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ABSTRACT
PNAG is a major component of Staphylococcus epidermidis biofilms involved in intercellular adhesion
as well as in the interaction of the biofilm with components of the host immune response. Synthesis of
PNAG has been found to be regulated by several environmental factors. In the present study, the effect
of glucose metabolism-dependent culture medium acidification in PNAG accumulation was evaluated.
Established S. epidermidis biofilms were allowed to grow in excess glucose with or without maintained pH
conditions. PNAG accumulation in these biofilms was determined by flow cytometry and fluorescence
microscopy using wheat germ agglutinin as a fluorescent probe. Biofilms grown in maintained pH
conditions presented significantly higher amounts of this polymer as well as higher icaA expression
than biofilms grown in acidic pH conditions. Moreover, PNAG accumulation in biofilms grown in
non-maintained pH conditions occurred in association with cell death. Overall, we show that glucose
metabolism by decreasing the culture pH affects biofilm physiology in respect to PNAG production
and cell death. The reported in vitro modulation of PNAG accumulation within S. epidermidis biofilms
further highlights the role of environment on determining the biofilm physiological state.

Key words biofilms, S. epidermidis, poly-N-acetylglucosamine, cell death.

The coagulase-negative Staphylococcus epidermidis is
among the leading causes of nosocomial infections (1).
These infections usually originate in biofilms established
on the surface of indwelling medical devices (2). The
physiological properties of biofilms, such as the pres-
ence of large amounts of dormant bacteria (3, 4) or the
presence of an embedding extracellular matrix (5) make
these infections very difficult to treat and eradicate, often
leading to the surgical removal of the implanted medical
device (6).
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S. epidermidis biofilm formation involves the initial at-
tachment of bacteria to a surface mediated by different
surface proteins known as MSCRAMMs (5). Subsequent
to the initial adhesion phase, a key component in the de-
velopment of the biofilm is the production of PNAG, the
major intercellular adhesin of S. epidermidis biofilms (7).
In addition to mediate biofilm cohesion, PNAG is also con-
sidered a virulence factor of S. epidermidis biofilms. This
has been demonstrated by independent studies showing
that S. epidermidis mutants lacking enzymes involved in
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PNAG synthesis had attenuated virulence (8,9). PNAG
has been also shown to be an important immunogenic
component with the ability to regulate pro-inflammatory
cytokine production (10).

PNAG synthesis is dependent on a set of enzymes en-
coded by genes within the intercellular adhesin (icaADBC)
locus (11). Expression of these genes has been shown to
depend on diverse environmental conditions (12, 13, 14,
15), including high concentrations of glucose (16). It was
proposed that S. epidermidis may perceive external en-
vironmental changes through alterations in the bacterial
metabolic status (17). This would in turn mediate genetic
regulation of the icaADBC operon resulting in the atten-
uation or augmentation of PNAG production (18).

Glucose has a key role in biofilm physiology. In oral
biofilms, glucose metabolism leads to accumulation of
acidic end-products responsible for decreasing the envi-
ronmental pH, which contributes to caries development
(19). This also affects the bacterial phenotype as cells
within biofilms adapt to the transient glucose-dependent
low culture pH by developing an acid tolerance response
(20). Glucose is also the most common osmotic agent
from dialysis fluid and, therefore, is the major nutrient
supporting bacterial growth and biofilm establishment
into peritoneal dialysis catheters (21). These biofilms have
been described as the principal cause of recurrent peri-
tonitis (22).

In the present study, we evaluated the effect of cul-
ture medium acidification due to glucose metabolism in
PNAG accumulation within S. epidermidis biofilms. Es-
tablished biofilms were allowed to grow in excess glucose
with or without maintained pH conditions. PNAG ac-
cumulation and icaA expression was evaluated in these
biofilms. Our results show that in vitro culture conditions,
namely glucose-dependent acidic pH, strongly influences
PNAG accumulation within S. epidermidis biofilms.

