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ABSTRACT 
 
ETL (Extract-Transform-Load) systems are formed by 
processes responsible for the extraction of data from several 
sources, cleaning and transforming it in accordance with 
some prerequisites of a data warehouse, and finally loading it 
in its multidimensional structures. ETL processes are the 
most complex tasks involved within the development of a 
Data Warehousing System, being crucial to model them 
previously so that, during the implementation stage, the 
correct set of requirements is considered. Coloured Petri 
Nets are a graphical modelling language used in the design, 
specification, simulation and validation of large systems, 
characterized as being strongly concurrent. The objective of 
this manuscript is to discuss the application of Coloured 
Petri Nets to the specification and validation of ETL 
systems. To demonstrate their viability for such tasks we 
have selected one of the most relevant and used case in ETL 
systems implementation: a surrogate key pipelining. 
 
INTRODUCTION 
 
The volume of information generated by organizations has 
been growing exponentially, due to the advances in 
information technologies, which made it easier to store, 
query and manage large volumes of data. Today business 
activities are supported by all the information that is stored 
in organizational data repositories and used to simplify and 
assist decision-makers, namely through Data Warehousing 
Systems (DWS) facilities. 

ETL (Extract-Transform-Load) systems are one of the 
most important components of a DWS (Kimball and Caserta, 
2004), as they are responsible to feed the data warehouses, 
ensuing high levels of data quality and, consequently, adding 
value to decision making processes. They are formed by 
specific processes of extraction, cleaning and integration of 
data, usually taking place in a Data Staging Area, adjusting, 
correcting and structuring data coming from disparate 
information sources so that decision makers can exploit it. 
The result is a highly specialized single repository, 
containing high quality data that is detailed, historic, subject 
oriented and non volatile (Inmon, 1996; 2004). 

Usually, an ETL process comprises three main stages, 
extraction, transformation and loading. The first consists on 
the extraction of relevant information from its operational 
sources; in most cases the collected data has poor quality and 
errors that makes it inadequate to be directly used for 
populating the Data Warehouse (e.g. duplicate data, 

impossible or wrong values, inconsistent values due to 
typing errors). In the following stage – transformation – a 
series of rules is applied in order to increase the quality of 
the extracted data. This is done by correcting several errors 
through rectification and homogenization processes, and 
through the conversion of the format of the data to the one 
used in a data warehouse, like measure units conversion, 
derived attributes calculation, surrogate key generation, 
matching of data from different sources, among other things. 
Finally, the populating process that can be done by two 
distinct methods – refresh or update – the former rewrites 
information stored in the data warehouse and the latter 
updates it. 

The ETL is the most complex and technically 
challenging process among all of the data warehouse process 
phases (Golfarelli and Rizzi, 2009), as it easily consumes 
70% of the resources needed for its implementation and 
maintenance (Kimball and Caserta, 2004), as well as a big 
slice of the project time and budget. Technically, this is a 
difficult process to implement due to the high learning curve 
presented by a lot of the ETL tools available on the market, 
which don’t offer the possibility to model the system 
conceptually, forcing the design and development to be 
made in an ad-hoc fashion by many organizations 
(Vassiliadis et al., 2002a). Furthermore, a poor 
implementation of an ETL process, which may result in low 
quality information, undertaking entirely a DWS (English, 
1999), bringing unbearable additional costs. For these 
reasons, it becomes necessary to adopt some means for 
conceptual modelling, design and validation methodologies 
for the development and implementation of ETL systems, as 
well as proper tools to model these systems. Despite being 
already the centre of many research efforts (Vassiliadis et al., 
2002) (Simitsis, 2003) (Abelló et al., 2006) (Golfarelli, 
2008), ETL conceptual modelling stills remain almost as an 
island in the entire ETL life-cycle development, remaining a 
significant lack between it and the next ETL stages, namely 
the ones related to logical modelling and, of course, physical 
implementation.  

