moreover, correlational studies between novelty and the different forms of impulsive traits 

have been performed to establish whether a particular form of impulsivity was associated more 

strongly with novelty-seeking than other forms of impulsivity. It has been recently shown that 

animals with high reactivity to a novel environment revealed an increase in the approach to food 

and cocaine-predictive cues compared with low responder rats and were also less impulsive on a 

delay discounting task (Flagel et al, 2010).  However, in a measure of impulsive action, they have 

been shown to be more impulsive (Pattij and Vanderschuren 2008; Winstanley et al, 2006). This 

distinction is important and may indicate multiple predisposing determinants of the propensity to 

drug self-administration (Molander et al, 2011). 

Taking into account the possible impact that stress may have in decision making and 

personality traits of individuals, we decided to evaluate how ELS affects traits associated with 

drug addiction, such as impulsive and novelty seeking traits and identify the alterations in 

neuronal activation of several areas involved in these types of behavior.  
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2. Objectives 

High exposure of GCs, during the prenatal period, has permanent and persistent effects 

in the CNS, culminating in increased vulnerability to addictive behavior. Yet, little is known about 

the traits that may underlie this increased propensity to develop drug addiction. In this context, 

we aimed to evaluate behavior traits that may explain the observed increased vulnerability to 

drug-seeking behavior in animals that received synthetic GCs in utero (iuGC). Our main goals 

were to: 

 Assess the effect of iuGC exposure in novelty-seeking behavior using different 

paradigms, namely Locomotor Reactivity to a novel environment, Novelty Place 

Preference (NPP) and Novel Object Recognition (NOR); 

 

 Unravel the potential impact of prenatal exposure to iuGC in impulsive behavior, 

through 5-Choice Serial Reaction Time Task (5-CSRTT) and Delay Discounting 

(DD) task;  

 

 Search for alterations in the activation pattern of several brain regions associated 

with DD, using c-fos staining. 
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3. Materials and Methods 

3.1. Animals and treatment 

Adult female pregnant Wistar han rats (Charles River Laboratories, Barcelona, Spain) 

were individually housed under controlled conditions (light/dark cycle of 12/12h with lights on at 

08:00h and ambient temperature of 22ºC±1ºC) with food and water ad libitum. Subcutaneous 

injections of dexamethasone (iuGC animals, 1mg/kg, Sigma-Aldrich, St. Louis, MO, USA; n=3/4 

pregnant female animals) or vehicle (control; CONT animals; n=3/4 pregnant female animals) 

were administered on gestation days 18 and 19. Progeny were separated according to gender 

and prenatal treatment (either CONT or iuGC animals) on postnatal day 21 and handled daily for 

5-10min for a week before behavioral testing. 

Subjects were male offspring, 3 months old at the start of the experiment, and were only 

food-deprived to approximately 85% of their free feeding weight until the end of the 5-Choice 

Serial Reaction Time Task (5-CSRTT) or the Delay Discounting (DD) task procedures, with food 

made available at the end of the experimental day.  Control and iuGC animals used for Novelty 

reactivity in an Open Field (OF), Novelty Place Preference (NPP) and Novel object recognition 

(NOR) were selected from one cohort of rats (n=40). Twenty animals were screened in the 5-

CSRTT and an additional group of rats (n=20) were subjected to the DD task. 

All experiments were performed in accordance with the local regulations (European 

Union Directive 2010/63/EU) and National Institute of Health (NIH) guidelines on animal care 

and experimentation. 

 

3.2. Behavioral assessment 

3.2.1. 5-Choice Serial Reaction Time Task 

3.2.1.1. Apparatus and training 

Two identical automated operant 5-CSRTT chambers (25 x 25 x 30cm), housed in 

ventilated and sound attenuating boxes, were used. Each chamber contained five square holes 

(2.54 x 2.2 x 2.25cm), each fitted with a photocell beam to detect nose pokes and a stimulus 

light positioned above, located on a curved rear wall. On the opposite wall, 45mg food pellets 

(Bio-Serve, Frenchtown, NJ) could be delivered into a magazine by a dispenser. Chamber 
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illumination was provided by a 100-mA house light located at the center of the roof. Control of 

the apparatus and data collection was performed by a PC with TSE software. 

Rats were trained according to the protocol described by Muir et al. (1999). For the first 

two days, food pellets were made available in the magazine and response apertures were 

covered with metal caps for 15min. In the next two sessions, the metal caps were removed from 

apertures and several food pellets were placed in each hole as well as within the magazine. 

Animals were allowed to explore for 30min. During the fifth session the test schedule was 

implemented.  

 

3.2.1.2. 5-CSRTT assessment 

The test protocol consisted of illumination of the house light and delivery of a single food 

pellet to the magazine. The trial was initiated by the rat performing a magazine entry to collect 

this pellet. After a 3-5s inter-trial interval (ITI), the light of one of the holes was illuminated for a 

short period. The light stimulus was presented randomly and in an equal number of times in 

each of the five holes during each daily session. Sessions consisted of 100 trials or were 

terminated after 30min of testing and the target parameters for each session were: stimulus 

duration, 0.5s; limited hold period, 5s; ITI and time-out period, 5s.  Responses or nose pokes 

performed in this aperture were rewarded with the delivery of a food pellet and a correct 

response was recorded. If an animal executed additional nose pokes, perseverative responses 

were recorded and resulted in a 3-5s period of darkness (time-out). Further nose pokes in the 

apertures during this period restarted the time-out. An incorrect response was recorded when an 

animal performed a nose poke in a non-illuminated hole during the signal period and failures to 

respond within the limited hold period were recorded as omissions. In both situations the 

chamber entered the ITI state and any additional responses in this period restarted the time-out. 

A response in the food magazine after the delivery of a food pellet, or after the time-out period, 

initiated the next trial and further entries in the magazine during the ITI or time-out periods were 

recorded but had no further consequences. Responses in the apertures during the ITI were 

recorded as anticipatory responses and, as in previous situations, resulted in a time-out period. 

Also, further responses during this period of darkness restarted the time-out. The end of a test 

session was signaled by extinguishing all the lights (Figure 2). 
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For the first session of training, the stimulus duration and limited hold periods were both 

set at 60s, and the ITI and time-out periods set at 3s. These variables were altered on 

subsequent trials (stimulus duration (SD): 30s, 10s, 2s, 0.5s) according to the individual 

performance of each animal, until the target set of task parameters could be instituted. The 

animals were trained to a criterion of, at least 80% correct responses and <20% omissions within 

the 30min session time, when target parameters were attained on 2 consecutive days. When 

animals attained the target set of stimulus duration parameter of 0.5s for 4 consecutive days, a 

session with a stimulus of 0.25s was performed. However, the majority of the animals did not 

reach the 0.5s stimulus parameter of the task (only four animals successfully reached this 

variable, while the rest was still being tested). Several behavioral measures were recorded for 

assessment of the task: i) Accuracy - Measured as the proportion of responses that were correct 

(number of correct responses/total number of responses) and expressed as a percentage; ii) 

Speed - Speed was measured as latencies: the first was the latency to respond correctly (time 

between the onset of the visual stimulus and the point at which the nose of the animal breaks the 

photocell beam of the hole and the second was the magazine latency (time between performance 

of a correct response and the magazine entry to collect the food pellet); iii) Anticipatory 

responses - Number of responses in the apertures during the ITI state; iv) Perseverative 

responses - Additional nose pokes in the holes following the initial response in an aperture; v) 

Omission - Number of trials on which no response was made during the limited hold period. 

Animals received one session per day, for a total of 50 sessions. 

 

 

Figure 2. Schematic representation of the 5-Choice Serial Reaction Time task. Animals are trained to respond to a brief stimulus 

(visual cue) that has duration of 60s, 30s, 10s, 2 s and 0.5s, according to the phase of training, and may appear randomly in one 

of the 5 apertures. This stimulus is predictive of a food reward, since a correct response towards the stimulus would result in the 

delivery of a food pellet. Animals may respond prematurely by performing an action before the end of the inter-trial interval (ITI) 

period (impulsive action) or they may have a perseverative response when performing repeated nose pokes in the same hole. 

Adapted from Eagle and Baunez, 2010. 
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3.2.2. Locomotor activity in a novel environment 

Locomotor activity was measured using an Open Field (OF) arena (43.2 x 43.2cm) 

equipped with two horizontal photocell beams situated 1cm from the floor that automatically 

registered activity (Med-Associates, St. Albans, VT, USA). Animals were placed in the center of the 

arena, an unfamiliar environment to them, and their ambulatory activity was recorded over a 2h 

period. The total number of photocell beam breaks was used as indicator of reactivity to the novel 

environment. Additionally, the number of rearings, time and distances in the central and 

peripheral areas were recorded. 

 

3.2.3. Novelty place preference 

The place preference apparatus consisted of two equally sized compartments  (28 × 22 x 

21cm) with distinct cues separated by a central neutral grey area (13 × 22 × 21cm), with two 

opposite entrances that could be closed by sliding doors (Med-Associates, St. Albans, VT, USA). 

One of the compartments had white walls and a mesh floor and the other had black walls and a 

grid floor. All compartments were equipped with photocell beams to record locomotor activity, 

number of visits and time spent in each compartment. Briefly, each animal was placed in the 

central grey area for 5min and allowed to explore one of the compartments for 30min in order to 

define the familiar compartment. The familiar compartment was counterbalanced for both groups 

of animals and animals were habituated for 2 consecutive days. During the test phase (day 3), 

subjects were placed in the central grey area for 5min, after which the sliding doors were opened 

to let the animal freely explore both compartments for 15min. The time spent in the new 

compartment was used as index of novelty preference. 

 

3.2.4. Novel object recognition 

The novel object recognition protocol was adapted from Bevins and Besheer (2006). The 

setup consisted of two rectangular dark chambers (50 x 50 x 100cm) and sessions were 

recorded using a video camera placed right above the apparatus. Animals were first habituated to 

the chambers for 10-15min. Each trial was composed by two phases, a sample phase and a 

choice phase. In the first, two identical to-be-familiarized objects (O1 and O2) were placed in the 

back left and right corner of the apparatus and each animal, placed facing away from the objects, 
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was allowed to explore them for a total of 3min. The second choice phase started after a delay of 

1h (Short-term memory assessment), with animals maintained in their home cage. In this phase, 

one of the familiar objects (e.g. O1) was replaced with a novel object (N). The trial ended when 

animals had explored both objects, for 2min. Animal nose directly contacting the object or 

directing it towards the object at a distance of ≤2cm was used as an indicator of object 

exploration. This protocol was repeated for Long-term memory assessment by altering the delay 

time between phases to 24h. 

 

3.2.5. Delay discounting task 

3.2.5.1. Apparatus and training 

Two identical standard operant chambers (30.5 x 24 x 21cm; Med-Associates, St. 

Albans, VT, USA), enclosed in sound-attenuating boxes and equipped with ventilation to mask 

outside noise, were used. Each operant chamber contained a central food magazine, with two 

retractable levers with a 2.8W round stimulus light above each lever, positioned on each side of 

the magazine. A photocell beam was fitted in the magazine to detect head entry and, on the top 

center of the opposite wall, a single 100-mA house light provided illumination. 45mg food pellets 

(Bio-Serve, Frenchtown, NJ) were delivered by a pellet dispenser into the magazine. The 

apparatus was controlled by MedPC-IV software (Med-Associates, St. Albans, VT, USA) running in 

a PC connected to the chambers and all experimental data were recorded. 

Training protocols were adapted from Cardinal et al. (2000) and Floresco et al. (2008). 

On the first day, animals were placed in the operant chambers where two to three pellets were 

already placed in the magazine and on the active lever. The first stage of training consisted of an 

instrumental task of continuous reinforcement (CRF) in order to obtain a food pellet. Animals 

were trained under a fixed ratio 1 schedule to respond first on the left lever then the right one 

(left/right levers counterbalanced between subjects), the criterion being 50 presses in 30min 

sessions. Once this stage was completed, animals were trained to make a head entry into the 

magazine to trigger lever presentation for 10s. A training session consisted of 90 trials and began 

with the chamber in darkness and both levers retracted (defined as inter-trial (ITI) state). Each 

trial began every 40s and with illumination of the house light. The animal was required to make a 

head entry within 10s to extend one lever or an omission would be recorded and the chamber 

returned to darkness. A lever was presented for 10s and if the animal failed to respond, the lever 
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retracted and the chamber darkened. However, if a response occurred, the lever retracted, a 

single pellet was delivered immediately into the magazine and the house light turned off after 

reward retrieval and for the rest of the inter-trial state. The left or right lever was presented once 

in a random order, with no more than two consecutive presentations of the same lever. Animals 

were trained to a criterion of 80 or more successful trial per session. 

 

3.2.5.2. Delay discounting assessment  

Each session began with the chamber in darkness and levers retracted. A session 

consisted of 4 blocks of 12 trials and lasted 56min and each trial lasted 70s. Session blocks 

initiated with two forced choice trials, and began with illumination of the house light. After an 

initial head entry, one of the two levers was presented randomly. These forced trials were 

followed by ten free choice trials where both levers were extended. As in training sessions, 

animals were required to perform a head entry or an omission would be recorded (type 1) and 

the chamber entered the ITI state (house light off until the beginning of the next trial). One of the 

levers was designated the immediate lever (Lever 1), the other one the delayed lever (Lever 2) 

(counterbalanced left/right) and lever presentation lasted 10s (if the animal failed to respond, an 

omission was recorded (type 2) and the chamber returned to the ITI state). Choice of Lever 1 

originated an immediate delivery of a single pellet reward, whereas Lever 2 originated a large 

delivery of four pellets following a delay. For the first block of trials, a response on either lever led 

to an immediate reward (0s). The following blocks increased the delay period in 15s intervals, 

such that in the second block, a response on Lever 2 resulted in large reward delivery after a 15s 

interval and in the third and fourth block the delay was 30s and 45s, respectively. After a lever 

press and during the delay, the stimulus light, positioned above Lever 2, was turned on until 

reward delivery, serving as a cue to signal the duration of the delay.  After reward retrieval, the 

house light was turned off and the chamber entered the ITI state for the remainder of the trial. 

Animals received one session per day, for a total of 21 sessions (Figure 3A and 3B).  

A similar version of the DD test was also performed. Here, the number of blocks of trials 

was increased to 5, with increasing delays throughout blocks. Again, for the first block of trials, a 

response on either lever, despite being the delayed or immediate lever, led to a delivery of a 

reward with no delay time (0s). The next block increased the delay time by a 5s interval and, as 

mentioned before, a response on Lever 2 caused a large reward delivery after that period. The 
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delay of the third block was 10s, 15s in the fourth block and, lastly, 30s in the fifth block. 

