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Abstract

DNA methylation may mediate inter-individual responses to chemical exposure and, thus, modify 

biomarker levels of exposure and effects. We analyzed inter-individual differences in inhalation 

and skin exposure to 1,6-hexamethylene diisocyanate (HDI) and urine biomarker 1,6-

hexamethylene diamine (HDA) levels in 20 automotive spray-painters. Genome-wide 5-methyl 

cytosine (CpG) DNA methylation was assessed in each individual’s peripheral blood mononuclear 

cells (PBMC) DNA using the Illumina 450K CpG array. Mediation analysis using linear 

regression models adjusted for age, ethnicity, and smoking was conducted to identify and assess 

the association between HDI exposure, CpG methylation, and urine HDA biomarker levels. We 

did not identify any CpGs common to HDI exposure and biomarker level suggesting that CpG 

methylation is a mediator that only partially explains the phenotype. Functional significance of 

genic- and intergenic-CpG methylation status was tested using protein-protein or protein-DNA 

interactions and gene-ontology enrichment to infer networks. Combined, the results suggest that 

methylation has the potential to affect HDI mass transport, permeation, and HDI metabolism. We 

demonstrate the potential use of PBMC methylation along with quantitative exposure and 

biomarker data to guide further investigation into the mediators of occupational exposure and 

biomarkers and its role in risk assessment.
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1. Introduction

Inter-individual genetic differences (e.g.,n-acetyl transferase fast vs. slow acetylator and 

glutathione S-transferase activities) have been linked with adverse health effects and asthma 

risk in isocyanate-exposed workers (Piirila et al., 2000; Wikman et al., 2002). More recent 

studies suggest that the interactions between genetic, epigenetic, and environmental factors 

are critical to toxicity and disease risk (Christiani et al., 2008; Vineis et al., 2009; 

Vlaanderen et al., 2010). The source of inter-individual variation in toxicity or disease risk 

may be dependent upon single nucleotide polymorphisms (SNP) 1 (Hinds et al., 2006; 

McCarroll et al., 2008), copy number variants (CNV) (Conrad et al., 2010), and/or altered 

patterns of DNA methylation (Smeester et al., 2011) in the highly conserved coding region 

of genes or in their regulatory control sequences that may influence protein expression and 

post-transcriptional modifications (Boks et al., 2009; Gibbs et al., 2010). Specifically, 

individual genetic and epigenetic differences may lead to altered gene function critical to 

xenobiotic metabolism and toxicokinetics as well as heritable differences in physiological 

functions and maintenance of homeostasis (blood pressure, heart rate, respiratory rate, etc.) 
(Adeyemo et al., 2009; Baranzini et al., 2009; de Geus et al., 2005; Ehret, 2010; Glinskii et 

al., 2009). Thus, both genetic and epigenetic variants may directly or indirectly contribute to 

health effects associated with diisocyanate exposure (e.g., asthma). Individual epigenetic 

alterations (e.g., DNA methylation, histone modification, and/or non-coding RNA) may play 

an important role in the toxicokinetics of diisocyanates and explain a significant component 

of the variability that we have observed in biomarker levels in urine and blood in HDI 

exposed spray-painters (Flack et al., 2010, 2011; Gaines et al., 2010, 2011). However, only 

limited work has been carried out to understand the role of epigenetics within the context of 

exposure assessment. In addition, there is currently a lack of understanding of how 

epigenetic alterations may modify HDI biomarkers or be modified by exposure. Thus, the 

current exposure assessment models are limited in their approach to predict interactions 

between environment (extrinsic), individual epigenetic alterations (intrinsic), and the 

biological outcome (phenotype) in exposure and risk assessment.

Inter-individual differences in epigenetic profiles, that likely result in significant differences 

in systemic response to HDI exposure, are not considered as predictors of outcome in 

current exposure assessment models. In this pilot project, we have developed a novel and 

innovative research framework to identify epigenetic changes that are influenced by 

exposure to HDI and that are associated with levels of the urine biomarker, 1,6-

hexamethylene diamine (HDA), in a worker population of automotive spray-painters (Fent et 

al., 2009a,b,b; Flack et al., 2010, 2011; Gaines et al., 2010, 2011). Biomarkers of exposure 

