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Abstract

Background: Inflammatory cascades following traumatic brain injury (TBI) can have both 

beneficial and detrimental effects on recovery. Single biomarker studies do not adequately reflect 

the major arms of immunity and their relationships to long-term outcomes. Thus, we applied 

treelet transform (TT) analysis to identify clusters of interrelated inflammatory markers reflecting 

major components of systemic immune function for which substantial variation exists among 

individuals with moderate-to-severe TBI.

Methods: Serial blood samples from 221 adults with moderate-to-severe TBI were collected over 

1–6 months post-injury (n = 607 samples). Samples were assayed for 33 inflammatory markers 

using Millipore multiplex technology. TT was applied to standardized mean biomarker values 

generated to identify latent patterns of correlated markers. Treelet clusters (TC) were characterized 

by biomarkers related to adaptive immunity (TC1), innate immunity (TC2), soluble molecules 

(TC3), allergy immunity (TC4), and chemokines (TC5). For each TC, a score was generated as the 

linear combination of standardized biomarker concentrations and cluster load for each individual 

in the cohort. Ordinal logistic or linear regression was used to test associations between TC 

scores and 6- and 12-month Glasgow Outcome Scale (GOS), Disability Rating Scale (DRS), and 

covariates.

Results: When adjusting for clinical covariates, TC5 was significantly associated with 6-month 

GOS (odds ratio, OR = 1.44; p-value, p = 0.025) and 6-month DRS scores (OR = 1.46; p = 0.013). 

TC5 relationships were attenuated when including all TC scores in the model (GOS: OR = 1.29, 
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p = 0.163; DRS: OR = 1.33, p = 0.100). When adjusting for all TC scores and covariates, only 

TC3 was associated with 6- and 12-month GOS (OR = 1.32, p = 0.041; OR = 1.39, p = 0.002) 

and also 6- and 12-month DRS (OR = 1.38, p = 0.016; OR = 1.58, p = 0.0002). When applying 

TT to inflammation markers significantly associated with 6-month GOS, multivariate modeling 

confirmed that TC3 remained significantly associated with GOS. Biomarker cluster membership 

remained consistent between the GOS-specific dendrogram and overall dendrogram.

Conclusions: TT effectively characterized chronic, systemic immunity among a cohort of 

individuals with moderate-to-severe TBI. We posit that chronic chemokine levels are effector 

molecules propagating cellular immune dysfunction, while chronic soluble receptors are 

inflammatory damage readouts perpetuated, in part, by persistent dysfunctional cellular immunity 

to impact neuro-recovery.
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1. Introduction

Traumatic brain injury (TBI) results in both a systemic and neuroinflammatory response 

that impacts global recovery and increases risk for secondary conditions (Kochanek et 

al., 2008; Kumar et al., 2016, 2015). The inflammatory cascades following neurological 

injury have both beneficial and detrimental effects on recovery (Correale and Villa, 2004; 

Ziebell and Morganti-Kossmann, 2010). Several experimental models have assessed anti-

inflammatory drugs, including ibuprofen and minocycline, for their ability to mitigate 

cellular immune damage, producing inconclusive results (Browne et al., 2006; Bye et al., 

2007), as cellular immunity was minimally reduced with treatment. Clinical studies often 

attribute perturbations of a single inflammatory marker as contributing to outcomes or 

secondary conditions resulting from the TBI (Stein et al., 2011; Hergenroeder et al., 2010; 

Hayakata et al., 2004; Kirchhoff et al., 2008; Singhal et al., 2002). However, these studies do 

not consider inflammatory signaling pathways or contextualize the contributions of variable 

arms of immunity to post-injury sequelae.

Previous studies have linked acute neuroinflammation to TBI severity (Singhal et al., 

2002; Hensler et al., 2002). The central nervous system’s (CNS) innate immune response 

primarily involves microglia, which release inflammatory mediators in response to blood–

brain barrier (BBB) disruption. Microglial activation and polarization shape functional 

states and responses based on local environment cues. Classic responses include pro-

inflammatory signaling, chemokine-mediated cell trafficking, phagocytic activity, and repair 

and remodeling processes (Ebert et al., 2005; Loane and Kumar, 2016). Cellular responses to 

inflammatory signaling have been modeled with respect to tissue integrity and immune 

resolution (Vaughan et al., 2018). Reactive astrocytes also release damage-associated 

molecular patterns (Thelin et al., 2017; Wang et al., 2018), in addition to interleukin (IL)-6, 

which contribute to cerebrovascular instability (Hariri et al., 1994; Lau and Yu, 2001). CNS 

cell mitochondrial dysfunction also activates neuroinflammation, including inflammasome 
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activation (Suliman et al., 2016; Gong et al., 2018), in response to cellular injury and the 

innate immune responses that trigger neuronal death (Mortezaee et al., 2018).

BBB disruption occurs rapidly post-TBI and results in systemic exposure to infiltrating CNS 

antigens (Chodobski et al., 2011; Morganti-Kossmann et al., 2007). Recent identification of 

the astrocyte-regulated glymphatic system (Rasmussen et al., 2018) suggests that, along with 

BBB breach, antigenic exposure from CNS-derived debris likely promotes an early systemic 

immune response to TBI (Louveau et al., 2015; Yang et al., 2017). Systemic inflammation 

is perpetuated by both the sympathetic and parasympathetic nervous systems (Elenkov et al., 

2000), via cytokine- and chemokine-driven communication networks, which further activate 

and mobilize cellular and humoral immunity (Hazeldine et al., 2015).

Injury-induced systemic immune system activation is followed by immuno-suppression 

occurring, in part, via catecholamine activity and nicotinic α7 mediated cholinergic 

activity (Hazeldine et al., 2015). Hypothalamic-pituitary adrenal (HPA) axis mediated 

glucocorticoid release may further influence immunosuppression. Our previous work shows 

acute cerebrospinal fluid (CSF) cortisol effects on neuroinflammation may have a divergent 

detrimental role on outcome, by exacerbating inflammation in some and contributing to 

immunoparalysis in others (Santarsieri et al., 2014).

The systemic exposure to CNS antigens that occurs after a post-injury BBB breach 

(Chodobski et al., 2011) also initiates and regulates the adaptive immune response. After 

spinal cord injury (SCI) (Riegger et al., 2009), adaptive immune response is suppressed, 

and many individuals experience lymphopenia following the aseptic, acute inflammatory 

response (Jeong et al., 2013). Similarly, profound systemic immune system deficits, such 

as impaired T-cell function and exacerbated inflammatory and reactive oxygen species 

production, contribute to persistent immunological disruption and hinder homeostatic 

restoration and tissue recovery after TBI and stroke (Hazeldine et al., 2015; Shim and Wong, 

2016).

Our previous research indicates that lymphopenia also occurs with TBI and is linked 

to longer hospital length-of-stay and worse long-term outcomes (Calcagno et al., 2018). 

Suppressed immune responses post-injury can facilitate infections and impair wound 

healing, negatively impacting neurological recovery (Riegger et al., 2009; Calcagno et al., 

2018). Recent knowledge suggests a complex humoral triad of CNS and systemic signaling, 

both cellular and humoral, that communicates via sympathetic nervous system and HPA 

axis signaling. This triad influences and is influenced by inflammatory feedback loops and 

other humoral signaling markers, including hormones and neurotrophins, in the context of 

TBI (Wagner and Kumar, 2019). Central to this point is evidence for central-peripheral 

immune system crosstalk leading to a post-acute immune-related prospectus rooted in 

cellular signaling regulation (Thelin et al., 2017).

Our group has done seminal work in a moderate-to-severe TBI cohort in characterizing 

chronic serum inflammatory markers elevations and their association with global outcome 

(Kumar et al., 2015). We demonstrated how inflammatory load scores can broadly measure 

outcome-sensitive, systemic inflammation. We also identified acute CSF inflammatory 
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markers using principal component analysis (PCA) followed by cluster analysis to 

distinguish individual inflammatory profiles among those with unfavorable outcomes 

(Kumar et al., 2016). PCA allowed us to create numeric representations of correlated 

variable patterns (components) (Bryant and Yarnold, 1995), which were then used to cluster 

individuals.

Based on this literature and our own work, we hypothesized that serum inflammatory 

markers serve as quantifiable readouts of systemic immunity dynamics, BBB integrity and 

ongoing CNS antigenic exposure, and neuroinflammatory effects on systemic immunity 

during chronic recovery. Also, investigating signaling molecules requires contextualization 

with respect to their membrane-bound or soluble receptors, target cells, or cellular 

byproducts, to determine the multiplicity of roles associated with inflammatory markers. 

For example, Tumor Necrosis Factor (TNF)-α is a multifaceted inflammatory marker best 

understood for its interactions with TNF receptors 1 (TNFR1, p55) and 2 (TNFR2, p75). 

Both soluble forms of TNFRs are truncated extracellular domains of the surface receptors 

(Cope et al., 1995) formed via proteolytic cleavage upon activation by TNFα (Suvannavejh 

et al., 2000); therefore, soluble receptors in circulation arise as byproducts of their respective 

signaling pathways. We also hypothesized that persistent innate immune activation and 

adaptive immune system suppression contribute to dysfunctional chronic inflammatory 

states post-injury that affect outcome.

We applied treelet transform (TT) analysis, which leverages both PCA and cluster analysis, 

to aggregate and quantify inflammatory data into distinct clusters of correlated biomarkers 

that contribute to biomarker variation in our cohort. TT derived clusters were used to 

delineate how TBI affected various arms of immunity during the first 6 months post-injury. 

We used multivariable regression to assess associations of treelet cluster (TC) scores with 

age, injury and clinical factors, as well as global outcomes. This report features TT as a 

primary analytic tool for its dimension reduction and clustering capacity in order to make 

inferences about domains of immunity and their impacts on individuals with moderate-to-

severe TBI during the early-chronic recovery phase. We demonstrate how TT was used 

to identify distinct and interpretable clusters of inflammatory markers relevant to TBI 

outcomes.

2. Methods

2.1. Study design, population description and sample collection

The University of Pittsburgh Institutional Review Board (IRB) approved this study. 

