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One  of  the  major  scientific  challenges  that  tissue  engineering  and  regenerative  medicine  (TERM)  faces
to move  from  benchtop  to  bedside  regards  biomaterials  development,  despite  the  latest  advances  in
polymer  processing  technologies.

A variety  of scaffolds  processing  techniques  have  been  developed  and  include  solvent  casting  and
particles  leaching,  compression  molding  and  particle  leaching,  thermally  induced  phase  separation,  rapid
prototyping,  among  others.  Supercritical  fluids  appear  as  an  interesting  alternative  to the  conventional
methods  for processing  biopolymers  as they  do not  require  the use  of  large  amounts  of  organic  solvents
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and  the  processes  can  be conducted  at mild  temperatures.  However,  this  processing  technique  has  only
recently  started  to  receive  more  attention  from  researchers.  Different  processing  methods  based  on  the
use of  supercritical  carbon  dioxide  have  been  proposed  for the  creation  of novel  architectures  based  on
natural  and  synthetic  polymers  and  these  will  be  unleashed  in  this  paper.

© 2013 Elsevier B.V. All rights reserved.

upercritical fluid drying

. Scaffolds for tissue engineering and regenerative
edicine

The concept of tissue engineering and regenerative medicine
TERM) has been proposed in the early 90s by Langer and Vacanti
1]. TERM is defined as an interdisciplinary field of research to
rovide solutions for tissue regeneration and repair, based on
he use of scaffolds, cells, and bioactive molecules, and combi-
ations of two or more of these elements. The scaffold should
ot act merely as a support for cell growth but it should be
ble to deliver active compounds and to incorporate cell signaling
olecules that promote cell attachment, growth, and proliferation,

nhancing the regeneration process. Nonetheless, 20 years later
Please cite this article in press as: A.R.C. Duarte, et al., Unleashing the potent
and  regenerative medicine, J. Supercrit. Fluids (2013), http://dx.doi.org/10

cientists are still facing major challenges to obtain such multifunc-
ional constructs and to address specific critical issues, such as the
ascularization and innervation. Scaffolds development for tissue
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E-mail address: aduarte@dep.uminho.pt (A.R.C. Duarte).
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engineering and regenerative medicine should comply with a series
of different requirements which are summarized in Table 1. Ideal
scaffolds should be biocompatible, biodegradable and promote cel-
lular interactions and tissue development and exhibit mechanical
and physical properties compatible with the requirements of the
tissue to be regenerated. The preparation of 3D matrices must
result, hereafter in structures with adequate porosity, interconnec-
tivity, pore size distribution and mechanical properties which make
then suitable for the tissue to be engineered.

Advances in the state of the art in the field of biomaterials
involve the proposition of both new materials and the design of new
processing technologies. In recent years, biodegradable polymers
made from renewable resources constitute an important material
innovation as they decrease dependence on fossil fuel resources
and reduce the amount of waste material. Natural origin poly-
mers have been extensively used for scaffolds preparation, mostly
due to their versatility and biodegradability [2,3]. Natural origin
biomaterials can be divided into two  large groups, proteins and
polysaccharides. Different review papers give detailed insights on
ial of supercritical fluids for polymer processing in tissue engineering
.1016/j.supflu.2013.01.004

the characteristics of particular proteins and polysaccharides used
for tissue engineering and regenerative medicine [4–6]. Proteins
can be defined, in general terms as polymer structures composed by
distinct amino-acids linked by peptide bonds. Twenty amino-acids

https://core.ac.uk/display/55624047?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
dx.doi.org/10.1016/j.supflu.2013.01.004
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Table  1
Summary of the ideal properties of a 3D scaffold for tissue engineering and regenerative medicine.