Animals received one session per day, for a total of 28 sessions. 

 

 

 

Figure 3. Schematic representations of the Delay Discounting task. (A) Outline of the Delay Discounting task, showing the basic 

structure of individual trials. (B) Animals are required to do a nose poke in order to start a trial and, after lever presentation, they 

have to choose to press a lever, between a small, but immediate reward lever and a large, but with delayed delivery, reward lever. 

As the session progresses, the delay time in each block increases (block of trials with 0s, 15s, 30s and 45s delay time). After 

collection of the food reward, the chamber returns to a state of darkness, the inter-trial interval, until the next trial begins (each 

trail lasts for 70s to ensure that animals that complete trials with no delays do not earn greater numbers of rewards by 

completing greater numbers of trials). (B) Adapted from Eagle and Baunez, 2010. 

 

3.3. Histological procedures 

3.3.1. Preparation of tissue for analysis 

Nine months old CONT and iuGC subjects were deeply anesthetized with sodium 

pentobarbital, after 60min of exposure to the operant chambers, with 45mg pellets made 

available (n=4, for each group), or after performing DD task (n=6, for each group). Afterwards, 

animals were transcardially perfused, with 0.9% saline solution for about 5min, followed by 4% 

paraformaldehyde solution for 20min. Brains were carefully removed and immersed in 4% 

paraformaldehyde solution for 2h at room temperature, before being transferred to a 8% sucrose 

solution (Panreac, Barcelona, Spain) at 4ºC, for a minimum of 48h. 

Coronal sections of 50µm were serially cut in a vibrotome (Leica VT 1000S, Nußloch, 

Germany) and those of interest, selected for further histological processing. 
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3.3.2. Immunohistochemistry for c-fos detection 

Induction of immediate early gene expression, such as c-fos, has long been accepted as 

a marker of neuronal activation and correlated with the activation of brain areas putatively 

involved in different actions, following external or internal stimuli (Herrera and Robertson, 1996; 

Puurunen et al, 2001; Lin et al, 1996). 

In order to detect c-fos expression, slices containing OFC (dorsolateral OFC (dlOFC), 

lateral OFC (lOFC), ventral OFC (vOFC) and medial OFC (mOFC)) and mPFC (Anterior Cingulate 

cortex (ACC), Prelimbic cortex (PLC), Infralimbic cortex (ILC)) subregions and amygdala (central 

nucleus of the amygdala (CeA) and basolateral nucleus of amygdala (BLA)) were selected and 

submitted to a free floating immunohistochemical procedure adapted from Dragunow et al. 

(1987). Briefly, brain slices were rinsed in phosphate–buffered saline (PBS; 0.1M, pH 7.2) and 

endogenous peroxidases activity was inhibited by incubating slices with 3.3% hydrogen 

peroxidase in PBS for 30min. Cellular membranes were permeabilized in a series of PBS-T (0.3% 

Triton X-100 (Sigma-Aldrich, St. Louis, MO, USA)  in PBS, 0.1M, pH 7.2) washes. After blocking 

with a solution containing 2.5% fetal bovine serum in PBS-T for 2h, sections were incubated with 

rabbit anti-c-fos (Ab-5) (4-17) polyclonal antibody (Calbiochem, USA) at 1:2000 dilution in 2% 

fetal bovine serum and PBS-T, overnight at room temperature. Afterwards, slices were washed in 

PBS-T, following incubation with a biotinylated swine anti-rabbit IgG secondary antibody 

(DakoCytomation, Denmark) at 1:200 dilution, for 1h at room temperature. Sections were then 

rinsed in PBS-T and reacted with avidin-biotin complex solution (Vectorstain Elite, Vector, USA), 

for 1h, at 1:200 dilution. The bound chromogen was revealed using 50% 3.3-diaminobenzidine 

(DAB; Sigma-Aldrich, St. Louis, MO, USA) and 0.02% hydrogen peroxide in Trizma base solution 

and reaction was finalized by a series of rinses in PBS. Finally, slides were mounted, 

counterstained with diluted hematoxylin and coverslipped with Entellan (Merck, USA) for 

microscopic observation.  

 

3.3.3. Quantification of c-fos staining 

The neuronal activation of the OFC (dlOFC, lOFC, vOFC and mOFC), mPFC (ACC, PLC 

and ILC) and amygdala (CeA and BLA) were outlined according to the rat brain atlas of Paxinos 

and Watson (2007) and matched as closely as possible based on landmarks and 

cytoarchitectural differences. The distance of the brain regions counted from bregma ranged 
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from: 5.64mm to 3.24mm for vOFC and mOFC; 5.64mm to 4.20mm for mOFC; 5.16mm to 

4.68mm for dlOFC; 4.20mm to 2.52mm for ACC; 5.16mm to 2.52mm for PLC; 3.72mm to 

2.52mm for ILC; and -1.56mm to -2.64mm for CeA and BLA. The quantification was done by 

sampling each of the regions selected using counting frames superimposed over the region. The 

size of the counting frames was 0.0025mm2 and the percentage sampled with respect to the 

total area of the brain regions selected was 20%. c-fos positive cells were identified on the basis 

of a brown reaction product confined to cell nucleus, thus presenting a circular/oval shape with a 

clear brown staining. Counting of c-fos positive nuclei was performed using Visiopharm Integrator 

System software (Visiopharm, Copenhagen, Denmark) and a  camera  (PL- A622,  Ontario,  

Canada)  coupled  to  a  motorized  microscope  (BX51TF,  Olympus, Tokyo, Japan). Finally, cell 

density (c-fos positive nuclei per mm2) for each brain area was calculated. 

 

3.4. Data analysis 

Statistical analysis was conducted using GraphpPad Prism 5 and IBM SPSS Statistics 19. 

Normality of all data sets was assessed using Kolmogorov-Smirnov test. Since equal variance or 

normality was assumed (data not shown), parametric tests were used throughout the analysis of 

the behavioral data. Differences between two groups were compared using Student’s t-test or 

analysis of variance (ANOVA) for comparing more than two groups. Regarding behavior results 

from locomotor activity, 5-CSRTT and DD task, data was subjected to two-way repeated measures 

ANOVA. Significant effects produced from analysis were compared via post hoc Bonferroni’s t 

test. For results from the histological analysis, normality of variances was not assumed and 

nonparametric tests were used (Mann-Whitney for comparing two groups). All data are presented 

as mean ± standard error (SEM) and, for each CONT and iuGC group, n represents the number 

of animals used. Differences were considered to be statistically significant when p ≤ 0.05.  
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4. Results 

4.1. Prenatal exposure to GCs does not alter locomotor reactivity to a novel 

environment 

Adult male progeny of dams treated with either 1mg Kg -1 of DEX (iuGC) or vehicle (CONT) 

on gestation days 18 and 19 were used. To evaluate novelty reactivity, the number of ambulatory 

counts was compared between groups (CONT and iuGC) in an open field apparatus. As shown in 

Figure 4, both groups decreased the number of ambulatory counts throughout the 120min of 

testing. 
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Figure 4. Novelty-induced locomotor reactivity in animals prenatally exposed to GCs. CONT and iuGC subjects did not present 

major differences in their locomotor response to a novel inescapable environment, with the exception of the first 10min in which 

iuGC had decreased ambulatory counts. Locomotor activity is represented as the mean of ambulatory counts, performed during 

the test session. Error bars represent SEM. n=24/group. **p<0.01. 

 

Repeated measures analysis revealed no effect of group (F(1, 473) = 2.235,  p = 0.142). 

However, for the first 10min of testing, CONT group showed an increased locomotor activity, or 

ambulatory counts, in comparison to the iuGC group (Bonferroni corrected t-test: t = 3.472, p < 

0.01). 

Additional parameters were analyzed to assess the effect of prenatal exposure to GCs in 

locomotor reactivity, namely the number of rearings and percentages of distance and time. iuGC 

animals did not present any differences in the total number of rearings (t(41) = 1.287, p = 0.205; 

Figure 5A) nor in the assessment of this parameter along the 120min of the trial (F (1, 440) = 2.483,  

p = 0.123; Figure 5B).  
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Figure 5. Number of rearings performed during assessment of locomotor activity in an Open Field apparatus. (A) Total number 

of rearings. (B) Number of rearings counted during the course of the locomotor reactivity test. No differences were found between 

groups. Rearings represented as the mean of vertical counts performed during the test session. Error bars represent SEM. 

n=24/group. 

 

Regarding the percentage of the distance travelled in both central and peripheral areas of 

the Open Field (OF) arena, both groups displayed an increase in distance in the central area 

when compared to the peripheral zone (F(3, 79) = 20.91, p < 0.0001; Bonferroni corrected t-test 

CONT: t = 6.721, p < 0.001; Bonferroni corrected t-test iuGC: t = 4.189, p < 0.001; Figure 6A). 

Analysis of the percentage of time spent in the central and peripheral areas revealed an effect of 

GC prenatal treatment (F(3, 79) = 19.70, p < 0.0001; Figure 6B). iuGC animals showed an increase 

in the time spent in the peripheral area in comparison to the central one (Bonferroni corrected t-

test: t = 7.511, p < 0.001; Figure 6B). Additionally, a decrease in the time spent in the central 

area was found in the iuGC group when compared to the CONT group (Bonferroni corrected t-

test: t = 2.822, p < 0.05; Figure 6B) and iuGC animals spent more time in the peripheral area 

than the CONT group (Bonferroni corrected t-test: t = 2.822, p < 0.05; Figure 6B). 
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Figure 6. Parameters of locomotion and exploratory activity in animals prenatally exposed to GCs. (A) Percentage of distance 

travelled in central and peripheral areas of the Open Field arena. Both groups display an increase in the distance travelled in the 

central area. (B) Percentage of time spent in central and peripheral areas. No differences were found between groups. iuGC 

animals spend less time in the central area than CONT animals. Error bars represent SEM. n=24/group. 

 

4.2. Effects of prenatal GC exposure in novelty-seeking behavior 

Animals were subjected to Novelty Place Preference (NPP) and Novel Object Recognition 

(NOR) tests to further assess novelty-seeking behavior. Regarding NPP, ANOVA analysis revealed 

differences between groups (F(3, 132) = 5.411, p = 0.0015; Figure 7). CONT animals explored the 

novel compartment for a significantly longer period of time when compared with the time spent 

exploring the familiar compartment, which was not observed in the iuGC group (Bonferroni 

corrected t-test; CONT: t = 3.640, p < 0.01; iuGC: t-test t = 1.698, p > 0.05; Figure 7). No 

significant differences were found between both groups in the total time spent in the novel or the 

familiar compartment. 
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Figure 7. Preference of CONT and iuGC animals for the novel and familiar compartments. CONT animals spent more time 

exploring the novel compartment in comparison to the familiar one, contrary to iuGC animals that do not present differences, as 

they spend the same amount of time in both compartments. Bars represent the mean duration of time spent in each 

compartment ± SEM. nCONT=35; niuGC=39. **p<0.01. (Familiar vs. Novel compartment) 

 

Taking into account the flexibility of the NOR test, animals performed two versions of the 

test that comprised a delay time of 1h and 24h between phases, allowing an assessment of the 

condition of the short-term memory and long-term memory, respectively. Concerning the NOR 

protocol with a 1h delay time, during initial sampling phase, both CONT and iuGC groups spent 

the same amount of time exploring the object (t71 = 0.3536, p = 0.725; Figure 8A). Moreover, 

both CONT and iuGC animals explored the novel object, during choice phase, for a significantly 

longer period of time than the familiar object (F(3, 134) = 26.28, p < 0.0001; Bonferroni corrected t-

test CONT: t = 8.436, p < 0.001; Bonferroni corrected t-test iuGC: t = 2.722, p < 0.05; Figure 

8B), though this was more evident in the control group. 
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Figure 8. Effect of prenatal exposure to GCs on two versions of a novel object recognition test. (A) Total time exploring the object 

in the sample phase of the NOR test with a 1h delay time between phases. (B) Novel object recognition with a 1h delay time 

between phases. Both CONT and iuGC animals spent more time exploring the novel object, in the choice phase. (C) Total time 

exploring the object in the sample phase of the NOR test with a 24h delay time between phases. (D) Novel object recognition with 

a 24h delay time between phases. In the choice phase, only CONT animals spent more time exploring the novel object, indicating 

a disruption of NOR in iuGC animals. Bars represent means ± SEM. (A), (B) nCONT=35; niuGC=39; (C), (D) nCONT=11; niuGC=15. 

*p<0.05, **p<0.01, ***p<0.001. (Familiar vs. Novel object) 

 

As presented in Figure 8C, during the sample phase of the 24h delay version of the NOR 

test, no differences were observed for both groups (t24 = 0.1301, p = 0.898). ANOVA analysis 

showed a significant difference between groups (F(3, 36) = 33.99, p <0.0001; Figure 8D), in the 

choice phase, with CONT animals spending significantly longer period of time exploring the novel 

object than the familiar one (Bonferroni corrected t-test: t = 9.831, p < 0.001; Figure 8D). 

However, iuGC animals did not differ in their time exploring either object (Bonferroni corrected t-

test: t = 1.850, p > 0.05; Figure 8D), indicating a disruption in novel object recognition and, 

possibly, long-term memory impairment. Also, significant differences between CONT and iuGC in 

the time exploring the familiar and novel objects was detected, during the choice phase 

(Bonferroni corrected t-test Familiar: t = 5.253, p < 0.001; Bonferroni corrected t-test Novel: t = 

3.303, p < 0.05; Figure 8D). 
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4.3. Impulsive choice but not impulsive action is altered in animals exposed to 

prenatal GCs 

The characterization of traits, such as drug-seeking behavior, has been associated with 

impulsiveness, besides novelty-seeking behavior. Considering the complexity of such feature, a 5-

Choice Serial Reaction Time Task (5-CSRTT) and a Delay Discounting (DD) protocol were 

performed, in order to assess the two dimensions of impulsive trait: impulsive action and 

impulsive choice, respectively. 

For the purpose of this thesis, in the 5-CSRTT, we evaluated the anticipatory responses, 

omissions and accuracy levels, to further assess impulsivity/impulsive action (or the ability to 

withhold a response) and the level of motivation and attention, respectively. 

No detectable differences in the performance of CONT and iuGC animals during training 

at each stimulus duration (SD; 60s, 30s, 10s, 2s and 0.5s) were found. In Figure 9, it is depicted 

the data from the last two sessions of task performance of different SDs (60s, 30s, 10s and 2s) 

and the last four sessions of training of 0.5s SD. At each SD, there was no significant main effect 

for group in the percentage of accuracy (Table 1; Figure 9A).  