Informed consent was provided by next-of-kin for participants with moderate-to-severe TBI 

who survived their acute injury. Participants whose cognitive status improved sufficiently 

over the course of the study were given the opportunity to self-consent. Uninjured, control 

volunteers self-consented to provide blood samples to derive reference values for biomarkers 

measured. This prospective cohort study included 221 individuals, recruited from either 

acute admission or inpatient rehabilitation at the University of Pittsburgh Medical Center 

(UPMC) as a part of a larger study evaluating biomarkers after TBI. Fig. 1 summarizes data 

availability within this study cohort. We included men and women with moderate-to-severe 

TBI, aged 17–78 years, from whom blood samples (n = 607) were collected monthly over 
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the first six months post-injury. Samples were collected on a monthly schedule (within a 

2-week window) to the extent possible. Our clinical coordinators conducted home follow-up 

visits within a 2-week window of each monthly timepoint for each participant to collect a 

blood sample. These samples were drawn at each monthly visit unless participants refused 

blood draw, were unable to provide a sample, were lost to follow-up, or died. A portion of 

patients were also enrolled after the first month blood draw window (n = 61), thus missing 

that data point. After blood collection, samples were rested for ~ 30 min, stored at 4 degrees 

C for transport and then centrifuged at 2500 RPM for ten minutes at room temperature. 

Supernatant was aliquoted into 0.5 mL tubes, and immediately stored at −80 degreesC until 

batch analysis. On average, 3.23 sample timepoints were collected per study participant.

2.2. Demographic and clinical variables

Relevant demographic and clinical variables were collected through personal interview 

and medical record review. Variables collected include: age, sex, body mass index (BMI), 

Glasgow Coma Scale (GCS) score, Injury Severity Scale (ISS) score (both head and 

non-head regions), mechanism of injury, hospital length-of-stay, and acute care computed 

tomography (CT) findings. Injury types from acute care CT reports were obtained via 

medical chart review for multiple, pre-specified lesion types. Intra-axial lesions included 

intra-ventricular hemorrhage (IVH), intra-parenchymal hemorrhage (IPH), and contusions. 

Extra-axial lesions included subdural hemorrhage (SDH), subarachnoid hemorrhage (SAH), 

and epidural hemorrhage (EDH). Data was also abstracted on diffuse axonal injury (DAI) 

and midline shift. The number of lesions identified on CT scan for the three sub-categories 

of intra-axial hemorrhages was not mutually exclusive, as an individual could have more 

than one lesion type. ISS assesses overall anatomical trauma severity (Baker et al., 1974) 

and is calculated based on the Abbreviated Injury Scale (AIS), an established scoring system 

sub-divided into six body regions: head/neck, face, chest, abdomen, extremities/pelvis, and 

external. The ISS is the sum of the squared, highest AIS score of the three most severely 

injured regions—ranging from 0 to 75 (Baker et al., 1974). We report ISS non-head scores, 

which are calculated from the top three most severely injured regions, excluding the head/

neck (Baker et al., 1974; Copes et al., 1988). The GCS is a commonly used neurological 

injury severity scale in the clinical setting and is routinely used as an inclusion criterion for 

TBI clinical trials (Robertson et al., 2014; Wright et al., 2014; Meythaler et al., 2002) and 

for clinical cohort biomarker and genomics (Santarsieri et al.., 2014; Munoz et al., 2017; 

Garringer et al., 2013; Diamond et al., 2015; Kumar et al., 2018) studies inclusion criterion. 

The measure objectively assesses consciousness post-TBI via verbal, eye opening and motor 

response (Teasdale et al., 1979). The best GCS score collected within the first 24 h of 

admission was used for analysis.

2.3. Inflammatory marker Luminex Bead assay

Thirty-three inflammatory biomarkers were measured in (n = 607 samples) using a 

Luminex™ bead array assay (Millipore, Billerica, Massachusetts), requiring a total of ~ 

35 μl serum to run. These multiplex assays used microsphere technology where assay 

beads were tagged with various fluorescent-labeled markers. The protein binding onto the 

multiplex bead was analyzed with a fluorescence detection laser optic system. The Human 

High Sensitivity T-cell Magnetic Bead Panel included IL-10, IL-12p70, IL-13, IL17A, 
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IL-1β, IL-2, IL-21, IL-4, IL-23, IL-5, IL-6, IL-7, IL-8, Macrophage Inflammatory Protein 

(MIP)-1α, MIP-1β, TNF-α, Fractalkine, Granulocyte Macrophage Colony Stimulating 

Factor (GM-CSF), Interferon-inducible T-cell alpha chemoattractant (ITAC), and Interferon 

(IFN)-γ. The intra-assay coefficient of variance (CV) was < 5%. The inter-assay CV 

was < 20%. The Human Neurodegenerative Disease Magnetic Bead included soluble 

Intracellular Adhesion Molecule (sICAM)-1, Regulated upon Activation, Normal T-cell 

Expressed and Secreted (RANTES), Neural Cell Adhesion Molecule (NCAM), and soluble 

Vascular Adhesion Molecule (sVCAM)-1. The intra-assay CV was < 6%. The inter-assay 

CV was < 13%. The Human Soluble Cytokine Receptor Magnetic Bead Panel included 

soluble (s)CD30, soluble glycoprotein (sgp)130, soluble interleukin-1 receptor (sIL-1R)-I, 

sIL-1RII, sIL-2α, sIL-4R, sIL-6R, soluble tumor necrosis factor receptor 1 (sTNFRI), and 

sTNFRII. The intra-assay CV was < 10% while inter-assay CV was < 15%. Of note, sIL-1RI 

assayed poorly for 68% of samples. Thus, this marker was omitted from analysis. All other 

inflammatory markers assayed were quantifiable in n = 185 individuals for ~ 3.23 sample 

timepoints per individual over the first 6 months post-injury.

2.4. Six- and twelve-month outcome assessment

Individuals in this cohort were interviewed at 6 and 12 months post-injury to assess global 

recovery using the Glasgow Outcome Scale (GOS) and Disability Rating Scale (DRS). GOS 

and DRS scores are commonly used study endpoints for both TBI clinical trials (Giacino et 

al., 2012; Meythaler et al., 2002; Robertson et al., 2014; Wright et al., 2014) and biomarker 

and genomics cohort (Wagner et al., 2011; Goyal et al., 2013; Myrga et al., 2016; Barton 

et al., 2016) research. GOS measures global, neurological recovery using a semi-structured 

interview and ranges from 1 to 5. The scores on this scale are defined as: 1) dead, 2) 

vegetative state, 3) severe disability, 4) moderate disability, and 5) good recovery (Jennett 

and Bond, 1975). For analyses, we grouped individuals into two categories: 1) unfavorable 

outcome (GOS = 2–3) and 2) favorable outcome (GOS = 4–5). The DRS similarly measures 

global recovery, via items assessing basic neurological function, cognitive capacity to direct 

activities of daily living, and capacity for more complex independent activities of daily 

living (e.g. employment). DRS scores range from 0 to 30, with lower scores corresponding 

to little/no disability, higher scores corresponding to more disability, and a score of 30 

indicating death (Rappaport et al., 1982). DRS scores were categorized for analyses by 

severity: 0–4 (partial to no disability), 4–14 (moderate or severe disability), 15–29 (extreme 

severe disability, vegetative state). One participant, deceased at 6 months, was excluded from 

analysis.

2.5. Statistical analysis

Descriptive statistics, including median, inter-quartile range (IQR), mean, and standard 

error of the mean (SE), were computed for continuous variables. Univariate binary logistic, 

ordinal logistic, or linear regression models were used, as applicable, to assess associations 

to demographic and clinical factors. Pearson correlations measured strength and direction of 

associations between two continuous variables. Frequencies and percentages were calculated 

for categorical variables, and the Chi-square test (or Fisher’s exact test as appropriate) was 

used to identify group differences between these variables. Average values were computed 

for each biomarker assessed in samples collected 1–6 months post-injury; these values were 
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then standardized to a mean of 0 and standard deviation of 1 prior to TT analysis. Biomarker 

patterns were analyzed in two stages: 1) TT and 2) bivariate comparisons between the TC 

scores derived from stage 1 and other demographic, clinical, injury, and outcome variables. 

Multivariable binary or ordinal logistic regressions were then performed, as applicable, to 

assess the association of TC scores with outcome. Statistical analyses were performed using 

SAS 9.4 (Cary, North Carolina) and Stata 15.0 (College Station, Texas).

2.5.1. Treelet transform methods—TT was applied to standardized inflammatory 

biomarker data to identify latent patterns of correlated markers. TT was conducted using 

the tt add-on for Stata. The TT process and methods have been described previously 

(Gorst-Rasmussen, 2012; Gorst-Rasmussen et al., 2011). TT is a linear dimension-reduction 

methodology that conducts PCA within a hierarchal cluster analysis (Gorst-Rasmussen, 

2012) and requires complete data for all input variables (i.e. month 1–6 means for all 33 

biomarkers).

TT produces clusters of variables based on their correlation structure. TT joins the two most 

highly correlated variables by local PCA and replaces these variables with the resulting 

sum variable (the first principal component). This process is repeated for all remaining 

and local PCA-based sum variables until all have joined, or branched, into a single sum 

variable. TT requires a selection of 1) the number of components (≥2 input variables 

preferred to retain a component) and 2) a cut-level at which components cluster. The 

ideal cut-level maximized should explain variance across 5 Monte Carlo (MC) simulations 

of 10-fold cross-validation over 100 bootstrap samples for the previously determined 

number of components. The defined cut-level maximizes variance capture of components 

while maintaining interpretability and sparseness of cluster membership. Biomarkers in the 

branches left of the cut-level are given a cluster assignment and a loading value, while TT 

uniquely assigns loadings of 0 to markers beyond the cluster. TT results are summarized in 

a dendrogram, with the highest correlated variables branching first. Mean cross-validation 

scores across 100 bootstrap samples in the 5-component treelet were plotted by cut-level to 

identify a range of viable values (Fig. 2). A cut-level of 16 was used for the final model.

TT assigns each clustered marker a quantitative contribution or loading to its respective 

cluster. For each retained cluster, or TC, a score was generated as the linear combination of 

standardized inflammatory marker concentration and the markers’ respective loading value. 

TC scores represent an aggregate of inflammatory levels for markers in each TC, with 

higher TC scores indicating higher levels of a TC’s inflammatory markers and adherence 

to a particular cluster pattern. In simulations, TT was more suitable than PCA for sparse 

data with small sample sizes, where the algorithm correctly joined together the subsets 

of variables with a sample size as little as n = 100 (Lee et al., 2008). While we did not 

test power or minimal sample size, we do provide results that assess the stability of the 

dimension reduction through another bootstrap resampling to observe cluster stability across 

TT iterations. We then integrated these aggregate measures of immunity into our analyses 

to explore TC scores (i.e. immunity domain) associations with clinical and injury severity 

scores (GCS, ISS, and ISS non-head), demographic characteristics, and global outcome 

measures (GOS and DRS) to determine how chronic immune dysfunction impacts TBI 

recovery.
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As TT analysis is not designed for repeated measures data, we averaged inflammatory 

marker levels over the 6-month sampling period for each subject prior to analysis. Prior 

to averaging inflammatory data values for samples collected over the first six months 

post injury for the purposes of conducting treelet transformation analyses, average values 

for each marker measured were graphed to evaluate temporal dynamics over the 6-month 

sampling period. We observed minimal temporal dynamics for each inflammatory marker at 

the cohort level, particularly after the first month post-TBI. In fact, markers closely followed 

a zero-order pattern over the time-course averaged. This preliminary work (data not shown) 

provided justification for averaging values six-month time period.

