

© EUROSIS-ETI

COLORED PETRI NETS IN THE SIMULATION OF ETL STANDARD TASKS
 THE SURROGATE KEY PIPELINING CASE

Diogo Silva Orlando Belo João M. Fernandes

ALGORITMI R&D Centre
University of Minho

Portugal
E-mail: diogosantossilva@gmail.com, obelo@di.uminho.pt, jmf@di.uminho.pt

KEYWORDS
Data Warehousing, ETL Systems, Coloured Petri Nets,
Simulation and Evaluation of ETL Processes, Standard ETL
Tasks, and Surrogate Key Pipelining.

ABSTRACT

ETL (Extract-Transform-Load) systems are formed by
processes responsible for the extraction of data from several
sources, cleaning and transforming it in accordance with
some prerequisites of a data warehouse, and finally loading it
in its multidimensional structures. ETL processes are the
most complex tasks involved within the development of a
Data Warehousing System, being crucial to model them
previously so that, during the implementation stage, the
correct set of requirements is considered. Coloured Petri
Nets are a graphical modelling language used in the design,
specification, simulation and validation of large systems,
characterized as being strongly concurrent. The objective of
this manuscript is to discuss the application of Coloured
Petri Nets to the specification and validation of ETL
systems. To demonstrate their viability for such tasks we
have selected one of the most relevant and used case in ETL
systems implementation: a surrogate key pipelining.

INTRODUCTION

The volume of information generated by organizations has
been growing exponentially, due to the advances in
information technologies, which made it easier to store,
query and manage large volumes of data. Today business
activities are supported by all the information that is stored
in organizational data repositories and used to simplify and
assist decision-makers, namely through Data Warehousing
Systems (DWS) facilities.

ETL (Extract-Transform-Load) systems are one of the
most important components of a DWS (Kimball and Caserta,
2004), as they are responsible to feed the data warehouses,
ensuing high levels of data quality and, consequently, adding
value to decision making processes. They are formed by
specific processes of extraction, cleaning and integration of
data, usually taking place in a Data Staging Area, adjusting,
correcting and structuring data coming from disparate
information sources so that decision makers can exploit it.
The result is a highly specialized single repository,
containing high quality data that is detailed, historic, subject
oriented and non volatile (Inmon, 1996; 2004).

Usually, an ETL process comprises three main stages,
extraction, transformation and loading. The first consists on
the extraction of relevant information from its operational
sources; in most cases the collected data has poor quality and
errors that makes it inadequate to be directly used for
populating the Data Warehouse (e.g. duplicate data,

impossible or wrong values, inconsistent values due to
typing errors). In the following stage – transformation – a
series of rules is applied in order to increase the quality of
the extracted data. This is done by correcting several errors
through rectification and homogenization processes, and
through the conversion of the format of the data to the one
used in a data warehouse, like measure units conversion,
derived attributes calculation, surrogate key generation,
matching of data from different sources, among other things.
Finally, the populating process that can be done by two
distinct methods – refresh or update – the former rewrites
information stored in the data warehouse and the latter
updates it.

The ETL is the most complex and technically
challenging process among all of the data warehouse process
phases (Golfarelli and Rizzi, 2009), as it easily consumes
70% of the resources needed for its implementation and
maintenance (Kimball and Caserta, 2004), as well as a big
slice of the project time and budget. Technically, this is a
difficult process to implement due to the high learning curve
presented by a lot of the ETL tools available on the market,
which don’t offer the possibility to model the system
conceptually, forcing the design and development to be
made in an ad-hoc fashion by many organizations
(Vassiliadis et al., 2002a). Furthermore, a poor
implementation of an ETL process, which may result in low
quality information, undertaking entirely a DWS (English,
1999), bringing unbearable additional costs. For these
reasons, it becomes necessary to adopt some means for
conceptual modelling, design and validation methodologies
for the development and implementation of ETL systems, as
well as proper tools to model these systems. Despite being
already the centre of many research efforts (Vassiliadis et al.,
2002) (Simitsis, 2003) (Abelló et al., 2006) (Golfarelli,
2008), ETL conceptual modelling stills remain almost as an
island in the entire ETL life-cycle development, remaining a
significant lack between it and the next ETL stages, namely
the ones related to logical modelling and, of course, physical
implementation.