 

Table 1. Summary table of the 5-Choice Serial Reaction Time Task measurements of 

percentage of accuracy, percentage of omissions and anticipatory responses. Representation  of  

the  statistical  analysis  (comparison  between  CONT  and  iuGC animals). 

  Statistics 

  CONT x iuGC (F, p) 

  Accuracy Omissions 
Anticipatory 
responses 

60s F
(1,36)

 0.149, 0.702 F
(1,36)

 3.399, 0.074 F
(1,36)

 0.7766, 0.384 

30s F
(1,36) 

0.000, 1.000 F
(1,36)

 15.58, 0.0004*** F
(1,36)

 0.3567, 0.554 

10s F
(1,36) 

1.904, 0.176 F
(1,36)

 1.833, 0.179 F
(1,36)

 3.492, 0.070 

2s F
(1,36)

 0.8588, 0.360 F
(1,36)

 2.052, 0.161 F
(1,36)

 0.05207, 0.821 

0.5s F
(1,72)

 2.4747, 0.102 F
(1,72)

 1.470, 0.229 F
(1,72)

 0.06909, 0.793 
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Figure 9. Performance of CONT and iuGC animals in the 5-Choice Serial Reaction Time Task. Shown is the different stages of 

training with stimulus durations of 60s, 30s, 10s, 2s and 0.5s, for 3 different measurements: (A) Percentage of accuracy 

(number of correct responses/total number of responses); (B) Percentage of omissions (number of trials that resulted in no 

response); (C) Percentage of anticipatory responses (number of responses in the apertures during the ITI state). All 

measurements showed no major differences between groups, except during SD of 30s in (B). Results are shown as means ± 

SEM. nCONT=10; niuGC=10. ***p<0.001.  

 

Regarding the percentage of omissions, no significant differences were found within 

groups (Table 1; Figure 9B). However, this measurement showed a statistically significant effect 

for training with a 30s SD between both groups (Table 1; Figure 9B). Despite this early difference 

between groups, as training progressed, that same effect disappeared, leading to a similar 
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response between groups. The final behavioral parameter measured in the 5-CSRTT was 

anticipatory or premature responses, where ANOVA analysis revealed no significant differences 

between both CONT and iuGC animals (Table 1; Figure 9C). 

In order to assess impulsive choice, animals performed a delay discounting task. As time 

progresses, a difference between the CONT and iuGC group emerges (Figure 10). Animals from 

both groups decreased their preference for a delayed, large, reward in a delay dependent way 

(Delay: Figure 10A: F(3, 72) = 10.63, p < 0.0001; Figure 10B: F(3, 72) = 23.07, p < 0.0001; Figure 

10C: F(3, 72) = 25.41, p < 0.0001; Figure 10D: F(3, 72) = 41.16, p < 0.0001). No effect of GC 

treatment on impulsive choice was found in the first 5 sessions (Group:  Figure 10A: F(1, 72) = 

1.766, p = 0.1881; Group x Delay:  Figure 10A: F(3, 72) = 0.03458, p = 0.9913). From sessions 6 

to 21, the performance of both groups is different. iuGC animals present increased lever presses 

in the large reward lever, in the no-delay condition (first block of trials) when compared to CONT 

animals (Group:  Figure 10B: F(1, 72) = 5.082, p = 0.0272; Figure 10C: F(1, 72) = 2.711, p = 0.1040; 

Figure 10D: F(1, 72) = 9.683, p = 0.0027).Further post hoc analysis confirmed the initial difference 

shown between CONT and iuGC animals, when no delay was present (Figure 10B: Bonferroni 

corrected t-test: t = 2.917, p < 0.05; Figure 10D: Bonferroni corrected t-test: t = 4.309, p < 

0.001). Despite initial differences, iuGC animals present a steeper discounting curve when 

compared to CONT animals, suggesting decreased delay gratification. 
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Figure 10. Performance in the delay discounting task of control and iuGC animals. (A) Choice percentage of the large reward 

across delays for CONT and iuGC animals, for the first 5 sessions. No differences found between groups. (B) Choice percentage 

of the large reward across delays in sessions 6-10, where, for the first block of trials (no delay block) iuGC animals had increased 

preference for the large reward, when compared to CONT animals. (C) Sessions 11-15 revealed no differences between groups 

in the percentage of preference for the large reinforcer. (D) Choice percentage of the large reward across delays in sessions 16-

21. iuGC animals had increased preference for the large reinforcer in the first block of trials, when compared to CONT. Data is 

shown as means ± SEM. nCONT=10; niuGC=10. *p<0.05, ***p<0.001. 

 

In order to further dissect the DD paradigm and the results obtained, a version of the DD 

task with shorter delays was performed (delay times: 0s, 5s, 10s, 15s and 30s; Figure 11). 

Results from this delay discounting paradigm showed that, as seen in the previous test, both 

CONT and iuGC animals delay-dependently decreased their choice for a large, but delayed, 

reward (Delay: Figure 11A: F(4, 90) = 23.98, p < 0.0001; Figure 11B: F(4, 90) = 25.98, p < 0.0001; 

Figure 11C: F(4, 90) = 31.03, p < 0.0001; Figure 11D: F(4, 90) = 21.83, p < 0.0001; Figure 11E: F(4, 90) 

= 33.36, p < 0.0001). Until session 16 and beyond, no significant difference was found between 

both groups in the percentage of choice for the large delayed reward (Group:  Figure 11A: F(1, 90) = 

0.06812, p = 0.7947; Figure 11B: F(1, 90) = 0.3765, p = 0.5410; Figure 11C: F(4, 90) = 0.2071, p = 

0.6501; Group x Delay: Figure 11A: F(4, 90) = 1.196, p = 0.3183; Figure 11B: F(4, 90) = 1.551, p = 

0.1942; Figure 11C: F(4, 90) = 1.863, p = 0.1239), though there is a clear trend for iuGC animals to 

prefer the large reward lever in the no-delay block.  

With further training, iuGC animals displayed an increased preference for the lever 

associated with a larger reinforcer when compared to the CONT group, in the no-delay condition. 
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Both groups were different in a delay-dependent manner (Group: Figure 11D: F(1, 90) = 0.2178, p = 

0.6419; Figure 11E: F(1, 90) = 1.612, p = 0.2075; Group x Delay: Figure 11D: F(4, 90) = 3.494, p = 

0.0106; Figure 11E: F(4, 90) = 3.394, p = 0.0124). Additional post hoc analysis further supported 

the difference between both animal groups (Figure 11D: Bonferroni corrected t-test: t = 3.355, p 

< 0.01; Figure 11E: Bonferroni corrected t-test: t = 3.566, p < 0.01). Despite the shorter delays 

applied in this task, iuGC animals revealed a steeper discount for the large reward than CONT 

animals, immediately after introduction of a delay of 5 s, suggesting a disruption in this type of 

behavior. 
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Figure 11. Performance in the delay discounting task of control and iuGC animals, with shorter delay intervals. (A) Choice 

percentage of the large reward across delays for CONT and iuGC animals, for the first 5 sessions. No differences were found 

between groups. (B) Choice percentage of the large reward across delays in sessions 6-10, where, also, no differences were 

revealed between iuGC animals and CONT animals. (C) Sessions 11-15 revealed no differences between groups in the 

percentage of preference for the large reinforcer. (D) Choice percentage of the large reward across delays in sessions 16-20, 

here, iuGC animals had increased preference for the large reinforcer in the first block of trials, when compared to CONT. (E) 

Sessions 21-28 showed that iuGC animals had increase preference for the large reinforcer, when compared to CONT animals. 

Results are represented as means ± SEM. nCONT=10; niuGC=10. **p<0.01. 
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4.4. Neuronal activation upon exposure to a delay discounting task 

Several brain regions have been associated with the DD task, such as the OFC, mPFC 

and the amygdala (Cardinal, 2006). The expression of the immediate early gene c-fos was 

evaluated as an indicator of regional activation, after DD performance. Animals were subdivided 

in each group: part of the animals performed the task as described in the previous chapter 

(task+) and another sub-group did not perform the task, but were allowed to eat food pellets until 

they were satiated in the operant chamber (task-). Representative photomicrographs from OFC, 

mPFC and amygdala are displayed in Figures 12, 14 and 16, respectively. The densities of c-fos 

positive nuclei (positive cell counts/mm2) in all areas of interest in the four groups of animals are 

shown in Figures 13, 15 and 17. 

Expression of c-fos was detected throughout the areas of interest of CONT and iuGC 

animals at 60min following initiation of DD task/placement in operant chamber, after 28 days of 

training. Animals presented neuronal activation of the 4 sub-regions of OFC (Figures 12 and 13). 

In the lOFC, animals that performed the task had an increase in c-fos reactivity when compared 

to the non-performing animals (CONT task- x CONT task+: Mann-Whitney U = 0.000, p = 0.0159; 

iuGC task- x iuGC task+: Mann-Whitney U = 1.000, p =0.0190; Figure 13A). 

 

 

Figure 12. Neuronal activation upon delay discounting task performance in the orbitofrontal cortex. (A) Boundaries between 

different sub-regions of OFC traced over brain slices correspond to the outlined counting regions (Adapted from Paxinos and 

Watson, 2007). (B) Photomicrograph from a representative CONT animal that did not perform the DD task, showing part of the 

OFC sub-regions and the c-fos expression (dark points). (C) Photomicrograph from a representative CONT animal that performed 

the DD task, showing representative c-fos expression. Photomicrograph from a representative iuGC animal that did not perform 

the DD task (D) or that performed DD task (E). Note the greater number of c-fos positive units in the animals that performed the 

task. dlOFC - dorsolateral orbitofrontal cortex; lOFC - lateral orbitofrontal cortex; vOFC - ventral orbitofrontal cortex; mOFC - medial 

orbitofrontal cortex; regions coordinates: 4.20mm from bregma for all OFC sub-regions. Bar = 100 µm. 
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In the vOFC (Figure 13B), iuGC task+ animals displayed a greater c-fos positive cell 

density count than iuGC task- animals (Mann-Whitney U = 0.000, p = 0.0238), whereas CONT 

task- and CONT task+ groups presented no statistically significant differences (Mann-Whitney U = 

2.000, p = 0.1429). 

On the contrary, statistical analysis of neuronal activation in the dlOFC revealed an 

increase in cell density of c-fos positive cells in the CONT task+ group, when compared to CONT 

task- animals (Mann-Whitney U = 1.000, p = 0.0317) and no differences between iuGC task- and 

iuGC task+ groups (Mann-Whitney U = 5.000, p = 0.2857), as displayed in Figure 11C. However, 

there is a tendency for an enhanced activation of the dlOFC area in the iuGC task- group than in 

the CONT task- group (Mann-Whitney U = 1.000, p = 0.0571; Figure 13C).  

Regarding the mOFC (Figure 13D), again, iuGC task+ animals showed a greater density 

in the c-fos positive cell population count than iuGC task- animals (Mann-Whitney U = 0.000, p = 

0.0238) and no differences were revealed between both CONT groups (Mann-Whitney U = 4.000, 

p = 0.2619). 
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Figure 13. Density of c-fos positive cells counted in OFC sub-regions, upon delay discounting task. (A) Both CONT and iuGC 

task+ animals had an increase in the c-fos positive cell density in the lOFC, when compared to CONT and iuGC task- animals. (B) 

In the vOFC, only iuGC task+ animals showed a significant increase in the density of c-fos positive cells. (C) CONT task+ animals 

show an increase in neuronal activation in the dlOFC. (D) In the mOFC, only iuGC task+ animals show a significant increase in 

neuronal activation. Data is shown as means ± SEM. nCONT task -=4; nCONT task +=6; niuGC task -=4; niuGC task +=6. *p<0.05. dlOFC - dorsolateral 

orbitofrontal cortex; lOFC - lateral orbitofrontal cortex; vOFC - ventral orbitofrontal cortex; mOFC - medial orbitofrontal cortex. 

CONT/iuGC task- represents animals that did not perform delay discounting task; CONT/iuGC task+ represents animals that did 

perform delay discounting task. 
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Neuronal activation in mPFC sub-regions (ACC, PLC and ILC) was also examined 

(Figures 14 and 15). The ACC sub-region showed greater c-fos positive cell density in the iuGC 

task+ group, when compared to iuGC task+ animals (Mann-Whitney U = 0.000, p = 0.0286; 

Figure 15A). This difference was not noted in the CONT sub-groups (Mann-Whitney U = 3.500, p 

= 0.1383; Figure 15A). Also, a decrease in cell density was noted in the iuGC task- group, 

comparing to CONT task- animals (Mann-Whitney U = 0.000, p = 0.0294; Figure 15A). 

Regarding the results from the PLC (Figure 15B), animals in the CONT task+ group had 

an increase in c-fos positive cell density, when compared to the CONT task- group (Mann-Whitney 

U = 0.500, p = 0.0262), whereas both iuGC task- and iuGC task+ groups showed no differences 

(Mann-Whitney U = 5.000, p = 0.3810). 

 

Figure 14. Neuronal activation upon delay discounting task performance in the medial prefrontal cortex. (A) Boundaries 

between different sub-regions of mPFC traced over brain slices correspond to the outlined counting regions (Adapted from 

Paxinos and Watson, 2007). (B) Photomicrograph from a representative CONT animal that did not perform the DD task, showing 

part of the mPFC sub-regions and the c-fos expression (dark points). (C) Photomicrograph from a representative CONT animal 

that performed the DD task, showing representative c-fos expression. Photomicrograph from a representative iuGC animal that did 

not perform the DD task (D) or that performed DD task (E). Note the greater number of c-fos positive units in the animals that 

performed the task. ACC - anterior cingulate cortex; PLC - prelimbic cortex; ILC - infralimbic cortex; regions coordinates: 3.24mm 

from bregma for all mPFC sub-regions. Bar = 100 µm. 

 

As in the previous sub-region, in the ILC, the CONT task+ group had an increase in c-fos 

positive cell density, when compared to the CONT task- group, (Mann-Whitney U = 0.000, p = 

0.0195; Figure 15C), whereas this was not observed with iuGC animals (Mann-Whitney U = 

7.000, p = 0.3524; Figure 15C).  
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 Figure 15. Density of c-fos positive cells in mPFC sub-regions, 60min after delay discounting task. (A) iuGC task+ animals had 

an increase in the c-fos positive cell density in the ACC and CONT task- animals show greater cell density counts that iuGC task- 

animals. (B) In the PLC, only CONT task+ animals show a significant increase in the density of c-fos positive cells. (C) CONT 

task+ animals show an increase in neuronal activation in the ILC. Data is shown as means ± SEM. nCONT task -=4; nCONT task +=6; niuGC task -=4; 

niuGC task +=6. *p<0.05. ACC - anterior cingulate cortex; PLC - prelimbic cortex; ILC - infralimbic cortex. CONT/iuGC task- represents 

animals that did not perform delay discounting task; CONT/iuGC task+ represents animals that did perform delay discounting 

task. 

