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Abstract

Hospital-associated infections are a major concern for global public health. Infections with 

antibiotic resistant pathogens can cause empiric treatment failure, and for infections with 

multidrug-resistant bacteria which can overcome antibiotics of “last resort” there exist no 

alternative treatments. Despite extensive sanitization protocols, the hospital environment is a 

potent reservoir and vector of antibiotic resistant organisms. Pathogens can persist on hospital 

surfaces and plumbing for months to years, acquire new antibiotic resistance genes by horizontal 

gene transfer, and initiate outbreaks of hospital-associated infections by spreading to patients via 

healthcare workers and visitors. Advancements in next-generation sequencing of bacterial 

genomes and metagenomes have expanded our ability to 1) identify species and track distinct 

strains, 2) comprehensively profile antibiotic resistance genes, and 3) resolve the mobile elements 

that facilitate intra- and intercellular gene transfer. This information can, in turn, be used to 

characterize the population dynamics of hospital-associated microbiota, track outbreaks to their 

environmental reservoirs, and inform future interventions. This Review provides a detailed 

overview of the approaches and bioinformatic tools available to study isolates and metagenomes of 

hospital-associated bacteria, and their multi-layered networks of transmission.
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INTRODUCTION

Over the course of several days, the owner of the quintessentially gloomy Gothic mansion, 

the House of Usher [1], quietly confesses to the Narrator his belief that the source of the 

mysterious illness which has plagued him and his family for generations—is the house itself. 

He is possessed by the idea that his house is alive and has exerted its “silent, yet importunate 

and terrible influence” by repeatedly infecting his family with an unexplainable disease. 

While such supernatural forces are securely confined to the pages of Poe’s short stories, it is 

possible for a building to repeatedly infect people with the same pathogens. Fortunately, this 

is a problem which can be addressed far less dramatically than dumping the building into a 

lake.

Nosocomial, or hospital-acquired infections (HAI, also referred to more generally as 

“healthcare-associated infections”) are caused by pathogens whose source is within the 

hospital [2]. These pathogens can contaminate and persist on high-contact surfaces such as 

light switches, call buttons, and bedside rails, as well as the building’s plumbing, and they 

can be transmitted between patients via healthcare workers and visitors [3] (Fig. 1a). In 

United States (US) acute care hospitals, 4% of patients have one or more HAIs, with 11.5% 

of these patients dying during hospitalization [4]. Critically-ill and immunocompromised 

patients in intensive care units (ICUs) are the most vulnerable to HAIs due to severe 

underlying diseases and indwelling devices that provide an entryway for pathogens [5–7]. A 

study of 15,202 patients worldwide reported that 21% of ICU patients had an ICU-acquired 

infection, and ICU-acquired infections were independently associated with higher risk of in-

hospital mortality compared with community-acquired infection [8].

Of special concern are HAIs caused by antibiotic-resistant (AR) organisms [9,10]. The 

widespread use of antibiotics and antimicrobials in hospitals, with 50% of hospitalized 

patients and 70% of ICU patients receiving at least one antibiotic during their stay [4,8], 

make these buildings a hotspot for the evolution of antibiotic and multidrug-resistant (MDR) 

pathogens [11]. In the US, more than 2.8 million AR infections occur each year, resulting in 

more than 35,000 deaths [12]. Between 2007 and 2015, the European Union saw a 2.5-fold 

increase in the number of infections and deaths attributed to AR organisms [13]. Central to 

the efforts to combat AR is the recognition that it is a product of selective pressures present 

in nearly all ecological habitats, driven by diverse bacterial taxa via multiple molecular 

mechanisms [14].

Studies of hospital-associated microbiota are guided by three main questions: 1) What 

species are present? 2) What AR genes do they have? and 3) Can those genes be mobilized? 

These questions can be targeted to isolates of known HAI-causing pathogens, or 

comprehensively surveyed using patient and hospital environment metagenomic samples. 

Further, longitudinal sampling coupled with comparative genomics can track transmission of 

MDR bacteria (Fig. 1a), as well as the mobilization of their AR features between species and 

genetic elements (Fig. 1b), allowing researchers to track the multiple layers of strain and 

gene transmission during HAI outbreaks. Recent developments in next-generation DNA 

sequencing (NGS) technologies as well as question-specific approaches have empowered 

Blake et al. Page 2

Cell Mol Life Sci. Author manuscript; available in PMC 2022 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



researchers to analyze genomic and metagenomic datasets at the high-resolution needed to 

accurately track the transmission of MDR bacteria and their genetic elements. This work 

can, in turn, inform infection prevention practices and gauge future outbreak risks [3].

In this review, we will summarize the approaches and bioinformatic tools available to study 

hospital-associated MDR bacteria, evaluate their strengths and weaknesses, and provide 

examples of their successful use.

SURVEYING TAXONOMY AND TRACKING STRAINS

Global public health organizations prioritize HAI-causing and MDR bacteria in different 

ways, but they all include the same key players. The Infectious Disease Society of America 

terms the pathogens responsible for the majority of HAIs, “ESKAPE” pathogens [15,16]. 

ESKAPE stands for Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, 

Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species. It also refers 

to these species’ abilities to “escape” killing by antibiotics [17]. (Some groups also include 

Escherichia coli, making the acronym “ESKAPEE”). The US Centers for Disease Control 

(CDC) prominently features ESKAPE pathogens in its list of 18 AR pathogens [12], 

categorized based on level of concern to human health—urgent, serious, or concerning—as 

does the World Health Organization’s (WHO) “priority list” of 12 pathogens [18], 

categorized based on the need for new antibiotics to treat them—critical, high, or medium. 

Given their propensity for causing HAIs, hospital surveillance efforts should pay special 

attention to ESKAPE pathogens.

However, ESKAPE and other nosocomial pathogens represent only a small fraction of the 

microbial diversity in the hospital environment (relative abundance <0.5%) [19]. While 

regular cleaning and disinfecting protocols keep the microbiota in the built environment of 

the hospital much less taxonomically diverse than other environments, hospitals are far from 

sterile [20,21]. Metagenomics have quickly altered the field of microbiology by shifting 

focus from bacteria as isolated players, to members of a dynamic environment which 

actively exchanges genetic materials and competes against one another. Here, we refer to the 

hospital microbiome as the microorganisms inhabiting the hospital environment (e.g., 

surfaces, plumbing). This includes nonpathogenic “environmental” bacteria which may not 

be the root cause of clinical infections, but can influence the pathogens that do. The hospital 

microbiome is a reservoir of AR genes that can be exchanged between environmental and 

disease-causing pathogens via conjugative plasmids [20], and can facilitate the persistence 

of MDR bacteria through the formation of biofilms [22]. Another potent reservoir of AR 

genes and hotspot for genetic exchange is patient-associated microbiomes (e.g., gut and skin 

microbiomes). These can “seed” the hospital environment with MDR bacteria, which can 

then be transmitted to other patients [21], making the hospital environment is both a 

reservoir and vector of AR genes and HAI-causing pathogens (Fig. 1a). Therefore, any 

survey of the taxonomic and functional diversity of hospital-associated microbiota is 

woefully incomplete if it does not consider the complete hospital and patient microbiomes.

Historically, technological limitations forced researchers to choose between one group or the 

other—a detailed picture of key pathogens without consideration for the “unculturable 
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majority,” or a complete but low-resolution sketch of the patient or hospital microbiome. 

However, by applying multiple approaches and technologies in parallel, recent studies have 

been able to construct the most complete picture of hospital-associated microbiota, paying 

appropriate attention to both the pathogenic and environmental bacteria. Below, we describe 

each of these technologies, the kinds of questions they can be applied to, and their 

limitations.

Identification of single taxon isolates

The most basic method of identifying a bacterial species is through selective culture. Here, a 

clinical or environmental sample is streaked onto agar-based media containing specific 

nutrients and/or antibiotics, and then incubated aerobically or anaerobically. The 

combination of these factors supports the growth of specific species, with a heavy bias for 

ESKAPE and other human pathogens. Selective culturing alone can be used to identify 

species, or as a preliminary step before more in-depth characterization. However, selective 

culture assays are fundamentally limited by the growth rate of the bacteria, thereby forcing 

microbiologists, clinicians, and patients to wait for the results, and subsequent modifications 

to treatment. This delay can be extended by days or weeks if further testing (e.g., antibiotic 

susceptibility or biochemical testing) is needed. Additionally, species that are slow-growing, 

at low abundance, or simply cannot grow in the conditions tested will be overlooked by this 

method. Alternatively, for fastidious microorganisms whose culture is either impractical or 

unreliable (e.g., pathogens associated with sexually transmitted diseases), nucleic acid 

amplification testing (NAAT) targets specific genetic sequences for amplification by 

polymerase chain reaction (PCR) and fluorescent probe-based detection [23,24].

Within the past decade, clinical microbiology laboratories have begun a revolutionary shift 

away from solely relying on selective culture-based identification to adopting matrix-

assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) 

[25]. MALDI-TOF takes advantage of the fact that each species has a unique assortment and 

composition of cell products. This results in a distinct mass-to-charge (m/z) ratio pattern, 

which can then be compared to a large database of characterized organisms to match the 

sample with a known species. This approach enables the rapid identification of genera and 

species from isolates or even direct clinical samples. For example, Mycobacterium are 

notoriously slow and fastidious growers, typically taking 7–21 days to grow by conventional 

culture-based identification methods, but MALDI-TOF has reduced the time to identification 

from weeks to hours [26]. However, the principal crux of MALDI-TOF is its reliance on a 

pre-defined database. This is not a problem for well-studied species, such as HAI pathogens, 

but it can lead to the misidentification of rarer or less characterized species. For example, in 

one study MALDI-TOF misidentified 27/289 isolates, including isolates belonged to a novel 

genus of MDR Enterobacteriaceae, Superficieibacter electus [21]. To overcome such 

limitations, the databases for MALDI-TOF MS are constantly undergoing updates and 

expansions for improved characterization of diverse taxa and environments [27–29].

While the above methods can identify taxa using growth phenotypes, unique DNA 

fragments or biophysical properties, the most high-resolution picture of a microorganism 

comes from sequencing its genome. The ever-decreasing costs of NGS technologies [30] 
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have enabled their adoption by microbiology labs for isolate identification. Whole genome 

sequencing (WGS) enables the de novo assembly of bacterial isolate genomes, and study of 

their genetic contents and architectures [31,32]. Briefly, DNA is extracted from the isolate 

sample, fragmented into the appropriate length for the sequencing platform, tagged with 

unique barcodes, and sequenced. Each sequenced fragment constitutes a “read,” and 

overlapping reads can be assembled into longer stretches of contiguous DNA sequences, 

called “contigs.” Assembly of this WGS data into genomes is accomplished using 

bioinformatic tools such as Velvet [33], SPAdes [34], and Unicycler [35]. Other tools, such 

as Quast [36], can then assess the quality of an assembly by looking at several factors 

including the length distribution of contigs, percentage of unresolved bases, and overall 

coverage of the genome. Species assignments can then be made in silico using MASH [37], 

or, for more in-depth characterization (e.g., if MASH doesn’t agree with the MALDI-TOF 

assignment), RNAmmer to identify the 16S sequence [38] (described in detail in the next 

section) followed by submission to the EzBioCloud taxonomic database [39]. The genome’s 

open reading frames can then be identified and annotated using Prokka [40].

WGS has been used to track multiple outbreaks of MDR organisms, including vancomycin-

resistant E. faecium (VREfm) [41], MDR Sphingomonas koreensis [42], and K. pneumoniae 
carbapenemase (KPC)-producing E. coli [43]. Additionally, WGS can be a powerful tool to 

confirm or re-evaluate species identifications of clinical samples made by more traditional 

methods. For example, K. variicola, a relative of the more well-known ESKAPE pathogen 

K. pneumoniae, has quickly become recognized as an emerging pathogen in its own right, 

and K. variicolia-infected patients have a higher mortality than K. pneumoniae-infected [44]. 

However, WGS analyses revealed that 2–10% of isolates designated as K. pneumoniae by 

selective culture and MALDI-TOF had been misidentified, and were actually K. variicola 
[45–47].

Studies of isolate genomes are more accurate—and therefore more useful for strain tracking 

(see later section)—if the reads can be assembled into a complete, contiguous sequence. 

However, the process of fully assembling a genome using short-read WGS data alone is 

notoriously difficult because of highly repetitive elements that exist at multiple sites 

throughout the chromosome. These challenges can be mitigated through the use of long-read 

sequencing technologies. Platforms such as single-molecule real-time sequencing (SMRT or 

PacBio) and nanopore sequencing, can produce reads of >10 kb to over 100 kb [48,49]. As a 

result, they generate fewer, longer contigs per genome, which span the repeat elements that 

confound WGS assembly. As of the time of writing, long-read sequencing of a bacterial 

genome is about twice as expensive as short-read. While still affordable for a small subset of 

genomes, long read sequencing can become prohibitively expensive for large-scale projects 

involving hundreds of isolates. For this reason, most researchers choose to perform long-

read sequencing on subsets of isolates—a decision typically guided by first performing 

WGS or antibiotic susceptibility test (AST) (described in detail in a later section) to identify 

isolates of interest. Long-read technologies are characteristically less accurate (75–90%) 

than short-read Illumina sequencing (99.8%) [48,50]. While the errors of PacBio sequencing 

are random and therefore can be corrected by increasing the coverage, the errors of nanopore 

sequencing are non-random (i.e. occur in specific nucleotide patterns) [51]. But this can be 

mitigated with hybrid assembly which uses both short- and long-reads, or where long-read 
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assembly is followed by short-read error correction [52] using tools like Unicycler [35] and 

hybridSPADES [53], respectively. Even with low coverage, long-read hybrid assembly is 

able to resolve repetitive elements and gaps in the relatively inexpensive short reads, 

resulting in a cost-effective mode of obtaining high-quality, closed genomes [54].

Metagenomic approaches for community surveys

To survey the entire taxonomical landscape of the hospital microbiome—including the 

“unculturable majority”—many studies have turned to metagenomic techniques. The 16S 

rRNA gene is highly conserved within bacterial species [55], making it an ideal candidate 

for phylogenetic studies [56]. In 16S rRNA gene amplicon (16S) sequencing [57,58], 

conserved regions of this gene are amplified through PCR and then sequenced. Sequenced 

reads are assigned to bacterial taxa by comparing reads against known databases [59], or by 

grouping similar sequences into Operational Taxonomic Units (OTU) [60]. However, using 

16S data to estimate the relative abundances of taxa can be potentially misleading, as DNA 

extraction and PCR amplification steps are prone to bias [61]. This can be mitigated through 

the use of amplicon sequence variants (ASV), which can “denoise” sequencing data of the 

amplification and sequencing errors, and then be organized into OTUs or be used as their 

own unit of analysis [62]. Moreover, by only sequencing a small fragment of the bacterial 

genome (i.e. the rRNA gene), 16S sequencing is limited to species-level resolution and is 

blind to other gene functions of interest, such as AR. Some of the earliest efforts to 

characterize hospital-associated microbiota using high-throughput metagenomic sequencing 

involved the use of 16S rRNA in neonatal intensive care units (NICU) [63]. For example, a 

study examining the guts of premature infants showed that the dominating taxa were similar 

to those on hospital surfaces, especially feeding and intubation tubing [64].

While WGS is limited to single-genome isolates, and 16S sequencing only sequences small 

fragments of the metagenome, whole metagenome shotgun (WMS) sequencing conducts 

short-read sequencing on all DNA present in a sample. This facilitates the characterization 

of both the taxonomic and functional makeup of complex metagenomes. The resolution of a 

WMS dataset depends on the number of sequenced reads and the complexity of the sample 

(i.e. the higher the resolution and/or the greater the complexity, the more reads that are 

required). However, the more reads generated per sample, the more expensive the 

sequencing becomes. Deep-whole metagenome shotgun sequencing can resolve strain-level 

taxonomic and functional information, but the number of reads required (e.g., 2.5 billion 

reads for “ultradeep” sequencing) may be prohibitively expensive for large-scale studies 

[65]. On the other hand, “shallow” shotgun sequencing uses as few as 0.5 million reads, but 

can still resolve species-level taxonomic information and functional profiling [65]. The cost 

of shallow shotgun sequencing is comparable to 16S, but provides more information, at a 

higher resolution, with better reliability. After sequencing, taxonomic profiling of the 

metagenomic sample, such as composition and relative abundances, can then be determined 

using tools such as MetaPhlAn2 [66] or Kraken [67], and functional profiling of the 

metagenome at the species level with HUMAnN2 [68].

WGS and WMS sequencing are not mutually exclusive and can be used in concert. For 

example, WGS and WMS have been used together to identify the gut microbiota as the 
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source of several blood-stream infections in immunocompromised hematopoietic cell 

transplantation recipients [69]. Here, the genomes of infection-causing blood isolates of E. 
coli and K. pneumoniae were matched to closely-related strains in the patients’ stool—in 

one instance, with zero single nucleotide polymorphisms (SNPs) between the blood-stream 

isolate and stool strain—strongly suggesting the gut was the source of this pathogen.

Taking a step further, the de novo assembly of metagenome-assembled genomes (MAG) has 

been a longstanding goal in microbiome research. Assembly using WMS data is more 

complicated than for single-isolate WGS because the algorithms need to account for 

unknown abundances of different organisms with unknown phylogenetic relationships [70]. 

To overcome these challenges, several metagenome-specific assemblers have been 

developed for use with short-read sequencing data, including MEGAHIT [71], MetaSPAdes 

[72] and MetaVelvet [73,74]. However, the limitations of short reads coupled with 

microbiome challenges—low species abundance, high strain diversity, and low recovery 

rates for some phyla—means this approach usually generates incomplete draft genomes of 

varying quality [75] by “binning” similar contigs based on sequence composition and 

coverage [76,77]. However, as binning quality relies on the size and contiguity of the 

assembly (i.e. fewer longer contigs per genome increases sensitivity and specificity), this 

effort can be improved with long-read sequencing. For example, Lathe is a workflow for 

extracting high molecular weight DNA from stool, followed by long-read assembly with 

short-read error correction [78]. Alternatively, hybrid metagenomic assemblers which 

combine long reads with short reads, such as OPERA-MS [79], have been shown to provide 

strain-resolved genomes with greater base pair accuracy and contiguity than non-hybrid 

assemblies, and may be preferred where low-coverage long-read sequencing data is 

available.