MATERIALS AND METHODS

S. epidermidis bacterial cultures

In this study, the previous characterized biofilm form-
ing strains were used: 9142, PE9, M187, JI6, IE86 and
IE214 (23). TSB (Merck, Darmstadt, Germany) and TSA
(Merck) were prepared according to the manufacturer’s
instructions. S. epidermidis grown on TSA plates was used
to inoculate 50 mL of TSB subsequently incubated at 37◦C
in a shaker rotator at 80 rpm for 18 hr. Cells were then
harvested by centrifugation (10 min at 10500 g at 4◦C),
ressuspended in PBS and the optical density at 640 nm was
adjusted to 0.250 (±0.05). To stimulate biofilm growth,
10μL of the bacterial suspension was transferred to a well
of a polystyrene plate (Nunc, Roskilde, Denmark) con-

taining 1 mL of TSB supplemented with 0.3% of glucose
(w/v) (Merck) and incubated in a shaker rotator at 37◦C
and 80 rpm for 24 hr, so a mature biofilm could be es-
tablished (16, 24). These established biofilms were used
as a starting point to evaluate the effect of excess glucose
and culture medium acidification in PNAG accumula-
tion within S. epidermidis biofilms. For this purpose, the
growth medium was removed, and biofilms were allowed
to grow an additional 24 hr in TSB supplemented with 1%
of glucose (w/v) (TSB 1%G) (Merck) or TSB 1%G sup-
plemented with 100 mM disodium hydrogen phosphate
(Merck) (TSB 1%G + HPO4

2−).
For evaluating the effect of vancomycin in planktonic

bacteria, 100 μL of the bacterial suspension were trans-
ferred to a polystyrene tube containing 400 μL of TSB
or TSB with vancomycin (40 μg/mL) (Sigma, St Louis,
MO, USA), previously shown to be an effective antibiotic
against planktonic S. epidermidis cells (25), and incubated
in a shaker rotator at 37◦C and 80 rpm for 2 hr.

Cell preparation and staining

S. epidermidis biofilms were carefully washed twice with
1 mL of PBS to remove planktonic cells in the culture su-
pernatant. The biofilm was then mechanically disrupted in
1 mL of PBS using a sterile embolus from a 1-mL syringe.
Biofilm-grown bacteria were transferred to a polystyrene
tube and gently sonicated on ice, at 18 W for 10 s, with the
sonicator tip placed at the air/liquid interface (Branson
model W 185 D ultrasonic cell disrupter; Heat Systems-
Ultrasonics, Plainview, NY, USA). This treatment did not
reduce cell culturability, as determined by CFU counting,
or affect cell membrane permeability, as determined by PI
incorporation (Supplementary Fig. 1). Sonication elimi-
nated bacterial aggregates as determined by flow cytome-
try assessing Forward (size) and Side (internal complexity)
scatter profiles of the bacterial samples before and after
sonication (Supplementary Fig. 1). After vortexing, 30 μL
of the cell suspensions were transferred to 270 μL of PBS
containing SYBR green I (SYBR) (Invitrogen, Carlsbad,
CA, USA) (1:5000, commercial stock) and different con-
centrations (5, 1, 0.5, 0.1 and 0.05 μg/mL) of PI (Sigma).

For evaluating surface N-acetylglucosamine in bacteria,
30 μL of the biofilm cell suspensions were transferred to
270 μL of PBS containing FITC-conjugated wheat germ
agglutinin (FITC-WGA) (Sigma) (10 μg/mL) (26) and PI
(Sigma) (5 μg/mL). Cells were incubated for 10 min at
4◦C.

For evaluating the SYBR/PI staining profile of plank-
tonic bacteria upon growth in the presence of van-
comycin, 30 μL of the planktonic growth was transferred,
at each hour, to 270 μL of PBS containing SYBR (1:5000,
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commercial stock), PI (5 μg/mL) and 3 μL of fluorescent
counting beads (Invitrogen).

Flow cytometry

The bacterial fluorescence analysis was carried out using
a FACScan (Becton-Dickinson, San Jose, CA, USA) con-
taining a low-power aircooled 15 mW blue (488 nm) ar-
gon laser. Data was acquired using the CellQuest software
(Becton-Dickinson) and analyzed using the Flowjo 7.2.5
software (Tree Star, Ashland, OR, USA). Multiparametric
analyses were performed on both scattering signals (FSC,
SSC) and FL1/FL3 channels. SYBR fluorescence was de-
tected on FL1 channel (BP530/30) while PI fluorescence
was detected on FL3 channel (LP650). For all detected
parameters, amplification was carried out using logarith-
mical scales.

