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Abstract

Tuberculosis (TB) is a global health problem estimated to kill 1.4 million people per year. Recent advances in the
genomics of the causative agents of TB, bacteria known as the Mycobacterium tuberculosis complex (MTBC), have allowed
a better comprehension of its population structure and provided the foundation for molecular evolution analyses. These
studies are crucial for a better understanding of TB, including the variation of vaccine efficacy and disease outcome,
together with the emergence of drug resistance. Starting from the analysis of 73 publicly available genomes from all the
main MTBC lineages, we have screened for evidences of positive selection, a set of 576 genes previously associated with
drug resistance or encoding membrane proteins. As expected, because antibiotics constitute strong selective pressure,
some of the codons identified correspond to the position of confirmed drug-resistance-associated substitutions in the
genes embB, rpoB, and katG. Furthermore, we identified diversifying selection in specific codons of the genes Rv0176 and
Rv1872c coding for MCE1-associated transmembrane protein and a putative L-lactate dehydrogenase, respectively.
Amino acid sequence analyses showed that in Rv0176, sites undergoing diversifying selection were in a predicted antigen
region that varies between “modern” lineages and “ancient” MTBC/BCG strains. In Rv1872c, some of the sites under
selection are predicted to impact protein function and thus might result from metabolic adaptation. These results
illustrate that diversifying selection in MTBC is happening as a consequence of both antibiotic treatment and other
evolutionary pressures.

Key words: diversifying selection, positive selection, Mycobacterium, tuberculosis, genetic diversity, computational mo-
lecular biology, evolution, phylogeny, drug resistance, genomics.

Introduction
Tuberculosis (TB) is a global health concern killing approxi-
mately 1.4 million people every year (World Health Organiza-
tion 2012). All members of the Mycobacterium tuberculosis
complex (MTBC) are potentially pathogenic to humans; how-
ever, the majority of TB cases in humans are due to M. tuber-
culosis and M. africanum (Grange 2001). One of the most
intriguing aspects of TB is the wide spectrum of outcomes
observed upon infection, ranging from pathogen clearance to
the establishment of latency or development of active disease
(Constant and Bottomly 1997; Lin and Flynn 2010). MTBC
strains are genetically monomorphic bacteria harboring rela-
tively low genetic variability (Achtman 2008), and thus, the
heterogeneous TB outcomes have been primarily attributed

to host and environmental factors (Lin and Flynn 2010).
However, there is an increasing body of evidence supporting
that the existing variability in MTBC strains has relevance in
TB pathogenesis (De Jong et al. 2008; Lari et al. 2009; Coscolla
and Gagneux 2010; Rakotosamimanana et al. 2010; Portevin
et al. 2011). Thus, the identification of the functionally rele-
vant genetic variability in MTBC strains might contribute to
improved diagnostic, prophylactic, and therapeutic strategies
that are needed to tackle TB.

Coevolution between the host and pathogen is a powerful
determinant of adaptation in interacting species (Woolhouse
et al. 2002). In a process that became known as “evolutionary
arms race" (Dawkins and Krebs 1979), an adaptation in the
host-immune system may lead to a counter adaptation in the
pathogen and vice versa. Examples of this come from several
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studies in viral, bacterial, and protozoan human pathogens,
which have revealed that surface-exposed proteins harboring
antigens tend to be under diversifying selection to evade the
host-immune system (Farci 2000; Urwin et al. 2004; Jeffares
et al. 2007; Kawashima et al. 2009). Most importantly, it has
been shown in M. tuberculosis that a large subset of T-cell
antigens are hyperconserved suggesting that some level of
immune recognition may be beneficial for M. tuberculosis
(Comas et al. 2010). However, the presence of a small
subset of variable epitopes subjected to diversifying selection
to evade the host immune system cannot be excluded and
would be of relevance for TB vaccination strategies (Comas
et al. 2010). Antibiotics are also well recognized to impose
strong evolutionary pressures on pathogens (Maclean et al.
2010). In the case of MTBC, in which evidence for ongoing
horizontal gene transfer is scarce (Krzywinska et al. 2004; Jang
et al. 2008; Comas et al. 2010), the development of drug
resistance appears to be mainly due to nonsynonymous
single-nucleotide substitutions, insertions, and/or deletions
(Sandgren et al. 2009).