Despite the advantages of metagenomic sequencing over the laborious process of large-scale 

isolation of culturable pathogens, it often cannot provide detailed genomic characterization 

of the key pathogens that drive HAIs because these are generally present at low relative 

abundances (<0.5% on hospital surfaces) [19]. The middle-ground between these approaches 

is culture-based enrichment (aka quasi-metagenomics, sweep metagenomics), whereby a 

metagenomic sample is first enriched for target organisms or phenotypes using growth 

medium, and “sweeps” from agar plates are sequenced—as opposed to single colonies. To 

shift the distribution of a metagenomic sample away from abundant environmental or 

commensal species and toward low-abundance drug-resistant pathogens, samples can first be 

enriched in broth and then the mixed culture be plated on antibiotic-containing media [19]. 

Alternatively, to infer the population structure of a target organism, samples can be plated 

directly onto antibiotic-free agar [80]. Culture-based enrichment and nanopore sequencing 

has been used on hospital surface samples, generating 2,347 high-contiguity genomes, 1,693 

phage sequences, and 5,910 closed plasmid sequences (1,400 containing AR genes), >60% 

of which were novel [19]. This led to the observation that, while MDR organisms were 

widely distributed and persistent across sites, the bacterial communities associated with 

high-touch surfaces (e.g., bed rail, bedside locker, cardiac table) are taxonomically distinct 

from hospital plumbing (e.g., sink traps and aerators), which are known reservoirs of 

outbreak-associated pathogens [81,20,82]; however, many specific pathogens and AR genes 

are more common in the high-touch sites. Further, the two community types harbor distinct 

Blake et al. Page 7

Cell Mol Life Sci. Author manuscript; available in PMC 2022 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



AR genes, with the high-touch surfaces carrying a wider diversity at lower frequencies—

underscoring the distinctness of hospital environments as AR gene reservoirs.

Tracking strains across samples

Study of HAI outbreaks are not only motivated by questions about the identity or 

composition of individual samples, but also by how they compare to samples from other 

sites or patients, and change over time. Once the identity or composition of a sample is 

determined using the above methods, comparative genomics can then be used to evaluate 

their similarity to other samples. Further, as outbreaks can be caused either by the repeated 

transmission of a single strain or the sporadic introduction of several distinct strains, 

determining the level of relatedness between genomes sampled from different sites and 

patients at different timepoints can provide insights into the epidemiology of an outbreak 

and inform decisions about how to best intervene.

Evaluating genome similarity at the species level typically involves pairwise comparisons 

and quantification of average nucleotide identity (ANI), the average percentage of 

nucleotides which are identical between two genomes. An ANI of least 96% is considered 

the minimum threshold for two samples to be considered the same species [83], and ever 

more stringent thresholds have been used to define strains (>99.9% ANI) [42], strain 

derivatives (>99.99% ANI) [20], and direct strain transfers (>99.999%) [84]. However, at 

these sub-species levels, ANI’s resolution diminishes and may no longer be appropriate. 

While there is no defined consensus, most studies rely on some form of genomic distance 

cutoff—a maximum threshold for mutational divergence between two samples. (Table 1 is a 

list of studies and their selected methods for identifying and tracing strains.)

A fundamental question for determining mutational distance is whether to compare the 

whole genome or just the core genes. The core genome refers to the subset of genes that are 

shared among most or all strains of a species [85]. Because they are evolutionarily 

conserved, mutations in core genes often reflect true phylogenetic relationships [86]. Tools 

such as Roary [87] allow this core gene/accessory gene distinction, which can then be 

applied using other tools for downstream analyses such as RAxML [88] to construct 

phylogenetic trees, and fastGEAR [89] and BAPS [90] to distinguish strains. However, core 

genome distance alone is somewhat limited in that it willfully ignores intergenic regions and 

any gene that is not present in all samples, potentially losing information about accessory 

genes and intergenic regions which can be important for phylogeny. Nevertheless, core- and 

whole-genome alignments are significantly correlated [21], making core genome alignment 

a computationally efficient mode of comparing conserved functions.

Once a method for genome alignment has been chosen, relatedness is typically determined 

by SNP distances between the isolates. In practice, strains are generally understood as sub-

groups within a species that share genotypic and phenotypic characteristics [91]. However, 

there is no universal SNP distance threshold that defines strain-level relatedness, and as such 

the cutoff varies from study to study [92]. Stringent cutoffs, such as less than 10 SNPs, allow 

for researchers to argue for clonality [69]. However, other studies have set their cutoffs at 20 

to 100 SNPs [93–95] (Table 1). In general, the literature has been permissive towards 

independently determined cutoff values so long as they are reasonably conservative about 
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claiming “clonality,” and establish a clear numerical gap between those that are related and 

those that are not. A good way to do this is to first calculate all pairwise distances between 

isolates [21], and identify a natural “elbow” in the curve. This will be the point at which the 

distribution splits into two, and most likely (in a multi-patient study) where within-patient 

and between-patient comparisons separate. For example, in a comparative study of the gut 

commensal Bacteroides fragilis, isolates from the same patient differed by fewer than 100 

SNPs, while those from different patients were on average more than 10,000 SNPs different 

[96]. Metadata about the isolates’ sampling site or timepoint can also provide additional 

context and biological support for interpreting distance cutoffs.

Another factor to consider when comparing genomes what will be used as the reference 

genome. Many studies choose to use a well-annotated, external reference that is known to be 

closely related to the samples at hand [97]. For instance, in a study on chronic infections of 

Burkholderia multivorans in cystic fibrosis patients, the authors annotate polymorphisms 

within a given population by referring to the well-annotated AU0158 reference genome 

derived from the same outbreak [97]. However, this approach relies on the assumption that 

their isolates are closely related to the reference and may lose resolution on genomic regions 

unique to the samples. In contrast, studies with longitudinally collected samples may choose 

to use the first isolate obtained as the reference, and interpret subsequent isolates as 

representing mutations accumulated since the initial infection event [95]. This longitudinal 

interpretation should be approached with caution, however, as it relies on sampling methods 

that are representative of the diversity within the cohort, as well as accurate representation of 

the initial infection event itself. What may appear to be a longitudinal evolutionary trajectory 

may actually be the coexistence of multiple strains within a sample set that are being 

sporadically sampled and sequenced. Still another potential reference is simply to select the 

best quality (i.e., the most contiguous and complete) draft genome [69]. These approaches 

are not mutually exclusive, and some studies have opted to take a multi-step approach: first 

using a publicly available genome as reference, building a phylogeny demonstrating that 

clades are grouped by patient, and then constructing patient-specific draft genomes for 

higher resolution analyses [96]. As such, it is advised that researchers select a reference 

genome appropriate for the biological questions at hand, while maintaining a high assembly 

quality and rigorous sampling practices.

Accurate quantification of genomic distances in these ways requires high-quality assemblies, 

but other methods for resolving strains can be used when this is not available. Multilocus 

sequence typing (MLST) is a simple, curated way to consider strain types without 

introducing an arbitrary mutational threshold. MLSTs are defined on a per-species basis as 

specific mutational patterns on a set of five to seven housekeeping genes. Strain types (STs) 

have been defined for more than 100 microbial species and genera, making it the “gold 

standard” of typing [98,99]. While traditionally determined through targeted PCR and 

Sanger sequencing, recent advancements in NGS have enabled the accurate in silico typing 

of samples from WGS [100]. Alternatively, some species, such E. coli, are more broadly 

categorized and referred to in terms of phylogenetic groups A-F (phylogroups). Phylogroups 

are members of the same species, but differ in biological characteristics such as ecological 

niche and virulence [101,102]. Like MLST, phylogroups had been originally determined by 

PCR [103], but in silico predictions of phylogroup based on WGS are also available [104].
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Surveying hospital-associated microbiota is a complex endeavor which can be addressed 

using several approaches. The method(s) chosen will ultimately depend on the available 

resources (e.g., sample types, analytical expertise, access to equipment) as well as the 

biological questions at-hand. For example, a study interested in the long-term adaptations of 

a pathogen within a host or environmental site would benefit from longitudinal sampling of 

multiple isolates per timepoint with WGS, while a similar study expecting to observe cross-

species and cross-genera interactions may instead opt for WMS sequencing. Additionally, a 

study interested in surveilling pathogens in the hospital environment could sample many 

patients and surfaces, but limit the total number of samples per person and surface or focus 

exclusively on MDR organisms. Regardless, a great strength to NGS-based approaches is 

that once sequenced, the resulting dataset can be shared publicly and re-analyzed using 

different bioinformatic tools to answer other questions (e.g., AR gene repertoire, presence of 

MGEs).

PROFILING ANTIBIOTIC RESISTANCE

Effective surveillance of hospital-associated microbiota requires knowledge of not only 

which species are present, but also what their antibiotic resistances and susceptibilities are. 

AR genes have existed in bacterial populations for tens of thousands of years [105], but 

industrial production and extensive anthropogenic use of antibiotics has imposed immense 

selection pressures which results in the amplification, diversification, and dissemination of 

resistance on a global scale [106]. AR is usually genetically encoded and can arise through 

mutations such as gene duplication [107], overexpression and point mutations [108], or the 

acquisition of fully-functioning genes via horizontal transfer [109,108]. (Non-genetic 

mechanisms of resistance, such as tolerance and persistence, have been reviewed in 

[110,111].) Mechanistically, antibiotic resistance can be achieved in three ways: 1) keeping 

the antibiotic out of the cell through decreased cell permeability or production of efflux 

pumps, 2) altering the antibiotic cellular target of the antibiotic through mutation, increased 

expression, or production of protection proteins, and 3) degrading the antibiotic molecule by 

production of antibiotic-inactivating enzymes [112,113]. The resistome is the sum total of all 

AR genes in a microbiome [114,115].

AR can lead to primary treatment failure, requiring the use of “reserve” or “last resort” 

antibiotics, whose use should be withheld except for the treatment of MDR infections that 

have exhausted all alternatives, such as the carbapenems, colistins, and third-generation 

tetracyclines [116,117]. However, even highly-resistant strains can continue to acquire AR 

genes, including those against antibiotics of last resort for which there are limited treatment 

options [18,12]. Often these drugs were initially abandoned due to unacceptable toxicities, 

but have since been revisited because they are the only remaining options. Plasmid-mediated 

resistance determinants against reserve antibiotics are significant AR threats, particularly the 

blaNDM1 and blaKPC carbapenemases [118–121] and QNR quinolone resistance proteins 

[122–124]. On the other hand, some AR genes, such as the tet(X)-like tetracycline 

destructases [125] and mcr-1 colistin resistance gene [126], are similarly globally-distributed 

and capable of causing resistance against reserve antibiotics, but are rarely observed in 

clinical samples. While not an immediate threat, these genes’ potential for broad 

dissemination into human pathogens warrants special attention and highlights the 
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importance of surveilling environmental and human commensal metagenomes for novel AR 

genes [127].

Genotypic resistance can be determined using the same WGS and WMS data used to 

determine taxa, and declining sequencing costs have coincided with an ever-increasing 

catalog of known resistance genes [113]. A survey of resistance proteins in the UniProt 

database [128] showed that since 1986 there has been an exponential increase in the number 

of resistance determinants classified as β-lactamases, chloramphenicol acetyltransferases or 

tetracycline efflux pumps [129]. In recent years, studies of the resistome have expanded 

from single isolates to entire microbial communities, shedding light on the importance of 

environmental microbiomes as a reservoir for diverse genotypes [130,131]. Additionally, 

recently-developed rapid diagnostic tools, which infer resistance based on growth 

phenotypes, promise to accelerate the timeline for when clinical microbiologists and 

physicians can determine the resistance profile of an HAI, and tailor treatment accordingly 

[132,80,133]. Here we highlight some of the main methods for investigating the resistome 

and examples of their application in the clinic.

Traditional methods for AR detection

Determining the resistances and susceptibilities of the clinical isolate underlying a HAI can 

refine treatment from broad-spectrum antibiotics—which indiscriminately kill the “good” 

commensal bacteria along with the pathogen, selecting for resistance and potentially leading 

to dysbiosis—to targeted, narrow-spectrum antibiotics. AR has traditionally been assayed by 

ASTs, which are culture-based assays that determine the concentration of antibiotic required 

to inhibit the growth of an isolate [134]. ASTs can be performed on solid media using 

Kirby-Bauer disks and gradient-diffusion strips, or in liquid media using microbroth 

dilutions. These data are then compared to standards (aka clinical breakpoints) published by 

the Clinical and Laboratory Standards Institute (CLSI) [135] and the European Committee 

on AST (EUCAST) [136] to be translated into resistance categories (resistant, intermediate, 

or susceptible). These assays continue to be widely used in hospital clinical microbiology 

laboratories because they provide actionable data to guide patient treatment decisions. 

However, ASTs have several limitations which make them unsuited for large-scale 

surveillance of antibiotic resistance. First, they require cultured isolates, precluding insight 

into the resistome of the overall community. Second, they rely on published standards to 

interpret the results, which may be incomplete for the antibiotic or species in question, may 

utilize outdated methodology, or may conflict with the guidelines of other agencies [137]. 

Lastly, AST have low-resolution on the genetic underpinnings of resistance; however, 

screening of environmental or agricultural isolates using ASTs followed by WGS has led to 

the identification of many novel AR genes [138,139].

A more high-throughput method of AR determination is multiplexed PCR. Panels of DNA 

primers and probes target and amplify known AR gene markers for numerous drug classes 

including methicillin [140], carbapenems [141], and tetracyclines [142]. Further, diagnostic 

kits such as the TaqMan Array Card (TAC) [143] target both AR genes and taxa-specific 

sequences, enabling the simultaneous detection of pathogens and specific AR genes. The 

quick turnaround rate of this approach enables rapid diagnosis of patients, and it is effective 
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with sample types that have a low abundance of bacterial DNA and high abundance of 

contaminating human DNA (e.g., blood), which next-generation sequencing technologies 

have difficulty with. However, multiplexed PCR can only detect AR genes for which it has 

primers, ultimately making a comprehensive analysis of an entire resistome unfeasible.

NGS-based identification and discovery of AR genes

Analyzing WGS and WMS data for the presence of AR genes can predict functional features 

of bacteria without the laborious effort of culturing isolates and performing and interpreting 

ASTs or multiplexed PCR reactions. (Sequencing-based methods for AR gene detection are 

comprehensively reviewed in [113].) Assembly-based tools directly identify AR genes in 

assembled genomes, generated using the WGS and WMS tools described in the previous 

section, by predicting protein-coding regions and comparing them with AR gene databases. 

Resfinder [144] uses BLAST-based methods to identify resistance genes from bacterial 

isolate genomes, while Pointfinder [145] detects chromosomal point mutations associated 

with antibiotic resistance, and the Resistance Gene Identifier (RGI) [146] uses both pairwise 

comparisons and curated AR detection models to annotate AR genes. An additional bonus of 

assembly-based tools is the ability to determine the genetic contexts of AR genes by 

analyzing up- and downstream elements. These can include mobile elements which can 

facilitate the intra- or intercellular transfer of the AR gene, providing greater evidence for 

claims of horizontal transfer (described in more detail in a later section). Read-based tools, 

on the other hand, do not rely on prior assembly and can detect AR genes by directly 

aligning reads against reference databases, or splitting reads into k-mers (subsequences of a 

length k) prior to a database search. SRST2 [147] and KmerResistance [148] are examples 

of each, respectively. These tools can identify AR genes in contaminated samples as well as 

low-abundance organisms, which would be unfit for de novo genome assembly. Though 

read-based tools lose contextual information about the position of genes within a genome 

and are prone to reporting false-positives due to sequence homology, by skipping de novo 
assembly and protein-coding prediction, they are typically faster and less computationally 

demanding than assembly-based tools.

As both methods are reliant on mapping to AR gene databases, it is important that the 

database used is up-to-date and appropriate for the sample type. Some AR gene databases 

are general, such as CARD (Comprehensive Antibiotic Resistance Database) [146], while 

others are specialized towards specific AR gene families (e.g., LacED (Lactamase 

Engineering Database) [149] and the Tuberculosis Drug Resistance Database [150]). Using 

multiple databases can mitigate some of the biases inherent to a single database, but this 

approach will still be restricted to the identification of known AR genes. However, a potent 

counterbalance to this limitation is the ability to re-analyze sequencing datasets or perform 

targeted PCR on stored isolates when a new AR gene is discovered.

For example, the discovery of the plasmid-mediated mcr-1 colistin resistance gene [138] was 

significant because resistance to polymixins (an antibiotic of last resort) thus far had only 

involved chromosomal mutations. mcr-1, therefore, opened the door for cause rapid global 

dissemination of resistance against this antibiotic of last resort. However, it wasn’t 

immediately clear what the current the status of this spread was. The authors retrospectively 
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identified mcr-1 in 16/1,322 (1%) Enterobacteriaceae clinical isolates from two Chinese 

hospitals, but the full extent of its spread, both taxonomically and geographically, was 

unknown. Within months of that initial report, multiple retrospective analyses of clinical and 

environmental isolates using WGS and PCR were published in rapid succession, which 

collectively showed that the gene had already spread, undetected, into several pathogenic 

species cultured in many other countries around the world [151–157]. Now, mcr-1 is a staple 

of AR gene databases, allowing it to be easily identified in WGS and WMS studies.

Several studies have aimed to characterize the resistomes of complex metagenomic samples, 

such as the human microbiome. However, referencing a large database of full-length AR 

genes can be computationally demanding for these complex metagenomic datasets, and the 

strict cutoffs for pairwise alignments can miss remote homologs and novel AR genes. As an 

alternative approach, ShortBRED (Short, Better Representative Extract Dataset) [158] 

constructs “markers,” short peptide sequences conserved within a protein family but distinct 

from other families, for AR gene families. Reads are then mapped to these marker sets, 

which can determine both the prevalence and abundance of AR genes in a bacterial 

community [159,131]. Another method is to use a database built using profile hidden 

Markov models (HMM), such as Resfams [160], instead of full-length protein sequences. 

Profile HMMs are statistical models trained on multiple-sequence alignments of genes with 

a known function. These are widely used for protein annotation [161,162], and the authors 

of ResFams showed it could identify 64% more AR genes in soil and human gut 

metagenomes than pairwise alignment with the CARD and ARDB (Antibiotic Resistance 

Genes Database) databases [160,163].