1APF, assigned protection factor; Chr, chromosome; CNV, copy number variant; CpG, genome-wide 5-methyl cytosine; DMR, 
differentially methylated genic and intergenic regions; FDR, false discovery rate; HDI, 1,6-hexamethylene diisocyanate; LOD, limit of 
detection; PBMC, peripheral blood mononuclear cell; SNP, single nucleotide polymorphisms; STD, standard deviation.
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are observable endpoints in a continuum of events leading from exposure to disease (Ward 

and Henderson, 1996). The goal of this research was to investigate the use of 5-methyl 

cytosine (CpG) DNA methylation levels in peripheral blood mononuclear cells (PBMCs) as 

epigenetic changes that modify spray-painters’ HDI exposure-dose relationship and indicate 

disparities in toxicokinetics and urine biomarker levels. Thus, based on significant 

differences in CpG methylation for each model, we identified sets of genes with altered 

methylation and assessed potential interactions by using large data sets of the corresponding 

protein-protein or protein-DNA interactions to infer a potential biological response using 

gene-ontology enrichment analysis. We demonstrate the use of PBMC methylation along 

with quantitative exposure and biomarker data to guide further investigation in exposure and 

risk assessment.

2. Materials and methods

2.1 Study population and sample collection

For this pilot study, 20 automotive spray-painters were selected from our study population of 

46 (Fent et al., 2009a,b,b; Flack et al., 2010, 2011; Gaines et al., 2010, 2011) based on 

stratified HDI exposure and acceptable quality of DNA. Workers’ low/high exposure status 

was classified based on each worker’s aggregate inhalation, skin, and urine levels and then 

rank ordering them. The subjects were all male, ranging in age from 21 to 51 years with an 

average age of 35 years, and six were smokers. Smokers were evenly distributed across the 

rank-ordered exposure status. Sixteen subjects identified themselves as Caucasians, one as 

African-American, one as Asian, and two as mixed ethnicity. Information on workers’ age, 

weight, height, ethnicity, and medical history in regards to susceptibility to occupational 

asthma (i.e., had allergies, asthma, or medical problems after painting) was collected using a 

questionnaire. No one reported diisocyanate-induced asthma. Information on the type of 

personal protective equipment typically worn during painting was also obtained. This study 

was approved by the Institutional Review Board in the Office of Human Research Ethics at 

the University of North Carolina at Chapel Hill and by the Washington State Institutional 

Review Board at the Washington State Department of Social and Health Services. 

Demographics and the measured exposure levels for the 20 spray-painters are provided in 

Table 1.

2.1.1 Breathing-zone air and skin samples—During the study, we quantified the 

worker’s respiratory and skin exposure to HDI. The collection and analyses of the personal 

breathing-zone and skin tape-strip samples for quantification of HDI exposure during every 

spray-application have been published (Fent et al., 2009a,b,b). Briefly, on each sampling 

visit, breathing-zone air samples were collected during each HDI-containing painting task, 

and tape-strip samples were collected on the right and left volar and dorsal arm, the right and 

left dorsal hand, and right and left neck immediately following each task. The painter was 

observed during the paint tasks to note the duration of exposure and the type of respirator 

worn. The assigned protection factor (APF) designated by the Occupational Safety and 

Health Administration (OSHA, 2006) for the respirator worn by a worker (none, APF = 1; 

air purifying half-face, APF = 10; air-purifying full-face, APF = 50; supplied air full-face or 

hood, APF = 1000; powered air-purifying, full-face or hood, APF = 1000) was used to adjust 
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the measured breathing-zone concentrations in order to account for the respiratory protection 

in inhalation exposure levels used in the analyses. The median number of paint tasks 

performed by the spray-painters was 3 (range: 1–4) during the sampling day (Table 1). The 

measured HDI breathing-zone concentration adjusted for respirator type varied from below 

limit of detection (LOD) to 42.0 μg/m3 with an average of 11.8 μg/m3 (Table 1). HDI skin 

concentrations varied from ≤LOD to 6989.6 μg/mm3 with an average of 723.9 μg/mm3 

(Table 1).

2.1.2 Urine samples—The collection of the urine samples and analysis of HDA and 

creatinine levels in urine have been published (Gaines et al., 2010). During each sampling 

visit, urine samples were obtained from the worker each time he urinated. On average, 2.7 

(range 1–4) urine samples were obtained per worker during the sampling day (Table 1). The 

average HDA concentration and standard deviation measured in the urine samples was 0.18 

± 0.33 μg/g creatinine (Table 1).

