
PROGRAM ANALYSIS AND EVALUATION USING QUIMERA

Daniela Fonte1, Ismael Vilas Boas1, Daniela da Cruz1, Alda Lopes Gancarski2

and Pedro Rangel Henriques1

1Department of Informatics, University of Minho, Braga, Portugal
2Institut Telecom, Telecom SudParis, CNRS UMR Samovar, 9 rue Charles Fourrier, 91011 Evry, France
{danielafonte,danieladacruz,prh}@di.uminho.pt, ismael.vb@gmail.com,alda.gancarski@it-sudparis.eu

Keywords: Automatic Grading System, Contest Management, Program Evaluation, Automatic Judgement.

Abstract: During last years, a new challenge rose up inside the programming communities: the programming contests.
Programming contests can vary slightly in the rules but all of them are intended to assess the competitor skills
concerning the ability to solve problems using a computer. These contests raise up three kind of challenges:
to create a nice problem statement (for the members of the scientific committee); to solve the problem in a
good way (for the programmers); to find a fair way to assess the results (for the judges). This paper presents
a web-based application, QUIMERA intended to be a full programming-contest management system, as well as
an automatic judge. Besides the traditional dynamic approach for program evaluation, QUIMERA still provides
static analysis of the program for a more fine assessment of solutions. Static analysis takes profit from the
technology developed for compilers and language-based tools and is supported by source code analysis and
software metrics.

1 INTRODUCTION

An important aspect when learning programming
languages is the ability to solve practical problems.
This ability can be easily stimulated with competition,
like the one present in a programming contest. Ac-
cording to experts on the field, the challenge associ-
ated with competitive environments provides a mean-
ingful way to learn and easily acquire practical skills.

In a typical programming contest, competitors
participate in teams to solve a set of problems. For
each problem, the team submits the source code of
the program developed to solve the problem. Many
well known programming contests in the world —
like ACM-ICPC1 or IOI2 — are based on the auto-
matic grading of the solutions proposed. It means
that the submitted code will be immediately evaluated
by an automatic grading system. The evaluation nor-
mally involves tasks like running the program over
a set of predefined tests (actually a set of input data
vectors), and comparing each result (the actual out-
put produced by the submitted code) against the ex-
pected output value. Time and memory space con-

1International Collegiate Programming Contest http:
//cm.baylor.edu/welcome.icpc

2International Olympiad in Informatics http://www.
ioinformatics.org/index.shtml

sumptions are usually measured during execution and
are taken into account for this dynamic grading ap-
proach. This process is typically complemented by
the action of a human judge, who takes the final grade
decision according to the specific rules for each con-
test (Leal 2003).

The research on programs that are capable to au-
tomatically grade source code is not a recent topic. In
1965, Forsythe and Wirth (Forsythe & Wirth 1965) in-
troduced a system that follows the fundamental prin-
ciple of the modern grading systems, validating the
submitted solutions with a set of tests (pairs of input-
output vectors). With the evolution of computers,
grading systems increased in complexity, diversifying
the tests made to the subject programs and introduc-
ing tools for monitoring the grading process (Leal &
Moreira 1999).

Nowadays grading systems can be distinguished
according to the type of the source code verification.
This verification can be done employing two differ-
ent techniques: static and dynamic. The second one
focuses on the execution of the program against a
set of predefined tests (the traditional one, already
described above). The first one, more recent, takes
profit from the technology developed for compilers
and language-based tools and is supported by source
code analysis and software metrics. Our proposal is

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55624127?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


to combine both approaches and provide a system in
which the final grade is a combination of the informa-
tion obtained from both analyzers.

So, in this paper we present a web-based appli-
cation, named QUIMERA, that extends the traditional
dynamic grading systems with static analysis aimed
at the automatic evaluation and ranking of program-
ming exercises in competitive learning or program-
ming contest environments. QUIMERA provides a full
contest management system, as well as an automatic
judgement procedure.