The objective is to reduce implementation and 
maintenance costs, as well as the development time and risk 
of failure of the final DWS, which are associated frequently 
with a poor implementation and validation of an ETL 
process. As a first approach to this problem, Petri Nets (PNs) 
(Petri, 1966) come into attention, being a mathematical 
modelling language applied to a wide variety of systems. 
PNs are very adequate to describe and study information 
processing systems that are characterized as being 
concurrent, asynchronous, distributed, non-deterministic and 
stochastic (Murata, 1989). Being these some of the 
characteristics that are present in ETL systems, using PNs to 
model them seems to be advantageous, once it is possible to 
graphically represent them using a series of places, 
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transitions and tokens through which the concurrent 
activities of the system can be simulated. Coloured Petri 
Nets (CPNs) constitute a discrete event modelling language 
that combines the capabilities of the PN to those of a high-
level programing language (Jensen and Kristensen, 2009). 
Additionally, they introduce hierarchic and data concepts , 
making them ideal for modelling of ETL systems. CPNs, 
The objective of this paper is to provide a formal and well-
sustained model to specify and model the behaviour of ETL 
systems using CPNs. Thus, we present here one of our 
studies carried out about modelling and validation of ETL 
processes: the surrogate key pipeline case, one of the most 
used currently in any conventional ETL system. In section 2 
a brief introduction to CPNs is presented: what they are, 
what are their characteristics and what are the advantages of 
using them; followed by two examples of their industrial use 
through the proper supporting tools. Section 3 presents a 
review of the advantages of modelling ETL processes with 
CPNs and provides a brief presentation of the selected case 
study. The model created for the surrogate key pipeline case 
is then presented in section 4 and in section 5 a brief 
description of the simulation carried out. Finally, in section 6 
we present our conclusions and some future research lines. 
 
COLOURED PETRI NETS 

 
CPNs (Jensen 1994; 1997; 1998) are a graphical language 
for constructing models of concurrent systems and analyse 
their properties. They were developed by the CPN group at 
Aarhus University in Denmark since 1979. CPNs are a 
variant of the regular P-nets that were created to fill two gaps 
regarding their practical application: the inexistence of 
hierarchic and data concepts (Jensen and Kristensen, 2009). 
CPN models are a combination of PNs with the capabilities 
of CPN ML (CPN ML, 2012), a high level functional 
programing language based on Standard ML, that has been 
used to model a wide variety of systems where concurrency 
and communication are among their main characteristics. 
The foundations for the graphical notation used in the 
modelling processes come from the P-nets. The primitives 
for the definition of data types and for describing data 
manipulation are provided by CPN ML, which allows the 
creation of compact and parameterisable models. Therefore, 
CPNs are high-level P-nets, but at the same time they 
integrate hierarchical characteristics since its possible to 
create models composed of several smaller modules that can 
be specified and tested independently. 

CPN models are executable. With the CPN modelling 
language, a system model is both state- and action-oriented, 
which means that it describes the events that make a the state 
of a system to change. Through these models, it’s possible to 
simulate executions in order to study the behaviour of a 
system. This is very useful for investigating details of a 
system model as well as to verify if its behaviour is correct, 
as is the case of the interactive simulations, in which an user 
controls the next steps taken in the CPN and observes the 
effects of each of them graphically. Simulations can also be 
done automatically (i.e., without user interaction) and the 
model is executed in order to test if it is conflict-free. 

The advantages of using CPNs for system modelling are 
quite evident and some of them have already been described, 
such as the existence of an appealing graphical notation, the 

possibility to carry out simulations in order to test a wide 
variety of systems, and the possibility to have hierarchic 
representations that, together with CPN ML, allow us to 
create compact models, which is quite advantageous for 
large systems. Many of the concepts associated with CPNs 
are also present in other programing languages that 
modellers are certainly familiar with, lowering its learning 
curve. It is also possible to add time concepts to models and 
to verify the associated properties through its formal 
representation. Finally, there is support for the design, 
simulation and formal analysis of CPNs through computer 
tool applications. 

CPN Tools is a computer tool that supports the 
construction and manipulation of CPN models, allowing for 
their real practical application. They were initially developed 
at Aarhus University (Jensen et al., 2007) (Jensen and 
Kristensen, 2009) and are now under the management of the 
Eindhoven University of Technology, the Netherlands. With 
this tool, it is possible to edit, simulate and analyse CPN 
models through a graphical user interface, which is very 
useful in cases of validation and debugging. With the aid of 
CPN tools many systems were modelled in several large 
scale projects belonging to different areas (e.g. software, 
military systems, networks and protocols), many of them 
designed and exploited in industrial environments (Aarhus 
University, 2011). Nokia, in a partnership with the CPN 
Group, used CPNs to model the interactions between the 
user and their mobile phone interface. The modelling process 
was performed at an early stage of the development during 
the mobile phone architecture design, in order to detect 
possible errors, and test and analyse design alternatives, 
giving immediate feedback to the designers (Lorentsen et al. 
2001). CPNs were also adopted by Ericsson Telebit to 
support the design and specification of the ERDP (Edge 
Router Design Protocol). Based on CPN models and on CPN 
tools, it was possible to build a formal specification of the 
system, allowing the analysis of the protocol behaviour and 
verification of its key points. This resulted in the correction 
of several design errors (Kristensen and Jensen, 2004). 
 
