Bureau of Mines Special Publication

PB 198 112

2

LIST OF BUREAU OF MINES PUBLICATIONS AND ARTICLES

January 1, 1965, to December 31, 1969

With Subject and Author Index

UNITED STATES DEPARTMENT OF THE INTERIOR

1970

REPRODUCED BY U.S. DEPARTMENT OF COMMERCE NATIONAL TECHNICAL INFORMATION SERVICE SPRINGFIELD, VA. 22161

. -. .

Bureau of Mines Special Publication

LIST OF BUREAU OF MINES PUBLICATIONS AND ARTICLES

January 1, 1965, to December 31, 1969

With Subject and Author Index

Compiled by Rita D. Sylvester

UNITED STATES DEPARTMENT OF THE INTERIOR Walter J. Hickel, Secretary

> BUREAU OF MINES Elburt F. Osborn, Director

, ډ . •• . • Ł L . 1 ł. ł ł.

CONTENTS

Introduction	1
Bureau publications	2
Associated documents	3
Libraries	4
Bulletins	16
Minerals yearbooks	21
Reports of investigations	26
Information circulars	137
Technical progress reports	163
Special publications	165
Miscellaneous publication	166
Handbook	
Schedules	
Mineral industry surveys	
Foreign mineral reports	
Open-file reports	170
Cooperative publications	
Monographs	183
Patents	
Reprints available from the Glearinghouse	188
Articles in outside publications	198
Index of Bureau of Mines publications	285
	285
Subject index	
Author index	401

Ł | ł ł . ł ł ł ł . Ł 1 ł ł . ł ł .

ł

LIST OF BUREAU OF MINES PUBLICATIONS AND ARTICLES

January 1, 1965, to December 31, 1969

With Subject and Author Index

Compiled by

Rita D. Sylvester¹

Introduction

The Bureau of Mines was established in the public interest to conduct inquiries and scientific and technologic investigations concerning mining and the preparation, treatment, and utilization of mineral substances; to promote health and safety in the mineral industries; to conserve material resources and prevent their waste; to further economic development; to increase efficiency in the mining, metallurgical, quarrying, and other mineral industries; and to inquire into the economic conditions affecting these industries. The organic act of the Bureau, as amended by Congress and approved February 25, 1913, made it the province and duty of the Bureau to "disseminate information concerning these subjects in such manner as will best carry out the purposes of this Act."

In accordance with this directive, the Bureau reports the findings of its research and investigations in its own series of publications and also in articles that appear in scientific, technical, and trade journals; in proceedings of conventions and seminars; in reference books; and in other non-Bureau publications. The number of these reports, the wide range of subjects they cover, and the variety of mediums in which they appear make the kind of list and index presented in this special publication both necessary and valuable. This issue describes reports and articles published during the period January 1, 1965, to December 31, 1969. It supplements the 50-year list of Bureau publications issued from July 1, 1910, to January 1, 1960;² the 50-year list of articles by Bureau authors published outside the Bureau from July 1, 1910, to January 1, 1960;³ the 5-year list of Bureau publications and articles from January 1, 1960, to December 31, 1964.⁴ It includes all the material in the four annual lists of Bureau publications and articles from January 1, 1965, to December 31, 1968, as well as the Bureau publications and articles for 1969.

¹Editor, Division of Technical Reports, Bureau of Mines, Washington, D.C.

⁴Obtainable from the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402. (Price, \$4.25.)

^{*} See footnote 2. (Price, \$1.75.) * See footnote 2. (Price, \$1.75.)

Some Bureau publications including Bulletins and the Minerals Yearbook, are sales publications; other series contain both free and sales publications. Because the cost of sales publications varies, the price is indicated in the individual listing of any publication for which a charge is made.

Sales publications of the Bureau of Mines must be obtained from the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402, to whom orders should be sent directly. Remittances for such publications may be made by money order or check or by coupons, sold in sets of 20 for \$1 and good until used. Do not send postage stamps. Remittances from foreign countries should be made by international money order or a draft on an American bank payable to the Superintendent of Documents.

Free publications of the Bureau of Mines may be obtained from the Publications Distribution Branch, Bureau of Mines, 4800 Forbes Avenue, Pittsburgh, Pa. 15213. (Because of the limited editions, only one copy of any free publication can be sent to the person applying and only a few different publications to any one applicant.) The following series or types of publications are listed in this directory:

Bulletins describe major Bureau investigations or studies that are considered to have permanent value. Usually a Bulletin describes research that has been completed, but sometimes one is issued upon completion of a significant part of the research. Bulletins are sales publications and prices are given under the individual listing.

Minerals Yearbook-annual statistical publication of the Bureau-reviews the mineral industry in the United States and foreign countries; contains official Government statistics on metals, minerals, and mineral products; and includes factual accounts of economic and technologic developments and trends. In 1968 the Minerals Yearbook was published in three volumes: Volume I-II, Metals, Minerals, and Fuels; Volume III, Area Reports; Domestic; and Volume IV. Area Reports: International. Individual chapters are preprinted separately. Any volume of the Minerals Yearbook or any preprinted chapter is available from the Superintendent of Documents at the price quoted.

Reports of Investigations describe the principal features and results of minor investigations or phases of major investigations, thus keeping the mineral industries and the public informed on the progress of original research.

Information Circulars are easily understood digests designed primarily for compilations, reviews, abstracts, and discussion of virtually all activities and developments in the mineral industries. One of their important uses is to provide concise information for replies to inquires received by the Bureau.

Technical Progress Reports, a new Bureau of Mines series initiated in 1968, make known new or improved systems and techniques in mining and metallurgy developed by the Bureau.

Mineral Industry Surveys cover a wide variety of timely statistical and economic reports designed to keep the public, particularly the business community, and Government agencies regularly informed of trends in the production, distribution, stocks, and consumption of approximately 100 different mineral commodities, including the several mineral fuels. These surveys, prepared by various commodity specialists, are issued weekly, monthly, quarterly, or at other regular intervals, depending on the need for current data. Summary statistics for man-hours worked and fatal and non-fatal injuries in the mineral industries are also reported in this series. The material contained in Mineral Industry Surveys is later published in permanent form in the Minerals Yearbook.

Foreign Mineral Reports are issued to keep the domestic producers and consumers abreast of developments in the mineral industries and markets abroad and to provide a summary or brief inventory of significant information from U.S. Foreign Service offices and other sources, which may not otherwise be available to the general public.

Special Publications include comprehensive lists of Bureau publications and articles by Bureau authors and any publication of the Bureau of Mines that is not included in its regular series.

Schedules describe the procedures and methods followed by the Bureau in testing materials and equipment to determine their permissibility for use by the mineral industries. Handbooks are special manuals issued as guides to practices recommended by the Bureau in promoting safety and efficiency in the mineral industries and in the use of mineral products. Handbooks may also give details or explanations of mine safety laws. Miscellaneous Publications include any Bureau of Mines publication that is not part of a Bureau series. Such publications may consist of short descriptions of Bureau research, special aspects of such research, or general information about the Bureau. .

ASSOCIATED DOCUMENTS

Although the material in the categories that follow is not published by the Bureau of Mines, it is listed and indexed in this publication as a service to those who may be interested:

Cooperative Publications describe research conducted cooperatively with other Government agencies, State departments of geology or mines, universities or colleges, or other recognized organizations and are issued by the cooperating agency.

Open-File Reports are unpublished reports that are available for reference at certain Bureau offices and libraries. See the list of open-file reports for information as to where they are available.

Outside Publications (OP's) are articles by Bureau authors that have been published in the technical press, in proceedings of meetings, and in books. It is recommended that information on the availability of copies be obtained from the publishing organization. If copies are not available, many libraries can supply photocopies of such articles at a nominal price.

Patents issued to Bureau personnel from January 1, 1965 to December 31, 1969, are listed with instructions on how to apply for permission to use such patents.

