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AQ: 7
BACKGROUND & AIMS: MicroRNAs (miRs) can pro-
mote or inhibit tumor growth and are therefore being
developed as targets for cancer therapies. They are diverse
not only in the messenger RNAs (mRNA) they target, but
in their production; the same hairpin RNA structure can
generate mature products from each strand, termed 5p
and 3p, that can bind different mRNAs. We analyzed the
xpression, functions, and mechanisms of miR-28-5p and
iR-28-3p in colorectal cancer (CRC) cells. METHODS:
e measured levels of miR-28-5p and miR-28-3p expres-

ion in 108 CRC and 49 normal colorectal samples (47
aired) by reverse transcription, quantitative real-time
olymerase chain reaction. The roles of miR-28 in CRC
evelopment were studied using cultured HCT116, RKO,
nd SW480 cells and tumor xenograft analyses in immu-
odeficient mice; their mRNA targets were also investi-
ated. RESULTS: miR-28-5p and miR-28-3p were down-
egulated in CRC samples compared with normal colon
amples. Overexpression of miRs in CRC cells had differ-
nt effects and the miRs interacted with different mRNAs:
iR-28-5p altered expression of CCND1 and HOXB3,
hereas miR-28-3p bound NM23-H1. Overexpression of
iR-28-5p reduced CRC cell proliferation, migration, and

nvasion in vitro, whereas miR-28-3p increased CRC cell
igration and invasion in vitro. CRC cells overexpressing
iR-28 developed tumors more slowly in mice compared
ith control cells, but miR-28 promoted tumor metasta-

is in mice. CONCLUSION: miR-28-5p and miR-28-3p
re transcribed from the same RNA hairpin and are
own-regulated in CRC cells. Overexpression of each
as different effects on CRC cell proliferation and
igration. Such information has a direct application

or the design of miR gene therapy trials.

eywords: Transcript Regulation; Gene; RNA Processing.

Colorectal (CRC) cancer is the third most commonly
diagnosed cancer in men and the second in women.1

In the United States, it is the third leading cause of death
by cancer, with 51,371 estimated deaths and 142,570

estimated newly diagnosed cases in 2010.2 Therefore, new
herapeutic approaches and prognostic markers are
eeded. In 2002, new players in cancer biology were iden-
ified: microRNAs (miRNAs).3 These are a large family of

small noncoding RNAs with approximately 20-nt length
that regulate gene expression post-transcriptionally by
inhibition of translation or messenger RNA (mRNA) deg-
radation.4 miRNAs targeting occurs by binding to 3=-
untranslated regions, coding sequences, or 5=-untranslated
regions of target mRNA that can be involved in diverse
biological processes, such as proliferation, apoptosis, inflam-
mation, differentiation, and metastasis.4 miRNAs can func-
ion as either oncogenes or tumor suppressor genes, depend-
ng on the type of tumor or the cellular context.5 In CRC,

miRNAs have been involved in tumor susceptibility (as poly-
morphisms in miRNA-binding sites have been associated
with CRC risk) and in diagnosis (as miRNAs can be detected
in feces or blood and used as biomarkers).6 In addition,

iRNA expression is dysregulated in CRC, as well as in other
ancer types, and miRNAs have emerged as potential new
herapeutic targets.6,7 Therefore, understanding the role of

iRNAs in CRC is crucial for the development of new
herapies.

In the miRNA biogenesis pathway, long primary tran-
cripts transcribed from the genome are processed by the
ellular RNase enzyme III Drosha into a structure of 60 to
10 nt called precursor miRNA (pre-miRNA), which is
hen exported to the cytoplasm by an Exportin 5-depen-
ent mechanism.4 The pre-miRNA is cleaved by the RNase

III enzyme Dicer-1 producing a short, imperfect, double-
stranded miRNA duplex, which is unwound by a helicase,
creating a mature miRNA.4 In some cases, 2 mature miRNAs
an be excised from the same stem-loop pre-miRNA.8 These

5p and 3p miRNAs, although generated from a single pri-
mary transcript, have different sequences and therefore tar-

Abbreviations used in this paper: CRC, colorectal cancer; miRNA,
microRNA; MSS, microsatellite stable; mRNA, messenger RNA; MSI,
microsatellite unstable; PCR, polymerase chain reaction; SCR, scram-
bled control; PARP1, poly(adenosine diphosphate-ribose) polymerase
1; pre-miRNA, precursor miRNA.

© 2012 by the AGA Institute
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get different mRNAs. In humans, 2 different mature miRNA
sequences are excised from opposite arms of the stem-loop
pre-miR-28 and generate 2 different miRNAs—hsa-miR-
28-5p and hsa-miR-28-3p. Despite nearly a decade of studies
on miRNA roles in cancer,3 the comparative roles of strand-
specific mature miRNAs that originated from the same
stem-loop precursor (5p and 3p) have not yet been fully
studied.

To our knowledge, the roles miR-28-5p and miR-28-3p
play in CRC has never been described. Therefore, the
purpose of our study was to analyze miR-28-5p and miR-
28-3p expression and to use in vitro and in vivo ap-
proaches to understand, for the first time, the functions
and mechanisms of these 2 miRNAs in CRC.

Materials and Methods
Colorectal Samples
Eighty-five CRC samples and 26 normal colorectal tissue

samples (of which 24 were paired) were collected between 2003
and 2008 at the University Hospital of Ferrara in Ferrara, Italy
(first sample set). Forty-two tumors were classified as microsat-
ellite stable (MSS), and 43 tumors were classified as microsatel-
lite unstable (MSI) (Supplementary Methods). For a confirma-
tion set of samples, we obtained 23 paired samples of tumor and
adjacent colorectal tissue that were collected between 2002 and
2005 at the Istituto per lo Studio e la Cura dei Tumori della
Romagna in Meldola, Italy (second sample set). Tumors were
classified according to the World Health Organization patho-
logic classification system. All patients provided informed con-
sent, and collection of the samples was approved by the institu-
tional review board at each institution. Patients did not receive
any therapy before surgery. Upon resection, fresh surgical spec-
imens were immediately snap-frozen in liquid nitrogen and
stored at �80°C. Total RNA from tissue samples was isolated
using Trizol reagent (Invitrogen, Carlsbad, CA), according to
manufacturer’s instructions (Supplementary Methods).

