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Abstract

Record linkage enables survey data to be integrated with other data sources, expanding the 

analytic potential of both sources. However, depending on the number of records being linked, the 

processing time can be prohibitive. This paper describes a case study using a supervised machine 

learning algorithm, known as the Sequential Coverage Algorithm (SCA). The SCA was used to 

develop the join strategy for two data sources, the National Center for Health Statistics’ (NCHS) 

2016 National Hospital Care Survey (NHCS) and the Center for Medicare & Medicaid Services 

(CMS) Enrollment Database (EDB), during record linkage. Due to the size of the CMS data, 

common record joining methods (i.e. blocking) were used to reduce the number of pairs that need 

to be evaluated to identify the vast majority of matches. NCHS conducted a case study examining 

how the SCA improved the efficiency of blocking. This paper describes how the SCA was used to 

design the blocking used in this linkage.

Keywords

National Center for Health Statistics; Centers for Medicare & Medicaid Services; National 
Hospital Care Survey; record linkage; blocking; machine learning

1. Introduction

Within the past decade, interest in the benefits and utility of machine learning (ML) has been 

rapidly growing [1]. ML algorithms that efficiently process large data have replaced time

consuming ad hoc data processing techniques. ML techniques such as the method described 

by Giang which uses the Probably Approximately Correct (PAC) learning theory [2] and 
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the Sequential Coverage Algorithm (SCA) described by Michelson and Knoblock [3] have 

been developed to improve the efficiency of record linkage processes. In general, to perform 

record linkage, a set of potential links are produced by joining two data sources. These 

potential links are then further processed by a set of deterministic rules and/or probabilistic 

methods. Common strategies used to join data sources are typically developed ad-hoc (i.e. 

for a particular task at hand rather than for general usage), which require the judgment of a 

professional and result in extended processing time. Supervised ML1 algorithms, however, 

can be designed to quickly develop a strategy that that accurately and efficiently join the data 

sources in a timely manner still capturing the vast majority of true matches.

Record linkage enables survey data to be linked to other data sources, expanding the analytic 

potential of both sources of data. Through its Data Linkage Program, the National Center 

for Health Statistics (NCHS) has successfully completed linkages of NCHS survey data to 

health-related administrative data sources. More information on this program can be found 

here: https://www.cdc.gov/nchs/data-linkage/index.htm. The resulting linked files expand 

upon the analytic utility of both the survey and administrative files, enabling researchers to 

answer complex questions and perform additional analyses that would not be possible when 

working with the files individually.

Recently, NCHS linked the 2016 National Hospital Care Survey (NHCS), which consists of 

patient- level inpatient (IP) and emergency department (ED) encounter records captured in 

UB-04 hospital claims and electronic health records (EHRs) provided by 158 hospitals, to 

CMS administrative data [4]. The 2016 NHCS linkage with the CMS Medicare Enrollment 

Database (EDB) involved matching 5.6 million (106) NHCS records and 84.6 million CMS 

Medicare enrollment records. Larger file sizes have a direct impact on the methods that can 

be used to join two files, due to the time and the computational memory needed to process 

and store the files.

NCHS conducted a case study exploring how to incorporate ML techniques using the SCA 

to improve upon traditional ad hoc joining methods. Blocking is a commonly used technique 

in record linkage to join records between two data sources creating potential links. Records 

to be joined are grouped into blocks based on specified grouping values that agree. For 

example, records representing individuals can be grouped into blocks based on personally 

identifiable information (PII) (e.g. first name, day of birth, year of birth, and state of 

residence, etc.) [5]. Each blocking pass consists of one or more variables that define blocks, 

which together are called the blocking key. The goal of blocking is to develop a set of 

blocking passes that minimize processing time without compromising the completeness of 

developed links. Efficient join criteria should minimize the number of pairs that need to be 

evaluated to identify most of the true matches [6].

This paper will describe the SCA ML process in detail. The paper will conclude describing 

the case study and show how the SCA methods improved the efficiency of joining the data 

sources being linked, compared to an ad hoc blocking method.