Reprints of selected Bureau of Mines publications that have been made available by the Clearinghouse for Federal Scientific and Technical Information, U.S. Department of Commerce, are listed in the section "Reports Available From the Clearinghouse."

LIBRARIES

Under the provisions of the law, certain libraries are designated by Congress as depositories for printed publications issued by the Government agencies. Through these libraries, various documents printed by the Government Printing Office are made available to residents of every State. Distribution of these printed publications is made by the Superintendent of Documents.

Many of these depository libraries also receive multilithed publications of the Bureau of Mines, particularly the Reports of Investigations and the Information Circulars, which are distributed mainly by the Bureau. Libraries maintaining a file of Bureau of Mines publications are the best sources for reports published by the Bureau when the publications are out of print or copies no longer are available from the Superintendent of Documents or the Bureau.

In the United States some libraries maintain complete files of Bureau reports; others carry only selected series. The following list contains the names and locations of depository libraries receiving various series of reports and documents issued by the Bureau of Mines. The figures in parentheses, following the names of the libraries, indicate the type of Bureau publications generally received on a regular basis by each library.

- (1) Reports of Investigations and Information Circulars.
- (2) Bulletins.
- (3) Minerals Yearbooks.

State	City	Library and Type of Publication Received
Alabama	Auburn	Alexander City State Junior College (2, 3). Auburn University, Ralph Brown Draughon Library (1, 2, 3). Birmingham Public (1, 2, 3). Birmingham Southern University, M. Paul Phillips Library (1, 3).
	Gadsden	Enterprise State Junior College (3). Florence State College, Collier Library (3). Gadsden Public (2, 3).
	Jacksonville Mobile	University of Alabama (1, 2, 3). Jacksonville State University, Ramona Wood Library (3). Mobile Public (1, 2, 3). Spring Hill College (3). Alabama Agricultural and Mechanical College, Carnegie
	Normal St. Bernard Troy	Alabama Agricultural and Mechanical College, Carnegie Library (3). St. Bernard College (3).
	Tuskegee Institute	Troy State College (3). Tuskegee Institute, Hollis Burke Frissell Library (2, 3). University of Alabama (3).
Alaska	-	Alaska Methodist University (3). Anchorage Community College (1, 2, 3). University of Alaska (1, 2, 3).
Arizona	Flagstaff Phoenix	Northern Arizona University (1, 2, 3). Department of Library and Archives (1, 2, 3).
	Tempe Tucson Yuma	Phoenix Public (1, 2, 3). Arizona State University (1, 2, 3). University of Arizona (1, 2, 3). Yuma City-County (1, 2, 3).
Arkansas	Conway Fayetteville Little Rock Magnolia. Russellville Searcy.	Ouachita Baptist University, Riley Library (3). Arkansas A&M College (3). Hendrix College, O. C. Bailey Library (3). University of Arkansas (1, 2, 3). Little Rock Public (1, 3). Southern State College, J. M. Peace Library (2, 3). Arkansas Polytechnic College (3). Harding College, Harding Memorial Library (3).
	State College Walnut Ridge	Arkansas State University, Dean B. Ellis Library (1, 2, 3). Southern Baptist College, Felix Goodson Library (3).

State	City	Library and Type of Publication Received
California.	Anaheim	Anaheim Public (3).
		Humboldt State College (1, 2, 3).
		Kern County Free (1, 2, 3).
		University of California (1, 2, 3).
	Chico.	
		Pomona College, Honnold Library (1, 2, 3).
	Culver City	
		University of California (1, 2, 3).
	Downey	
	rresno	Fresno County Free (2, 3).
		Freeno State College (1, 2, 3).
		California State College (2, 3).
	Gardena	
		California State College (2, 3).
	Inglewood	
	Irvine	University of California (1, 2, 3).
	La Jolla	University of California (1, 2, 3).
	Lancaster	Lancaster Regional (3).
		California State College (1, 2, 3).
	-	Long Beach Public (1, 2, 3).
	Los Angeles	California State College, John F. Kennedy Memorial Libra
		(1, 2, 3).
		Los Angeles Public (1, 2, 3).
		Loyola University of Los Angeles (3).
		Occidental College, Mary Norton Clapp Library (3).
		University of California (1, 2, 3).
		University of Southern California (1, 2, 3).
	Lynwood	Lynwood (3).
	Marysville	Yuba College (3).
	Montebello	
		Bruggemeyer Memorial (3).
	Newhall	
		San Fernando Valley State College (2, 3).
	Oakland	Only D and
	Orange	
		California Institute of Technology (1, 2, 3).
	DI (1111)	Pasadena Public (1, 2, 3). Contra Costa County (3).
	Pleasant Hul	Contra Costa County (3).
	Redding	
		University of Redlands (2, 3).
		Redwood City Public (3).
		West Valley Regional Branch (3).
	Richmond	Richmond Public (3).
	Riverside	Riverside Public (1, 2, 3).
		University of California (1, 2, 3).
	Sacramento	California State (1, 2, 3).
		Sacramento City (2, 3).
		Sacramento State College (2, 3).
	San Bernadino	San Bernadino County Free (2, 8).
	San Diego	San Diego County (3).
		San Diego Public (1, 2, 3).
		San Diego State College (1, 2, 3).
	San Francisco	Mechanics' Institute (2, 3).
		San Francisco Public (1, 2, 8).
		San Francisco State College (1, 2, 8).
		University of San Francisco, Gleeson Library (2, 3).
	San Jose	San Jose State College (1, 2, 3).
		San Leandro Community (3),
	Santa Ana	
		University of California (1, 2, 3).
	Sente Clem	University of Santa Clara, Michel Orradre Library (3).
	Canto Cana	University of California (1. 9. 0)
	Santa Cruz	University of California (1, 2, 3).
		Santa Rosa-Sonoma County Public (3).
		Stanford University (1, 2, 3).
	Stockton	Stockton Public (2, 3).
	Stockton Thousand Oaks	Stockton Public (2, 3). California Lutheran College (2, 3).
	Stockton Thousand Oaks Turlock	Stockton Public (2, 3). California Lutheran College (2, 3). Stanislaus State College (3).
	Stockton Thousand Oaks Turlock	Stockton Public (2, 3).

State	City	Library and Type of Publication Received
Colorado	Boulder Colorado Springs Denver Fort Collins Golden Greeley Gunnison La Junta	Adams State College (1, 2, 3). University of Colorado (1, 2, 3). Colorado College, Charles Learning Tutt Library (1, 2, 3). Bureau of Mines, U.S. Department of the Interior (1, 2, 3).* Colorado State (1, 2, 3). Denver Pubic (1, 2, 3). Regis College (2, 3). University of Denver, Mary Reed Library (1, 2, 3). Colorado State University (1, 2, 3). Colorado State University (1, 2, 3). Colorado State College (3). Western State College (3). Western State College (3). McClelland Public (2, 3).
Connecticut	Bridgeport Hartford Middletown New Haven	Southern Colorado State College (1, 2, 3). Bridgeport Public (1, 2, 3). Connecticut State (1, 2, 3). Hartford Public (1, 2, 3). Trinity College (2, 3). Wesleyan University, Olin Library (1, 2, 3). Yale University (2, 3).
Delaware	Waterbury	Connecticut College, Palmer Library (3). University of Connecticut, Wilbur Cross Library (1, 2, 3). Silas Bronson (3). Delaware State College, William C. Jason Library (3).
	Newark	University of Delaware, Morris Library (1, 2, 3). Wilmington Institute Free (1, 2, 3).
District of Columbia	Washington	U.S. Department of the Interior (1, 2, 3).
Florida	Coral Gables. Fort Lauderdale. Gainesville. Leesburg. Miami. Orhando. Palatka Pennsacola. St. Petersburg. Tallahassee. Tampa.	Florida State (3). Florida A&M University (1, 2, 3). Florida State University, R. M. Strozier Library (3). Tampa Public (2, 3). University of South Florida (1, 2, 3).
Georgia	Albany	University of Tampa (3). Rollins College, Mills Memorial Library (3). Albany Public (2, 3). Georgia Southwestern College, Wade Lott Memorial Library (2, 3).
	Athens Atlanta	University of Georgia (1, 2, 3).
	Savannah Statesboro Valdosta	Augusta College (1, 2, 3). Sanford (2, 3). North Georgia College (3). Savannah Public and Chatham-Effingham Liberty Regional (3). Georgia Southern College, Rosenwald Library (3). Valdosta State College, Richard Holmes Powell Library (3).
Hawaii		University of Hawaii (2, 3). Chaminade College (2, 3). Hawaii State (3). University of Hawaii (1, 2, 3).
Idaho	Caldwell Moscow Pocatello	

"Not a depository library.