2.1.3 Blood samples—One whole blood sample was collected in an EDTA tube from 

each worker at the end of the workday and peripheral blood mononuclear blood cells 

(PBMC) were isolated by Ficoll™ separation via centrifugation. DNA was purified from 

PBMC pellets using QiaAmp Blood mini kit (Qiagen, Germantown, MD) and stored in 

elution buffer at −20 ◦C until analysis of epigenetic marks. DNA was quantified using a 

NanoDrop spectrophotometer (Thermo Fisher Scientific, Waltham, MA) and diluted with 10 

mM Tris, pH 7.4 to 50 ng/μL. Prior to methylation analysis, the DNA concentration and 

quality (A 260/280 = 1.8–1.9) were confirmed using PicoGreen fluorescence quantification 

by Expression Analysis (Durham, NC).

2.1.4 Analysis of DNA methylation—DNA methylation in PBMC was analyzed using 

the Illumina HumanMethylation450 BeadChip arrays (Illumina, Inc., San Diego, CA) at 

Expression Analysis, Inc. (Durham, NC; www.expressionanalysis.com). These arrays 

contain probes for approximately 485,000 CpG sites. Target was prepared and hybridized 

according to manufacturer’s specification (Illumina Part #15019522 Rev. A) (Illumina, 

2012). Details of the protocol are described below.

2.1.4.1 Bisulfite conversion.: A bisulfite conversion reaction was employed using 500 ng 

of genomic DNA according to the manufacturer’s protocol for the Zymo EZ DNA 

Methylation kit (Zymo Research Corp., Irvine, CA). DNA was added to Zymo M-Dilution 

buffer and incubated for 15 min at 37 °C. CT-conversion reagent was then added and the 

mixture was denatured by heating to 95 °C for 30 s followed by incubation for 1 h at 50 °C. 

This denature/incubation cycle was repeated for a total of 16 h. After bisulfite conversion, 

the DNA was bound to a Zymo spin column and desulfonated on the column using 

desulfonation reagent per manufacturer’s protocol. The bisulfite-converted DNA was eluted 

from the column in 10 μl of elution buffer.

2.1.4.2. Infinium methylation assay.: Bisulfite converted product (4 μl) was transferred to 

a new plate with an equal amount of 0.1 N NaOH and 20 μl of MA1 reagent (Illumina) then 

allowed to incubate at room temperature for 10 min. Immediately following incubation, 68 

μl of MA2 reagent and 75 μl of MSM reagent (both Illumina) were added and the plate was 
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incubated at 37 ◦C overnight for amplification. After amplification, the DNA was 

fragmented enzymatically, precipitated and resuspended in RA1 hybridization buffer.

2.1.4.3. Hybridization and scanning.: Fragmented DNA was dispensed onto the 

multichannel HumanMethylation450K BeadChips and hybridization performed in an 

Illumina Hybridization oven for 20 h. BeadChips were washed, primer extended, and stained 

per manufacturer protocols. BeadChips were coated and then imaged on an Illumina iScan 

Reader and images were processed with GenomeStudio software methylation module (v. 1.8 

or later; Illumina).

2.2. Statistical analyses

2.2.1 Data preprocessing—GenomeStudio (Illumina) was used to calculate the raw 

methylation level at each CpG locus as well as the detection p-value. Raw methylation levels 

were expressed as beta-values [β = intensity of the methylated allele (M)/(100 + intensity of 

the unmethylated allele (U) + intensity of the methylated allele (M)] (Bibikova et al., 2011), 

which represent approximate percent methylation at each CpG locus. All subsequent 

statistical analyses were conducted within the R statistical computing environment (R 

Development Core Team, 2005). For each sample, individual probes with detection p-values 

> 10−5 were considered to have failed and were set to missing. The BMIQ normalization 

method (Teschendorff et al., 2013) was applied to reduce technical variability and to reduce 

variation that results from differences in probe design type (Marabita et al., 2013; Wu et al., 

2014).

2.2.2 Association analysis—For our primary analysis, we assessed the association 

between urine biomarker levels and CpG methylation status while adjusting for potential 

confounders. We considered models with and without adjustment for individual covariates 

and the results were qualitatively similar (data not shown). Urine biomarker levels below the 

LOD were assigned nominal values determined by dividing the LOD value by the square 

root of two. Natural log-transformation was applied to improve normality, reduce influential 

points and stabilize the variance. Using individual CpG analysis wherein methylation at each 

CpG on the array was tested for association with the urine biomarker level, one-by-one. 