1Supervised ML algorithms rely on a supervisory source that contains example records which are used by the algorithm during the 
learning process to infer output.
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2. Methods

2.1. Joining data to produce potential links for probabilistic linkage

In order to determine linkage status using probabilistic linkage methods, a set of potential 

links must be identified by joining records from the source data files. A Cartesian product, 

which generates all pairs between the files being linked, is the simplest join strategy. A 

Cartesian product, however, will generally be too large to be processed in a reasonable 

amount of time with given resources. Using the 2016 NCHS linkage to the CMS Medicare 

EDB as an example, performing a Cartesian product on 5.6 million 2016 NHCS records and 

84.6 million CMS Medicare EDB would have resulted in approximately 475.8 trillion (1012) 

potential linkage candidates. Due to computational limitations, generating and processing 

475.8 trillion records was not a feasible option. Typically, techniques other than a Cartesian 

product are used when attempting to efficiently join two or more large data sources, the most 

common of which is blocking [6].

2.1.1. Blocking to join together two data sources—Developing a blocking strategy 

can be an inexact and challenging ad-hoc process. When correctly implemented, efficient 

blocking retains a smaller subset of potential links from the full cross-product comparison 

space but still includes the large majority of true matches. However, depending on the 

blocking strategy used, error may be introduced by removing true matches from being 

linked. Further, if the number of potential links is large, their evaluation can be quite 

resource-intensive.

2.1.2. Alternative blocking development method: Sequential Coverage 
Algorithm (SCA)—The SCA is a supervised ML algorithm designed to learn a set of 

efficient blocking keys that can used to form a blocking scheme, using both numeric 

and character variables. The SCA uses training data (i.e. the data sources that are being 

linked) and a validation dataset, also referred to as a truth deck, acting as the supervisory 

component. The truth deck is the subset of true matches, identified using deterministic 

linkage methods, from the full comparison space (i.e. Cartesian product of the NHCS and 

CMS datasets). A detailed description of the linkage method used is explained in Appendix 

I of “The Linkage of the 2016 National Hospital Care Survey to the 2016/2017 Centers for 

Medicare & Medicaid Services Medicare Enrollment, Claims/Encounters and Assessment 

Data: Matching Methodology and Analytic Considerations” [4]. A deterministic linkage 

was used to define the truth deck to avoid the time-intensive nature of a manual review 

and possible reviewer subjectivity of determining matches. While the truth deck does not 

necessarily need to rely on deterministic matches, prior research suggests that links from 

the deterministically matched truth deck may be similar to those not in the truth deck [7]. 

The goal of the SCA is to learn blocking keys that ‘balance’ the trade-off between the 

total number of records (i.e. potential links) that need to be evaluated in subsequent linkage 

processing and the number of captured truth deck records. In our case study, we use a 

modified version of the SCA described by Michelson and Knoblock [3]. Table 1 provides a 

brief listing of the additions to the SCA and the reason for their addition. These additions are 

described in greater detail throughout Section 2.1.2.1.
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2.1.2.1 SCA Routine: The SCA is an iterative algorithm, learning new blocking keys 

with each completed iteration. As previously mentioned, the blocking keys being learned 

by the SCA ‘balance’ the trade-off between the total number of potential links and the 

number of true matches (from the truth deck) captured by each key. The SCA achieves this 

balance through processes that measure the number of pairs reduced (reduction ratio) and 

the number of truth deck records captured (percent complete) by each blocking key [3].

The reduction ratio (RR) measures the magnitude by which the number of pairs in the 

comparison space has been reduced by the learned blocking key and is defined as,

RR = 1 − nb
Nc

(1)

where nb are the number of records identified by the blocking key and Nc are the number 

of records in the full cross product comparison space. The algorithm first described by 

Michelson and Knoblock [3] does not impose any restriction on the size (i.e. number of 

potential links) that are generated by a blocking key, and the method has the potential to 

generate overly large sets of potential links. To prevent this, we designed an approach to 

specify the maximum allowed number of generated pairs from each pass. This imposes a 

minimum allowed RR for a blocking key to be learned. For example, if the full comparison 

space NC = 475 trillion and the user requests that a blocking key cannot generate more than 

50 million potential links, the final RR of the blocking key must be at least

0.9999998947 = 1 −
50 106

475 1012 .