While the above in silico methods can detect known AR genes, functional metagenomics is a 

sequence-unbiased approach which can characterize resistomes and identify novel AR genes 

using the selective power of ASTs, without the laborious effort of culturing and screening 

isolates [164]. Functional metagenomic libraries are created by extracting total metagenomic 

DNA from a sample, packaging DNA fragments into an expression vector, and transforming 

that library of vectors into a susceptible host (typically E. coli). The library can then be 

screened for resistance via plating on antibiotic-containing media (or in other conditions 

when assaying for different phenotypes), and AR genes are identified by sequencing the 

surviving clones. PARFuMS (Parallel Annotation and Reassembly of Functional 

Metagenomic Selections) [127] is a bioinformatic pipeline for assembling and annotating 

reads from functional metagenomic selections. More importantly, this method can identify 

AR genes present in unculturable bacteria which has led to the discovery of novel AR genes 

and mechanisms [165,166] and antibiotic biomolecules [167]. While the reliance on out-of-

host expression of a gene may generate false negatives, this can be overcome by using other 

more genetically tractable hosts (e.g., Bacteroides thetaiotaomicron, Streptomyces 
coelicolor). The FARME (Functional Antibiotic Resistance Metagenomic Element) [168] 

and ResfinderFG [169] databases are comprised of sequences identified by functional 

metagenomics, but not represented in other databases built primarily from AR genes in 

clinical isolates.
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Rapid diagnostic tools

While ASTs determine an isolate’s functional response to an antibiotic, and WGS 

characterizes its genetic repertoire of AR genes, the time, technical expertise, and resources 

required limits their clinical utility. In response, several new approaches have been 

developed which promise phenotypic resistance/susceptibility data in mere hours instead of 

days. These can rapidly inform modifications to patient treatment, empowering healthcare 

providers to modify treatment away from broad-spectrum antibiotics which may fail due to 

resistance, towards narrow-spectrum drugs that are effective and decrease general selection 

for antibiotic resistance in hospitals. In theory, all of these approaches are generalizable to 

any pathogen-antibiotic pair of interest, but more work is needed before they can be utilized 

by clinical labs. In addition to method-specific technical details, each method described 

below will need larger and higher quality databases, as well as be integrated into systems for 

automated sample processing and detection, and be benchmarked against traditional assays.

RNA detection assays are based on the premises that 1) RNA transcripts are species-specific, 

and 2) antibiotic exposure triggers transcriptional responses in susceptible, but not resistant, 

strains [170,171]. Further, as transcriptional responses are among the first changes that occur 

upon drug exposure, they can be detected long before traditional growth-based phenotypes. 

GoPhAST-R (combined genotypic and phenotypic AST through RNA detection) [132] is a 

multiplexed mRNA detection assay, which can distinguish between susceptible and resistant 

strains of three ESKAPEE pathogens (K. pneumoniae, A. baumannii, and E. coli) when 

exposed to antibiotics of three major classes (fluoroquinolones, aminoglycosides and 

carbapenems) in <4 hours. It can also detect transcripts of key genetic resistance 

determinants, such as carbapenamases, to simultaneously profile phenotypic and genotypic 

information about resistance.

Alternatively, instead of directly identifying specific antibiotic resistance determinants, 

genetic linkage between resistance elements and the rest of the genome can enable the 

inference of resistance phenotypes based on coarse strain typing alone. Genomic neighbor 

typing [80] is an approach which determines how related a clinical isolate is to reference 

genomes with a known phylogeny and phenotype, providing predictions on the isolate’s 

resistances and susceptibilities. By matching nanopore long-read sequencing data against a 

database of genomes in real time, the RASE (resistance-associated sequence elements) 

algorithm identifies a given sample’s closest relatives. The authors demonstrate that this 

method can differentiate between resistant and susceptible isolates of S. pneumoniae and N. 
gonorrhoeae within 10 minutes of starting sequencing, and within 4 hours of beginning 

sample preparation on clinical metagenomic samples containing S. pneumoniae.

MALDI-TOF MS, which has been widely adopted for species identification, can also be 

modified to simultaneously detect antimicrobial resistance or susceptibility [133]. This can 

be done by several innovative approaches [25]. One approach is to detect antibiotic 

degradation, as during the activity of beta-lactamases. Hydrolysis of the beta-lactam 

molecule changes the mass of a sample, which can be detected by MALDI-TOF [172]. 

Another approach involves identifying biomarkers specific to resistant organisms. Biomarker 

signals associated with pathogens such as MRSA [173], KPC-producing K. pneumonia 
[174], and B. fragilis cfiA [175] have already been identified with high specificity, offering a 
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highly accurate assessment of a sample without any additional cost. Finally, media 

containing isotopically-labeled amino acids can be incubated with organisms and antibiotics. 

Resistant organisms will synthesize proteins with the labeled amino acids, which can be 

identified by their distinct spectra [176,177].

Resistome analyses are typically performed downstream of taxonomic analyses (e.g., using 

the same WMS or WGS datasets) and as such will similarly be influenced by sample choice 

and questions being asked. For example, while both WGS and rapid diagnostic tools are 

performed on cultured isolates, the speed of the diagnostic tools comes at the expense of not 

being able to directly identify the genetic underpinnings of resistance features—inferring 

resistance, instead, from correlated features. This trade-off may be acceptable for clinical 

diagnoses where every hour counts, but AR surveillance efforts may be better suited with 

WGS which generate higher-resolution data. Additionally, functional metagenomics can 

comprehensively identify all AR genes in a metagenomic sample, including novel genes, but 

it requires specialized library preparation. This extra step may require more effort than 

desired if a study is only interested in examining the presence of specific clinically-

important AR genes. But banked isolate samples and genomes can be re-analyzed using 

updated tools and AR gene databases in future analyses to identify features that were missed 

by previous analyses, as evidenced with the retrospective analyses for mcr-1.

IDENTIFYING ASSOCIATIONS WITH MOBILE ELEMENTS

The AR gene repertoire of a strain, as determined by the methods described in the previous 

section, is not a static identity. In addition to the slow processes of mutation and natural 

selection, nosocomial pathogens can rapidly acquire additional, fully-functioning AR genes 

via horizontal gene transfer (HGT). Indeed, many clinically-important ARGs have emerged 

via HGT from nonpathogenic reservoirs [127,178–180]. Finding high-identity ARGs in two 

or more phylogenetically distinct species suggests a recent HGT event, but this could also be 

explained by other factors such as functional optimization or lower mutation rate [181]. 

Claims of recent transfer are strengthened if it can be demonstrated that the ARGs are 

flanked by the same mobile genetic elements (MGE)—genetic features that facilitate DNA 

movement. MGEs can be divided into two major groups: features that facilitate intercellular 

(i.e. HGT) or intracellular DNA mobility. MGEs can introduce gain-of-function mutations 

by shuttling “passenger” proteins (e.g., ARGs) between bacteria or DNA elements. 

Alternatively, they can lead to adaptive loss-of-function mutations by inserting into and 

interrupting genes (e.g., those causing antibiotic susceptibility) or their regulatory elements 

[182]. The combined activities of various types of MGEs in a microbiome—collectively 

referred to as the “mobilome” or “mobile gene pool” [183,184]— can rapidly accelerate the 

evolution of multidrug resistant bacteria.

HGT (i.e. intercellular transfer) can occur by three primary mechanisms: conjugation by 

plasmids, transduction by bacteriophages, and transformation by uptake of extracellular 

DNA [109] (Fig. 1b). All of these are capable of shuttling protein sequences (e.g., ARGs) 

between cells; however, conjugation by plasmids is thought to be the most consequential 

mechanism for the horizontal transfer of ARGs between species [185]. This is because 

conjugation is explicitly designed for the spread of bacterial genes—unlike transduction, 
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which is an unintended consequence of bacteriophage replication. Conjugation also protects 

the DNA during its transit between cells, whereas in transformation, naked DNA must 

survive the extracellular environment. By facilitating the transfer of multiple ARGs at the 

same time, conjugation potentially enables recipient bacteria to become multi-drug resistant 

with just one HGT event. Once inside the new cell, the ARG can be expressed on the MGE 

directly, or be integrated into the genome of its new host or that of another plasmid via 

intracellular MGEs, such as insertion sequences, transposons, and integrons (Fig. 1b).

Recent advancements in long-read technologies, hybrid assembly, and bioinformatic tools 

can resolve the genomic context of plasmids in isolates and metagenomes, advancing the 

study of HGT beyond in vitro laboratory studies and into working hospitals and clinics 

[186–189]. It is beyond the scope of this review to cover all MGEs for all species (MGEs 

specific to ESKAPEE pathogens have been thoroughly reviewed in [190]). Instead, we will 

briefly describe the genomic approaches and bioinformatic tools that can be used to identify 

MGEs in clinical samples, with a special focus on plasmids.

NGS-based methods for MGE identification

Plasmid typing can provide insights into the epidemiology of HAI outbreaks, such as 

whether ARGs are carried by diverse vectors or a single epidemic plasmid. Several schemes 

have been developed to classify plasmids based on differences in conserved “backbone” 

regions, principal among them being replicon typing and MOB typing. Replicon typing 

targets loci that encode the plasmid’s replication machinery and classifies them into the 

major plasmid incompatibility (Inc) groups, and plasmid multi-locus sequence typing 

(pMLST) can further assign them into subtypes within the broader replicon type [191–193]. 

MOB typing, on the other hand, specifically targets the relaxase protein of transmissible 

plasmids [194]. While originally developed for multiplexed PCR reactions, these schemes 

have been adapted for in silico detection using tools such as PlasmidFinder [195,196]. 

However, considering the ease with which it’s now possible to sequence and compare entire 

plasmid genomes, this kind plasmid identification based only on small fragments has fallen 

out of favor, and these schemes are now used primarily for categorization [197,198]. The 

principal limitation of replicon and MOB typing is that they’re limited to known families, 

and neither can classify all plasmids—even among well-studied taxa. According to a recent 

estimate, 85% and 65% of publicly available plasmids can be replicon and MOB typed, 

respectively [199], though this is likely to be biased towards clinically-relevant plasmids 

with the highest representation in both plasmid sequence databases and typing schemes 

[200].

Identification of novel plasmids requires de novo assembly of WGS data. However, this task 

is complicated by the fact that it often isn’t clear which contigs belong to the chromosome 

and which to plasmids. By taking advantage of the fact that many plasmids exist at a higher 

copy number than the chromosome, PlasmidSPAdes [201] reconstructs plasmids from 

isolate WGS data by using differences in coverage. For metagenomes, where differences in 

coverage are confounded by differences in relative abundance, several specialized tools for 

assembling plasmid sequences or identifying plasmid-associated contigs have been 

developed, including cBar [202], PlasFlow [203], Recycler [204], and metaplasmidSPAdes 
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[205,200]. In general, these tools can accurately predict small plasmids, especially those 

with well-known backbone structures, but have difficulty predicting large plasmids (>50 

kbp) [200]. As with chromosome assembly, large repetitive elements make it is nearly 

impossible to correctly assemble a plasmid genome using short-read WGS data alone, but 

this can be addressed by manually closing the genome using PCR.

To mitigate this limitation of WGS assembly, binning plasmid sequences from WGS data 

can be assisted by reference-based read mapping. By mapping reads against a closed 

reference (or “index”) plasmid, the presence of the reference can be inferred if there is 

sufficient homology across a given length (e.g., 99% sequence identity over 80% of the 

plasmid) [206,207]. Reference plasmid sequences are typically assembled using long-read 

sequencing data and can pulled from the growing plasmid reference content in databases 

[208], or from a select sample, such as from the onset of an outbreak. This method has been 

successfully used to track patterns of introduction and spread of plasmids during outbreaks. 

For instance, one study of carbapenem-resistant K. pneumoniae (KPC) isolates from 

individuals from a Nepali neonatal unit used dataset-specific reference sequences to 

determine a key strain containing four highly conserved plasmids (including one carrying 

blaNDM-1) which was responsible for multiple clusters of cases [209]. This approach, 

however, assumes that the index plasmid is conserved throughout the study, and that plasmid 

structures are largely conserved. However, this may not be the case as plasmid structure can 

be extremely dynamic over time—even within short-term outbreaks—with smaller MGEs 

facilitating structural rearrangements through homologous recombination with other 

plasmids, or by adding/losing copies of genes. Precisely because these types of repetitive 

elements are difficult for short-read data to resolve, reference-based approaches can lead to 

the incorrect conclusion that the reconstructed plasmid is identical to the reference, when in 

reality significant rearrangements have occurred [207].

As previously described, these issues with de novo assembly can be largely overcome by 

using long-read sequencing technologies, such as PacBio and nanopore sequencing [48,49]. 

For example, in a study of carbapenem resistance in hospital-derived Enterobacteriaceae, 

assembly with Illumina data indicated that 11/17 sequenced isolates were predicted to carry 

the blaKPC gene on a pKPC-UVA01-like plasmid. This was expected as pKPC-UVA01 is a 

known index for blaKPC presence, and suggested that the dominant mechanism for 

dissemination of the blaKPC gene was via carriage in pKPC-UVA01. However, while PacBio 

assemblies confirmed that all 11 isolates indeed contained a pKPC-UVA01-like plasmid, 

only 5/11 of those plasmids contained blaKPC (i.e. were identical to the index). In the other 

6/11 isolates, other plasmids—some only present only one of them—carried blaKPC, 

showing that the gene’s dissemination is actually driven by several distinct vectors and 

homologous recombination between them [207].

Long-read technologies are also useful when the goal is to generate contiguous sequences of 

novel plasmids [210]. For instance, the fact that PacBio read lengths can be significantly 

longer than plasmid genomes can be taken advantage of to increase coverage through an 

approach called circular consensus sequencing (CCS) [211], where a single read produces 

multiple observations of each base, thereby increasing accuracy. PacBio sequencing was 

used to assemble the sequences of megaplasmids (>420 kb) in a study of MDR P. aeruginosa 
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isolates from a hospital in Thailand [212], and these assemblies showed that the resistance 

regions of these megaplasmids harbored multiple ARGs and were rich with smaller MGEs. 

Nanopore sequencing has also been coupled with culture-based enrichment of metagenomic 

samples swabbed from hospital surfaces, which resulted in the generation of 5,910 closed 

plasmid sequences, many >100 kb long [19].

While useful on their own, these methods are most effective when coupled together; WGS 

with reference-based read mapping can identify interesting isolates (e.g., those containing 

plasmids with ARGs of interest or likely HGT events), which can inform decisions about 

which isolates are chosen for long-read sequencing. Then the resulting contiguous plasmid 

sequences can be typed using replicon or MOB schemes. This approach was taken in an 18-

month study of 2,173 clinical isolates from a single hospital [181], where short-read WGS 

data identified high-identity sequences shared by different genera, and then nanopore 

sequencing and hybrid assembly was performed on a subset of isolates containing these 

shared sequences. This revealed a diverse group of high-identity ARG-encoding plasmids 

shared within and across species and genera. To take this a step further, the authors matched 

high-identity plasmids with patient metadata to identify epidemiological links, revealing 

instances of putative HGT between different genera within and between patients. For 

example, isolates of K. pneumoniae and E. coli collected on the same date from the same 

site from Patient A each carried an identical (99.95% identity) 113.6kb beta-lactamase-

carrying IncF plasmid—strong evidence for within-patient transfer. This same plasmid 

(99.98% identity) was later identified in an E. coli isolate of another species type cultured 

from Patient B 109 days after Patient A’s sampling—strongly suggesting between-patient 

transfer. Further, Patient B had an adjacent hospital room to Patient A’s and was treated by 

the same healthcare staff, strongly suggesting a hospital-associated reservoir and 

transmission network, though the connecting links were not able to be identified because 

surfaces were not examined.

Lastly, one step deeper from plasmid sequencing and identification has been that of the 

smaller intracellular MGEs—including insertion sequences (IS), transposons, and integrons

—that can be nested within plasmid genomes. These can contribute to the spread of 

resistance by facilitating the transfer of AR genes from one genetic element to another, or 

interrupting susceptibility genes [207,182]. In a process analogous to identifying AR genes 

from short-read sequencing data, MGEs can be identified by mapping to reads or contigs to 

databases of known elements or HMM profiles using tools such as ISfinder [213], ISMapper 

[214], and IntegronFinder [215]. However, identifying novel elements using short-read 

technologies is difficult because these elements are repetitive and often longer than a single 

read length. Structural variant tools, such as panISa [216] and MGEFinder [217], can 

identify novel insertion sequences by aligning a draft genome assembly to a reference 

genome of the same species (98.5% identity), and then identifies reads that have “clipped” 

(unaligned) ends—indicating the genomic site where an insertion sequence begins or ends.

Plasmid-specific approaches

Plasmid identification from WMS datasets has difficulties classifying metagenomic 

sequencing reads and contigs as plasmid- or chromosome-derived, confounding efforts to 
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assemble novel plasmids; however, these technical difficulties can be circumvented by first 

isolating plasmids prior to sequencing. Here, the so-called “plasmidome” or 

“metamobilome” is separated from chromosomes and other genetic elements by enzymatic 

digestion of sheared DNA—the vast majority of which is chromosomal [183]. Then, using 

transposon-aided capture (TRACA), these purified plasmids are “captured” by inserting a 

transposon containing an origin of replication and a selectable marker, and then transformed 

into an E. coli host and sequenced [218]. Alternatively, the purified plasmids can be 

amplified using inverse-PCR coupled with multiple displacement amplification prior to 

sequencing [219,220,218]. The principal limitations of these approaches are that they require 

additional sample preparation steps. Plasmid isolation methods are biased towards smaller 

plasmids (3–10 kb) because the digestion process can degrade large plasmids which were 

unintentionally sheared during the extraction process. Lastly, as with all assemblies using 

WGS data, manual PCR or long-read sequencing is required to fully close gaps [186].

While plasmid purification can produce hundreds of circular novel plasmids, it and WMS 

generally often cannot assign plasmids to their bacterial hosts because the DNA extraction 

process separates plasmids from chromosomes. Proximity-ligation methods, such as Hi-C 

and 3C, were originally developed to study three-dimensional genome structure in 

eukaryotic cells [221] but have recently been adapted to detect interactions between DNA 

molecules in bacterial metagenomes. This is accomplished by cross-linking DNA in close 

physical proximity—such as a plasmid and chromosome from the same cell—followed by 

proximity ligation of cross-linked DNA and short-read sequencing. Linkages between non-

contiguous DNA can then be used by specialized clustering algorithms [222,223] to 

deconvolute which plasmids and chromosomes originated from the same cell. As with other 

metagenomic approaches, Hi-C’s resolution is limited by sample complexity and sequencing 

depth, which is further complicated by the fact that the majority of read pairs do not contain 

proximity ligation junctions (i.e. are not Hi-C read pairs). For example, the studies of human 

fecal samples estimated the fraction of Hi-C read pairs was between 0.36 to 0.67% and 1.38 

to 2.38% [223,224]. This will necessitate relatively deep sequencing (~40 to 70 million 

reads), likely limiting this approach to a small subset of samples.