2.5.2. Bivariate and multivariable analyses—Bivariate analyses were conducted 

to identify relationships among and between TC scores and demographic, injury, and 

global outcome variables. Pearson correlation coefficients and univariate linear regression 

models were assessed between TC scores and continuous variables including age, sex, GCS 

score, ISS, and ISS non-head scores. Univariate binary logistic regressions were conducted 

to observe associations between each TC score and 6- and 12-month dichotomized 

GOS outcome groups. Univariate ordinal logistic regressions were conducted to observe 

associations between each TC score and 6- and 12-month categorized DRS. We also 

performed age, sex, and GCS adjusted multivariable models with and without other TC 

scores for all outcomes. We checked for possible multicollinearity using the variance 

inflation factor (VIF) for each model. A VIF < 10 was deemed as normal range (Kutner 

and Nachtsheim, 2005). The proportional odds assumption was also investigated for all 

ordinal logistic regression models (data not shown).

3. Results

3.1. Demographic and clinical characteristics

Table 1 presents demographic information describing our cohort. The median age was 

31 years, and the majority of the population included Caucasian men. Motor vehicle and 

motorcycle accidents and falls accounted for the majority of TBI causes. Of the 185 

participants with inflammatory data, CT data was also available for 165 patients. One 

hundred thirty-two individuals had CT intra-axial hemorrhages, including IVH, IPH, and 

contusions; and, 150 individuals had extra-axial hemorrhages, including SDH, SAH, and 

EDH.

3.2. Treelet transform dendrogram

The TT analysis was applied to 33 inflammatory biomarkers from n = 185 individuals. The 

cut-level was set by examining cross-validation scores, which compared multiple possible 

cut-levels that could be adopted (Fig. 2 and Fig. 3).

Table 2 indicates the proportion of variance explained by each cluster and loadings, which 

signify contribution by each inflammatory marker to the given component. The five clusters 

capture a cumulative 43.64% of total variability with inflammation levels among individuals. 

The variance captured by each cluster are as follows: TC1 (14.66%), TC2 (10.45%), TC3 

(7.84%), TC4 (5.92%), and TC5 (4.77%). The greatest contributors to cluster formation 
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were: IL-2 and Fractalkine (TC1), IL-1β and TNF-α (TC2), sIL-2Rα and sTNFRII (TC3), 

while the markers of TC4 (IL-5, IL-13) and TC5 (ITAC, RANTES) had equal load 

contribution. Fig. 3 provides a correlation matrix dendrogram for the biologically justifiable 

cut-level of 16 established with five hierarchical components of the markers ranked by the 

proportion of variance contributed. The clusters represent the highest branching nodes to the 

left of the optimal cut-level.

3.2.1. Biological contextualization of clusters—Based on these results, and the 

established literature regarding the inflammatory markers that clustered (Table 3), we 

adopted the following cluster nomenclature to reference TCs as representing specific 

domains of immunity. TC1 represents markers associated with adaptive immunity including 

IL-2, Fractalkine, IL-12p70, IL-7, IL-21, IFNγ, IL-23, and IL-17A (Feghali and Wright, 

1997; Lundström et al., 2012; Needham et al., 2019; Noack and Miossec, 2014; Rancan 

et al., 2004; Schroder et al., 2004). TC2 is reflective of innate immunity and includes 

markers IL-1β, TNFα, IL-6, MIP-1β, and MIP-3α (Ziebell and Morganti-Kossmann, 2010; 

Feghali and Wright, 1997; Needham et al., 2019; Keane et al.., 2006; McKee and Lukens, 

2016; Woodcock and Morganti-Kossmann, 2013). Soluble molecules, including sTNFRI, 

sTNFRII, sIL-2Rα and sVCAM-1, clustered into TC3 (Feghali and Wright, 1997; McKee 

and Lukens, 2016; Sedger and McDermott, 2014). The allergy cluster (TC4) included IL-5 

and IL-13 (Feghali and Wright, 1997; Noack and Miossec, 2014; Galli et al., 2008). Lastly, 

the chemokine cluster (TC5) included ITAC and RANTES (Appay and Rowland-Jones, 

2001; Huang et al., 2000; Mohan et al., 2002; Springer, 1994).

3.2.2. Treelet stability assessment—A bootstrapping method was used as a 

sensitivity analysis to assess the stability of TC membership with respect to the biomarkers 

included in each TC. The results for this bootstrapping method are presented in Table 4. 

These results justify the exclusions in identified TCs of adjacent inflammatory markers 

that appear less frequently (<20% of iterations) due to the clear drop off in clustering 

percentages among markers. Clustered inflammatory markers appeared in at least 63% of 

the total iterations, with the exception of sVCAM-1, which had a clustering rate of 41.7%. 

Due to biological relevance to other inflammatory markers in TC3 in representing soluble 

molecule biology, we concluded that sVCAM-1 inclusion was justifiable at this cut-level. 

These relatively high inflammatory marker inclusion rates, evident from the bootstrapping 

technique, support adequate cluster stability for use in subsequent analyses.

3.3. Pearson correlations between TC scores

Fig. 4 depicts all significant relationships based on correlations between the TC scores. We 

visually depicted how the different arms of immunity rendered by the TT are linked or 

related. TC1 had a moderately large association and significant relationship with TC2 (r 

= 0.33, p < 0.001) and TC4 (r = 0.37, p < 0.001). TC1 also had a small but significant 

association with TC3 (p = 0.029) and TC5 (p = 0.036). Further, TC2 had a moderately 

strong correlation coefficient that was associated with TC5 (r = 0.29, p < 0.001). TC2 also 

had a small but significant association with TC3 (p = 0.037). Lastly, TC3 had a moderately 

strong correlation with TC5 (r = 0.39, p < 0.001). These results indicate how certain 
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components of immunity post-injury are biologically interrelated, and that they may have at 

least some degree of statistical collinearity.

3.4. TC score associations with demographic and injury variables

Univariate linear regression models illustrate associations between TC scores and 

demographic variables (Table 5).

The results indicate that older age was associated with higher TC3 scores (β = 0.029, p < 

0.001). Lower GCS scores were associated with higher TC1 (β = −0.096, p = 0.05), TC2 (β 
= −0.101, p = 0.018), and TC5 (β = −0.056, p = 0.049) scores. These findings indicate that 

the worse (lower) GCS score, the higher the adaptive, innate, and chemokine burden. Higher 

ISS scores were also associated with higher TC2 (innate) (β = 0.031, p = 0.037) and TC5 

(chemokine) (β = 0.038, p < 0.001), while ISS non-head scores were only associated with 

higher TC5 (chemokine) scores (β = 0.052, p = <0.001).

3.5. TC score associations to GOS scores

We performed binary logistic regressions to model the relationships between each TC score 

and GOS scores, at 6 and 12 months post-injury (Table 6). Results indicate that for every 

unit increase in TC5 score, there were 56.9% higher odds for worse 6-month outcomes (p 

= 0.006). For each unit increase in TC2 (p = 0.051) and TC3 (p = 0.062), results indicate 

trend level associations wherein there were 23% and 22% increased odds of unfavorable 

GOS outcomes respectively. At 12 months post-injury, each unit increase in TC2 and TC3 

was associated with 22.7% and 24.3% higher TC2 (p = 0.034) and TC3 (p = 0.046) scores 

respectively.

3.6. TC score associations to DRS scores

Similarly, individual ordinal regressions were performed to model the associations of TC 

scores and categorized DRS at 6 and 12 months post-TBI (Table 7). One unit increase in 

the TC3 (p = 0.034) and TC5 (p = 0.002) scores was associated with a 25% and 60% 

increase, respectively, in the odds of being in the higher DRS category (worse outcome) at 

6 months post-TBI. Higher TC2 scores showed trend level associations (p = 0.072) with 

higher (worse) DRS categories at 6 months. Proportional odds assumptions were met for 

all 6-month models. At month 12, only TC3 was associated (p = 0.024) with worse DRS; 

indicating that for every unit increase in TC3 scores, there is a 27% increased odds of a 

higher DRS score. Proportional odds assumptions were also met for all 12-month models.

3.7. Multivariable models of outcome metrics

TC score correlations (Fig. 4), and the association of these scores with different 

demographic and clinical characteristics (Table 5), indicate the potential for confounding 

and interaction effects among variables. Thus 6- and 12-month binary GOS and 6- and 

12-month categorized DRS regressions were developed using age, sex, and GCS with one 

TC score taken at a time. All TC scores were considered together in a full model (Tables 

8–11). We tested for all possible 2-way interactions (data not shown) for each outcome, 

and none were significant in the full model. Proportional odds assumptions were met for all 

multivariable models.
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3.7.1. GOS score—After adjusting for covariates, higher TC3 (Model 3, Table 8) and 

TC5 (Model 5, Table 8) were associated with 6-month unfavorable GOS. One unit increase 

in TC3 was associated (p = 0.022) with 32.7% and one unit increase in TC5 was associated 

(p = 0.025) with 44.4% increased odds of 6-month unfavorable GOS. However, in the fully 

adjusted model (Model 6, Table 8) only TC3 remained significantly associated (p = 0.041) 

with GOS. Although TC scores and covariates were somewhat correlated, the VIFs were 

within normal range and all < 2 (Age: 1.22, GCS: 1.17, TC1: 1.38, TC2: 1.27, TC3: 1.27, 

TC4: 1.23, TC5: 1.21), suggesting that multi-collinearity is not present to a substantial 

degree in this model.

Higher TC2 scores (Model 2, Table 9) had a marginal association (OR = 1.17, p = 0.096) 

with 12-month unfavorable GOS scores. However, one unit increase in TC3 scores (Model 
3, Table 9) was associated with 34.7% (OR = 1.35, p = 0.015) higher odds of 12-month 

unfavorable GOS. In the fully adjusted model (Model 6, Table 9), only TC3 was significant 

(p = 0.017); one unit increase in TC3 was associated with 38.5% higher odds of 12-month 

unfavorable GOS. GCS was significantly associated with both 6- and 12-month GOS in all 

models.