 

Then, the two sub-regions of the amygdala (BLA and CeA) were evaluated (Figures 16 

and 17). Density of c-fos positive cells examination was different between CONT task- and CONT 

task + groups in the BLA (Mann-Whitney U = 0.000, p = 0.0358; Figure 17A). Similarly, iuGC 

task+ animals presented an increase in neuronal activation, comparing to iuGC task- animals 

(Mann-Whitney U = 1.000, p = 0.0247; Figure 17A). Also, a higher neuronal activation in this 

sub-region was noted in the iuGC task- group, when compared to the CONT task- group (Mann-

Whitney U = 0.000, p = 0.0498; Figure 17A). 
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Figure 16. Neuronal activation in the amygdala, coming after delay discounting task performance. (A) Boundaries between 

different sub-regions of the amygdala traced over brain slices correspond to the outlined counting regions (Adapted from Paxinos 

and Watson, 2007). (B) Photomicrograph from a representative CONT animal that did not perform the DD task, showing part of 

the amygdala sub-regions and the c-fos expression (dark points). (C) Photomicrograph from a representative CONT animal that 

performed the DD task, showing representative c-fos expression. Photomicrograph from a representative iuGC animal that did not 

perform the DD task (D) or that performed DD task (E). Note the greater number of c-fos positive units in the animals that 

performed the task. BLA – basolateral nucleus of the amygdala; CeA – central nucleus of the amygdala; regions coordinates:       

-2.28mm from bregma for the two amygdala sub-regions. Bar = 100 µm. 

 

Concerning the density of c-fos positive cells in the CeA, both CONT task+ and iuGC 

task+ display an increase, when compared to CONT task- and iuGC task- animals, respectively 

(CONT task- x CONT task+: Mann-Whitney U = 0.000, p = 0.0358; iuGC task- x iuGC task+: 

Mann-Whitney U = 0.000, p = 0.0139; Figure 17B), suggesting a similar activation between both 

groups.

CONT task - CONT task + iuGC task - iuGC task +
0

1.0102

2.0102

3.0102

4.0102

* *

*

BLA

C
e

ll
 d

e
n

s
it

y

(N
u

m
b

e
r 

o
f 

c
-f

o
s
 p

o
s
it

iv
e

 c
e

ll
s
/m

m
2
)

CONT task - CONT task + iuGC task - iuGC task +
0

1.0102

2.0102

3.0102

4.0102

* *

CeA

C
e

ll
 d

e
n

s
it

y

(N
u

m
b

e
r 

o
f 

c
-f

o
s
 p

o
s
it

iv
e

 c
e

ll
s
/m

m
2
)

A B

Figure 17. Density of c-fos positive cells counted in amygdala sub-regions, coming after delay discounting task. (A) iuGC task+ 

and CONT task+ animals had an increase in the c-fos positive cell density in the BLA and iuGC task- animals show greater cell 

density counts that CONT task- animals. (B) In the CeA, CONT task+ and iuGC task+ animals show a significant increase in the 

density of c-fos positive cells. Data is shown as means ± SEM. nCONT task -=4; nCONT task +=6; niuGC task -=4; niuGC task +=6. *p<0.05. BLA - basolateral 

amygdala; CeA - central amygdala. CONT/iuGC task- represents animals that did not perform delay discounting task; CONT/iuGC 

task+ represents animals that did perform delay discounting task. 
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5. General Discussion 

Impact of stress in early development 

During prenatal period, the fetus is protected from the effects of elevated GCs due to the 

action of the enzyme 11 -β-HSD-2, which is  highly  expressed  in  the  placenta  and  forms  a  

potent  barrier to  maternal  GCs (Seckl, 2004). However, a small quantity of endogenous GCs is 

able to cross the barrier and reach the fetus (Brown et al., 1996). This ‘leakage’ is particularly 

important since GCs are responsible for neuronal maturation, remodeling of axons and dendrites, 

as well as cell survival (Meyer, 1983; Meaney et al, 1996; McEwen, 2005; Cerqueira et al., 

2005; Dias-Ferreira et al., 2009). The balance in the production of GCs allows normal brain 

development, so prolonged exposure to stress/GCs can alter the neuronal patterns/circuitry of 

the developing brain. Indeed, studies have shown that offspring of mothers that received DEX 

treatment during the prenatal period, developed emotional and social problems (Trautman et al. 

1995). Also, derived from this hormone treatment, the offspring presented low birth weight, 

altered cardiovascular, endocrine and metabolic functions (French et al., 1999). Nonetheless, the 

beneficial effects of prenatal GCs are undeniable and these hormones are widely used in cases of 

risk of preterm delivery, to promote fetal lung maturation.  

Our group showed permanent deleterious effects of prenatal exposure to stress/GCs in 

the periphery and the brain (Oliveira et al., 2006; Leão et al., 2007; Rodrigues et al., 2011; 

Roque et al., 2011; Oliveira et al., 2012). This animal model of prenatal exposure to DEX showed 

an impairment of the HPA axis response; behavioral studies demonstrated that these animals 

developed an anxious-like phenotype and a depressive-like behavior. Furthermore, studies 

revealed that the mesolimbic dopaminergic system is a target of prenatal GCs action (Leão et al., 

2007; Rodrigues et al., 2011), since the VTA, which projects to several areas including the NAcc 

and PFC, displays a decrease in dopaminergic fibers (Leão et al., 2007). The alterations seen in 

the VTA and the hypodopaminergic state developed in the NAcc (Leão et al., 2007; Rodrigues et 

al., 2011) were associated with an increase in the vulnerability towards drug-seeking behavior in 

the offspring of DEX-treated dams (Rodrigues et al., 2011). These results are in accordance with 

those showing that dopamine (DA) is crucial for the motivating actions to achieve certain goals, 

eventually developing drug-seeking behavior (Robinson and Berridge, 2003; Berridge and 

Robinson, 1998; Palmiter, 2008). 
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Personality traits and addictive behavior 

Drug addiction is a complex behavioral disorder that can be instigated and perpetuated 

by stressful life events and predisposing personality characteristics, most notably impulsivity and 

novelty-seeking behavior. Those who become addicted may be more susceptible to the 

reinforcing effects of drugs or to the learned associations related to drug taking (Koob and Kreek, 

2007). Furthermore, vulnerability to addiction can be increased by genetic or physiological 

influences, enhancing the probability of an individual to shift from experimental to compulsive 

drug use (Nestler et al, 2001; Olmstead, 2006; Piazza and Le Moal, 1996). Together, these 

vulnerabilities may increase the risk of first-time use as well as maintenance and relapse of drug 

use. 

Increasing evidence has revealed a link between personality traits characterized by 

behavioral disinhibition, such as sensation/novelty-seeking and impulsivity, and the development 

of substance use disorders (Conway et al, 2003; Iacono et al, 2003; Kreek et al, 2005; Li, 2000; 

Limosin et al, 2003; Young et al, 2000). The association between these personality traits and 

substance abuse is not surprising, since the mesolimbic dopaminergic system, highly implicated 

in addictive disorders, may also underlie individual differences in trait impulsivity (Bergh et al, 

1997; Laine et al, 2001; Mann et al, 2001; Reist et al, 1996; Swann, 2003; Wade et al, 2000). 

Novelty-seeking behavior has been strongly associated with drug addiction (Koob and Le 

Moal, 2005; Wills et al, 1994; Woicik et al, 2009; Zuckerman and Neeb, 1979) and has been 

defined as the amount of activity displayed in a novel environment with animals that exhibit a 

high level of exploration, namely high responders in comparison with little exploration termed as 

low responders animals (Piazza et al, 1989). The high responder and low responder phenotypes 

represent differences in vulnerability to substance abuse and not only individual differences in 

locomotor activity, where high responder animals self-administer cocaine and amphetamine at 

higher rates (Piazza et al, 1989) and exhibit notable differences in their interaction with the 

environment, since high responder animals tend to seek novelty, variety, and emotional 

stimulation (Dellu et al, 1996; Kabbaj et al, 2000). In this manner, novelty-seeking behavior in 

the rat resembles sensation-seeking in humans (Dellu et al, 1996), a personality trait 

characterized for voluntary participation in activities involving personal risk and associated with 

substance abuse and alcoholism (Zuckerman and Neeb, 1979). Several paradigms may be used 

to the novelty-seeking condition, such as novelty-induced locomotor reactivity, Novelty Place 

Preference (NPP) and Novel Object Recognition (NOR) tests (Dellu et al, 1996; Blanchard et al, 
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2009; Molander et al, 2011). Regarding the locomotor reactivity in a novel environment, iuGC 

animals did not differ from their age-matched CONT animals, apart from the first 10 min of 

analysis and the higher percentage of time spent in the central area of the arena that further 

supported results from Oliveira et al. (2006).  

Differences in novelty responsiveness determine the degree of success in differentiating 

novel and old objects in an open arena, such that more reactive animals are less likely to 

recognize objects/places because of the training-induced emotional arousal. Based on the 

spontaneous and natural tendency of animals to explore novelty, we performed the NPP test, 

where iuGC animals did not explored the novel environment more than the familiar one, since the 

amount of time spent in each place was almost the same, which reveals a decrease in novelty 

preference and/or possibly, indicate some sort of memory impairment or unequal memory 

processing. Concerning the NOR test, iuGC animals presented an increase in the preference to a 

novel object as opposed to a familiar one, when the delay between test phases was 1 h. 

However, as this delay increased (24 h between phases), the offspring of DEX-treated dams did 

not distinguish the familiar and novel object, as opposed their age-matched CONT animals, 

further suggesting long-term memory impairment. The NOR paradigm is actually a model of 

spontaneous-episodic memory and not spontaneous-spatial memory (Ennaceur and Delacour, 

1988; Ennaceur et al, 1989). The task requires animals to remember previously encountered 

objects after a delay-dependent decline in memory retention, making this test sensitive to 

cognition-impairing (Ennaceur and Meliani, 1992; Puma et al, 1998; Woolley et al, 2003) and 

cognition-enhancing (Ennaceur et al, 1989; Puma et al, 1998) situations, also allowing 

pharmacological manipulations, if needed. Therefore it is important to note that this paradigm 

shows validity in the assessment of attention and memory, alongside novelty preference (Ballaz 

et al, 2007; Molander et al, 2010).  

Different endophenotypes have been associated with a predisposition to different stages 

of the addiction process, such as the high responder phenotype, predisposing to drug use, or 

others, including the high impulsive and high novelty preference phenotypes, facilitating the shift 

to compulsive drug intake and addiction (Belin et al, 2010). It is important to refer the 

dissociation between novelty preference and novelty-induced locomotor activity, since either 

pharmacological (Bardo et al, 1990) or molecular (Adriani et al, 2009) manipulations of novelty 

preference have been shown not to impact reactivity to a novel environment. Although novelty 

preference and locomotor reactivity to novelty are both blocked by microinfusions of 
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dopaminergic antagonists into the NAcc in rats (Bardo et al, 1989; Hooks and Kalivas, 1995), 

these behavioral tests are underlined by dissociable neurobiological mechanisms, including an 

important role of dopamine receptor 1 (D1) in the expression of novelty preference (Bardo et al., 

1993). Several studies revealed important implications for the neurobiology of the 

endophenotypes underlying the risk for drug addiction. Novelty-seeking high responder animals 

had increases in the DA release in the NAcc (Hooks et al, 1992; Flagel et al, 2010), a prolonged 

corticosterone response to mild novelty stress (Dellu et al, 1996) and lower levels of dopamine 

receptor 2 (D2) mRNA, also in the NAcc (Hooks et al, 1994). The high impulsive phenotype 

showed a reduction in dopamine receptors 2 and 3 (D2/3) in the ventral striatum, with no major 

differences in DA, when compared with the low impulsive phenotype (Dalley et al, 2007; 

Diergaarde et al, 2008). Thus, these studies suggest that impulsivity and novelty-seeking have 

distinct behavior outcomes and may also be associated with different adaptations within the 

mesolimbic dopaminenergic system (Molander et al, 2011). 

Impulsivity is characterized by several distinct features including delay aversion, impaired 

ability to consider consequences of an action, and behavioral disinhibition (Evenden, 1999). 

Across the lifespan, individuals may vary their degree of impulsivity and high levels of impulsivity 

can make an individual more susceptible to several psychiatric disorders, such as drug addiction 

(Olmstead, 2006), which can directly related with impulsive action and choice. Impulsive action 

reflects the inhibition of the capacity to withhold a response and impulsive choice refers to delay 

aversion or the inability to delay gratification. One can separate these types of impulsivity and 

they can be mutually exclusive (Winstanley et al, 2006). High baseline levels of either impulsive 

action or choice increase the risk of initiating, maintaining and relapsing to drug use in humans 

and animals (Perry and Carroll, 2008; Perry et al, 2005).  Different human studies showed that 

cocaine or heroin abusers prefer smaller, immediate rewards over larger but delayed rewards 

(both drug and non-drug) and displayed impaired inhibition on tasks measuring impulsive action 

(Fillmore and Rush, 2002; Kirby and Petry, 2004; Li et al, 2006).  In animal studies, high 

impulsive rats display greater drug-seeking behavior than low impulsive animals, suggesting that 

impulsivity influences drug taking behavior (Belin et al, 2008). Furthermore, impulsivity predicts 

the acquisition, escalation, and reinstatement of cocaine taking-behavior in that (Dalley et al, 

2007; Perry et al, 2005; Perry et al, 2008), where high impulsive animals displayed greater drug-

taking behavior in comparison to low impulsive rats. Thus, impulsivity appears to be a reliable 
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endophenotype for stimulant abuse in rodents, consistent with recent findings in human drug 

abusers (Ersche et al, 2010).  

Impulsive action was assessed through 5-CSRTT, where animals were tested for the 

anticipatory responses. Additionally, we checked the accuracy and omissions performed, that 

allowed to assess the level of attention and motivation. In this behavioral test, iuGC animals did 

not present differences in impulsive action, since their response was quite similar to CONT 

animals, as well as their motivation and attention levels. Moreover, an impulsive choice paradigm 

was used, the delay discounting test, where animals were tested on their preference for a small 

immediate reward rather than a large, more beneficial, but delayed reward. Here, iuGC animals 

presented a higher preference for the large reward at the moment where no delays were present; 

however, once a delay was introduced, these animals decrease their preference instantly. 