Properties

Biocompatibility Elicit an adequate response in the host patient
Degradability Degradation rate compatible with the growth rate of neotissue
Mechanical properties Sufficient mechanical strength to withstand the biological forces and maintain cell physical integrity
Porosity and pore size Open pore, interconnected and adequate pore size for cell growth and vascularization
Sterilization Materials should be easily sterilized without compromising their structure and bioactivity
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Surface properties Adequate surface properties, bo

onstitute the building blocks of these polymers. Their molecu-
ar structure can, hence, mimic  the extracellular matrix and direct
rowth, migration and orientation of cells during the regeneration
rocesses. Among these materials, collagen, gelatin, silk fibroin,
lastin and fibrin are the most widely reported [7].  On the other
and, polysaccharides are polymers composed of one or two differ-
nt sugar monomers (monosaccharides) linked by glycosidic bonds.
ifferences in monosaccharides, molecular weight and chain con-

ormation confer the intrinsic characteristics of the different
olymers. Polysaccharides have demonstrated good hemocompa-
ibility properties. Chitin, chitosan, alginate, carrageenan, starch,
yaluronic acid and chondroitin sulfate are examples of well
ocumented polysaccharides in TERM applications [8–11]. These
olymers, both proteins and polysaccharides exhibit interesting
roperties that can make them highly suitable for a number of
iomedical applications. The disadvantages of natural polymers
ome from the variability from batch to batch production, limited
rocessability and poor mechanical properties. Nonetheless their
dvantages surpass the identified drawbacks. Biopolymers have
equences that resemble the extracellular matrix, facilitating cell
rowth and attachment and promoting cellular interaction. Fur-
hermore, the biocompatibility, degradation rate, non-cytotoxicity,
vailability and low cost make them an interesting alternative to
ynthetic polymers [4,5].

Scaffolds processing has long been studied, and a variety
f processing techniques have been reported in the literature.
onventionally, 3D structures or particulate systems can be
btained by processes such as solvent casting–particle leaching,
reeze–drying–particle leaching, thermally induced phase separa-
ion, compression molding, injection molding, extrusion, foaming,
et spinning and electrospinning, as well as others [12]. The advan-

ages of these processes have, however, to be weighed against
he fact that these normally involve the use of large amounts
f organic solvents, and further purification and drying steps are
ften needed. Additionally, some of these techniques are per-
ormed at high temperatures, which may  degrade thermo-labile
omponents. In order to overcome these drawbacks and to com-
ly with the principles of sustainable chemistry, there is a need
o develop new polymer processing technologies. Following the
reen chemistry principles, the use of natural renewable raw mate-
ials coupled with environmentally friendly technologies has been
he focus of the research carried out and the different methodolo-
ies proposed for biomaterials development will be explored in
his paper. Supercritical fluid technology is considered an alter-
ative green technology as it does not promote the emission of
reenhouse gases and conventionally uses substances that can be
ecycled and reused. Carbon dioxide is the most commonly used
upercritical fluid as it has low critical parameters (Tc 304 K and Pc

.4 MPa), it is non-toxic, non-flammable and ready available, and
t has been considered as a GRAS (Generally Regarded as Safe) sol-
ent. There are a number of different techniques that may  take
Please cite this article in press as: A.R.C. Duarte, et al., Unleashing the potent
and  regenerative medicine, J. Supercrit. Fluids (2013), http://dx.doi.org/10

dvantage of supercritical fluids. In this paper we review some of
he techniques which have been explored for the development of
iomaterials, specially focused on tissue engineering applications
13–18].
mically and topographically, in order to promote cell adhesion and proliferation

2. Supercritical fluid foaming

The gas foaming technique has been explored by several authors
for the preparation of polymeric porous structures mainly from
poly-dl-lactic acid (PDLLA), polyglycolic acid (PGA), and blends of
these two polymers (PLGA), as well as from poly-�-caprolactone
(PCL), especially due to their thermal properties [19–21].  In this
technique, the polymer is exposed to carbon dioxide at the satura-
tion pressure and temperature, which plasticizes the polymer and
reduces the apparent glass transition temperature or melting point.
On venting the CO2 by depressurization, thermodynamic instability
causes supersaturation of the carbon dioxide dissolved in the poly-
mer  matrix and hence, nucleation of cells occurs. The success of gas
foaming technique relies on the extent of carbon dioxide solubility
in the polymer and the ability, hereafter to decrease the glass tran-
sition temperature of the material. The reduction of glass transition
temperature is a thermodynamic effect due to intermolecular inter-
actions between carbon dioxide and the polymer. For these reasons
the application of gas foaming technique is limited to amorphous
polymers or semi-crystalline polymers with low Tg.