.

•

6

.

State	City	Library and Type of Publication Received
Illinois		Blackburn (3).
	Carbondale	Southern Illinois University (1, 2, 3).
	Charleston	Eastern Illinois University, Booth Library (3).
	Chicago	Chicago Public (1, 2, 3). Chicago State College (3).
		Field Museum of Natural History (1, 2, 3).
		John Crerar $(1, 2, 3)$.
		Loyola University, E. M. Cudahy Memorial Library (2, 3).
		Northeastern Illinois State College (3).
		University of Chicago (1, 2, 3). University of Illinois (1, 2, 3).
	Decatur	Decetur Public (3)
	De Kalb	Northern Illinois University, Swen Franklin Parson Library
	-	(1, 2, 3).
	Edwardsville	Southern Illinois University, Lovejoy Memorial Library (1, 2, 3).
	Freeport	Northwestern University (1, 2, 3).
	Galesburg	Galeshurg Public (3)
	Lisle	St. Procopius College (3).
	Monmouth	Monmouth College (2, 3).
	Normal	Illinois State University, Milner Library (1, 2, 3).
	Peoria	Bradley University (3).
	River Forest	Peoria Public (1, 2, 3). Bosary College (3)
	Rock Island	Rock Island Public (2, 3).
	Rockford	Rockford Public (3).
	Springfield	Illinois State (1, 2, 3).
	Urbana	University of Illinois (1, 2, 3).
	Wheaton	wheaton College (3).
Indiana	Anderson	Anderson College, Charles E. Wilson Library (3).
	Bloomington	Indiana University (1, 2, 3).
	Crawfordsville	Wabash College, Lilly Library (3).
	Eisan	Principia College, Marshall Brooks Library (3). Evansville and Vanderburgh County Public (1, 2, 3).
	Fort Wayne	Fort Wayne and Allen County Public (1, 2, 3).
	-	Indiana-Purdue Universities, Regional Campus Library (3).
	Gary	Gary Public (2, 3).
	a	Indiana University (2, 3).
	Hammond	De Pauw University, Roy O. West Library (2, 3).
	Hanover	Hanover College (3)
	Huntington	Huntington College (3).
	Indianapolis.	Butler University, Irwin Library (2, 3).
		Indiana State (1, 2, 3).
	T afavatta	Indianapolis Public (1, 3).
	Macomb	Indianapolis Public (1, 3). Purdue University (1, 2, 3). Western Illinois University (3). Pall State University (3).
	Muncie	Ball State University (1, 2, 3).
		Muncie Public (3)
	Notre Dame	University of Notre Dame. Memorial Library (1, 2, 3).
	Rensselaer	St. Joseph's College (1, 2, 3). Earlham College, Lilly Library (3).
	ruchmona	Earliam College, Lilly Library (3). Morrison Reeves (3).
	South Bend	Indiana University (3).
	Terre Haute	Indiana State University, Cunningham Memorial Library (2, 3). Valparaiso University, Moellering Memorial Library (2, 3).
	Valparaiso	Valparaiso University, Moellering Memorial Library (2, 3).
Iowa	Ames	Iowa State University of Science and Technology (1, 2, 3).
······································	Cedar Falls	University of Northern Iowa (3).
	Council Bluffs Denison	Free Public (2, 3).
	Denison	Midwestern College (3).
	Des Moines	Des Moines Public (2, 3). Drake University, Cowles Library (3).
`	•	Iowa State Traveling (2. 3).
	Dubuque	Iowa State Traveling (2, 3). Carnegie Stout Public (2, 3).
		Loras College, Wahlert Memorial Library (3).
	Fairfield	Parsons College Branch of Fairfield Public (3).
	Grinnell	Grinnell College (3).
	Iowa City	University of Iowa (1, 2, 3). Generalized College Frederick Medicer Smith Library (2)
	Mount Vernon	Graceland College, Frederick Madison Smith Library (3). Cornell College, Russell D. Cole Library (1, 2, 3). Sioux City Public (3).
	TATORUP A GLUOUTTTTTTTTTT	Corner Conege, Mussen D. Cole Library (1, 2, 3).
	Siour City	Sioux City Public (3).
Kansas	Baldwin	

.

