
Computing and Informatics, Vol. 22, 2003, 1001–1011, V 2012-Feb-8

ASPECTGRID: ASPECT-ORIENTED
FAULT-TOLERANCE IN GRID PLATFORMS

Bruno Medeiros, João Sobral

Departamento de Informática

Universidade do Minho

Braga, Portugal

e-mail: jls@di.uminho.pt

Abstract. Migrating traditional scientific applications to computational Grids re-
quires programming tools that can help programmers to update application be-
haviour to this kind of platforms. Computational Grids are particularly suited for
long running scientific applications, but they are also more prone to faults than
desktop machines. The AspectGrid framework aims to develop methodologies and
tools that can help to Grid-enable scientific applications, particularly focusing on
techniques based on aspect-oriented programming. In this paper we present the
aspect-oriented approach taken in the AspectGrid framework to address faults in
computational Grids. In the proposed approach, scientific applications are enhanced
with fault-tolerance capability by plugging additional modules. The proposed tech-
nique is portable across operating systems and minimises the changes required to
base applications.

Keywords: application level checkpointing; aspect oriented programing; Aspect-
Grid framework;

1 INTRODUCTION

Enabling scientific applications to run on computational Grids requires mechanisms
to enable scientific applications to address resource faults. This is critical for long
running applications to avoid having to restart the application from the beginning
when a fault occurs, losing all the completed work. One e↵ective technique to
tolerate faults is to periodically checkpoint the application state to disk, in order to
restart the execution from the last checkpoint in the case of fault.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55624125?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1002 Bruno Medeiros, João Sobral

Techniques based on System Level Checkpointing (SLC) take a snapshot of
the program and all of its memory. This kind of checkpoint has to store all the
information of the program, including stack and all application data, so that it
can restart the program later. SLC allows a program to be checkpointed at any
instant of time. Some tools are even able to checkpoint a program without having
to halt it (e.g. Berkeley Lab’s Checkpoint/Restart [1]). Because of its nature, the
time to take a SLC snapshot of the program is longer than with other approaches
and the checkpoint usually is larger. Some tools also support parallel programs
built with MPI (e.g. BLCR). SLC approaches require support from the underlying
middleware and the checkpoint data is intrinsically non-portable across machines,
since it is saved on a machine dependent format.

Techniques based on Application Level Checkpointing (ALC) add new code to
the base application that limits the areas to be checkpointed. This approach is
smarter than SLC because it uses the knowledge of what needs to be checkpointed,
causing fewer problems when working with MPI and/or OpenMP parallel appli-
cations. Having to add code to applications is one of its greatest disadvantages.
Application-level checkpointing mechanisms for MPI were proposed in [2, 3]. Both
approaches are based on a compiler that assists the programmer to identify the state
and places in the program where checkpoint can be performed. ALC mechanisms
for OpenMP were proposed in [4].

In Grid systems it is important to provide portable checkpoint mechanisms.
Portability should be two-fold: 1) by implementing checkpoint without requiring
changes to the current Grid middleware and 2) by saving checkpoint data in a
portable format. Saving checkpoint data in a portable format brings the additional
benefit of making it possible to restart applications on a di↵erent set of resources.
This is suitable for computational Grids since available resources could change dur-
ing the application run time.

The approach taken in the AspectGrid framework addresses the previous issues
by relying on application level-checkpoint mechanisms. In the proposed approach,
described in this paper, scientific applications are enhanced with checkpointing ca-
pabilities by plugging additional modules implemented with Aspect Oriented Pro-
graming (AOP) techniques [5]. AOP allows the provision of these additional mod-
ules with minimal impact on the source code of the base application. Portability is
addressed by being a Java-based approach, where application and data are indepen-
dent of specific platforms. Moreover, provided ALC mechanisms avoid changes to
the current Grid middleware and the checkpoint data is also portable, supporting
the migration of checkpoint data across platforms.