Genes undergoing positive or diversifying selection can be
inferred from sequence data by detecting when the ratio of
nonsynonymous to synonymous substitutions (dN/dS or !
ratio) is superior to 1. Initial approaches of this method av-
eraging ! rates over all sites in a gene had limited power. In
fact, this has been found to be an overstringent criterion for
detecting diversifying selection, as ! ratios averaged over all
sites are rarely greater than 1 (Ward et al. 1997; Crandall et al.
1999; Bielawski and Yang 2001). The succeeding development
of more powerful statistical methods has allowed new cases of
diversifying selection to be identified at individual sites and
lineages in various organisms (Yang and Bielawski 2000). One
of these methods is implemented in the Phylogenetic Analysis
by Maximum Likelihood (PAML) package (Yang 2007). It
allows the application of statistical distributions to model !
variation among all codon sites in a gene and Bayes Empirical
Bayes (BEB) posterior probability calculations to infer which
specific sites are under significant positive selection
(Anisimova et al. 2002). Therefore, positive selection can be
identified even when only a small fraction of the codons in
the gene is being affected (Yang et al. 2005).

Previous molecular evolution analyses in MTBC have been
limited by a low number of representative genomic sequences
and confined to measurements of the ! ratios averaged over
whole genes (Comas et al. 2010). In this study, we have ap-
plied the statistical methods implemented in the PAML pack-
age to estimate ! ratios at individual sites in protein coding
genes extracted from a set of 73 whole-genome sequences
from six of the seven main lineages in MTBC. Because anti-
biotics and the host-immune system are strong selective
constrains, we have chosen 576 genes for the analysis of di-
versifying selection including genes previously associated with
drug resistance and genes encoding proteins that have been
consistently detected in membrane fractions in two indepen-
dent proteomic studies (Gu et al. 2003; de Souza et al. 2011).
We found significant lines of evidence for positive selection in
confirmed drug-resistance-associated genetic variants in
embB, rpoB, and katG. In addition, we now present significant

evidence for diversifying selection in specific amino acid res-
idues of Rv0176 (MCE1-associated transmembrane protein)
and Rv1872c (a putative L-lactate dehydrogenase). Our find-
ings uncover specific amino acids in M. tuberculosis mem-
brane proteins that are under diversifying selection.

Results

Phylogenetic Analysis

We have compiled 73 publicly available MTBC genomes from
drug-susceptible and drug resistance strains (supplementary
table S1, Supplementary Material online). The phylogeny of
these strains was determined both by the presence/absence
of lineage-defining large sequence polymorphisms (LSPs)
(fig. 1A) and by a Neighbor-Joining (NJ) tree based on
52,295 genome-wide variable nucleotide positions identified
across the 73 genomes (fig. 1B). As expected, the branching
clusters obtained in the genome-wide SNPs tree (fig. 1B)
were congruent with the ones obtained in the LSPs analysis
(fig. 1A). The results from the phylogenetic analysis show that
the genomes include strains from six of the seven main line-
ages of the global MTBC population structure (Gagneux and
Small 2007) validating its usefulness for molecular evolution
studies.