Real time PCR

Total cellular RNA was prepared using the FastRNA
Pro Blue Kit (MP Biomedicals, Solon, OH, USA) as
described previously (27). Contaminating DNA was
removed by treatment with DNaseI (Fermentas, On-
tario, Canada) for 30 min at 37◦C. The enzyme was
heat-inactivated at 65◦C for 10 min in the presence
of EDTA. RNA was quantified using a Nanodrop
(Thermo Scientific, Waltham, MA, USA) and stored
at –80◦C. The primers used to amplify icaA and 16S
rRNA were designed using Primer3 (28) based on
S. epidermidis RP62A genome: icaA_FW (GACCTC-
GAAGTCATAGAGG), icaA_REV (TTGCATATTCAATG-
GTCTGT); 16S FW (AATCTTGACATCCTCTGACC)
and 16S REV (AGAGTGCCCAACTTAATGAT), respec-
tively. RNA samples were reverse transcribed in the pres-
ence of icaA_REV, and 16S REV and M-uLV Reverse Tran-
scriptase (Fermentas). Control reactions lacked reverse
transcriptase enzyme. For amplifying icaA, 1:40 dilutions
of cDNA and no-RT controls were used and for 16S rRNA
1:800 dilutions were used. Realtime RT-PCR reactions
contained 2 μL diluted cDNA or no-RT control, 10 pmol
of each primer, 6 μL nuclease free deionized H2O, and
10 μL SsoFastTM Evagreen supermix (Bio-Rad, Hercules,
CA, USA). Real time RT-PCR (Bio-rad CFX 96) was per-
formed under the following conditions: 95◦C for 30 s,
39 cycles of 95◦C for 5 s and finally 60◦C for 20 s. To mon-
itor the specificity, final qRT-PCR products were analyzed
by melting curves.

Glucose, phosphate and pH measurements

Established 24 hr-grown biofilms were allowed to grow for
an additional 24 hr as described. At 3-hr intervals, super-
natant aliquots were removed, centrifuged at 20 800 g for

5 min at 4◦C and stored at –20 ◦C until use. Glucose and
phosphate concentration were determined using commer-
cially available quantification kits (R-Biopharm for glu-
cose, Innoprot for phosphate) according to the manufac-
turer’s instructions. The supernatant pH was determined
with a pH meter (WTW pH 330).

Fluorescence microscopy

Intact S. epidermidis biofilms grown for 48 hr as described
were washed twice with 1 mL of PBS. The biofilms were
then stained with DAPI (Sigma) (5 μg/mL), FITC-WGA
(10 μg/mL) and PI (5 μg/mL) for 5 min at 4◦C. Fluo-
rescence was analyzed in an AxioImager Z1 (Carl Zeiss,
Göttingen, Germany) using Axiovision 4.6 software.

Statistical analysis

Independent unpaired data were analyzed with Student’s
t-test; multigroup comparisons were analyzed using the
ANOVA Tukey’s HSD post-hoc test analyzed with the SPSS
software (IBM, Chicago, IL, USA). Figure legends indicate
the method used for data presentation. A P-value less than
0.05 was considered significant.

RESULTS

Flow cytometric identification of distinct
bacterial populations in Staphylococcus
epidermidis biofilms

In order to characterize S. epidermidis 9142 bacteria within
biofilms grown for 48 hr in TSB 1%G, these were me-
chanically disrupted and the resulting cell suspensions
were analyzed by flow cytometry. As shown in Figure 1a,
forward (FSC-H) and side (SSC-H) scattering signals al-
lowed bacteria to be discriminated from the instrument
background signal. To evaluate the proportions of dead
bacteria in the biofilm cells, these were first stained with
PI, a stain that is membrane impermeant entering only in
membrane-damaged cells. As shown in Figure 1b, besides
PI− cells, two PI+ bacterial populations could be discrim-
inated according to their respective SSC-H values (SSChigh