The AspectGrid approach di↵ers from previous works by providing portability
in Grid platforms. The framework is fully based on pluggable AOP modules that
allow a uniform approach to checkpoint sequential, thread-based and MPI based
applications. Pluggable AOP modules combined with a Java based approach add
the possibility to take snapshots and to restart applications in di↵erent sets of Grid
resources and in any of these execution modes (e.g., sequential, thread-based and
MPI based).

AspectGrid: Aspect-Oriented Fault-Tolerance in Grid Platforms 1003

The remainder of this paper is organised as follows. The next section introduces
aspect oriented programming techniques and section 3 introduces the AspectGrid
approach to checkpoint. Section 4 provides a performance evaluation and section 5
concludes the paper.

2 OVERVIEW OF ASPECT ORIENTED PROGRAMING

Aspect Oriented Programming was proposed to address the problem of crosscut-
ting concerns in software systems. These concerns are normally transversal to the
application base functionality and are not e↵ectively managed with traditional mod-
ularisation techniques. One typical example is the logging functionality, whose im-
plementation with traditional mechanism entails changing the implementation of
each function to log.

AOP address this kind of functionality by introducing a new unit of modularity:
the aspect. An aspect can intercept a well-defined set of events in the base program
(a.k.a., join points) and attach aspect specific behavior to intercepted events. Ad-
ditional behavior can be, for instance, to print the name of the intercepted method
call. A pointcut specifies a set of events to intercept and pointcut designators can
be used to gather information specific to each intercepted event.

AspectJ [6] is an extension to Java that includes mechanisms for AOP. In As-
pectJ it is possible to capture various kinds of events, including object creation,
method calls or accesses to instance fields. Objects and primitive values specific to
the context of the captured event are obtained through point-cut designators this,
target and args. Fig. 1 shows the example of a logging aspect, applied to a class
Point. In this example, a message is printed on the screen on every call to meth-
ods moveX or moveY. The wildcard in the pointcut expression is used to specify a
pattern for the calls signature to intercept.

The remainder of this paper is organised as follows. The next section introduces
aspect oriented programming techniques and section 3 introduces the AspectGrid
approach to checkpoint. Section 4 provides a performance evaluation and section 5
compares this work against other efforts. Section 6 concludes the paper.

2 Overview of Aspect Oriented Programing

Aspect Oriented Programming was proposed to address the problem of crosscutting
concern in software systems. These concerns are normally transversal to the
application base functionality and are not effectively managed with traditional
modularisation techniques. O typical example the logging functionality, whose
implementation with traditional mechanism entails changing the implementation of
each function to log.

AOP address this kind of functionality by introducing a new unit of modularity: the
aspect. An aspect can intercept a well-defined set of events in the base program
(a.k.a., join points) and attaches aspect specific behavior to intercepted events.
Additional behavior can be, for instance, to print the name of the intercepted method
call. A point-cut specifies a set of events to intercept and point-cut designators can be
used to gather information specific to each intercepted event.

AspectJ is an [2] extension to Java that includes mechanisms for AOP. In AspectJ
it is possible to capture various kinds of events, including object creation, method
calls or accesses to instance fields. Objects and primitive values specific to the
context of the captured event are obtained through point-cut designators this, target
and args. Fig. 1 shows the example of a logging aspect, applied to a class Point. In
this example, a message is printed on the screen on every call to methods moveX or
moveY. The wildcard in the pointcut expression is used to specify a pattern for the
call’s signature to intercept.

public aspect Logging {
 void around(Point obj, int disp) : call(void Point.move*(int)) && target(obj) && args(disp) {
 System.out.println("Move called: target object = " + obj + " Displacement " + disp);
 proceed(obj,disp); // proceed the original call
 }
}

Fig. 1. Example of an aspect for logging

The important AspectJ characteristic is that it allows plugging additional
functionality into base applications in a non-invasive manner. In the previous example
the program base does not need to be changed to include the logging functionality.
More over, the logging aspect is “pluggable” in the sense that it can be included in the
program when logging functionality is required.