Diversifying Selection in Genes Associated with
Drug Resistance

The 73 genomes used included clinical isolates with mono-,
multi-, and extensive drug resistance profiles (supplementary
table S1, Supplementary Material online). The antibiotics with
a higher number of resistant strains included in the genome
set were isoniazid (13 strains), rifampicin (6 strains), and eth-
ambutol (6 strains). Resistance to these antibiotics is known
to be associated with single-nucleotide substitutions in the
genes katG, rpoB, and embB (Sandgren et al. 2009). Because
antibiotics are well known to induce selective pressure
(Maclean et al. 2010), we have used these genes to validate
PAML codon-specific detection of diversifying selection in
M. tuberculosis (Yang 2007). The likelihood ratio tests
(LRTs) comparing the null models (M0, M1a, and M7) to
the alternative models (M2a and M8: allow sites with
!> 1) using the sequences from katG, rpoB, and embB ex-
tracted from the 73 genome set identified significant positive
selection in all the three genes (supplementary table S2,
Supplementary Material online). The BEB analysis under site
models M2a and M8 detected one amino acid residue signif-
icantly (posterior probability [PP]� 0.99) under positive se-
lection in katG (codon 315) and embB (codon 306) and two
amino acid sites significantly (PP� 0.99) under positive selec-
tion in rpoB (codons 435 and 450) (table 1). Substitutions in
at least one of these sites showing diversifying selection were
present in the majority of the drug-resistant strains analyzed
(supplementary table S3, Supplementary Material online). We
have also tested 42 other genes previously associated with
drug resistance (Sandgren et al. 2009), and because of the
absence or low frequency of mutations in these genes in
the genomes studied, no additional sites were identified
(data not shown). To address the effect of sample size on
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the reliability and statistical power of the methodology used,
we have applied PAML to a larger set of katG sequences
(supplementary table S4, Supplementary Material online).
As expected, the increase in the number of katG input se-
quences also increased the power of the method, allowing the
detection of positive selection in one additional katG drug-
resistance-associated site (katG codon 234, supplementary
table S4, Supplementary Material online). Importantly, katG
amino acid 315 remained significantly (PP� 0.99) under pos-
itive selection in the larger set of katG sequences (table 1 and
supplementary table S4, Supplementary Material online).
Thus, even when using a lower number of input sequences,
the method proved reliable. Importantly, all sites significantly
identified under diversifying selection by the conservative BEB
analysis coincided with positions in which drug resistance
substitutions have been previously reported (table 1). These
results validate the reliability of the PAML method (Yang
2007) for diversifying selection screening in genes from this
set of 73 MTBC genomes.

Diversifying Selection in Genes Encoding Membrane
Proteins

Mycobacterium tuberculosis has been coevolving with its
human host since at least 70,000 years ago (Comas et al.,
unpublished data), and membrane proteins, which are
more likely to be exposed, are preferential targets for host
immune-system-related selective pressure. Thus, we have

focused our screen for diversifying selection on genes encod-
ing proteins that have been consistently detected in mem-
brane fractions in two independent proteomic studies (Gu
et al. 2003; de Souza et al. 2011). From an initial list of 531
genes, we have excluded those that were hyperconserved
across the 73 studied genomes and those in which paralogous
sequences were found within the same genome. This resulted
in a list of 238 genes (supplementary table S5, Supplementary
Material online) that were screened using the PAML package
for evidences of diversifying selection. The LRT statistics iden-
tified significant diversifying selection in Rv0176 (P< 0.01)
and Rv1872c (P< 0.001) using both model M2a and M8
(supplementary table S2, Supplementary Material online).
The BEB estimates under site models M2a and M8 detected
codons under diversifying selection in Rv0176 amino acid
residue 283 (M2a, PP = 0.922; M8, PP = 0.957) and 290
(M2a, PP = 0.967; M8, PP = 0.984) and in Rv1872c amino
acid residues 3 (M2a, PP = 0.991; M8, PP = 0.993), 109 (M2a,
PP = 0.991; M8, PP = 0.993), and 176 (M2a, PP = 0.937; M8,
PP = 0.938) (table 2). We have repeated the analysis of these
genes using additional sequences from a validation set of 220
MTBC genomes. The results with this extended data set fully
support the previous findings with statistical significant pos-
terior probabilities for diversifying selection in Rv0176 codons
283 (M2a, PP = 0.962; M8, PP = 0.984) and 290 (M2a,
PP = 1.000; M8, PP = 1.000) and also in Rv1872c codon 3
(M2a PP = 0.999; M8 PP = 1.000), 109 (M2a PP = 1.000; M8