The paper is organized in 6 sections. Besides
the Introduction and Conclusion, Section 2 introduces
the basic concepts and similar tools; Section 3 gives
an overview of QUIMERA, presenting its architecture
and main features; Section 4 provides more details
about each feature, illustrating QUIMERA functionali-
ties; and Section 5 presents the technical details un-
derlying the system implementation.

2 RELATED WORK

As previously referred, the approaches to de-
velop Automatic grading systems can be distinguished
between static and dynamic (Danić, Radošević &
Orehovački 2011).

Static approaches include systems that check the
submitted program against a provided scheme, to find
the degree of similarity relatively to a set of char-
acteristics. In this category we have, for example,
the Web-based Automatic Grader (Zamin, Mustapha,
Sugathan, Mehat & Anuar 2006), which evaluates
programming exercises written in Visual Basic, C or
Java languages. One of its disadvantages is that it can
not be used for testing the correctness of programs
which contain input and output operations (Danić
et al. 2011). Another important disadvantage is
that better classification is assigned to solutions that
are more similar to the provided scheme, penaliz-
ing different programming styles (Rahman, Nordin &
Che 2008) that can be so good or even better.

Dynamic approaches include systems that evalu-
ate the submitted program by running it through a set
of predefined tests. One example is Online Judge3,
implemented to help in the preparation of ACM-
ICPC (Cheang, Kurnia, Lim & Oon 2003). Another
example is Mooshak4, a system originally developed
for managing programming contests, and a refer-
ence tool for competitive learning (Leal 2003, Leal &
Silva 2008). Generally these approaches use a simple

3http://uva.onlinejudge.org
4http://mooshak.dcc.fc.up.pt/

string comparison between the expected output and
the output actually produced to determine if both val-
ues are equal (the program submitted will be consid-
ered correct only if this condition is true); of course,
this strict comparison can be a limitation — it is the
main drawback of these systems.

There are also several other tools, used by instruc-
tors of some modern educational institutions, that
facilitate the automatic grading of programming as-
signments (Patil 2010). Some of them are devel-
oped as web applications, where users can exercise
their programming skills by coding a solution for the
given problem — like Practice-It5 or Better Program-
ming6. One of the advantages of these systems is
that the user gets instantaneous feedback about their
answers, which help him to attempt the problem un-
til he reaches the correct solution. Other example is
WebCAT7, a tool focused on test driven development
which supports the grading of assignments where stu-
dents are asked to submit their own test cases.

One major disadvantage of these traditional ap-
proaches is their incapability to analyze the way the
source code is written. This is especially relevant in
educational environments, where the instructor wants
to teach programming styles or good-practices for a
specific paradigm/language. This feature would be
crucial to detect situations where the submitted so-
lution does not comply with the exercise rules. As
an example consider a typical C programming exer-
cise that asks the student to implement a Graph us-
ing adjacency lists to print the shortest-path between
two given nodes. The referred grading systems will
consider completely correct a solution implemented
with an adjacency matrix if the final output is equal
to the expected one; however, that solution is not ac-
ceptable because it does not satisfies all the assign-
ment requirements. Or even more dramatic, if the user
computes by hand the shortest-path and the submitted
program only prints it, the solution will again be ac-
cepted because the evaluation system can not detected
such erroneous situation.

This means that traditional dynamic grading sys-
tems leave aside one important aspect when assessing
programming skills: the source code quality. How-
ever, other tools like static code analyzers (see for
example Frama-C 8 or Sonar9), are able to identify
the structure and extract complementary information
from the source code in order to understand the way

5http://webster.cs.washington.edu:8080/
practiceit/

6http://www.betterprogrammer.com
7http://web-cat.cs.vt.edu/
8http://frama-c.com/what_is.html
9http://www.sonarsource.org/features/



Figure 1: QUIMERA architecture modules view

the program is written and discuss its quality in terms
of software metrics that can be easily computed. They
can be invoked after compilation and do not need any
execution to produce grading data about the program
under evaluation. Thus, if combined with traditional
grading systems, the static analyzers can provide an
accurate notion of the source code quality.