3.7.2. DRS score—After adjusting for covariates, one unit increase in TC3 (Model 3, 

Table 10) and TC5 (Model 5, Table 10) showed a 37.4% (p = 0.008) and 45.9% (p = 

0.013) higher odds respectively of worse 6-month DRS scores. In the fully adjusted model 

(Model 6, Table 10), only TC3 was significant (p = 0.016); one unit increase in TC3 was 

associated with 37.2% higher odds of worse 6-month DRS scores. TC5 was marginally 

significant (p = 0.1); one unit increase in TC5 was associated with 32.6% higher odds of 

having worse 6-month DRS scores. At 12 months, only TC3 (Model 3, Table 11) was 

associated with DRS (OR = 1.46, p = 0.003), alone and in the fully adjusted model (Model 
6, Table 11). One unit increase in TC3 was associated (p = 0.002) with 57.5% higher odds of 

having worse 12-month DRS scores. Proportional odds assumptions were met for all models 

presented in Tables 10 and 11. GCS was significantly associated with both 6- and 12-month 

DRS in all models.

3.7.3. Post-hoc assessment of age and GCS score interaction—Associations 

presented in Table 5 indicate that TC3 was associated with age (p < 0.001) but not GCS 

(p = 0.361). When age and GCS were taken together, there was a trend level significant 

interaction (p = 0.058) with TC3 (Table 12a). No similar effects were found with TC5. The 

increasing slopes of TC3 versus age at higher GCS levels (Table 12b) suggests that at older 

ages and higher GCS scores, the rates of change in TC3 levels were higher than the TC5 

level rate of change. This relationship explains why TC3 levels had a stronger association 

with 6-month outcome than TC5. TC3 was also correlated with TC5 (r = 0.39, Fig. 4) and 

TC3 possibly had a confounding effect on TC5 when both variables were included in this 

model, despite VIFs < 2.

3.8. An exemplar: treelet transform analysis of GOS-specific markers

Cluster scores provide a robust approach from which to investigate aggregated inflammatory 

relationships to outcome metrics. However, markers that do not cluster may still individually 
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track to the outcome of interest and are therefore not captured in this analysis. Also, 

markers that cluster but do not individually track to the outcome of interest, may attenuate 

the strength of outcome relationships at the cluster level. To this end, we produced a 

GOS-specific treelet exemplar to address these caveats.

The treelet dendrogram presented in Section 3.2 represents the correlation structure of all 

33 inflammatory markers studied and the associated contribution to overall variance by each 

significant cluster. However, 12 inflammatory markers are associated (p < 0.1) with 6-month 

GOS scores (Table 13).

We used this subset of variables (IL-7, IL-21, IL-1β, MIP-3α, MIP-1β, ITAC, RANTES, 

sIL-2Rα, sTNFRII, MIP-1α, sICAM-1, sIL-4R) to generate a GOS-specific treelet 

dendrogram (Fig. 5).

As described in Section 3.2, a 100-iteration cross validation process was used to determine 

the chosen cut point by assessing the frequency ofoptimal cut point ranges. The cut-level 

chosen was 4, and this TT yielded the following clusters and their respective contribution 

to percent variance captured: TC1GOS: IL-7 and IL-21 (14.69%), TC2GOS: sIL-2Rα 
and sTNFRII (14.05%), TC3GOS: IL-1β and MIP-1β (13.85%), and TC4GOS: ITAC and 

RANTES (13.13%). Together these clusters explained a total 55.73% of the variability 

among individuals’ GOS-related inflammatory marker profiles. All markers contribute 

equally to their respective clusters with loading values of 0.7071. TC1GOS was associated 

with GCS and ISS (extracranial), TC2GOS with age, TC3GOS with GCS, and TC4GOS with 

GCS, ISS (extracranial), and ISS (non-head) (Table 14). Individual logistic regressions 

showed a significant association of TC1GOS (OR = 1.36, p = 0.0129), TC2GOS (OR = 1.42, 

p = 0.0153), TC3GOS (OR = 1.35, p = 0.0390), and TC4GOS (OR = 1.57, p = 0.0058) with 

6-month GOS (Table 15).

In the adjusted models (Table 16), the main effect of TC4GOS (OR = 1.44, p = 0.0245), 

and the interaction effects TC2GOS × GCS and TC3GOS × GCS, were significant (both 

p = 0.046) (Model 2, 3, and 4). That is, the effects on global outcome of TC2GOS 

(soluble molecules) and TC3GOS (innate) differ in the context of different GCS scores 

demonstrating how injury severity contributes to inflammatory pathophysiology post-TBI. In 

the fully adjusted model with all covariates and TCGOS scores (Model 6, Table 16), only 

the interaction TC2GOS × GCS was significant (p = 0.048); one unit increase in TC2GOS 

was associated with 4.41 × 0.89GCS times higher odds of 6-month unfavorable GOS. The 

VIFs were within the normal range (Age: 1.17, GCS: 1.18, TC1GOS: 1.62, TC2GOS: 1.21, 

TC3GOS: 1.5, TC4GOS: 1.25). GCS was associated with 6-month GOS in all models.

Performing TT on a subset of the marker panel (GOS-associated markers) allowed us to 

test reproducibility and stability of marker clusters from the original treelet dendrogram. We 

observed a similar correlation structure and an understanding about adjacent cluster pairs 

(i.e. adaptive and innate immunity related markers) from the larger treelet, which may have 

commonalities that jointly influence outcome.
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4. Discussion

Our understanding of inflammation hinges on a holistic evaluation of the immune system, 

including its cellular functions and humoral signaling after TBI. Despite the frequency of 

single marker studies, an understanding of the overarching immune response to TBI and 

impact on recovery remains elusive. As such, attempts to reach a consensus characterization 

of possible “beneficial” and “detrimental” aspects of post-TBI inflammation at the 

individual marker level are challenging due to 1) the heterogeneous nature of the injury 

itself, 2) variable time windows of marker measurement, 3) timing for potential treatment 

intervention, and 4) population heterogeneity. This realization has motivated recent work 

delineating temporal and correlational patterns among inflammatory and cellular mediators 

to achieve a more complete characterization of the overall state of immunity post-TBI 

(Kumar et al., 2016; Vaughan et al., 2018; Helmy et al., 2012). We leveraged the dimension 

reduction technique, TT analysis to study early chronic inflammation post-TBI, to extract 

interpretable and related clusters of biomarkers based on co-expression patterns. This work 

represents the broadest immune profile characterization of systemic inflammation carried 

out in the field to date, and TT analysis effectively identified relevant biological function and 

interactions between the inflammatory biomarkers measured, which were then evaluated in 

the context of global recovery metrics.

4.1. Novelty of treelet transform in studying inflammation

TT has been used to explore dietary patterns and myocardial infarction risk, and more 

recently, metabolite profiles and prostate cancer risk (Gorst-Rasmussen et al., 2011; 

Schmidt et al., 2020). We hypothesized that TT would be useful in characterizing distinct 

inflammatory patterns associated with demographic and clinical factors, as well as TBI 

outcomes. TT incorporates both PCA and cluster analysis to identify underlying data 

patterns. TT also streamlines the interpretation of clustered biomarkers by assigning a 

numeric biomarker loading based on their overall contribution to a given cluster (Gorst-

Rasmussen, 2012). One consideration with TT is the discretion of choosing a cut point to 

produce the viable clusters used in later analyses. However, Fig. 2 shows the utility of cross 

validation in choosing cut levels that maximize variance captured by the clusters, while 

retaining interpretability of clustering markers.

Among the significant TCs that emerged, they ranked in contribution to overall 

variance capture as follows: adaptive immunity, innate immunity, soluble molecules, 

allergy immunity, and chemokines. These findings highlight the importance of systemic 

inflammation after neurotrauma and identify biomarker groups that differ most among the 

TBI population and contribute to heterogeneous injury responses. Notably, the adaptive 

immunity cluster contributes most to the population variance.

4.2. Role for systemic immune readouts in understanding chronic neuroinflammation

We characterized peripheral inflammatory patterns as a reflective indicator of chronic TBI-

induced neuroinflammation due to supporting evidence in other clinical models for systemic 

immune marker readouts reflecting CNS pathology and degree of functional and emotional 

impairment. For example, Frodl and Amico review work in major depression disorder, 
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elderly cognitive impairment, and Alzheimer’s disease (AD) that link magnetic resonance 

imaging (MRI)-detected and region-specific structural brain changes, and the subsequent 

emotional and cognitive deficits, to peripheral markers of brain inflammation (Frodl and 

Amico, 2014). Both clinical and experimental models of aging and AD suggest that neural 

activation and functional brain connectivity are vulnerable to peripheral inflammatory-

induced abnormalities (Labrenz et al., 2016; Walker et al., 2020).

There is increasing attention on the CNS-systemic interface and joint involvement in 

mounting and coordinating an immune response to brain injury. Recent literature suggests 

that modulation of the CNS and systemic inflammatory systems is regulated by the 

autonomic nervous system (Kenney and Ganta, 2014); however, in a state of neurological 

physiological disruption like brain injury, homeostasis becomes difficult to maintain. This 

is evidenced by the chronic manifestation of serum inflammatory derangements for months 

after injury (Kokiko-Cochran and Godbout, 2018; Kumar et al., 2015) and TBI-induced 

inflammatory burden associations with long-term sequelae like cognitive dysfunction and 

depression (Bodnar et al., 2018; Walker and Tesco, 2013).

We hypothesized that TCs captured groups of interrelated inflammatory molecules that 

reflect different arms of immunity. Our results indicated that the generated TCs were 

biologically relevant and mapped well to the domains of adaptive immunity, innate 

immunity, allergy immunity, soluble signaling molecules/receptors, and chemokines. We 

leveraged TC scores to inform imbalanced inflammatory states after TBI, rather than 

narrowly assess perturbations of a single inflammatory marker. While TC score associations 

with demographic and injury factors (Table 5) were diverse, variation in global outcome 

and disability long-term were consistently attributed to elevated innate immunity, soluble 

molecule, and chemokine burden (Tables 6 and 7).

4.3. Innate immunity

The innate immune response is dominated by chronic expression of IL-1β, TNF-α, and IL-6 

and macrophage inducible proteins that act to propagate inflammatory activity well after the 

injury has occurred. We show that worse anatomical and neurological injury (i.e. higher ISS 

and lower GCS scores) sustains innate immunity elevations and, in turn, increases odds of 

unfavorable global outcome over the first-year post-injury (Table 6). This finding suggests 

that initial injury severity impacts acute pathophysiology and exacerbates maladaptive 

chronic innate immune response patterns, providing evidence that systemic inflammatory 

dysfunction is a common secondary condition post-TBI. Prolonged inflammation post-injury 

can activate the HPA axis, which when unregulated, may contribute to poor recovery, 

chronic stress, and depression (Bodnar et al., 2018). The innate immunity cluster was 

strongly correlated with the adaptive and chemokine clusters (Fig. 4), demonstrating 

how this non-specific component of the immune response can elicit a more specific, 

targeted injury repair response over time and a continued cellular immune response. The 

correlative nature between innate immunity and chemokines suggests early innate pathway 

propagation of chemokine production and unfavorable outcomes post-TBI (Ziebell and 

Morganti-Kossmann, 2010). The correlation between the innate and soluble molecules 
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supports the idea that the innate immune cluster has an active role in perpetuating the overall 

immune response, including cellular immunity.