The percent complete (PC) measures the number of true matches that are captured by the 

learned blocking key and is defined as,

PC = tb
Tc

(2)

where tb are the number of true matches captured by the current blocking key and Tc are the 

total number of true matches in the truth deck Michelson and Knoblock [3] do not specify 

a stopping point for the SCA in terms of the total number of truth deck records captured by 

the SCA learned blocking scheme. Therefore, the SCA will continue learning blocking keys 

until all of the records in the truth deck are captured. In practice, after the majority of truth 

deck records have been covered by previously learned blocking keys, larger blocking passes 

are required to capture the few remaining truth deck records. To avoid this, the professional 

specifies the total proportion of coverage (TPC) that ends the development new blocking 

passes. The TPC measures the total proportion of truth deck records captured by all of the 

learned blocking keys. The TPC is computed by totaling the number of unique truth deck 

records captured across all blocking keys in the blocking scheme and dividing by the total 

number of records in the truth deck and is defined as,
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TPC =
∑i = 1

b ti′
Tc

(3)

Where ti′ represent the set of unique truth deck records (i.e. not identified by any other 

blocking key) captured by the blocking key.

The RR and the PC dictate the decisions made by the SCA on which block variables to add 

to the blocking key. Further, the newly introduced maximum block size and TPC inform the 

SCA whether the blocking key is expected to generate too many records and should attempt 

to add additional block variables to increase the RR and when to stop adding additional 

blocking keys to the scheme, respectively. The professional using the SCA specifies the 

TPC, PC, and maximum allowed block size (i.e. number of potential links) that the SCA 

should use when learning blocking keys.

The SCA is structured into three sequential steps: (1) Learn Block, (2) Remove Covered 

Pairs, and (3) Optimize. The algorithm does not proceed to the next step until the previous 

step has completed. With each completed iteration of the three steps, the SCA will learn a 

new efficient blocking key to be retained in the blocking scheme.

2.1.2.2 Learn Block step: The Learn Block step methodically builds a blocking key, using 

the available block variables, that satisfies the RR and PC conditions. During this step, block 

variables continue to be added to the key as long as they improve upon the RR and do 

not lower the PC below the set minimum value: at each point, the variable added is the 

one which is determined to bring the greatest increase in the RR. Of note, the starting PC 

threshold can vary and is assigned by the professional. Higher PC threshold values will 

result in looser blocking keys, which generate a large number of potential links. Lower PC 

threshold values on the other hand, result in strict blocking keys as the proportion of true 

matches needed in each key is low. Michelson and Knoblock’s research recommends setting 

the initial PC threshold value at 0.5, meaning the blocking key will capture at least 50% of 

the available truth deck records [3].

In the approach described by Michelson and Knoblock [3], the SCA may learn a blocking 

key that would generate a prohibitively large number of potential links. To prevent this, 

the initial PC threshold can be lowered by a reduction factor of 0.05 (specified by the 

professional), which allows additional variables to be added to the blocking key thus 

reducing the number of potential links being generated. At the end of the Learn Block step, 

SCA verifies (1) that the blocking key has at least three block variables and (2) generates 

less than the specified maximum number of potential links. If both of those conditions are 

met, the SCA will continue to the next step, Remove Covered Pairs. Otherwise, the PC 

threshold is further reduced again by 0.05 and the SCA continues with the Learn Block step, 

adding as many block variables as possible that meet the newly reduced PC threshold. When 

SCA is unable to add any additional block variables, it will begin to exit the Learn Block 

step and re-evaluate the previously mentioned conditions. This process continues to iterate 
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within the Learn Block step until the expected number of generated potential pairs no longer 

exceeds the maximum allowed or the PC reaches a set minimum of 0.05.

In the linkage of the 2016 NHCS to the CMS EDB, 0.05 (5%) subtractions to the PC (e.g. 

from 0.5 (50%) to 0.45 (45%)) were sufficient to be able to add new block variables that 

kept the number of pairs generated to 50 million when it would have been 400 million 

otherwise. Further, the PC was allowed to be lowered to 0.05 (5%) (i.e. the blocking key 

captured at least 5% of remaining truth deck records).