After the pioneer work of Goel and Beckam who  demonstrated
the feasibility of preparation of microcellular foams using carbon
dioxide as foaming agent [22,23] and the pivotal work of Mooney
[24], who  described for the first time the preparation of porous scaf-
folds for tissue engineering using this technology, several reports
have been described in the literature. The attractive processing
conditions (pressure and temperature) are particularly suited for
the preparation of controlled delivery systems with thermolabile
molecules, as is the case of proteins or growth factors [25–33].

PDLLA scaffolds loaded with nanoparticles containing platelet
lysates (PL NP’s) were prepared using this technology [31]. PL
are a high concentration of platelets in a small volume of plasma
that, when activated, release several growth factors that can
act toward the healing process and the formation of a mesh of
micro/nanofibers. PL are prepared from the patient’s own blood,
thus eliminating immunogenic and disease transmission concerns
due to its autologous origin. PL can be used as either a growth
factor-releasing agent alone or a loaded biopolymer scaffold for
simultaneous cell delivery [34].

Fig. 1 presents the release profile of proteins from the nanopar-
ticles alone and from the nanoparticles incorporated in the scaffold.
The release profile experiments were carried out in phosphate
buffer solution with a pH of 7.4, at 37 ◦C and 60 rpm. Protein release
profile was  quantified by micro-BCA analysis which demonstrated
that a controlled release of the proteins from the 3D construct was
successfully achieved.

Additionally, as can be observed from Fig. 1, the release rate can
be controlled by the incorporation of the NP’s within the 3D matrix,
which avoids the initial burst release observed for the NP’s alone.
In vitro biological experiments demonstrate that protein activity
was not compromised and it could induce the osteogenic differen-
ial of supercritical fluids for polymer processing in tissue engineering
.1016/j.supflu.2013.01.004

tiation of human adipose stem cells [31].
One of the ideas of tissue engineering is to couple materi-

als and cells from the patient which will be implanted on the
defect site for tissue regeneration. This approach involves the

dx.doi.org/10.1016/j.supflu.2013.01.004
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Fig. 1. Protein release profile from PDDLA scaffolds loaded with PL NP’s.

ollection and expansion of a large number of cells. Cells are cul-
ured in 2D surfaces and recovered by mechanical or enzymatic

ethods that may  compromise their functionality. The develop-
ent of appropriate cell culture substrates which can reduce the

arge volume/surface ratio of the 2D culture plates and the existing
ethods for cell recovery was the rational for the development of

 3D themosensitive matrix [35]. PDLLA structures impregnated
ith a thermosensitive polymer, poly(N-isopropylacrylamide),

NIPAAm, that was per se polymerized under supercritical con-
itions were prepared by supercritical fluid foaming. The lower
ritical solution temperature (LCST) of this PNIPAAm was deter-
ined by dynamic light scattering and it was found to be ∼32 ◦C,
hich is close to biological temperature and it is one of the features

hat makes this polymer interesting for biomedical applications.
he hydrophobic nature of the materials at 37 ◦C allows cell attach-
ent and growth (Fig. 2a) while when lowering the temperature

nder 32 ◦C the surfaces become hydrophilic and cells can be
etached from the surface (Fig. 2b). Fig. 3 is a scanning electron
icrograph of the cells attached to the thermosensitive PDLLA con-

tructs. Our studies, performed with a fibroblast cell line (L929)
emonstrate that detached cells maintain their viability and could
e further used in TERM applications.

. Supercritical fluid foaming of hydrogels
Please cite this article in press as: A.R.C. Duarte, et al., Unleashing the potent
and  regenerative medicine, J. Supercrit. Fluids (2013), http://dx.doi.org/10

The supercritical foaming technique had until recently been
estricted to amorphous or semi-crystalline polymers, with low
lass transition temperatures. Foaming of hydrogels involves the
issolution of carbon dioxide in the water phase allowing a simi-

ig. 2. Schematic representation of the thermosensitive mechanism for (a) temperature
urface  is hydrophilic and cells detach.
Fig. 3. SEM image of PDLLA construct seeded with L929 cells after 7 days culture.

lar process to conventional gas foaming. Tsioptsias and coworkers
critically reviewed and discussed the mechanism of hydrogel foam-
ing [36]. Hydrophilic crystalline polymers can be foamed in a dense
carbon dioxide atmosphere in the presence of water. This tech-
nology has been described for the preparation of different porous
scaffolds. Annabi and coworkers reviewed and discussed differ-
ent emerging technologies designed for the preparation of porous
hydrogels with controlled microarchitecture [37]. Table 2 presents
the polymeric materials prepared, cross-linking agents, operating
conditions and reported applications.

