Chitosan membranes for spatially controlled cell adhesion and specific cell recruitment

C. A. Custódio^{1,2,3}, A. M. Frias^{1,2}, A. del Campo³, R. L. Reis^{1,2}, J. F. Mano^{1,2}

¹3B's Research Group – Biomaterials, Biodegradables and Biomimetics, University of Minho, AvePark, Zona Industrial da Gandra, S. Cláudio do Barco, 4806-909 Caldas das Taipas – Guimarães, Portugal.

We propose a concept of biomaterials that are able to fix specific cell types onto their surface when in contact with a mix population of cells.

Adipose tissue has shown to be an interesting source of stem cells with therapeutic potential. However only a small amount of the heterogeneous mixture of the cells extracted from lipoaspirates are stem cells, and within stem cells there are different populations with different capabilities to differentiate through a lineage.

We studied the ability of immobilized antibodies on chitosan surfaces to capture specific types of cells with a spatial micrometer resolution.

Antibodies were covalently immobilized onto chitosan membranes using bis[sulfosuccinimidyl] suberate (BS3). X-ray photoelectron spectroscopy (XPS) was used to chemically characterize the surface and quartz crystal microbalance (QCM) to calculate the amount of adsorbed and/or immobilized antibody.

Data shown greater immobilization when BS3 was used compared to simple adsorption. Specific antibodies covalently immobilized in a surface, kept their bioactivity and controlled the type of cell that attached on the chitosan surface. Microcontact printing permitted to covalently immobilize antibodies in patterns allowing a spatial control in cell attachment. Cell sorting experiments performed using a mixture of adipose stem cells and osteoblast like cells shown that chitosan surfaces were able to capture a specific phenotype depending on the immobilized antibody.

Selected Symposium: Specific Biomaterials as Basis of TERM, Natural Derived Polysaccharides

²ICVS/3B's, PT Government Associated Laboratory, Braga/Guimarães, Portugal.

³ Max-Planck-Institut für Polymerforschung, Ackermannweg 10, 55128 Mainz, Germany.