ETL TASKS MODELING AND SIMULATION 
 
Most of the work and research in the DWS conceptual 
modelling area has been exclusively applied to schema 
development activities, either by using UML (Unified 
Modelling Language), variations of the entity-relationship 
model or dimensional modelling. However, there are some 
specific efforts regarding the specification of ETL processes. 
For instance, a generic approach to model the early design 
stages of these processes is presented in (Vassiliadis et al. 
2002a), which is complementary to other ETL logical 
modelling methodologies such as UML or graphs. 
Additionally, in (Vassiliadis et al., 2002b) a graphical 
notation for the construction of graphs that represent ETL 
processes is defined, as well as the formal definitions for the 
domains and the several notations that constitute them. 
Latter, in (Muñoz et al., 2008), UML was presented as the 
modelling language for activities involved in  ETL processes 
by using activity diagrams, with the advantage of being able 
to specify important characteristics of the processes (e.g. 
behavioural and temporal conditions) through the use of a 
standard language, contrary to what happened in the former 
approaches. However, none of these alternatives allows the 
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validation of the specified processes in the conceptual design 
stage. 
CPNs (and its tool support) constitue a powerful solution to 
model and validate ETL processes. In addition to allowing 
models to be designed with the CPN Tools, it also allows to 
simulate their execution. Therefore, it is possible to make a 
more general analysis of the system to see its behaviour 
performance-wise, and also a detailed analysis to investigate 
and study the behaviour of different stages, or some other 
smaller processes that are integrated in them, allowing a 
more specific inspection providing strong basis to detect 
evaluate potential errors and anomalies. 

Another great advantage of using CPNs to model ETL 
processes is that they are hierarchical nets, which allows for 
building larger modules through the composition of other 
smaller modules. This makes it possible to build  specific 
ETL processes as a connection (or a cluster) of several CPN 
models representing smaller processes. In turn, they can be 
tested and validated independently and reused to build other 
modules. Taking advantage of these features, a small and 
simple, yet very important, process was selected as a case 
study to demonstrate the application of CPNs for modelling 
and validation of ETL processes: the Surrogate Key 
Pipelining case (SKP). 

 
SURROGATE KEYS GENERATION USING CPNs 
 
Regularly, the SKP process takes place during the loading 
stage of the records into the fact table. It’s one of the last 
processes of this ETL stage, in which the natural keys of 
each record are converted into their corresponding surrogate 
keys. There are different approaches to implement this 
process, for example, using mapping tables to generate and 
manage these attributes. However, for maximum 
performance, lookup tables are used; one table for each 
dimension. These tables are vital for the pipelining process, 
as their size is significately smaller than the corresponding 
dimensions. This turns possible to load and randomly access 
them in memory, avoiding unnecessary disk reading that 
provably deteriorates the performance of the system. The 
records in this kind of tables are called lookup records and 
are formed solely by each dimensional record’s surrogate 
key, generated in a previous ETL process, and one or more 
corresponding natural keys. 

During this process the natural keys of each record are 
replaced by the corresponding surrogate key, thereby, there 
will be no natural keys in the final record but a sequence of 
surrogate keys, as many as the number of the existing 
dimensions – assuming, of course, that every single natural 
key must be substituted. Usually, each record should be 
passed though memory in a multithreaded process (Kimball 
and Caserta, 2004), that is, the substitution of the key of a 
record in memory happens simultaneously as other record 
substitutions that take place in different memory positions. 
This guarantees maximum process performance by avoiding 
that the fact table is written to disk before the mapping for 
the next dimension begins, for each substitution process of 
each dimension. 

As a first approach to the SKP modelling, two 
assumptions were made: there are four dimensions in this 
example, and the dimensional records come from one and 
the same operational source, having only one natural key. 
Being so, each fact table record is processed four times for 

the substitution of its natural keys and, therefore, it is 
necessary to have four lookup tables, one for each 
substitution stage. 
 