The work developed on the production of hydrogel foaming
revealed a new field of application in which supercritical fluid
technology demonstrates once more its high versatility. The pro-
duction of homogenous matrices is dependent on many operating
conditions and thus it is not easy to control the final morphol-
ogy of the structures. Ji et al. have suggested the addition of
a surfactant to the process in order to stabilize the structure
which is formed upon depressurization of the system [42]. In their
work they explore the feasibility of using acacia gum, a naturally
derived surfactant. The results presented show that the addi-
tion of the surfactant decreased the interfacial tension between
CO2–water, which results in a significant increase in the hydrogel
ial of supercritical fluids for polymer processing in tissue engineering
.1016/j.supflu.2013.01.004

porosity.
The possibility to carry out at the same time chemical cross-

linking of the structures presents several advantages, in particular
the fact that it exhibits faster reaction rates than the processes

s < LCST, the surface is hydrophobic and cells attach and (b) temperatures > LCST,

dx.doi.org/10.1016/j.supflu.2013.01.004
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ig. 4. (a) Collagen scaffold freeze dried; (b) collagen cross-linked with genipin (a
ressure carbon dioxide (overnight).

arried out at atmospheric conditions. One of the examples is
he cross-linking reaction of marine-origin collagen with genipin.
he success of the cross-linking reaction is easily observed by the
haracteristic blue color of cross-linked genipin. Fig. 4 illustrates
he differences between the reaction under atmospheric conditions
nd under 5.5 MPa.

After 7 days of cross-linking reaction under atmospheric con-
itions, the collagen scaffold does not present the same intensity

n blue color as the scaffold cross-linked overnight under dense
arbon dioxide atmosphere, which is a clear indication of the
dvantages of high pressure processes. Furthermore, it is possi-
le to promote a double foaming stage of the hydrogel, upon
epressurization of the system, which can enhance the morpho-

ogical properties of the construct to be used in TERM applications,
articularly increasing the porosity and interconnectivity of the
amples [43].

Although there are some concerns regarding the cytotoxicity of
ifferent crosslinking agents available, in particular genipin, the

n vitro biological tests performed to the scaffolds produced do
ot indicate any toxic effects on the chondrocytes seeded on the
aterials [43]. The results obtained suggest that marine origin col-

agen crosslinked with genipin is able to sustain cell adhesion and
roliferation, therefore these matrices could be used in cartilage
issue regeneration strategies.

A different strategy for the development of porous hydro-
el scaffolds was described by Partap and coworkers [44]. In
his approach a reactive emulsion templating in which carbon
ioxide acts both as reagent and template takes place. 3D calcium
lginate hydrogels were produced by combining an emulsion tem-
lating technique and a gelation reaction. The materials prepared
ave interesting properties which make them suitable for poten-
ial application in soft tissue engineering regeneration. A similar
pproach has been described for the preparation of porous bio-
aterials from dextran and gelatin, two other natural polymers

45,46]. These works report the production of a highly porous and
nterconnected structure by a supercritical CO2-in-water emulsion
emplating method. Although this method has the great advantage
Please cite this article in press as: A.R.C. Duarte, et al., Unleashing the potent
and  regenerative medicine, J. Supercrit. Fluids (2013), http://dx.doi.org/10

f avoiding the use of organic solvents both in the processing and
urifications steps, it does not meet the requirements needed in
erms of final morphology of the structures for some cell types
46].

able 2
verview of hydrogels processed by supercritical fluid foaming.

Polymer Cross-linking agent Operating condit

Pressure (MPa) 

�-Elastin Glutaraldeyde 3.0–15.0 

Tropoelastin/�-elastin Glutaraldeyde 6.0 

�-Elastin Hexamethylene diisocyanate 6.0 

Chitosan Glutaraldeyde genipin 6.0–16.0 

Chitosan/gelatin Glutaraldeyde 5.5–11.9 

Chitosan + acacia gum Glutaraldeyde 6.0–15.0 
Fig. 5. Micro-CT 2D image and 3D reconstruction of a PDLLA scaffold loaded with
ulvan beads.