Specifically, for each CpG, we regressed the log-transformed urine HDA level on the 

normalized beta-value (as well as continuous age and indicators of non-white ethnicity and 

smoking status) using the model

PHDAi = β0 + βcov′ Ci + βMMi (1)

where PHDAi is the PHDA biomarker level, Ci is the vector of additional covariates (age, 

ethnicity and smoking status), and Mi is the normalized beta-value for person i. We tested 

for the effect of methylation on the biomarker level by testing the null hypothesis H0:βM = 0 

using a 1-df likelihood ratio test. Statistical significance was determined by controlling the 

false discovery rate (FDR) at 0.05 (Benjamini and Hochberg, 1995).

2.2.3 Mediation analysis—Following identification of individual CpGs that modify 

urine biomarker levels independent of exposure, we conducted a mediation analysis to 
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determine whether the CpGs identified mediated the relationship between HDI exposure and 

urine HDA biomarker levels. Since all measured quantities were continuous, we directly 

used the standard causal-steps approach to mediation (Baron and Kenny, 1986; MacKinnon 

and Dwyer, 1993). Specifically, we identified CpGs that were associated with HDI exposure 

using the model

Mi = β0 + βcov′ Ci + βair Air i + βskinSkini (2)

where Mi is again the methylation status at a particular CpG for each individual i, and the Ci 

are the covariates (ethnicity, smoking, and age), as before. Here, Airi and Skini are the 

natural log-transformed HDI exposure values for air and skin, respectively, for person i. 
Exposure levels below the LOD were assigned nominal values determined by dividing the 

LOD value by the square root of two before natural log-transformation for analysis. To 

compute a p-value for the association between CpG methylation levels and exposure, we 

tested the null hypothesis H0:βskin = βair = 0 using a 2-df likelihood ratio test. Significance, 

defined as FDR < 0.05, was used to establish a relationship between the HDI inhalation and 

skin exposure and the mediator (CpG methylation). Because we have already established 

that HDI exposure alters urine HDI biomarker levels (Gaines et al., 2010, 2011), then any 

CpG that is associated with the biomarker [main analysis, Model (1)] and also associated 

with HDI exposure [Model (2)] is, at least, considered to be a partial mediator of the effect 

of HDI exposure on urine HDA biomarker levels.

Association of a CpG with both biomarker and with exposure implies that the particular 

CpG sequence is a mediator. A further step would be to establish complete mediation and 

determine whether the effect of exposure is fully mediated through methylation. This is 

potentially accomplished by cautiously examining whether the HDI exposure is no longer 

associated with HDA biomarker level after adjusting for the methylation levels in the model

PHDAi = β0 + βcov′ Ci + βMMi + βair Air i + βskinSkini (3)

and testing the null hypothesis H0:βskin = βair = 0. If HDI exposure is no longer significant 

after controlling for methylation, then we have evidence of complete mediation. Importantly, 

this analysis is only meaningful if a particular CpG is already determined to be a partial 

mediator, i.e., significant under Models (1) and (2). We further note that such an analysis 

should be conducted with extreme caution and that the sample size should be large, since the 

interpretation of a failure to detect significance does not necessarily guarantee that there is 

no association. Interpretation is highly dependent upon the statistical power. Although our 

analyses did not identify any full mediators, purely for illustration of our approach, we also 

analyzed the data using Model (3) as though we expected to identify full mediators common 

to both exposure and biomarker phenotype.

2.3 Bioinformatics and gene-ontology enrichment analyses

CpG loci for differentially methylated genic and intergenic regions (DMR) associated with 

urine HDA biomarker levels and/or HDI inhalation and skin exposures were identified by 

genome wide-association linear regression models as described above. The Illumina 450K 

array provides coverage of approximately 99% of known human genes by targeting CpG 
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probes across gene (5’UTR, promoter, first exon, gene body, and 3’UTR) and intergenic 

regions (CpG islands, shores, DNAase hypersensitive sites, miRNA promoters, etc.). Genes 

(including ncRNA) and intergenic sequence flanking gene lists based upon statistically 

significant (FDR < 0.05) CpG locus identifiers (chromosome, genome coordinate, and build) 

were compiled for each model and examined for potential network interactions by gene 

ontology enrichment analysis using GeneMANIA (http://gene-mania.org) online accessed 

databases (Montojo et al., 2014a,b,b; Mostafavi et al., 2008; Warde-Farley et al., 2010). 