 
 

Figure 1 – The SKP model 
 
The CPN model presented in Figure 1 represents the SKP 
process described previously. It is composed of nine places 
and four transitions. Every existing place in the CPN model 
is of the colour set RECORD. This colour set is used to 
model a relational database record and it is defined as the 
union of the different kinds of records that are used in this 
process, namely: 
 
colset RECORD = union LkpRec:LKPREC + 
FctRec:FCTREC; 

 
Only two kinds of records are used in this process: the 
lookup records and the main records that are processed and 
loaded into the fact table (i.e., fact records). Still, this 
generalization makes the model more uniform and simple, as 
well as improves its readability. The places Fact Records 
and Fact Table are used to model the fact records before and 
after the key substitution process is applied to them, that is, 
before the natural keys of the initial records are replaced by 
the corresponding surrogate keys. Meanwhile, each of these 
replacements, the places M1 to M3 are used to model 
memory positions staged by the fact records before they are 
actually loaded into the fact table. For this reason, all these 
five places receive the same type of token, with colour set 
FCTREC, representing a fact record that was defined as 
follows: 
 
colset FCTREC =  
record id1:ID * id2:ID * id3:ID * id4:ID * 
fct:NO; 
colset ID = union sk:NO + nk:ST; 
colset NO = int; 
colset ST = string; 

 
This kind of record has five fields, four of them 
corresponding to its keys, and the fifth field ‘fct’ 
representing a business measure.  The id fields with the 
colour set ‘ID’, defined as the union of an integer 
(representing the surrogate key) and a string (representing 
the natural key) are used so that the same field can assume 
the value of a natural key or the value of a surrogate key. 
Therefore, a single colour set can be used to model every 
state of the fact record during the substitution processes, 
without the need to define an independent colour set to 
represent a fact record in each of the memory positions, as 
well as the initial and final fact tables, where the colour set 
of the id fields varies. 

The remaining four places, named Lookup Table Dim(1-
4), are used to model the lookup tables that correspond to the 
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four existing dimensions in the data warehouse and they are 
managed during the surrogate key generation process. The 
colour set of these places is also RECORD and they receive 
tokens of the colour set LKPREC. The lookup record is a 
simple record with one field that represents the natural key 
of a record inserted in the corresponding dimension in a 
previous process, and another to represent the corresponding 
surrogate key: 
 
colset LKPREC = record sk:NO * nk:ST; 

 
Finally, the four Substitute ID Dim(1-4) transitions represent 
the actual substitution event of the natural key of a fact 
record by a surrogate key. Each transition receives two 
tokens, one of them representing a fact record to be 
processed and the other representing a lookup record used to 
match the natural key to be substituted in that step with the 
corresponding surrogate key. The existing guards in each of 
the transitions are used to assure that the id field of the fact 
record is matched with a natural key belonging to one of the 
tokens representing the lookup records in the respective 
Lookup Table Dim place. The UpdId(1-4) functions in the 
output arcs of transitions are used to update the id fields of 
the fact records with the surrogate key value of the lookup 
record received as one of the transitions input. This function 
has two parameters: the actual fact record and the value of 
the surrogate key to be updated in the respective field: 
 
fun UpdId1(fr:FCTREC, k) = 
1`FctRec(FCTREC.set_id1 fr (sk k)); 

 
The four ‘UpdId’ functions are identical, varying only in the 
field that is being updated. 
 
THE SKP SIMULATION 
 
In this section, a simulation of the model execution is 
presented and described with the help of some images taken 
from three different markings of the simulation carryout. 
  

 
Figure 2 – Initial Marking M0 

 
The initial marking (Figure 2) has three tokens in Fact 
Records, representing the fact records with natural keys, and 
three tokens in the dimensions’ lookup tables, representing 
the lookup records used in this process. For this simulation, 
the values of these tokens were defined through the 
FactRecords and LkpRecDim(1-4) constants as: 
 
val FactRecords = 
1`FctRec({id1=nk "d1nk3",id2=nk "d2nk1",id3=nk 
"d3nk2",id4=nk "d4nk1",fct=1})++ 
1`FctRec({id1=nk "d1nk1",id2=nk "d2nk2",id3=nk 
"d3nk3",id4=nk "d4nk2",fct=2})++ 
1`FctRec({id1=nk "d1nk2",id2=nk "d2nk3",id3=nk 
"d3nk1",id4=nk "d4nk3",fct=3}); 