4. Subcritical sintering

Subcritical fluid sintering is a process that takes place at con-
ditions close to the supercritical region of the solvent used. The
process relies on the slight plasticization of the polymeric par-
ticles which are fused together, creating a 3D environment. Few
papers report the use of this technique for the preparation of scaf-
folds for TERM applications, despite this technique uses lower
operating conditions than supercritical fluid foaming, therefore
being interesting for the processing of thermosensitive molecules
such as proteins, growth factors or even cells. The possibility to
encapsulate cells in hydrogel beads and design a structure which
is able to support their growth and proliferation is an interest-
ing approach for the preparation of 3D systems for regenerative
medicine [47,48].  This was  the driving force for the development
of PDLLA matrices loaded with a natural polymer extracted from
ial of supercritical fluids for polymer processing in tissue engineering
.1016/j.supflu.2013.01.004

green algae, ulvan [49,50]. As an example, Fig. 5 represents a
2D image of a PDLLA scaffold sintered in the presence of ulvan
beads obtained by micro-computed tomography together with a
3D reconstruction of the structure [51].

ions Reported applications Reference

Temperature (K)

310 Tissue engineering [38]
310 Tissue engineering [39]
298 Tissue engineering [40]
277–310 Skin/cartilage regeneration [41]
297–323 – [36]
277 Tissue engineering [42]

dx.doi.org/10.1016/j.supflu.2013.01.004
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Fig. 6. SPLA-based matrices prepared

. Supercritical assisted phase inversion

Supercritical fluid phase inversion process offers an attractive
nd alternative process to obtain solvent free structures. This tech-
ique involves casting of a polymer solution onto an inert support

ollowed by immersion of the support with the cast film into a bath
lled with a non-solvent for the polymer. The contact between
he solvent and the non-solvent causes the solution to be phase-
eparated. When the non-solvent used is carbon dioxide a solid dry
roduct is obtained, and there is no need for further processing
teps. Several studies report different polymers processed using
his technique including PLLA [52], poly(methyl methacrylate) [53],
olysulfone/polycaprolactone [54], poly(vinylidene fluoride) [55],
nd poly(vinyl-alcohol) [56]. This technology has also given proofs
f the successful preparation of natural-based porous materials.
his is a versatile method which allows the production of porous 3D
atrices and at the same time prepare impregnated 3D constructs
ith bioactive compounds, which can be inorganic or pharmaceu-

ical agents [57–59].  Fig. 6 shows scanning electron microscope
mages of natural-based polymers prepared using this technique.

 commercial blend of starch-poly lactic acid (SPLA) alone or com-
ined with bioglass® after 7 days of immersion in simulated body
uid or dexamethasone is shown.

The morphology of the structures prepared with and without
ctive agents is characterized by a rough surface with micro- and
acro-porosity which may  enhance cell adhesion and prolifera-

ion. The presence of active agents is particularly important in order
o promote an effective bone tissue regeneration. While bioac-
ive glass may  induce the mineralization of the tissues and the
ormation of a hydroxyapatite layer which mimics the bone cal-
ium phosphates, dexamethasone may  be used as an inducer of
steogenic differentiation of stem cells. The presence of dexameth-
sone, which was used as a model drug, further demonstrates the
ossibility to prepare a controlled drug delivery system able to
ustain drug release up to 21 days.

The discussion between the advantages and benefits of natural
ver synthetic polymers has long passionate scientists, particu-
Please cite this article in press as: A.R.C. Duarte, et al., Unleashing the potent
and  regenerative medicine, J. Supercrit. Fluids (2013), http://dx.doi.org/10

arly in applications where synthetic polymers have long been
stablished. A straightforward comparison between these poly-
ers is very difficult to demonstrate. Several parameters affect the

iological performance of the materials and the in vitro behavior.

Fig. 7. Fibroblast like cells (cell line L929) cultured on SPL
percritical assisted phase inversion.