Much work is still needed to optimize and scale-up Hi-C methodology for use in large 

surveillance efforts. In addition to testing with simulated and synthetic metagenomic 

samples [225–227,222], it has been applied to single fecal samples from a healthy human 

and cow [223,224,228], used to compare fecal samples collected 10 years apart from two 

individuals [229], and to study plasmid-host associations in wastewater communities [230]. 

To our knowledge, just one has used this technique to analyze metagenomic samples from 

hospitalized patients [231]. Here, seven neutropenic patients undergoing hematopoietic stem 

cell transplantation were compared to two healthy individuals using samples from multiple 

timepoints over a 2–3 week period. This study found that networks of HGT were unique to 

each individual, and that while healthy patients had a basal level of HGT this was elevated in 

the neutropenic patients [231]. This suggests that these at-risk patients are at an increased 

risk for HGT of AR genes into MDR pathogens, and reinforces the role of patients’ gut 

microbiomes as a reservoir of AR genes in the hospital.
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Recent advancements in NGS technologies and bioinformatic tools have empowered 

researchers to study the spread of AR on plasmids and other MGEs at a resolution not 

possible even just a few years ago. Studies using these technologies have revealed a second 

layer of transmission during HAI outbreaks—of genetic transfer of AR genes between 

genetic elements and bacterial strains, instead of geographic transfer of bacterial strains 

between patients and/or the hospital environment. Comparative genomic analyses can be 

done on just those MGEs found up- and downstream of AR genes, or by resolving and 

tracking entire plasmids in a manner similar to tracking strains. Given the importance of 

HGT to the spread of novel resistance genes into and between HAI-causing pathogens, 

analyses of MGEs are sure to become a staple of outbreak tracking.

CONCLUSION

Despite extensive efforts to control infection, hospital environments are reservoirs of an 

incredible diversity of AR and MDR bacteria. New approaches have enabled 1) the 

identification of species and tracking of strains, 2) the rapid profiling of genotyping and 

phenotypic resistance, and 3) the resolution of MGEs that facilitate intra- and intercellular 

gene transfer, at a greater resolution than ever before. This data, coupled with longitudinal 

sampling and comparative genomics, has led significant insights into the spatiotemporal 

dynamics of hospital-associated bacterial communities and their AR gene cargo. This has 

revealed that the hospital microbiome is made up of complex nested systems, with multi-

layered transmission of strains, plasmids, and smaller genetic elements between patients, 

healthcare workers, and hospital surfaces. In many cases, the same sequencing datasets can 

be re-analyzed with different bioinformatic tools to answer each of these questions, but often 

the most relevant data can only be generated with question-specific methods and unique 

sample preparation schemes. The approaches and tools used should be tailored to the goals 

of the study (e.g., complete environmental characterization or detailed study of ESKAPE 

pathogens), and the sample types and technical expertise available. Continued research and 

technological advances are needed before these approaches can be routinely applied for 

hospital surveillance efforts, but there is much promise in their ability to track outbreaks of 

AR and MDR bacteria, identify persistent environmental reservoirs, and gauge future risks.

ACKNOWLEDGEMENTS

This work was supported in part by awards to GD through the National Institute of Allergy and Infectious Diseases 
(NIAID: https://www.niaid.nih.gov/), the Eunice Kennedy Shriver National Institute of Child Health & Human 
Development (NICHD: https://www.nichd.nih.gov/), and the National Center for Complementary and Integrative 
Health (NCCIH: https://nccih.nih.gov/) of the National Institutes of Health (NIH) under award numbers 
R01AI123394, R01HD092414, and R01AT009741, respectively; the National Institute for Occupational Safety and 
Health (NIOSH: https://www.cdc.gov/niosh/index.htm) of the US Centers for Disease Control and Prevention 
(CDC) under award number R01OH011578; and the Congressionally Directed Medical Research Program 
(CDMRP: https://cdmrp.army.mil/prmrp/default) of the US Department of Defense (DOD) under award number 
W81XWH1810225. The content is solely the responsibility of the authors and does not necessarily represent the 
official views of the funding agencies.

REFERENCES

1. Poe EA (1839) The Fall of the House of Usher.

2. Haque M, Sartelli M, McKimm J, Abu Bakar M (2018) Health care-associated infections - an 
overview. Infect Drug Resist 11:2321–2333. doi:10.2147/IDR.S177247 [PubMed: 30532565] 

Blake et al. Page 20

Cell Mol Life Sci. Author manuscript; available in PMC 2022 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.niaid.nih.gov/
https://www.nichd.nih.gov/
https://nccih.nih.gov/
https://www.cdc.gov/niosh/index.htm
https://cdmrp.army.mil/prmrp/default


3. Lax S, Gilbert JA (2015) Hospital-associated microbiota and implications for nosocomial infections. 
Trends Mol Med 21 (7):427–432. doi:10.1016/j.molmed.2015.03.005 [PubMed: 25907678] 

4. Magill SS, Edwards JR, Bamberg W, Beldavs ZG, Dumyati G, Kainer MA, Lynfield R, Maloney M, 
McAllister-Hollod L, Nadle J, Ray SM, Thompson DL, Wilson LE, Fridkin SK, Emerging 
Infections Program Healthcare-Associated I, Antimicrobial Use Prevalence Survey T (2014) 
Multistate point-prevalence survey of health care-associated infections. N Engl J Med 370 
(13):1198–1208. doi:10.1056/NEJMoa1306801 [PubMed: 24670166] 

5. Mora M, Mahnert A, Koskinen K, Pausan MR, Oberauner-Wappis L, Krause R, Perras AK, 
Gorkiewicz G, Berg G, Moissl-Eichinger C (2016) Microorganisms in Confined Habitats: Microbial 
Monitoring and Control of Intensive Care Units, Operating Rooms, Cleanrooms and the 
International Space Station. Front Microbiol 7:1573. doi:10.3389/fmicb.2016.01573 [PubMed: 
27790191] 

6. Weiner LM, Webb AK, Limbago B, Dudeck MA, Patel J, Kallen AJ, Edwards JR, Sievert DM 
(2016) Antimicrobial-Resistant Pathogens Associated With Healthcare-Associated Infections: 
Summary of Data Reported to the National Healthcare Safety Network at the Centers for Disease 
Control and Prevention, 2011–2014. Infect Control Hosp Epidemiol 37 (11):1288–1301. 
doi:10.1017/ice.2016.174 [PubMed: 27573805] 

7. Hidron AI, Edwards JR, Patel J, Horan TC, Sievert DM, Pollock DA, Fridkin SK, National 
Healthcare Safety Network T, Participating National Healthcare Safety Network F (2008) NHSN 
annual update: antimicrobial-resistant pathogens associated with healthcare-associated infections: 
annual summary of data reported to the National Healthcare Safety Network at the Centers for 
Disease Control and Prevention, 2006–2007. Infect Control Hosp Epidemiol 29 (11):996–1011. 
doi:10.1086/591861 [PubMed: 18947320] 

8. Vincent JL, Sakr Y, Singer M, Martin-Loeches I, Machado FR, Marshall JC, Finfer S, Pelosi P, 
Brazzi L, Aditianingsih D, Timsit JF, Du B, Wittebole X, Maca J, Kannan S, Gorordo-Delsol LA, 
De Waele JJ, Mehta Y, Bonten MJM, Khanna AK, Kollef M, Human M, Angus DC, Investigators EI 
(2020) Prevalence and Outcomes of Infection Among Patients in Intensive Care Units in 2017. 
JAMA. doi:10.1001/jama.2020.2717

9. Weiner-Lastinger LM, Abner S, Edwards JR, Kallen AJ, Karlsson M, Magill SS, Pollock D, See I, 
Soe MM, Walters MS, Dudeck MA (2020) Antimicrobial-resistant pathogens associated with adult 
healthcare-associated infections: Summary of data reported to the National Healthcare Safety 
Network, 2015–2017. Infect Control Hosp Epidemiol 41 (1):1–18. doi:10.1017/ice.2019.296 
[PubMed: 31767041] 

10. Weiner-Lastinger LM, Abner S, Benin AL, Edwards JR, Kallen AJ, Karlsson M, Magill SS, 
Pollock D, See I, Soe MM, Walters MS, Dudeck MA (2020) Antimicrobial-resistant pathogens 
associated with pediatric healthcare-associated infections: Summary of data reported to the 
National Healthcare Safety Network, 2015–2017. Infect Control Hosp Epidemiol 41 (1):19–30. 
doi:10.1017/ice.2019.297 [PubMed: 31762428] 

11. Berendonk TU, Manaia CM, Merlin C, Fatta-Kassinos D, Cytryn E, Walsh F, Burgmann H, Sorum 
H, Norstrom M, Pons MN, Kreuzinger N, Huovinen P, Stefani S, Schwartz T, Kisand V, Baquero 
F, Martinez JL (2015) Tackling antibiotic resistance: the environmental framework. Nat Rev 
Microbiol 13 (5):310–317. doi:10.1038/nrmicro3439 [PubMed: 25817583] 

12. CDC (2019) Antibiotic Resistance Threats in the United States, 2019. Atlanta, GA,

13. Cassini A, Hogberg LD, Plachouras D, Quattrocchi A, Hoxha A, Simonsen GS, Colomb-Cotinat 
M, Kretzschmar ME, Devleesschauwer B, Cecchini M, Ouakrim DA, Oliveira TC, Struelens MJ, 
Suetens C, Monnet DL, Burden of AMRCG (2019) Attributable deaths and disability-adjusted 
life-years caused by infections with antibiotic-resistant bacteria in the EU and the European 
Economic Area in 2015: a population-level modelling analysis. Lancet Infect Dis 19 (1):56–66. 
doi:10.1016/S1473-3099(18)30605-4 [PubMed: 30409683] 

14. Bush K, Courvalin P, Dantas G, Davies J, Eisenstein B, Huovinen P, Jacoby GA, Kishony R, 
Kreiswirth BN, Kutter E, Lerner SA, Levy S, Lewis K, Lomovskaya O, Miller JH, Mobashery S, 
Piddock LJ, Projan S, Thomas CM, Tomasz A, Tulkens PM, Walsh TR, Watson JD, Witkowski J, 
Witte W, Wright G, Yeh P, Zgurskaya HI (2011) Tackling antibiotic resistance. Nat Rev Microbiol 
9 (12):894–896. doi:10.1038/nrmicro2693 [PubMed: 22048738] 

Blake et al. Page 21

Cell Mol Life Sci. Author manuscript; available in PMC 2022 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



15. De Oliveira DMP, Forde BM, Kidd TJ, Harris PNA, Schembri MA, Beatson SA, Paterson DL, 
Walker MJ (2020) Antimicrobial Resistance in ESKAPE Pathogens. Clin Microbiol Rev 33 (3). 
doi:10.1128/CMR.00181-19

16. Rice LB (2008) Federal funding for the study of antimicrobial resistance in nosocomial pathogens: 
no ESKAPE. J Infect Dis 197 (8):1079–1081. doi:10.1086/533452 [PubMed: 18419525] 

17. Mulani MS, Kamble EE, Kumkar SN, Tawre MS, Pardesi KR (2019) Emerging Strategies to 
Combat ESKAPE Pathogens in the Era of Antimicrobial Resistance: A Review. Front Microbiol 
10:539. doi:10.3389/fmicb.2019.00539 [PubMed: 30988669] 

18. Tacconelli E, Carrara E, Savoldi A, Harbarth S, Mendelson M, Monnet DL, Pulcini C, Kahlmeter 
G, Kluytmans J, Carmeli Y, Ouellette M, Outterson K, Patel J, Cavaleri M, Cox EM, Houchens 
CR, Grayson ML, Hansen P, Singh N, Theuretzbacher U, Magrini N, Group WHOPPLW (2018) 
Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-
resistant bacteria and tuberculosis. Lancet Infect Dis 18 (3):318–327. doi:10.1016/
S1473-3099(17)30753-3 [PubMed: 29276051] 

19. Chng KR, Li C, Bertrand D, Ng AHQ, Kwah JS, Low HM, Tong C, Natrajan M, Zhang MH, Xu L, 
Ko KKK, Ho EXP, Av-Shalom TV, Teo JWP, Khor CC, Meta SUBC, Chen SL, Mason CE, Ng OT, 
Marimuthu K, Ang B, Nagarajan N (2020) Cartography of opportunistic pathogens and antibiotic 
resistance genes in a tertiary hospital environment. Nat Med 26 (6):941–951. doi:10.1038/
s41591-020-0894-4 [PubMed: 32514171] 

20. Weingarten RA, Johnson RC, Conlan S, Ramsburg AM, Dekker JP, Lau AF, Khil P, Odom RT, 
Deming C, Park M, Thomas PJ, Program NCS, Henderson DK, Palmore TN, Segre JA, Frank KM 
(2018) Genomic Analysis of Hospital Plumbing Reveals Diverse Reservoir of Bacterial Plasmids 
Conferring Carbapenem Resistance. mBio 9 (1). doi:10.1128/mBio.02011-17

21. D’Souza AW, Potter RF, Wallace M, Shupe A, Patel S, Sun X, Gul D, Kwon JH, Andleeb S, 
Burnham CD, Dantas G (2019) Spatiotemporal dynamics of multidrug resistant bacteria on 
intensive care unit surfaces. Nat Commun 10 (1):4569. doi:10.1038/s41467-019-12563-1 
[PubMed: 31594927] 

22. Hu H, Johani K, Gosbell IB, Jacombs AS, Almatroudi A, Whiteley GS, Deva AK, Jensen S, 
Vickery K (2015) Intensive care unit environmental surfaces are contaminated by multidrug-
resistant bacteria in biofilms: combined results of conventional culture, pyrosequencing, scanning 
electron microscopy, and confocal laser microscopy. J Hosp Infect 91 (1):35–44. doi:10.1016/
j.jhin.2015.05.016 [PubMed: 26187533] 

23. Saiki RK, Gelfand DH, Stoffel S, Scharf SJ, Higuchi R, Horn GT, Mullis KB, Erlich HA (1988) 
Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 
239 (4839):487–491. doi:10.1126/science.2448875 [PubMed: 2448875] 

24. Buchan BW, Ledeboer NA (2014) Emerging technologies for the clinical microbiology laboratory. 
Clin Microbiol Rev 27 (4):783–822. doi:10.1128/CMR.00003-14 [PubMed: 25278575] 

25. Hou TY, Chiang-Ni C, Teng SH (2019) Current status of MALDI-TOF mass spectrometry in 
clinical microbiology. J Food Drug Anal 27 (2):404–414. doi:10.1016/j.jfda.2019.01.001 
[PubMed: 30987712] 

26. Balada-Llasat JM, Kamboj K, Pancholi P (2013) Identification of mycobacteria from solid and 
liquid media by matrix-assisted laser desorption ionization-time of flight mass spectrometry in the 
clinical laboratory. J Clin Microbiol 51 (9):2875–2879. doi:10.1128/JCM.00819-13 [PubMed: 
23804379] 

27. Mesureur J, Arend S, Celliere B, Courault P, Cotte-Pattat PJ, Totty H, Deol P, Mick V, Girard V, 
Touchberry J, Burrowes V, Lavigne JP, O’Callaghan D, Monnin V, Keriel A (2018) A MALDI-
TOF MS database with broad genus coverage for species-level identification of Brucella. PLoS 
Negl Trop Dis 12 (10):e0006874. doi:10.1371/journal.pntd.0006874 [PubMed: 30335748] 

28. Seuylemezian A, Aronson HS, Tan J, Lin M, Schubert W, Vaishampayan P (2018) Development of 
a Custom MALDI-TOF MS Database for Species-Level Identification of Bacterial Isolates 
Collected From Spacecraft and Associated Surfaces. Front Microbiol 9:780. doi:10.3389/
fmicb.2018.00780 [PubMed: 29867782] 

29. Veloo ACM, Jean-Pierre H, Justesen US, Morris T, Urban E, Wybo I, Kostrzewa M, Friedrich AW, 
workgroup E (2018) Validation of MALDI-TOF MS Biotyper database optimized for anaerobic 

Blake et al. Page 22

Cell Mol Life Sci. Author manuscript; available in PMC 2022 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



bacteria: The ENRIA project. Anaerobe 54:224–230. doi:10.1016/j.anaerobe.2018.03.007 
[PubMed: 29545163] 

30. Wetterstrand KA (2019) DNA sequencing costs: data from the NHGRI Genome Sequencing 
Program (GSP). https://www.genome.gov/about-genomics/fact-sheets/DNA-Sequencing-Costs-
Data.