State	City	Library and Type of Publication Received
Kansas	Hays	Fort Hays Kansas State College, Forsyth Library (1, 2, 3
	Hutchinson	Hutchinson Public (2, 3).
	Manhattan	University of Kansas (1, 2, 3). Kansas State University (1, 2, 3).
	Pittsburg.	Kansas State College, Porter Library (2, 3).
	Salina	Kansas Wesleyan University, Memorial Library (1, 2, 3).
	Topeka	State Libraries of Kansas (2, 3).
	Wishita	Kansas State Historical Society (3). Wichita State University (1, 2, 3).
Kentucky	Ashland. Berbourville	Ashland Fublic (1, 2, 3). Union College Abigail E Weeks Memorial Library (3).
	Bowling Green	Union College, Abigail E. Weeks Memorial Library (3). Western Kentucky University, Margie Helm Library (2
	Danville	Centre College (3).
	Lexington	Centre College (3). University of Kentucky, Margaret I. King Library (1, 2
	Louisville	Louisville Free Public (1, 2, 3). University of Louisville (2, 3).
	Morehand	University of Louisville (2, 3). Marshand State University, Johnson Caradon Library (2)
	Murray	Morehead State University, Johnson Camden Library (3) Murray State University (3).
	Owensborg	Kentucky Weslevan College (3).
	Pikeville	Kentucky Wesleyan College (3). Pikeville College, O'Rear-Robinson Library (2, 3).
	Richmond	Eastern Kentucky University, John Grant Crabbe Librar
Louisiana	Baton Rouge	Louisiana State University (1, 2, 3).
	_	Southern University (1).
	Hammond	Southeastern Louisiana College, Sims Memorial Library
	Lafavette -	University of Southwestern Louisiana (1, 2, 3).
	Monroe	Northeast Louisiana State College, Sandel Library (3). Isaac Delgado College, Moss Technical Library (1, 2, 3).
	New Orieans	Louisiana State University (1, 2, 3).
		Loyola University (3).
		New Orleans Public (1, 2, 3).
	_	Tulawa IInduanian II
	Ruston	Louisiana Polytechnic Institute, Prescott Memorial L
:	Shreveport	(1, 2, 3). Louisiana State University (3).
		Shreve Memorial (1, 2, 3). F. T. Nicholls State College (2, 3).
Maine	Bangor	Bangor Public (3).
:	Lewiston	Bowdoin College, Hawthorne-Longfellow Library (2, 3).
•	Orono	University of Maine, Raymond H. Fogler Library (1, 2).
	Portland	Portland Public (1, 2, 3).
	Springvale	Nasson College (3).
	Waterville	Colby College (3).
Maryland	Annapolis	Maryland State (3).
-	Baltimore	Enoch Pratt Free (1, 2, 3).
		Johns Hopkins University, Milton S. Eisenhower L
		(1, 2, 3). Morgan State College, Soner Library (3)
	Betheada	Morgan State College, Soper Library (3),
	Bethesda College Park	Morgan State College, Soper Library (3). Montgomery County Public (3).
l l	College Park	Morgan State College, Soper Library (3). Montgomery County Public (3). Bureau of Mines, U.S. Department of the Interior (1, 2, University of Maryland, McKeldin Library (1, 2, 3).
	College Park	Morgan State College, Soper Library (3). Montgomery County Public (3). Bureau of Mines, U.S. Department of the Interior (1, 2, University of Maryland, McKeldin Library (1, 2, 3). Frostburg State College, Jerome Frampton Library (3).
	College Park Frostburg Salisbury	Morgan State College, Soper Library (3). Montgomery County Public (3). Bureau of Mines, U.S. Department of the Interior (1, 2, University of Maryland, McKeldin Library (1, 2, 3). Frostburg State College, Jerome Frampton Library (3). Salisbury State College (2, 3).
	College Park Frostburg Salisbury Towson	Morgan State College, Soper Library (3). Montgomery County Public (3). Bureau of Mines, U.S. Department of the Interior (1, 2, University of Maryland, McKeldin Library (1, 2, 3). Frostburg State College, Jerome Frampton Library (3). Salisbury State College (2, 3). Goucher College, Julia Rogers Library (3).
	College Park Frostburg Salisbury Towson , Westminister	Morgan State College, Soper Library (3). Montgomery County Public (3). Bureau of Mines, U.S. Department of the Interior (1, 2, University of Maryland, McKeldin Library (1, 2, 3). Frostburg State College, Jerome Frampton Library (3). Saliabury State College (2, 3). Goucher College, Julia Rogers Library (3). Western Maryland College (3).
	College Park Frostburg Salisbury Towson Westminister Amherst	Morgan State College, Soper Library (3). Montgomery County Public (3). Bureau of Mines, U.S. Department of the Interior (1, 2, University of Maryland, McKeldin Library (1, 2, 3). Frostburg State College, Jerome Frampton Library (3). Salisbury State College (2, 3). Goucher College, Julia Rogers Library (3). Western Maryland College (3). Amherst College (2, 3).
Massachusetts	College Park Frostburg Salisbury Towson Westminister Amherst	Morgan State College, Soper Library (3). Montgomery County Public (3). Bureau of Mines, U.S. Department of the Interior (1, 2, University of Maryland, McKeldin Library (1, 2, 3). Frostburg State College, Jerome Frampton Library (3). Saliabury State College, Jerome Frampton Library (3). Goucher College, Julia Rogers Library (3). Western Maryland College (3). Amherst College (2, 3). University of Massachusetta Goodell Library (2, 3)
Massachusetts	College Park Frostburg Salisbury Towson Westminister Amherst	Morgan State College, Soper Library (3). Montgomery County Public (3). Bureau of Mines, U.S. Department of the Interior (1, 2, University of Maryland, McKeldin Library (1, 2, 3). Frostburg State College, Jerome Frampton Library (3). Saliabury State College (2, 3). Goucher College, Julia Rogers Library (3). Western Maryland College (3). Amherst College (2, 3). University of Massachusetts, Goodell Library (2, 3). Boston Public (1, 2, 3).
Massachusetts	College Park Frostburg Salisbury Towson Westminister Amherst	Morgan State College, Soper Library (3). Montgomery County Public (3). Bureau of Mines, U.S. Department of the Interior (1, 2, University of Maryland, McKeldin Library (1, 2, 3). Frostburg State College, Jerome Frampton Library (3). Salisbury State College (2, 3). Goucher College, Julia Rogers Library (3). Western Maryland College (3). Amherst College (2, 3). University of Massachusetts, Goodell Library (2, 3). Boston Public (1, 2, 3). Northeastern University, Dodge Library (1, 2, 3).
Maasachusetts	College Park Frostburg Salisbury Towson	Morgan State College, Soper Library (3). Montgomery County Public (3). Bureau of Mines, U.S. Department of the Interior (1, 2, University of Maryland, McKeldin Library (1, 2, 8). Frostburg State College, Jerome Frampton Library (3). Salisbury State College (2, 3). Goucher College, Julia Rogers Library (3). Western Maryland College (3). Amherst College (2, 8). University of Massachusetts, Goodell Library (2, 3). Boston Public (1, 2, 8). Northeastern University, Dodge Library (1, 2, 3). State Library of Massachusetts (1, 2, 3).
Massachusetta	College Park Frostburg Salisbury Towson	Morgan State College, Soper Library (3). Montgomery County Public (3). Bureau of Mines, U.S. Department of the Interior (1, 2, University of Maryland, McKeldin Library (1, 2, 3). Frostburg State College, Jerome Frampton Library (3). Salisbury State College (2, 3). Goucher College, Julia Rogers Library (3). Western Maryland College (3). Amherst College (2, 3). University of Massachusetts, Goodell Library (2, 3). Boston Public (1, 2, 3). Northeastern University, Dodge Library (1, 2, 3). State Library of Massachusetts (1, 2, 3). Brookline Public (3). Harvard University (2, 3).
Massachusetta	College Park Frostburg Salisbury Towson Westminister Amherst Boston Brookline Cambridge	Morgan State College, Soper Library (3). Montgomery County Public (3). Bureau of Mines, U.S. Department of the Interior (1, 2, University of Maryland, McKeldin Library (1, 2, 3). Frostburg State College, Jerome Frampton Library (3). Salisbury State College (2, 3). Goucher College, Julia Rogers Library (3). Western Maryland College (3). Amherst College (2, 3). University of Massachusetts, Goodell Library (2, 3). Boston Public (1, 2, 3). Northeastern University, Dodge Library (1, 2, 3). State Library of Massachusetts (1, 2, 3). Brookline Public (3). Harvard University (2, 3).