and SSClow). In order to better characterize the detected
bacterial populations, cells were stained with SYBR and
PI. SYBR, in contrast to PI, is membrane permeant en-
tering in both live and dead cells. As shown in Figure 1c,
staining biofilm cells with SYBR and PI allowed a bet-
ter discrimination of the three detected bacterial popula-
tions. These populations were defined as SYBR+PI− (R1),
SYBR+PI+ (R2) and SYBR−PI+ (R3). The R1 population
was the only PI− population thus containing live cells only.
The R3 population presented the same SYBR/PI staining
profile of acetone-fixed bacteria (Fig. 1d) and, therefore,
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Fig. 1. Flow cytometric analysis of S. epidermidis bacteria obtained from 48-hr-grown biofilms. (a) Representative dot plot (FSC-H vs SSC-H
signals) showing the discrimination of S. epidermidis cells (Bacteria) from the instrument background signal (B). (b) Representative dot plot (SSC-H
vs FL3 channel) showing S. epidermidis cells stained with PI (5 μg/mL). Regions delimiting bacteria that incorporated PI (PI+) or impermeable to PI
(PI−) are shown. The SSC-H signal intensity of PI+ subpopulations (SSChigh and SSClow) is also shown. (c) Representative dot plot (FL1 vs FL3 channel)
showing S. epidermidis cells stained with PI (5 μg/mL) and SYBR green I (SYBR) (1:5000, commercial stock). Three bacterial populations respectively
designated R1, R2 and R3 could be discriminated from the instrument background signal (B). (d) Representative dot plot (FL1 vs FL3 channel) showing
the SYBR/PI staining profile of acetone-fixed S. epidermidis cells stained with PI and SYBR.

contained dead cells only. The R2 population presented
staining characteristics of both live (SYBR+) and dead
(PI+) cells. The instrument background (B) was deter-
mined using a sample without bacteria.

Effect of PI concentration on the SYBR/PI
double staining profile

The SYBR+PI+ (R2) bacteria remained undefined in re-
spect to their live/dead state. A previous report proposed
that the double positive stain in cells could be a conse-
quence of low PI staining concentrations that, in turn,
would allow the other dye to compete with PI for the
same DNA binding sites (29). We have thus evaluated the
SYBR/PI staining profile in biofilm-grown S. epidermidis
bacteria that were stained with decreasing concentrations
of PI (5, 1, 0.5, 0.1 and 0.05 μg/mL) and a fixed concen-

Fig. 2. Effect of PI concentration on the SYBR/PI double staining profile. Flow cytometric analysis of S. epidermidis cells obtained from 48-
hr-grown biofilms. Cells were stained with a fixed concentration of SYBR green I (SYBR) (1:5000, commercial stock) and different concentrations of
propidium iodide (PI) (5, 1, 0.5, 0.1 and 0.05 μg/mL). The numbers within dot plots correspond to the SYBR mean fluorescence intensity ± SD of
bacteria gated within the defined regions (n = 3/group). The instrument background signal was removed from the analysis. Statistical differences
between the PI 5 μg/mL staining group and all the others staining groups were analyzed with the anova Tukey’s HSD post-hoc test and are indicated
by asterisks (∗∗P < 0.01). Results are a representative example of three independent experiments.

tration of SYBR. As shown in Figure 2, R2 and R3-gated
bacteria presented increasing SYBR mean intensity fluo-
rescence (MFI) as decreasing PI staining concentrations
were used. This result indicates binding competition be-
tween SYBR and PI and, therefore, is in agreement with the
abovementioned report (29). However, in bacteria within
the R2 population, SYBR stained bright independently of
the PI concentration indicating that the double positive
stain (R2) was not an artefact due to fluorochromes bind-
ing competition (Fig. 2).