4.4. Chemokines and soluble receptor signaling

Once initiated, the immune response is intricately controlled by expression of cell signaling 

molecules that guide cell migration, proliferation, and communication via other cellular 

molecules. This biology was captured across two chronic inflammation TCs consisting 

of ITAC and RANTES (chemokines) and sTNFRI, sTNFRII, sIL-2Rα, and sVCAM-1 

(soluble receptors/adhesion molecules). The correlational results show the innate cluster as 

associated with the chemokine cluster, which itself is associated with the soluble molecule 

cluster (Fig. 4). These relationships suggest a biologically relevant chain of events related 

to cell trafficking, adhesion, and activation that support the perpetuation of proinflammatory 

cascades.

Soluble receptors have a unique capacity for outcome discrimination with respect to age-

related pathophysiology (Table 5 and 6), as expression increases with age and increases 

odds of unfavorable outcome and greater disability post-injury. This finding suggests that 

inflammatory marker families be studied in aggregate to assess degree to which circulating 

cytokines signal via membrane-bound versus soluble receptors. The study of soluble 

molecule biology, particularly the conditions that facilitate proteolytic cleavage, may further 

delineate potential mechanistic underpinnings for parent cytokine contributions to adverse 

outcomes (Levine, 2008).

The soluble receptor cluster was specifically associated with aging post-TBI. TNF 

molecules, including sTNFRI and sTNFRII, contribute to and are a product of early 

lymphopenia (Calcagno et al., 2018; Wagner et al., 2019), a phenomenon that may underlie 

impaired adaptive immune function mediated tissue repair (Suvannavejh et al., 2000). The 

literature suggests that harmful versus beneficial aspects of systemic immunity depend on 

timing post-injury and underlying demographics pre-injury (Chodobski et al., 2011; Timaru-

Kast et al., 2012). Here, age-related associations with chronic soluble receptor burden pose 

another unique contributor to age-related risk for poor post-TBI recovery (Timaru-Kast et 

al., 2012).

As a post-hoc assessment of shared variance between age, GCS score, and soluble 

molecule expression, an interaction term between age and GCS score was included in the 

multivariable models (Section 3.7.3). The degree of TC3 changes with respect to age (slope: 

δTC3/δAge) increases with milder neurological injury severity (higher GCS score). That 

is, in the context of milder injuries associated with a tempered TNFα response (Woodcock 

and Morganti-Kossmann, 2013), age is a greater contributor to TNF soluble receptor activity 

(Patel and Brewer, 2008) and contributes to detrimental outcomes.

Interestingly, chronic chemokine production was associated with both initial injury severity 

and long-term global outcome and disability (Tables 5–7). Chemokines were the only cluster 

to track with non-head ISS, which may implicate their role in peripheral injury severity 

and repair, healing, and/or infection more so than clusters that track with neurological 

severity (Table 5). RANTES supports chemotaxis and T-cell expression (Mikolajczyk et al., 
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2016), while ITAC has potent chemoattractant properties regulated by IFNγ to recruit IL-2 

activated T-cells (Cole et al., 1998). Together, this persistent chemo-attractant influence may 

render the chemokine TC particularly valuable in outcome discrimination capacity.

4.5. Adaptive and allergy immunity

The adaptive immunity cluster is important for prolonged immune responses involved in 

neuro-repair. In this context, some individuals may be better equipped to immunologically 

generate a lympho-reparative response after TBI than those with reduced adaptive immune 

function due to factors like aging and stress (Gregory et al., 2007; Lundström et al., 2012). 

The adaptive cluster (TC1) explains the most variance captured in the TT analysis. Yet no 

significant associations were observed between TC1, DRS, and GOS. This finding may be 

due to other inflammatory responses having a larger (and perhaps overlapping) role in terms 

of pathophysiology and discriminating outcome. Alternatively, adaptive immune impacts 

may be more demonstrable with the development of specific secondary conditions and less 

sensitive to broad multidimensional outcomes like GOS and DRS. Notably, the adaptive 

immune cluster was correlated with the innate and allergy clusters (Fig. 4).

The literature describes links between CNS-derived autoantibody production in traumatic 

SCI (Arevalo-Martin et al., 2018; Hergenroeder et al., 2016), which occurs, in part, due 

to the adaptive immune system. In particular, immunoglobulin M (IgM) antibodies exhibit 

protective roles: recognize self-antigen, enhance phagocytosis of damaged cells, promote 

tissue homeostasis, and initiate adaptive immune responses by moderating humoral cell 

activity and autoantibody production (Grönwall et al., 2012). Adaptive immune molecules 

like IL-7 have been linked to lymphoproliferative mechanisms, specifically in producing 

IgM autoantibodies. Also, IL-21 enhances innate immunity features like apoptosis and 

phagocytosis, and it influences adaptive elements like auto-regulation and differentiation of 

T-cells and B-cells as well as Ig production (Schluns et al., 2000; Spolski and Leonard, 

2014). Our recent work shows systemic IgM autoantibody production specific to the 

pituitary and hypothalamus as potentially reparative, associated with multiple adaptive 

immune markers, and associated with reduced neuroendocrine dysfunction in men with 

moderate-to-severe TBI (Vijapur et al., 2020). Together, these data support the need to 

further study adaptive immunity and how it may facilitate neurorecovery and repair via IgM 

related autoimmune mechanisms.

4.6. Integrating immune domains

Based on our data, we hypothesized that failure to resolve immune system homeostasis 

contributes significantly to susceptibility to complications and secondary conditions 

associated with TBI. We proposed that these systemic inflammatory profiles provide 

biomarker readouts reflective of ongoing neuro-dysfunction after TBI and persistent lack 

of inflammatory regulation over the first 6 months post-injury. Perturbations in inflammatory 

signaling networks likely also impact neurotrophic and endocrine functioning in their 

contributions to TBI deficits (Wagner and Kumar, 2019).

Our results add to the discussion regarding the continued state of systemic inflammatory 

dysregulation after TBI. The literature shows ongoing microglial activation years after TBI 
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(Norden et al., 2015) and examples of individual inflammatory marker elevations in both 

civilian and military populations with repetitive and moderate/severe TBI (Devoto et al., 

2017; Rodney et al., 2020; Rusiecki et al., 2020). Chemokines are linked to both initial 

injury severity and 6-month long-term outcomes suggesting a key role for these markers on 

the longitudinal impacts of immune dysfunction. Soluble receptors, however, map to both 

6- and 12-month recovery scores (Tables 8–11). These results may indicate that chemokines 

are effector molecules centered on propagating and regulating immune function, while 

soluble receptors are inflammatory readouts of damage that has occurred via persistent 

dysfunctional cellular immunity pathways.

4.7. GOS-specific treelet

The 33-marker treelet dendrogram provided a comprehensive characterization of post-TBI 

chronic inflammation and identified significant clusters contributing to variance in our 

TBI population irrespective of outcome. A post-hoc exemplar treelet was then generated 

for the subset of 12 inflammatory markers individually related to 6-month GOS. Similar 

cluster membership and associations between all TCs and global outcome were retained. 

However, covariate-adjusted multivariable models suggest that the chemokine cluster has 

an independent capacity for outcome discrimination that holds after demographic and 

injury variable adjustment (Table 16). After adjusting for all GOS-specific TC scores, 

the interaction term between soluble molecule load and GCS score (TC2xGCS) remained 

the only cluster-related variable significantly associated with unfavorable outcome. This 

suggests that initial neurological injury is a persistent contributor to systemic inflammation, 

particularly soluble molecule expression (sIL-2Rα, sTNFRII).

4.8. Strategies for therapeutic intervention

Assessing TC score profiles characteristic of both 1) demographic and injury groups 

and 2) longitudinal outcome groups provides information related to immune domains 

in dysfunction across the TBI recovery continuum. In addition to their descriptive and 

mechanistic value in characterizing early chronic immunity patterns after TBI, TC scores 

may support the selection of immunomodulatory agents to utilize as post-acute treatment 

strategies. Aside from direct therapeutic immune-agents, rehabilitation modalities like 

exercise could be assessed for their impact on these immune domains (Griesbach, 2011; 

Piao et al., 2013). When understanding how markers within these TCs covary after injury, 

the manipulation of one marker can be contextualized for its impact on the expression 

of another, an approach that may outperform single biomarkers to guide therapeutic 

intervention.

4.9. Limitations & future directions

This study is not without limitations. The main inflammatory kit utilized was a 21-plex T-

Cell High Sensitivity array. The clusters presented here were limited to the markers present 

in our three multiplex assays. Therefore, T-cell related markers were well characterized 

and incorporated into this treelet dendrogram while other immune domains may benefit 

from additional marker inclusion. Furthermore, a future direction might include creating a 

treelet capturing immune function beyond the first 6 months post-injury and characterizing 

their associations with outcome. We can validate our findings by replicating this treelet 
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methodology in an independent cohort. Utilizing this treelet methodology in another 

population would allow us to evaluate if/how the cluster memberships might vary and be 

impacted by the underlying population.

Our data suggest that neurological injury severity, as measured by the GCS in this cohort 

with moderate-to-severe TBI, has a strong influence on inflammatory levels across TC 

domains for all multivariate analyses. Our descriptive analyses suggest that those with a 

“best in 24-hour” GCS in the 13–15 (or milder injury range) have lower adaptive, innate, 

and chemokine TC scores, suggesting that future directions should explore inflammatory 

patterns among cohorts with true mild TBI or concussion. Among those particularly 

interesting to study would be cohorts of individuals who go on to have persistent chronic 

symptoms versus those who recover without ongoing protracted symptomatic sequelae. 

Also, larger cohorts with TBI of all severities may be useful for sex or age stratified 

treelet transformation analyses evaluating unique inflammatory patterns and subsequent 

associations with TBI outcomes. Survivors with moderate-to-severe TBI, individuals often 

have multiple injury types, making inflammatory attributions by specific injury or lesion 

type challenging. However, larger cohorts may have a subset of individuals with isolated 

injury types for which such subanalyses might be possible.

Future work should also focus on markers that did not cluster because their expression 

patterns are not correlated with other serum inflammatory markers in our panel. They still 

hold capacity for outcome discrimination (Table 13) as the markers MIP-1α, sICAM-1, and 

sIL-4R did not associate with GOS score at the cluster level but did associate in a bivariate 

comparison. There is a potential masking effect within identified clusters for dominant 

markers (higher cluster load) related to a particular outcome. For example, IL-7 is related to 

GOS score in a bivariate comparison, but the adaptive immunity cluster itself is not. Perhaps 

when evaluating other survivor-based outcomes (cognition, depression, etc.), we may further 

our understanding of cluster and non-clustered marker relationships to recovery.