Massachusetta	College Park Frostburg Salisbury Towson Westminister Amherst Boston Brookline Cambridge Chestnut Hill	Morgan State College, Soper Library (3). Montgomery County Public (3). Bureau of Mines, U.S. Department of the Interior (1, 2, University of Maryland, McKeldin Library (1, 2, 3). Frostburg State College, Jerome Frampton Library (3). Salisbury State College (2, 3). Goucher College, Julia Rogers Library (3). Western Maryland College (3). Amherst College (2, 3). University of Massachusetts, Goodell Library (2, 3). Boston Public (1, 2, 3). Northeastern University, Dodge Library (1, 2, 3). State Library of Massachusetts (1, 2, 3). Brookline Public (3). Harvard University (2, 3). Massachusetts Institute of Technology (1, 2, 3). Boston College, Bapst Library (3).
Massachusetta	College Park Frostburg Salisbury Towson Westminister Amherst Boston Brookline Cambridge Chestnut Hill	Morgan State College, Soper Library (3). Montgomery County Public (3). Bureau of Mines, U.S. Department of the Interior (1, 2, University of Maryland, McKeldin Library (1, 2, 3). Frostburg State College, Jerome Frampton Library (3). Salisbury State College (2, 3). Goucher College, Julia Rogers Library (3). Western Maryland College (3). Amherst College (2, 3). University of Massachusetts, Goodell Library (2, 3). Boston Public (1, 2, 3). Northeastern University, Dodge Library (1, 2, 3). State Library of Massachusetts (1, 2, 3). Brookline Public (3). Harvard University (2, 3). Massachusetts Institute of Technology (1, 2, 3). Boston College, Bapst Library (3).
Massachusetta	College Park Frostburg Salisbury Towson Westminister Amherst Boston Brookline Cambridge Chestnut Hill Lowell Medford	Morgan State College, Soper Library (3). Montgomery County Public (3). Bureau of Mines, U.S. Department of the Interior (1, 2, University of Maryland, McKeldin Library (1, 2, 3). Frostburg State College, Jerome Frampton Library (3). Salisbury State College, Jerome Frampton Library (3). Salisbury State College (2, 3). Goucher College, Julia Rogers Library (3). Western Maryland College (3). Amherst College (2, 3). University of Massachusetts, Goodell Library (2, 3). Boston Public (1, 2, 3). Northeastern University, Dodge Library (1, 2, 3). State Library of Massachusetts (1, 2, 3). Brookline Public (3). Harvard University (2, 3). Massachusetts Institute of Technology (1, 2, 3). Boston College, Bapst Library (3). Lowell Technological Institute, Alumni Memorial Librar Tufta University (2, 3).
Massachusetta	College Park Frostburg Salisbury Towson Westminister Amherst Boston Brookline Cambridge Chestnut Hill Lowell Medford	Morgan State College, Soper Library (3). Montgomery County Public (3). Bureau of Mines, U.S. Department of the Interior (1, 2, University of Maryland, McKeldin Library (1, 2, 3). Frostburg State College, Jerome Frampton Library (3). Salisbury State College (2, 3). Goucher College, Julia Rogers Library (3). Western Maryland College (3). Amherst College (2, 3). University of Massachusetts, Goodell Library (2, 3). Boston Public (1, 2, 3). Northeastern University, Dodge Library (1, 2, 3). State Library of Massachusetts (1, 2, 3). Brookline Public (3). Harvard University (2, 3). Massachusetts Institute of Technology (1, 2, 3). Boston College, Bapst Library (3). Lowell Technological Institute, Alumni Memorial Librar Tufts University (2, 3). New Bedford Free Public (3).
Massachusetts	College Park Frostburg Salisbury Towson Westminister Amherst Boston Brookline Cambridge Chestnut Hill Lowell Medford New Bedford	Morgan State College, Soper Library (3). Montgomery County Public (3). Bureau of Mines, U.S. Department of the Interior (1, 2, University of Maryland, McKeldin Library (1, 2, 3). Frostburg State College, Jerome Frampton Library (3). Salisbury State College (2, 3). Goucher College, Julia Rogers Library (3). Western Maryland College (3). Amherst College (2, 3). University of Massachusetts, Goodell Library (2, 3). Boston Public (1, 2, 8). Northeastern University, Dodge Library (1, 2, 3). State Library of Massachusetts (1, 2, 3). Brookline Public (3). Harvard University (2, 3). Massachusetts Institute of Technology (1, 2, 3). Boston College, Bapst Library (3). Lowell Technological Institute, Alumni Memorial Librar Tufts University (2, 3). New Bedford Free Public (3).
Massachusetts	College Park Frostburg Salisbury Towson Westminister Amherst Boston Brookline Cambridge Chestnut Hill Lowell Medford New Bedford North Easton Springfield	 Morgan State College, Soper Library (3). Montgomery County Public (3). Bureau of Mines, U.S. Department of the Interior (1, 2, University of Maryland, McKeldin Library (1, 2, 3). Frostburg State College, Jerome Frampton Library (3). Salisbury State College (2, 3). Goucher College, Julia Rogers Library (3). Western Maryland College (3). Amherst College (2, 3). University of Massachusetts, Goodell Library (2, 3). Boston Public (1, 2, 3). Northeastern University, Dodge Library (1, 2, 3). State Library of Massachusetts (1, 2, 3). Brookline Public (3). Harvard University (2, 3). Boston College, Bapst Library (3). Lowell Technological Institute, Alumni Memorial Librar Tufts University (2, 3). Southeastern Massachusetts Technological Institute (2, 3) Southeastern Massachusetts Technological Institute (2, 3)
Massachusetts	College Park Frostburg Salisbury Towson Westminister Amherst Boston Brookline Cambridge Chestnut Hill Lowell Medford New Bedford North Easton Springfield	 Morgan State College, Soper Library (3). Montgomery County Public (3). Bureau of Mines, U.S. Department of the Interior (1, 2, University of Maryland, McKeldin Library (1, 2, 3). Frostburg State College, Jerome Frampton Library (3). Salisbury State College (2, 3). Goucher College, Julia Rogers Library (3). Western Maryland College (3). Amherst College (2, 3). University of Massachusetts, Goodell Library (2, 3). Boston Public (1, 2, 3). Northeastern University, Dodge Library (1, 2, 3). State Library of Massachusetts (1, 2, 3). Brookline Public (3). Harvard University (2, 3). Boston College, Bapst Library (3). Lowell Technological Institute, Alumni Memorial Librar Tufts University (2, 3). Southeastern Massachusetts Technological Institute (2, 3) Southeastern Massachusetts Technological Institute (2, 3)
Massachusetts	College Park Frostburg Salisbury Towson Westminister Amherst Boston Brookline Cambridge Chestnut Hill Lowell Medford New Bedford North Easton Springfield	 Morgan State College, Soper Library (3). Montgomery County Public (3). Bureau of Mines, U.S. Department of the Interior (1, 2, University of Maryland, McKeldin Library (1, 2, 3). Frostburg State College, Jerome Frampton Library (3). Salisbury State College (2, 3). Goucher College, Julia Rogers Library (3). Western Maryland College (3). Amherst College (2, 3). University of Massachusetts, Goodell Library (2, 3). Boston Public (1, 2, 3). Northeastern University, Dodge Library (1, 2, 3). State Library of Massachusetts (1, 2, 3). Brookline Public (3). Harvard University (2, 3). Boston College, Bapst Library (3). Lowell Technological Institute, Alumni Memorial Librar Tufts University (2, 3). Southeastern Massachusetts Technological Institute (2, 3) Stonehill College, Cushing-Martin Library (3).
Massachusetts	College Park Frostburg Salisbury Towson Westminister Amherst Boston Brookline Cambridge Chestnut Hill Lowell Medford New Bedford North Easton	 Morgan State College, Soper Library (3). Montgomery County Public (3). Bureau of Mines, U.S. Department of the Interior (1, 2, 3). Frostburg State College, Jerome Frampton Library (3). Salisbury State College (2, 3). Goucher College, Julia Rogers Library (3). Western Maryland College (3). Amherst College (2, 3). University of Massachusetts, Goodell Library (2, 3). Boston Public (1, 2, 3). Northeastern University, Dodge Library (1, 2, 3). State Library of Massachusetts (1, 2, 3). Brookline Public (3). Harvard University (2, 3). Boston College, Bapst Library (3). Lowell Technological Institute, Alumni Memorial Librar, Tufts University (2, 3). Southeastern Massachusetts Technological Institute (2, 3) Stonehill College, Cushing-Martin Library (3).