Fig. 1. Example of an aspect for logging

The important AspectJ characteristic is that it allows to plug additional func-
tionality into base applications in a non-invasive manner. In the previous example
the program base does not need to be changed to include the logging functionality.
Moreover, the logging aspect is pluggable in the sense that it can be included in the
program when logging functionality is required.

1004 Bruno Medeiros, João Sobral

3 ASPECT ORIENTED CHECKPOINTING IN THE ASPECTGRID
FRAMEWORK

This section describes extensions made to the AspectGrid framework [7], by provid-
ing AspectJ modules that help to include checkpointing capabilities into scientific
applications, minimising the amount of changes required to base programs. The pro-
vided approach is completely implemented at application level, avoiding the need to
change the current Grid middleware. Moreover, it also saves checkpointing data in
a portable manner allowing the application to restart on a di↵erent set of resources.
Portability is also extended to parallel applications developed with AspectGrid tools
[8], which include applications that provide Java thread-based parallelism and MPI-
based parallelism.

Application-level checkpoint requires saving of application data into a permanent
storage. Application data includes the data structures used by the application as well
as the call stack, which specifies the particular point in execution where the check-
point was taken. Application level mechanisms also rely a set of pre-defined points
in execution where checkpoint can be taken. This set is required since application-
level techniques require cooperation from the programmer/compiler to define the
checkpoint frequency and the corresponding places in execution flow.

loop

[Interception of object allocations that will be saved in checkpoint time]

loop

[Safe point interception]

opt

[Checkpoint time]

Safe Points Write / ReadAllocationsDetect and active

1: Last execution without any faults

2: Checkpointing activated

3: Save memory address of intercepted object

4: Update of the already intercepted safe point number

5: Saving checkpoint data

Fig. 2. AspectGrid checkpointing phases

AspectGrid: Aspect-Oriented Fault-Tolerance in Grid Platforms 1005

The AspectGrid approach to checkpoint is based on the indication of a set of
application data fields (object allocations) to be saved into the checkpoint and a
set of safe points that provide points in execution where checkpoint can be taken.
Both are specified through AspectJ pointcuts. Checkpointed applications execute
as follows (Fig. 2): 1) at application start-up, the DetectActive aspect verifies if the
last execution was concluded without failures; by intercepting the execution of the
main method and checking the existence of checkpoint data; 2) if no failure occurred
in the last execution the application runs normally and the Allocations aspect keeps
track of the address of data that must be saved; 3) when a safe point in execution
arises the SafePoints aspect increments the number of executed safe points and 4)
when a predefined number of safe points is executed the data in addresses gathered
by the Allocations aspect is saved into a file, along with the number of executed safe
points.

Application restart in the case of a failure relies on a set of ignorable methods
that can be skipped during restart (also specified by means of a pointcut). Applica-
tion restart proceeds as follows (Fig. 3): 1) at application start-up, the DetectActive
aspect identifies a failure in the last execution activating the replay mode; 2) the
IgnorableMethods aspect skips the execution of methods that can be safely ignored.
3) the SafePoints aspect increments the number of executed safe points and 4) when
the number of safe points saved in the checkpoint file is accomplished the checkpoint
data is loaded and execution proceeds normally from that point. Notice that this
process rebuilds the calling stack by replaying the original application, ignoring a
set of method calls specified by the programmer. Thus, a highly portable solution
is attained, since all mechanisms are implemented at application level.

To summarise, in the AspectGrid framework, the programmer has to write three
pointcuts: 1) data allocations; 2) safe points and 3) ignorable methods. The Aspect-
Grid framework provides the required additional code to take application snapshots
and to restart the application. Moreover, the framework provides a profiling tool
that helps the programmer to find and write those pointcuts.