GeneMANIA’s algorithms and functional interface enables interrogation of large datasets of 

validated protein–protein and protein–DNA interactions and biological pathways to establish 

predicted networks of interactions and their biological processes or molecular function (GO 

terms) enrichment using the gene lists based on significant statistical associations of DMR 

associated genes. These computational tools are used to assess the relative biological 

plausibility of the models and predicted outcome to guide research for functional validation 

of the effects of an individual’s HDI exposure and methylation on urine HDA biomarker 

levels. The same gene lists were used to search Ingenuity Pathway Analysis (http://

www.ingenuity.com) and MetaCore™ (http://www.GeneGo.com) databases to compare and 

ascertain predicted networks/pathways and associated biological/molecular processes based 

on proprietary manually curated published literature (Brennan et al., 2009; Chang, 2009). 

These tools enable the computational prediction and association with networks and 

pathways that may be associated with environmental exposures and other risk factors 

(Benton et al., 2011; Liu et al., 2010; Rager et al., 2011a,b; Smeester et al., 2011). All CpG-

marker associated genes significant in Models (1) and (2) were further investigated and their 

curated sequence identification for genomic and epigenomic features, location, and gene 

ontology were confirmed using NCBI Entrez Gene (http://www.ncbi.nlm.nih.gov/snp), 

Ensembl BioMart (http://www.biomart.org), and/or UCSC gene browser (http://

genome.ucsc.edu).

3. Results

3.1 Methylation and urine HDA biomarker levels

Using Model (1), we identified CpG loci that were associated with average creatinine 

adjusted urine HDA levels and calculated a significant association between DNAmethylation 

status and biomarker levels with LPHN3 (latrophilin 3) (p-value 1.06 × 10−8; FDR 0.005) 

while SCARA5 (scavenger receptor class A, member 5) was borderline significant (p-value 

2.97 × 10−7; FDR 0.072) (Table 2). Plots for the DNA methylation vs. creatinine adjusted 

urinary HDA levels (further adjusted for age, ethnicity, and smoking) for the two significant 

CpGs are presented in the Supplementary materials (Supplementary materials, Fig. 1). 

Average beta-values and standard deviations for LPHN3 and SCARA5 in the sampled 

population were 0.507 ± 0.051 and 0.642 ± 0.067, respectively. LPHN3 belongs to a family 

of proteins that function in both cell adhesion and signal transduction (G-protein coupled 

receptor-signaling pathway) (Boucard et al., 2014; Promel et al., 2012). Together, both 

LPHN3 and SCARA5 were interconnected with more than 20 other genes with reported 

connections (36.5% co-expression; 6.3% co-localization, 2.2% genetic interaction, 12.4% 

pathway associated, 28.7% physical interaction, 8.4% predicted, and 4.2% shared protein 

domains) to 3 validated pathways (G-protein coupled receptor extracellular domain, 
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microinhibitory RNAs with TGTTTAC shared domain, and scavenger receptor) (Fig. 1). The 

percentages are based on the number of categorized interaction of the total number of 

observations, which demonstrates the relative weight of the evidence (Fig.1). LPHN3 and 

UBC (ubiquitin C) are known binding partners, which suggests a role in protein 

ubiquitination. Ubiquitination has been associated with a number of biological functions 

including endocytosis and regulation of cell-signaling pathways. SCARA5 pattern 

recognition functions may be critical to host defense by initiating immune responses and 

aiding endocytosis of epithelial cells (Jiang et al., 2006; Pluddemann et al., 2007). The 

LPHN3 and SCARA5 predicted network involving lysyloxidases (Lugassyetal., 

2012;Rimaretal.,2014;Smith-MungoandKagan,1998) suggests the potential to influence 

urine biomarker levels through fibrosis (epithelial to mesenchymal transition) (Szauter et al., 

2005, 2010) affecting HDI skin permeation in addition to oxido reductase activity affecting 

amine (—CH-NH2) metabolism (Table 2 and Fig. 1). The predicted functions identified in 

Model (1) are plausible and independentof HDIexposure.

3.2 HDI inhalation and skin exposure and methylation

Thirty significant CpG loci lying within 28 linked genes (p < 3.55 × 10−6) had altered 

methylation associated with individual HDI inhalation and skin exposure at FDR < 0.05 

[Model (2); Supplementary materials, Table 1]. Plots of the DNA methylation (adjusted for 

age, ethnicity, and smoking) vs. HDI levels measured in the breathing zone and the skin for 

the two most significant CpGs are presented in Supplementary materials, Fig. 2. Four of the 

30 CpG loci were intergenic and may represent undefined regulatory sequences that were 

not further investigated. Of the 30 significant CpG loci, almost half (12CpGs) were highly 

methylated (beta-value > 0.8) and half exhibited a very low level of methylation (beta-value 