This assumption led to the construction of systems
like CourseMaker10 or Boss11, that improve the dy-
namic testing mechanism by calculating metrics and
performing style or quality analysis. Providing this
immediate feedback to users (students/competitors or
instructors/judges) is obviously a relevant extra-value.
A very recent system, AutoLEP (Tiantian, Xiaohong,
Peijun, Yuying & Kuanquan 2009, Wang, Su, Ma,
Wang & Wang 2011), improves traditional grading
mechanisms by combining source code static analy-
sis, similarity degree and dynamic testing. Summing
up, it evaluates the program construction and how
close the source code is from the correct solution.

As a consequence of the research done, QUIMERA
aims at evaluating and ranking automatically pro-
gramming exercises in competitive learning or pro-
gramming contest environments, by combining a very
complete static source code analysis with dynamic
analysis. Thus, QUIMERA is a system capable of en-
suring the grading of the submitted solution based not
only in its capability of producing the expected out-
put, but also considering the source code quality and
accuracy. Our system guarantees that different pro-
gramming styles will not be penalized if they produce
the correct output and satisfy all the requirements; this

10http://www.coursemaker.co.uk/whatis.html
11http://www.dcs.warwick.ac.uk/boss/about.

php

can be an advantage on learning environments, be-
cause the student is stimulated to find different correct
solutions. Moreover, this does not restrict the contest
to problems that have only one correct solution, which
can represent a significant reduction in time and effort
for larger problems.

Besides encouraging competitive learning by pro-
viding immediate feedback to the user, our system
completes its static analysis with a plagiarism detec-
tion tool, in order to prevent fraud among submitted
solutions (a common issue in learning environments).
To the best of our knowledge, this feature is not pro-
vided by the cited tools.

QUIMERA also allies a simple and intuitive user in-
terface with several graphics exhibiting various statis-
tics concerning the contest flow. These statistic graph-
ics are useful for the competitors, as they illustrate
their personal evaluation and performance, and are
also useful from the judges, as they provide overviews
of each competitor performance, of the current con-
test, and of all the problems/assignments proposed.

3 QUIMERA OVERVIEW

QUIMERA is a web-based application which pro-
vides a full management system for programming
contests, as well as a semi-automatic feature for as-
sessing programs. It allows to create and manage con-
tests, or programming exercises. For a new contest,
QUIMERA permits to add problems (statements/re-
quirements + input-output vectors for testing), regis-
ter competitors and associate them to groups. More-
over, QUIMERA offers various facilities to follow up
contests, allowing to monitor the overall process and



Figure 2: QUIMERA Main Page

different activities involved.
To support all the functionalities announced, the

application is complex and its success was a conse-
quence of the architecture drawn and the use of recent
and powerful technologies. This section is devoted
to QUIMERA architecture and a general description of
the application. Implementation details are postponed
until Section 5.

3.1 Architecture

Basically, QUIMERA architecture is organized in three
levels, as can be seen in Figure 1. This layered struc-
ture follows the Model-View-Controller12 (MVC) pat-
tern, in order to create a clear separation among the
different aspects of the application (business logic,
user interface, and orchestration) while providing a
loose coupling between these elements.

The Model layer represents the core of QUIMERA
system, this is, it models all data and basic opera-
tions realizing the underlying business logic. As de-
scribed in Figure 1, this layer has two main compo-
nents, one for Data Storage and another for System
Management. In our case we split the Data Store
into a traditional relational Database—to store gen-
eral data concerned with contests, users, history, etc.
— and a Submission Repository—to archive submis-
sions (problem statements, competitor solutions and
the testing set). A Data Access Interface (objectifica-

12http://st-www.cs.illinois.edu/users/
smarch/st-docs/mvc.html

tion component13) creates a map between entities in
the databases and objects in the program allowing a
smooth interface between Data Storage and System
Management components. The System Management
sub-layer concentrates all the tasks concerned with
users and contest creation, follow-up and monitoring.
It is composed of three modules:

• Contest Manager, responsible for the basic con-
test management tasks (like create or edit a con-
test);

• Problem Manager, responsible for the prob-
lem/assignment creation (submission of a new
statement or a set of the input-output vectors);

• Solution Manager, responsible for the submission
of the answers (or solutions) developed by the
competitors.