The objective is to reduce implementation and
maintenance costs, as well as the development time and risk
of failure of the final DWS, which are associated frequently
with a poor implementation and validation of an ETL
process. As a first approach to this problem, Petri Nets (PNs)
(Petri, 1966) come into attention, being a mathematical
modelling language applied to a wide variety of systems.
PNs are very adequate to describe and study information
processing systems that are characterized as being
concurrent, asynchronous, distributed, non-deterministic and
stochastic (Murata, 1989). Being these some of the
characteristics that are present in ETL systems, using PNs to
model them seems to be advantageous, once it is possible to
graphically represent them using a series of places,

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55624313?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

© EUROSIS-ETI

transitions and tokens through which the concurrent
activities of the system can be simulated. Coloured Petri
Nets (CPNs) constitute a discrete event modelling language
that combines the capabilities of the PN to those of a high-
level programing language (Jensen and Kristensen, 2009).
Additionally, they introduce hierarchic and data concepts ,
making them ideal for modelling of ETL systems. CPNs,
The objective of this paper is to provide a formal and well-
sustained model to specify and model the behaviour of ETL
systems using CPNs. Thus, we present here one of our
studies carried out about modelling and validation of ETL
processes: the surrogate key pipeline case, one of the most
used currently in any conventional ETL system. In section 2
a brief introduction to CPNs is presented: what they are,
what are their characteristics and what are the advantages of
using them; followed by two examples of their industrial use
through the proper supporting tools. Section 3 presents a
review of the advantages of modelling ETL processes with
CPNs and provides a brief presentation of the selected case
study. The model created for the surrogate key pipeline case
is then presented in section 4 and in section 5 a brief
description of the simulation carried out. Finally, in section 6
we present our conclusions and some future research lines.

COLOURED PETRI NETS

CPNs (Jensen 1994; 1997; 1998) are a graphical language
for constructing models of concurrent systems and analyse
their properties. They were developed by the CPN group at
Aarhus University in Denmark since 1979. CPNs are a
variant of the regular P-nets that were created to fill two gaps
regarding their practical application: the inexistence of
hierarchic and data concepts (Jensen and Kristensen, 2009).
CPN models are a combination of PNs with the capabilities
of CPN ML (CPN ML, 2012), a high level functional
programing language based on Standard ML, that has been
used to model a wide variety of systems where concurrency
and communication are among their main characteristics.
The foundations for the graphical notation used in the
modelling processes come from the P-nets. The primitives
for the definition of data types and for describing data
manipulation are provided by CPN ML, which allows the
creation of compact and parameterisable models. Therefore,
CPNs are high-level P-nets, but at the same time they
integrate hierarchical characteristics since its possible to
create models composed of several smaller modules that can
be specified and tested independently.

CPN models are executable. With the CPN modelling
language, a system model is both state- and action-oriented,
which means that it describes the events that make a the state
of a system to change. Through these models, it’s possible to
simulate executions in order to study the behaviour of a
system. This is very useful for investigating details of a
system model as well as to verify if its behaviour is correct,
as is the case of the interactive simulations, in which an user
controls the next steps taken in the CPN and observes the
effects of each of them graphically. Simulations can also be
done automatically (i.e., without user interaction) and the
model is executed in order to test if it is conflict-free.

The advantages of using CPNs for system modelling are
quite evident and some of them have already been described,
such as the existence of an appealing graphical notation, the

possibility to carry out simulations in order to test a wide
variety of systems, and the possibility to have hierarchic
representations that, together with CPN ML, allow us to
create compact models, which is quite advantageous for
large systems. Many of the concepts associated with CPNs
are also present in other programing languages that
modellers are certainly familiar with, lowering its learning
curve. It is also possible to add time concepts to models and
to verify the associated properties through its formal
representation. Finally, there is support for the design,
simulation and formal analysis of CPNs through computer
tool applications.