Reverse Transcription Quantitative Real-Time
Polymerase Chain Reaction
RNA purity was assessed by measuring absorbance at

260, 280, and 230 nm. Mean 260/280 ratio was 1.97 � 0.05, with
a range between 1.86 and 2.05, and mean 260/230 ratio was 2.17 �
0.11, with a range between 2.00 and 2.31. In addition, as recom-
mended by the Minimum Information for Publication of Quan-
titative Real-Time PCR Experiments guidelines,9,10 we analyzed

NA integrity by gel electrophoresis and clearly defined 28S and
8S ribosomal RNA bands were visualized. Samples with low
uality that did not meet these criteria were excluded. We quan-
ified miR-28-5p and miR-28-3p expression with real-time quan-
itative polymerase chain reaction TaqMan miRNA assays (Ap-
lied Biosystems, Foster City, CA), namely assay 000411 for
iR-28-5p, assay 002446 for miR-28-3p, and assay 001973 for
6 snRNA (Supplementary Methods). The efficiency of the Taq-
an assays used in this study was determined (Supplementary

igure 1 and Supplementary Table 1). Relative expression levels
ere calculated using the ��Ct

11 and the Pfaffl method.12

In Vitro Cell Proliferation Assays
HCT116 and RKO cells transfected with scrambled con-
trol (SCR), miR-28-5p, or miR-28-3p were seeded onto a 12-well
plate at 1 � 105 cells/well in triplicate. Cells were harvested and
counted at 0, 24, 48, 72, and 96 hours after transfection using
the Vi-CELL cell viability analyzer (Beckman Coulter, Brea, CA).
In order to further confirm our results, a 3-(4,5-dmethylthiazol-
2-yl)-2,5-diphenyltetrazolium bromide assay was performed
(Supplementary Methods). The experiment was repeated twice
independently.

In Vitro Cell Migration and Invasion Assays
To determine the effect of miR-28-5p and miR-28-3p on

cell migration, we used 6.5-mm diameter Transwell chambers
with 8-�m pore size polycarbonate membranes (Corning Incor-
porated, Lowell, MA). To determine the effect of these miRNAs
on cell invasion, we used BioCoat growth-factor reduced Matri-
gel invasion chambers (BD Biosciences, Bedford, MA). Cells
transfected with SCR, miR-28-5p, or miR-28-3p were resus-
pended in serum-free medium and plated on the top of the
Transwell chambers. Fetal bovine serum was used as a chemoat-
tractant on both assays. Each assay was performed in triplicate
and in 2 independent experiments. Additional details are de-
scribed in Supplementary Methods.

In Vivo Studies of Tumorigenesis and
Metastatic Potential
For the in vivo tumorigenesis assay, 1.5 � 106 HCT116-

BABE-miR28 or HCT116-pBABE-empty cells were subcutane-
usly injected into the flanks of NOD-SCID-IL2R�deficient
ice (n � 9; stock #005557; The Jackson Laboratory, Bar Har-

or, ME). Tumor size was measured every 2 days. Animals were
acrificed 21 days after injection, and final tumor volume was
etermined. Tumor size was determined by digital caliper mea-
urements (length and width in mm), and tumor volume (mm3)

was estimated using the following formula: tumor volume � ½
(length � width2).

For the in vivo tumor-metastasis assay, 4 � 106 HCT116-
BABE-miR28 and HCT116-pBABE-empty cells were injected

nto the tail vein of NOD-SCID-IL2R– deficient mice (n � 11/
roup). Thirty-five days after injection the mice were sacrificed.
ll of the organs were examined at necropsy. Tumors were

ectioned, stained with H&E, and anti�green fluorescent pro-
ein antibody (Ab13970; Abcam, Cambridge, MA), and examined
istologically.

All animal care and handling was approved by The University
f Texas MD Anderson Institutional Animal Care and Use Com-
ittee.

Statistical Analysis
Shapiro-Wilk test was used to verify the clinical samples’

distribution. Differences were analyzed using the nonparametric
test Mann-Whitney-Wilcoxon. To compare the paired groups,
paired t test was used. For in vitro and in vivo studies, the
differences between groups were analyzed using Student t test
(2-tailed), assuming unequal variance. Discrete variables were
compared with Fisher exact test. Graphics represent the mean �
standard deviation, unless otherwise stated. Statistical analysis
was performed in R (version 2.11.0). Statistical significance was
considered if P � .05.

Additional methods, including cell culture, STR DNA finger-
printing, and miRNA mimics transfection, apoptosis quantifi-
cation, caspase activity, cell cycle analysis by flow cytometry,
establishment of miR-28 – expressing cell line, miRNA target
prediction, Western blot, and luciferase reporter assays, are avail-

able in Supplementary Methods. 115
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Results
miR-28-5p and miR-28-3p Are
Down-regulated in CRC
Expression levels of miR-28-5p and miR-28-3p

were analyzed by quantitative real-time polymerase chain
reaction (PCR) in 85 human CRC specimens and 26
normal human colorectal specimens. In order to ensure
that the reference gene snRNA U6 does not change be-
tween normal and tumor samples, we calculated the mean
Ct values as 2�Ct. Levels of U6 did not differ between
normal and tumor tissue, 2�CtTumor/2�CtNormal � 0.94 (P �
41) (Supplementary Figure 2). Both miRNA-28-5p and

Figure 1. Expression of miR-
28-5p and miR-28-3p in colon tis-
sue samples. (A) Quantitative real-
time PCR analysis shows that
miR-28-5p and miR-28-3p are
down-regulated in colon cancer
samples compared with normal
colorectal tissue samples. (B)
Both MSS and MSI tumors ex-
press significantly less miR-28-5p
and miR-28-3p levels when com-
pared with normal colon tissue.
No differences were found when
comparing miR-28-5p and miR-
28-3p levels of MSS and MSI tu-
mors. (C) miRNAs down-regula-
tion in CRC tumors paired with
normal tissue from the second set
of patients. All values of miRNA
expression levels were normalized
to small nuclear RNA U6. Mean �
standard error of the mean are
represented in the images (***P �
.005, Mann–Whitney–Wilcoxon
test, and paired t test for paired
normal vs tumor groups).
miR-28-3p were significantly down-regulated in CRC sam-
ples (miR-28-5p, P � .005; miR-28-3p, P � .005) (Figure
1A). Both MSS (n � 42) and MSI (n � 43) tumors showed
down-regulation of miR-28 expression compared with the
normal colon tissue (miR-28-5p normal vs MSS, P � .005

nd normal vs MSI, P � .005; miR-28-3p normal vs MSS,
� .005 and normal vs MSI, P � .005); however, no

significant differences between MSS and MSI tumors were
found (miR-28-5p MSS vs MSI, P � .418; miR-28-3p MSS
vs MSI, P � .996) (Figure 1B). We also analyzed the
expression of these miRNAs in the subset of 24 pairs of
normal and tumor tissue samples from the same patients,
and in agreement with these data, we found significant

down-regulation of miR-28-5p and miR-28-3p in CRC 173
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F2
samples (miR-28-5p, P � .005; miR-28-3p, P � .005)
Supplementary Figure 3). In order to confirm these re-
ults, we used a second independent set of CRC samples.
n 23 paired samples of tumors and adjacent normal
issue, we also found that both miRNAs were down-
egulated (miR-28-5p, P � .001; miR-28-3p, P � .001)
Figure 1C). Values of expression are presented in Supple-

entary Tables 2 and 3.

miR-28-5p, but Not miR-28-3p, Significantly
Suppresses Proliferation and Induces Apoptosis
and G1 Arrest in CRC Cells
To elucidate the roles of miR-28-5p and miR-28-3p

in CRC tumorigenesis, HCT116 and RKO CRC cell lines
(endogenous miR-28 expression levels of colon cell lines
are shown in Supplementary Figure 4) were transfected

with SCR, pre-miR-28-5p, or pre-miR-28-3p. Expression m
of miRNAs was confirmed by quantitative real-time PCR
(Supplementary Figure 5). In both cell lines, we found
that cells overexpressing miR-28-5p grew significantly less
(P � .005) than did cells transfected with control or

iR-28-3p (Figure 2A and B). This result was also con-
rmed in the HCT116 and RKO cell lines using the
-(4,5-dmethylthiazol-2-yl)-2,5-diphenyltetrazolium bro-
ide assay (Supplementary Figure 6A and B). In contrast,

n both cell lines overexpressing miR-28-3p, there were no
tatistically significant differences at any time (HCT116,
� .25; RKO, P � .81) compared with cells transfected

ith control (Figure 2A and B). Therefore, the in vitro
esults suggest that miR-28-5p, but not miR-28-3p, has a
iological effect on proliferation.