31. Quainoo S, Coolen JPM, van Hijum S, Huynen MA, Melchers WJG, van Schaik W, Wertheim 
HFL (2017) Whole-Genome Sequencing of Bacterial Pathogens: the Future of Nosocomial 
Outbreak Analysis. Clin Microbiol Rev 30 (4):1015–1063. doi:10.1128/CMR.00016-17 [PubMed: 
28855266] 

32. Didelot X, Bowden R, Wilson DJ, Peto TEA, Crook DW (2012) Transforming clinical 
microbiology with bacterial genome sequencing. Nat Rev Genet 13 (9):601–612. doi:10.1038/
nrg3226 [PubMed: 22868263] 

33. Zerbino DR, Birney E (2008) Velvet: algorithms for de novo short read assembly using de Bruijn 
graphs. Genome Res 18 (5):821–829. doi:10.1101/gr.074492.107 [PubMed: 18349386] 

34. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko 
SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner 
PA (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell 
sequencing. J Comput Biol 19 (5):455–477. doi:10.1089/cmb.2012.0021 [PubMed: 22506599] 

35. Wick RR, Judd LM, Gorrie CL, Holt KE (2017) Unicycler: Resolving bacterial genome assemblies 
from short and long sequencing reads. PLoS Comput Biol 13 (6):e1005595. doi:10.1371/
journal.pcbi.1005595 [PubMed: 28594827] 

36. Gurevich A, Saveliev V, Vyahhi N, Tesler G (2013) QUAST: quality assessment tool for genome 
assemblies. Bioinformatics 29 (8):1072–1075. doi:10.1093/bioinformatics/btt086 [PubMed: 
23422339] 

37. Ondov BD, Treangen TJ, Melsted P, Mallonee AB, Bergman NH, Koren S, Phillippy AM (2016) 
Mash: fast genome and metagenome distance estimation using MinHash. Genome Biol 17 (1):132. 
doi:10.1186/s13059-016-0997-x [PubMed: 27323842] 

38. Lagesen K, Hallin P, Rodland EA, Staerfeldt HH, Rognes T, Ussery DW (2007) RNAmmer: 
consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 35 (9):3100–3108. 
doi:10.1093/nar/gkm160 [PubMed: 17452365] 

39. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, Chun J (2017) Introducing EzBioCloud: a 
taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J 
Syst Evol Microbiol 67 (5):1613–1617. doi:10.1099/ijsem.0.001755 [PubMed: 28005526] 

40. Seemann T (2014) Prokka: rapid prokaryotic genome annotation. Bioinformatics 30 (14):2068–
2069. doi:10.1093/bioinformatics/btu153 [PubMed: 24642063] 

41. Douglas AP, Marshall C, Baines SL, Ritchie D, Szer J, Madigan V, Chan HT, Ballard SA, Howden 
BP, Buising K, Slavin MA (2019) Utilizing genomic analyses to investigate the first outbreak of 
vanA vancomycin-resistant Enterococcus in Australia with emergence of daptomycin non-
susceptibility. J Med Microbiol 68 (3):303–308. doi:10.1099/jmm.0.000916 [PubMed: 30663951] 

42. Johnson RC, Deming C, Conlan S, Zellmer CJ, Michelin AV, Lee-Lin S, Thomas PJ, Park M, 
Weingarten RA, Less J, Dekker JP, Frank KM, Musser KA, McQuiston JR, Henderson DK, Lau 
AF, Palmore TN, Segre JA (2018) Investigation of a Cluster of Sphingomonas koreensis 
Infections. N Engl J Med 379 (26):2529–2539. doi:10.1056/NEJMoa1803238 [PubMed: 
30586509] 

43. Decraene V, Phan HTT, George R, Wyllie DH, Akinremi O, Aiken Z, Cleary P, Dodgson A, 
Pankhurst L, Crook DW, Lenney C, Walker AS, Woodford N, Sebra R, Fath-Ordoubadi F, Mathers 
AJ, Seale AC, Guiver M, McEwan A, Watts V, Welfare W, Stoesser N, Cawthorne J, Group TI 
(2018) A Large, Refractory Nosocomial Outbreak of Klebsiella pneumoniae Carbapenemase-
Producing Escherichia coli Demonstrates Carbapenemase Gene Outbreaks Involving Sink Sites 
Require Novel Approaches to Infection Control. Antimicrob Agents Chemother 62 (12). 
doi:10.1128/AAC.01689-18

44. Maatallah M, Vading M, Kabir MH, Bakhrouf A, Kalin M, Naucler P, Brisse S, Giske CG (2014) 
Klebsiella variicola is a frequent cause of bloodstream infection in the stockholm area, and 
associated with higher mortality compared to K. pneumoniae. PLoS One 9 (11):e113539. 
doi:10.1371/journal.pone.0113539 [PubMed: 25426853] 

Blake et al. Page 23

Cell Mol Life Sci. Author manuscript; available in PMC 2022 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.genome.gov/about-genomics/fact-sheets/DNA-Sequencing-Costs-Data
https://www.genome.gov/about-genomics/fact-sheets/DNA-Sequencing-Costs-Data


45. Long SW, Linson SE, Ojeda Saavedra M, Cantu C, Davis JJ, Brettin T, Olsen RJ (2017) Whole-
Genome Sequencing of Human Clinical Klebsiella pneumoniae Isolates Reveals Misidentification 
and Misunderstandings of Klebsiella pneumoniae, Klebsiella variicola, and Klebsiella 
quasipneumoniae. mSphere 2 (4). doi:10.1128/mSphereDirect.00290-17

46. Berry GJ, Loeffelholz MJ, Williams-Bouyer N (2015) An Investigation into Laboratory 
Misidentification of a Bloodstream Klebsiella variicola Infection. J Clin Microbiol 53 (8):2793–
2794. doi:10.1128/JCM.00841-15 [PubMed: 26063851] 

47. Potter RF, Lainhart W, Twentyman J, Wallace MA, Wang B, Burnham CA, Rosen DA, Dantas G 
(2018) Population Structure, Antibiotic Resistance, and Uropathogenicity of Klebsiella variicola. 
mBio 9 (6). doi:10.1128/mBio.02481-18

48. Eid J, Fehr A, Gray J, Luong K, Lyle J, Otto G, Peluso P, Rank D, Baybayan P, Bettman B, Bibillo 
A, Bjornson K, Chaudhuri B, Christians F, Cicero R, Clark S, Dalal R, Dewinter A, Dixon J, 
Foquet M, Gaertner A, Hardenbol P, Heiner C, Hester K, Holden D, Kearns G, Kong X, Kuse R, 
Lacroix Y, Lin S, Lundquist P, Ma C, Marks P, Maxham M, Murphy D, Park I, Pham T, Phillips 
M, Roy J, Sebra R, Shen G, Sorenson J, Tomaney A, Travers K, Trulson M, Vieceli J, Wegener J, 
Wu D, Yang A, Zaccarin D, Zhao P, Zhong F, Korlach J, Turner S (2009) Real-time DNA 
sequencing from single polymerase molecules. Science 323 (5910):133–138. doi:10.1126/
science.1162986 [PubMed: 19023044] 

49. Clarke J, Wu HC, Jayasinghe L, Patel A, Reid S, Bayley H (2009) Continuous base identification 
for single-molecule nanopore DNA sequencing. Nat Nanotechnol 4 (4):265–270. doi:10.1038/
nnano.2009.12 [PubMed: 19350039] 

50. Mikheyev AS, Tin MM (2014) A first look at the Oxford Nanopore MinION sequencer. Mol Ecol 
Resour 14 (6):1097–1102. doi:10.1111/1755-0998.12324 [PubMed: 25187008] 

51. Magi A, Giusti B, Tattini L (2017) Characterization of MinION nanopore data for resequencing 
analyses. Brief Bioinform 18 (6):940–953. doi:10.1093/bib/bbw077 [PubMed: 27559152] 

52. Magi A, Semeraro R, Mingrino A, Giusti B, D’Aurizio R (2018) Nanopore sequencing data 
analysis: state of the art, applications and challenges. Brief Bioinform 19 (6):1256–1272. 
doi:10.1093/bib/bbx062 [PubMed: 28637243] 

53. Antipov D, Korobeynikov A, McLean JS, Pevzner PA (2016) hybridSPAdes: an algorithm for 
hybrid assembly of short and long reads. Bioinformatics 32 (7):1009–1015. doi:10.1093/
bioinformatics/btv688 [PubMed: 26589280] 

54. Utturkar SM, Klingeman DM, Land ML, Schadt CW, Doktycz MJ, Pelletier DA, Brown SD (2014) 
Evaluation and validation of de novo and hybrid assembly techniques to derive high-quality 
genome sequences. Bioinformatics 30 (19):2709–2716. doi:10.1093/bioinformatics/btu391 
[PubMed: 24930142] 

55. Coenye T, Vandamme P (2003) Intragenomic heterogeneity between multiple 16S ribosomal RNA 
operons in sequenced bacterial genomes. FEMS Microbiol Lett 228 (1):45–49. doi:10.1016/
S0378-1097(03)00717-1 [PubMed: 14612235] 

56. Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for 
phylogenetic study. J Bacteriol 173 (2):697–703. doi:10.1128/jb.173.2.697-703.1991 [PubMed: 
1987160] 

57. Rampelotto PH, Sereia AFR, de Oliveira LFV, Margis R (2019) Exploring the Hospital 
Microbiome by High-Resolution 16S rRNA Profiling. Int J Mol Sci 20 (12). doi:10.3390/
ijms20123099

58. ElRakaiby MT, Gamal-Eldin S, Amin MA, Aziz RK (2019) Hospital Microbiome Variations As 
Analyzed by High-Throughput Sequencing. OMICS 23 (9):426–438. doi:10.1089/omi.2019.0111 
[PubMed: 31393213] 

59. Liu Z, DeSantis TZ, Andersen GL, Knight R (2008) Accurate taxonomy assignments from 16S 
rRNA sequences produced by highly parallel pyrosequencers. Nucleic Acids Res 36 (18):e120. 
doi:10.1093/nar/gkn491 [PubMed: 18723574] 

60. Schloss PD, Westcott SL (2011) Assessing and improving methods used in operational taxonomic 
unit-based approaches for 16S rRNA gene sequence analysis. Appl Environ Microbiol 77 
(10):3219–3226. doi:10.1128/AEM.02810-10 [PubMed: 21421784] 

Blake et al. Page 24

Cell Mol Life Sci. Author manuscript; available in PMC 2022 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



61. Brooks JP, Edwards DJ, Harwich MD Jr., Rivera MC, Fettweis JM, Serrano MG, Reris RA, Sheth 
NU, Huang B, Girerd P, Vaginal Microbiome C, Strauss JF 3rd, Jefferson KK, Buck GA (2015) 
The truth about metagenomics: quantifying and counteracting bias in 16S rRNA studies. BMC 
Microbiol 15:66. doi:10.1186/s12866-015-0351-6 [PubMed: 25880246] 

62. Callahan BJ, McMurdie PJ, Holmes SP (2017) Exact sequence variants should replace operational 
taxonomic units in marker-gene data analysis. ISME J 11 (12):2639–2643. doi:10.1038/
ismej.2017.119 [PubMed: 28731476] 

63. Hewitt KM, Mannino FL, Gonzalez A, Chase JH, Caporaso JG, Knight R, Kelley ST (2013) 
Bacterial diversity in two Neonatal Intensive Care Units (NICUs). PLoS One 8 (1):e54703. 
doi:10.1371/journal.pone.0054703 [PubMed: 23372757] 

64. Brooks B, Firek BA, Miller CS, Sharon I, Thomas BC, Baker R, Morowitz MJ, Banfield JF (2014) 
Microbes in the neonatal intensive care unit resemble those found in the gut of premature infants. 
Microbiome 2 (1):1. doi:10.1186/2049-2618-2-1 [PubMed: 24468033] 

65. Hillmann B, Al-Ghalith GA, Shields-Cutler RR, Zhu Q, Gohl DM, Beckman KB, Knight R, 
Knights D (2018) Evaluating the Information Content of Shallow Shotgun Metagenomics. 
mSystems 3 (6). doi:10.1128/mSystems.00069-18

66. Truong DT, Franzosa EA, Tickle TL, Scholz M, Weingart G, Pasolli E, Tett A, Huttenhower C, 
Segata N (2015) MetaPhlAn2 for enhanced metagenomic taxonomic profiling. Nat Methods 12 
(10):902–903. doi:10.1038/nmeth.3589 [PubMed: 26418763] 

67. Wood DE, Salzberg SL (2014) Kraken: ultrafast metagenomic sequence classification using exact 
alignments. Genome Biol 15 (3):R46. doi:10.1186/gb-2014-15-3-r46 [PubMed: 24580807] 

68. Franzosa EA, McIver LJ, Rahnavard G, Thompson LR, Schirmer M, Weingart G, Lipson KS, 
Knight R, Caporaso JG, Segata N, Huttenhower C (2018) Species-level functional profiling of 
metagenomes and metatranscriptomes. Nat Methods 15 (11):962–968. doi:10.1038/
s41592-018-0176-y [PubMed: 30377376] 

69. Tamburini FB, Andermann TM, Tkachenko E, Senchyna F, Banaei N, Bhatt AS (2018) Precision 
identification of diverse bloodstream pathogens in the gut microbiome. Nat Med 24 (12):1809–
1814. doi:10.1038/s41591-018-0202-8 [PubMed: 30323331] 

70. Ghurye JS, Cepeda-Espinoza V, Pop M (2016) Metagenomic Assembly: Overview, Challenges and 
Applications. Yale J Biol Med 89 (3):353–362 [PubMed: 27698619] 

71. Li D, Liu CM, Luo R, Sadakane K, Lam TW (2015) MEGAHIT: an ultra-fast single-node solution 
for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31 
(10):1674–1676. doi:10.1093/bioinformatics/btv033 [PubMed: 25609793] 

72. Nurk S, Meleshko D, Korobeynikov A, Pevzner PA (2017) metaSPAdes: a new versatile 
metagenomic assembler. Genome Res 27 (5):824–834. doi:10.1101/gr.213959.116 [PubMed: 
28298430] 

73. Namiki T, Hachiya T, Tanaka H, Sakakibara Y (2012) MetaVelvet: an extension of Velvet 
assembler to de novo metagenome assembly from short sequence reads. Nucleic Acids Res 40 
(20):e155. doi:10.1093/nar/gks678 [PubMed: 22821567] 

74. Afiahayati, Sato K, Sakakibara Y (2015) MetaVelvet-SL: an extension of the Velvet assembler to a 
de novo metagenomic assembler utilizing supervised learning. DNA Res 22 (1):69–77. 
doi:10.1093/dnares/dsu041 [PubMed: 25431440] 

75. Bowers RM, Kyrpides NC, Stepanauskas R, Harmon-Smith M, Doud D, Reddy TBK, Schulz F, 
Jarett J, Rivers AR, Eloe-Fadrosh EA, Tringe SG, Ivanova NN, Copeland A, Clum A, Becraft ED, 
Malmstrom RR, Birren B, Podar M, Bork P, Weinstock GM, Garrity GM, Dodsworth JA, Yooseph 
S, Sutton G, Glockner FO, Gilbert JA, Nelson WC, Hallam SJ, Jungbluth SP, Ettema TJG, Tighe 
S, Konstantinidis KT, Liu WT, Baker BJ, Rattei T, Eisen JA, Hedlund B, McMahon KD, Fierer N, 
Knight R, Finn R, Cochrane G, Karsch-Mizrachi I, Tyson GW, Rinke C, Genome Standards C, 
Lapidus A, Meyer F, Yilmaz P, Parks DH, Eren AM, Schriml L, Banfield JF, Hugenholtz P, Woyke 
T (2017) Minimum information about a single amplified genome (MISAG) and a metagenome-
assembled genome (MIMAG) of bacteria and archaea. Nat Biotechnol 35 (8):725–731. 
doi:10.1038/nbt.3893 [PubMed: 28787424] 

76. Alneberg J, Bjarnason BS, de Bruijn I, Schirmer M, Quick J, Ijaz UZ, Lahti L, Loman NJ, 
Andersson AF, Quince C (2014) Binning metagenomic contigs by coverage and composition. Nat 
Methods 11 (11):1144–1146. doi:10.1038/nmeth.3103 [PubMed: 25218180] 

Blake et al. Page 25

Cell Mol Life Sci. Author manuscript; available in PMC 2022 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



77. Nayfach S, Shi ZJ, Seshadri R, Pollard KS, Kyrpides NC (2019) New insights from uncultivated 
genomes of the global human gut microbiome. Nature 568 (7753):505–510. doi:10.1038/
s41586-019-1058-x [PubMed: 30867587] 

78. Moss EL, Maghini DG, Bhatt AS (2020) Complete, closed bacterial genomes from microbiomes 
using nanopore sequencing. Nat Biotechnol 38 (6):701–707. doi:10.1038/s41587-020-0422-6 
[PubMed: 32042169] 

79. Bertrand D, Shaw J, Kalathiyappan M, Ng AHQ, Kumar MS, Li C, Dvornicic M, Soldo JP, Koh 
JY, Tong C, Ng OT, Barkham T, Young B, Marimuthu K, Chng KR, Sikic M, Nagarajan N (2019) 
Hybrid metagenomic assembly enables high-resolution analysis of resistance determinants and 
mobile elements in human microbiomes. Nat Biotechnol 37 (8):937–944. doi:10.1038/
s41587-019-0191-2 [PubMed: 31359005] 

80. Brinda K, Callendrello A, Ma KC, MacFadden DR, Charalampous T, Lee RS, Cowley L, 
Wadsworth CB, Grad YH, Kucherov G, O’Grady J, Baym M, Hanage WP (2020) Rapid inference 
of antibiotic resistance and susceptibility by genomic neighbour typing. Nat Microbiol 5 (3):455–
464. doi:10.1038/s41564-019-0656-6 [PubMed: 32042129] 

81. Kizny Gordon AE, Mathers AJ, Cheong EYL, Gottlieb T, Kotay S, Walker AS, Peto TEA, Crook 
DW, Stoesser N (2017) The Hospital Water Environment as a Reservoir for Carbapenem-Resistant 
Organisms Causing Hospital-Acquired Infections-A Systematic Review of the Literature. Clin 
Infect Dis 64 (10):1435–1444. doi:10.1093/cid/cix132 [PubMed: 28200000] 

82. Kanamori H, Weber DJ, Rutala WA (2016) Healthcare Outbreaks Associated With a Water 
Reservoir and Infection Prevention Strategies. Clin Infect Dis 62 (11):1423–1435. doi:10.1093/cid/
ciw122 [PubMed: 26936670] 

83. Ciufo S, Kannan S, Sharma S, Badretdin A, Clark K, Turner S, Brover S, Schoch CL, Kimchi A, 
DiCuccio M (2018) Using average nucleotide identity to improve taxonomic assignments in 
prokaryotic genomes at the NCBI. Int J Syst Evol Microbiol 68 (7):2386–2392. doi:10.1099/
ijsem.0.002809 [PubMed: 29792589] 

84. Brooks B, Olm MR, Firek BA, Baker R, Thomas BC, Morowitz MJ, Banfield JF (2017) Strain-
resolved analysis of hospital rooms and infants reveals overlap between the human and room 
microbiome. Nat Commun 8 (1):1814. doi:10.1038/s41467-017-02018-w [PubMed: 29180750] 

85. Segerman B (2012) The genetic integrity of bacterial species: the core genome and the accessory 
genome, two different stories. Front Cell Infect Microbiol 2:116. doi:10.3389/fcimb.2012.00116 
[PubMed: 22973561] 

86. Rokas A, Williams BL, King N, Carroll SB (2003) Genome-scale approaches to resolving 
incongruence in molecular phylogenies. Nature 425 (6960):798–804. doi:10.1038/nature02053 
[PubMed: 14574403] 

87. Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S, Holden MT, Fookes M, Falush D, Keane JA, 
Parkhill J (2015) Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics 31 
(22):3691–3693. doi:10.1093/bioinformatics/btv421 [PubMed: 26198102] 

88. Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large 
phylogenies. Bioinformatics 30 (9):1312–1313. doi:10.1093/bioinformatics/btu033 [PubMed: 
24451623] 

89. Mostowy R, Croucher NJ, Andam CP, Corander J, Hanage WP, Marttinen P (2017) Efficient 
Inference of Recent and Ancestral Recombination within Bacterial Populations. Mol Biol Evol 34 
(5):1167–1182. doi:10.1093/molbev/msx066 [PubMed: 28199698] 

90. Corander J, Waldmann P, Sillanpaa MJ (2003) Bayesian analysis of genetic differentiation between 
populations. Genetics 163 (1):367–374 [PubMed: 12586722] 

91. Dijkshoorn L, Ursing BM, Ursing JB (2000) Strain, clone and species: comments on three basic 
concepts of bacteriology. J Med Microbiol 49 (5):397–401. doi:10.1099/0022-1317-49-5-397 
[PubMed: 10798550] 

92. Stimson J, Gardy J, Mathema B, Crudu V, Cohen T, Colijn C (2019) Beyond the SNP Threshold: 
Identifying Outbreak Clusters Using Inferred Transmissions. Mol Biol Evol 36 (3):587–603. 
doi:10.1093/molbev/msy242 [PubMed: 30690464] 

93. Clark TG, Mallard K, Coll F, Preston M, Assefa S, Harris D, Ogwang S, Mumbowa F, Kirenga B, 
O’Sullivan DM, Okwera A, Eisenach KD, Joloba M, Bentley SD, Ellner JJ, Parkhill J, Jones-

Blake et al. Page 26

Cell Mol Life Sci. Author manuscript; available in PMC 2022 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Lopez EC, McNerney R (2013) Elucidating emergence and transmission of multidrug-resistant 
tuberculosis in treatment experienced patients by whole genome sequencing. PLoS One 8 
(12):e83012. doi:10.1371/journal.pone.0083012 [PubMed: 24349420] 

94. Coll F, Harrison EM, Toleman MS, Reuter S, Raven KE, Blane B, Palmer B, Kappeler ARM, 
Brown NM, Torok ME, Parkhill J, Peacock SJ (2017) Longitudinal genomic surveillance of 
MRSA in the UK reveals transmission patterns in hospitals and the community. Sci Transl Med 9 
(413). doi:10.1126/scitranslmed.aak9745

95. Silva IN, Santos PM, Santos MR, Zlosnik JE, Speert DP, Buskirk SW, Bruger EL, Waters CM, 
Cooper VS, Moreira LM (2016) Long-Term Evolution of Burkholderia multivorans during a 
Chronic Cystic Fibrosis Infection Reveals Shifting Forces of Selection. mSystems 1 (3). 
doi:10.1128/mSystems.00029-16

96. Zhao S, Lieberman TD, Poyet M, Kauffman KM, Gibbons SM, Groussin M, Xavier RJ, Alm EJ 
(2019) Adaptive Evolution within Gut Microbiomes of Healthy People. Cell Host Microbe 25 
(5):656–667 e658. doi:10.1016/j.chom.2019.03.007 [PubMed: 31028005] 

97. Lieberman TD, Flett KB, Yelin I, Martin TR, McAdam AJ, Priebe GP, Kishony R (2014) Genetic 
variation of a bacterial pathogen within individuals with cystic fibrosis provides a record of 
selective pressures. Nat Genet 46 (1):82–87. doi:10.1038/ng.2848 [PubMed: 24316980] 

98. David MD, Kearns AM, Gossain S, Ganner M, Holmes A (2006) Community-associated 
meticillin-resistant Staphylococcus aureus: nosocomial transmission in a neonatal unit. J Hosp 
Infect 64 (3):244–250. doi:10.1016/j.jhin.2006.06.022 [PubMed: 16928408] 

99. Rohde H, Qin J, Cui Y, Li D, Loman NJ, Hentschke M, Chen W, Pu F, Peng Y, Li J, Xi F, Li S, Li 
Y, Zhang Z, Yang X, Zhao M, Wang P, Guan Y, Cen Z, Zhao X, Christner M, Kobbe R, Loos S, 
Oh J, Yang L, Danchin A, Gao GF, Song Y, Li Y, Yang H, Wang J, Xu J, Pallen MJ, Wang J, 
Aepfelbacher M, Yang R, Consortium EcOHGAC-S (2011) Open-source genomic analysis of 
Shiga-toxin-producing E. coli O104:H4. N Engl J Med 365 (8):718–724. doi:10.1056/
NEJMoa1107643 [PubMed: 21793736] 

100. Tewolde R, Dallman T, Schaefer U, Sheppard CL, Ashton P, Pichon B, Ellington M, Swift C, 
Green J, Underwood A (2016) MOST: a modified MLST typing tool based on short read 
sequencing. PeerJ 4:e2308. doi:10.7717/peerj.2308 [PubMed: 27602279] 

101. Walk ST, Alm EW, Calhoun LM, Mladonicky JM, Whittam TS (2007) Genetic diversity and 
population structure of Escherichia coli isolated from freshwater beaches. Environ Microbiol 9 
(9):2274–2288. doi:10.1111/j.1462-2920.2007.01341.x [PubMed: 17686024] 

102. Nowrouzian FL, Adlerberth I, Wold AE (2006) Enhanced persistence in the colonic microbiota of 
Escherichia coli strains belonging to phylogenetic group B2: role of virulence factors and 
adherence to colonic cells. Microbes Infect 8 (3):834–840. doi:10.1016/j.micinf.2005.10.011 
[PubMed: 16483819] 

103. Clermont O, Bonacorsi S, Bingen E (2000) Rapid and simple determination of the Escherichia 
coli phylogenetic group. Appl Environ Microbiol 66 (10):4555–4558. doi:10.1128/
aem.66.10.4555-4558.2000 [PubMed: 11010916] 

104. Beghain J, Bridier-Nahmias A, Le Nagard H, Denamur E, Clermont O (2018) ClermonTyping: an 
easy-to-use and accurate in silico method for Escherichia genus strain phylotyping. Microb 
Genom 4 (7). doi:10.1099/mgen.0.000192

105. D’Costa VM, King CE, Kalan L, Morar M, Sung WW, Schwarz C, Froese D, Zazula G, Calmels 
F, Debruyne R, Golding GB, Poinar HN, Wright GD (2011) Antibiotic resistance is ancient. 
Nature 477 (7365):457–461. doi:10.1038/nature10388 [PubMed: 21881561] 

106. Surette MD, Wright GD (2017) Lessons from the Environmental Antibiotic Resistome. Annu Rev 
Microbiol 71:309–329. doi:10.1146/annurev-micro-090816-093420 [PubMed: 28657887] 

107. Sandegren L, Andersson DI (2009) Bacterial gene amplification: implications for the evolution of 
antibiotic resistance. Nat Rev Microbiol 7 (8):578–588. doi:10.1038/nrmicro2174 [PubMed: 
19609259] 

108. Blair JM, Webber MA, Baylay AJ, Ogbolu DO, Piddock LJ (2015) Molecular mechanisms of 
antibiotic resistance. Nat Rev Microbiol 13 (1):42–51. doi:10.1038/nrmicro3380 [PubMed: 
25435309] 

Blake et al. Page 27

Cell Mol Life Sci. Author manuscript; available in PMC 2022 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



109. von Wintersdorff CJ, Penders J, van Niekerk JM, Mills ND, Majumder S, van Alphen LB, 
Savelkoul PH, Wolffs PF (2016) Dissemination of Antimicrobial Resistance in Microbial 
Ecosystems through Horizontal Gene Transfer. Front Microbiol 7:173. doi:10.3389/
fmicb.2016.00173 [PubMed: 26925045] 

110. Balaban NQ, Helaine S, Lewis K, Ackermann M, Aldridge B, Andersson DI, Brynildsen MP, 
Bumann D, Camilli A, Collins JJ, Dehio C, Fortune S, Ghigo JM, Hardt WD, Harms A, 
Heinemann M, Hung DT, Jenal U, Levin BR, Michiels J, Storz G, Tan MW, Tenson T, Van 
Melderen L, Zinkernagel A (2019) Definitions and guidelines for research on antibiotic 
persistence. Nat Rev Microbiol 17 (7):441–448. doi:10.1038/s41579-019-0196-3 [PubMed: 
30980069] 

111. Schrader SM, Vaubourgeix J, Nathan C (2020) Biology of antimicrobial resistance and 
approaches to combat it. Sci Transl Med 12 (549). doi:10.1126/scitranslmed.aaz6992

112. Walsh C (2000) Molecular mechanisms that confer antibacterial drug resistance. Nature 406 
(6797):775–781. doi:10.1038/35021219 [PubMed: 10963607] 

113. Boolchandani M, D’Souza AW, Dantas G (2019) Sequencing-based methods and resources to 
study antimicrobial resistance. Nat Rev Genet 20 (6):356–370. doi:10.1038/s41576-019-0108-4 
[PubMed: 30886350] 

114. D’Costa VM, McGrann KM, Hughes DW, Wright GD (2006) Sampling the antibiotic resistome. 
Science 311 (5759):374–377. doi:10.1126/science.1120800 [PubMed: 16424339] 

115. Wright GD (2007) The antibiotic resistome: the nexus of chemical and genetic diversity. Nat Rev 
Microbiol 5 (3):175–186. doi:10.1038/nrmicro1614 [PubMed: 17277795] 

116. WHO (2019) WHO Model Lists of Essential Medicines. https://www.who.int/medicines/
publications/essentialmedicines/en/.

117. DASON (2017) Developing Patient Safety Outcome Measures and Measurement Tools for 
Antibiotic Stewardship Programs, Metrics Guide. .

118. Yong D, Toleman MA, Giske CG, Cho HS, Sundman K, Lee K, Walsh TR (2009) 
Characterization of a new metallo-beta-lactamase gene, bla(NDM-1), and a novel erythromycin 
esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 
from India. Antimicrob Agents Chemother 53 (12):5046–5054. doi:10.1128/AAC.00774-09 
[PubMed: 19770275] 

119. Yigit H, Queenan AM, Anderson GJ, Domenech-Sanchez A, Biddle JW, Steward CD, Alberti S, 
Bush K, Tenover FC (2001) Novel carbapenem-hydrolyzing beta-lactamase, KPC-1, from a 
carbapenem-resistant strain of Klebsiella pneumoniae. Antimicrob Agents Chemother 45 
(4):1151–1161. doi:10.1128/AAC.45.4.1151-1161.2001 [PubMed: 11257029] 

120. Potter RF, D’Souza AW, Dantas G (2016) The rapid spread of carbapenem-resistant 
Enterobacteriaceae. Drug Resist Updat 29:30–46. doi:10.1016/j.drup.2016.09.002 [PubMed: 
27912842] 

121. Pesesky MW, Hussain T, Wallace M, Wang B, Andleeb S, Burnham CA, Dantas G (2015) KPC 
and NDM-1 genes in related Enterobacteriaceae strains and plasmids from Pakistan and the 
United States. Emerg Infect Dis 21 (6):1034–1037. doi:10.3201/eid2106.141504 [PubMed: 
25988236] 

122. Martinez-Martinez L, Pascual A, Jacoby GA (1998) Quinolone resistance from a transferable 
plasmid. Lancet 351 (9105):797–799. doi:10.1016/S0140-6736(97)07322-4 [PubMed: 9519952] 

123. Poirel L, Rodriguez-Martinez JM, Mammeri H, Liard A, Nordmann P (2005) Origin of plasmid-
mediated quinolone resistance determinant QnrA. Antimicrob Agents Chemother 49 (8):3523–
3525. doi:10.1128/AAC.49.8.3523-3525.2005 [PubMed: 16048974] 

124. Jacoby GA, Strahilevitz J, Hooper DC (2014) Plasmid-mediated quinolone resistance. Microbiol 
Spectr 2 (5). doi:10.1128/microbiolspec.PLAS-0006-2013

125. Gasparrini AJ, Markley JL, Kumar H, Wang B, Fang L, Irum S, Symister CT, Wallace M, 
Burnham CD, Andleeb S, Tolia NH, Wencewicz TA, Dantas G (2020) Tetracycline-inactivating 
enzymes from environmental, human commensal, and pathogenic bacteria cause broad-spectrum 
tetracycline resistance. Commun Biol 3 (1):241. doi:10.1038/s42003-020-0966-5 [PubMed: 
32415166] 

Blake et al. Page 28

Cell Mol Life Sci. Author manuscript; available in PMC 2022 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.who.int/medicines/publications/essentialmedicines/en/
https://www.who.int/medicines/publications/essentialmedicines/en/


126. Jiang Y, Zhang Y, Lu J, Wang Q, Cui Y, Wang Y, Zhoa D, Du X, Liu H, Li X, Wu X, Hua X, Feng 
Y, Yu Y (2020) Clinical relevance and plasmid dynamics of mcr-1-positive Escherichia coli in 
China: a multicentre case-control and molecular epidemiological study. Lancet Microbe 1 
(1):E24–E33. doi:10.1016/S2666-5247(20)30001-X

127. Forsberg KJ, Reyes A, Wang B, Selleck EM, Sommer MO, Dantas G (2012) The shared antibiotic 
resistome of soil bacteria and human pathogens. Science 337 (6098):1107–1111. doi:10.1126/
science.1220761 [PubMed: 22936781] 

128. UniProt C (2015) UniProt: a hub for protein information. Nucleic Acids Res 43 (Database 
issue):D204–212. doi:10.1093/nar/gku989 [PubMed: 25348405] 

129. Crofts TS, Gasparrini AJ, Dantas G (2017) Next-generation approaches to understand and combat 
the antibiotic resistome. Nat Rev Microbiol 15 (7):422–434. doi:10.1038/nrmicro.2017.28 
[PubMed: 28392565] 

130. McInnes RS, McCallum GE, Lamberte LE, van Schaik W (2020) Horizontal transfer of antibiotic 
resistance genes in the human gut microbiome. Curr Opin Microbiol 53:35–43. doi:10.1016/
j.mib.2020.02.002 [PubMed: 32143027] 

131. Sun J, Liao XP, D’Souza AW, Boolchandani M, Li SH, Cheng K, Luis Martinez J, Li L, Feng YJ, 
Fang LX, Huang T, Xia J, Yu Y, Zhou YF, Sun YX, Deng XB, Zeng ZL, Jiang HX, Fang BH, 
Tang YZ, Lian XL, Zhang RM, Fang ZW, Yan QL, Dantas G, Liu YH (2020) Environmental 
remodeling of human gut microbiota and antibiotic resistome in livestock farms. Nat Commun 11 
(1):1427. doi:10.1038/s41467-020-15222-y [PubMed: 32188862] 

132. Bhattacharyya RP, Bandyopadhyay N, Ma P, Son SS, Liu J, He LL, Wu L, Khafizov R, Boykin R, 
Cerqueira GC, Pironti A, Rudy RF, Patel MM, Yang R, Skerry J, Nazarian E, Musser KA, Taylor 
J, Pierce VM, Earl AM, Cosimi LA, Shoresh N, Beechem J, Livny J, Hung DT (2019) 
Simultaneous detection of genotype and phenotype enables rapid and accurate antibiotic 
susceptibility determination. Nat Med 25 (12):1858–1864. doi:10.1038/s41591-019-0650-9 
[PubMed: 31768064] 

133. van Belkum A, Welker M, Pincus D, Charrier JP, Girard V (2017) Matrix-Assisted Laser 
Desorption Ionization Time-of-Flight Mass Spectrometry in Clinical Microbiology: What Are the 
Current Issues? Ann Lab Med 37 (6):475–483. doi:10.3343/alm.2017.37.6.475 [PubMed: 
28840984] 

134. Jorgensen JH, Ferraro MJ (2009) Antimicrobial susceptibility testing: a review of general 
principles and contemporary practices. Clin Infect Dis 49 (11):1749–1755. doi:10.1086/647952 
[PubMed: 19857164] 

135. CLSI (2019) Performance Standards for Antimicrobial Susceptibility Testing. vol M100Ed29. 
Wayne, PA

136. Kahlmeter G, Brown DF, Goldstein FW, MacGowan AP, Mouton JW, Osterlund A, Rodloff A, 
Steinbakk M, Urbaskova P, Vatopoulos A (2003) European harmonization of MIC breakpoints 
for antimicrobial susceptibility testing of bacteria. J Antimicrob Chemother 52 (2):145–148. 
doi:10.1093/jac/dkg312 [PubMed: 12837738] 

137. Prim N, Rivera A, Coll P, Mirelis B (2018) Is Colistin Susceptibility Testing Finally on the Right 
Track? Antimicrob Agents Chemother 62 (4). doi:10.1128/AAC.02067-17

138. Liu YY, Wang Y, Walsh TR, Yi LX, Zhang R, Spencer J, Doi Y, Tian G, Dong B, Huang X, Yu 
LF, Gu D, Ren H, Chen X, Lv L, He D, Zhou H, Liang Z, Liu JH, Shen J (2016) Emergence of 
plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: 
a microbiological and molecular biological study. Lancet Infect Dis 16 (2):161–168. doi:10.1016/
S1473-3099(15)00424-7 [PubMed: 26603172] 

139. He T, Wang R, Liu D, Walsh TR, Zhang R, Lv Y, Ke Y, Ji Q, Wei R, Liu Z, Shen Y, Wang G, Sun 
L, Lei L, Lv Z, Li Y, Pang M, Wang L, Sun Q, Fu Y, Song H, Hao Y, Shen Z, Wang S, Chen G, 
Wu C, Shen J, Wang Y (2019) Emergence of plasmid-mediated high-level tigecycline resistance 
genes in animals and humans. Nat Microbiol 4 (9):1450–1456. doi:10.1038/s41564-019-0445-2 
[PubMed: 31133751] 

140. Jarvinen AK, Laakso S, Piiparinen P, Aittakorpi A, Lindfors M, Huopaniemi L, Piiparinen H, 
Maki M (2009) Rapid identification of bacterial pathogens using a PCR- and microarray-based 
assay. BMC Microbiol 9:161. doi:10.1186/1471-2180-9-161 [PubMed: 19664269] 

Blake et al. Page 29

Cell Mol Life Sci. Author manuscript; available in PMC 2022 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