SYBR+PI+ represent a bacterial stage that
precedes vancomycin-induced cell lysis

Several reports define the double positive bacteria as
injured or in an intermediary stage between live and
dead (30, 31, 32). We have thus used vancomycin, an
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Fig. 3. Vancomycin-induced S. epidermidis cell lysis. Flow cytometric analysis of planktonic S. epidermidis cells that were allowed to grow in TSB
or TSB with vancomycin (40 mg/mL) during 1 hr (Vancomycin 1 hr) or 2 hr (Vancomycin 2 hr). Cells were stained with SYBR green I (SYBR) (1:5000,
commercial stock) and PI (5 μg/mL). Values within density plots correspond to the proportions ± SD of bacteria gated in the defined regions (n =
3/group). Values below the dot plots correspond to the total number of bacteria within the culture. The instrument background signal was removed
from the analysis. Statistical differences between the TSB group and Vancomycin 1 hr or Vancomycin 2 hr groups were analyzed with the anova Tukey’s
HSD post-hoc test and are indicated by asterisks (∗∗P<0.01). Results are a representative example of three independent experiments.

antibiotic that induces permeabilization of the cytoplas-
mic membrane and inhibition of cell wall synthesis in
Gram-positive bacteria (33), to assess whether SYBR+PI+

bacteria (R2) could represent a physiological state that pre-
cedes cell death or lysis. As shown in Figure 3, most plank-
tonic S. epidermidis 9142 bacteria obtained from an expo-
nential phase culture were not permeable to PI (>99%).
Upon a 2-hr growth in the presence of vancomycin, signif-
icant numbers of SYBR+PI+ bacteria (R2) were detected
(Fig. 3). Moreover, since SYBR−PI+ bacteria (R3) did not
accumulate in culture and the number of total bacteria
decreased over time (Fig. 3), these results strongly sug-
gest that double positive cells represent bacteria in a stage
preceding vancomycin-induced cell lysis.

Accumulation of PI+ bacterial cells in S.
epidermidis biofilms over time

Glucose, as well as several other environmental factors,
has been reported to induce biofilm formation in vitro
(16,24). Others have shown that excess glucose in the cul-
ture medium led to regulated bacterial death in a process
dependent of the accumulation of acidic compounds due
to the metabolism of this carbon source (34). We therefore
evaluated whether cell death within biofilms was associ-
ated with a glucose-dependent decrease in the culture pH.
Biofilms were allowed to grow in TSB 1%G or in TSB
1%G supplemented with 100 mM hydrogen phosphate
(TSB 1%G + HPO4

2−). Hydrogen phosphate was used to
counteract the decrease in the culture pH due to glucose
metabolism (35, 36). As shown in Figure 4a, the culture

pH of biofilms grown in TSB 1%G was significantly lower
over time as compared to that of biofilm cultures grown in
TSB 1%G + HPO4

2−. Hydrogen phosphate did not im-
pair glucose consumption (Fig. 4b) neither was it depleted
from the culture medium (Fig. 4c) indicating that it acted
as a buffer conferring resistance to the glucose-dependent
decrease in the culture pH over time. Biofilms grown in
TSB 1%G, with consequent lower culture pH, progres-
sively accumulated higher proportions of dead bacteria
(SYBR−PI+) as compared with biofilms grown in TSB
1%G +HPO4

2− (Fig. 4d). This result shows an association
between low culture pH and increased cell death within S.
epidermidis biofilms. Nevertheless, biofilms grown in TSB
1%G + HPO4

2 presented similar proportions of bacteria
with the SYBR+PI+ (R2) staining profile to those detected
in TSB 1%G grown biofilms (Fig. 4d). When biofilms were
allowed to grow a further 24 hr (util 72 hr) in TSB 1%G
or TSB 1%G + HPO4

2−, a more marked difference in the
accumulation of dead bacteria within biofilms was found
(supplementary Fig. 2).

Evaluation of N-acetylglucosamine
accumulation in S. epidermidis biofilms

PNAG is a major component of the S. epidermidis biofilm
extracellular matrix contributing to intercellular adhe-
sion within these bacterial communities (7). The PNAG
biosynthetic precursor, N-acetylglucosamine, is synthe-
sized from fructose 6-phosphate. Since abundant levels
of this glycolytic intermediate are generated when bacte-
ria were grown in medium enriched in glucose (37), we
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Fig. 4. Accumulation of PI+ bacterial cells in S. epidermidis biofilms over time. (a) Culture pH, (b) glucose concentration and (c) phosphate
concentration determined over time in the culture supernatants of established S. epidermidis biofilms that were allowed for an additional 24 hr growth
in TSB 1%G or TSB 1%G + HPO4