We then explored the possibility that the effect of

Figure 2. Biological effects of
miR-28-5p in proliferation, apo-
ptosis, and cell cycle in vitro. (A, B)
Representative experiment of the
proliferation effect of miR-28-5p
and miR-28-3p in HCT116 and
RKO colon cell lines. Cell numbers
were counted every 24 hours for 4
days post-transfection with SCR,
miR-28-5p, or miR-28-3p. miR-
28-5p, but not miR-28-3p, inhib-
ited growth in both HCT116 and
RKO cell lines. Values represent
the mean of 3 replicates � stan-
dard deviation (***P � .005, Stu-
dent t test). Two independent ex-
periments were performed. (C)
Immunoblotting with anti- PARP1
48 hours after transfection of
HCT116 and RKO cell lines with
SCR, miR-28-5p, or miR-28-3p.
Graphic represents the ratio be-
tween cleavage and total PARP1
form. miR-28-5p, but not miR-28-
3p, increased PARP1 cleavage
form. (D) Fluorescent-activated
cell sorting analysis 48 hours
post-transfection with SCR, miR-
28-5p, or miR-28-3p. Represen-
tative experiment was performed
in duplicate; mean � standard de-
viation (*P � .05, Student t test).
Two independent experiments
were performed.
iR-28-5p on proliferation could be due to an increase in 231
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F5,AQ: 10
apoptosis or to defects in the cell cycle. To test whether
miR-28-5p had an effect on apoptosis, we measured poly-
(adenosine diphosphate-ribose) polymerase 1 (PARP1)
protein, which is specifically cleaved by caspases and pro-
motes apoptosis. PARP1 cleavage forms are one of the
most reliable apoptotic markers.13,14 Cells transfected
with pre-miR-28-5p expressed 2.2 and 1.8 times more
cleaved-PARP1 form (relative to total-PARP1 form) than
did cells transfected with control in the HCT116 and
RKO cell lines, respectively (Figure 2C). In agreement with
the results of the proliferation assays, cells transfected
with miR-28-3p presented a PARP1 cleaved to total form
ratio similar to the control (Figure 2C). In addition, our
esults were confirmed by caspases 3/7, 8, and 9 activities,
hich were all higher in miR-28-5p–transfected cells than

n the SCR-transfected cells (Supplementary Figure 6C).
In order to analyze possible differences in the cell cycle,
the HCT116 cell line was transfected with either SCR,
miR-28-5p, or miR-28-3p and analyzed by fluorescent-
activated cell sorting. Compared with the control, cells
transfected with miR-28-5p had a significantly higher
percentage of cells in G1 phase and a significantly lower
percentage of cells in S phase, suggesting that miR-28-5p
causes G1 arrest (P � .05) (Figure 2D). Despite being
concomitantly transcribed and being part of the same
RNA stem-loop hairpin, these data suggest that miR-
28-5p has a tumor-suppressive role in CRC and that
miR-28-3p does not have the same biologic role.

miR-28 Disrupts Tumor Growth In Vivo
Because our in vitro studies indicated that miR-

28-5p acts as a tumor suppressor in CRC, we analyzed the
overall effect of miR-28 in vivo. For that purpose, we
generated stable clones overexpressing miR-28, and ex-
pression of miR-28-5p and miR-28-3p was verified by
quantitative real-time PCR (Supplementary Figure 7).
HCT116 colon cancer cells stably transfected with
pBABE-empty or pBABE-miR-28 were subcutaneously in-
jected into the left and right flanks of each mouse, respec-
tively (n � 9). Both cell lines were injected into the same
mice to decrease inter-mouse variability. Tumors derived
from the HCT116 stably expressing pBABE-miR-28 cells
grew much slower than did tumors derived from the
HCT116 stably expressing pBABE-empty cells (Figure 3A).
Accordingly, final tumor volume in pBABE-miR-28 tu-
mors was significantly reduced (P � .01) compared with
pBABE-empty tumors (Figure 3B and C). miR-28 expres-
sion levels were confirmed in these tumors. In pBABE-
miR-28 tumors, miR-28-5p and miR-28-3p were increased
(P � .01) when compared with pBABE-empty tumors
(Figure 3D). In conclusion, this xenograft experiment re-
vealed that expression of miR-28 disrupts tumor growth
in vivo.

Opposite Effects of miR-28-5p and miR-28-3p
in Cell Migration and Invasion
To better understand the biological importance of
miR-28-5p and miR-28-3p in CRC, we explored whether t
these miRNAs could be involved in colon cancer metas-
tasis. To evaluate the migratory capacity of HCT116 cells
expressing either miRNA, we used Transwell cell migra-
tion assays. Overexpression of miR-28-5p led to a signif-
icant reduction in cell migration (P � .01), whereas over-
expression of miR-28-3p led to a significant increase (P �
.05) in cell migration compared with the control (Figure
4). The same result was obtained when using SW480
transfected cells (miR-28-5p, P � 0.05; miR-28-3p; P �
.01) (Supplementary Figure 8). To determine whether
both miR-28-5p and miR-28-3p also played a role in
invasion, we used Transwell chambers coated with Matri-
gel. HCT116 cells expressing miR-28-5p had a reduction
in invasiveness (P � .05), whereas cells expressing miR-
28-3p had an increase in invasiveness (P � .01) compared
with the control (Figure 4). Although no statistically sig-
nificant differences were obtained for SW480 cell line, the
same trend was observed—miR-28-5p overexpressing cells
are less invasive and miR-28-3p are more invasive than
control (miR-28-5p, P � .25; miR-28-3p, P � .12) (Sup-
plementary Figure 8). The effect of miR-28-3p, which
showed a growth rate similar to the control, on migration
and invasion appears to be independent of cell growth.
Therefore, although both miRNAs are down-regulated in
CRC, they play different roles in the migration phenotype.