Another future direction would be to examine how inflammatory clusters can help 

understand the underlying pathophysiology associated with secondary conditions, including 

persistent hypogonadotropic hypogonadism (PHH) (Vijapur et al., 2020), cognition 

(Milleville et al., 2020), depression (Schulz et al., 2018), epilepsy (Diamond et al., 2014), 

and others. Also, it would be beneficial to consider how personal biology, injury factors 

(GCS in particular), and acute care hospitalization characteristics (lymphopenia, acute 

infection status) impact these immune domains chronically.

As noted in the methods, TT analysis does not lend itself well to studying temporal 

biomarker dynamics, and future work may consider how to employ latent growth curve 

analyses (Felt et al., 2017) or group-based trajectory analyses (Kumar et al., 2015; 

Niyonkuru et al., 2013) to evaluate important latent individual and subgroup temporal 

biomarker dynamics not appreciated when graphing markers at the cohort level. Future 

work may include a neural network-based approach for extracting models from dynamic 

(temporal) data using ordinary and partial differential equations (Sun et al., 2020). 

In particular, given the spatio-temporal nature of the data (biomarkers sampled over 

different time intervals), we can identify a model that takes into account the intrinsic 
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differential structure. Resulting models may be parameterized by using both (shallow) 

multilayer perceptrons and nonlinear differential terms, in order to incorporate relevant 

correlations between biomarkers collected at varying timepoints. Finally, methods like 

agent-based modeling (ABM) may also be an appropriate extension to this work to attribute 

inflammatory marker profiles to activated cellular immune patterns during the chronic 

phases of TBI recovery. ABM would utilize the temporal cytokine signaling data and 

logical rules grounded in scientific literature to simulate interactive networks between agents 

(immune cells) generating and receiving inflammatory signals and inform states changes of 

healing, damage, and overall recovery (Anderson and Vadigepalli, 2016; Folcik et al., 2011).

There is an emerging body of literature regarding CNS-derived exosomes that cross the 

BBB, serve as a source of systemic biomarkers, and may reflect a CNS environment 

facilitative of neural repair and/or complications after neurological injury (Manek et al., 

2018; Mondello et al., 2020). In addition to inflammatory biomarker levels themselves, 

blood exosomes originating in the CNS may provide a more direct readout of CNS recovery 

state as they are expressed by brain cells directly and communicate with the periphery.

5. Conclusions

As the field shifts towards characterizing immune networks, TT analysis, as applied to 

biomarker data to capture inflammatory patterns, is novel. We utilized TT as a means of 

pattern analysis to extract inflammatory domains with respect to TBI pathology. Using TT, 

we uncovered underlying immune component associations with outcome and demographic 

factors in the form of biomarker clusters. Our results identify intersections between 

inflammatory patterns and long-term recovery post-TBI. Moving forward, we can use these 

findings as building blocks to understand immune networks post-TBI and the impact of 

immune modifying therapies on recovery.
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Fig. 1. Study CONSORT Diagram.
Month 1–6 inflammatory input data was available for the 33 markers of interest in a 

cohort of n = 185 individuals with moderate to severe TBI. Treelet transform analysis was 

conducted with these individuals’ inflammatory data. A subset of these individuals were 

survivors at six months available and assessed for long-term recovery assessments (GOS and 

DRS).
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Fig. 2. Cross-Validation Score Across 100 Bootstrap Iterations of Treelet Cross-Validation.
Treelet transform cross-validation was carried out for 5 component treelet transform, in 

100 bootstrap samples of the analytic cohort (80% sampled with replacement). Cross-

validation scores within each iteration were standardized, and the mean cross-validation 

score (across 100 bootstrap iterations) plotted across cut-off levels. The blue line represents 

the standardized mean score by cut-level and gray shaded area indicates the 95% confidence 

interval. (For interpretation of the references to colour in this figure legend, the reader is 

referred to the web version of this article.)
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Fig. 3. Treelet Dendrogram.
The treelet cluster analysis created a Dendrogram for 33 inflammatory markers. The dotted 

vertical line depicts the cut-level used for the analysis (16), in which the last branch before 

the line contains a significant cluster (designated by circled node) of inflammatory markers.
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Fig. 4. Pearson Correlations Between TC Scores.
Correlations significant at the 10% level (p < 0.1) between TCs are shown. Lines between 

the cluster domains of immunity, are bolded if the relationship is moderately strong (r > 

0.25) or dashed if the relationship is expressed to a weaker degree (p ≤ 0.1; r < 0.25). 

Non-significant relationships are not shown.
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Fig. 5. Treelet Dendrogram of Inflammatory Markers Specific to 6-month GOS Score.
TT yielded the following correlation matrix for the subset of 12 inflammatory marker means 

associated (p < 0.1) with GOS outcome group. The dotted line depicts the optimal cut-level 

(4) and circled nodes represent significant clusters ranked by contribution to overall variance 

capture.
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Table 1

Study Cohort Demographic and Clinical Characteristics (n = 185).

Variable Median IQR

Age (Years) 31 23–48

BMI (kg/m2) 25.85 22.8–29.3

GCS score (Best in 24 h) 7 6–10

ISS score (Head/neck) 29 22–36

ISS score (Non-head) 9 4–18

Length of Stay in Hospital (Days) 19 12–28

n %

Sex, Male 144 77.8

Race, Caucasian 166 89.7

Mechanism of Injury n %

 MVA 85 45.9

 Motorcycle 34 18.4

 Fall 41 22.2

 Violent/Gunshot Wound 4 2.1

 Sports-related 7 3.8

 Other 6 3.2

 Unknown 8 4.3

CT Injury Type n %

Intra-axial Hemorrhage 132 71.4

 IVH 53 28.6

 IPH 87 47.0

Contusion 101 54.6

Extra-axial Hemorrhage 150 81.1

 SDH 116 62.7

 SAH 117 63.2

 EDH 29 15.7

Diffuse Axonal Injury 20 10.8

Midline Shift 55 29.7

Unknown 20 10.8

Brain Behav Immun. Author manuscript; available in PMC 2022 July 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Vijapur et al. Page 33

Ta
b

le
 2

Pe
rc

en
t V

ar
ia

nc
e 

C
ap

tu
re

d 
of

 I
nf

la
m

m
at

or
y 

M
ar

ke
rs

 to
 R

es
pe

ct
iv

e 
T

re
el

et
 C

lu
st

er
.

A
da

pt
iv

e 
Im

m
un

it
y 

(1
4.

66
%

)
In

na
te

 I
m

m
un

it
y 

(1
0.

45
%

)
So

lu
bl

e 
M

ol
ec

ul
es

 (
7.

84
%

)
A

lle
rg

y 
Im

m
un

it
y 

(5
.9

2%
)

C
he

m
ok

in
es

 (
4.

77
%

)

T
C

1
L

oa
d

T
C

2
L

oa
d

T
C

3
L

oa
d

T
C

4
L

oa
d

T
C

5
L

oa
d

IL
-2

0.
38

18
IL

-1
β

0.
49

23
sT

N
F

R
I

0.
49

53
IL

-5
0.

70
71

IT
A

C
0.

70
71

F
ra

ct
al

ki
ne

0.
38

18
T

N
F

-α
0.

49
23

sI
L

-2
R
α

0.
53

13
IL

-1
3

0.
70

71
R

A
N

T
E

S
0.

70
71

IL
-1

2p
70

0.
36

89
IL

-6
0.

46
78

sT
N

F
R

II
0.

53
13

IL
-7

0.
35

81
M

IP
3α

0.
39

47
sV

C
A

M
-1

0.
43

61

IL
-2

1
0.

35
81

M
IP

1β
0.

37
50

IF
N

-γ
0.

33
18

IL
-1

7A
0.

33
18

IL
-2

3
0.

31
05

Brain Behav Immun. Author manuscript; available in PMC 2022 July 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Vijapur et al. Page 34

Ta
b

le
 3

B
io

lo
gi

ca
l C

on
te

xt
ua

liz
at

io
n 

of
 C

lu
st

er
s.

T
re

el
et

 C
lu

st
er

B
io

lo
gi

ca
l C

on
te

xt
R

ef
er

en
ce

s

A
da

pt
iv

e 
Im

m
un

it
y 

(T
C

1)
L

-2
, F

ra
ct

al
ki

ne
, I

L
-1

2p
70

, I
L

-7
, 

IL
-2

1,
 IF

N
γ,

 IL
-2

3,
 IL

- 1
7A

•
A

cq
ui

re
d 

re
sp

on
se

 to
 b

ra
in

-a
nt

ig
en

 e
xp

os
ur

es
, s

pe
ci

fi
c 

im
m

un
ity

•
H

um
or

al
 im

m
un

ity
 (

i.e
. r

el
ea

se
 o

f 
an

tib
od

ie
s,

 c
om

pl
em

en
t, 

et
c.

)

•
C

el
l-

m
ed

ia
te

d 
im

m
un

ity
 (

i.e
. a

ct
iv

at
io

n 
&

 c
lo

na
l e

xp
an

si
on

 o
f 

T
 a

nd
 B

 c
el

ls
, c

yt
ok

in
e 

re
le

as
e)

(F
eg

ha
li 

an
d 

W
ri

gh
t, 

19
97

; L
un

ds
tr

öm
 e

t a
l.,

 2
01

2;
 

N
ee

dh
am

 e
t a

l.,
 2

01
9;

 N
oa

ck
 a

nd
 M

io
ss

ec
, 2

01
4;

 R
an

ca
n 

et
 a

l.,
 2

00
4;

 S
ch

ro
de

r 
et

 a
l.,

 2
00

4)

In
na

te
 I

m
m

un
it

y 
(T

C
2)

IL
-1

β,
 T

N
F-

α,
 IL

-6
, M

IP
-1

β,
 a

nd
 

M
IP

-3
α

•
N

on
-s

pe
ci

fi
c,

 g
en

er
al

 r
es

po
ns

e 
to

 in
ju

ry
 (

an
tig

en
 in

de
pe

nd
en

t)

•
Pr

od
uc

ts
 a

nd
 a

ct
iv

at
or

s 
of

 w
hi

te
 b

lo
od

 c
el

ls
 (

in
cl

ud
in

g 
ne

ut
ro

ph
ils

, m
ac

ro
ph

ag
es

, 
de

nd
ri

tic
 c

el
ls

, n
at

ur
al

 k
ill

er
 c

el
ls

, m
as

t c
el

ls
, e

tc
.)