141. Poirel L, Walsh TR, Cuvillier V, Nordmann P (2011) Multiplex PCR for detection of acquired 
carbapenemase genes. Diagn Microbiol Infect Dis 70 (1):119–123. doi:10.1016/
j.diagmicrobio.2010.12.002 [PubMed: 21398074] 

142. Ng LK, Martin I, Alfa M, Mulvey M (2001) Multiplex PCR for the detection of tetracycline 
resistant genes. Mol Cell Probes 15 (4):209–215. doi:10.1006/mcpr.2001.0363 [PubMed: 
11513555] 

143. Liu J, Gratz J, Amour C, Kibiki G, Becker S, Janaki L, Verweij JJ, Taniuchi M, Sobuz SU, Haque 
R, Haverstick DM, Houpt ER (2013) A laboratory-developed TaqMan Array Card for 
simultaneous detection of 19 enteropathogens. J Clin Microbiol 51 (2):472–480. doi:10.1128/
JCM.02658-12 [PubMed: 23175269] 

144. Zankari E, Hasman H, Cosentino S, Vestergaard M, Rasmussen S, Lund O, Aarestrup FM, Larsen 
MV (2012) Identification of acquired antimicrobial resistance genes. J Antimicrob Chemother 67 
(11):2640–2644. doi:10.1093/jac/dks261 [PubMed: 22782487] 

145. Zankari E, Allesoe R, Joensen KG, Cavaco LM, Lund O, Aarestrup FM (2017) PointFinder: a 
novel web tool for WGS-based detection of antimicrobial resistance associated with 
chromosomal point mutations in bacterial pathogens. J Antimicrob Chemother 72 (10):2764–
2768. doi:10.1093/jac/dkx217 [PubMed: 29091202] 

146. Jia B, Raphenya AR, Alcock B, Waglechner N, Guo P, Tsang KK, Lago BA, Dave BM, Pereira S, 
Sharma AN, Doshi S, Courtot M, Lo R, Williams LE, Frye JG, Elsayegh T, Sardar D, Westman 
EL, Pawlowski AC, Johnson TA, Brinkman FS, Wright GD, McArthur AG (2017) CARD 2017: 
expansion and model-centric curation of the comprehensive antibiotic resistance database. 
Nucleic Acids Res 45 (D1):D566–D573. doi:10.1093/nar/gkw1004 [PubMed: 27789705] 

147. Inouye M, Dashnow H, Raven LA, Schultz MB, Pope BJ, Tomita T, Zobel J, Holt KE (2014) 
SRST2: Rapid genomic surveillance for public health and hospital microbiology labs. Genome 
Med 6 (11):90. doi:10.1186/s13073-014-0090-6 [PubMed: 25422674] 

148. Clausen PT, Zankari E, Aarestrup FM, Lund O (2016) Benchmarking of methods for 
identification of antimicrobial resistance genes in bacterial whole genome data. J Antimicrob 
Chemother 71 (9):2484–2488. doi:10.1093/jac/dkw184 [PubMed: 27365186] 

149. Thai QK, Bos F, Pleiss J (2009) The Lactamase Engineering Database: a critical survey of TEM 
sequences in public databases. BMC Genomics 10:390. doi:10.1186/1471-2164-10-390 
[PubMed: 19698099] 

150. Sandgren A, Strong M, Muthukrishnan P, Weiner BK, Church GM, Murray MB (2009) 
Tuberculosis drug resistance mutation database. PLoS Med 6 (2):e2. doi:10.1371/
journal.pmed.1000002 [PubMed: 19209951] 

151. Skov RL, Monnet DL (2016) Plasmid-mediated colistin resistance (mcr-1 gene): three months 
later, the story unfolds. Euro Surveill 21 (9):30155. doi:10.2807/1560-7917.ES.2016.21.9.30155 
[PubMed: 26967914] 

152. Carnevali C, Morganti M, Scaltriti E, Bolzoni L, Pongolini S, Casadei G (2016) Occurrence of 
mcr-1 in Colistin-Resistant Salmonella enterica Isolates Recovered from Humans and Animals in 
Italy, 2012 to 2015. Antimicrob Agents Chemother 60 (12):7532–7534. doi:10.1128/
AAC.01803-16 [PubMed: 27697756] 

153. Ortega-Paredes D, Barba P, Zurita J (2016) Colistin-resistant Escherichia coli clinical isolate 
harbouring the mcr-1 gene in Ecuador. Epidemiol Infect 144 (14):2967–2970. doi:10.1017/
S0950268816001369 [PubMed: 27586373] 

154. Teo JQ, Ong RT, Xia E, Koh TH, Khor CC, Lee SJ, Lim TP, Kwa AL (2016) mcr-1 in Multidrug-
Resistant blaKPC-2-Producing Clinical Enterobacteriaceae Isolates in Singapore. Antimicrob 
Agents Chemother 60 (10):6435–6437. doi:10.1128/AAC.00804-16 [PubMed: 27503652] 

155. Delgado-Blas JF, Ovejero CM, Abadia-Patino L, Gonzalez-Zorn B (2016) Coexistence of mcr-1 
and blaNDM-1 in Escherichia coli from Venezuela. Antimicrob Agents Chemother 60 
(10):6356–6358. doi:10.1128/AAC.01319-16 [PubMed: 27431212] 

156. Wong SC, Tse H, Chen JH, Cheng VC, Ho PL, Yuen KY (2016) Colistin-Resistant 
Enterobacteriaceae Carrying the mcr-1 Gene among Patients in Hong Kong. Emerg Infect Dis 22 
(9):1667–1669. doi:10.3201/eid2209.160091 [PubMed: 27532341] 

Blake et al. Page 30

Cell Mol Life Sci. Author manuscript; available in PMC 2022 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



157. von Wintersdorff CJ, Wolffs PF, van Niekerk JM, Beuken E, van Alphen LB, Stobberingh EE, 
Oude Lashof AM, Hoebe CJ, Savelkoul PH, Penders J (2016) Detection of the plasmid-mediated 
colistin-resistance gene mcr-1 in faecal metagenomes of Dutch travellers. J Antimicrob 
Chemother 71 (12):3416–3419. doi:10.1093/jac/dkw328 [PubMed: 27559117] 

158. Kaminski J, Gibson MK, Franzosa EA, Segata N, Dantas G, Huttenhower C (2015) High-
Specificity Targeted Functional Profiling in Microbial Communities with ShortBRED. PLoS 
Comput Biol 11 (12):e1004557. doi:10.1371/journal.pcbi.1004557 [PubMed: 26682918] 

159. Pehrsson EC, Tsukayama P, Patel S, Mejia-Bautista M, Sosa-Soto G, Navarrete KM, Calderon M, 
Cabrera L, Hoyos-Arango W, Bertoli MT, Berg DE, Gilman RH, Dantas G (2016) Interconnected 
microbiomes and resistomes in low-income human habitats. Nature 533 (7602):212–216. 
doi:10.1038/nature17672 [PubMed: 27172044] 

160. Gibson MK, Forsberg KJ, Dantas G (2015) Improved annotation of antibiotic resistance 
determinants reveals microbial resistomes cluster by ecology. ISME J 9 (1):207–216. 
doi:10.1038/ismej.2014.106 [PubMed: 25003965] 

161. Eddy SR (2004) What is a hidden Markov model? Nat Biotechnol 22 (10):1315–1316. 
doi:10.1038/nbt1004-1315 [PubMed: 15470472] 

162. El-Gebali S, Mistry J, Bateman A, Eddy SR, Luciani A, Potter SC, Qureshi M, Richardson LJ, 
Salazar GA, Smart A, Sonnhammer ELL, Hirsh L, Paladin L, Piovesan D, Tosatto SCE, Finn RD 
(2019) The Pfam protein families database in 2019. Nucleic Acids Res 47 (D1):D427–D432. 
doi:10.1093/nar/gky995 [PubMed: 30357350] 

163. Liu B, Pop M (2009) ARDB--Antibiotic Resistance Genes Database. Nucleic Acids Res 37 
(Database issue):D443–447. doi:10.1093/nar/gkn656 [PubMed: 18832362] 

164. Fernandez-Arrojo L, Guazzaroni ME, Lopez-Cortes N, Beloqui A, Ferrer M (2010) Metagenomic 
era for biocatalyst identification. Curr Opin Biotechnol 21 (6):725–733. doi:10.1016/
j.copbio.2010.09.006 [PubMed: 20934867] 

165. Campbell TP, Sun X, Patel VH, Sanz C, Morgan D, Dantas G (2020) The microbiome and 
resistome of chimpanzees, gorillas, and humans across host lifestyle and geography. ISME J 14 
(6):1584–1599. doi:10.1038/s41396-020-0634-2 [PubMed: 32203121] 

166. Forsberg KJ, Patel S, Wencewicz TA, Dantas G (2015) The Tetracycline Destructases: A Novel 
Family of Tetracycline-Inactivating Enzymes. Chem Biol 22 (7):888–897. doi:10.1016/
j.chembiol.2015.05.017 [PubMed: 26097034] 

167. Cohen LJ, Han S, Huang YH, Brady SF (2018) Identification of the Colicin V Bacteriocin Gene 
Cluster by Functional Screening of a Human Microbiome Metagenomic Library. ACS Infect Dis 
4 (1):27–32. doi:10.1021/acsinfecdis.7b00081 [PubMed: 28810737] 

168. Wallace JC, Port JA, Smith MN, Faustman EM (2017) FARME DB: a functional antibiotic 
resistance element database. Database (Oxford) 2017. doi:10.1093/database/baw165

169. Munk P, Knudsen BE, Lukjancenko O, Duarte ASR, Van Gompel L, Luiken REC, Smit LAM, 
Schmitt H, Garcia AD, Hansen RB, Petersen TN, Bossers A, Ruppe E, Group E, Lund O, Hald T, 
Pamp SJ, Vigre H, Heederik D, Wagenaar JA, Mevius D, Aarestrup FM (2018) Abundance and 
diversity of the faecal resistome in slaughter pigs and broilers in nine European countries. Nat 
Microbiol 3 (8):898–908. doi:10.1038/s41564-018-0192-9 [PubMed: 30038308] 

170. Barczak AK, Gomez JE, Kaufmann BB, Hinson ER, Cosimi L, Borowsky ML, Onderdonk AB, 
Stanley SA, Kaur D, Bryant KF, Knipe DM, Sloutsky A, Hung DT (2012) RNA signatures allow 
rapid identification of pathogens and antibiotic susceptibilities. Proc Natl Acad Sci U S A 109 
(16):6217–6222. doi:10.1073/pnas.1119540109 [PubMed: 22474362] 

171. Sangurdekar DP, Srienc F, Khodursky AB (2006) A classification based framework for 
quantitative description of large-scale microarray data. Genome Biol 7 (4):R32. doi:10.1186/
gb-2006-7-4-r32 [PubMed: 16626502] 

172. Hrabak J, Studentova V, Walkova R, Zemlickova H, Jakubu V, Chudackova E, Gniadkowski M, 
Pfeifer Y, Perry JD, Wilkinson K, Bergerova T (2012) Detection of NDM-1, VIM-1, KPC, 
OXA-48, and OXA-162 carbapenemases by matrix-assisted laser desorption ionization-time of 
flight mass spectrometry. J Clin Microbiol 50 (7):2441–2443. doi:10.1128/JCM.01002-12 
[PubMed: 22553235] 

Blake et al. Page 31

Cell Mol Life Sci. Author manuscript; available in PMC 2022 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



173. Josten M, Dischinger J, Szekat C, Reif M, Al-Sabti N, Sahl HG, Parcina M, Bekeredjian-Ding I, 
Bierbaum G (2014) Identification of agr-positive methicillin-resistant Staphylococcus aureus 
harbouring the class A mec complex by MALDI-TOF mass spectrometry. Int J Med Microbiol 
304 (8):1018–1023. doi:10.1016/j.ijmm.2014.07.005 [PubMed: 25116838] 

174. Figueroa-Espinosa R, Costa A, Cejas D, Barrios R, Vay C, Radice M, Gutkind G, Di Conza J 
(2019) MALDI-TOF MS based procedure to detect KPC-2 directly from positive blood culture 
bottles and colonies. J Microbiol Methods 159:120–127. doi:10.1016/j.mimet.2019.02.020 
[PubMed: 30849422] 

175. Banyoczki G, Goebel N, Antonucci F, Zollikofer C, Stuckmann G (1990) [CT diagnosis in 
idiopathic thrombosis of the superior mesenteric vein]. Rofo 153 (2):192–196. doi:10.1055/
s-2008-1033360 [PubMed: 2168076] 

176. Sparbier K, Lange C, Jung J, Wieser A, Schubert S, Kostrzewa M (2013) MALDI biotyper-based 
rapid resistance detection by stable-isotope labeling. J Clin Microbiol 51 (11):3741–3748. 
doi:10.1128/JCM.01536-13 [PubMed: 24006001] 

177. Jung JS, Hamacher C, Gross B, Sparbier K, Lange C, Kostrzewa M, Schubert S (2016) Evaluation 
of a Semiquantitative Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass 
Spectrometry Method for Rapid Antimicrobial Susceptibility Testing of Positive Blood Cultures. 
J Clin Microbiol 54 (11):2820–2824. doi:10.1128/JCM.01131-16 [PubMed: 27629893] 

178. Cawthon RM, Weiss R, Xu GF, Viskochil D, Culver M, Stevens J, Robertson M, Dunn D, 
Gesteland R, O’Connell P, et al. (1990) A major segment of the neurofibromatosis type 1 gene: 
cDNA sequence, genomic structure, and point mutations. Cell 62 (1):193–201. 
doi:10.1016/0092-8674(90)90253-b [PubMed: 2114220] 

179. Hatosy SM, Martiny AC (2015) The ocean as a global reservoir of antibiotic resistance genes. 
Appl Environ Microbiol 81 (21):7593–7599. doi:10.1128/AEM.00736-15 [PubMed: 26296734] 

180. Rizzo L, Manaia C, Merlin C, Schwartz T, Dagot C, Ploy MC, Michael I, Fatta-Kassinos D 
(2013) Urban wastewater treatment plants as hotspots for antibiotic resistant bacteria and genes 
spread into the environment: a review. Sci Total Environ 447:345–360. doi:10.1016/
j.scitotenv.2013.01.032 [PubMed: 23396083] 

181. Evans DR, Griffith MP, Sundermann AJ, Shutt KA, Saul MI, Mustapha MM, Marsh JW, Cooper 
VS, Harrison LH, Van Tyne D (2020) Systematic detection of horizontal gene transfer across 
genera among multidrug-resistant bacteria in a single hospital. Elife 9. doi:10.7554/eLife.53886

182. Lerat E, Ochman H (2004) Psi-Phi: exploring the outer limits of bacterial pseudogenes. Genome 
Res 14 (11):2273–2278. doi:10.1101/gr.2925604 [PubMed: 15479949] 

183. Carr VR, Shkoporov A, Hill C, Mullany P, Moyes DL (2020) Probing the Mobilome: Discoveries 
in the Dynamic Microbiome. Trends Microbiol. doi:10.1016/j.tim.2020.05.003

184. Jorgensen TS, Kiil AS, Hansen MA, Sorensen SJ, Hansen LH (2014) Current strategies for 
mobilome research. Front Microbiol 5:750. doi:10.3389/fmicb.2014.00750 [PubMed: 25657641] 

185. Carattoli A (2013) Plasmids and the spread of resistance. Int J Med Microbiol 303 (6–7):298–304. 
doi:10.1016/j.ijmm.2013.02.001 [PubMed: 23499304] 

186. Smalla K, Jechalke S, Top EM (2015) Plasmid Detection, Characterization, and Ecology. 
Microbiol Spectr 3 (1):PLAS-0038-2014. doi:10.1128/microbiolspec.PLAS-0038-2014

187. Pinilla-Redondo R, Cyriaque V, Jacquiod S, Sorensen SJ, Riber L (2018) Monitoring plasmid-
mediated horizontal gene transfer in microbiomes: recent advances and future perspectives. 
Plasmid 99:56–67. doi:10.1016/j.plasmid.2018.08.002 [PubMed: 30086339] 

188. Emamalipour M, Seidi K, Zununi Vahed S, Jahanban-Esfahlan A, Jaymand M, Majdi H, 
Amoozgar Z, Chitkushev LT, Javaheri T, Jahanban-Esfahlan R, Zare P (2020) Horizontal Gene 
Transfer: From Evolutionary Flexibility to Disease Progression. Front Cell Dev Biol 8:229. 
doi:10.3389/fcell.2020.00229 [PubMed: 32509768] 

189. Conlan S, Park M, Deming C, Thomas PJ, Young AC, Coleman H, Sison C, Program NCS, 
Weingarten RA, Lau AF, Dekker JP, Palmore TN, Frank KM, Segre JA (2016) Plasmid Dynamics 
in KPC-Positive Klebsiella pneumoniae during Long-Term Patient Colonization. mBio 7 (3). 
doi:10.1128/mBio.00742-16

190. Partridge SR, Kwong SM, Firth N, Jensen SO (2018) Mobile Genetic Elements Associated with 
Antimicrobial Resistance. Clin Microbiol Rev 31 (4). doi:10.1128/CMR.00088-17

Blake et al. Page 32

Cell Mol Life Sci. Author manuscript; available in PMC 2022 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



191. Carattoli A, Bertini A, Villa L, Falbo V, Hopkins KL, Threlfall EJ (2005) Identification of 
plasmids by PCR-based replicon typing. J Microbiol Methods 63 (3):219–228. doi:10.1016/
j.mimet.2005.03.018 [PubMed: 15935499] 

192. Garcia-Fernandez A, Villa L, Moodley A, Hasman H, Miriagou V, Guardabassi L, Carattoli A 
(2011) Multilocus sequence typing of IncN plasmids. J Antimicrob Chemother 66 (9):1987–
1991. doi:10.1093/jac/dkr225 [PubMed: 21653604] 

193. Valverde A, Canton R, Garcillan-Barcia MP, Novais A, Galan JC, Alvarado A, de la Cruz F, 
Baquero F, Coque TM (2009) Spread of bla(CTX-M-14) is driven mainly by IncK plasmids 
disseminated among Escherichia coli phylogroups A, B1, and D in Spain. Antimicrob Agents 
Chemother 53 (12):5204–5212. doi:10.1128/AAC.01706-08 [PubMed: 19786598] 