mir-28 Increases Metastasis In Vivo
As miR-28-5p and miR-28-3p exert opposite effects

on migration and invasion in vitro but are transcribed
concomitantly in cells, we investigated the effect of global
miR-28 expression on metastasis in vivo. For this purpose,
we intravenously injected mice with pBABE-empty or
pBABE-miR-28 cells. After 35 days, the mice were sacri-
ficed. At necropsy, tumors were found in the liver, kidney,
lung, and spinal cord. We found increased number of
mice with metastases in all tumor sites in the pBABE-
miR-28 group compared with the pBABE-empty group
(Figure 5A). In particular, metastases in the liver and lung
were found at a statistically significant higher frequency
in the pBABE-miR-28 group than were in the pBABE-
empty group (P � .05). Examples of tumor metastases
from the 3 most frequent locations—liver, kidney, and
lung—are presented with H&E staining and anti– green
fluorescent protein labeling (Figure 5B). In addition, the
number of tumors in liver and kidney was higher in the
pBABE-miR-28 group than in pBABE-empty (Figure 5C).
n particular, in the pBABE-miR-28 group, 6 mice pre-
ented liver tumors with a mean of 1.5 � 0.8 tumors per

ice, and in the pBABE-empty group, there was only 1
ouse that developed only 1 liver tumor. Regarding the

idney, in the pBABE-miR-28 group, 10 mice presented
idney tumors, with a mean of 14.6 � 4.2 tumors per
ice (considering both kidneys), and in the pBABE-empty

roup, 6 mice developed kidney tumors, with an average
f 6 � 4.2 tumors per mice (P � .005). An example of the
umors can be visualized in Figure 5D. Although miR-
8-5p and miR-28-3p had contrasting effects on migra-

ion and invasion in vitro, and although in vivo subcuta- 289
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neous tumorigenesis appeared to correlate with the
growth-inhibiting effects of miR-28-5p, the overall in vivo
results of the metastasis experiments resembled the effects
caused by miR-28-3p, indicating that this miRNA may
have a predominant effect on metastasis.

miR-28-5p and miR-28-3p Targets
To identify miR-28-5p and miR-28-3p targets that

could be involved in the biological effects caused by these
miRNAs, we first used an in silico approach. By selecting
the targets predicted to be regulated by miR-28-5p or
miR-28-3p in PITA, TargetScan, and miRanda programs
simultaneously, we found 5784 mRNAs. Of these mRNAs,
2629 were predicted to be a target of miR-28-5p but not

miR-28-3p; 1305 were predicted to be a target of miR-
28-3p but not miR-28-5p; and 925 were predicted to be
targets of both miRNAs. To narrow the list of potential
targets, we focused on those that have been described as
up-regulated in colon cancer (given that miR-28 is down-
regulated) and have been reported to be involved in the
biological functions investigated here. Therefore, we
searched for miR-28-5p targets involved in proliferation
and miR-28-3p targets involved in metastasis, and we
considered targets that were predicted by at least 2 pro-
grams. In this way, we identified CCND1, HOXB3, and
NM23-H1.

We first used immunoblotting to detect changes at the
protein level for several predicted targets of interest in

Figure 3. miR-28 decreases tu-
mor volume in mice xenografts.
(A, B) HCT116-pBABE-empty
(control) and HCT116-pBABE-
miR-28 (stably expressing miR-
28) were subcutaneously injected
in the left and right flanks of 9
mice, and tumor volume was
measured during the (A) course of
the experiment and (B) at the end
of the experiment (21 days post
inoculation). Tumor volumes in the
HCT116-pBABE-miR-28 group
were lower than those in the
HCT116-pBABE-empty group
(**P � .01, Student t test). (C)
Photographs show tumors ex-
cised from 5 mice in each group.
(D) Quantitative real-time PCR
analysis shows miR-28-5p and
miR-28-3p expression in the tu-
mors extracted from the mice
(mean � standard deviation) (**P
� .01, Student t test).
cells transfected with SCR, miR-28-5p, or miR-28-3p. We 347
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AQ: 9
found a 51% reduction in the level of cyclin D1 (encoded
by the CCND1 gene) in cells in which miR-28-5p was
estored. On the contrary, no differences in cyclin D1
evels were detected in miR-28-3p– expressing cells com-
ared with SCR-transfected cells (Figure 6A). We also
ound that HOXB3 was a target of miR-28-5p because this

iRNA reduced HoxB3 protein expression by 35% (Figure
B). Regarding miR-28-3p, we found that the protein
m23-H1 was down-regulated by 52% in cells expressing

Figure 4. Effect of mir-28-5p and miR-28-3p on migration and invasion
n vitro. Absorbance was measured for cells on the bottom of noncoated
nd Matrigel-coated Transwell chambers at 24 hours (for migration) and
8 hours (for invasion) after HCT116 cells expressing miR-28-5p or
iR-28-3p were plated. Results are shown relative to SCR. A represen-

ative experiment is shown. Mean of triplicates � standard deviation is
shown (*P � .05; **P � .01, Student t test). Microscopy images (�50)
how the migratory and invasive cells on Transwell assays.
iR-28-3p (Figure 6C).
To determine whether the effect on these targets was
aused by direct binding of the miRNAs or by an indirect
ffect, we cloned the predicted mRNA binding sites (Fig-
re 6D and E; Supplementary Figure 9) downstream of
he modified coding region of firefly luciferase in pGL3
eporter vector. We found that miR-28-5p significantly
educed luciferase activity in the HOXB3 reporter con-
truct by 38% (P � .01) (Figure 6D). Also, miR-28-3p
educed luciferase activity in the NM23-H1 reporter con-
truct by 34% (P � .01) (Figure 6E), and no significant

differences were found when cells were cotransfected with
miR-28-5p and the NM23-H1 construct (Supplementary
Figure 10). To confirm this specific interaction, we mu-
tated the miRNA-binding sites, and the luciferase activity
for the PGL3-HOXB3 and PGL3-NM23-H1 constructs was
restored to the same levels as the control. Regarding
CCND1, although we found a significant decrease in lu-
ciferase activity in miR-28-5p–transfected cells, the bind-
ing site mutation did not fully restore the luciferase ac-
tivity to the control level (Supplementary Figure 9). In
ummary, we found that miR-28-5p targeted cyclin D1
nd HoxB3 and that miR-28-3p targeted Nm23-H1; this
ould explain, at least in part, the biological effects ob-
erved.