*Not a depository library.

8

State	City	Library and Type of Publication Received
Michigan	Albion	Albion College $(1, 2, 3)$.
-	Allendale	Grand Valley State College (1, 2, 3). University of Michigan (1, 2, 3).
	Ann Arbor	University of Michigan (1, 2, 3).
	Battle Creek	Willard (3).
	Bloomfield Hills	Cranbrook Institute of Science (3).
	Dearborn.	Henry Ford Community College (3). Detroit Public (1, 2, 3).
	Detroit	Detroit Public (1, 2, 3).
		University of Detroit (3). Wayne State University (1, 2, 3).
	East Lansing	Michigan State University (1, 2, 3).
	Escanaba.	Michigan State (3)
	Flint	Charles Stewart Mott (2, 3).
		Flint Public (3).
	Grand Rapids	Grand Rapids Public (1, 2, 3).
	TY I to a	Knollcrest Calvin (1, 2, 3). Michigan Technological University (1, 2, 3).
	Houghton	Michigan Technological University (1, 2, 3).
	Jackson	Kalamazoo Library System (3).
	Asisina200	Western Michigan University, Dwight B. Waldo Library
		(1 2 3)
	Lansing	Michigan State $(1, 2, 3)$.
	Livonia	Schoolcraft College (3).
	Marquette	Northern Michigan University, Olson Library (1, 2, 3).
	Mt. Pleasant	Central Michigan University (1, 2, 3).
	Muskegon	Hackley Public (2, 3). Oakland University, Kresge Library (3).
	Rochester	Oakland University, Kresge Library (3).
	Saginaw	Hoyt Public (1, 2, 3). Northwestern Michigan College, Mark Osterlin Library (3).
	Traverse City	Northwestern Michigan College, Mark Osterlin Library (3).
	University Center	Deita College (3).
	I pshanti	Eastern Michigan University Library (3).
Minnesota	Bemidii	Bemidji State College (2, 3).
	Collegeville	St. John's University. Alcuin Library (3).
	Duluth	Duluth Public (1, 2, 3). Mankato State College (1, 2, 3).
	Mankato	Mankato State College (1, 2, 3).
	Minneapolis	Bureau of Mines, U.S. Department of the Interior (1, 2, 3).
		Minneapolis Public (1, 2, 3).
		University of Minnesota, Walter Library (1, 2, 3).
	Moorhead	Moorhead State College (3).
		University of Minnesota (2, 3).
	Northfield	St Olaf College Rolvag Memorial Library (2, 3)
	St. Cloud	St. Olaf College, Rolvaag Memorial Library (2, 3). St. Cloud State College (3).
	St. Paul.	Minnesota Historical Society (2, 3).
		St Paul Public (2.3)
	St. Peter	Gustavus Adolphus College (3).
	Willmar	Kandiyohi County-Willmar Library (3).
Mississippi	Columbus	Mississippi State College for Women, J. C. Fant Memorial
		Library (3)
	Hattiesburg	University of Southern Mississippi (2, 3).
	Jackson.	Milisaps College, Milisaps-Wilson Library (1, 2).
	State College	Mississippi State University, Mitchell Memorial Library
		(1, 2, 3).
	University	University of Mississippi (1, 2, 3).
Missouri	Cape Girardeau	Southeast Missouri State College, Kent Library (3).
	Columbia	University of Missouri (1, 2, 3).
		Central Methodist College (1, 3).
	Inflomon City	Lincoln University, Inman E. Page Library (3).
	VenerBon Only	Missouri State (1, 3).
	Kanega City	Kansas City Public (1, 2, 3).
		University of Missouri (1, 2, 3).
	Kirksville	Northeast Missouri State Teachers College, Pickler Memorial
		Library (3).
	Rolla	Bureau of Mines, U.S. Departmento f the Interior (1, 2, 3).*
		University of Missouri (1, 2, 3).
	St. Joseph	St. Joseph Public (2, 3).
	St. Louis	St. Louis Public (1, 2, 3).
		Washington University, John M. Olin Library (2.3).
		Washington University, John M. Olin Library (2, 3). St. Louis University, Pius XII Memorial Library (1, 2, 3).
	Springfield.	Drury College (2, 3).
		Southwest Missouri State College (1. 2. 3)
	Warrensburg	Central Missouri State College (1, 2, 5).
		·····

e

"Not a depository library.

.

.

	City	Library and Type of Publication Received
Montana	Butte. Helena	Montana State University (1, 2, 3). Montana College of Mineral Science and Technology (1, 2, 3). Historical Society of Montana (1, 2, 3). University of Montana (1, 2, 3).
Nebraska	Kearney. Lincoln	Doane College, Whitin Library (3). Kearney State College, Calvin T. Ryan Library (1, 2, 3). University of Nebraska, D. L. Love Memorial Library (1, 2, 3). Creighton University, Alumni Memorial Library (3). Omaha Public (1, 2, 3). University of Omaha, Gene Eppley Library (1, 3).
Nevada	Carson City Las Vegas Reno	Nevada State (1, 2, 3). Nevada Southern University (1, 2, 3). University of Nevada (1, 2, 3).
New Hampshire	Durham Hanover	New Hampshire State (1, 2, 3). University of New Hampshire (1, 2, 3). Dartmouth College, Daker Library (1, 2, 3). New England College (3). Manchester City (2, 3).
New Jersey	Bloomfield Bridgeton Camden Convent Station East Orange Elizabeth Glassboro Hackensack Irvington Jersey City Madison Mount Holly New Brunswick Newark Passaic Princeton Rutherford South Orange Teaneck Toms River Trenton Upper Montclair West Long Branch	Rutgers Library in South Jersey (3). College of St. Elizabeth, Santa Maria Library (3). East Orange Public (3). Elizabeth Free Public (2, 3). Glassboro State College, Savitz Library (2, 3). Johnson Free Public (3). Jersey City Public (3). Jersey City Public (3). Jersey City State College, Forrest A. Irwin Library (3). Drew University, Rose Memorial Library (3). Burlington County Area (3). Free Public (3). Rutgers University (1, 2, 3). Newark Public (1, 2, 3). Passaic Public (3). Frinceton University (1, 2, 3). Fairleigh Dickinson University (3). Seton Hall University, McLaughlin Library (3). Fairleigh Dickinson University (3). Ceean County College (3).
New Mexico	Albuquerque Las Cruces Portales	University of New Mexico, Zimmerman Library (1, 2, 3). New Mexico State University (1, 2, 3). Eastern New Mexico University (1, 2, 3). New Mexico State (1, 2, 3).
New York	Albany Binghamton Brockport	New York State (1, 2, 3). State University of New York (1, 2, 3). State University of New York (3). State University of New York, Drake Memorial Library (2, 3).
		Brooklyn Public (1, 2, 3). Polytechnic Institute of Brooklyn, Spicer Library (2, 3). Pratt Institute (3).
		City University of New York, Hunter College (3). Fordham University (3). State University of New York, Maritime College (3).
	Bunalo	Buffalo and Erie County Public (1, 2, 3). State University of New York, Lockwood Memorial Library
	-	(1, 2, 3).
	Corning	(1, 2, 3). St. Lawrence University, Owen D. Young Library (1, 2, 3). Corning Community College, Arthur A. Houghton, Jr., Li- brary (3). State University College (3).