≤ 0.12). Neither LPHN3 nor SCARA5 were associated with HDI exposure. Thus, the results 

suggest only partial mediation between HDI exposure and DNA methylation mediated 

effects on HDA urine biomarker levels. Absence of LPHN3 and SCARA5 may indicate 

absence of HDI induced methylation effects of these loci or possible false positive 

association. However, 27 out of the 30 HDI-exposure associated genes containing the 

significant CpG loci were predicted to interconnect with 20 additional genes (40 total; 

84.1% co-expression, 0.9% genetic interaction, 1.7% consolidated pathways, 4.2% 

transcriptional-factor targets, and 9% shared protein domains) (Fig. 2). Consolidated 

pathways included ATPase related ion and lipid transport and shared transcript target 

sequences without defined function. DSCAML1 (Down syndrome cell adhesion molecule 

like 1) showed the most significant gene association (p-value 1.33 × 10−11; FDR 1.08 × 

10−6) (Table 3 and Supplementary materials, Table 1). DSML1 has been reported to 

negatively regulate cell adhesion in neuro development (Agarwala et al., 2001), but not for 

skin and/or dermal fibroblasts. Other highly significant associations were observed with 

ATOX1 (antioxidant 1 copper chaperone) that protects against superoxide and hydrogen 

peroxide radicals (Hamza et al., 2001), as well as FARP1 [FERM, RhoGEF(ARHGEF), and 

pleckstrin domain protein 1] and FAM210A (family with sequence similarity 210, member 

A), which are predicted to be integral components of cell membranes. These and other 

critical molecules show conservation and enrichment for function for mass transport of 

substances involving increased turnover of membranes, lipids, phospholipids, and energy 

(Table 3, Fig. 2, and Supplementary materials, Table 1).
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3.3 HDI inhalation and skin exposure, urine HDA levels, and methylation

Because no common single CpG or set of CpGs are common to Models (1) and (2), a test of 

Model (3) is not necessary to test for complete mediation. Here, we show Model (3) only for 

illustration of all steps in mediation analysis. For a CpG significantly associated with 

exposure and also associated with biomarker levels tested by linear regression in Model (3), 

no significance would indicate complete mediation by the methylation status of that CpG. 

Although no CpGs were identified as partial mediators in Models (1) and (2), we, 

nevertheless, assessed the association between HDI exposure and average creatinine 

normalized urine HDA levels to illustrate the final step in this approach. We observed 114 

CpG loci significantly associated with the HDI exposure and urine HDA biomarker levels at 

a FDR < 0.001 (data not shown). If these CpGs had been significant and common to both 

under Models (1) and (2), then these results would indicate that they are only partial 

mediators of the exposure–methylation–biomarker continuum. However, Model (3) results 

confirm that no single or a set of CpGs function as a complete mediator and, therefore, CpG 

methylation is only a partial mediator of the relationship between HDI exposure and urine 

HDA biomarker levels.

4. Discussion

To effectively use biomarkers of exposure, we must quantitatively factor and understand the 

contribution of intrinsic (age, coincident disease, genetic and epigenetic variation, gender, 

smoking, weight, etc.) and extrinsic factors (environmental and occupational exposures, 

nutrition, psychosocial, environmental conditions, etc.). Genetic (DNA, SNP, and CNV) and 

epigenetic variation (differentially methylated regions, and chromatin modification) are 

interrelated primary factors that are poorly understood and used in exposure and risk 

assessment. Here, we show the results of a pilot study that demonstrates the potential for 

differential DNA methylation to modify and contribute to quantitative measures of exposure 

and biomarker of exposure.

We correlated spray-painters’ HDI exposure to differential methylation and modulation of 

HDI biomarker of exposure using computational tools with large data sets of protein–protein 

and/or protein–DNA interactions based on statistically significant correlations and predicted 

functional interactions. We were able to define and identify differentially methylated genes 

(LPHN3 and SCARA5) that are likely defined by HDI exposure that show potential for 

functional interactions affecting biological and molecular processes based on conserved 

gene ontology (Liu et al., 2014; Mostafavi and Morris, 2012). The predicted functional 

interactions are likely related to HDI permeation of the skin through mass transport based 

upon individual differences in cell adhesion, lipid and membrane turnover, and metabolism 

of amines, induction of host immune mechanisms and responses, and toxicity that may lead 

to fibrosis in the skin (National Toxicology Program, 2005).