2.1.2.3 Remove Covered Pairs step: Following the learn block step, the SCA proceeds to 

the Remove Covered Pairs step. This removes the true matches captured by the previously 

learned blocking key from the truth deck used to develop the next blocking pass. Without 

their removal, the SCA will develop keys that are redundantly targeted to true matches that 

have been captured by previously learned keys. Recall, the specified PC dictates the amount 

of truth deck records that are captured by each learned blocking key. For example, if the 

PC is set to 0.5, then each of the learned blocking keys will capture at least 50% of the 

non-captured truth deck records. The first blocking key learned by the Learn Block step will 

capture at least 50% of the truth deck records. Next, the SCA will remove the truth deck 

records captured by this learned blocking key, leaving at most 50% of the truth deck. The 

next blocking key to be learned by the SCA will then cover at least 50% of the remaining 

non-captured truth deck records, representing 25% of all records in the truth deck. Each 

subsequently learned blocking key continues to halve the non-captured truth deck records 

(i.e. blocking key three will capture 12.5% of the truth deck records, blocking key four 

captures 6.25%, etc.). This process continues until very few non-captured records remain. 

Figure 1 (below) illustrates how the records in the truth deck are captured with the learning 

of each new blocking key.

2.1.2.4 Optimize step: Finally, the Optimize step removes learned blocking keys that are 

fully contained within a newly learned key. This final step prevents redundant blocking keys 

(i.e. the entire set of potential links from one blocking key are also fully contained within 

another blocking key) from being retained in the blocking scheme. For example, if SCA 

previously learned Blocking Key 1 = {First name, Last name, Year birth, State residence} 
and in a subsequent iteration learned Blocking Key 2 = {First name, Last name, Year birth}, 

the previous blocking key (blocking key 1) is fully contained in the new less restrictive key 

(blocking key 2) and blocking key 1 is removed as a blocking key.

The SCA sequentially iterates through each of the three steps (Learn Block, Remove 

Covered Pairs, and Optimize), adding and removing redundant learned blocking keys to 

and from the blocking scheme with each completed iteration. At the end of each iteration 

of the three steps, the SCA computes the TPC across all learned blocking keys, and then 

compares the result to the specified TPC target. The SCA continues to add blocking keys to 

the blocking scheme until either no new blocking keys can be learned from the remaining 

non-captured true matches or the total captured true matches across all learned blocking 

keys reaches the TPC target. Of note, the total number of potential links generated from a 

learned blocking scheme increases as a consequence of a higher specified TPC. As the TPC 

increases, additional blocking keys are generated to capture the additional truth deck records 
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(see Fig. 1 above). Figure 2 illustrates how the specified TPC affects the total number of 

potential links generated by the SCA learned blocking scheme.

Using Fig. 2 as an example, in order to capture 99% of the truth deck records, the SCA may 

learn 6 blocking keys which generate an estimated 45 million potential links. However, in 

order to capture 99.7% of the truth deck records, the SCA may learn 8 blocking keys which 

generate 100 million potential links. As a result of this 0.7% increase in the coverage of the 

truth deck the SCA learned 2 additional blocking keys that added an additional 55 million 

potential links that need to be evaluated. Professionals must decide which level of coverage 

is appropriate for the linkage they are conducting.

3. Case study

The SCA methodology described above was used in a recent linkage of NCHS survey data 

to CMS administrative data. The sources used in the linkage are described below. The SCA 

is compared to ad-hoc traditional methods used for blocking. The ad-hoc blocking methods 

used to define a join strategy included a single blocking key which retained record pairings 

that agreed on the last 4-digits of Social Security Number (SSN) or Health Insurance Claim 

Number (HICN), month of birth, day of birth, and sex. SSN is a unique identifier assigned to 

individuals by the Social Security Administration [8]. HICN, is a unique identifier assigned 

by CMS to each beneficiary enrolled in the Medicare health insurance program.

3.1. Data sources

3.1.1. National Hospital Care Survey Description—The NHCS is one of the NCHS 

National Healthcare Surveys, a family of surveys covering a wide spectrum of healthcare 

delivery settings from ambulatory and outpatient department (OPD) to hospital and long

term care providers. The NHCS is an establishment survey that collects patient encounter 

records for all IP, ED, and OPD episodes of care from participating surveyed hospitals. 