Discussion
In the present study, we analyzed 2 independent sets

of human CRC samples, for a total of 108 (47 paired with
normal tissue), and found significant down-regulation of
both mature miR-28 forms. Our study is the first to show
down-regulation of miR-28 in cancer. In the literature, only
1 study extensively analyzed miR-28 function in cancer,
namely in myeloproliferative neoplasms. Girardot et al iden-
tified miR-28 overexpression in platelets of BCR-ABL–nega-
tive myeloproliferative neoplasm patients and found MLP to
be the main target, which is important for megakaryocyte
differentiation.15 In normal colon tissue, in situ hybridiza-
tion shows that miR-28-5p and miR-28-3p are predomi-
nantly expressed in epithelial cells (Supplementary Figure
11). In addition, a couple of profiling studies showed miR-28
up-regulation in renal cell carcinoma16 and during glioma
progression.17 It is well established that miRNAs can func-
tion as either tumor suppressors or oncogenes, depending
on the tumor tissue and the cell type.5 Therefore, when
tudying miRNAs, it is essential to take into consideration
he cellular context.5,18 One of the best examples is miR-
25a/b, which has been shown to be down-regulated in
lioblastoma, breast, prostate, ovarian, and non�small cell
ung cancer, but up-regulated in myelodysplastic syndrome
nd acute myeloid leukemia patients with t(2;11)(p21;q23)
nd in urothelial carcinoma.18,19 Noteworthy, miRNA varia-
ion levels between normal tissue and tumors of �50% are
eported frequently, and Volinia et al, who represent the
argest miRNA profiling study reported so far, shows as
ighly significant consistent variations of �20%.20

As down-regulation miR-28-5p and miR-28-3p had

never been described before, we analyzed their roles in 405
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CRC in detail. This study provides evidence that strand-
specific 5p and 3p miRNAs have distinct functions (Fig-
ure 6F). Concordantly with the role of a tumor-suppressor
gene, miR-28-5p suppressed cell proliferation, causing ap-
optosis and G1 arrest in the cell cycle; however, miR-28-3p
had no effect on proliferation in vitro. Therefore, the
overall effect in vivo was, as expected, a significant de-
crease in tumor volume. In contrast, miR-28-5p and miR-
28-3p caused opposite effects in migration and invasion
in vitro. The miR-28 –injected mice developed more me-
tastases than did the control mice, which is in agreement
with the in vitro effect observed for miR-28-3p�overex-

ressing cells. To our knowledge, only 2 studies have
ddressed the distinct roles of 5p and 3p strands, but
one of them have investigated the in vivo effect or the
istinct targeting mechanisms in detail. These studies

howed the different effects of miR-125a-3p and miR- t
25a-5p in lung cancer cells19 and miR-34c-3p and miR-
4c-5p in the cervical tumor cell line SiHa.21

Recently, Yang et al identified the erythroid 2–related factor
2 as a target of miR-28 in breast cancer.22 To understand the

nderlying mechanisms of miR-28, we searched for miRNA
argets (Figure 6F). Cyclin D1, encoded by the CCND1 gene,
s a well-known oncogene that is overexpressed in several
ypes of tumors, including CRC.23 This protein is a key
layer in cell-cycle regulation, in particular in the G1�S
hase transition,24,25 and its inhibition reduces growth and
umorigenicity in human colon cancer cells.26 We found that

miR-28-5p, but not miR-28-3p, targets cyclin D1. This is in
agreement with the biological functions of miR-28-5p, as
only miR-28-5p and not miR-28-3p caused G1 arrest. Al-
though cyclin D1 protein levels were decreased in miR-28-
5p�transfected cells, it remains to be determined whether

Figure 5. miR-28 increases me-
tastasis in vivo. (A, B) HCT116-
pBABE-empty (control) and
HCT116-pBABE-miR-28 (stably
expressing miR-28) were injected
in the vein tail of mice. (A) Thirty-
five days postinjection metasta-
ses were detected in the liver, kid-
ney, lung, and spinal cord. The
percentage of mice with metasta-
ses in these organs was consis-
tently higher in miR-28–express-
ing tumors than in the control. (B)
Microscopy images (�100) show
H&E (HE) and anti�green fluores-
cent protein (GFP) immunohisto-
chemical staining for liver, kidney,
and lung metastatic tumors. (C)
Number of tumors observed
within the liver and kidneys. (D)
Photographs of HCT116-pBABE-
empty (left panel) and HCT116-
pBABE-miR-28 (right panel) mice
show the sites with metastasis
(white arrows) found in �30% of
each group of mice.
his is a consequence of a direct miR::mRNA interaction or 463
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an indirect effect through miR-28-5p targeting of other
mRNAs in pathways where cyclin D1 is involved. The
miR-28-5p::CCND1 binding site predicted in silico showed a
slight luciferase reduction that was not abrogated by the
binding site mutation, showing that at least in this site there
is no direct interaction. However, and although not pre-
dicted by our program’s analysis, we do not exclude the
possibility that other miR-28-5p::CCND1 binding sites might
exist. In addition, we also found HOXB3 to be a target of
miR-28-5p. HOXB3 has been described as being significantly
overexpressed in colon cancer.27 Although the role of HOXB3
n colon cancer has not been explored, Palakurthy et al
escribed a mechanism by which HOXB3 exerts it oncogenic
ole, showing that it is essential for epigenetic silencing of

Figure 6. miR-28-5p targets cy-
clin D1 and HoxB3, and miR-
28-3p targets Nm23-H1. Western
blot analysis shows (A) cyclin D1,
(B) HoxB3, and (C) Nm23-H1 ex-
pression in scrambled, miR-28-
5p, and miR-28-3p transfected
HCT116 cells. Expression levels
were normalized for vinculin or
glyceraldehyde-3-phosphate de-
hydrogenase (GAPDH) protein
levels and were compared with
the scrambled negative control
transfection (�1). (D, E) The pre-
dicted miRNA::mRNA interaction
sites are shown in the top panels.
The bottom panels show lu-
ciferase activity for the predicted
interaction sites (D) PGL3-
HOXB3-WT constructs cotrans-
fected with scrambled negative
control (n � 1) or miR-28-5p and
(E) PGL3-NM23-H1-WT con-
struct cotransfected with scram-
bled negative control (n � 1) or
miR-28-3p. The same experiment
was also performed using con-
structs with a mutated interaction
site—PGL3-HOXB3-Mut and
PGL3-NM23-H1-Mut. Values
represent the mean � standard
deviation of 2 independent exper-
iments performed in 4 replicates
(**P � .01, Student t test). (F) The
proposed mechanism for miR-
28-5p and -3p function in CRC is
shown.
he tumor-suppressor RASSF1A,28 the promoter of which is
hypermethylated in colon tumors.29 These authors also dem-
nstrate in a lung cancer cell line that HOXB3 increases

tumor growth both in vitro and in vivo.29 In addition,
HOXB3 has been demonstrated to regulate cellular prolifer-
ation of hematopoietic stem cells30 and of Rat-1 cell line.31

The interaction between miR-28-5p and HOXB3 occurs
hrough a direct binding as demonstrated by the luciferase
ssay results. Our data demonstrate that, in vivo, miR-28
romotes metastasis and that, in vitro, miR-28-3p induces
igration and invasion. As miR-28 was reduced in the tu-
ors, we looked for an antimetastatic mRNA as a target,
hich would suppress metastasis without affecting tumor
rowth.32 Interestingly, we found that miR-28-3p has the

capacity of regulating NM23-H1, the first metastasis-suppres-

sor gene identified.33–35 Remarkably, it has been previously 521
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reported that this gene is overexpressed in colon carcinoma
cells, especially in the early stages, and that it limits the
invasive potential of human cancer cells without having an
effect on proliferation.36 In addition, NM23-H1 inhibits liver

etastases of colon.37

In the future, prospective studies should be performed
to address clinical correlations and systematic experi-
ments should be conducted to identify all potential tar-
gets that can explain the distinct biological effects.