The View layer, which renders the data model into
a web page suitable for interaction with the user, is
based on a set of Twig templates to generate the differ-
ent user profiles. This layer also enables a command
line interface which allows to perform the essential
system administration tasks.

Finally, the Controller layer reacts to the user ac-
tions and, as appropriate, changes the view interface
or communicates with the Model layer to produce the
answers required. It can be compared to the Maestro
that drives the orchestra.

Figure 1 also shows that in our architecture the
Grader was put aside in an independent component.

13As will be seen later, Doctrine2 tool was used to imple-
ment this module.



Figure 3: QUIMERA Competitor Interface — Contest Main Page

This decision aims at system flexibility, allowing for
easy extensions to support other source languages, or
even for the incorporation of different static or dy-
namic analyzers. This module is incharge of all the
assessing and grading tasks. Besides the Compiler, it
is composed of three modules:
• Source Code Analyzer, responsible for assessing

the source code through the analysis of its static
properties and the evaluation of a set of metrics;

• Dynamic Analyzer, responsible for the execution
of the compiled code and the verification of the
output produced for each input data vector;

• Grader, responsible for grading the submitted
program (the competitor answer), according to
the information delivered by both Analyzers; this
module also computes and delivers various statis-
tics about the answer and competitor behavior.
The design approach above described has proven

to be very effective in what concerns the maintainabil-
ity effort and the application flexibility.

3.2 Actors and Roles

QUIMERA provides different user interfaces targeted to
the profiles that reflect the roles of the different con-
test participants, as descried bellow.

• Administrator – this view has two modes: Admin-
istration and General. The first one is used to ac-
cess the back-end area to setup the system data
and make it operational. The second one allows
to participate in a contest as a general user.

• Teacher – this view allows a user to publish prob-
lems in a contest, add a set of tests.

• Competitor – used for the player associate himself
to a Contest and a Team and compete.

• Judge – used to act as a decision maker, giving
feedback about the team submissions.

• Guest – this mode allows any user (not involved
in any of the previous roles) to follow the progress
of a contest in an anonymous mode (without being
registered).
For security purposes and to ensure that only au-

thorized users access the system, all the user profiles
are accessible by authentication (except for the Guest
mode). For this, it is mandatory that users register
themselves on the system. The Administrator may
posteriorly define new permissions for Teachers and
Judges in each contest.

4 USING QUIMERA

QUIMERA user interface offers a simple and in-
tuitive way to set up and manage contests, comple-
mented with an extended feature for assessing and
grading programming exercises. Figure 2 shows the
main page of QUIMERA user interface, which follows
the depicted structure: it is composed of a Main Menu,
where the user can find the principal navigation op-
tions; a Secondary Menu that lists the options related
to the actual page content; the Sitemap, which shows
the user current location on the application and can be
used to navigate through the website levels too; and
the Content area, where the information is displayed.

QUIMERA offers full support for evaluating source
code written in C language, since it is widely used
both in academic and industrial environments. In
what follows we briefly present how to use QUIMERA
and its major features.

4.1 Contest and Problem Management

The setting-up process for a new contest is performed
by the system Administrator. Besides the contest name
and duration, it associates to each contest a group of
Teachers and a group of Judges.



Figure 4: QUIMERA Teacher Interface — List of submitted solutions

After a contest creation, the associated Teachers
can use QUIMERA front-end to publish new problems,
distributed by phases. Associated to each problem de-
scription, it is required to define the maximum execu-
tion time allowed and to provide a set of input val-
ues and the respective expected outputs for testing the
solutions submitted by each competitor team. When
submitting a new test, Teachers can define if it will be
publicly available as example for competitors, or if it
will be hidden and only used for grading purposes.