CPN Tools is a computer tool that supports the
construction and manipulation of CPN models, allowing for
their real practical application. They were initially developed
at Aarhus University (Jensen et al., 2007) (Jensen and
Kristensen, 2009) and are now under the management of the
Eindhoven University of Technology, the Netherlands. With
this tool, it is possible to edit, simulate and analyse CPN
models through a graphical user interface, which is very
useful in cases of validation and debugging. With the aid of
CPN tools many systems were modelled in several large
scale projects belonging to different areas (e.g. software,
military systems, networks and protocols), many of them
designed and exploited in industrial environments (Aarhus
University, 2011). Nokia, in a partnership with the CPN
Group, used CPNs to model the interactions between the
user and their mobile phone interface. The modelling process
was performed at an early stage of the development during
the mobile phone architecture design, in order to detect
possible errors, and test and analyse design alternatives,
giving immediate feedback to the designers (Lorentsen et al.
2001). CPNs were also adopted by Ericsson Telebit to
support the design and specification of the ERDP (Edge
Router Design Protocol). Based on CPN models and on CPN
tools, it was possible to build a formal specification of the
system, allowing the analysis of the protocol behaviour and
verification of its key points. This resulted in the correction
of several design errors (Kristensen and Jensen, 2004).

ETL TASKS MODELING AND SIMULATION

Most of the work and research in the DWS conceptual
modelling area has been exclusively applied to schema
development activities, either by using UML (Unified
Modelling Language), variations of the entity-relationship
model or dimensional modelling. However, there are some
specific efforts regarding the specification of ETL processes.
For instance, a generic approach to model the early design
stages of these processes is presented in (Vassiliadis et al.
2002a), which is complementary to other ETL logical
modelling methodologies such as UML or graphs.
Additionally, in (Vassiliadis et al., 2002b) a graphical
notation for the construction of graphs that represent ETL
processes is defined, as well as the formal definitions for the
domains and the several notations that constitute them.
Latter, in (Muñoz et al., 2008), UML was presented as the
modelling language for activities involved in ETL processes
by using activity diagrams, with the advantage of being able
to specify important characteristics of the processes (e.g.
behavioural and temporal conditions) through the use of a
standard language, contrary to what happened in the former
approaches. However, none of these alternatives allows the

© EUROSIS-ETI

validation of the specified processes in the conceptual design
stage.
CPNs (and its tool support) constitue a powerful solution to
model and validate ETL processes. In addition to allowing
models to be designed with the CPN Tools, it also allows to
simulate their execution. Therefore, it is possible to make a
more general analysis of the system to see its behaviour
performance-wise, and also a detailed analysis to investigate
and study the behaviour of different stages, or some other
smaller processes that are integrated in them, allowing a
more specific inspection providing strong basis to detect
evaluate potential errors and anomalies.

Another great advantage of using CPNs to model ETL
processes is that they are hierarchical nets, which allows for
building larger modules through the composition of other
smaller modules. This makes it possible to build specific
ETL processes as a connection (or a cluster) of several CPN
models representing smaller processes. In turn, they can be
tested and validated independently and reused to build other
modules. Taking advantage of these features, a small and
simple, yet very important, process was selected as a case
study to demonstrate the application of CPNs for modelling
and validation of ETL processes: the Surrogate Key
Pipelining case (SKP).

SURROGATE KEYS GENERATION USING CPNs

Regularly, the SKP process takes place during the loading
stage of the records into the fact table. It’s one of the last
processes of this ETL stage, in which the natural keys of
each record are converted into their corresponding surrogate
keys. There are different approaches to implement this
process, for example, using mapping tables to generate and
manage these attributes. However, for maximum
performance, lookup tables are used; one table for each
dimension. These tables are vital for the pipelining process,
as their size is significately smaller than the corresponding
dimensions. This turns possible to load and randomly access
them in memory, avoiding unnecessary disk reading that
provably deteriorates the performance of the system. The
records in this kind of tables are called lookup records and
are formed solely by each dimensional record’s surrogate
key, generated in a previous ETL process, and one or more
corresponding natural keys.

During this process the natural keys of each record are
replaced by the corresponding surrogate key, thereby, there
will be no natural keys in the final record but a sequence of
surrogate keys, as many as the number of the existing
dimensions – assuming, of course, that every single natural
key must be substituted. Usually, each record should be
passed though memory in a multithreaded process (Kimball
and Caserta, 2004), that is, the substitution of the key of a
record in memory happens simultaneously as other record
substitutions that take place in different memory positions.
This guarantees maximum process performance by avoiding
that the fact table is written to disk before the mapping for
the next dimension begins, for each substitution process of
each dimension.