In conclusion, this is the first study to report down-
regulation of miR-28 in human tumorigenesis. In CRC,
miR-28 suppresses proliferation but activates metastasis;
this is a consequence of the distinct roles of the miR-28
hairpin RNA products, miR-28-5p and miR-28-3p. Such
information has direct consequences for the design of
miRNA gene therapy trials. The manipulation of the ex-
pression of specific miRNAs by using the precursor mol-
ecules can produce additional clinical effects due to the
transcription of 5p and 3p genes with distinct biological
effects.

Supplementary Material

Note: To access the supplementary material ac-
companying this article, visit the online version of Gastro-
enterology at www.gastrojournal.org, and at doi:10.1053/
j.gastro.2011.12.047.
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Supplementary Methods

Microsatellite Analysis
Microsatellite analysis was performed on DNA

extracted from frozen tissue samples by a standard phe-
nol-chloroform procedure. MSI was evaluated with a flu-
orescence-based PCR method using the 5 markers of the
Bethesda panel (ie, D5S346, D17S250, D2S123, BAT25,
and BAT26) plus BAT40. Analysis of PCR products was
done with an automated DNA sequencer. Tumors were
classified as MSS, MSI-L, and MSI-H according to the
guidelines of the International Workshop of Bethesda.1

RNA and Protein Extraction
RNA was isolated using Trizol reagent (Invitro-

gen), according to manufacturer’s instructions. RNA
quantity and purity was assessed with NanoDrop ND-
1000 (Thermo Fisher Scientific, Wilmington, DE). RNA
integrity was analyzed by gel electrophoresis. RNA sam-
ples were denaturated at 70°C for 5 minutes, immedi-
ately placed on ice, and loaded on an agarose gel stained
with ethidium bromide. Intensity of the 18S and 28S
bands was examined.

Total protein extracts were prepared in ice-cold lysis
buffer (0.5% Nonidet P-40, 250 mM sodium chloride, 50
mM HEPES, 5 mM EDTA, and 0.5 mM ethylene glycol-
bis(�-aminoethyl ether)-N,N,N=,N=-tetraacetic acid) con-
aining phosphatase inhibitor cocktail 2 (Sigma-Aldrich,
t Louis, MO), protease inhibitor (Clontech, Mountain
iew, CA), and dithiothreitol (Invitrogen).

Reverse Transcription Quantitative Real-
Time PCR
miRNA expression was evaluated using TaqMan

miRNA assays (Applied Biosystems). Briefly, complemen-
tary DNA was synthesized using RNA as a template, gene-
specific stem-loop Reverse Transcription primer, and the
TaqMan microRNA reverse-transcription kit (Applied Bio-
systems). Quantitative real-time PCR was carried out in a
CFX384 real-time system (Bio-Rad, Hercules, CA) using
complementary DNA, TaqMan probe, and TaqMan univer-
sal PCR master mix (Applied Biosystems). Experiments were
performed in duplicate and normalized to small nuclear
RNA U6, which was used as an internal control. Relative
expression levels were calculated using the comparative cy-
cle threshold method. Stability of the reference gene be-
tween samples was analyzed. PCR efficiency was determined
using the formula: Efficiency � 10�1/slope�1.

Cell Culture, STR DNA Fingerprinting, and
miRNA Mimics Transfection
Human CRC HCT116, RKO, and SW480 cell lines

(purchased from American Type Culture Collection, Ma-
nassas, VA) were grown as suggested by the supplier. Cells

were cultured at 37°C in 5% CO2.
All cell lines used in this study were validated by STR
DNA fingerprinting using the AmpF�STR Identifiler kit,
according to manufacturer instructions (Applied Biosys-
tems). The STR profiles were compared with known ATCC
fingerprints (ATCC.org), to the Cell Line Integrated Molec-
ular Authentication database version 0.1.200808 (http://

ioinformatics.istge.it/clima/),2 and to the MD Anderson
ngerprint database. STR profiles of HCT116, RKO, and
W480 cell lines matched known DNA fingerprints and
ere unique.
Pre-miRNA miRNA precursor molecules for hsa-miR-

8-5p and hsa-miR-28-3p and pre-miR miRNA precursor
crambled negative control (SCR) #2 were purchased
rom Ambion (Austin, TX). Transfections were per-
ormed using 50 nM miRNA specific-strand precursor

olecules or control and Lipofectamine 2000 reagent
Invitrogen), according to manufacturer’s instructions.
NA and proteins were collected at 48 hours after trans-

ection. miRNA transfection efficiencies were evaluated
y reverse transcription quantitative real-time PCR.

3-(4,5-Dmethylthiazol-2-yl)-2,5-
Diphenyltetrazolium Bromide) Assay
We seeded 5 � 103 HCT116 cells transfected with

ither SCR or miR-28-5p in a 96-well plate in 8 replicates
or each condition. At each time point (0, 24, 48, 72, and
6 hours post transfection), the colorimetric reagent was
dded to the cells. After 2-hour incubation at 37°C,
imethylsulfoxide was added. Proliferation was assessed
y measuring absorbance at 580 nm using the Spectra-
ax Plus384 microplate reader (Molecular Devices,

Sunnyvale, CA). Experiment was performed 2 times in-
dependently.

Apoptosis Quantification
Protein levels of the apoptotic molecular marker

PARP1, full-length, and cleavage PARP1 forms were as-
sessed by Western blot analysis using PARP antibody
(9542) from Cell Signaling Technology (Danvers, MA) in
the HCT116 and RKO cell lines transfected with SCR,
miR-28-5p, or miR-28-3p. Relative intensity of bands
observed by Western blotting was obtained using ImageJ
software (http://imagej.nih.gov/ij/). In addition, caspase
3/7, 8, and 9 activity was measured.

Caspase 3/7, 8, and 9 Activity
Caspase activity was measured using Caspase-Glo

3/7 Assay Systems, Caspase-Glo 8 Assay Systems, and
Caspase-Glo 9 Assay Systems (Promega Corporation, Mad-
ison, WI) in HCT116 cells transfected with SCR, miR-28-5p,
or miR-28-3p. The assay was performed 48 hours post
transfection according to manufacturer’s instructions, and
luminescence was measured in a POLARstar OPTIMA mi-

croplate reader (BMG Labtech, Ortenberg, Germany). 693

http://ATCC.org
http://bioinformatics.istge.it/clima/
http://bioinformatics.istge.it/clima/
http://imagej.nih.gov/ij/
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Cell-Cycle Analysis by Flow Cytometry
For fluorescent-activated cell sorting analysis, 6

� 105 HCT116 cells transfected with either SCR, miR-
28-5p, or miR-28-3p were plated onto 6-well plates.
After 48 hours, cells were collected and fixed with 70%
ice-cold ethanol. Cells were stained with a solution
containing 0.05 mg/mL propidium iodide (Sigma-Al-
drich) and 0.1 mg/mL RNase A (Roche, Indianapolis,
IN) in phosphate-buffered saline. Cell-cycle analysis
was performed in a FACSCalibur flow cytometer (Bec-
ton Dickinson, San Jose, CA). Results were analyzed
using ModFit LT software.