 
val LkpRecDim1 =  
  1`LkpRec({sk=1,nk="d1nk1"})++ 
  1`LkpRec({sk=2,nk="d1nk2"})++ 
  1`LkpRec({sk=3,nk="d1nk3"}); 
val LkpRecDim2 =  
  1`LkpRec({sk=1,nk="d2nk1"})++ 
  1`LkpRec({sk=2,nk="d2nk2"})++ 
  1`LkpRec({sk=3,nk="d2nk3"}); 
val LkpRecDim3 =  
  1`LkpRec({sk=1,nk="d3nk1"})++ 
  1`LkpRec({sk=2,nk="d3nk2"})++ 
  1`LkpRec({sk=3,nk="d3nk3"}); 
val LkpRecDim4 =  
  1`LkpRec({sk=1,nk="d4nk1"})++ 
  1`LkpRec({sk=2,nk="d4nk2"})++ 
  1`LkpRec({sk=3,nk="d4nk3"}); 

  
The pre-processed fact records are formed solely by strings 
representing the dimensions natural keys plus the additional 
business measure field, while the lookup records are 
constituted by the surrogate/natural key pair. In this marking, 
Substitute ID Dim1 is the only transition that is enabled, as it 
is the only one that has a token in each of its input places; 
one token is removed from Fact Records through the arc 
expression FctRec fr and the corresponding lookup record 
token is removed from Lookup Table Dim1, through the arc 
expression LkpRec lr. The guard expression [(#id1 fr) = nk 
(#nk lr)] acts as a restriction, so that the value of the lookup 
record’s nk field matches the value of the first id field of the 
fact record. Such a guard expression is used in each of the 
transitions so that, in each step, the correct fact record field 
is matched against the lookup records’ natural keys. When 
this transition is executed, the id1 field of the token 
representing the first fact record is updated with the 
corresponding surrogate key, through the function 
UpdId1(fr,(#sk lr)), and passed to M1; this record is then 
ready for another key substitution, corresponding to the 
second dimension’s natural key (Figure 3). 
 

 
Figure 3 – Marking M1 

 
In the marking M1 (Figure 3), reached after firing the 
Substitute ID Dim1 transition, there are now two enabled 
transitions – Substitute ID Dim1 and Substitute ID Dim2 – as 
it is possible to “remove” tokens from their input places and 
the guard expressions evaluate to true, allowing any of them 
to be fired. If Substitute ID Dim1 is fired, a new token 
representing a fresh pre-processed fact record is removed 
from Fact Records, its first natural key is replaced by the 
corresponding surrogate key, and then passed to M1. If the 
Substitute ID Dim2 is fired, the second natural key of the 
token, representing the first fact record record, is replaced by 
the corresponding surrogate key, and the transition Substitute  
ID Dim 3 will be activated, as the token will be passed to 
M2. After a few markings, as the tokens are processed, all 
transitions become active, allowing for several records to be 
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processed in memory at the same time, before they are 
loaded into the Fact Table.  

In the final marking (Figure 4) there are three tokens in 
Fact Table, representing the final fact records processed 
through each of the transitions, and the same three tokens in 
each of the lookup tables. Every fact record’s natural key 
have been replaced by the corresponding surrogate key 
value, originating fact records that are ready to be loaded 
into the corresponding table in the data warehouse. 
 

 
Figure 4 – Final Marking M12 

 
The simulation of the model has revealed great advantages. 
A step-by-step execution allows for the data flow to be 
carefully analysed so that errors can be easily detected. In 
this particular case, as several transitions can be enabled at 
the same time and the order of their activation may vary 
from each execution, simulations run with the CPN Tool 
were very useful as they permit the selection of which 
transition to be executed and thus a more careful analysis of 
the behaviour of the ETL process. 
 
CONCLUSIONS AND FUTURE WORK 
 
In this paper we present a formal specification approach 
based on CPNs for modelling and validating DWS ETL 
processes, using the popular SKP case as a study case one 
The CPNs, together with CPN Tools, have proven to be a 
good alternative to model this kind of processes, because in 
addition to the powerful support that they offer in such 
modelling tasks, they also allow the implemented models to 
be analysed and consequently verified. The initiated study is 
not finished, since the number of different processes that 
usually integrate an ETL system is high. Currently, the 
model describes the behaviour of the SKP process based in 
predefined values and some basic assumptions. This is not 
enough for real world ETL systems. Thus, we need to adapt 
it so that it can be applied to a wide variety of ETL 
scenarios, as well as to receive hierarchical concepts in order 
to prepare the model to be reused in higher complexity 
processes. 
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