As a first approach to the SKP modelling, two
assumptions were made: there are four dimensions in this
example, and the dimensional records come from one and
the same operational source, having only one natural key.
Being so, each fact table record is processed four times for

the substitution of its natural keys and, therefore, it is
necessary to have four lookup tables, one for each
substitution stage.

Figure 1 – The SKP model

The CPN model presented in Figure 1 represents the SKP
process described previously. It is composed of nine places
and four transitions. Every existing place in the CPN model
is of the colour set RECORD. This colour set is used to
model a relational database record and it is defined as the
union of the different kinds of records that are used in this
process, namely:

colset RECORD = union LkpRec:LKPREC +
FctRec:FCTREC;

Only two kinds of records are used in this process: the
lookup records and the main records that are processed and
loaded into the fact table (i.e., fact records). Still, this
generalization makes the model more uniform and simple, as
well as improves its readability. The places Fact Records
and Fact Table are used to model the fact records before and
after the key substitution process is applied to them, that is,
before the natural keys of the initial records are replaced by
the corresponding surrogate keys. Meanwhile, each of these
replacements, the places M1 to M3 are used to model
memory positions staged by the fact records before they are
actually loaded into the fact table. For this reason, all these
five places receive the same type of token, with colour set
FCTREC, representing a fact record that was defined as
follows:

colset FCTREC =
record id1:ID * id2:ID * id3:ID * id4:ID *
fct:NO;
colset ID = union sk:NO + nk:ST;
colset NO = int;
colset ST = string;

This kind of record has five fields, four of them
corresponding to its keys, and the fifth field ‘fct’
representing a business measure. The id fields with the
colour set ‘ID’, defined as the union of an integer
(representing the surrogate key) and a string (representing
the natural key) are used so that the same field can assume
the value of a natural key or the value of a surrogate key.
Therefore, a single colour set can be used to model every
state of the fact record during the substitution processes,
without the need to define an independent colour set to
represent a fact record in each of the memory positions, as
well as the initial and final fact tables, where the colour set
of the id fields varies.

The remaining four places, named Lookup Table Dim(1-
4), are used to model the lookup tables that correspond to the

© EUROSIS-ETI

four existing dimensions in the data warehouse and they are
managed during the surrogate key generation process. The
colour set of these places is also RECORD and they receive
tokens of the colour set LKPREC. The lookup record is a
simple record with one field that represents the natural key
of a record inserted in the corresponding dimension in a
previous process, and another to represent the corresponding
surrogate key:

colset LKPREC = record sk:NO * nk:ST;

Finally, the four Substitute ID Dim(1-4) transitions represent
the actual substitution event of the natural key of a fact
record by a surrogate key. Each transition receives two
tokens, one of them representing a fact record to be
processed and the other representing a lookup record used to
match the natural key to be substituted in that step with the
corresponding surrogate key. The existing guards in each of
the transitions are used to assure that the id field of the fact
record is matched with a natural key belonging to one of the
tokens representing the lookup records in the respective
Lookup Table Dim place. The UpdId(1-4) functions in the
output arcs of transitions are used to update the id fields of
the fact records with the surrogate key value of the lookup
record received as one of the transitions input. This function
has two parameters: the actual fact record and the value of
the surrogate key to be updated in the respective field:

fun UpdId1(fr:FCTREC, k) =
1`FctRec(FCTREC.set_id1 fr (sk k));

The four ‘UpdId’ functions are identical, varying only in the
field that is being updated.

THE SKP SIMULATION

In this section, a simulation of the model execution is
presented and described with the help of some images taken
from three different markings of the simulation carryout.

Figure 2 – Initial Marking M0

The initial marking (Figure 2) has three tokens in Fact
Records, representing the fact records with natural keys, and
three tokens in the dimensions’ lookup tables, representing
the lookup records used in this process. For this simulation,
the values of these tokens were defined through the
FactRecords and LkpRecDim(1-4) constants as:

val FactRecords =
1`FctRec({id1=nk "d1nk3",id2=nk "d2nk1",id3=nk
"d3nk2",id4=nk "d4nk1",fct=1})++
1`FctRec({id1=nk "d1nk1",id2=nk "d2nk2",id3=nk
"d3nk3",id4=nk "d4nk2",fct=2})++
1`FctRec({id1=nk "d1nk2",id2=nk "d2nk3",id3=nk
"d3nk1",id4=nk "d4nk3",fct=3});