Morphological, topological, chemical and mechanical properties
will surely have an influence on the cellular response to a particular
material and they cannot be dissociated, most of the times. Natural
polymers, as already mentioned present intrinsic properties which
make them very attractive for biomedical applications. The biologi-
cal performance of scaffolds based on poly(l-lactic acid) (PLLA) and
the blend SPLA processed by the same methodology was assessed
using a fibroblast cell line. In this example we show that the same
processing methodology can be applied for the preparation of a
synthetic and a natural-based scaffold. After seven days of culture
the SPLA scaffold presented a good interaction with cells in which
a layer of fibroblasts could be detected. In this matrix it was also
noticeable that cells started to migrate into the pores of the scaffold
(Fig. 7).

The evaluation of the cell viability and DNA  quantification
assay allows the conclusion that while in early contact times
SPLA appears to induce better cellular response than PLLA, these
differences are attenuated for longer periods of time.

The possibility to prepare polymeric blends using this technique
was evaluated in another work [60]. The preparation of polymeric
blends of chitosan and PLLA has long been a challenging process
due to the fact that chitosan has limited solubility in most organic
solvents and it undergoes degradation before melting. At the same
time the solvents able to dissolve PLLA act as an anti-solvent for
chitosan solutions leading to polymer precipitation. For these rea-
sons it is difficult to encounter a suitable process for the preparation
of polymeric blends of these two materials. We  have successfully
achieved this by the supercritical assisted phase inversion method.
Fig. 8 represents a photo and SEM images of the blends prepared.
The homogeneity of the structures prepared is confirmed by the
chemical mapping of the scaffolds obtained by FTIR analysis.

This methodology was  also proposed for the development of
an autologous based scaffold from platelet lysates. Novel PL-based
scaffolds were produced by supercritical fluid technology and dif-
ferent structures were prepared using genipin as a cross-linking
agent. The morphological characteristics of the scaffolds produced,
such as porosity, interconnectivity and mean pores size were
ial of supercritical fluids for polymer processing in tissue engineering
.1016/j.supflu.2013.01.004

assessed by scanning electron microscopy and micro-computed
tomography. Fig. 9 presents the summary of the in vitro cell
seeding studies performed using a chondrocyte cell line (ATDC5)
for the different culture periods (1, 3, 7 and 14 days) [30].

A (left) and PLLA (right) scaffolds after seven days.

dx.doi.org/10.1016/j.supflu.2013.01.004
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Fig. 8. Images of the different chitosan:PLLA scaffolds prepared (left); Chemical mapping of the scaffolds obtained by FTIR analysis: green mapping depicts the chitosan
characteristic band at 1650 cm−1 and red mapping is assigned to PLLA characteristic band at 1750 cm−1 (right). (For interpretation of the references to color in this figure
legend, the reader is referred to the web  version of the article.)
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formaldehyde organic and carbon aerogels [61]. Rinki discusses
in their work [62] a comparison between freeze-dried chitosan
scaffolds and scaffolds dried by supercritical carbon dioxide. They
Fig. 9. Cell viability and proliferation on PL scaffolds crosslinked 

The morphological analysis of the systems indicate that these
ay  be suitable for tissue engineering purposes and are able to

ustain growth factors release in vitro up to 14 days. The 3D
onstructs prepared show a good biological response, which was
emonstrated in the viability and proliferation assays performed
sing the standard MTS  protocol and DNA quantification by
icoGreen method. These structures are particularly appealing for
issue engineering applications since supercritical assisted phase
nversion explored the dual role of PL both as structural matrix and
s growth factor-releasing system to promote cell proliferation and
ifferentiation.

. Supercritical fluid drying

The drying process is a crucial process in the preparation of
D architectures and particles. Solvent removal by commonly used
rying processes involves phase transitions which can compromise
he integrity of the structures. It is important to notice that super-
ritical fluid drying does not involve any phase transition as the
rocess occurs in the supercritical region where there are no phase
Please cite this article in press as: A.R.C. Duarte, et al., Unleashing the potent
and  regenerative medicine, J. Supercrit. Fluids (2013), http://dx.doi.org/10

oundaries, therefore this may  present several advantages over the
onventional methods (Fig. 10).

The main drawback of this process is that CO2-phylic solvents
ave to be used and the matrices prepared from aqueous solutions
.25 wt%  genipin. MTS assay (left) and DNA quantification (right).

need to go through an additional solvent-exchange step. The most
commonly used solvents in this procedure are acetone, methanol
or ethanol. It has been reported, for example, that the use of ethanol
leads to higher shrinkages than acetone in the case of resorcinol-
ial of supercritical fluids for polymer processing in tissue engineering
.1016/j.supflu.2013.01.004

Fig. 10. Phase transitions involved in different drying processes.
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Table  3
Strengths and weaknesses of the different supercritical fluid technologies used for processing 3D architectures for TERM applications.