•

State	City	Library and Type of Publication Received
New York	Flushing	Queens College, Paul Klapper Library (3).
	Garden City	Adelphi University (2, 3).
	Gелезео	State University College, Milne Library (2, 3).
	Greenvale.	C. W. Post College (2, 3).
	Hamilton	Colgate University (2, 3).
	Hempstead	Hofstra University (2, 3).
	Huntington	Huntington Public (2, 3).
	Ithaca	Albert R. Mann (3).
		C_{a} all T_{a} inconsists (1, 9, 9)
	Jamaica	Queens Borough Public (1, 2, 3). St. Johns University (3).
		St. Johns University (3).
	Mount vernon	Mount vernon rublic (3).
	New Paltz.	State University College (3).
	New York (Manhattan)	City University of New York, City College (1, 2, 3).
		Columbia University (1, 2, 3).
		New York Public (1, 2, 3).
	~ · · · ·	New York University, Gould Memorial Library (1, 2, 3).
	Oakdale	Adelphi Suffolk College (3).
	Oneonta	State University College, James M. Milne Library (2, 3).
	Oswego	State University College, Penfield Library (2, 3).
	Plattsburgh	State University College, Benjamin F. Feinberg Library (2, 3).
	Potsdam	Clarkson College of Technology, Harriet C. Burnap Memorial
		Library (3).
		State University College (1, 2, 3).
	Poughkeepsie	Vassar College (3).
	Rochester	Rochester Public (1, 2, 3).
		University of Rochester (1, 2, 3).
	St. Bonaventure	St. Bonaventure University, Friedsam Memorial Library (3).
	Saratoga Springs	Skidmore College (3).
	Schenectady	Union College, Schaffer Library (2, 3).
	Staten Island	Wagner College, Horrman Library (3).
	Stony Brook	Skidmore College (3). Union College, Schaffer Library (2, 3). Wagner College, Horrman Library (3). State University of New York (1, 2, 3).
	Syracuse	Syracuse University (2, 3).
	Troy	Syracuse University (2, 3). Troy Public (2, 3). Utica Public (3). Yonkers Public (3).
	Utica	Utica Public (3).
	Yonkers	Yonkers Public (3).
North Carolina	Asheville	Asheville-Biltmore College, D. Hiden Ramsey Library (3).
	Boone	Appalachian State University, Dauphin Disco Dougherty
		Library (3).
	Buies Creek	Campbell College, Carrie Rich Memorial Library (3).
	Chapel Hill	University of North Carolina (2, 3).
	Charlotte	Charlotte and Mecklenburg County Public (3).
		University of North Carolina, Atkins Library (1, 2, 3).
	Cullowhee	Western Carolina University, Hunter Library (3).
	Davidson	Davidson College, Augn A, and Jane Grey Memorial Li-
	_ ·	brary (3).
		Duke University (1, 2, 3).
	Greenaboro	North Carolina Agricultural and Technical State University,
		F. D. Bluford Library (2, 3).
		University of North Carolina, Walter Clinton Jackson Library
	0	(1, 2, 3).
	Greenville	East Carolina University (1, 2, 3).
	Murireesporo	Chowan College (3).
	remproke	Pembroke State College, Mary H. Livermore Library (3).
	naleign	North Carolina State (3).
	Caliabum	North Carolina State University, D. H. Hill Library (1, 2, 3).
	Salisbury	University of the second secon
	Wilmington	winnington Utilege (o). Atlantia Christian College Clarence I. Hardy Library (0)
	Winston-Solem	Atlantic Christian College, Clarence L. Hardy Library (3).
	11 1112 CU 381 CUI	Forsyth County Public Library System (3). Wake Forest University, Z. Smith Reynolds Library (3).
	_	•••••••••••••••••••••••••••••••••••••••
North Dakota	Bismarck	Veterans Memorial Public (3). Fargo Public (3).
	Fargo	Fargo Public (8).
		North Dolrado Stoto IIniwamitus /1 0 9)
	Grand Forks	University of North Dakota, Chester Fritz Library (1, 2, 3). Minot State College, Memorial Library (3).
Ohio.	Akron	Akron Public (1, 2, 3).
		University of Akron (3).
	Alliance	Mt. Union College (2, 3).
	Ashlond	Ashland College (3)
	Athens	Ohio University (1, 2, 3).
	Bluffton	Bluffton College, Musselman Library (3)
	Bowling Green	Ohio University (1, 2, 3). Bluffton College, Musselman Library (3). Bowling Green State University (2, 3).
	Cincinnati	Cincinnati and Hamilton County Public (1, 2, 3).
		University of Cincinnati (1, 2, 3).

.

State	City	Library and Type of Publication Received
Ohio	Cleveland	Case Western Reserve University, Freiberger Library (1, 2, 3) Cleveland Public (1, 2, 3). Cleveland State University (2, 3).
	Columbus	John Carroll University, Grasselli Library (3).
	Dayton	Dayton and Montgomery County Public (1, 2, 3). Wright State University (2, 3).
	Delaware Elyria	Ohio Weslevan University, L. A. Beeghly Library (3).
	Gambier Granville	Kenvon College (3).
	Hiram	Hiram College. Teachout-Price Memorial Library (3).
	Marietta.	Kent University (1, 2, 3). Marietta College, Dawes Memorial Library (1, 2, 3).
	New Concord	
	Oxford	Miami University (2, 3). Rio Grande College, Jeannette Albiez Davis Library (2, 3).
	Springfield	Warder Public (3). Steubenville and Jefferson County Public (3).
	Tiffin	Heidelberg College (3)
	Toledo	University of Toledo (1, 2, 3).
	Wooster Youngstown	College of Wooster, Andrews Library (1, 2, 3). Youngstown Public (1, 2, 3).
Oklahoma	Ada	East Central State College, Linscheid Library (2, 3). Northwestern State College (3).
	Bartlesville	Bureau of Mines, U.S. Department of the Interior (1, 2, 3).*
	Edmond	Southeastern State College (3). Central State College (3).
	Langston Oklahoma City	Langston University, G. Lamar Harrison Library (3). Oklahoma Department of Libraries (1, 2, 3). Oklahoma City University (3).
	Stillwater	University of Oklahoma (1, 2, 3). Oklahoma State University (1, 2, 3).
	Tahlaquah Tulsa	Northeastern State College, John Vaughan Library (1, 3). Tulsa City County (1, 2, 3).
0	Albony	University of Tulsa, McFarlin Library (1, 2, 3). Bureau of Mines, U.S. Department of the Interior (1, 2, 3).*
Jiegon.	Ashland	Southern Oregon College (3).
	Eugene	Oregon State University (1, 2, 3). University of Oregon (1, 2, 3).
	Forest Grove La Grande	Eastern Oregon College (3).
	McMinnville	Linfield College, Northrup Library (3). Oregon College of Education (3).
	Portland	Lewis and Clark College (3). Library Association of Portland (1, 2, 3).
		Portland State College (1, 2, 3).
	Salem	
Pennsylvania	Allentown Bethlehem	Muhlenberg College (2, 3). Lehigh University (1, 2, 3).
	Bradford Carlisle	Carnegie Public (2, 3).
	Chevney	Chevney State College, Leslie Pinckney Hill Library (3).
	Collegeville East Stroudsburg	East Stroudsburg State College, Kemp Library (3).
	Erie Greenville	Erie Public (1, 2, 3). Thiel College, Langenheim Memorial Library (1, 2, 3).
	Harrisburg Haverford	Pennsylvania State (1, 2, 3).
	Hazleton Indiana	Hazleton Public (1, 2, 3). Indiana University of Pennsylvania, Rhodes R. Stable: Library (3).
	Johnstown Lancaster	Cambria Public (2). Franklin and Marshall College (1, 2, 3).
	Lewisburg	Bucknell University, Ellen Clarke Bertrand Library (1, 2, 3). Allegheny College, Reis Library (1, 2, 3).
	Millersville	Millersville State College (3).
	New Castle	New Castle Free Public (2, 3).

"Not a depository library.

.

State	City	Library and Type of Publication Received
Pennsylvania	Philadelphia	Philadelphia Free (1, 2, 3). Temple University (2, 3).
		University of Pennsylvania (2, 3). Bureau of Mines, U.S. Department of the Interior (1, 2, 3).* Carnegie Library of Pittsburgh (1, 2, 3). University of Pittsburgh, Hillman Library (1, 2, 3).
	Pottsville Reading Scranton	Pottsville Free Public (2, 3). Reading Public (1, 2, 3).
	Slippery Rock	Slippery Rock State College (3). Swarthmore College (3).
	University Park	Pennsylvania State University (1, 2, 3). Warren Public (3).
	Waynesburg West Chester Wilkes-Barre	Washington and Jefferson College, Memorial Library (3). Waynesburg College (3). West Chester State College, Francis Harvey Green Library (3)
	Williamsport	James V. Brown Library of Williamsport and Lycoming County
Rhode Island	Kingston	University of Rhode Island (1, 2, 3).
	Warwick. Westerly	Brown University, John D. Rockefeller, Jr., Library (1, 2, 3). Providence Public (2, 3). Rhode Island College, James P. Adams Library (3). Warwick Public (3).
South Carolina	Westerly Charleston	Baptist College (1, 2, 3).
		The Citadel (1, 3). Clemson University (1, 2, 3). Columbia University (3). South Carolina State (3).
		University of South Carolina, McKissick Memorial Library (1, 2, 3). Florence County (3). Furman University (1, 2, 3). Greenville County (3).
	Greenwood Rock Hill Spartanburg	Lander College (3). Winthrop College (3). Spartanburg County Public (3).
South Dakota	Brookings	Northern State College (3). South Dakota State University, Lincoln Memorial Library (1, 2, 3).
	Sioux Falls Spearfish	South Dakota School of Mines and Technology (1, 2, 3).
Tennessee	Yankton	Yankton College, Corliss Lay Library (1, 3). Chattanooga Public (1, 2, 3).
	Clarksville Jackson Jefferson City Johnson City Knoxville	Austin Peay State College (3). Lambuth College, Luther L. Gobbel Library (3). Carson-Newman College, Maples Library (3). East Tennessee State University, Sherrod Library (1, 2, 3). University of Tennessee (1, 2, 3).
	Memphis	University of Tennessee (3). Cossitt Reference (1, 2, 3). Memphis State University (3). Middle Tennessee State University (3).
	Nashville	Fisk University (1). Joint University Libraries (1, 2). Nashville and Davidson County Public (3). Tennessee State Library and Archives (2, 3).
_		University of the South, Jesse Ball Dupont Library (3).
Texas	Amarillo Arlington Austin	Linivoreity of Toyon (1.9.9)
	BeaumontBrownwood	Lamar State College of Technology (1, 2, 3). Howard Payne College, Walker Memorial Library (3). West Texas State University (2, 3). Texas A&M University (1, 2, 3).