•
Im

m
un

e 
ce

ll 
re

cr
ui

tm
en

t v
ia

 in
fl

am
m

at
or

y 
si

gn
al

in
g

•
D

am
ag

e 
cl

ea
ra

nc
e

•
A

nt
ig

en
 p

re
se

nt
at

io
n 

to
 p

ro
m

ot
e 

ad
ap

tiv
e 

im
m

un
ity

(Z
ie

be
ll 

an
d 

M
or

ga
nt

i-
K

os
sm

an
n,

 2
01

0;
 F

eg
ha

li 
an

d 
W

ri
gh

t, 
19

97
; N

ee
dh

am
 e

t a
l.,

 2
01

9;
 K

ea
ne

 e
t a

l.:
1–

5.
, 2

00
6;

 M
cK

ee
 a

nd
 L

uk
en

s,
 2

01
6;

 W
oo

dc
oc

k 
an

d 
M

or
ga

nt
i-

K
os

sm
an

n,
 2

01
3)

So
lu

bl
e 

M
ol

ec
ul

es
 (

T
C

3)
sT

N
FR

I, 
sT

N
FR

II
, s

IL
2R

α,
 

sV
C

A
M

-1

•
O

ft
en

 s
ol

ub
le

 f
or

m
s 

of
 m

em
br

an
e-

bo
un

d 
re

ce
pt

or
s,

 s
he

d 
vi

a 
pr

ot
eo

ly
tic

 c
le

av
ag

e 
af

te
r 

ac
tiv

at
io

n

•
R

eg
ul

at
or

s 
of

 h
om

ol
og

ou
s 

cy
to

ki
ne

 f
un

ct
io

n

•
So

lu
bl

e 
ce

ll 
ad

he
si

on
 m

ol
ec

ul
es

 m
ay

 r
ep

re
se

nt
 c

el
l a

ct
iv

at
io

n 
an

d/
or

 d
am

ag
e

(F
eg

ha
li 

an
d 

W
ri

gh
t, 

19
97

; M
cK

ee
 a

nd
 L

uk
en

s,
 2

01
6;

 
Se

dg
er

 a
nd

 M
cD

er
m

ot
t, 

20
14

)

A
lle

rg
y 

Im
m

un
it

y 
(T

C
4)

IL
-5

, I
L

-1
3

•
R

ea
ct

io
n 

to
 f

or
ei

gn
 s

ub
st

an
ce

 e
xp

os
ur

e

•
St

im
ul

at
es

 B
 c

el
l p

ro
lif

er
at

io
ns

 a
nd

 a
nt

ib
od

y 
se

cr
et

io
n

•
E

os
in

op
hi

l a
ct

iv
at

io
n 

an
d 

m
ec

ha
ni

st
ic

 r
eg

ul
at

io
n

(F
eg

ha
li 

an
d 

W
ri

gh
t, 

19
97

; N
oa

ck
 a

nd
 M

io
ss

ec
, 2

01
4;

 
G

al
li 

et
 a

l.,
 2

00
8)

C
he

m
ok

in
es

 (
T

C
5)

IT
A

C
, R

A
N

T
E

S
•

C
he

m
ot

ac
tic

 m
ig

ra
tio

n 
of

 c
el

ls
 to

 in
ju

ry
 s

ite
 (

pa
rt

ic
ul

ar
ly

 w
hi

te
 b

lo
od

 c
el

ls
)

•
R

ol
e 

in
 c

el
l a

rr
es

t a
nd

 a
dh

es
io

n

(A
pp

ay
 a

nd
 R

ow
la

nd
-J

on
es

, 2
00

1;
 H

ua
ng

 e
t a

l.,
 2

00
0;

 
M

oh
an

 e
t a

l.,
 2

00
2;

 S
pr

in
ge

r, 
19

94
)

Brain Behav Immun. Author manuscript; available in PMC 2022 July 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Vijapur et al. Page 35

Ta
b

le
 4

T
re

el
et

 C
lu

st
er

 S
ta

bi
lit

y 
A

ss
es

sm
en

t.

A
da

pt
iv

e 
Im

m
un

it
y

In
na

te
 I

m
m

un
it

y
So

lu
bl

e 
M

ol
ec

ul
es

A
lle

rg
y 

Im
m

un
it

y
C

he
m

ok
in

es

T
C

1
%

T
C

2
%

T
C

3
%

T
C

4
%

T
C

5
%

IL
-2

83
.0

IL
-1

β
85

.2
sT

N
F

R
I

94
.0

IL
-5

96
.1

IT
A

C
80

.6

F
ra

ct
al

ki
ne

83
.0

T
N

F
α

85
.2

sI
L

-2
R
α

94
.0

IL
-1

3
96

.1
R

A
N

T
E

S
80

.6

IL
-1

2p
70

83
.0

IL
-6

85
.2

sT
N

F
R

II
94

.0

IL
-7

83
.0

M
IP

1β
78

.6
sV

C
A

M
-1

41
.7

IL
-2

1
83

.0
M

IP
3α

77
.3

IF
N
γ

70
.2

IL
-2

3
70

.2

IL
-1

7A
63

.7

IL
-1

0
15

.4
G

M
-C

SF
16

.0
-

-
IF

N
-γ

10
.2

IL
-8

7.
2

IL
-4

13
.6

IL
-8

5.
7

-
-

IL
-1

7A
10

.2
-

-

-
-

-
-

-
-

IL
-2

3
10

.2
-

-

A
 1

00
0-

fo
ld

 it
er

at
iv

e 
bo

ot
st

ra
p 

of
 tr

ee
le

t t
ra

ns
fo

rm
 p

er
fo

rm
ed

 w
ith

 5
 c

lu
st

er
s 

an
d 

a 
cu

t-
le

ve
l o

f 
16

 y
ie

ld
ed

 s
uf

fi
ci

en
tly

 s
ta

bl
e 

cl
us

te
r 

fo
rm

at
io

n.
 T

ha
t i

s 
al

l m
ar

ke
rs

 c
on

ta
in

ed
 in

 th
e 

fi
na

l m
od

el
 a

pp
ea

re
d 

at
 

le
as

t 6
0%

 o
f 

al
l b

oo
ts

tr
ap

pi
ng

 it
er

at
io

ns
, w

ith
 th

e 
ex

ce
pt

io
n 

of
 s

V
C

A
M

-1
 (

41
.7

%
) 

fo
r 

w
hi

ch
 in

cl
us

io
n 

w
as

 ju
st

if
ie

d 
ba

se
d 

on
 b

io
lo

gi
ca

l r
el

ev
an

ce
 to

 o
th

er
 c

lu
st

er
 v

ar
ia

bl
es

. M
ar

ke
rs

 b
el

ow
 th

e 
so

lid
 li

ne
 

w
er

e 
ex

cl
ud

ed
 f

ro
m

 th
e 

fi
na

l t
re

el
et

 m
od

el
 d

ue
 to

 lo
w

 c
lu

st
er

in
g 

pe
rc

en
ta

ge
s.

 E
ve

nt
 r

at
e 

fo
r 

w
hi

ch
 a

n 
in

fl
am

m
at

or
y 

m
ar

ke
r 

w
as

 c
on

ta
in

ed
 b

y 
a 

pa
rt

ic
ul

ar
 c

lu
st

er
 is

 d
en

ot
ed

 b
y 

th
e 

cl
us

te
ri

ng
 p

er
ce

nt
ag

e 
(%

).

Brain Behav Immun. Author manuscript; available in PMC 2022 July 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Vijapur et al. Page 36

Table 5

Univariate Linear Regression-Based Associations Between TC Scores and Demographic and Injury 

Characteristics.

Beta (SE) p-value TC1 Score 
Adaptive

TC2 Score Innate TC3 Score Soluble 
Receptors

TC4 Score Allergy TC5 Score 
Chemokine

Age −0.012 (0.009) 0.004 (0.008) 0.029 (0.007) −0.007 (0.001) −0.001 (0.001)

 n = 185 0.236 0.631 <0.001 0.304 0.831

Sex −0.496 (0.389) −0.026 (0.330) −0.156 (0.285) 0.215 (0.248) −0.148 (0.223)

 n = 185 0.204 0.937 0.585 0.387 0.506

GCS Score −0.096 (0.048) −0.101 (0.042) 0.034 (0.037) −0.007 (0.031) −0.056 (0.028)

 n = 174 0.050 0.018 0.361 0.810 0.049

ISS Score 0.015 (0.015) 0.031 (0.015) 0.011 (0.012) −0.017 (0.009) 0.038 (0.009)

 n = 147 0.314 0.037 0.355 0.079 <0.001

ISS Non-Head Score −0.011 (0.021) 0.001 (0.020) 0.012 (0.017) −0.0156 (0.013) 0.052 (0.013)

 n = 119 0.597 0.977 0.496 0.254 <0.001

Significant associations (p < 0.05) are bolded and trend level associations (p < 0.1) italicized.
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Table 6

Associations between TC Scores and 6- and 12-month GOS Scores.

Treelet Cluster Score Unfavorable 6-month GOS Score Unfavorable 12-month GOS Score

OR [95% CI] p-value OR [95% CI] p-value

TC1: Adaptive 1.07 [0.92, 1.23] 0.411 1.02 [0.87, 1.19] 0.843

TC2: Innate 1.23 [1.0, 1.48] 0.051 1.23 [1.02, 1.48] 0.034

TC3: Soluble Molecules 1.22 [0.99, 1.51] 0.062 1.24 [1.0, 1.54] 0.046

TC4: Allergy 0.85 [0.64, 1.14] 0.2806 0.92 [0.70, 1.21] 0.554

TC5: Chemokines 1.57 [1.14, 2.16] 0.006 1.19 [0.92, 1.54] 0.195

Each line represents a single univariate logistic regression model of unfavorable dichotomized GOS score (2,3). Significant associations (p < 0.05) 
are bolded and trend level associations italicized (p < 0.1).
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Table 7

Associations between TC Scores and 6- and 12-month DRS Scores.

Treelet Cluster Score 6-month DRS Score 12-month DRS Score

OR [95% CI] p-value OR [95% CI] p-value

TC1: Adaptive 1.01 [0.87, 1.18] 0.891 1.01 [0.87, 1.18] 0.861

TC2: Innate 1.14 [0.99, 1.31] 0.072 1.11 [0.97, 1.28] 0.131

TC3: Soluble Molecules 1.25 [1.02, 1.54] 0.034 1.27 [1.03, 1.57] 0.024

TC4: Allergy 0.87 [0.65, 1.16] 0.345 1.01 [0.8, 1.28] 0.923

TC5: Chemokines 1.60 [1.19, 2.15] 0.002 1.11 [0.85, 1.44] 0.441

Each line represents a single univariate ordinal logistic regression model of categorized DRS: 0–3 (partial to no disability), 4–14 (moderate or 
severe disability), 15–29 (extreme severe disability, vegetative state). Significant associations (p < 0.05) are bolded and trend level associations 
italicized (p < 0.1).
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Table 8

Multivariable models for associations between TC Scores and 6-month GOS Scores.