In Vitro Cell Migration and Invasion Assays
After 24- or 48-hour incubation (for migration

and invasion assay, respectively) at 37°C with 5% CO2,
cells were fixed with paraformaldehyde (USB Corpora-
tion, Cleveland, OH). Cells on the upper surface of the
chamber (nonmigratory cells) were removed using cotton
swabs, and cells on the bottom surface (migratory cells)
were stained with crystal violet in 20% methanol for 20
minutes. Finally, 30% acetic acid was added to dissolve
the crystal violet and absorbance was measured in a
SpectraMax Plus384 spectrophotometer (Molecular De-
vices) at 590 nm.

Establishment of miR-28-Expressing Cell Line:
Cell Transduction With Retroviral Vector
A PCR fragment of 483 nt that included the

human miR-28 precursor and flanking sequences was
amplified using primers with BamHI and EcoRI endo-
nucleases restriction sites (Supplementary Table 4).
pBABE-puro retroviral plasmid and miR-28-containing
fragment were digested with BamHI and EcoRI en-
zymes and ligated using T4 DNA ligase (New England
Biolabs, Ipswich, MA). Constructs were checked by
direct sequencing. The retroviral plasmid pBABE-
miR28 was transiently transfected together with
pVSV-G vector into GP2-293 cells using Lipofectamine
2000 reagent (Invitrogen). The retroviral plasmid
pBABE-empty was used as a control. Cells were fed
with fresh medium the day after transfection. Viral
supernatant was collected 3 days after transfection,
filtered through 0.45-�m pore, and supplemented with
Sequa-brene (Sigma-Aldrich). HCT116 cells, which are
known to have metastatic potential,3 were infected and
selected using puromycin. Successful establishment of
HCT116-pBABE-miR28 cell line was verified by reverse
transcription quantitative real-time PCR.

Cell Transduction With Lentiviral Vector
As pBABE-puro does not contain green fluores-

cent protein marker, and to facilitate the detection of the
human colon cancer cells in the in vivo studies, HCT116-
pBABE-empty and HCT116-pBABE-miR28 cells were

transduced in parallel with empty pRRL-CMV-PGK-GFP-
WPRE (Tween) lentiviral vector. Briefly, pTween vector
was cotransfected with the packaging vector pCM-
VDR8.74 and the envelope vector pMD.G into 293FT
cells using Lipofectamine 2000 reagent. Forty-eight
hours after transfection, supernatant containing the vi-
rus was collected, filtered through 0.45-�m pore, and
upplemented with Sequa-brene. HCT116-pBABE-empty
nd HCT116-pBABE-miR28 were incubated with the vi-
al soup for 45 minutes and centrifuged at 32°C at 1800
pm, plus another 1 hour and 15 minutes in the incuba-
or at 37°C. Infection efficiency was evaluated by flow
ytometry by detecting the percentage of green fluores-
ent protein–positive cells (�85%).

miRNA Target Prediction
We performed in silico analysis to determine miR-

28-5p- and miR-28-3p-predicted targets using an in-house
Perl script that scans the databases for the algorithms PITA
(http://genie.weizmann.ac.il/pubs/mir07), TargetScan (http://

ww.targetscan.org), miRanda (http://www.microrna.org),
and RNA22 (http://cbcsrv.watson.ibm.com/) for target
identification. miR-28 sequence annotation was obtained
from the miRBase database (http://www.mirbase.org/)
Supplementary Table 4).

Western Blot Analysis for miRNA Targets
Proteins were collected 48 hours after cells were

transfected with SCR, miR-28-5p, or miR-28-3p. Brad-
ford assay was used to measure protein concentration.
Proteins were separated by polyacrylamide gel (Bio-Rad)
electrophoresis and were transferred to 0.2-�m nitrocel-
lulose membranes (Bio-Rad). The following antibodies
were used: anti– cyclin D1 (sc-20044), anti-HoxB3 (sc-
28606), and anti-Nm23-H1 (sc-343) all from Santa Cruz
Biotechnology (Santa Cruz, CA). Proteins were detected by
chemiluminescence. Anti�glyceraldehyde-3-phosphate de-
hydrogenase from Cell Signaling Technology or anti-vincu-
lin (sc-5573) from Santa Cruz Biotechnology were used as
normalizers.

Luciferase Reporter Assays
Fragments of about 200 nt that contained the

miR-28-5p and miR-28-3p putative binding sites were
amplified by PCR using primers containing the XbaI
restriction enzyme site (Supplementary Table 4). PCR
products were purified, digested, and directly cloned into
the Xbal site of the pGL3 control vector (Promega Cor-
poration, Madison, WI) located downstream of the firefly
luciferase reporter gene. The QuikChange II XL site-
directed mutagenesis kit (Agilent Technologies, Santa
Clara, CA) was used to generate mutations in the
miRNA-binding site (Supplementary Table 4).

HCT116 cells were seeded (1 � 105 cells/well) in 24-
well plates. After 24 hours, cells were cotransfected with
50 nM SCR, miR-28-5p, or miR-28-3p and 0.4 �g pGL3-

putative binding site plasmids or pGL3-mutated putative 749

http://genie.weizmann.ac.il/pubs/mir07
http://www.targetscan.org
http://www.targetscan.org
http://www.microrna.org
http://cbcsrv.watson.ibm.com/
http://www.mirbase.org/
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binding site plasmids, together with Renilla luciferase
construct, which was used as a normalization reference.
Transfections were performed in OPTI-MEM I (Invitro-
gen) using Lipofectamine 2000 reagent. Cells were lysed
48 hours after transfection, and luciferase activity was
measured using a dual-luciferase reporter assay system
(Promega Corporation) in the veritas microplate lumi-
nometer (Turner Biosystems). Two independent experi-
ments were performed with 4 replicates each. Normalized
relative luciferase activity was calculated by the formula:
[firefly luciferase]/[Renilla luciferase] activity. All con-
structs were confirmed by direct sequencing using an ABI

3730xl DNA analyzer sequencer (Applied Biosystems).
Supplementary References
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Supplementary Figure 1. Calibration curve determination of Taqman
ilutions of complementary DNA were amplified by quantitative real-tim
assays for miR-28-5p, miR-28-3p, and small nuclear RNA U6. Serial 10-fold
Supplementary Figure 2. Evaluation of the reference gene small
nuclear RNA U6 (snRNA U6) variations between samples from normal
colon and tumor tissue. There are no differences in small nuclear RNA
U6 expression between the 2 groups (P � .41, Mann–Whitney–Wilc-

oxon test). 861
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Supplementary Figure 3. Twenty-four normal specimens from the first set of patients were paired with colon cancer tissues from the same patient.
ll values of miRNA expression levels were normalized by small nuclear RNA U6. Significant differences were ***P � .005 using paired t test. 881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
Supplementary Figure 4. Endogenous levels of miR-28-5p and miR-28-3p in 10 colon cancer cell lines. Small nuclear RNA U6 was used as a

normalizer. 917
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Supplementary Figure 5. miR-28-5p and miR-28-3p levels were
measured by quantitative real-time PCR after transient transfection of
HCT116 cells with miR-28-5p and miR-28-3p precursors. Values were
normalized to small nuclear RNA U6 and are representative of 2 inde-

pendent experiments. Values shown are relative to negative control.

iments. Values shown are relative to the control pBABE-empty (n � 1).
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Supplementary Figure 6. 3-(4,5-dmethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide proliferation assay in (A) HCT116 and (B) RKO cell lines.

miR-28-5p, but not miR-28-3p, inhibited cell growth compared with SCR. Values represent the mean � standard deviation of 8 replicates. (C)

Caspase activity was measured in the HCT116 cell line 48 hours after transf
Supplementary Figure 7. miR-28-5p and miR-28-3p levels were
measured by quantitative real-time PCR after generating the stable
clone pBabe-miR-28 in the HCT116 cell line. Values were normalized to
small nuclear RNA U6 and are representative of 2 independent exper-
ection with SCR (n � 1), miR-28-5p, or miR-28-3p. 973



s

nificant (Student t test).