FIG. 1. Phylogeny of the 73 MTBC strains used in this study. (A) Phylogenetic analysis based on lineage-defining LSPs (Gagneux et al. 2006). The LSPs
used are indicated by the numbers in the branches. The colored boxes indicate the main MTBC lineages that are named according to their dominance
in a particular geographic area. (B) Distance-based NJ phylogram based on 52,295 genome-wide variable nucleotide positions across the 73 MTBC
genomes. The bootstrap values shown were obtained by 100 bootstrap replications. Sequence names in each cluster are colored according to the lineage
defined by LSPs analysis. Notes: aThe sequencing information available in these strains is insufficient for LSPs classification.
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PP = 1.000), and 176 (M2a, PP = 1.000; M8, PP = 1.000).
Because the substitution pattern found in Rv0176 codons
289, 290, and 291 is rare in M. tuberculosis coding regions,
we have resequenced this region in additional strains from six
major MTBC lineages. The results obtained (fig. 2) confirm
the previously existing sequencing data and also highlight
substitutions in Rv0176 codons 289, 290, and 291 that
might represent intermediate states of the evolution from
the sequence most prevalent in the “ancient" strains to the
sequence more frequent in “modern" strains. Overall, these
results constitute strong evidence for the presence of nonan-
tibiotic-related diversifying selection in the genes Rv0176 and
Rv1872c.

Ancestral State Reconstruction of Sites Showing
Diversifying Selection

The detection of substitutions in different lineages constitutes
strong evidence of independent events arising from conver-
gent evolution. Thus, we compared the distribution of the
nucleotide variants in the diversifying selection sites of Rv0176
and Rv1872c among the different MTBC lineages. The ances-
tral state reconstruction analysis showed that the substitu-
tions in Rv0176 codons 283, 289, and 290 and in Rv1872c
codons 3 and 283 are homoplastic, whereas the substitutions
in Rv1872c codon 109 are only present in strains from MTBC
Lineage 1. To validate the analysis in a distinct and larger
population, we have used an additional set of sequences
from 220 MTBC genomes from all known MTBC lineages,
including four strains from Lineage 7 that has only recently
been described (Blouin et al. 2012; Firdessa et al. 2013). The
results confirm the presence of homoplastic substitutions in
Rv0176 codons 289 and 290 and in Rv1872c codons 3 and 283
(fig. 3). With respect to the Rv0176 codon 283, no nucleotide
substitutions were found in the additional 64 Lineage 4 se-
quences analyzed, suggesting low frequency of substitutions
in this codon within this lineage. With the exception of
Rv1872c codon 109, in which the nucleotide substitutions
present seem to result from an isolated event in MTBC evo-
lution, the ancestral reconstruction of the other diversifying
selection sites in Rv0176 and Rv1872c is consistent with the
occurrence of convergent evolution.

Amino Acid Sequence Analysis of the Sites under
Diversifying Selection

To predict the functional impact of the nonsynonymous sub-
stitutions on Rv0176 and Rv1872c, we used the SIFT algo-
rithm (Kumar et al. 2009) to compare M. tuberculosis Rv0176
and Rv1872c to sets of homologous sequences from other
Actinobacteria. In Rv0176, the only substitution predicted to
have a functional impact was I289M, with the other substi-
tutions having SIFT scores� 0.05 (table 3). In Rv1872c, a func-
tional impact was predicted for T109I, A176V, and R286H
(table 3). In accordance with the previous proteomic studies,
further analysis of the amino acid sequence showed that both
Rv0176 and Rv1872c have a high probability for membrane
association (Rv0176, GRAVY score = 0.045; Rv1872c, GRAVY
score = 0.058). The prediction of transmembrane domains