Moreover, when a DD test was performed with shorter periods of delay, a similar response was 

observed, meaning that with an introduction of a delay, iuGC animals shifted their response to 

preferably choose the small immediate reward. Although evidence suggests an altered 

performance in the DD test, it is important to refer that CONT and iuGC animals revealed a 

difference at the starting point of the last sessions of the DD test, which may influence the 

outcome of the test and biased our conclusions. Is therefore crucial to make adjustments in the 

DD protocol in order to achieve at least 80% of choice for the large reinforcer. 

 It is also important to refer that many studies have looked at the pharmacological effects 

of addictive drugs on measures of impulsivity including response inhibition. Cocaine 

administration increases impulsive choice in rats (Paine et al, 2003), as does acute morphine 

administration (Kieres et al, 2004) and chronic methamphetamine has been shown to increase 

impulsive choice in rats (Richards et al, 1999). It is, however, important to mention that some 

results for a given drug have not always been consistent. For example, studies showed that 

alcohol reduced delay discounting in humans (Ortner et al, 2003), while others revealed no effect 

of alcohol on this measure (Richards et al, 1999), and several investigators have found impulsive 

choice to be induced by alcohol in rats (Evenden & Ryan, 1999; Tomie et al, 1998). These 

discrepancies may in some cases be because the drugs (or the state of addiction) do not have a 

unitary effect on discounting, but one which depends heavily on the situation and the particular 

choices involved. 
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Neural correlates underlying impulsive choice 

The neural system in delay discounting performance is a complex and well balanced 

system comprising regions such as OFC, mPFC and amygdala. Considering the effects of GCs, 

these brain regions are target areas of their action and may be responsible for alterations in 

impulsive choice behavior. 

The OFC is a brain region that projects to the NAcc and is strongly implicated in the 

assessment of reward value, since studies revealed that lesions encompassing the OFC induced 

impulsive choice (Mobini et al, 2002). Also, dissociable effects of lesions to OFC sub-regions 

were found in the rat (Mar et al, 2011); mOFC-lesioned rats showed increased preference for the 

large delay reward, as opposed to the decrease seen in lOFC-lesioned animals. These findings 

were consistent with human imaging studies and suggest that functions of these sub-regions can 

contribute differently to the decision-making process. The increase in the neuronal activation of 

the vOFC and mOFC of iuGC animals may help explain the difference seen in the DD task, since 

CONT animals did not display any difference in the activation of the areas mentioned, apart from 

the dlOFC, though this remains to be confirmed. 

 

The mPFC that also projects to the NAcc is involved in reward-related learning (Balleine 

and Dickinson, 1998; Bechara et al, 1999; Richardson and Gratton, 1998; Tzschentke, 2000). 

ACC dysfunction may not be an important contributor to impulsive choice, despite the 

involvement of the ACC in reward-related learning (Bussey et al, 1997a; Bussey et al, 1997b; 

Cardinal et al, 2003; Parkinson et al, 2000), as studies that showed that lesions of the ACC had 

no effect in the choice of delayed reinforcements (Cardinal et al, 2001), but ACC seems to be 

involved in the selection of effortful options (Walton et al, 2003; Walton et al, 2002). However, 

ACC lesions can make rats motorically impulsive (leading to impulsive action) and to respond 

prematurely in situations where they are required to wait (Muir et al, 1996). Regarding animals 

prenatally exposed to GCs, the ACC showed a higher activation of this area upon performance of 

the DD task, though no differences were found in the 5-CSRTT. 

Considering the PLC and ILC sub-regions, iuGC animals did not display any differences in 

the c-fos positive cell density, comparing task – and task + animals. This reduced activation may 

be explained by studies performed where lesions in PLC and ILC appeared to lead to a loss of 

temporal discriminative stimulus control (Cardinal et al, 2003) and lesions of the mPFC induced 

a deficit in timing ability in rats (Dietrich and Allen, 1998), with impaired temporal discrimination 
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in the peak procedure, an operant task that assesses the ability to time a stimulus (Catania, 

1970; Roberts, 1981). 

 

The amygdala is interconnected with the NAcc and OFC. Animals prenatally exposed to 

GCs revealed a similar neuronal activation in both CeA and BLA. However, this area displayed a 

higher c-fos positive cell density before exposure to the DD test, in iuGC animals. Some studies 

comprising lesions in the BLA showed an increase in impulsive choice in a task involving choice 

between an immediate one-pellet reward and a delayed four-pellet reward (Winstanley et al, 

2004a; Winstanley et al, 2004b) and others demonstrated deficits when reward size is suddenly 

changed, upon amygdala inactivation (Salinas and McGaugh, 1996; Salinas et al, 1993), which 

has emotional significance and this brain area is well known to be involved in affective 

representation (Cardinal et al, 2002). As mentioned before, iuGC animals present an anxious-like 

behavior and, altogether, this could help explain the increased cell density seen in the BLA, in a 

basal situation.  

One should also mention the importance of the NAcc in this task. This area responds to 

anticipated rewards in humans, other primates, chicks, and rats (Bjork et al, 2004; Breiter et al, 

2001; Cromwell and Schultz, 2003; Izawa et al, 2005; Knutson et al, 2001; Martin and Ono, 

2000; Miyazaki et al, 1998; Schultz et al, 1992; Schultz et al, 2000) and is innervated by DA 

neurons that respond to errors in reward prediction in a manner appropriate for a teaching signal 

(Schultz, 1998; Schultz and Dickinson, 2000; Schultz et al, 1998) and interventional studies 

showed this area to be a key site for the motivational impact of impending rewards (Robbins and 

Everitt, 1996; Everitt et al, 1999; Parkinson et al, 2000; Cardinal et al, 2002; Robbins et al, 

2005). Considering results from Cardinal and colleagues (2001, 2003), lesion studies of the 

NAcc have shown to produce impulsive choice. 

It is of importance to mention complementary measures such as the assessment of DA 

levels, since studies from Wade et al. (2000) showed that D2 antagonists and mixed D1/D2 

antagonists induce impulsive choice. Impulsive choice or preference for immediate reinforcement 

is due to abnormally steep temporal discounting and it was suggested that this is due to a 

hypofunctional NAcc dopaminergic system (Johansen et al, 2002; Sagvolden et al, 1998). In this 

context, the observed NAcc hypodopaminergic state, together with D2 prominent changes in 

iuGC animals, may explain the changes observed in the DD protocol. 
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6. Conclusion 

Increasing evidence from the last few years has shown the permanent effects of prenatal 

stress that may ultimately lead to the development of several neuropsychiatric disorders in 

adulthood, such as depression, anxiety, or drug addiction. Herein, we showed that iuGC animals 

do not differ in their locomotor reactivity to a novel environment, nor to a novel object. However, 

a long-term memory impairment was revealed with the NOR test. Regarding the trait of 

impulsivity, these animals did not show alterations in impulsive action, but present differences in 

impulsive choice, though further tests are required in order to validate these observations. 

Moreover, iuGC animals present changes in the neuronal activation of OFC and mPFC sub-

regions. Altogether, our results seem to suggest that prenatal exposure to GCs program neuronal 

circuits involved in impulsivity which may may contribute for the enhanced drug-seeking behavior 

observed in these animals.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



62 
 

 

 

  



63 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Chapter 7 – Future Perspectives  



64 
 

  



65 
 

7. Future Perspectives 

Further complement of the analysis on traits associated with drug addiction would be 

achieved by measuring risky behavior. Thus, we believe that the evaluation of this trait using the 

Minho Gambling Test would be crucial. Furthermore, an additional impulsive task can be 

performed to better assess impulsive action. In the Go/No-Go task, or Stop-Signal task, a 

response must be intermittently withheld upon presentation of a cue, measuring impulsive action 

(Logan and Cowan, 1984; Logan, 1994).  

As explained in previous chapters, it would be crucial to perform the DD task using 

different parameters, in order to allow CONT animals to achieve better performance accuracy. 

 This would be accompanied with further determination of the neuronal activation 

patterns in the NAcc, also crucial in this type of behavior. Moreover, it would be interesting to 

control for the food reward component (naïve group), since we only had a group that was 

exposed to food pellets, and this may mask some of the c-fos activation results. 

It will be important to characterize the levels of DA in these areas, since this 

neurotransmitter plays a major role in impulsivity. Nonetheless, an interesting approach would be 

to evaluate the interactive nature of DA and serotonin and their influence in impulsive behavior, 

since there is a persistent paradox on DA-releasing stimulant medications and their improvement 

in symptoms of ADHD, while at the same time drugs that increase DA transmission (agonists or 

levodopa) appear to increase impulsivity, i.e., in the case of medication-induced side effects in 

Parkinson’s Disease (Dalley and Roiser, 2012). Moreover, a possible control and maintenance of 

future developments of addictive behavior may be achieved in individuals already vulnerable. 

 

 

 

 

 

 

 



66 
 

 

  



67 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Chapter 8 – References  



68 
 

  



69 
 

8. References  

Abercrombie ED, Keefe KA, DiFrischia DS and Zigmond MJ. 1989. Differential effect of stress in in vivo 

dopamine release in striatum, nucleus accumbens, and medial frontal cortex. Journal of Neurochemistry, 

52: 1655-1658. 

 

Adriani W, Boyer F, Gioiosa L, Macri S, Dreyer JL, Laviola G. 2009. Increased impulsive behavior and risk 

proneness following lentivirus-mediated dopamine transporter over- expression in rats’ nucleus 

accumbens. Neuroscience, 159: 47-58. 

 

Agid O, Shapira B, Zislin J, Ritsner M, Hanin B, Murad H, Troudart T, Bloch M, Heresco- Levy U, Lerer B. 

1999. Environment and vulnerability to major psychiatric illness: a case control study of early parental 

loss in major depression, bipolar disorder and schizophrenia. Molecular Psychiatry, 4: 163-172. 

 

Ainslie G. 1975. Specious reward: a behavioral theory of impulsiveness and self-control. Psychological 

Bulletin, 82: 463-496. 

 

American Psychiatric Association. 1994. Diagnostic and statistical manual of mental disorders IV (DSM-

IV). Washington, DC: APA Press. 4th Ed. 

 

Anthony JC, Warner LA, Kessler RC. 1994. Comparative epidemiology of dependence on tobacco, alcohol, 

controlled substances, and inhalants. Experimental and Clinical Psychopharmacology, 2: 244-268. 

 

Ballaz SJ, Akil H, Watson SJ. 2007. The CCK-system mediates adaptation to novelty-induced stress in the 

rat: a pharmacolo- gical evidence. Neuroscience Letters, 428: 27-32. 

 

Balleine BW, Dickinson A. 1998. Goal-directed instrumental action: Contingency and incentive learning 

and their cortical substrates. Neuropharmacology, 37: 407-419. 

 

Bardo M, Neisewander JL, Pierce R. 1989. Novelty-induced place preference behavior in rats: effects of 

opiate and dopaminergic drugs. Pharmacology Biochemistry and Behavior, 32: 683-689.  

 

Bardo MT, Bowling SL, Robinet PM, Rowlett JK, Lacy M, Mattingly BA. 1993. Role of dopamine D1 and 

D2 receptors in novelty-maintained place preference. Experimental and Clinical Psychopharmacology, 1: 

101-109. 

 



70 
 

Bardo MT, Lacy M, Mattingly BA. 1990. Effects of apomorphine on novelty-induced place preference 

behavior in rats. Pharmacology Biochemistry and Behavior, 37: 89-93. 

 

Barker DJP. 2001. The malnourished baby and infant. British Medical Bulletin, 60: 69-88. 

 

Barker DJP, Gluckman PD, Godfrey KM, Harding JE, Owens JA, Robinson JS. 1993. Fetal nutrition and 

cardiovascular disease in adult life. Lancet, 341: 938-941. 

 

Barkley RA. 1997. Behavioral inhibition, sustained attention, and executive functions: constructing a 

unifying theory of ADHD. Psychological Bulletin, 121: 65-94. 

 

Barratt ES, Patton JH. 1983. Impulsivity: cognitive, behavioral and psychophysiological correlates. 

Biological bases of sensation seeking, impulsivity and anxiety. M. Zuckerman ed. Hillsdale, NJ: Erlbaum, 

77-116. 

 

Bechara A, Damasio H, Damasio AR, Lee GP. 1999. Different contributions of the human amygdala and 

ventromedial prefrontal cortex to decision-making. Journal of Neuroscience, 19: 5473-5481. 

 

Beitens IZ, Bayard F, Ances IG, Kowarski A, Migeon CJ. 1973. The metabolic clearance rate, blood 

production, interconversion and transplacental passage of cortisol and cortisone in pregnancy near term. 

Pediatric Research, 7: 509-519.  

 

Belin D, Berson N, Balado E, Piazza PV, Deroche-Gamonet V. 2010. High-Novelty-Preference Rats are 

Predisposed to Compulsive Cocaine Self-administration. Neuropsychopharmacology: 1–11. 

 

Belin D, Mar A, Dalley J, Robbins T, Everitt B. 2008. High impulsivity predicts the switch to compulsive 

cocaine- taking. Science 320: 1352-1355. 

 

Bergh C, Eklund T, Sodersten P, Nordin C. 1997. Altered dopamine function in pathological gambling. 

Psychological Medicine, 27: 473-475. 

 

Bernet CZ, Stein MB. 1999. Relationship of childhood maltreatment to the onset and course of major 

depression in adulthood. Depression and Anxiety, 9: 169-174.   

 

Berridge KC, Robinson TE. 1998. What is the role of dopamine in reward: hedonic impact, reward 



71 
 

learning, or incentive salience? Brain Research Reviews, 28: 309-369. 

 

Bevins RA. 2001. Novelty seeking and reward: implications for the study of high-risk behaviors. Current 

Directions in Psychological Science, 10: 189-193. 

 

Bevins RA, Besheer J. 2006. Object recognition in rats and mice: a one-trial non-matching-to-sample 

learning task to study ‘recognition memory’. Nature Protocols, 1: 1306-1311. 

 

Bickel WK, Odum AL, Madden GJ. 1999. Impulsivity and cigarette smoking: Delay discounting in current, 

never, and ex-smokers. Psychopharmacology (Berl), 146: 447-454. 

 

Bjork JM, Knutson B, Fong GW, Caggiano DM, Bennett SM, Hommer DW. 2004. Incentive-elicited brain 

activation in adolescents: Similarities and differences from young adults. Journal of Neuroscience, 24: 

1793-1802. 

 

Blanchard MM, Mendelsohn D, Stamp JA. 2009. The HR/LR model: further evidence as an animal model 

of sensation seeking. Neuroscience and Biobehavioral Reviews, 33: 1145-1154. 

 

Bloom SL, Sheffield JS, McIntire DD, Leveno KJ. 2001. Antenatal dexamethasone and decreased birth 

weight. Obstetrics and Gynecology, 97: 485-490. 