11.e7 ALMEIDA ET AL GASTROENTEROLOGY Vol. xx, No. x

974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029

974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
Supplementary Figure 8. Effect of mir-28-5p and miR-28-3p in mi-
gration and invasion in vitro in SW480 cell line. Absorbance was mea-
sured for cells on the bottom of noncoated and Matrigel-coated Trans-
well chambers at 24 hours (for migration) and 48 hours (for invasion)
after SW480 cells expressing miR-28-5p or miR-28-3p were plated.
Results are shown relative to SCR. A representative experiment is
shown. Mean of triplicates � standard deviation is shown (*P � .05;

**P � .01, Student t test).
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Supplementary Figure 9. Luciferase activity of HCT116 cells
cotransfected with scrambled negative control (n � 1) or miR-28-5p
and PGL3-CCND1-WT. Experiment was also performed with a con-

truct in which the binding site was mutated (***P � .005, Student t test).
Supplementary Figure 10. Luciferase activity of HCT116 cells
cotransfected with scrambled negative control (n � 1) or miR-28-5p
and PGL3-NM23-H1-WT. Experiment was also performed with a con-
struct in which the binding site was mutated. NS, not statistically sig-
1029
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Supplementary Figure 11. In situ hybridization analysis for miR-28-5p and miR-28-3p in normal colon tissue. Frozen tissue sections were
igested with proteinase K and loaded onto Ventan Discovery Ultra. The tissue slides were incubated with double-DIG labeled miRCURY LNA
etection probe and the digoxigenin was detected with a polyclonal anti-DIG antibody and UltraMap Blue anti-Ms Detection Kit. H&E staining was

erformed. Microscopy images were obtained with a magnification of 100�
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Supplementary Table 1. Efficiency of Taqman Assay for
miR-28-5p (Assay Number
000411), miR-28-3p (Assay
Number 002446), and snRNA U6
(Assay Number 001973) Using the
Ct Slope Method

Taqman assay R2 Slope Efficiencya

miR-28-5p 0.9979 �3.5601 0.91
miR-28-3p 0.9997 �3.2352 1.04
snRNA U6 0.9956 �3.2498 1.03

aPCR efficiency was determined using the formula: Efficiency �

0�1/slope �1.
.

Supplementary Table 2. miRNA-28-5p and miR-25-3p
Expression (Using �Ct Method) in
Normal Colon and Colorectal
Cancer Samples for 2 Independent
Sets

Mean SEM

miR-28-5p
First set of samples

Normal 0.058 0.003
Tumor 0.044 0.003
MSS 0.043 0.004
MSI 0.046 0.004

Second set of samples
Normal 0.238 0.025
Tumor 0.151 0.019

miR-28-3p
First set of samples

Normal 0.029 0.001
Tumor 0.022 0.002
MSS 0.022 0.002
MSI 0.022 0.002

Second set of samples
Normal 0.319 0.028
Tumor 0.161 0.017

NOTE. Values were normalized to small nuclear RNA U6.

SEM, standard error of mean. 1085
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Supplementary Table 3. miR-28-5p Expression in Colorectal Cancer Compared With Normal Colon in 2 Independent Sets of
Samplesa

Gene Type
Reaction
efficiency Samples Expression Standard error 95% CI

P value
(H1) Result

iR-28-5p Target 0.9094 First set (paired) 0.620 0.389�0.971 0.258�2.380 .000 Down
Second set

(paired)
0.641 0.320�1.254 0.173�2.544 .003 Down

First set (all) 0.711 0.441�1.209 0.211�2.282 .001 Down
8 Reference 1.0309 1

OTE. Small nuclear RNA U6 was used as a reference gene.
I, confidence interval.
aUsing Pfaffl Method, REST 2009 Software (Qiagen, V2.0.13, http://www.qiagen.com/Products/REST2009Software.aspx?r�8042#Tabs�t1).
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Supplementary Table 4. Sequences of Mature Human miR-28-5p and miR-28-3p According to miRBase, Primers Used to
Amplify miR-28, and Primers Used to Generate PGL3 Constructs for Luciferase Assays and to
Generate Deletions in the miRNA-Binding Site

Sequences

ature miRNA
hsa-miR-28-5p AAGGAGCUCACAGUCUAUUGAG
hsa-miR-28-3p CACUAGAUUGUGAGCUCCUGGA

rimers
mir-28-Fw-BamHI CGGATCCAGGCCCTTCAAGGACTTTCT
miR-28-Rv-EcoRI CGAATTCACAGAGCTCCTGCTGTGTCA

Primer for PGL3 construct
CCND1_XbaI_Fw CGTCTAGAGTCCCACTCCTACGATACGC
CCND1_XbaI_Rv CGTCTAGACTTGCCTCAAAGTCCTGCTT
HOXB3_XbaI_Fw CGTCTAGAAAGGACATTGTGTTTCCTGTCA
HOXB3_XbaI_Rv CGTCTAGACAAAGAAAGTTCCAAGAGGGAAT
NM23_XbaI_Fw CGTCTAGAGCAGACCACATTGCTTTTCA
NM23_XbaI_Rv CGTCTAGAAACCAACTCAATGAATCCTATGC

Primers for mutagenesis
CCND1_Mutagenesis_Fw GGTTCAACCCACAGCTACTTGCATATTCTAAAACCATTCCAT
CCND1_Mutagenesis_Rv ATGGAATGGTTTTAGAATATGCAAGTAGCTGTGGGTTGAACC
HOXB3_Mutagenesis_Fw GTTCTAAAAGGCATGAACTCATCGTCACTGTATAGTCCTG
HOXB3_Mutagenesis_Rv CAGGACTATACAGTGACGATGAGTTCATGCCTTTTAGAAC
NM23_Mutagenesis_Fw AGAGGACCAGGCTGTAGGATATTTACAGGAACTTCATC
NM23_Mutagenesis_Rv GATGAAGTTCCTGTAAATATCCTACAGCCTGGTCCTCT
NOTE. Restriction sites for endonucleases are underlined. 1141
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