(TMDs) suggested the existence of three TMDs in Rv0176
by using both TMHMM and PSORT tools (fig. 4A). As for
Rv1872c, no TMDs were predicted with TMHMM, and one
TMD was predicted using PSORT. The map of the diversifying
selection sites and the features annotated in the major pro-
tein signature databases (Zdobnov and Apweiler 2001) high-
lights that Rv0176 diversifying selection hotspot is located in a
large predicted extracellular domain and does not coincide
with known post-translational modification regions, binding
or active sites, or other functional motifs (fig. 4A). To inves-
tigate whether this region could be a site of recognition by the
immune system, we used a semiempirical method for the
prediction of antigenic regions (Kolaskar and Tongaonkar
1990) included in the EMBOSS antigenic tool (see Materials
and Methods and supplementary table S6, Supplementary
Material online). The nonsynonymous substitutions in this
region affected the length of a predicted antigenic region
(PAR) in Rv0176 (fig. 4A). The most common length of this
PAR is 13 amino acids (286–298, score 1.079), as predicted for
M. tuberculosis H37Rv, several other “modern" M. tuberculosis,
M. cannettii CIPT 140010059, and M. africanum GM041182. In
the other strains, the PAR varies from nine amino acids (290–
298, score 1.077) in the M. tuberculosis RGTB423 strain, to 12
amino acids (287–298, score 1.073) in the “modern" Lineage 4
M. tuberculosis strains BTB05-559, BTB05-552, and SG96_129,
or to 14 amino acids (285–298, score 1.079) in the Lineage 5
strain CPHL_A and M. bovis BCG strains. Regarding Rv1872c,
with the exception of the amino acid residue 3, the sites under
diversifying selection are within the Flavin mononucleotide
(FMN)-dependent alpha-hydroxyl acid dehydrogenase motif
and thus have the potential to influence the function of this
putative lactate dehydrogenase.

Discussion
In this study, we analyzed a set of 576 genes in all the main
lineages of MTBC and present evidence for the occurrence of
targeted events of diversifying selection in these bacteria. As
expected, because antibiotics are strong inducers of selective
pressure, some of the sites we identified as undergoing diver-
sifying selection corresponded to known drug resistance con-
ferring mutations. These results are a validation of the use of
PAML with this set of MTBC sequences. Our data are also in
agreement with previous studies in other organisms, in which
diversifying selection sites were associated with drug resis-
tance (Jeffares et al. 2007; Petersen et al. 2007). In addition
to antibiotics, another major selective pressure driving diver-
sifying evolution in pathogens is the host immune system. In
this context, surface-exposed protein regions are likely to be
the primary targets of diversifying selection (Dawkins and
Krebs 1979; Woolhouse et al. 2002). In support of this view,
we found evidence for nonantibiotic-resistance-related diver-
sifying selection in two membrane-associated proteins,
denoted Rv0176 and Rv1872c.

One limitation of previous studies on the molecular evo-
lution of MTBC was the unavailability of genomic sequences
representative of the main phylogenetic lineages. By perform-
ing a phylogenetic analysis based on LSPs or single-nucleotide
polymorphisms (Comas et al. 2009), we ensured a robust
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FIG. 2. Nucleotide sequence alignment of Rv0176 diversifying selection hotspot in strains of the main MTBC lineages. The codons 283 and 290 found to
be under positive selection are highlighted in bold. The alignment shows the nucleotide from 208,295 to 208,324 (coordinates relative to H37Rv
reference genome) and the reading frame of the codons 282 to 291. The sequence from the underlined strains was confirmed in this study.