The goal of the NHCS is to provide reliable healthcare utilization data from hospital-based 

settings and is designed to be used by healthcare professionals, researchers, and policy 

makers seeking answers to crucial healthcare related questions. More detailed information 

regarding the types of hospitals, number of participating hospitals, and completeness of the 

PII collected in the 2016 NHCS is described elsewhere [4].

Although the NHCS is an establishment survey (i.e. the sampling frame are hospitals), 

patient PII are available on the reported hospital encounters which enables linkage of the 

NHCS with other healthcare related data sources such as CMS’ Medicare research data files. 

Patient PII includes SSN, HICN, full name (first, middle, and last), date of birth (month, day, 

and year), sex, 5-digit ZIP code and state of residence. Of note, prior to starting the linkage 

process of the 2016 NHCS to the CMS data, all PII variables from the NHCS were assessed 

for their linkage quality and only those patients with sufficient PII were eligible for linkage 

[4]. The analysis in this paper refers to the linkage of IP and ED encounter data for eligible 

patients from the 2016 NHCS to the CMS Medicare EDB.

3.1.2. CMS Medicare EDB—The CMS Medicare EDB is an administrative data system 

that stores PII for all eligible beneficiaries enrolled in the Medicare program. PII that are 

Campbell et al. Page 7

Stat J IAOS. Author manuscript; available in PMC 2021 August 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



stored in this system include, SSN, HICN, full name (first, middle initial, last), date of birth 

(month, day, and year), sex, 5-digit ZIP code and state of residence. Prior to starting the 

linkage process of the 2016 NHCS to the CMS data, CMS Medicare data were assessed for 

data quality and there were no issues to note in the variables used for blocking. Further, 

enrollment records for Medicare beneficiaries who expired before 2016 or who were born 

after 2016 were excluded. After the completion of the patient record linkage, corresponding 

2016–2017 CMS Medicare health care utilization data were extracted for the links made 

from the CMS Medicare EDB. These linked data files are available, upon request, to 

researchers through the NCHS and Federal Statistical Research Data Centers. Of note, 

patient PII are only used for linkage purposes and have been removed from all linked data 

files that are made available to researchers.

3.1.3. Training and supervisory data—The training data used were the 2016 NHCS 

and CMS Medicare EDB submission files. Prior to conducting linkage, the data values (i.e. 

PII) in each source were first subject to a cleaning routine that removed any invalid data 

values [4]. For example, SSN values that contained fewer than 9 digits were changed to 

a null value. Following this initial data pre-processing, the PII fields were combined into 

submission records for each data source. The truth deck that was used in this exercise (i.e. 

the linkage of the 2016 NHCS to CMS Medicare EDB) was the subset of true matches, from 

the full comparison space, identified using deterministic linkage methods. NHCS and CMS 

records that matched on exact SSN or HICN and match with a majority of non-missing other 

PII variables (e.g. name, date of birth) also in agreement were retained into the truth deck 

[4]. Ideally, the training and the truth deck (supervisory data) should be of high quality and 

diverse enough to cover as many true matches as possible [6]. Of note, available literature 

on the SCA does not specify the number of minimum records that are needed in the training 

data or truth deck. However, because the SCA learns using the records in the truth deck 

as training examples, a truth deck that contains very few records will likely result in poor 

learning. Therefore, the truth deck should contain as many examples (i.e. records pairs) as 

the data allow.

4. Results of case study

4.1. Ad hoc blocking methods

In the linkage of the 2016 NHCS to the CMS Medicare EDB there were 1,598,511 records 

in the truth deck that were used to compare the results of two blocking strategy design 

approaches (traditional ad hoc methods and SCA). The first method relied on an ad hoc 

method of specifying blocking passes (i.e., the blocking keys associated with them) based 

on professional judgement. Table 2 provides information on the number of potential links 

returned by the ad hoc blocking rule (agreement on the last 4-digits of SSN or HICN, month 

of birth, day of birth, and sex), and the percentage of the truth deck that was captured by the 

rule.