2−. Results are a representative example of two independent experiments (n = 3/group). (d) Evaluation over time
(24, 36 and 48 hr) of the proportions of dead bacteria in established S. epidermidis biofilms that were allowed for an additional 24 hr growth in TSB
1%G or TSB 1%G + HPO4

2−. Values within density plots correspond to the proportions ± SD of bacteria gated in the defined regions (n = 3/group).
The instrument background signal was removed from the analysis. For statistical analysis, the proportions of each bacterial population (R1, R2 or R3)
within biofilms grown in TSB 1%G was compared with the respective bacterial population within biofilms grown in TSB 1%G + HPO4

2−. Each time
point was analyzed independently. Statistical differences are indicated by asterisks (∗∗P < 0.01; Student’s t-test). Results are a representative example
of three independent experiments.

evaluated PNAG accumulation in S. epidermidis biofilms
grown in TSB 1%G or TSB 1%G + HPO4

2−. Wheat
germ agglutinin (WGA), a lectin that specifically binds
to N-acetylglucosamine, was used as a probe to deter-
mine, by flow cytometry, the amount of PNAG in biofilm-
grown S. epidermidis cells (26). As shown in Figure 5a,
SSChighPI+ bacteria (R2) presented a higher WGA-FITC
MFI than SSChighPI− (R1) bacteria. This difference was
more marked in biofilms grown in TSB 1%G + HPO4

2−

than in biofilms grown in TSB 1%G. Similar results, in
respect to cell death and PNAG surface expression, were
obtained when the S. epidermidis strains PE9, M187, JI6,
IE86 and IE214 were used (supplementary Fig. 3).

We further evaluated PNAG accumulation in intact
biofilms by fluorescence microscopy. In biofilms grown in
TSB 1%G, PI fluorescence co-localized with WGA-FITC

fluorescence indicating an association between cell death
and PNAG accumulation (Fig. 5b). In biofilms grown in
TSB 1%G + HPO4

2−, higher amounts of PNAG, as well
as a more dispersed distribution of this polymer, were ob-
served. In these biofilms, no co-localization of PNAG with
PI fluorescence was observed (Fig. 5b).

icaA expression in S. epidermidis biofilms

PNAG is synthesized by enzymes encoded by genes within
the intercellular adhesin (ica) operon (icaADBC) (38).
Since the amount and pattern of PNAG accumulation was
found to differ in S. epidermidis biofilms grown in TSB
1%G or TSB 1%G + HPO4

2−, we have evaluated bacterial
icaA expression in these biofilms. As shown in Figure 6,
an approximately 15-fold increase in icaA expression was
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Fig. 5. PNAG accumulation in S. epidermidis biofilms. (a) Histogram overlay showing FITC-WGA mean fluorescence intensity (MFI) of SSChighPI−

bacteria (R1) (black histogram) and SSChighPI+ (R2) (gray-filled histogram) obtained from established S. epidermidis biofilms that were allowed for an
additional 24 hr growth in TSB 1%G or TSB 1%G + HPO4

2−. Values within histograms correspond to FITC-WGA MFI ± SD of the corresponding
bacterial population (n = 3/group). Statistical differences are indicated by asterisks (∗∗P < 0.01; Student’s t-test). Results are a representative example
of three independent experiments. (b) Evaluation of PNAG accumulation in intact S. epidermidis biofilms grown for 24 hr in TSB 1%G or TSB 1%G +
HPO4

2−. Biofilms were stained with DAPI (1 μg/mL) (blue), PI (5 μg/ml) (red) and FITC-WGA (10 μg/mL) (green). Bars correspond to 200 μm. Images
are a representative example of three independent experiments.

detected in biofilms grown in TSB 1%G + HPO4
2− as

compared with TSB 1%G-grown biofilms. This result fur-
ther suggested that culture pH influenced the accumula-
tion of PNAG in S. epidermidis biofilms.