val LkpRecDim1 =
 1`LkpRec({sk=1,nk="d1nk1"})++
 1`LkpRec({sk=2,nk="d1nk2"})++
 1`LkpRec({sk=3,nk="d1nk3"});
val LkpRecDim2 =
 1`LkpRec({sk=1,nk="d2nk1"})++
 1`LkpRec({sk=2,nk="d2nk2"})++
 1`LkpRec({sk=3,nk="d2nk3"});
val LkpRecDim3 =
 1`LkpRec({sk=1,nk="d3nk1"})++
 1`LkpRec({sk=2,nk="d3nk2"})++
 1`LkpRec({sk=3,nk="d3nk3"});
val LkpRecDim4 =
 1`LkpRec({sk=1,nk="d4nk1"})++
 1`LkpRec({sk=2,nk="d4nk2"})++
 1`LkpRec({sk=3,nk="d4nk3"});

The pre-processed fact records are formed solely by strings
representing the dimensions natural keys plus the additional
business measure field, while the lookup records are
constituted by the surrogate/natural key pair. In this marking,
Substitute ID Dim1 is the only transition that is enabled, as it
is the only one that has a token in each of its input places;
one token is removed from Fact Records through the arc
expression FctRec fr and the corresponding lookup record
token is removed from Lookup Table Dim1, through the arc
expression LkpRec lr. The guard expression [(#id1 fr) = nk
(#nk lr)] acts as a restriction, so that the value of the lookup
record’s nk field matches the value of the first id field of the
fact record. Such a guard expression is used in each of the
transitions so that, in each step, the correct fact record field
is matched against the lookup records’ natural keys. When
this transition is executed, the id1 field of the token
representing the first fact record is updated with the
corresponding surrogate key, through the function
UpdId1(fr,(#sk lr)), and passed to M1; this record is then
ready for another key substitution, corresponding to the
second dimension’s natural key (Figure 3).

Figure 3 – Marking M1

In the marking M1 (Figure 3), reached after firing the
Substitute ID Dim1 transition, there are now two enabled
transitions – Substitute ID Dim1 and Substitute ID Dim2 – as
it is possible to “remove” tokens from their input places and
the guard expressions evaluate to true, allowing any of them
to be fired. If Substitute ID Dim1 is fired, a new token
representing a fresh pre-processed fact record is removed
from Fact Records, its first natural key is replaced by the
corresponding surrogate key, and then passed to M1. If the
Substitute ID Dim2 is fired, the second natural key of the
token, representing the first fact record record, is replaced by
the corresponding surrogate key, and the transition Substitute
ID Dim 3 will be activated, as the token will be passed to
M2. After a few markings, as the tokens are processed, all
transitions become active, allowing for several records to be

© EUROSIS-ETI

processed in memory at the same time, before they are
loaded into the Fact Table.

In the final marking (Figure 4) there are three tokens in
Fact Table, representing the final fact records processed
through each of the transitions, and the same three tokens in
each of the lookup tables. Every fact record’s natural key
have been replaced by the corresponding surrogate key
value, originating fact records that are ready to be loaded
into the corresponding table in the data warehouse.

Figure 4 – Final Marking M12

The simulation of the model has revealed great advantages.
A step-by-step execution allows for the data flow to be
carefully analysed so that errors can be easily detected. In
this particular case, as several transitions can be enabled at
the same time and the order of their activation may vary
from each execution, simulations run with the CPN Tool
were very useful as they permit the selection of which
transition to be executed and thus a more careful analysis of
the behaviour of the ETL process.

CONCLUSIONS AND FUTURE WORK

In this paper we present a formal specification approach
based on CPNs for modelling and validating DWS ETL
processes, using the popular SKP case as a study case one
The CPNs, together with CPN Tools, have proven to be a
good alternative to model this kind of processes, because in
addition to the powerful support that they offer in such
modelling tasks, they also allow the implemented models to
be analysed and consequently verified. The initiated study is
not finished, since the number of different processes that
usually integrate an ETL system is high. Currently, the
model describes the behaviour of the SKP process based in
predefined values and some basic assumptions. This is not
enough for real world ETL systems. Thus, we need to adapt
it so that it can be applied to a wide variety of ETL
scenarios, as well as to receive hierarchical concepts in order
to prepare the model to be reused in higher complexity
processes.