Technology Strengths Weaknesses

Foaming Very good control over final morphology of the materials Limited to amorphous or semi-crystalline polymers with low
Tg

Does not require the use of organic solvents Not suitable for natural polymers processing
Incorporation of active agents in a single step operation
Proteins can be processed without significant loss of activity

Foaming of hydrogels Possibility to process natural-based materials Limited control over the final morphology of the scaffolds
Double foaming technique, which enhances morphological
properties of the scaffolds
Possibility to crosslink the structure in a one step process
Subcritical conditions can be used

Sintering Does not require the use of organic solvents Limited to amorphous or semi-crystalline polymers with low
Tg

Low pressure operation (P < Pc) Not suitable for natural polymers processing
Low  time of operation

Phase inversion Possibility to process natural-based materials Use of organic solvent
Formation of polymeric blends The use of aqueous solutions is possible but requires the use of

ethanol as co-solvent
Formation of hybrid materials, with an organic and inorganic
phase
Incorporation of pharmaceutical drugs
Possibility to cross-link structures
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Drying Prevents shrinking of the structures when compa
drying techniques
Impregnation of active compounds during drying

onclude that the SCF dried scaffolds presented more suitable
roperties for tissue engineering, such as higher surface area,
ore size and bioactive behavior unlike the freeze dried scaffolds.
upercritical fluid drying has been applied to produce different
hitosan scaffolds with or without the addition of a second com-
onent [63,64]. Together with chitin these have been the natural
olymers most widely studied for the production of 3D architec-
ures [65]. Chitin presents, however, major challenges due to its
imited solubility [66,67]. In order to overcome the solubility lim-
tations of chitin in common organic solvents, the possibility of
sing ionic liquids has been recently explored [65]. In our work
he application of green chemistry principles, coupling ionic liq-
ids as solvents for natural polymers together with supercritical
uids has demonstrated the possibility to develop ultralight highly
orous chitin structures [68]. Chitin was dissolved in 1-butyl-3-

midazolium acetate at high temperature. The solution gelified at
oom temperature, and the ionic liquid is exchanged by ethanol.
fterwards, the solvent is removed by supercritical fluid drying.
he preparation of chitin matrices following this procedure has
hown the prevention of the shrinkage of the matrix of chitin based
caffolds and resulted in a highly porous interconnected structure.
sing the same approach particles were produced. Materials in
Please cite this article in press as: A.R.C. Duarte, et al., Unleashing the potent
and  regenerative medicine, J. Supercrit. Fluids (2013), http://dx.doi.org/10

he particulate form can be used per se as drug delivery devices,
ut the interest in their production increases further when a 3D
tructure can be produced. Particle agglomeration is a method

Fig. 11. Chitosan microspheres obtained after supercritical fluid drying.
 other Need high pressure equipment

Use of ethanol, methanol or acetone

commonly used to produce stable matrices for tissue engineering
and regenerative medicine [69–72].

Supercritical fluid drying has been tested for the preparation of
chitosan 3D structures from a novel process so-called supercritical
particle agglomeration (Fig. 11)  [73].

In this approach the particles together with a gellan gum solu-
tion were loaded and pressed in a mold, which was added to
promote agglomeration, and were placed in the high pressure ves-
sel for critical point drying. The 3D matrices produced present an
interesting structure with adequate porosity and mean pore size
for bone tissue engineering applications.

7. Perspectives

Natural polymers present interesting inherent characteristics
which make them attractive to be used where synthetic polymers
have traditionally been applied. Nonetheless, their processability is
often limited. In this paper we  presented different methodologies,
based on supercritical fluid technology, for materials processing
in particular for different TERM applications. Table 3 presents the
strengths and weaknesses of each of the technologies described in
this paper.

The results documented in the literature suggest that the
application of supercritical fluids, especially carbon dioxide, can
be a successful alternative overcoming the drawbacks of the
conventional processing techniques concerning the biomaterials
development of natural based polymers.
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