In their turn, associated Judges can consult the
current submissions and the evaluation statistics.
They can also follow the contest flow by accessing
the contest statistics, and it will be asked to them to
assign a final grade to each submission.

To participate in a contest, Competitors need to
register in the system and to be associated to the in-
tended contest. This association can be done directly
by the Administrator, by the Teachers or by the Com-
petitor itself. For this purpose and after choosing the
desired contest in the Active Contest list (which can
be accessed through the Secondary Menu of QUIMERA
Main Page depicted in Figure 2), the user should se-
lect the option ”Join Contest” on the Secondary Menu
of the Contest Preview page (as depicted in Figure 3).

Moreover, the user must associate himself to a
Team, as contests are organized in Teams and not in
individual competitors. The same Team is allowed
(and is encourage) to compete in several contests,
however in the same competition, a user can only be
assigned to one Team.

4.2 Answer Submission

To submit a solution14, a Competitor starts selecting
the respective contest page. It is then shown the prob-
lem statement and some examples of the desired input

14In this context, the words solution, answer, or submis-
sion are alternative names to designate the program devel-
oped by the Competitor aimed at solving the problem (the
programming challenge) stated by the Teacher.

and the correspondent expected output. After select-
ing the option for submitting an answer, the user up-
loads the respective file. If the upload process is un-
successful, the system informs the user to try again.
If successful, QUIMERA compiles the submitted (up-
loaded) program and notifies the user about this task.

In case of compilation errors, QUIMERA reports the
errors found and provides some tips aiming at guiding
the Competitor to a correct them and resubmit the an-
swer. If no compilation errors are detected, the system
goes to the next step, the solution assessment process,
as described in Sections 4.3 and 4.4.

4.3 Dynamic Analysis

QUIMERA dynamic analysis follows the traditional ap-
proach executing the compiled submission with a set
of predefined tests. As referred, each test is composed
of an input data vector and the correspondent output.
For each test, the compiled answer is invoked (loaded
and executed) receiving the data vector as an argu-
ment; the output produced, as a result of this run, is
compared with the expected output. If they are strictly
the same values, this test is OK. The submission un-
der assessment is accepted only if all the tests pass.

After the execution, the user can consult the per-
centage of tests successfully passed, as we can see in
Figure 6. The user only has access to the public tests,
never knowing the other tests in the set, neither how
many they are. This is useful to avoid situations of
trial and error for test set guessing.

As the execution of an external program is a crit-
ical task for any computer environment (malicious
code can damage the system), QUIMERA only com-
piles and executes the solution compiled if it complies
with strong constraints (consensual safety limits are
defined). With the help of the static analysis, system
calls and suspicious instructions are blocked. By de-
fault the execution timeout is 3 seconds, but this can
be personalized at the problem creation moment.

In a typical competitive environment, a Team can
submit several solutions before one is accepted. Each



Figure 5: QUIMERA Teacher Interface — Assessment data for a submitted solution

submission is ranked based on the following levels:
Didn’t Compile; Compile (when it fails all tests);
Timeout; Passed some tests; Solved, as depicted in
Figure 4. For final grading purposes, QUIMERA con-
siders the best ranked answer. This allows the submis-
sion of several answers, developed by different mem-
bers of one Team, in order to get a better score. We be-
lieve this (not conventional) approach stimulates the
competition and privileges the competitive learning,
allowing also to improve the code quality.

4.4 Static Analysis

QUIMERA produces a complete report about the qual-
ity of a submitted solution (as depicted in Figure 5),
through the direct source code analysis based on a set
of predefined metrics. Each metric represents a mea-
surement that contributes for the quality estimation,
working like an indicator for Teachers and Judges.

Currently, QUIMERA measures 56 different met-
rics, grouped by five classes: Size, Consistence, Legi-
bility, Complexity and Originality.