Safe points and ignorable methods allow an e↵ective checkpointing strategy.
During normal execution, the aspect counts the number of safe points executed.
During restart, the application is replayed, ignoring the specified methods, until the
same safe point is reached. The selection of the set of safe points is a trade-o↵
between checkpointing overhead and computation lost when a failure occurs. Note
that a checkpoint might be taken only after a set of safe points.

The AspectGrid approach provides two important benefits: 1) the base code (do-
main specific code) remains unchanged following the philosophy of the framework,
by providing an additional set of aspects that localise fault-tolerance related issues
and 2) the framework automatically provide mechanisms to perform checkpointing
in shared and distributed memory systems.

Checkpoint in shared memory systems is performed as follows. When a check-
point is to be taken (i.e., on a safe point) we introduce a barrier before and another
after the safe point. When all threads have reached the first barrier the master
thread saves the data specified and the number of safe points executed. Restart is

1006 Bruno Medeiros, João Sobral

loop

[While safe point interception doesn't occur]

opt

[Interception of unnecessary methods for recovery process]

loop

[Safe point interception]

opt

[Time to load the recovery line]

Ignorable Write / ReadSafe PointsDetect and active

1: Failure in the last execution

2: Ignore method execution

3: Update of the already intercepted safe point number

5: Terminating restart process

4: Load checkpoint data from disc

Fig. 3. AspectGrid restart phases

preformed by replaying the application as on a sequential execution, but thread-
creation constructs are still executed to rebuild the number of threads and their
corresponding call stack. A barrier is introduced after the safe point where the
checkpoint was taken. The master thread reads the saved data when reaching that
safe point and then releases the other threads waiting at the barrier.

Checkpoint in distributed memory systems is performed as follows. We perform
checkpoint on each process as in the sequential case, only special care must be taken
to ensure that every process takes the snapshot on the same safe point. We provide
two implementation alternatives to save data fields. In the first case, each process
takes a local snapshot. In that case we need to introduce two global barriers, as in
the case of the shared memory. In the second alternative we collect the partitioned
data on the master node, which avoids the need for barriers (this is possible in our
programming model, since we know how the data is partitioned among processes).

Collecting the data and taking the snapshot at the master process has the ad-
vantage of making it possible to restart the application on any of the execution
modes supported: 1) sequential execution; 2) parallel execution in shared memory
systems and 3) parallel execution in distributed memory systems. This is possible
since the checkpointed data is the same in all environments. Thus, adaptation can

AspectGrid: Aspect-Oriented Fault-Tolerance in Grid Platforms 1007

be performed by saving the checkpointing data and restarting with a di↵erent con-
figuration. An additional benefit of this approach is that the framework can also
checkpoint an application with a hybrid shared/distributed memory parallelisation.

3.1 Illustrative Example

This subsection illustrates the proposed approach by showing how to introduce
checkpointing capabilities into a typical scientific application: a Successive Over Re-
laxation (SOR) that computes the solution to a set of a linear system of equations.
This version uses the red-black variation of the algorithm to enable parallelism. This
benchmark is a typical scientific application, where a five-point stencil is successively
applied to a matrix.

Fig. 4 presents a code snippet of the benchmark (this code is based on the
version provided by the Java Grande Forum [9]). The doIteration method iteratively
calls method iteration alternately on red and black matrix elements. The iteration

method calls the updateRow on each row, which applies the stencil to all elements
in the row.

public class Sor {

 static double[][] G;

 static int Mm1, Nm1;

 static double of, omf;

 static final void doIterations(int num_iterations) {

 Mm1 = ...

 for(int p=0; p<num_iterations; p++) {

 iteration(0); // iteration on “red” elements

 iteration(1); // iteration on “black” elements

 }

 }

 static final void iteration(int is_red) {

 for(int row=1; row<Mm1; row++)

 updateRow(row, (row+is_red)%2+1);