Variable OR p-value Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

Age 1.0 1.0 1.0 1.0 1.0 0.99

0.831 0.952 0.689 0.928 0.938 0.451

Gender 0.70 0.69 0.75 0.70 0.75 0.76

 Male vs. Female 0.432 0.403 0.515 0.427 0.533 0.562

GCS Score 0.77 0.78 0.76 0.77 0.78 0.77

 Best in 24 h p < 0.001 0.001 p < 0.001 p < 0.001 0.001 0.001

TC1: Adaptive
1.0 0.98

0.987 0.837

TC2: Innate
1.12 1.03

0.264 0.787

TC3: Soluble Molecules
1.33 1.32

0.022 0.041

TC4: Allergy
0.85 0.80

0.31 0.251

TC5: Chemokines
1.44 1.29

0.025 0.163

Each model represents a multivariable logistic regression of unfavorable dichotomized GOS score (2,3) adjusting for all covariates. Significant 
associations (p < 0.05) are bolded.
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Table 9

Multivariable models for associations between TC Scores and 12-month GOS Scores.

Variable OR p-value Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

Age 1.0 1.0 0.99 1.0 1.0 0.90

0.884 0.742 0.543 0.872 0.826 0.36

Gender 0.59 0.57 0.60 0.60 0.60 0.57

 Male vs. Female 0.226 0.204 0.26 0.239 0.24 0.215

GCS Score 0.83 0.85 0.82 0.83 0.84 0.83

 Best in 24 h 0.008 0.024 0.006 0.008 0.011 0.014

TC1: Adaptive 0.98 0.91

0.815 0.374

TC2: Innate 1.17 1.18

0.096 0.122

TC3: Soluble Molecules 1.347 1.39

0.015 0.017

TC4: Allergy 0.94 0.94

0.643 0.713

TC5: Chemokines 1.139 0.964

0.361 0.813

Each model represents a multivariable logistic regression of unfavorable dichotomized GOS score (2,3) adjusting for all covariates. Significant 
associations (p < 0.05) are bolded and trend level associations italicized (p < 0.1).
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Table 10

Multivariable models for associations between TC Scores and 6-month DRS Scores.

Variable OR p-value Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

Age 1.01 1.0 1.0 1.0 1.0 0.99

0.688 0.755 0.775 0.76 0.917 0.502

Gender 0.72 0.72 0.77 0.74 0.84 0.80

 Male vs. Female 0.448 0.45 0.544 0.482 0.687 0.619

GCS Score 0.76 0.77 0.75 0.76 0.77 0.76

 Best in 24 h p < 0.001 0.001 p < 0.001 p < 0.001 0.001 p < 0.001

TC1: Adaptive 0.96 0.91

0.587 0.347

TC2: Innate 1.07 1.01

0.362 0.875

TC3: Soluble Molecules 1.37 1.37

0.008 0.016

TC4: Allergy 0.88 0.87

0.402 0.446

TC5: Chemokines 1.459 1.326

0.013 0.100

Each model represents a multivariable ordinal logistic regression of categorized DRS: 0–4 (partial to no disability), 4–14 (moderate or severe 
disability), 15–29 (extreme severe disability, vegetative state), adjusting for all covariates. Significant associations (p < 0.05) are bolded and trend 
level associations italicized (p < 0.1).
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Table 11

Multivariable models for associations between TC Scores and 12-month DRS Scores.

Variable OR p-value Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

Age 0.99 0.99 0.98 0.99 0.99 0.97

0.321 0.284 0.108 0.336 0.313 0.061

Gender 0.71 0.69 0.72 0.71 0.71 0.71

 Male vs. Female 0.423 0.394 0.45 0.419 0.429 0.442

GCS Score 0.84 0.86 0.83 0.85 0.85 0.82

 Best in 24 h 0.014 0.027 0.01 0.016 0.017 0.01

TC1: Adaptive 0.98 0.89

0.755 0.282

TC2: Innate 1.08 1.10

0.302 0.252

TC3: Soluble Molecules 1.46 1.58

0.003 0.002

TC4: Allergy 1.02 1.0

0.858 0.987

TC5: Chemokines 1.061 0.872

0.676 0.402

Each model represents a multivariable ordinal logistic regression of categorized DRS: 0–4 (partial to no disability), 4–14 (moderate or severe 
disability), 15–29 (extreme severe disability, vegetative state), adjusting for all covariates. Significant associations (p < 0.05) are bolded.
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Table 12a

Effects of age and GCS score on TC3 (soluble molecules) and TC5 (chemokines).

Variable Outcome: TC3 Outcome: TC5

Beta (SE) p-value Beta (SE) p-value

Age −0.006 (0.020) 0.746 0.018 (0.016) 0.263

GCS −0.159 (0.087) 0.070 0.004 (0.071) 0.953

Age × GCS 0.004 (0.002) 0.058 −0.002 (0.002) 0.301

Two separate linear regression models for TC3 and TC5 with age, GCS, and age-GCS interaction show how their inclusion as covariates in Table 
8–11 make TC3 more significant. Trend level associations are italicized (p < 0.1).
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Table 12b

TC3-age relationship at different values of GCS.

GCS level dTC3/dAge Delta-method SE p-value

3 0.005 0.014 0.706

6 0.017 0.010 0.075

9 0.029 0.008 <0.001

12 0.041 0.010 <0.001

15 0.053 0.015 <0.001

Each line represents the slopes, standard error (using Delta method), and p-value of TC3 vs. age, at GCS = 3, 6, 9, 12, 15. Significant slopes (p < 
0.05) are bolded and trend level significant slopes italicized (p < 0.1).
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Table 13

Associations Between Inflammatory 1–6 Month Standardized Means and Dichotomized 6-month GOS group 

Using Univariate Logistic Regression.

Standardized Month 1–6 Mean Unfavorable 6-month GOS Score Full Treelet (33 markers) Cluster Membership

OR p-value

IL-7 1.54 0.0146 TC1: Adaptive

IL-21 1.49 0.0181 TC1: Adaptive

IL-1b 1.32 0.0908 TC2: Innate

MIP-3a 1.71 0.0355 TC2: Innate

MIP-1b 1.75 0.0326 TC2: Innate

sIL-2Ra 1.45 0.0500 TC3: Soluble Molecules

sTNFRII 1.64 0.0111 TC3: Soluble Molecules

ITAC 1.63 0.0277 TC5: Chemokines

RANTES 1.71 0.0089 TC5: Chemokines

MIP-1a 2.15 0.0022 DNC

sICAM-1 1.54 0.0187 DNC

sIL-4R 0.60 0.0150 DNC

*DNC: Did not cluster

Only markers indicating a relationship to GOS at a threshold of p < 0.1 are reported. All markers, except sIL-4R, show increased odds of 
unfavorable outcome with higher expression. TC membership, based on the TT dendrogram generated from all 33 markers, is reported for 
reference in order to assess independent contribution of markers from each cluster in outcome distinction.
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Table 14

Univariate Linear Regression-Based Associations Between 6-month GOS-Specific TC Scores (TCGOS) and 

Demographic and Injury Characteristics.

Beta (SE) p-value TC1GOS Score Adaptive 
IL-7, IL-21

TC2GOS Score Soluble 
Molecules sIL-2Ra, 
sTNFRII

TC3GOS Score Innate 
IL-1b, MIP-1b

TC4GOS Score Chemokine 
ITAC, RANTES

Age −0.0036 (0.01) 0.0202 (0.01) −0.0016 (0.01) −0.0012 (0.01)

 n = 185 0.5532 0.0005 0.7828 0.8309

Sex −0.1973 (0.24) −0.2112 (0.23) 0.0482 (0.23) −0.1484 (0.22)

 n = 185 0.4026 0.3596 0.8334 0.5058

GCS Score −0.080 (0.03) 0.0181 (0.03) −0.0804 (0.03) −0.0561 (0.03)

 n = 174 0.0071 0.5399 0.0065 0.0494

ISS Score 0.0216 (0.01) 0.0109 (0.01) 0.0182 (0.01) 0.0376 (0.01)

 n = 147 0.0288 0.2705 0.0745 <0.0001

ISS Non-Head Score 0.0033 (0.01) 0.0115 (0.01) −0.0011 (0.01) 0.0520 (0.01)

 n = 119 0.8113 0.4078 0.9382 0.0001

Significant associations (p < 0.05) are bolded and trend level associations (p < 0.1) italicized.
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Table 15

Associations between GOS-Specific TC Scores (TCGOS) and 6-month GOS Scores.

Treelet Cluster Score Unfavorable 6-month GOS Score

OR [95% CI] p-value

TC1GOS: Adaptive IL-7, IL-21 1.36 [1.07–1.74] 0.0129

TC2GOS: Soluble Molecules sIL-2Ra, sTNFRII 1.42 [1.07–1.88] 0.0153

TC3GOS: Innate IL-1b, MIP-1b 1.35 [1.02–1.8] 0.0390

TC4GOS: Chemokines ITAC, RANTES 1.57 [1.14–2.16] 0.0058

Each line represents a single univariate logistic regression model of unfavorable dichotomized GOS score (2,3). Significant associations (p < 0.05) 
are bolded and trend level associations are italicized (p < 0.1).
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Table 16

Multivariable models for associations between GOS-specific TC Scores and 6-month GOS Scores.

Variable OR p-value Model 1 Model 2 Model 3 Model 4 Model 5

Age 1.0 1.0 1.0 1.0 1.0

0.916 0.798 0.979 0.938 0.73

Gender 0.72 0.67 0.67 0.75 0.68

 Male vs. Female 0.463 0.398 0.378 0.533 0.419

GCS Score 0.76 0.76 0.82 0.78 0.80

 Best in 24 h 0.0009 0.001 0.016 0.0006 0.007

TC1GOS: Adaptive IL-7, IL-21 1.22 0.98

0.135 0.896

TC2 GOS : Soluble Molecules sIL-2Ra, sTNFRII 4.73 4.41

0.007 0.013

TC3GOS: Innate IL-1b, MIP-1b 0.40 0.40

0.116 0.208

TC4 GOS : Chemokines ITAC, RANTES 1.44 1.29

0.0245 0.204

TC2GOS × GCS 0.89 0.89

0.046 0.048

TC3GOS × GCS 1.21 1.18

0.046 0.158

Each model represents a multivariable logistic regression of unfavorable dichotomized GOS score (2,3) adjusting for all covariates. Significant 
associations (p < 0.05) are bolded and trend level associations are italicized (p < 0.1).
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