Size metrics are based on the lines code number
and are used to compare the size of a submitted so-
lution against the average size of all the submissions
of the problem. They represent a good indicator of
solutions that are unusually small or too big, compar-
atively to other solutions.

Consistence metrics work as an indicator of the
probability of execution errors occurrence due the use
of Dynamic Structures and Memory Management. In
a learning environment, a student can easily make
mistakes when implementing thise structures. We as-
sume that an overuse of thise structures will increase
the probability of execution exceptions and may affect
the answer final score. For this we measure markers
like the percent of pointers use, the variance between

the allocated and released memory or the number of
returns in a function.

Legibility Metrics are associated to the easy of
source code comprehension. Markers like comment
density, average lines per comment, percent of goto,
break and continue usage can influence the source
code legibility and reuse. Therefor, they can be
used as an indicator of competitor good or bad prac-
tices and influence the final grading. Other important
marker associated with reuse and legibility is the den-
sity of duplicated source code found. If a competitor
repeats several times the same piece of source code,
instead of calling them in a function, it decreases both
reuse and legibility.

Complexity calculation is done through a sim-
ple approach of the McCabe Cyclomatic Complex-
ity15, generally used to estimate a program complex-
ity based on the amount of linearly independent paths
through the source code, and computed based on its
control flow graph. It is useful to estimate the com-
plexity of each submitted solution: less complex so-
lutions obtained better scores.

Originality is featured by an index which works
like an indicator of plagiarism situations, calculated
based on the similarities of the assessed solution and
the other submitted solutions.

After the computation, metrics and other static as-
sessment data are available through QUIMERA inter-
faces. An XML full report is also generated. The
details behind the implementation of this analysis are
introduced in Section 5.

15For more details, please consult
www.literateprogramming.com/mccabe.pdf



Figure 6: QUIMERA Common Interface — Final assessment comparison

4.5 Automatic Grading

After this assessment process, the Grader evaluates
the results of the source code and dynamic analy-
sis assessment, concerning a grading formula. This
grading formula is composed of seven different as-
sessment categories, which have associated different
weights in the final grade. These categories are:

Execution — 75% of the final grade is related to
the number of tests passed by the solution (on the dy-
namic analysis) and 5% of the final grade comes from
the Execution Time;

Size — related to size metrics with 2% of final
height;

Consistence — includes measurements related to
the probability of execution errors and represents 5%
of the final grade;

Legibility — associated to Legibility metrics, with
a total weight of 2%;

Complexity — total impact of 6% in final grade;
Cloning — represents the total percent of dupli-

cated code in the solution, with a weight of 5%.
Although these categories naturally emphasize on

the execution, these weights also take into account
the impact of the source code quality, which we be-
lieve that encourage Competitors to find improved so-
lutions, to obtain better final grades.

After this grading process, it is possible to access
the final report obtained from the solution assessment,
which includes an overview of the applied metrics
and its values, the number of tests passed and the fi-
nal grading summary (depicted on both sides of Fig-
ure 6). For a better comprehension of this summary
and the grading process, let us now introduce one ex-

ample of a contest where Competitors are invited to
solve several mathematical problems. The challenge
is to present a solution to calculate the nth fibonacci
number, where n is a number asked to the user. In Fig-
ure 6, we are comparing two different solutions pro-
posed by two Teams: the Rationals on the left-hand
size, and Smarties on the right-hand size.

The first solution, assessed by the system with
”Solved Some Tests” (as we can see in Figure 4), only
calculates correctly the first and second numbers of
the sequence (0 and 1) and, consequently only passes
in 22% of the tests (2 in 9). This leads to a final score
on the Execution field of only 22.2%. In a closer look,
we can conclude that this answer is well documented
(it has 15 commented lines in 50 lines of code) and
its Legibility has a final score of 93%. Its Complex-
ity score of 73% is owed to its number of used vari-
ables and data structures. Its 50 lines of code exceed
the average size of the contest submissions for this
problem, which penalizes its final grade on the Di-
mension category (only 45.2%). In the Consistency
category, its 21.6% are owed to the use of several re-
turns through the code (assuming a maximum of two
returns per function as a reasonable limit to the source
code consistency) and also to the use of pointers.