 }

 static final void updateRow(int row, int start_elem) {

 double[] Gi=G[row];

 double[] Gim1=G[row-1];

 double[] Gip1=G[row+1];

 for(int j=start_elem; j<Nm1;j+=2){

 Gi[j]=of*(Gim1[j]+Gip1[j]+Gi[j-1]+Gi[j+1])+omf*Gi[j];

 }

 }

}

Fig. 4. Base code for the SOR benchmark

The first step to introduce checkpoint capabilities is to identify potential safe

points. This can be done using the AspectGrid provided profiling tool. In this case
there are three potential points in execution to introduce a safe point: 1) doIterations;
2) iteration and 3) updateRow. Selecting the best place for safe points involves a
trade-off between checkpoint frequency and overhead. In this case, the doIterations is
called only once during program execution. The iteration method is called 200 times,
with an interval of approximately 2 seconds and updateRow is called 20 000 000 with
an execution time of a few miliseconds. Thus, in this case, the AspectGrid profiling
tool suggests placing safe points on calls to the iteration method.

After selection of the safe points, the programmer needs to define the application
data structures that must be saved on those safe points. Those correspond to data that
is changed between two consecutive executions of safe points. In this case the
AspectGrid tool indicates the matrix G.

The last step is the identification of ignorable methods. In this case, the tool
suggests that the execution of the code inside safe points can be ignored. The
programmer can also indicate other methods that can be ignored.

The three pointcuts generated for this case study are provided in figure 5.

Fig. 4. Base code for the SOR benchmark

1008 Bruno Medeiros, João Sobral

The first step to introduce checkpoint capabilities is to identify potential safe
points. This can be done using the AspectGrid provided profiling tool. In this
case there are three potential points in execution to introduce a safe point: 1)
doIterations ; 2) iteration and 3) updateRow. Selecting the best place for safe points
involves a trade-o↵ between checkpoint frequency and overhead. In this case, the
doIterations is called only once during program execution. The iteration method
is called 200 times, with an interval of approximately 2 seconds and updateRow is
called 20 000 000 with an execution time of a few miliseconds. Thus, in this case,
the AspectGrid profiling tool suggests placing safe points on calls to the iteration

method.
After selection of the safe points, the programmer needs to define the application

data structures that must be saved on those safe points. Those correspond to data
that is changed between two consecutive executions of safe points. In this case the
AspectGrid tool indicates the matrix G.

The last step is the identification of ignorable methods. In this case, the tool
suggests that the execution of the code inside safe points can be ignored. The
programmer can also indicate other methods that can be ignored.

The three pointcuts generated for this case study are provided in figure 5.

pointcut safepoints() : call(void iteration(..));
pointcut allocations() : call (double[][] new(..));
pointcut ignorablemethods() : call(void iteration(..);

Fig. 5. Pointcut definitions to introduce checkpoint in the SOR benchmark

3.2 Implementation Overview

The checkpointing mechanism is based on a set of safe points, ignorable methods and
safe data fields. The implemented behaviour is different when the application is
running normally and when the application is restarting after a failure. Figure 6
presents a sketch of the implementation. In normal operation the implementation
counts the number of safe points and take the snapshot when requested (lines 07-12).
In replay mode the implementation ignores the specified method calls (lines 22-26)
while replaying the application and reload the data when the number of safe points
defined in the checkpoint is attained (lines 13-17).

01 aspect checkpointing {
02 ...
03 pointcut safepoints();
04 pointcut ignorablemethods();
05 Boolean replay;
06
07 void around(): safepoints(...) {
08 numberOfSafePoints++;
09
10 if (!replay) ...
11 if (takeSnapshot)
12 ... // save data fields
13 else
14 if (numberOfSafePoints==chkSafePoints) {
15 ... // get saved data fields
16 replay = false
17 }
18
19 proceed(); // execute original call
20 }
21
22 void around(): ignorablemethods(...) {
23 if (replay) ; // ignore the method call
24 else proceed();
26 }
27 }