 

Breiter HC, Aharon I, Kahneman D, Dale A, Shizgal P. 2001. Functional imaging of neural responses to 

expectancy and experience of monetary gains and losses. Neuron, 30: 619-639. 

 

Brown RW, Kotolevtsev Y, Leckie C, Lindsay RS, Lyons V, Murad P, Mullins JJ, Chapman KE, Edwards 

CRW, Seckl JR. 1996. Isolation and cloning of human placental 11b-hydroxysteroid dehydrogenase-2 

cDNA. Biochemical Journal, 313: 1007-1017. 

 

Bussey TJ, Everitt BJ, Robbins TW. 1997a. Dissociable effects of cingulate and medial frontal cortex 

lesions on stimulus–reward learning using a novel Pavlovian autoshaping procedure for the rat: 

Implications for the neurobiology of emotion. Behavioral Neuroscience, 111: 908–919.  

 

Bussey TJ, Muir JL, Everitt BJ, Robbins TW. 1997b. Triple dissociation of anterior cingulate, posterior 

cingulate, and medial frontal cortices on visual discrimination tasks using a touchscreen testing procedure 

for the rat. Behavioral Neuroscience, 111: 920–936. 



72 
 

 

Cadet R, Pradier P, Dalle M, Delost P. 1986. Effects of prenatal stress on the pituitary adrenocortical 

reactivity in guinea-pig pups. Journal of Developmental Physiology, 8: 467-475. 

 

Cardinal RN. 2006. Neural systems implicated in delayed and probabilistic reinforcement. Neural 

Networks, 19: 1277-1301. 

 

Cardinal RN, Cheung THC. 2005. Nucleus accumbens core lesions retard instrumental learning and 

performance with delayed reinforcement in the rat. BMC Neuroscience: 6, 9. 

 

Cardinal RN, Howes, NJ. 2005. Effects of lesions of the nucleus accumbens core on choice between 

small certain rewards and large uncertain rewards in rats. BMC Neuroscience: 6, 37. 

 

Cardinal RN, Parkinson JA, Lachenal G, Halkerston KM, Rudarakanchana N, Hall J, et al. 2002. Effects of 

selective excitotoxic lesions of the nucleus accumbens core, anterior cingulate cortex, and central nucleus 

of the amygdala on autoshaping performance in rats. Behavioral Neuroscience, 116: 553-567. 

 

Cardinal RN, Pennicott DR, Sugathapala CL, Robbins TW, Everitt BJ. 2001. Impulsive choice induced in 

rats by lesions of the nucleus accumbens core. Science, 292: 2499-2501. 

 

Cardinal RN, Robbins TW, Everitt BJ. 2000. The effects of d-amphetamine, chlordiazepoxide, alpha-

flupenthixol and behavioural manipulations on choice of signalled and unsignalled delayed reinforcement 

in rats. Psychopharmacology (Berl), 152: 362-375. 

 

Cardinal RN, Robbins, TW, Everitt BJ. 2003. Choosing delayed rewards: Perspectives from learning 

theory, neurochemistry, and neuroanatomy. Choice, behavioral economics and addiction. N. Heather, and 

R. E. Vuchinich, eds. Oxford: Elsevier: 217-218. 

 

Catania AC. 1970. Reinforcement schedules and psychophysical judgment: A study of some temporal 

properties of behavior. The theory of reinforcement schedules. W. N. Schoenfeld, ed. New York: Appleton-

Century-Crofts: 1-42. 

 

Cerqueira JJ, Pêgo JM, Taipa R, Bessa JM, Almeida OFX, Sousa N. 2005. Morphological Correlates of 

Corticosteroid- Induced Changes in Prefrontal Cortex-Dependent Behaviors.  The Journal of Neuroscience, 

25: 7792-7800. 



73 
 

 

Chapman DP, Whitfield CL, Felitti VJ, Dube SR, Edwards VJ, Anda RF. 2004. Adverse childhood 

experiences and the risk of depressive disorders in adulthood. Journal of Affective Disorders, 82: 217-225. 

 

Charmandari E, Tsigos C, Chrousos GP. 2005. Endocrinology of the stress response. Annual Reviews of 

Physiology, 67: 259-284. 

 

Checkley S. 1996. The neuroendocrinology of depression and chronic stress. British Medical Bulletin, 52: 

597-617. 

 

Chrousos GP. 2009. Stress and disorders of the stress system. Nature Reviews Neuroscience, 5: 374-

381. 

 

Chrousos GP, Gold PW. 1992. The concepts of stress and stress system disorders. Overview of physical 

and behavioral homeostasis. Journal of the American Medical Association, 267: 1244-1252. 

 

Coffey SF, Gudleski GD, Saladin ME, Brady KT. 2003. Impulsivity and rapid discounting of delayed 

hypothetical rewards in cocaine-dependent individuals. Experimental and Clinical Psychopharmacology, 

11: 18-25. 

 

Conway KP, Kane RJ, Ball SA, Poling JC, Rounsaville BJ. 2003. Personality, substance of choice, and 

polysubstance involvement among substance dependent patients. Drug Alcohol Dependence, 71: 65–75. 

 

Crean JP, de Wit H, Richards JB. 2000. Reward discounting as a measure of impulsive behavior in a 

psychiatric outpatient population. Experimental and Clinical Psychopharmacology, 8:155-162. 

 

Cromwell HC, Schultz W. 2003. Effects of expectations for different reward magnitudes on neuronal 

activity in primate striatum. Journal of Neurophysiology, 89: 2823-2838. 

 

Crowley PA. 1995. Antenatal corticosteroid therapy: a meta-analysis of the randomized trials, 1972 to 

1994. American Journal of Obstetrics & Gynecology, 173: 322-335. 

 

Curhan GC, Chertow GM, Willett WC, Spiegelman D, Colditz GA, Manson JE, Speizer FE, Stampfer MJ. 

1996a. Birth-weight and adult hypertension and obesity in women. Circulation, 94: 1310-1315. 

 



74 
 

Curhan GC, Willett WC, Rimm EB, Spiegelman D, Ascherio AL, Stampfer MJ. 1996b. Birth weight and 

adult hypertension, diabetes mellitus, and obesity in US men. Circulation, 94: 3246-3250. 

 

Dalley JW, Fryer TD, Brichard L, Robinson ESJ, Theobald DEH, Lääne K, Peña Y, Murphy ER, Shah Y, 

Probst K, Abakumova I,  Aigbirhio FI, Richards HK, Hong Y, Baron JC, Everitt BJ, Robbins TW. 2007. 

Nucleus accumbens D2/3 receptors predict trait impulsivity and cocaine reinforcement. Science, 315: 

1267-1270. 

 

Dalley JW, Roiser JP. 2012. Dopamine, serotonin and impulsivity. Neuroscience 215: 42-58. 

 

De Kloet ER. 1991. Brain corticosteroid receptor balance and homeostatic control. Frontiers in 

Neuroendocrinology, 12: 95-164. 

 

De Kloet ER, Joëls M, Holsboer F. 2005. Stress and the brain: from adaptation to disease. Nature Reviews 

Neuroscience, 6: 463-475. 

 

Dean F, Matthews SG. 1999. Maternal dexamethasone treatment in late gestation alters glucocorticoid 

and mineralocorticoid receptor mRNA in the fetal guinea pig brain. Brain Research, 846: 253-259. 

 

Dellu F, Piazza PV, Mayo W, Le Moal M, Simon H. 1996. Novelty-seeking in ratsFbiobehavioral 

characteristics and possible relationship with the sensation-seeking trait in man. Neuropsychobiology 34: 

136-145. 

 

Dias - Ferreira E, Sousa JC, Melo I, Morgado P, Mesquita AR, Cerqueira JJ, Costa RM, Sousa N. 2009. 

Chronic stress causes frontostriatal reorganization and affects decision - making. Science, 325: 621-625. 

 

Diergaarde L, Pattij  T, Poortvliet I, Hogenboom F, De Vries W, Schoffelmeer ANM, De Vries TJ. 2008. 

Impulsive choice and impulsive action predict vulnerability to distinct stages of nicotine seeking in rats. 

Biological Psychiatry, 63: 301-308. 

 

Dietrich A, Allen JD. 1998. Functional dissociation of the prefrontal cortex and the hippocampus in timing 

behavior. Behavioral Neuroscience, 112: 1043-1047. 

 

Diorio D, Viau V, Meaney MJ. 1993. The role of the medial prefrontal cortex (cingulate gyrus) in the 

regulation of hypothalamic-adrenal responses to stress. Journal of Neuroscience, 13: 3839-3847. 



75 
 

 

Dragunow M, Peterson MR, Robertson HA. 1987. Presence of c-fos like immunoreactivity in the adult rat 

brain. European Journal of Pharmacology, 135: 113-114. 

 

Drolet G, Dumont EC, Gosselin I, Kinkead R, Laforest S, Trottier JF. 2001. Role of endogenous opioid 

system in the regulation of the stress response. Progress in Neuro-Psychopharmacology & Biological 

Psychiatry, 25: 729-741. 

 

Dube SR, Felitti VJ, Dong M, Chapman DP, Giles WH, Anda RF. 2003. Childhood abuse, neglect, and 

household dysfunction and the risk of illicit drug use: the adverse childhood experiences study. Pediatrics, 

111: 564-572. 

 

Eagle DM, Baunez C. 2010. Is there an inhibitory-response-control system in the rat? Evidence from 

anatomical and pharmacological studies of behavioral inhibition. Neuroscience & Biobehavioral Reviews, 

34: 50-72. 

 

Ennaceur A, Delacour J. 1988. A new one-trial test for neurobiological studies of memory in rats. 1: 

Behavioral data. Behavioral Brain Research, 31: 47-59. 

 

Ennaceur A, Cavoy A, Costa JC, Delacour J. 1989. A new one-trial test for neurobiological studies of 

memory in rats. II: Effects of piracetam and pramiracetam. Behavioral Brain Research, 33:197-207. 

 

Ennaceur A, Meliani K. 1992. Effects of physostigmine and scopolamine on rats’ performances in object-

recognition and radial-maze tests. Psychopharmacology (Berl), 109: 321-330. 

 

Ersche KD, Roiser JP, Clark L, London M, Robbins TW, Sahakian BJ. 2005. Punishment induces risky 

decision-making in methadone- maintained opiate users but not in heroin users or healthy volunteers. 

Neuropsychopharmacology, 30: 2115-2124. 

 

Evenden JL. 1999. Varieties of impulsivity. Psychopharmacology (Berl), 146: 348-361. 

 

Evenden JL, Ryan CN. 1999. The pharmacology of impulsive behaviour in rats VI: The effects of ethanol 

and selective serotonergic drugs on response choice with varying delays of reinforcement. 

Psychopharmacology, 146: 413-421. 

 



76 
 

Everitt BJ, Belin D, Economidou D, Pelloux Y, Dalley JW, Robbins TW. 2008. Neural mechanisms 

underlying the vulnerability to develop compulsive drug-seeking habits and addiction. Philosophical 

Transactions of the Royal Society B, 363: 3125-3135. 

 

Everitt BJ, Dickinson A, Robbins TW. 2001. The neuropsychological basis of addictive behavior. Brain 

Research Reviews, 36: 129-138. 

 

Everitt BJ, Parkinson JA, Olmstead MC, Arroyo M, Robledo P, Robbins TW. 1999. Associative processes in 

addiction and reward: The role of amygdala-ventral striatal subsystems. Annals of the New York Academy 

of Sciences, 877: 412-438. 

 

Everitt BJ, Robbins TW. 2005. Neural systems of reinforcement for drug addiction: from actions to habits 

to compulsion. Nature Neuroscience, 8: 1481-1489. 

 

Eysenck H J. 1993. The nature of impulsivity. The impulsive client: Theory, research and treatment.  W. 

G. McCown, J. L. Johnson, & M. B. Sure eds. Washington, DC: American Psychological Association. 

 

Eysenck HJ, Eysenck SBG. 1991. Adult impulsiveness, venturesomeness and empathy scale. London: 

Hodder Soughton. 

 

Fillmore MT, Rush CR, 2002. Impaired inhibitory control of behavior in chronic cocaine users. Drug 

Alcohol Depend. 66: 265–273. 

 

Flagel SB, Robinson TE, Clark JJ, Clinton SM, Watson SJ, Seeman P, Phillips PE, Akil H. 2010. An animal 

model of genetic vulnerability to behavioral disinhibition and responsiveness to reward-related cues: 

implications for addiction. Neuropsychopharmacology, 35: 388-400. 

 

Floresco S, Tse M, Ghods-Sharifi S. 2008. Dopaminergic and glutamatergic regulation of effort- and delay- 

based decision making. Neuropsychopharmacology, 33: 1966-1979. 

 

Franken IH, van Strien JW, Nijs I, Muris P. 2008. Impulsivity is associated with behavioral decision-making 

deficits. Psychiatry Research, 158: 155-163. 

 

Frankenhaeuser M.1986. A psychobiological framework for research on human stress and coping. 

Dynamics of stress: Physiological, psychological, and social perspectives. M.H. Appley and R. Trumbll, 



77 
 

eds. New York: Plenum, 101-116. 

 

Franques P, Auriacombe M, Tignol J. 2000. Addiction and personality. Encephale 26: 68-78. 

 

Franques P. 2003. Sensation seeking as a common factor in opioid dependent subjects and high risk 

sport practicing subjects. A cross sectional study. Drug Alcohol Dependence 69: 121-126. 

 

French NP, Hagan R, Evans SF, Godfrey M, Newnham JP. 1999. Repeated antenatal corticosteroids: size 

at birth and subsequent development. American Journal of Obstetrics and Gynecology, 180: 114-121.  

 

Gray JA. 1981. A critique of Eysenck’s theory of personality. A model for personality. H.J.Eysenck, ed.: 

246-277. 

 

Gunnar M, Quevedo K. 2007. The neurobiology of stress and development. Annual Review of Psychology, 

58: 145-173. 

 

Gunnar M, Vazquez D. 2006. Stress neurobiology and developmental psychopathology. Developmental 

Psychopathology: Developmental Neuroscience. D. Cicchetti and D. Cohen, eds. New York: Wiley, 533-

577. 

 

Heim C, Nemeroff CB. 2001. The role of childhood trauma in the neurobiology of mood and anxiety 

disorders: preclinical and clinical studies. Biological Psychiatry, 49: 1023-1039. 

 

Herrera DG, Robertson HA. 1996. Activation of c-fos in the brain. Progress in Neurobiology, 50: 83-107.  

 

Hooks MS, Kalivas PW. 1995. The role of mesoaccumbensF pallidal circuitry in novelty-induced behavioral 

activation. Neuroscience, 64: 587-597. 