The second one, assessed by the system with
”Solved” (as depicted in Figure 4), follows an itera-
tive strategy to implement the Fibonacci recurrence.
This answer is better documented (11 commented
lines in 36 lines of code), but its Legibility has a lower
final score (88%) once it did not used defines, as the
other solution. Its Complexity score of 58% is owed
to the implemented loop. Its 36 lines of code improve
its final grade on the Dimension category to 88.6%. In



Figure 7: QUIMERA Teacher Interface — Team members grading

the Consistency category, its weak 22% are also owed
to the use of several returns through the code.

Finally we can conclude that both solutions have
not been plagiarized (100% original) and Competitors
follow the good practice of no repeating their own
code (0% of duplicated code). These assessments led
to a final grade of 29% on the first case and a signif-
icant 89% on the second case. QUIMERA also com-
pletes this evaluation with radial charts to a quicker
and easier comparison of the solution performance in
the different grading categories.

4.6 Statistics

QUIMERA computes several statistics to enable the
monitoring of the contests, which depends on the ac-
tive interface and context. Statistics can be concerned
with different perspectives like: all or a particular
contest; all or a particular problem; all or a partic-
ular Team or Competitor (team member). Statistics
are presented in the form of different type of graph-
ics: piecharts (see Figure 2 and 3), columns charts
(see Figure 7), tables (see Figure 4), line charts, ra-
dial charts (see Figure 6) and scatter charts.

In more detail, we can say that our system offers
numerical data and listings concerned with: Competi-
tors and Teams rankings; comparative graphics be-
tween problem submissions; the full list of submis-
sions for each Competitor or Team; comparisons be-
tween Competitors inside a Team; comparisons be-
tween the Teams performance in a context; overviews
for each contest, its phases and summary information
about the current state of the problems and submis-
sions, among many others.

This amount of statistical information makes
QUIMERA a powerful tool for supporting the assess-
ment and grading of programming exercises solu-
tions, helping all kind of users, Administrator, Teach-
ers, Judges and Competitors.

5 QUIMERA IMPLEMENTATION

QUIMERA system follows a typical web-
application schema: a server-client framework
connects users to a server, where submissions and
system data are recorded. QUIMERA User Interface is
rendered in HTML 5, CSS 3 and Javascript, optimized
for the last generation browsers but also compatible
with older browsers without loosing any features.

The system runs on any PHP5.3-enabled platform
over HTTP and HTTPS protocols, and it is based on
the Symfony216 framework. The essential applica-
tion data is stored in a MySQL database, although
the data layer of Symfony2 (managed by Doctrine2
technology) allows to use any other database engine.
We also use the template manager Twig, embedded in
this framework, to render HTML5 templates from the
view layer.

To compile the submitted solutions, the system
uses the GCC compiler. For the static analysis, we
developed a plugin for Frama-C17, a framework dedi-
cated to the static analysis of source code written in C.
This powerful platform works as a front-end for our
plugin, once its kernel provides common functionali-
ties, libraries and collaborative data structures, which
simplifyies the development process and improves the
final results. CIL18 library provides methods to gen-
erate the Abstract Syntax Tree (AST) for the source
code and to traverse the tree. Our plugin analyzes the
AST for each submitted source file and evaluates a set
of metrics (described in Subsection 4.4) with a single
traversal, to obtain quantitative information about the
quality of the submitted source code.

To detect cloning, we use regular expressions,
string comparisons and sorting algorithms from PHP,

16http://symfony.com
17http://frama-c.com
18C Intermediate Language

http://cil.sourceforge.net/



to detect duplicated lines of code in the submission.
In order to detect plagiarism, we adopted the

tool sherlock19, which makes comparisons based on
source code signatures, and compare them with re-
lated submitted code. This tool supports its compari-
son algorithm in a Originality Index that computes the
ratio between similarities and differences detected in
each pair of files. This plugin produces a final result
that contemplates all these evaluation parameters as
well as the final grade assessed by the system, as de-
scribed in Subsection 4.5.