Table 2 shows that the single blocking key generates approximately 11.4 million potential 

links and captures 96.8% of the truth deck matched pairs. Of note, because the key requires 

that each of the paired records have non-missing values for the variables compared, records 
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that have missing values for any of the blocking key values will not be included in generated 

pairs. For example, 71.9% of the patients in the 2016 NHCS did not have an SSN or HICN, 

and therefore would be excluded from any further linkage analysis using the ad-hoc key, 

even as they may very well have a correct match from the EDB.

Because of the potential shortcoming with the ad hoc methods noted previously, NCHS 

explored the use of SCA. Results for the SCA method are provided in Section 4.2 (below). 

The section provides the total number of potential links and truth deck coverage for the SCA 

learned blocking scheme.

4.2. SCA performance

In the production run of the 2016 NHCS linkage to CMS Medicare EDB, the SCA 

used a 33% sample of the 2016 NHCS and CMS Medicare EDB linkage submission 

files (described in Section 3.2) as the training data and their corresponding deterministic 

matches from the truth deck as the supervisory source used to develop the blocking schemes 

described below. Further, a starting PC threshold value of 0.5 and requested a TPC of 99.8% 

(i.e. the blocking scheme should capture at least 99.8% of records in the truth deck). Lastly, 

we specified a maximum block size of 50 million pairs.

The SCA version used in the production run of the 2016 NHCS linkage to the CMS 

Medicare EDB produced a blocking scheme of 6 blocking keys. Table 3 lists the 6 blocking 

keys, the number of generated potential links, and the number of truth deck records captured 

by each.

The 6 blocking keys learned by the SCA generated a total of 101.8 million potential links 

that would later be processed by probabilistic linkage methods. Note that the 101.8 million 

potential links (which include duplicated pairs) include records without SSN and HICN, 

which would have been excluded by the ad-hoc blocking scheme described above. Because 

the 6 blocking keys are not mutually exclusive, i.e. potential links identified in one blocking 

key may be identified in others, the TPC cannot be computed from Table 3. Instead it was 

computed by identifying the set of unique truth deck records across all 6 blocking keys and 

dividing by the total number of records in our truth deck. The 6 blocks captured 1,578,912 

(98.8%) of the total 1,598,511 records in our truth deck. The SCA was unable to capture 

the additional 1% of truth deck records needed to satisfy the requested 99.8% TPC without 

creating a substantially large blocking key (greater than the 50 million maximum) so the 

algorithm stopped before reaching that coverage. This was caused by matches in the truth 

deck with fewer matching block variables.

5. Conclusion

The SCA, a supervised ML algorithm, was used to join the 2016 NHCS and CMS Medicare 

EDB data sources. While both the ad-hoc and SCA methods had good coverage of the 

truth deck, the SCA captured an additional 2% of the truth deck records and allowed for 

additional records to be included in the linkage process which were dropped from further 

evaluation in the ad hoc approach. Further, the SCA produced a blocking scheme that 

efficiently joined the survey and administrative data sources while maintaining a majority 
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of the records from the truth deck. However, it should be noted that like all supervised 

ML algorithms, the SCA is sensitive to the quality of training and supervisory data being 

used to learn the blocking keys. Low-quality data with severe data integrity issues (i.e. data 

transpositions or a high proportion of missingness), may result in a suboptimal generated 

blocking strategy. Additional research to explore the impact of PII data quality and the size 

of the training data set should provide users with additional guidance on how to apply SCA 

techniques (i.e., what are optimal values for user defined settings).

In this case study, the SCA allowed the professional to specify a maximum block size, 

thereby avoiding learning less efficient blocking keys (i.e. larger number of generated 

potential links) at the expense of a few additional iterations of the Learn Block step. In the 

production run of the 2016 NHCS linkage to the CMS Medicare EDB, the SCA learned 

an efficient blocking scheme consisting of 6 blocking keys which generated 101.8 million 

potential links and captured 98.8% of true matches in our truth deck. This ML methodology 

is being incorporated into other linkages in the NCHS Data Linkage Program.
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Fig. 1. 
Theoretical example of truth deck records captured by SCA learned blocking scheme.
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Fig. 2. 
Performance of SCA learned blocking schemes at different requested truth source coverage 

values.
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