DISCUSSION

Glucose has a key role in biofilm physiology. This carbon
source is generally used to promote in vitro the biofilm
mode of growth (16,24). In the present study, the effect
of glucose metabolism-dependent culture medium acid-
ification in PNAG accumulation was evaluated. Since it
was previously shown that excess glucose in S. aureus
cultures led to regulated bacterial death due to the ac-
cumulation of acidic compounds in the culture medium
(34), we first evaluated whether a similar effect would oc-
cur within S. epidermidis biofilms. In agreement, biofilms
grown in excess glucose, which undergo progressive acid-
ification, were found to accumulate significantly higher
proportions of dead bacteria (SYBR−PI+) than biofilms
grown in excess glucose with maintained pH. This in-
dicated an association between cell death and medium

acidification. Regardless of differences in cell death, both
biofilms presented similar proportions of bacteria with the
staining profile SYBR+PI+. These cells, despite presenting
a cytoplasmic membrane permeable to PI, also presented
high SSC values and bright SYBR mean fluorescence in-
tensity indicative of high internal density and nucleic acid
content. Moreover, vancomycin-induced cell lysis strongly
suggested that double positive cells represented bacteria
in a state preceding cell lysis. Therefore, in agreement
with several other reports (30, 31, 32), SYBR+PI+ bac-
teria (R2) may represent an intermediary physiological
state between live and dead bacteria. However, in biofilms
grown in maintained pH conditions, the increase in the
proportions of SYBR+PI+ bacteria was not followed by
an increase in the proportions of dead cells. This opens
the possibility that, in these biofilms, SYBR+PI+ bacteria
may represent a particular physiological state rather than
an intermediary state between live and dead. In agreement
with this hypothesis, it was previously shown that PI up-
take may depend on the physiological state of bacterial
cells. Shi et al. showed that during growth in the presence
of glucose, PI stained live growing cells of Sphingomonas
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Fig. 6. icaA expression in S. epidermidis biofilms. Relative icaA ex-
pression in bacteria obtained from established S. epidermidis biofilms
that were allowed to grow for an additional 9 hr in TSB 1%G or
TSB 1%G + HPO4

2−. Statistical differences are indicated by asterisks
(∗∗, P < 0.01; Student’s t-test). Results are a representative example of
three independent experiments (n = 2/group).

sp. and M. frederiksbergense during a short period of their
life cycle (39).

S. epidermidis biofilms grown in excess glucose with
maintained pH conditions presented higher amounts of
PNAG as well as a dispersed distribution of this poly-
mer. Single cell analysis by flow cytometry further in-
dicated that, in these biofilms, the SYBR+PI+ subset of
bacteria presented a marked increase in surface PNAG
amount. This suggests differential PNAG production
within biofilm bacteria, which would be in agreement
with a previous report where it was proposed that bacte-
ria within biofilms presented differential gene expression
(40).

In biofilms grown in TSB 1%G, we observed that PNAG
accumulation occurred in association with cell death, as
assessed by co-localization of PI and WGA fluorescence.
These results indicate that, depending on the in vitro
growth conditions, different mechanisms mediate PNAG
accumulation in S. epidermidis biofilms. Further evidence
was provided by evaluation of icaA expression within these
biofilms. Expression of this gene, encoding an enzyme re-
sponsible for PNAG synthesis, was significantly increased
in biofilms grown in maintained pH conditions. Our data
therefore suggests that, despite glucose abundance in both
biofilm cultures, the lower culture pH found for the TSB
1%G culture medium led to decreased expression of genes
encoding enzymes involved in PNAG synthesis therefore
affecting the accumulation of this polymer within the
biofilm matrix. A similar finding was previously reported

in S. aureus where excess glucose, by decreasing the culture
pH, led to a decreased gene expression (41).