194. Alvarado A, Garcillan-Barcia MP, de la Cruz F (2012) A degenerate primer MOB typing (DPMT) 
method to classify gamma-proteobacterial plasmids in clinical and environmental settings. PLoS 
One 7 (7):e40438. doi:10.1371/journal.pone.0040438 [PubMed: 22792321] 

195. Carattoli A, Zankari E, Garcia-Fernandez A, Voldby Larsen M, Lund O, Villa L, Moller 
Aarestrup F, Hasman H (2014) In silico detection and typing of plasmids using PlasmidFinder 
and plasmid multilocus sequence typing. Antimicrob Agents Chemother 58 (7):3895–3903. 
doi:10.1128/AAC.02412-14 [PubMed: 24777092] 

196. Francia MV, Varsaki A, Garcillan-Barcia MP, Latorre A, Drainas C, de la Cruz F (2004) A 
classification scheme for mobilization regions of bacterial plasmids. FEMS Microbiol Rev 28 
(1):79–100. doi:10.1016/j.femsre.2003.09.001 [PubMed: 14975531] 

197. Hazen TH, Mettus R, McElheny CL, Bowler SL, Nagaraj S, Doi Y, Rasko DA (2018) Diversity 
among blaKPC-containing plasmids in Escherichia coli and other bacterial species isolated from 
the same patients. Sci Rep 8 (1):10291. doi:10.1038/s41598-018-28085-7 [PubMed: 29980699] 

198. Pecora ND, Li N, Allard M, Li C, Albano E, Delaney M, Dubois A, Onderdonk AB, Bry L (2015) 
Genomically Informed Surveillance for Carbapenem-Resistant Enterobacteriaceae in a Health 
Care System. mBio 6 (4):e01030. doi:10.1128/mBio.01030-15 [PubMed: 26220969] 

199. Orlek A, Phan H, Sheppard AE, Doumith M, Ellington M, Peto T, Crook D, Walker AS, 
Woodford N, Anjum MF, Stoesser N (2017) Ordering the mob: Insights into replicon and MOB 
typing schemes from analysis of a curated dataset of publicly available plasmids. Plasmid 91:42–
52. doi:10.1016/j.plasmid.2017.03.002 [PubMed: 28286183] 

200. Arredondo-Alonso S, Willems RJ, van Schaik W, Schurch AC (2017) On the (im)possibility of 
reconstructing plasmids from whole-genome short-read sequencing data. Microb Genom 3 
(10):e000128. doi:10.1099/mgen.0.000128 [PubMed: 29177087] 

201. Antipov D, Hartwick N, Shen M, Raiko M, Lapidus A, Pevzner PA (2016) plasmidSPAdes: 
assembling plasmids from whole genome sequencing data. Bioinformatics 32 (22):3380–3387. 
doi:10.1093/bioinformatics/btw493 [PubMed: 27466620] 

202. Zhou F, Xu Y (2010) cBar: a computer program to distinguish plasmid-derived from 
chromosome-derived sequence fragments in metagenomics data. Bioinformatics 26 (16):2051–
2052. doi:10.1093/bioinformatics/btq299 [PubMed: 20538725] 

203. Krawczyk PS, Lipinski L, Dziembowski A (2018) PlasFlow: predicting plasmid sequences in 
metagenomic data using genome signatures. Nucleic Acids Res 46 (6):e35. doi:10.1093/nar/
gkx1321 [PubMed: 29346586] 

204. Rozov R, Brown Kav A, Bogumil D, Shterzer N, Halperin E, Mizrahi I, Shamir R (2017) 
Recycler: an algorithm for detecting plasmids from de novo assembly graphs. Bioinformatics 33 
(4):475–482. doi:10.1093/bioinformatics/btw651 [PubMed: 28003256] 

205. Antipov D, Raiko M, Lapidus A, Pevzner PA (2019) Plasmid detection and assembly in genomic 
and metagenomic data sets. Genome Res 29 (6):961–968. doi:10.1101/gr.241299.118 [PubMed: 
31048319] 

206. Orlek A, Stoesser N, Anjum MF, Doumith M, Ellington MJ, Peto T, Crook D, Woodford N, 
Walker AS, Phan H, Sheppard AE (2017) Plasmid Classification in an Era of Whole-Genome 
Sequencing: Application in Studies of Antibiotic Resistance Epidemiology. Front Microbiol 
8:182. doi:10.3389/fmicb.2017.00182 [PubMed: 28232822] 

207. Sheppard AE, Stoesser N, Wilson DJ, Sebra R, Kasarskis A, Anson LW, Giess A, Pankhurst LJ, 
Vaughan A, Grim CJ, Cox HL, Yeh AJ, Modernising Medical Microbiology Informatics G, Sifri 

Blake et al. Page 33

Cell Mol Life Sci. Author manuscript; available in PMC 2022 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



CD, Walker AS, Peto TE, Crook DW, Mathers AJ (2016) Nested Russian Doll-Like Genetic 
Mobility Drives Rapid Dissemination of the Carbapenem Resistance Gene blaKPC. Antimicrob 
Agents Chemother 60 (6):3767–3778. doi:10.1128/AAC.00464-16 [PubMed: 27067320] 

208. Galata V, Fehlmann T, Backes C, Keller A (2019) PLSDB: a resource of complete bacterial 
plasmids. Nucleic Acids Res 47 (D1):D195–D202. doi:10.1093/nar/gky1050 [PubMed: 
30380090] 

209. Stoesser N, Giess A, Batty EM, Sheppard AE, Walker AS, Wilson DJ, Didelot X, Bashir A, Sebra 
R, Kasarskis A, Sthapit B, Shakya M, Kelly D, Pollard AJ, Peto TE, Crook DW, Donnelly P, 
Thorson S, Amatya P, Joshi S (2014) Genome sequencing of an extended series of NDM-
producing Klebsiella pneumoniae isolates from neonatal infections in a Nepali hospital 
characterizes the extent of community- versus hospital-associated transmission in an endemic 
setting. Antimicrob Agents Chemother 58 (12):7347–7357. doi:10.1128/AAC.03900-14 
[PubMed: 25267672] 

210. Conlan S, Thomas PJ, Deming C, Park M, Lau AF, Dekker JP, Snitkin ES, Clark TA, Luong K, 
Song Y, Tsai YC, Boitano M, Dayal J, Brooks SY, Schmidt B, Young AC, Thomas JW, Bouffard 
GG, Blakesley RW, Program NCS, Mullikin JC, Korlach J, Henderson DK, Frank KM, Palmore 
TN, Segre JA (2014) Single-molecule sequencing to track plasmid diversity of hospital-
associated carbapenemase-producing Enterobacteriaceae. Sci Transl Med 6 (254):254ra126. 
doi:10.1126/scitranslmed.3009845

211. Travers KJ, Chin CS, Rank DR, Eid JS, Turner SW (2010) A flexible and efficient template 
format for circular consensus sequencing and SNP detection. Nucleic Acids Res 38 (15):e159. 
doi:10.1093/nar/gkq543 [PubMed: 20571086] 

212. Cazares A, Moore MP, Hall JPJ, Wright LL, Grimes M, Emond-Rheault JG, Pongchaikul P, 
Santanirand P, Levesque RC, Fothergill JL, Winstanley C (2020) A megaplasmid family driving 
dissemination of multidrug resistance in Pseudomonas. Nat Commun 11 (1):1370. doi:10.1038/
s41467-020-15081-7 [PubMed: 32170080] 

213. Siguier P, Perochon J, Lestrade L, Mahillon J, Chandler M (2006) ISfinder: the reference centre 
for bacterial insertion sequences. Nucleic Acids Res 34 (Database issue):D32–36. 
doi:10.1093/nar/gkj014 [PubMed: 16381877] 

214. Hawkey J, Hamidian M, Wick RR, Edwards DJ, Billman-Jacobe H, Hall RM, Holt KE (2015) 
ISMapper: identifying transposase insertion sites in bacterial genomes from short read sequence 
data. BMC Genomics 16:667. doi:10.1186/s12864-015-1860-2 [PubMed: 26336060] 

215. Cury J, Jove T, Touchon M, Neron B, Rocha EP (2016) Identification and analysis of integrons 
and cassette arrays in bacterial genomes. Nucleic Acids Res 44 (10):4539–4550. doi:10.1093/nar/
gkw319 [PubMed: 27130947] 

216. Treepong P, Guyeux C, Meunier A, Couchoud C, Hocquet D, Valot B (2018) panISa: ab initio 
detection of insertion sequences in bacterial genomes from short read sequence data. 
Bioinformatics 34 (22):3795–3800. doi:10.1093/bioinformatics/bty479 [PubMed: 29931098] 

217. Durrant MG, Li MM, Siranosian BA, Montgomery SB, Bhatt AS (2020) A Bioinformatic 
Analysis of Integrative Mobile Genetic Elements Highlights Their Role in Bacterial Adaptation. 
Cell Host Microbe 27 (1):140–153 e149. doi:10.1016/j.chom.2019.10.022 [PubMed: 31862382] 

218. Jorgensen TS, Xu Z, Hansen MA, Sorensen SJ, Hansen LH (2014) Hundreds of circular novel 
plasmids and DNA elements identified in a rat cecum metamobilome. PLoS One 9 (2):e87924. 
doi:10.1371/journal.pone.0087924 [PubMed: 24503942] 

219. Brown Kav A, Benhar I, Mizrahi I (2013) A method for purifying high quality and high yield 
plasmid DNA for metagenomic and deep sequencing approaches. J Microbiol Methods 95 
(2):272–279. doi:10.1016/j.mimet.2013.09.008 [PubMed: 24055388] 

220. Li LL, Norman A, Hansen LH, Sorensen SJ (2012) Metamobilomics--expanding our knowledge 
on the pool of plasmid encoded traits in natural environments using high-throughput sequencing. 
Clin Microbiol Infect 18 Suppl 4:5–7. doi:10.1111/j.1469-0691.2012.03862.x

221. Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T, Telling A, Amit I, 
Lajoie BR, Sabo PJ, Dorschner MO, Sandstrom R, Bernstein B, Bender MA, Groudine M, 
Gnirke A, Stamatoyannopoulos J, Mirny LA, Lander ES, Dekker J (2009) Comprehensive 
mapping of long-range interactions reveals folding principles of the human genome. Science 326 
(5950):289–293. doi:10.1126/science.1181369 [PubMed: 19815776] 

Blake et al. Page 34

Cell Mol Life Sci. Author manuscript; available in PMC 2022 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



222. DeMaere MZ, Darling AE (2019) bin3C: exploiting Hi-C sequencing data to accurately resolve 
metagenome-assembled genomes. Genome Biol 20 (1):46. doi:10.1186/s13059-019-1643-1 
[PubMed: 30808380] 

223. Press MO, Wiser AH, Kronenberg ZN, Langford KW, Shakya M, Lo C, Mueller KA, Sullivan S, 
Chain PSG, Liachko I (2017) Hi-C deconvolution of a human gut microbiome yields high-quality 
draft genomes and reveals plasmid-genome interactions. bioRxiv. doi:10.1101/198713

224. DeMaere MZ, Liu MYZ, Lin E, Djordjevic SP, Charles IG, Worden P, Burke CM, Monahan LG, 
Gardiner M, Borody TJ, Darling AE (2020) Metagenomic Hi-C of a Healthy Human Fecal 
Microbiome Transplant Donor. Microbiol Resour Announc 9 (6). doi:10.1128/MRA.01523-19

225. Beitel CW, Froenicke L, Lang JM, Korf IF, Michelmore RW, Eisen JA, Darling AE (2014) Strain- 
and plasmid-level deconvolution of a synthetic metagenome by sequencing proximity ligation 
products. PeerJ 2:e415. doi:10.7717/peerj.415 [PubMed: 24918035] 

226. Burton JN, Liachko I, Dunham MJ, Shendure J (2014) Species-level deconvolution of 
metagenome assemblies with Hi-C-based contact probability maps. G3 (Bethesda) 4 (7):1339–
1346. doi:10.1534/g3.114.011825 [PubMed: 24855317] 

227. Marbouty M, Cournac A, Flot JF, Marie-Nelly H, Mozziconacci J, Koszul R (2014) Metagenomic 
chromosome conformation capture (meta3C) unveils the diversity of chromosome organization in 
microorganisms. Elife 3:e03318. doi:10.7554/eLife.03318 [PubMed: 25517076] 

228. Stewart RD, Auffret MD, Warr A, Wiser AH, Press MO, Langford KW, Liachko I, Snelling TJ, 
Dewhurst RJ, Walker AW, Roehe R, Watson M (2018) Assembly of 913 microbial genomes from 
metagenomic sequencing of the cow rumen. Nat Commun 9 (1):870. doi:10.1038/
s41467-018-03317-6 [PubMed: 29491419] 

229. Yaffe E, Relman DA (2020) Tracking microbial evolution in the human gut using Hi-C reveals 
extensive horizontal gene transfer, persistence and adaptation. Nat Microbiol 5 (2):343–353. 
doi:10.1038/s41564-019-0625-0 [PubMed: 31873203] 

230. Stalder T, Press MO, Sullivan S, Liachko I, Top EM (2019) Linking the resistome and 
plasmidome to the microbiome. ISME J 13 (10):2437–2446. doi:10.1038/s41396-019-0446-4 
[PubMed: 31147603] 

231. Kent AG, Vill AC, Shi Q, Satlin MJ, Brito IL (2020) Widespread transfer of mobile antibiotic 
resistance genes within individual gut microbiomes revealed through bacterial Hi-C. Nat 
Commun 11 (1):4379. doi:10.1038/s41467-020-18164-7 [PubMed: 32873785] 

232. Snitkin ES, Zelazny AM, Thomas PJ, Stock F, Group NCSP, Henderson DK, Palmore TN, Segre 
JA (2012) Tracking a hospital outbreak of carbapenem-resistant Klebsiella pneumoniae with 
whole-genome sequencing. Sci Transl Med 4 (148):148ra116. doi:10.1126/scitranslmed.3004129

233. Smibert OC, Aung AK, Woolnough E, Carter GP, Schultz MB, Howden BP, Seemann T, Spelman 
D, McGloughlin S, Peleg AY (2018) Mobile phones and computer keyboards: unlikely reservoirs 
of multidrug-resistant organisms in the tertiary intensive care unit. J Hosp Infect 99 (3):295–298. 
doi:10.1016/j.jhin.2018.02.013 [PubMed: 29501730] 

234. Guerra-Assuncao JA, Houben RM, Crampin AC, Mzembe T, Mallard K, Coll F, Khan P, Banda L, 
Chiwaya A, Pereira RP, McNerney R, Harris D, Parkhill J, Clark TG, Glynn JR (2015) 
Recurrence due to relapse or reinfection with Mycobacterium tuberculosis: a whole-genome 
sequencing approach in a large, population-based cohort with a high HIV infection prevalence 
and active follow-up. J Infect Dis 211 (7):1154–1163. doi:10.1093/infdis/jiu574 [PubMed: 
25336729] 

235. Donkor ES, Jamrozy D, Mills RO, Dankwah T, Amoo PK, Egyir B, Badoe EV, Twasam J, 
Bentley SD (2018) A genomic infection control study for Staphylococcus aureus in two 
Ghanaian hospitals. Infect Drug Resist 11:1757–1765. doi:10.2147/IDR.S167639 [PubMed: 
30349333] 

236. Sharma H, Ong MR, Ready D, Coelho J, Groves N, Chalker V, Warren S (2019) Real-time whole 
genome sequencing to control a Streptococcus pyogenes outbreak at a national orthopaedic 
hospital. J Hosp Infect 103 (1):21–26. doi:10.1016/j.jhin.2019.07.003 [PubMed: 31283948] 

237. Sundermann AJ, Babiker A, Marsh JW, Shutt KA, Mustapha MM, Pasculle AW, Ezeonwuka C, 
Saul MI, Pacey MP, Van Tyne D, Ayres AM, Cooper VS, Snyder GM, Harrison LH (2020) 
Outbreak of Vancomycin-resistant Enterococcus faecium in Interventional Radiology: Detection 

Blake et al. Page 35

Cell Mol Life Sci. Author manuscript; available in PMC 2022 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Through Whole-genome Sequencing-based Surveillance. Clin Infect Dis 70 (11):2336–2343. 
doi:10.1093/cid/ciz666 [PubMed: 31312842] 

Blake et al. Page 36

Cell Mol Life Sci. Author manuscript; available in PMC 2022 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. Multi-layered transmission networks of nosocomial pathogens and AR genes.
During outbreaks of HAIs, (a) MDR pathogens can be spread between patients via 

healthcare workers and visitors, and/or persistent reservoirs of hospital-associated 

microbiota such as high-touch surfaces and plumbing. Additionally, (b) AR genes can be 

spread intracellularly (e.g., chromosome to plasmid, or plasmid to plasmid) or intercellularly 

between bacteria of different taxa via plasmids and other MGEs.
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Table 1.

Case examples of distance-based approaches to identify strains *

Study Organism
Sequencing 
approach Reference strain cutoff

Silva et al., 2016 [95] Burkholderia multivorans WGS Temporally initial isolate draft 
genome

~20 SNPs

Snitkin et al., 2013 [232] KPC-producing Klebsiella 
pneumoniae

WGS Temporally initial isolate 40 SNPs

Tamburinin et al., 2018 [69] Escherichia coli and others WGS and WMS Best quality isolate draft 
genome

1 SNP

Coll et al., 2017 [94] methicillin-resistant 
Staphylococcus aureus (MRSA)

WGS Core genome 50 SNPs

Smibert et al., 2018 [233] methicillin-resistant 
Staphylococcus aureus (MRSA)

WGS Core genome with publicly 
available reference genome

183 SNPs

Guerra-Assunção et al., 2015 
[234]

Mycobacterium tuberculosis WGS Publicly available reference 
genome

10 SNPs

Clark et al., 2013 [93] Multidrug-resistant 
Mycobacterium tuberculosis

WGS Publicly available reference 
genome

50 SNPs

Donkor et al., 2018 [235] Staphylococcus aureus WGS Core genome with publicly 
available reference genome

2 SNPs

Sharma et al., 2019 [236] Streptococcus pyogenes WGS Publicly available reference 
genome

1 SNP

Sundermann et al., 2020 [237] Vancomycin resistant 
Enterococcus (VRE)

WGS Publicly available reference 
genome

15 SNPs

*
Not all studies mentioned used strict criteria to define strains, some simply stated relatively close relatedness based on these distance metrics.
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