6
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FIG. 3. Homoplastic nonsynonymous substitutions in Rv0176 and Rv1872c mapped on a phylogeny obtained using a set of 220 genomes representative
of all the known MTBC lineages. For each substitution, the genomic position relative to H37Rv genome and the number of the gene codon are
indicated. The results were obtained by performing parsimony ancestral reconstruction in MESQUITE (Maddison WP and Maddison DR 2001).
Mycobacterium canetti was used as the outgroup for the ancestral reconstruction.
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analysis for these monomorphic clades. The phylogeny results
obtained by both methods were congruent and indicated
that the MTBC genomes under study included strains of all
the main lineages, and thus representing suitable data set for
molecular evolutionary studies. Additionally, as shown in our
analysis of katG, our results indicate that the number of
sequences used allowed reliable detection of diversifying se-
lection. Indeed, diversifying selection in codon 315 from
katG sequences extracted from whole-genome set was main-
tained in a larger sequence set. The inclusion of additional
sequences did enhance the power of the method, as a new
diversifying selection site corresponding to a known drug re-
sistance mutation was detected. In accordance with previous
studies (Yang et al. 2005), our data show that if different
models are used and the posterior probabilities are estimated
with a BEB approach, PAML is not prone to false positives
even in small data sets. Other important factors that may
mislead the methods to detect diversifying selection are re-
combination and horizontal gene transfer events, but these
are considered rare events in MTBC (Krzywinska et al. 2004;
Jang et al. 2008). In all, our study supports that the PAML
method is a reliable tool for diversifying selection scans in
MTBC.

Our results from amino acid sequence analysis suggest
differences in the nature of the pressures underlying the
site-specific diversifying selection events in Rv0176 and
Rv1872c. Both genes are nonessential (Sassetti et al. 2003).
However, previous studies on Rv0176 suggest it has an im-
portant role in vivo, as it is required for bacterial growth in a

mouse model (Sassetti et al. 2003) and in primary murine
macrophages (Rengarajan et al. 2005).

Rv0176 is an RDD family protein of unknown function
with three predicted TMDs. The substitutions in amino
acid residues 283, 289, and 290 are homoplastic and, in the
case of codons 289 and 290, are likely to have occurred
through an “ancient" to “modern" substitution trajectory at
the level of each nucleotide. These loci of diversifying selection
are located in a large predicted extracellular domain of
Rv0176 not coinciding with any functional annotation. SIFT
(Ng and Henikoff 2003) prediction of functional conse-
quences of the substitutions in this region suggested no func-
tional impact at the positions 283 and 290, as could be
expected in a region of antigen variability. In accordance,
the prediction of antigenic regions in Rv0176 using a semiem-
pirical method (Kolaskar and Tongaonkar 1990) indicates
that these substitutions affect the length of a PAR.
Although coevolution of MTBC with its human host is not
consistent with a classical “arms-race” model (Comas et al.
2010), our results suggest that this Rv0176 region might be a
variable antigen that varies among “modern" and “ancient"
MTBC/M. bovis BCG strains. Future research toward the iden-
tification and experimental validation of variable MTBC epi-
topes could be of high relevance for the design of improved
vaccination strategies.

As for Rv1872c, a putative L-lactate dehydrogenase, the
diversifying selection sites in codons 109 and 176 are pre-
dicted by SIFT to impact the function of Rv1872c and are
located within the FMN-dependent alpha-hydroxy acid de-
hydrogenase motif. The analysis of the region upstream of
Rv1872c start codon reveals one other homoplastic nucleo-
tide substitution in close proximity to the substitution in
codon 3. It also reveals that Rv1872c is an atypical leaderless
gene without Shine-Dalgarno or TANNNT translation initia-
tion signals. Thus, one can speculate that the diversifying
selection site in codon 3 might somehow be involved in
the initiation of translation. Overall, these results may uncover
a possible metabolic adaptation of some MTBC strains to
specific host environments such as anaerobic conditions.

In summary, we show evidence for the occurrence of tar-
geted events of antibiotic and nonantibiotic-related diversify-
ing selection in MTBC. The power of this analysis might
increase as the number of genomes representative of wider
MTBC variability increases. However, the fact that MTBC
strains harbor little DNA sequence diversity and that the
majority of the MTBC antigenic regions are under negative
selection (Comas et al. 2010) suggests that the number of
genes with sites under diversifying selection will only be a
small fraction of the coding genome. This observation raises
the relevance of our results. The experimental validation of
the functional role of the sites herein identified might inform
future strategies in the global fight against TB.