QUIMERA provides several statistical graphics re-
lated with a contest flow (as described in Subsec-
tion 4.6), rendered with Google Chart Tools20.

6 CONCLUSION AND FUTURE
WORK

Along this paper we have introduced QUIMERA, a
web-based system that offers a simple and efficient
way to create and manage online programming con-
tests. QUIMERA underlying philosophy, its features
and implementation were discussed.

After characterizing the area of programming
challenges and their automatic assessment and grad-
ing, we reviewed the state-of-the-art looking for com-
mon approaches, applications and similar systems.
The research done so far, summarized in the paper,
led to the identification of a drawback in the available
systems; it has inspired the proposal of an improved
system and guided the design of its architecture.

In this direction, QUIMERA offers an automatic
assessment and grading of programming exercises
based on the information produced by their source
code analysis, combined with the traditional informa-
tion obtained from analysis of the output values gen-
erated for predefined input data values.

As the system is completely implemented for C
programming language, we plan to make soon it avail-
able online for free use, with a complete user manual
and usage examples.

After this first developing stage, we are willing
to test the tool with real users in different scenar-
ios, to study its usability and effectiveness. We will
prepare experimentations properly designed to assess
these two indicators.

As future work, we intend to increase QUIMERA
flexibility enabling the development of new front-

19http://sydney.edu.au/engineering/it/
˜scilect/sherlock/

20http://code.google.com/intl/en-US/apis/
chart/

ends to support other programming languages. To al-
low an easy support for new languages, we plan to
modify the tool in order to accept Language plugins.

Another relevant improvement of the dynamic
evaluation process, that will extend QUIMERA usabil-
ity, is to implement a semantic evaluation of the out-
put. This idea, that is a real challenge requiring much
more research work, requires the definition of a meta-
language to describe the expected output for a given
input data vector. Then, instead of doing a strict com-
parison between the outputs produced and expected,
the evaluator checks the validity of the output content
according to the formal description.

REFERENCES

Cheang, B., Kurnia, A., Lim, A. & Oon, W.-C. (2003). On
automated grading of programming assignments in an
academic institution, Comput. Educ. 41: 121–131.

Danić, M., Radošević, D. & Orehovački, T. (2011). Evalu-
ation of student programming assignments in online
environments, CECiiS: Central European Conference
on Information and Intelligent Systems.

Forsythe, G. E. & Wirth, N. (1965). Automatic grading pro-
grams, Technical report, Stanford University.

Leal, J. P. (2003). Managing programming contests with
Mooshak, Software—Practice & Experience .

Leal, J. P. & Moreira, N. (1999). Automatic Grading of Pro-
gramming Exercises, p. 383.

Leal, J. P. & Silva, F. (2008). Using Mooshak as a Compet-
itive Learning Tool, The 2008 Competitive Learning
Symposium .

Patil, A. (2010). Automatic grading of programming assign-
ments, Master’s projects, Department of Computer
Science, San José State University.

Rahman, K., Nordin, M. & Che, W. (2008). Automated pro-
gramming assessment using pseudocode comparison
technique: Does it really work?

Tiantian, W., Xiaohong, S., Peijun, M., Yuying, W. & Kuan-
quan, W. (2009). Autolep: An automated learning
and examination system for programming and its ap-
plication in programming course, First International
Workshop on Education Technology and Computer
Science, USA.

Wang, T., Su, X., Ma, P., Wang, Y. & Wang, K.
(2011). Ability-training-oriented automated assess-
ment in introductory programming course, Comput.
Educ. 56: 220–226.

Zamin, N., Mustapha, E. E., Sugathan, S. K., Mehat, M. &
Anuar, E. (2006). Development of a web-based auto-
mated grading system for programming assignments
using static analysis approach.