Different clinical manifestations have been described
for biofilm associated infections. Usually, the infection
is not initially life threatening but subsequent exacerba-
tions may occur often implying the surgical removal of
the infected tissue or medical device (42). Since PNAG
has been implicated as an important immunogenic com-
ponent of the S. epidermidis biofilm with the ability to
induce pro-inflammatory cytokine production (10), it
would therefore be interesting to determine whether the
biofilm PNAG content may account for its inflammatory
potential and/or to the modulation of the host immune re-
sponse. The herein reported in vitro modulation of PNAG
synthesis highlights that the biofilm physiological state
can be modulated by environment conditions and may be
useful as a model for assessing the role of this polymer
in the interaction with different components of the host
immune system.
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SUPPORTING INFORMATION

Additional supporting information may be found in the
online version of this article:

Fig. S1. (A) S. epidermidis bacteria obtained from an
exponential-phase planktonic culture, presenting less than
0.1% of PI+ cells, were sonicated as above described during
10 cycles of 10 s. Damage in the cytoplasmic membrane
was assessed by PI incorporation at sonication cycles 1, 5
and 10. Viable cell concentration and culturability were
determined by flow cytometry and spread plating, respec-
tively. These results show that sonication does not affect
the bacterial cytoplasmic membrane integrity as no in-
crease in PI+ cells was detected. This treatment also did not
affect cell culturability or induce cell lysis as the concen-
tration of viable and culturable cells maintained constant
over the sonication cycles. (B) The effect of sonication on
the disaggregation of bacterial clumps was also evaluated.
S. epidermidis bacteria obtained from biofilms grown in
TSB 1%G + HPO4

2− were sonicated as described above
and bacterial aggregates were analyzed by flow cytometry
assessing Forward (size) and Side (internal complexity)
scatter profiles of the cell samples before and after treat-
ment. It is shown that after sonication bacterial aggregates,
defined as FSChighSSChigh, were reduced to less than 0.1%,
a value similar to that detected in free-floating planktonic
cultures. Moreover, cell aggregation was found to occur
mainly in the SYBR+PI+ bacterial population as deter-
mined by an increased SYBR and PI fluorescence detected
in these bacteria before sonication.

Fig. S2. Established 48 hr biofilms, grown in TSB 1%G
or TSB 1%G + HPO4

2− as described were allowed to
grow for an additional 24 hr in TSB 1%G or TSB 1%G
+ HPO4

2−. These 72 hr biofilms were then evaluated in
respect to cell death. The instrument background signal
was removed from the analysis. Values within density plots
correspond to the proportions ± SD of bacteria gated in
the defined regions. Statistical differences are indicated

by asterisks (∗∗, P < 0.01; Student’s t-test). Results are a
representative example of three independent experiments
(n = 3/group).

Fig. S3. (A) Evaluation of cell death in established S.
epidermidis biofilms that were allowed for an additional
24 hr growth in TSB 1%G or TSB 1%G + HPO4

2−. The S.
epidermidis strains PE9, M187, JI6, IE86 and IE214 were
used. Values within density plots correspond to the pro-
portions ± SD of bacteria gated in the defined regions (n =
2/group). The instrument background signal was removed
from the analysis. For statistical analysis, the proportions
of each bacterial population (R1, R2 or R3) within biofilms
grown in TSB 1%G was compared with the respective
bacterial population within biofilms grown in TSB 1%G
+ HPO4

2−. Statistical differences are indicated by aster-
isks (∗∗, P < 0.01; Student’s t-test). Results are a repre-
sentative example of two independent experiments. For
all strains, the proportions of dead bacteria (SYBR−PI+)
within biofilms grown in TSB 1%G were significantly
higher as compared with biofilms grown in TSB 1%G
+ HPO4

2−. (B) Histogram overlay showing FITC-WGA
mean fluorescence intensity (MFI) of SSChighPI+ bacteria
(R2) obtained from biofilms grown in TSB 1%G (black
histogram) and SSChighPI+ bacteria (R2) obtained from
biofilms grown in TSB 1%G + HPO4

2−(gray-filled his-
togram). Values within histograms correspond to FITC-
WGA MFI ± SD of the corresponding bacterial popula-
tion (n = 2/group). Statistical differences are indicated by
asterisks (∗∗, P < 0.01; Student’s t-test). Results are a repre-
sentative example of two independent experiments. For all
strains, the amount of surface PNAG in PI-incorporating
bacteria was significantly higher in bacteria obtained from
biofilms grown in TSB 1%G + HPO4

2− than in bacteria
obtained from biofilms grown in TSB 1%G.
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