The evidence for diisocyanate exposure and gene-phenotype association is limited to 

candidate-gene studies. Only GSTP1 (Broberg et al., 2010), NAT2 (Berode, 1991; Wikman 

et al., 2002), and CTNNA3 (Kim et al., 2009) have been identified to be significantly 

associated with diisocyanate exposure, metabolism, and/or increased risk for asthma. Most, 

if not all, of these and other genes identified have SNPs, CNV, and CpG islands in regulatory 
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sites in coding and noncoding regions of the gene body that modulate gene and protein 

expression and influence outcome. In the context of the results presented here, the 

differential CpG methylation association for SCARA5 (Table 2 and Fig. 1) predicts an 

oxidoreductase activity involving CH-NH2 substrates that may interact with NAT2. . Both 

SCARA5 and NAT2 areco-located with a number of other genes on chromosome 8q21–22 

that show significant CNV (gain and loss) (Lappalainen et al., 2013) that might affect HDI 

metabolism. Allele specific expression (functional SNPs and CNV) and an increase 

ordecrease in CpG in regulatory sequences may illustrate the relationship between a genetic 

(NAT CNV) and epigenetic interaction (SCARA5).

The strength of the statistical associations provide both confidence in the predicted outcomes 

and the effect-sizes provide guidance for further hypothesis based bench research and 

replicate studies using proteomics and/or metabolomics with biomarkers of exposure. 

Strikingly, each of the gene sets for each of the models described and tested and selected on 

the basis of statistical probability and FDR were shown to be likely interacting partners with 

conserved molecular functions consistent with the current knowledge on HDI exposure and 

toxicity (immune response associated with occupational asthma). No differentially 

methylated genes identified in this approach were without potential functionally related 

partners, which reduces false discovery and provides additional confidence in the approach 

described.

Potential effects and outcomes are deduced and inferred by statistical correlations with DNA 

methylation affected by HDI exposures that are associated with HDI biomarker levels using 

an mediation approach (Baron and Kenny, 1986; MacKinnon and Dwyer, 1993). In this pilot 

study with a limited number of individuals, we used a chemical induced intermediate 

phenotype based upon individual differences in exposure, DNA methylation, and urine 

biomarker levels, and tested for differentially methylated CpG locus as a mediator between 

HDI exposure and urine biomarker levels. The outcome from the linear regression models 

appears to be dependent on induced exposure effects and presence of DNA sequences 

subject to differential methylation that produce qualitative changes. This approach is 

different from that of large genome-wide association studies based on case-control 

comparisons where control of genetic variation for rare and common SNP and CNV is 

difficult. In SNP-based genome-wide association studies for disease associations, a large 

number (hundreds to thousands) of individuals are required to increase power to be able to 

detect rare (≤1%) variants with large size effects versus common (≥1%) variants with 

smaller size effects (Manolio et al., 2009). Further power is derived from in silico analysis 

using predicted network and pathway analysis employing very large genome-wide data sets 

and powerful search algorithms. An issue of concern involves reliance on the use of a 

surrogate tissue to investigate a biological outcome in other tissues (skin, lung, etc.) and 

correlation with biological media (e.g., plasma or urine). Here, we describe the outcome 

from HDI exposure based upon methylated CpG loci from PBMC DNA. HDI is a site-of-

contact toxicant and likely directly affects both epithelial and tissue immune cells, which 

may be reflected in circulating PMBC DNA. A direct correlation between DNA methylation 

in target tissues versus surrogate tissues like PBMCs has not been adequately demonstrated 

(Heijmans and Mill, 2012). We show the potential to use PBMC as a surrogate tissue to 

assess biomarkers of exposure based on the data presented here and as has been shown for 
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the use of PBMC to discriminate methylation patterns in case-control studies for soft and 

solid cancers (Langevin et al., 2012; Terry et al., 2011; Teschendorff et al., 2013; 

Widschwendter et al., 2008; Wu et al., 2011). This process of discovery anchored by 

statistical association and strength of likely size-effects may reduce hypothesis-based 

research by guiding research toward the most likely interactions and outcomes that can be 

functionally validated through reverse genetics and molecular biology studies. In addition, 

these results may guide candidate-gene studies in epidemiology databases with requisite 

qualitative or quantitative data that will have to be replicated in independent studies, through 

meta-analysis, bench research, or relevant in vitro or in vivo targeted testing in cell lines or 

animal models, respectively.