Materials and Methods

Sequence Retrieval

We have studied the phylogeny and performed diversifying
selection screenings on 73 publicly available MTBC genome

Table 3. Functional Impact Prediction of the Nonsynonymous
Substitutions in Rv0176 and Rv1872c Using SIFT.

Gene Substitution Sift Scorea Sequences
Represented

at This Positionb

Rv0176 R145L 0.05 98
P283L 0.21 42
N285S 0.49 42
I289M 0.02 42
Q290S 0.91 42
R301H 0.16 41
P318S 0.09 27

Rv1872c A2S 0.26 28
V3I 0.08 91
A59G 0.10 119
L96F 0.29 119
T109I 0.01 119
A176V 0.01 119
D217N 0.39 119
A237S 0.08 119
V253M 1.00 118
L258V 0.40 119
R286H 0.01 119
R291H 0.60 119
A339V 0.06 119
T379A 0.73 119

aSubstitutions underlined have a SIFT score below 0.05 and are predicted to have a
functional impact.
bThe sequence database used for SIFT included 125 Actinobacteria sequences. The
number in this column shows for each specific position the number of sequences
included in the analysis.
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sequences retrieved from the NCBI database and the TB
Diversity Sequencing Project (http://genome.tbdb.org/anno
tation/genome/tbdb/ReseqStrainInfo.html). It includes 62
M. tuberculosis clinical isolates originating from different geo-
graphic locations, 9 M. bovis strains (including BCG vaccine
strains), and 2 M. tuberculosis laboratorial strains. In what
regards to drug resistance profile, the M. tuberculosis clinical
isolates used include susceptible, mono-, multi-, and exten-
sively resistant strains as detailed in supplementary table S1,
Supplementary Material online. Gene sequences were ex-
tracted by querying with the H37Rv sequence a local database
of the 73 genomes using MegaBlast (Zhang et al. 2000).
Hyperconserved genes (defined by a mean number of pair-
wise nucleotide differences—Tagima’s � value—across the 73
sequences below 0.0001) and paralogous sequences (resulting
in more than one complete hit within the same genome)
were excluded from the diversifying selection analysis. An
additional set of 220 MTBC genome sequences representative
of all major MTBC lineages and geographic regions obtained
in a previous study and including 44 strains from Lineage 1, 37
strains from Lineage 2, 36 strains from Lineage 3, 64 strains
from Lineage 4, 16 strains from Lineage 5, 18 strains from
Lineage 6, and 4 strains from Lineage 7 (Comas et al., unpub-
lished data) was used to validate the diversifying selection
analysis and to confirm the ancestral reconstruction of
the nonsynonymous substitutions present in Rv0176 and
Rv1872c.

DNA Sequencing

Oligonucleotide primers were designed for polymerase
chain reaction (PCR) amplification and sequencing of
Rv0176. DNA was amplified by PCR in a 96-well format
50 -ml reaction. PCR products were purified and sequenced
by Sanger sequencing method. Sequence chromatogram
files were analyzed using the Staden package (Staden
1996). To identify sequence polymorphisms, the consensus
sequence for each strain was compared with the corre-
sponding gene sequence of the H37Rv reference genome
using MEGA 5 software (Tamura et al. 2011).

Phylogenetic Analysis and Ancestral State
Reconstruction

The phylogenetic analysis of the sequences was performed
by detecting the presence/absence of previously reported
lineage-defining LSPs and by the use of genome-wide vari-
able nucleotide positions across the 73 MTBC genomes col-
lected (Comas et al. 2009). The set of SNPs was defined
relatively to the laboratory strain H37Rv and was obtained
by the use of SNPfinder (Song et al. 2005). The obtained
52,295 SNPs were concatenated, and a distance-based NJ
phylogram was determined with PhyML v3.0 (Guindon
et al. 2010) using M. canettii as the root. The resulting phy-
logeny was then used as the guide tree for subsequent boot-
strap analysis to determine the confidence of the branching.