 

Hooks MS, Colvin AC, Juncos JL, Justice JB Jr. 1992. Individual differences in basal and cocaine-

stimulated extracellular dopa- mine in the nucleus accumbens using quantitative microdialysis. Brain 

Research, 587:306-312. 

 

Hooks MS, Juncos JL, Justice JB Jr, Meiergerd SM, Povlock SL, Schenk JO, Kalivas PW. 1994. Individual 

locomotor response to novelty predicts selective alterations in D1 and D2 receptors and mRNAs. Journal 

of Neuroscience, 14: 6144-6152 



78 
 

 

Horvath P, Zuckerman M. 1993. Sensation seeking, risk appraisal, and risky behavior. Personality and 

Individual Differences 14: 41-52. 

 

Huang WL, Harper CG, Evans SF, Newnham JP, Dunlop SA. 2001a. Repeated prenatal corticosteroid 

administration delays astrocyte and capillary tight junction maturation in fetal sheep. Inter- national 

Journal of Developmental Neuroscience, 19: 487-493.  

 

Huang WL, Harper CG, Evans SF, Newnham JP & Dunlop SA. 2001b. Repeated prenatal corticosteroid 

administration delays myelination of the corpus callosum in fetal sheep. International Journal of 

Developmental Neuroscience, 19: 415-425. 

 

Iacono WG, Malone SM, McGue M. 2003. Substance use disorders, externalizing psychopathology, and 

P300 event-related potential amplitude. International Journal of Psychophysiology, 48: 147–178 

 

Ikegami M, Jobe AH, Newnham J, Polk DH, Willet KE, Sly P. 1997. Repetitive prenatal glucocorticoids 

improve lung function and decrease growth in preterm lambs. American Journal of Respiratory and 

Critical Care Medicine, 156: 178-184. 

 

Izawa E., Aoki N, Matsushima T. 2005. Neural correlates of the proximity and quantity of anticipated food 

rewards in the ventral striatum of domestic chicks. European Journal of Neuroscience, 22: 1502-1512. 

 

Jentsch JD, Taylor JR. 1999. Impulsivity resulting from frontostriatal dysfunction in drug abuse: 

implications for the control of behavior by reward-related stimuli. Psychopharmacology (Berl.), 146: 373-

390. 

 

Joëls M, Baram TZ. 2009. The neuro-symphony of stress. Nature Reviews Neuroscience, 10: 459-466. 

 

Johansen EB, Aase H, Meyer A, Sagvolden T. 2002. Attention-deficit/hyperactivity disorder (ADHD) 

behaviour explained by dysfunctioning reinforcement and extinction processes. Behavioural Brain 

Research, 130: 37-45. 

 

Jonah BA. 1997. Sensation seeking and risky driving: a review and synthesis of the literature. Accident 

Analysis and Prevention, 29: 651-665. 

 



79 
 

Kabbaj M, Devine DP, Savage VR, Akil H. 2000. Neurobiological correlates of individual differences in 

novelty-seeking behavior in the rat: differential expression of stress-related molecules. Journal of 

Neuroscience, 20: 6983-6988. 

 

Kelley AE and Berridge K. 2002. The neuroscience of natural rewards: relevance to addictive drugs. The 

Journal of Neuroscience, 22: 3306-3311.   

 

Kieres AK, Hausknecht KA, Farrar AM, Acheson A, de Wit H, Richards JB. 2004. Effects of morphine and 

naltrexone on impulsive decision making in rats. Psychopharmacology, 173: 167-174. 

 

Kirby KN, Petry NM. 2004. Heroin and cocaine abusers have higher discount rates for delayed rewards 

than alcoholics or non-drug-using controls. Addiction, 99: 461-471. 

 

Kirby KN, Petry NM, Bickel WK. 1999. Heroin addicts have higher discount rates for delayed rewards than 

non-drug-using controls. Journal of Experimental Psychology: General, 128: 78-87. 

 

Klemcke HG. 1995. Placental metabolism of cortisol at mid- and late gestation in swine. Biology of 

Reproduction, 53: 1293-1301. 

 

Knutson B, Adams CM, Fong GW, Hommer D. 2001. Anticipation of increasing monetary reward 

selectively recruits nucleus accumbens. Journal of Neuroscience, 21: RC159. 

 

Kofman O. 2002. The role of prenatal stress in the etiology of developmental behavioural disorders. 

Neuroscience and Biobehavioral Reviews, 26: 457-470. 

 

Koob GF, Le Moal M. 2005. Neurobiology of Addiction. Academic Press: London. 

 

Koob, GF, Kreek MJ. 2007. Stress, Dysregulation of Drug Reward Pathways, and the transition to drug 

dependence.  American Journal of Psychiatry, 164: 1149-1159. 

 

Kreek M, Nielsen D, Butelman E, Laforge K. 2005. Genetic influences on impulsivity, risk taking, stress 

responsivity and vulnerability to drug abuse and addiction. Nature Neuroscience, 8: 1450-1457. 

 



80 
 

Krishnan-Sarin S, Reynolds B, Duhig AM, Smith A, Liss T, McFetridge A, Cavallo DA, Carroll KM, Potenza 

MN. 2007. Behavioral impulsivity predicts treatment outcome in a smoking cessation program for 

adolescent smokers. Drug Alcohol Dependence, 88: 79-82. 

 

Laine TP, Ahonen A, Rasanen P, Tiihonen J. 2001. Dopamine transporter density and novelty seeking 

among alcoholics. Journal of Addictive Diseases, 20: 91-96. 

 

Leão P, Sousa JC, Oliveira M, Silva R, Almeida OF, Sousa N. 2007. Programming effects of antenatal 

dexamethasone in the developing mesolimbic pathways. Synapse, 61: 40-49. 

 

Li TK. 2000. Pharmacogenetics of responses to alcohol and genes that influence alcohol drinking. Journal 

of Studies on Alcohol and Drugs, 61: 5-12. 

 

Li C-SR, Milivojevic V, Kemp KA, Hong K, Sinha R. 2006. Performance monitoring and stop signal 

inhibition in abstinent patients with cocaine dependence. Drug Alcohol Dependence, 85: 205-212. 

 

Liggins  GC, Howie  RN.  1972.  A  controlled  trial  of  antepartum  glucocorticoid  treatment  for 

prevention  of  the respiratory distress syndrome in premature infants. Pediatrics, 50: 515-525. 

 

Limosin F, Loze JY, Dubertret C, Gouya L, Ades J, Rouillon F, Gorwood P. 2003. Impulsiveness as the 

intermediate link between the dopamine receptor D2 gene and alcohol dependence. Psychiatric Genetics, 

13: 127-129. 

 

Lin JS, Hou Y, Jouvet M. 1996. Potential brain neuronal targets for amphetamine-, methylphenidate-, and 

modafinil-induced wakefulness, evidenced by c-fos immunocytochemistry in the cat. Proceedings of the 

National Academy of Sciences of the United States of America, 93: 14128-14133. 

 

Logan GD. 1994. On the ability to inhibit thought and action. A users’guide to the stop signal paradigm. 

Inhibitory processes in attention, memory and language. Dagenbach D, Carr TH, eds. San Diego (CA): 

Academic Press: 189-236. 

 

Logan GD, Cowan WB. 1984. On the ability to inhibit thought and action—a theory of an act of control. 

Psychological Review, 91: 295-327. 

 



81 
 

Lunghi L, Pavan B, Biondi C, Paolillo R, Valerio A, Vesce F, Patella A. 2010. Use of glucocorticoids in 

pregnancy. Current Pharmaceutical Design, 16: 3616-3637. 

 

Lupien SJ, Fiocco A, Wan N, Maheu F, Lord C, Schramek T, Tu MT. 2005. Stress hormones and human 

memory function across the lifespan. Psychoneuroendocrinology, 30: 225-242. 

 

Lupien SJ, McEwen BS, Gunnar MR, Heim C. 2009. Effects of stress throughout the lifespan on the brain, 

behaviour and cognition. Nature Reviews Neuroscience, 10: 434-445. 

 

Maccari S, Darnaudery M, Morley-Fletcher S, Zuena AR, Cinque C, Van Reeth O. 2003. Prenatal stress 

and long-term consequences: implications of glucocorticoid hormones. Neuroscience and Biobehavioral 

reviews, 27: 119-127. 

 

Madden GJ, Petry NM, Badger GJ, Bickel WK. 1997. Impulsive and self-control choices in opioid-

dependent patients and non- drug-using control participants: Drug and monetary rewards. Experimental 

and Clinical Psychopharmacology, 5: 256-262. 

 

Mann JJ, Brent DA, Arango V. 2001. The neurobiology and genetics of suicide and attempted suicide: a 

focus on the serotonergic system. Neuropsychopharmacology, 24: 467-477. 

 

Mar AC, Walker ALJ, Theobald DE, Eagle DM, Robbins TW. 2011. Dissociable Effects of Lesions to 

Orbitofrontal Cortex Subregions on Impulsive Choice in the Rat. Journal of Neuroscience, 31: 6398-6404. 

 

Martin PD, Ono T. 2000. Effects of reward anticipation, reward presentation, and spatial parameters on 

the firing of single neurons recorded in the subiculum and nucleus accumbens of freely moving rats. 

Behavioural Brain Research, 116: 23-38. 

 

Meaney MJ, Diorio J, Francis D, Widdowson J, LaPlante P, Caldji C, Sharma S, Seckl JR, Plotsky PM. 

1996. Early environmental regulation of forebrain glucocorticoid receptor gene expression: implications for 

adrenocortical responses to stress. Developmental Neuroscience, 18: 49-72. 

 

Meyer JS. 1983. Early adrenalectomy stimulates subsequent growth and development of the rat brain. 

Experimental Neurology, 82: 432-446. 

 

Mitchell SH. 1999. Measures of impulsivity in cigarette smokers and non-smokers. Psychopharmacology 



82 
 

(Berl), 146: 455-464. 

 

Miyazaki K, Mogi E, Araki N, Matsumoto G. 1998. Reward-quality dependent anticipation in rat nucleus 

accumbens. Neuroreport, 9: 3943-3948. 

 

Mobini S, Body S, Ho MY, Bradshaw CM, Szabadi E, Deakin JF, et al. 2002. Effects of lesions of the 

orbitofrontal cortex on sensitivity to delayed and probabilistic reinforcement. Psychopharmacology, 160: 

290-298. 

 

Molander AC, Mar A, Norbury A, Steventon S, Moreno M, Caprioli D, Theobald DEH, Belin D, Everitt BJ, 

Robbins TW, Dalley JW. 2011. High impulsivity predicting vulnerability to cocaine addiction in rats: some 

relationship with novelty preference but not novelty reactivity, anxiety or stress. Psychopharmacology, 215: 

721-731. 

 

Morilak DA, Barrera G, Echevarria J, Garcia AS, Hernandez A, Ma S, Petre CO. 2005. Role of brain 

norepinephrine in the behavioral response to stress. Progress in Neuro-Psychopharmacology and 

Biological Psychiatry, 29: 1214-1224. 

 

McArthur S, McHale E, Dalley JW, Buckingham JC, Gillies GE. 2005. Altered mesemcephalic 

dopaminergic populations in adulthood as a consequence of brief perinatal glucocorticoid exposure. 

Journal of Neuroendocrinology, 17: 475-482. 

 

McEwen BS. 2007. Physiology and neurobiology of stress and adaptation: central role of the brain. 

Physiological Reviews, 87: 873-904. 

 

McEwen BS, De Kloet ER, Rostene WH. 1986. Adrenal steroid receptors and actions in the nervous 

system. Physiological Reviews, 66: 1121-1150. 

 

McEwen BS, Seeman T. 1999. Protective and damaging effects of mediators of stress: elaborating and 

testing the concepts of allostasis and allostatic load. Annals of New York Academy of Sciences, 896: 30-

47. 

 

Meyer JS. 1983. Early adrenalectomy stimulates subsequent growth and development of the rat brain. 

Experimental Neurology, 82: 432-446. 

 



83 
 

Muir JL, Everitt BJ, Robbins TW. 1996. The cerebral cortex of the rat and visual attentional function: 

Dissociable effects of mediofrontal, cingulate, anterior dorsolateral, and parietal cortex lesions on a five-

choice serial reaction time task. Cerebral Cortex, 6: 470-481. 

 

Muir JL, Fischer W, Björklund A. 1999. Decline in Visual Attention and Spatial Memory in Aged Rats. 

Neurobiology of Aging, 20: 605-615. 

 

Nestler EJ, Barrot M, Self DW. 2001. ∆FosB: a sustained molecular switch for addiction. Proceedings of 

the National Academy of Science, 98: 11042-11046. 

 

Newnham JP, Moss TJ. 2001. Antenatal glucocorticoids and growth: single versus multiple doses in 

animal and human studies. Seminars in Neonatology, 6: 285-292.  

 

Nyirenda MJ, Lindsay RS, Kenyon CJ, Burchell A, Seckl JR. 1998. Glucocorticoid exposure in late 

gestation permanently programs rat hepatic phosphoenolpyruvate carboxykinase and glucocorticoid 

receptor expression and causes glucose intolerance in adult offspring. Journal of Clinical Investigation, 

101: 2174-2181. 

 

Ohmura Y, Takahashi T, Kitamura N. 2005. Discounting delayed and probabilistic monetary gains and 

losses by smokers of cigarettes. Psychopharmacology, 182: 508-515. 

 

Oliveira M, Bessa J, Mesquita A, Tavares H, Carvalho A, Silva R, Pêgo JM, Cerqueira J, Palha J, Almeida 

O, Sousa N. 2006. Induction of a Hyperanxious state by antenatal dexamethasone: a case for less 

detrimental natural corticosteroids. Biological Psychiatry, 59: 844-852. 

 

Oliveira M, Rodrigues AJ, Leão P, Cardona D, Pêgo JM, Sousa N. 2012. The bed nucleus of stria 

terminalis and the amygdala as targets of antenatal glucocorticoids. Psychopharmacology, 220: 443-453. 

 

Olmstead, M. C. 2006. Animal models of drug addiction: Where do we go from here? Quarterly Journal of 

Experimental Psychology, 59: 625-653. 

 

Ortner CN, MacDonald TK, Olmstead MC. 2003. Alcohol intoxication reduces impulsivity in the delay 

discounting paradigm. Alcohol and Alcoholism, 38: 151-156.  

 



84 
 

Paine TA., Dringenberg HC, Olmstead MC. 2003. Effects of chronic cocaine on impulsivity: Relation to 

cortical serotonin mechanisms. Behavioural Brain Research, 147: 135-147. 

 

Palmiter RD. 2008. Dopamine signaling in the dorsal striatum is essential for motivated behaviors: 

lessons from dopamine-deficient mice. Annals of the New York Academy of Sciences, 1129: 35-46. 