Environmental contaminants have been shown to be related to epigenetic changes in non-

occupational settings, and under a larger, non-pilot sample, it would be ideal to adjust for 

these exposures in order to better elucidate the specific mechanisms underlying associations. 

In particular, it is possible that the association between DNA methylation and HDI is driven 

by common association with an unmeasured exposure. We only measured workers’ exposure 

to diisocyanates but adjusted the association analyses for potential confounders (e.g., 
smoking). Although demethylation of the AHHR gene is strongly associated with tobacco 

smoking (Shenker et al., 2013; Zeilinger et al., 2013), we did not observe an association 

between HDI exposure and aryl hydrocarbon receptor repressor CpG methylation status. 

This was not unexpected because we have shown that urine HDA levels are not affected by 

smoking (Gaines et al., 2011). Because we did not detect individual mediators, the 

interpretation of the results presented here is not affected. Further, we emphasize that the 

inter-individual differences in HDI quantitative exposure levels correlated strongly with 

individual differences in specific CpG methylation status and the urine HDA biomarker of 

exposure. This indirect evidence (discovery) described in this report will ultimately have to 

be proven using hypothesis based research methods. Here, we can account for a limited 

number of variables and chemical exposures, but the statistical evidence for the role of HDI 

exposure on DNA methylation in a sentinel tissue (PBMC) and the urine HDA biomarker 

levels strongly supports the observation reported.

We have developed a novel and innovative research framework with statistical tools to 

investigate the potential role of epigenetics in the assessment of factors that can modify 

biomarker of exposure and may affect individual differences in response to HDI exposure in 

a small well-characterized worker population of automotive spray painters. Although we 

could not resolve and identify specific mediators, we show the relevance of these significant 

epigenetic alterations using pathway and network analysis along with gene ontology 

enrichment tools to understand the impact of individual differences on the observed 

biomarker level. This research is critical to identify individual differences in DNA CpG 

epigenetic alterations for HDI exposure and biomarker levels that we observed in our 

previous studies (Flack et al., 2011; Flack et al., 2010; Gaines et al., 2010, 2011) and may 

indicate genes and their products that influence disparities in toxicity and toxicokinetics of 

HDI. This may be related to inter-individual differences in activity of the enzyme(s) 

involved in the toxicokinetics of HDI via epigenetic modulation. Therefore, we may be able 

to account for individual differences in HDI toxicokinetics that affect systemic exposure 

levels that in turn may affect individual differences in exposure-dose relationships without 
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having to perform case-control studies. Case-control studies may be confounded by not 

being able to control for genetic and epigenetic variation between individuals. The approach 

described here requires only exposed individuals and linear regression or mixed models with 

repeat quantitative measures of exposure over time in order to investigate causally related 

mediators and functional genetic and epigenetic interactions. A larger population study will 

be required to corroborate these observations, further describe mediators between exposure 

and biomarkers of exposure, and further deconstruct the models to substantiate the predicted 

interactions.

5. Conclusion

We have shown in this pilot study that HDI exposure modifies differentially methylated 

regions (CpG loci) genome-wide and that changes in methylation status of specific CpG loci 

significantly influence the quantification of urine biomarker of exposure. Results 

demonstrate that epigenetic modifications are, at least, a partial mediator of the HDI 

exposure and biomarker of exposure relationship. Other variables, genetic, confounding 

individual exposures, or other unknown variables may also partially explain inter-individual 

variation between exposure and the biomarker of exposure. The investigation of the 

interactions between environment, individual epigenetic alterations, and the biological 

outcome in occupational and environmental exposure assessment studies can provide an 

effective approach to identify human epigenetic–environment interactions. This research 

strategy has the potential to reduce uncertainty and increase confidence in biomarkers of 

exposure and/or early biological effect classification and, thus, improve exposure 

classification in occupational epidemiology studies and significantly contribute to the 

development of our understanding of exposure dose-effect relationships.
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HIGHLIGHTS

• HDI exposure modifies differentially methylated regions (CpG loci) genome-

wide.

• Epigenetic modifications partially mediate the HDI exposure and biomarker 

relationship.

• HDI mass transport, permeation, and metabolism are associated with 

epigenetic modifications.

• The developed tools can be used to identify epigenetic marks affecting 

exposure and outcome.
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Fig. 1. 
Enrichment of molecular functions derived from predicted network interactions based on 

CpG loci associated genes identified by Model (1).
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Fig. 2. 
Enrichment of molecular functions derived from predicted network interactions based on 

CpG loci associated genes identified by Model (2).
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