FIG. 4. Schematic representation of the annotated protein sequences encoded by Rv0179 and Rv1872c. The schematic representation indicates the
location of the sites under positive selection and predicted functional domains annotated in the major protein signature databases. SlP, predicted signal
peptide; RDD, PFAM domain PF06271; TMD, transmembrane domains predicted using TMHMM and PSORT; PAR, antigenic region predict by
EMBOSS antigenic; Dh, FMN-dependent alpha-hydroxyl acid dehydrogenase domain (PFAM PF01070); As, FMN-dependent alpha-hydroxyl acid
dehydrogenase domain active site (PROFILE PS00557).
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Bayesian analysis resulted in similar tree topology and similar
levels of nodal support when compared with NJ. To identify
homoplastic sites, we mapped the diversifying selection sites
onto the MTBC phylogeny performed using the validation
set of 220 MTBC genomes and applied in MESQUITE
(Maddison WP and Maddison DR 2001), the ancestral re-
construction option using parsimony.

Molecular Evolutionary Analysis

We applied the codon substitution models implemented in
the CODEML program in the PAML package (Yang 2007).
Only complete and unique gene sequences were analyzed,
and all ambiguous sites were removed before PAML analysis.
Alignments and the NJ, maximum likelihood, and Bayesian
trees were used for posterior molecular evolution analyses.
Similar results were obtained for all methods of tree recon-
struction, reflecting PAML robustness in respect to the
phylogenetic tree used. Evidence for diversifying (positive)
selection was first evaluated using LRTs through the
CODEML algorithm. The null models (M0, M1a, and M7:
do not allow sites with !> 1) were compared with the
alternative models (M2a and M8: allow sites with !> 1).
The level of significance for these LRTs was calculated using
a �2 approximation given that twice the difference of log
likelihood between the models (2�lnL) will asymptotically
have a �2 distribution, with a number of degrees of freedom
corresponding to the difference of parameters between the
nested models. The Bayesian posterior probabilities for each
site were directly calculated for the models admitting selec-
tion (M2a and M8). We used the conservative BEB approach
(given its higher accuracy when compared with NEB [Yang
et al. 2005]) to calculate the posterior probabilities of a
specific codon site and to identify those with higher prob-
ability for being under diversifying selection.

Amino Acid Sequence Analysis

Prediction of the effects of coding nonsynonymous variants
on protein function in diversifying selection regions was per-
formed using the SIFT algorithm (Kumar et al. 2009).
Substituted amino acids with a SIFT score< 0.5 are predicted
to have an impact on protein function. Briefly, SIFT scores the
conservation of the positions where mutations are found and
weighs this score by the nature of the amino acid change.
These measures are then incorporated into a proxy measure
of the impact of a specific substitution on protein function.
As a bacterial database, we used all the available Actinobac-
teria sequences (N = 125). The “grand mean of hydropathy"
(GRAVY) scores were calculated using the PROTPARAM tool
(Wilkins et al. 1999) in which a score>�0.4 (mean score for
the cytosolic proteins) suggests probability for membrane
association; the higher the score, the greater the probability
(Kyte and Doolittle 1982). The transmembrane regions were
predicted using TMHMM (Krogh et al. 2001) and PSORT
(Nakai and Horton 1999). Prediction of potential antigenic
determinants was based on a semiempirical method for the
prediction of antigenic regions (Kolaskar and Tongaonkar
1990) included in the EMBOSS antigenic tool. We have

further validated this method by applying it to 30 experimen-
tally confirmed M. tuberculosis epitopes and obtained an ac-
curacy of 64% (supplementary table S6, Supplementary
Material online) that is similar to the accuracy reported by
the authors for non-M. tuberculosis epitopes (Kolaskar and
Tongaonkar 1990).

Supplementary Material
Supplementary tables S1–S6 are available at Molecular Biology
and Evolution online (http://www.mbe.oxfordjournals.org/).
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