Fig. 6. Code for checkpointing

Fig. 5. Pointcut definitions to introduce checkpoint in the SOR benchmark

3.2 Implementation Overview

The checkpointing mechanism is based on a set of safe points, ignorable methods
and safe data fields. The implemented behaviour is di↵erent when the application
is running normally and when the application is restarting after a failure. Fig. 6
presents a sketch of the implementation. In normal operation the implementation
counts the number of safe points and takes the snapshot when requested (lines 07-
12). In replay mode the implementation ignores the specified method calls (lines
22-26) while replaying the application and reload the data when the number of safe
points defined in the checkpoint is attained (lines 13-17).

AspectGrid: Aspect-Oriented Fault-Tolerance in Grid Platforms 1009

pointcut safepoints() : call(void iteration(..));
pointcut allocations() : call (double[][] new(..));
pointcut ignorablemethods() : call(void iteration(..);

Fig. 5. Pointcut definitions to introduce checkpoint in the SOR benchmark

3.2 Implementation Overview

The checkpointing mechanism is based on a set of safe points, ignorable methods and
safe data fields. The implemented behaviour is different when the application is
running normally and when the application is restarting after a failure. Figure 6
presents a sketch of the implementation. In normal operation the implementation
counts the number of safe points and take the snapshot when requested (lines 07-12).
In replay mode the implementation ignores the specified method calls (lines 22-26)
while replaying the application and reload the data when the number of safe points
defined in the checkpoint is attained (lines 13-17).

01 aspect checkpointing {
02 ...
03 pointcut safepoints();
04 pointcut ignorablemethods();
05 Boolean replay;
06
07 void around(): safepoints(...) {
08 numberOfSafePoints++;
09
10 if (!replay) ...
11 if (takeSnapshot)
12 ... // save data fields
13 else
14 if (numberOfSafePoints==chkSafePoints) {
15 ... // get saved data fields
16 replay = false
17 }
18
19 proceed(); // execute original call
20 }
21
22 void around(): ignorablemethods(...) {
23 if (replay) ; // ignore the method call
24 else proceed();
26 }
27 }

Fig. 6. Code for checkpointing
 Fig. 6. Code for checkpointing

4 PERFORMANCE EVALUATION

This section presents an evaluation of the proposed checkpoint mechanism by mea-
suring the overheads relative to hand written versions. These results were collected
on a cluster with two machines, dual Opteron 6174 per node (i.e., 24 cores per ma-
chine). Presented results are median of 20 executions. Performance results where
obtained on a typical scientific application: the Successive over Relaxation (SOR)
presented in previous section.

The first test measures the overhead of introducing code for checkpoint, when
0 or 1 checkpoints are taken. Fig. 7 shows the execution time of: 1) the original
benchmark; 2) when checkpointing is introducing using classic invasive techniques
and 3) when checkpointing is introduced through AOP. Presented results include
sequential execution (seq); execution with 2 to 16 threads (T) and with 2 to 32 MPI
processes (P). These results show that: 1) the overhead of checkpointing is very
low, as it would be expected, since the overhead is the time required to count safe
points, which is less than 1% in most cases; 2) AOP does not impose any additional
overhead when compared to traditional invasive programming techniques; 3) there
is a relevant overhead required to save checkpointing data that is directly connected
to the amount of saved data.

1010 Bruno Medeiros, João Sobral

0

5

10

15

20

25

30

35

Seq. 2 T 4 T 8 T 16 T 2 P 4 P 8 P 16 P 32 P

Ti
m

e
(s

)

Original
Invasive - 0 checkpoint
AOP - 0 checkpoint
Invasive - 1 checkpoint
AOP - 1 checkpoint

Fig. 7. Overhead of checkpointing

One important point of the proposed approach is the ability to replay the ap-
plication on a di↵erent environment. Figure 8 illustrates such case by showing the
time per SOR iteration. In this case the application started with 2 processes and on
iteration 26 it restarted on 8 processors, shortening the overall application execution
to more than half.