 

Parkinson JA, Willoughby PJ, Robbins TW, Everitt BJ. 2000. Disconnection of the anterior cingulate cortex 

and nucleus accumbens core impairs Pavlovian approach behavior: Further evidence for limbic cortical–

ventral striatopallidal systems. Behavioral Neuroscience, 114: 42-63. 

 

Pattij Tommy, Vanderschuren LJMJ. 2008. The neuropharmacology of impulsive behaviour. Trends in 

Pharmacological Sciences, 29: 192-199. 

 

Patton JH, Stanford MS, Barratt ES. 1995. Factor structure of the Barratt impulsiveness scale. Journal of 

Clinical Psychology, 51: 768-774. 

 

Paulus MP, Tapert SF, Schuckit MA. 2005. Neural activation patterns of methamphetamine-dependent 

subjects during decision making predict relapse. Archives of General Psychiatry, 62: 761-768. 

 

Paxinos G, Watson C. 2007. The rat brain in stereotaxic coordinates. Academic, San Diego. 

 

Perry JL, Carroll ME. 2008. The role of impulsive behavior in drug abuse. Psychopharmacology, 200: 1-

26. 

 

Perry JL, Larson EB, German JP, Madden GJ, Carroll ME. .2005. Impulsivity (delay discounting) as a 

predictor of acquisition of IV cocaine self-administration in female rats. Psychopharmacology (Berl), 178: 

193-201. 

 

Perry JL, Nelson SE, Carroll ME. 2008. Impulsive choice as a predictor of acquisition of IV cocaine self-

administration and reinstatement of cocaine-seeking behavior in male and female rats. Experimental and 

Clinical Psychopharmacology, 16: 165-177. 

 

Petry NM. 2001. Delay discounting of money and alcohol in actively using alcoholics, currently abstinent 

alcoholics, and controls. Psychopharmacology, 154: 243-250. 

 



85 
 

Piazza PV, Deminiere JM, Le Moal M, Simon H. 1989. Factors that predict individual vulnerability to 

amphetamine self-administration. Science, 245: 1511-1513. 

 

Piazza PV, Le Moal M. 1996. Pathophysiological basis of vulnerability to drug abuse: role of an interaction 

between stress, glucocorticoids, and dopaminergic neurons.  Annual reviews in Pharmacology and 

Toxicology, 36: 359-378. 

 

Plotsky PM, Meaney MJ. 1993. Early, postnatal experience alters hypothalamic corticotropin-releasing 

factor CRF mRNA, median eminence CRF content and stress‐induced release in adult rats. Brain 

Research Molecular Brain Research, 18: 195‐200. 

 

Puma C, Baudoin C, Bizot JC. 1998. Effects of intraseptal infusions of N-methyl-D-aspartate receptor 

ligands on memory in an object recognition task in rats. Neuroscience Letters, 244: 97-100. 

 

Puurunen K, Koistinaho J, Sirviö J, Jolkkonen J, Sivenius J. 2001. Enriched-environment housing 

increases neuronal Fos-staining in the dentate gyrus after a water maze spatial learning task. 

Neuropharmacology, 40: 440-447.  

 

Rachlin H, Green L. 1972. Commitment, choice and self-control. Journal of the Experimental Analysis of 

Behavior, 17: 15-22. 

 

 

 

Reynolds B, Ortengren A, Richards JB, de Wit H. 2006. Dimensions of impulsive behavior: personality and 

behavioral measures. Personality and Individual Differences, 20: 305-315. 

 

Reynolds B, Richards JB, Horn K, Karraker K. 2004. Delay discounting and probability discounting as 

related to cigarette smoking status in adults. Behavioural Processes, 65: 35-42. 

 

Rich-Edwards JW, Stampfer MJ, Manson JE, Rosner B, Hankinson SE, Colditz GA, Willett WC, Hennekens 

CH. 1997. Birth weight and risk of cardiovascular disease in a cohort of women followed up since 1976. 

British Medical Journal, 315: 396-400. 

 

Richards JB, Zhang L, Mitchell SH, de Wit H. 1999. Delay or probability discounting in a model of 

impulsive behavior: Effect of alcohol. Journal of the Experimental Analysis of Behavior, 71: 121-143. 



86 
 

 

Richardson NR, Gratton A. 1998. Changes in medial prefrontal cortical dopamine levels associated with 

response-contingent food reward: An electrochemical study in rat. Journal of Neuroscience, 18: 9130-

9138. 

 

Robbins TW. 2002. The 5-choice serial reaction time task: behavioural pharmacology and functional 

neurochemistry. Psychopharmacology (Berl), 163: 362-380. 

 

Robbins TW, Everitt BJ. 1996. Neurobehavioural mechanisms of reward and motivation. Current Opinion 

in Neurobiology, 6: 228-236. 

 

Robbins TW, Cardinal RN, Di Ciano P, Halligan PW, Hellemans KGC, Lee JLC, et al. 2005. Neuroscience 

of drugs and addiction [Foresight: Brain Science, Addiction and Drugs project; www.foresight.gov.uk]. 

London, UK: UK Office of Science and Technology. 

 

Roberts S. 1981. Isolation of an internal clock. Journal of Experimental Psychology: Animal Behavior 

Processes, 7: 242-268. 

 

Robinson TE, Berridge KC. 2003. Addiction. Annual Review of Psychology. 54: 25-53. 

 

Rodrigues AJ, Leão P, Carvalho M, Almeida OFX, Sousa N. 2011. Potential programming effects of 

dopaminergic circuits by early life stress. Psychopharmacology, 214: 107-120.    

 

Rodrigues AJ, Leão P, Pêgo JM, Cardona D, Carvalho MM, Oliveira M, Costa BM, Carvalho AF, Morgado 

P, Araújo D, Palha JA, Almeida OFX, Sousa N. 2011. Mechanisms of initiation and reversal of drug-

seeking behavior induced by prenatal exposure to glucocorticoids. Molecular Psychiatry, 1-11. 

 

Roque S, Oliveira TG, Nobrega C, Barreira- Silva P, Nunes - Alves C, Sousa N, Palha JÁ, Correia- Neves  

M. 2011. Interplay between depressive - like behavior and the immune system in an animal model of 

prenatal dexamethasone administration. Frontiers in Behavioral Neuroscience, 5: 1-8.   

 

Sagvolden T, Aase H, Zeiner P, Berger D. 1998. Altered reinforcement mechanisms in attention-

deficit/hyperactivity disorder. Behavioural Brain Research, 94: 61-71. 

 



87 
 

Salinas JA., McGaugh, JL. 1996. The amygdala modulates memory for changes in reward magnitude: 

Involvement of the amygdaloid GABAergic system. Behavioural Brain Research, 80: 87-98.  

 

Salinas, JA, Packard MG, McGaugh JL. 1993. Amygdala modulates memory for changes in reward 

magnitude: Reversible post- training inactivation with lidocaine attenuates the response to a reduction in 

reward. Behavioural Brain Research, 59: 153-159. 

 

Sapolsky RM, Romero LM, Munck AU. 2000. How do glucocorticoids influence stress responses? 

Integrating permissive, suppressive, stimulatory, and preparative actions. Endocrine Reviews, 21: 55-89. 

 

Schachar R, Logan GD, Robaey P, Chen S, Ickowicz A, Barr C. 2007. Restraint and cancellation: multiple 

inhibition deficits in attention deficit hyperactivity disorder. Journal of Abnormal Child Psychology, 35: 229-

238. 

 

Schmidt CA, Fallon AE, Coccaro EF. 2004. Assessment of behavioral and cognitive impulsivity: 

development and validation of the Lifetime History of Impulsive Behaviors Interview. Psychiatry Research, 

126: 107-121. 

 

Schultz W. 1998. Predictive reward signal of dopamine neurons. Journal of Neurophysiology, 80: 1-27. 

 

Schultz W, Apicella P, Scarnati E, Ljungberg T. 1992. Neuronal activity in monkey ventral striatum related 

to the expectation of reward. Journal of Neuroscience, 12: 4595-4610. 

 

Schultz W, Dickinson A. 2000. Neuronal coding of prediction errors. Annual Review of Neuroscience, 23: 

473-500.  

 

Schultz W, Tremblay L, Hollerman JR. 1998. Reward prediction in primate basal ganglia and frontal 

cortex. Neuropharmacology, 37: 421-429. 

 

Seckl JR. 2004. Prenatal glucocorticoids and long-term programming. European Journal of Endocrinology, 

151: U49-U62. 

 

Seckl JR. 2007. Glucocorticoids, developmental ‘programming’ and the risk of affective dysfunction. 

Progress in Brain Research, 167: 17-34. 

 



88 
 

Sher KJ, Bartholow BD, Wood MD. 2000. Personality and substance use disorders: a prospective study. 

Journal of Consulting and  Clinical Psychology, 68: 818-829. 

 

Stein MB, Koverola C, Hanna C, Torchia MG, McClarty B. 1997. Hippocampal volume in women 

victimized by childhood sexual abuse. Psychological Medicine, 27: 951-959. 

 

Stratakis CA, Chrousos, GP. 1995. Neuroendocrinology and pathophysiology of the stress system. Annals 

of the New York Academy of Sciences, 771: 1-18. 

 

Swann AC, Bjork JM, Moeller FG, Dougherty DM. 2002. Two models of impulsivity: relationship to 

personality traits and psychopathology. Biological Psychiatry, 51: 988–994. 

 

Tegethoff M, Pryce C, Meinlschmidt G. 2009. Effects of intrauterine exposure to synthetic glucocorticoids 

on fetal, newborn and infant hypothalamic-pituitary-adrenal axis function in humans: a systematic review. 

Endocrine Reviews, 30: 753-789. 

 

Tomie A, Aguado AS, Pohorecky LA, Benjamin D. 1998. Ethanol induces impulsive-like responding in a 

delay-of-reward operant choice procedure: Impulsivity predicts autoshaping. Psychopharmacology, 139: 

376-382. 

 

Trautman PD, Meyer-Bahlburg, Postelnek J, New MI. 1995. Effects or early prenatal  dexamethasone  of  

the cognitive and behavioural development of young children: results of a pilot study. 

Psychoneuroendocrinology, 20: 439-449. 

 

Tzschentke TM. 2000. The medial prefrontal cortex as a part of the brain reward system. Amino Acids, 

19: 211-219. 

 

Ulrich-Lai YM, Herman JP. 2009. Neural regulation of endocrine and autonomic stress responses. Nature 

Reviews Neuroscience, 10: 397-409. 

 

Verdejo-Garcia A, Perez-Garcia M. 2007. Ecological assessment of executive functions in substance 

dependent individuals. Drug Alcohol Dependence, 90: 48-55. 

 

Vollmer RR. 1996. Selective neural regulation of epinephrine and norepinephrine cells in the adrenal 

medulla – cardiovascular implications. Clinical and Experimental Hypertension, 18: 731-751.  



89 
 

 

Vuchinich RE, Calamas ML. 1997. Does the repeated gambles procedure measure impulsivity in social 

drinkers? Experimental and Clinical Psychopharmacology, 5: 157-162. 

 

Wade TR, de Wit H, Richards JB. 2000. Effects of dopaminergic drugs on delayed reward as a measure of 

impulsive behavior in rats. Psychopharmacology, 150: 90-101. 

 

Walton ME, Bannerman DM, Alterescu K, Rushworth MF. 2003.Functional specialization within medial 

frontal cortex of the anterior cingulate for evaluating effort-related decisions. Journal of Neuroscience, 23: 

6475-6479.  

 

Walton ME, Bannerman DM, Rushworth MF. 2002. The role of rat medial frontal cortex in effort-based 

decision making. Journal of Neuroscience, 22: 10996-11003. 

 

Weiss EL, Longhurst JG and Mazure CM. 1999. Childhood sexual abuse as a risk factor for depression in 

women: psychosocial and neurobiological correlates. American Journal of Psychiatry, 156: 816-828.   

 

Welberg LAM, Seckl JR. 2001. Prenatal stress, glucocorticoids and the programming of the brain. Journal 

of Neuroendocrinology, 13: 113-128. 

 

Welberg LAM, Seckl JR, Holmes MC. 2001. Prenatal glucocorticoid programming of brain corticosteroid 

receptors and corticotrophin-releasing hormone: possible implications for behaviour. Neuroscience, 104: 

71-79. 

 

Whiteside SP, Lynam DR. 2001. The Five Factor Model and impulsivity: using a structural model of 

personality to understand impulsivity. Personality and Individual Differences, 30: 669-689. 

 

Wills TA, Vaccaro D, McNamara G. 1994. Novelty seeking, risk taking, and related constructs as 

predictors of adolescent substance use: an application of Cloninger’s theory. Journal of  Substance Abuse, 

6: 1-20. 

 

Winstanley CA, Eagle DM, Robbins TW. 2006. Behavioral models of impulsivity in relation to ADHD: 

Translation between clinical and pre-clinical studies. Clinical Psychology Review, 26: 379-395. 

 

Winstanley CA, Dalley JW, Theobald, DE, Robbins TW. 2004a. Fractionating impulsivity: Contrasting 



90 
 

effects of central 5-HT depletion on different measures of impulsive behavior. Neuropsychopharmacology, 

29: 1331-1343.  

 

Winstanley CA, Theobald DE, Cardinal RN, Robbins TW. 2004b. Contrasting roles of basolateral amygdala 

and orbitofrontal cortex in impulsive choice. Journal of Neuroscience, 24: 4718-4722. 

 

Woicik PA, Stewart SH, Pihl RO, Conrod PJ. 2009. The substance use risk profile scale: a scale measuring 

traits linked to reinforcement- specific substance use profiles. Addictive Behaviors, 34: 1042-1055. 

 

Woolley ML, Marsden CA, Sleight AJ, Fone KC. 2003. Reversal of a cholinergic-induced deficit in a rodent 

model of recognition memory by the selective 5-HT6 receptor antagonist, Ro 04-6790. 

Psychopharmacology (Berl), 170: 358-367. 

 

Young SE, Stallings MC, Corley RP, Krauter KS, Hewitt JK. 2000. Genetic and environmental influences 

on behavioral disinhibition. American Journal of Medical Genetics Part A, 96: 684-695. 

 

Zuckerman M, Ball S, Black J. 1990. Influences of sensation seeking, gender, risk appraisal, and 

situational motivation on smoking. Addictive Behaviors, 15: 209-220. 

 

Zuckerman M, Kuhlman DM. 2000. Personality and risk-taking: common biosocial factors. Journal of 

Personality, 68: 999–1029. 

Zuckerman M, Neeb M. 1979. Sensation seeking and psychopathology. Psychiatry Research, 1: 255-264. 

 

 

 