REFERENCES

Aarhus University. 2011. Industrial use of CPN. [Online] Availale
at < http://cs.au.dk/cpnets/industrial-use/> [Accessed on 27
June 2012]

Abelló, A., Samos, J., & Saltor, F. (2006). YAM2: a
multidimensional conceptual model extending UML.
Information System, 31(6), 541-567.

CPN ML , Overview of CPN ML Syntax, Version 3 . 0. [Online]
Availale at <http://www.daimi.au.dk/designCPN/man/Misc/
CpnML.All.pdf> [Accessed on 25 June 2012]

English, L. P., Improving data warehouse and business information
quality: methods for reducing costs and increasing profits. John
Wiley & Sons, Inc., New York, NY, USA, 1999.

Golfarelli, M., The DFM: A Conceptual Model for Data
Warehouse. Encyclopedia of Data Warehousing and Mining
(Second Edition), John Wang (Ed.), IGI Global, 2008.

Golfarelli, M., Rizzi, S., Data Warehouse Design: Modern
Principles and Methodologies, 1 ed. McGraw-Hill, Inc., New
York, NY, USA, 2009.

Inmon, W., Building the Data Warehouse , John Wiley & Sons,
1996.

Inmon, W., Building the Data Warehouse, 4th ed.: Wiley
Publishing, Inc, 2005.

Jensen, K., An introduction to the theoretical aspects of coloured
petri nets. In A Decade of Concurrency, Reflections and
Perspectives, REX School/Symposium. Springer-Verlag,
London, UK, 230–272, 1994.

Jensen, K., A brief introduction to coloured petri nets. In
Proceedings of the Third International Workshop on Tools and
Algorithms for Construction and Analysis of Systems. TACAS
’97. Springer-Verlag, London, UK, 203–208, 1997.

Jensen, K., An introduction to the practical use of coloured petri
nets. In Lectures on Petri Nets II: Applications, Advances in
Petri Nets, the volumes are based on the Advanced Course on
Petri Nets. Springer-Verlag, London, UK, 237–292, 1998.

Jensen, K., Kristensen, M., Wells, L., Coloured petri nets and cpn
tools for modelling and validation of concurrent systems. Int. J.
Softw. Tools Technol. Transf. 9, 213–254, 2007.

Jensen, K., Krinstensen, L., Coloured Petri Nets: Modeling and
Validation of Concurrent Systems. Springer, New York, NY,
USA, 2009.

Kimball, R., Caserta, J., The Data Warehouse ETL Toolkit:
Practical Techniques for Extracting, Cleanin. John Wiley &
Sons, 2004.

Kristensen, M., Jensen, K., Specification and validation of an edge
router discovery protocol for mobile ad hoc networks. In
SoftSpez Final Report, H. Ehrig, W. Damm, J. Desel, M.
Große-Rhode, W. Reif, E. Schnieder, and E. Westkämper, Eds.
Lecture Notes in Computer Science, vol. 3147. Springer, 248–
269, 2004.

Lorentsen, L., Touvinene, A.-P., Xu, J., Modelling feature
interaction patterns in Nokia mobile phones using coloured
petri nets and design/CPN. In 3rd Workshop and Tutorial on
Practical Use of Coloured Petri Nets and the CPN Tools
(CPN’01) / Kurt Jensen (Ed.). DAIMI PB-554, Aarhus
University, 1–14, 2001.

Murata, T., Petri nets: Properties, analysis and applications.
Proceedings of the IEEE 77, 4, 541–580, 1989.

Petri, C.A., Kommunikation mit Automaten. Schriften des IIM Nr.
2, Institut für Instrumentelle Mathematik, Bonn, 1962. English
translation: Technical Report RADC-TR-65-377, Griffiths Air
Force Base, New York, Vol. 1, Suppl. 1, 1966.

Simitsis, A. 2003. Modeling and managing ETL processes. In
VLDB PhD Workshop. Berlin.

Vassiliadis, P., Simitisis, A., Skiadopoulos, S. 2002. Conceptual
modeling for ETL processes. In Proceedings of the 5th ACM
international workshop on Data Warehousing and OLAP.
DOLAP ’02. ACM, New York, NY, USA, 14–21.