0,0
0,2
0,4
0,6
0,8
1,0
1,2
1,4
1,6

[1
,5

]
[6

,1
0]

[1

1,
15

]
[1

6,
20

]
[2

1,
25

]
[2

6,
20

]
[3

1,
35

]
[3

6,
40

]
[4

1,
45

]
[4

6,
50

]
[5

1,
55

]
[5

6,
60

]
[6

1,
65

]
[6

6,
70

]
[7

1,
75

]
[7

6,
80

]
[8

1,
85

]
[8

6,
90

]
[9

1,
95

]
[9

6,
10

0]

Ti
m

e
pe

r
ite

ra
tio

n
(m

s)

Iteration

Fig. 8. Application restart increasing assigned resources

AspectGrid: Aspect-Oriented Fault-Tolerance in Grid Platforms 1011

5 CONCLUSION

This paper presented an aspect-oriented approach to checkpointing in computational
Grids. The approach is based on the ability to plug checkpointing modules in
scientific applications. The paper showed the feasibility of the approach and showed
that the performance penalty can be very low, when compared with similar hand
written versions.

Current implementation of this approach rely on external tools to determinate
the optimal set of resources to be used by applications. A natural evolution is to in-
corporate mechanisms to find opportunities for self-adaptation to improve execution
time, by monitoring the application and the system state.

REFERENCES

[1] Hargrove, P. - Duell, J.: Berkeley Lab Checkpoint/Restart (BLCR) for Linux
Clusters. In Proceedings of Scientific Discovery through Advanced Computing, Sci-
DAC 2006, Denver, June 2006.

[2] Fernandes, R. - Pingali, K. - Stodghill, P.: Mobile MPI Programs in Com-
putational Grids, ACM Symposium on Principles and Practices of Parallel Program-
ming, PPoPP’06, New York, March 2006.

[3] Rodrguez, G. - Martn, M. - Gonzlez, P. - Tourio, J. - Doallo, R.: CPPC:
a compiler-assisted tool for portable checkpointing of message-passing applications,
Concurrency and Computation: Practice and Experience, Volume 22 Issue 6, April
2010.

[4] Bronevetstsky, G. - Pingali, K. - Stodghill, P.: Experimental Evaluation
of Application-Level Checkpointing for OpenMP Programs, International Conference
on Supercomputing, ICS06, Australia, June 2006.

[5] Kiczales, G. - Hilsdale, E. - Hugunin, J. - Kersten, M. - Palm, J. - Gris-
wold, W.: An Overview of AspectJ, European Conference on Object-Oriented Pro-
gramming, ECOOP 2001, Budapest, Hungary, June 2001.

[6] Kiczales, G. - Hilsdale, E. - Hugunin, J. - Kersten, M. - Palm, J. - Gris-
wold, W.: Getting Started with AspectJ. Communications of the ACM, 44(10),
October 2001.

[7] Sousa, E. - Gonalves, R. - Neves, D. - Sobral, J.: Non-Invasive Gridification
through an Aspect-Oriented Approach. 2nd Iberian Grid Infrastructure Conference
Ibergrid 2008, Porto, Portugal, May 2008.

[8] Pinho, J. - Almeida, M. - Rocha, M. - Sobral, J.: Parallelization Service in the
AspectGrid Framework, 4th Iberian Grid Infrastructure Conference, Ibergrid 2010,
Braga, May 2010.

[9] Smith, J. - Bull, J. - Obdrzálek, J.: A Parallel Java Grande Benchmark Suite.
Supercomputing Conference, SC 2001, Denver, November 2001.

*This work is funded by ERDF - European Regional Development Fund through the COMPETE
Programme (operational programme for competitiveness) and by National Funds through the FCT -
Fundação para a Ciência e a Tecnologia (Portuguese Foundation for Science and Technology) within
project FCOMP-01-0124-FEDER-010152.