•

.

* •

.

,

"Not a depository library.

13

State	City	Library and Type of Publication Received
Texas	Commerce.	East Texas State University (2, 8).
	Corsicana	Navarro Junior College (3).
	Danas	Dallas Baptist College (3). Dallas Public (1, 2, 3).
		Southern Methodist University, Fondren Library (1, 2, 3).
	Denton	North Texas State University (2, 3).
	El Paso	Pan American College (3).
		University of Texas (1.9.9)
	Fort Worth	Fort Worth Public (1, 2, 3). Texas Christian University, Mary Couts Burnett Library
	Galveston	$(1 \ 2 \ 9)$
	Houston	Rosenberg (3). Houston Public (1, 2, 3)
	10480011-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	Rice University, Fondren Library (3). University of Houston (1, 2, 3).
	Huntsville	Sam Houston State College, Estill Library (2, 3).
	Kingsville	Texas College of Arts and Industries (1, 2, 3). Nicholson Memorial Public (2, 3).
	Longview	Nicholson Memorial Public (2, 3).
	Masshall	Texas Technological College (1, 2, 3). Wiley College, Carnegie Library (3). Stephen F. Austin State College, Paul L. Boynton Library (2, 3).
	Nagadoches	Stephen F. Austin State College, Paul L. Boynton Library (2, 3).
	riainview	- Waviand Babtist College, van Howeling Memorial Library (3).
	San Angelo	Angelo State College (3).
	San Antonio	St. Mary's University (1, 2, 3).
		San Antonio Public (1, 2, 3). Trinity University (1, 2, 3).
	San Marcos	Southwest Texas State College (1, 3).
	Texarkana	Texarkana College (3).
	Waco	Baylor University (2, 3).
	Wichita Falls	Midwestern University, Moffett Library (1, 2, 3).
Utah	Ephraim	Snow College (2).
	Logan	Utah State University (1, 2, 3). Weber State College (1, 2, 3).
	Ugaen Provo	Brigham Young University (1, 2, 3).
	Salt Lake City	University of Utah (1, 2, 3).
Vermont		University of Vermont, Bailey Library (1, 2, 3).
• ••••••••••••••••••••••	Middlebury	Middlebury College, Egbert Starr Library (1, 2, 3).
	Montpelier	Vermont State (3).
	Northfield	Norwich University (3).
		Windham College, Dorothy Marvin Memorial Library (3).
Virginia	Blacksburg	Virginia Polytechnic Institute (1, 2, 3).
		University of Virginia (1, 2, 3). Emory and Henry College (3).
	Fredericksburg	Mary Washington College, E. Lee Trinkle Library (3).
	Hampden Sydney	Hampden Sydney College, Eggleston Library (3).
	Hollins College	Holling College, Fishburn Library (3).
	Lexington	Virginia Military Institute (2, 3).
		Washington and Lee University, Cyrus Hall McCormick Library (2, 3).
		Old Dominion College, Hughes Memorial Library (1, 2, 3). Norfolk Public (3).
	Petersburg	Virginia State College, Johnston Memorial Library (3).
	Richmond	University of Richmond, Boatwright Memorial Library (2, 3). Virginia State (1, 2, 3).
	Roanoke	Roanoke Public (3).
	Salem	Roanoke College (3).
	Williamsburg	College of William and Mary (1, 2, 3).
Washington	Bellingham	Western Washington State College, Wilson Library (1, 2, 3). Eastern Washington State College (3).
-	Cheney	Eastern Washington State College (3).
	Ellensburg	Central Washington State College (1, 2, 3).
	Everett	
	Ciympia	Washington State (1, 2, 3).
	Pullman	Port Angeles Public (2, 3). Washington State University (1, 2, 3).
	Seattle	
	JCALLIE	University of Washington (1, 2, 3).
	Spokane	Spokane Public (1, 2, 3).
	Tacoma	Tacoma Public (1, 2, 3).
		University of Puget Sound, Collins Memorial Library (2, 3).
	Vancouver	Fort Vancouver Regional (1, 2, 3).
	Walla Walla	Whitman College, Penrose Memorial Library (2, 3).

•

State	City	Library and Type of Publication Received
West Virginia	Athens.	Concord College (3).
	Charleston	Department of Archives and History (3).
	-	Kanawha County Public (3).
	Elkins	Davis and Elkins College (3).
		Fairmont State College (3).
		Glenville State College, Robert F. Kidd Library (3).
		Marshall University (1, 2, 3). West Virginia State College (3).
	Morgantown	West Virginia University (1, 2, 3).
	Salem	Salem College (3).
Wisconsin		
W ISCONSIN	Appleton	Lawrence University, Samuel Appleton Library (2, 3).
	Beloit.	Wisconsin State University, William D. McIntyre Library (2, 3).
	Fond du Lan	Fond du Lac Public (2, 3).
	La Crosse	La Crosse Public (3)
		Wilconst. State II-inserity, Flanence Wing Library (2)
	Madison	Madison Public (2, 3).
		State Historical Society (1, 2, 3).
		University of Wisconsin, Memorial Library (1, 2, 3).
	Milwaukee	Milwaukee Public (1, 2, 3).
	6	Mount Mary College (3).
		Oklahoma (3).
		University of Wisconsin (3).
		Wisconsin State University, Forrest R. Polk Library (1, 3). Wisconsin State University (1, 2, 3).
	Platteville	Wisconsin State University $(1, 2, 3)$.
	Racine River Falls	Racine Public (1, 2, 3). Wissensin State University, Chalman Davies Library (1, 2)
	Stevens Point	Wisconsin State University, Chalmer Davee Library (1, 3). Wisconsin State University (1, 2, 3).
	Superior	Superior Public (1, 3)
	Waukesha	Waukesha Public (3).
	Whitewater	Wisconsin State University, Harold Andersen Library (1, 2, 3).
Wyoming	Casper	Natrona County Public (2, 3).
	Chevenne	Wyoming State $(1, 2, 3)$.
	Laramie	Wyoming State (1, 2, 3). University of Wyoming, Coe Library (1, 2, 3).
	Sheridan	Bureau of Mines, U.S. Department of the Interior (1, 2, 3).* Sheridan College, Kooi Library (1, 2, 3).
Guam		Nieves M. Flores Memorial (3).
Puerto Rico	Rio Piedras	University of Puerto Rico (1, 2, 3).
	Mavaguez	University of Puerto Rico (1, 2, 3).
	Ponce	University of Puerto Rico (1, 2, 3). Catholic University of Puerto Rico (3).
C4 The among 37 T		
St. I DOMAS, V.I	Charlotte Amalie	rublic (1).

.

"Not a depository library.

.

B 615. Reduction of Coal by Lithium-Ethylenediamine and Reaction of Model Compounds With Metal-Amine

Reaction of Macel Compounds with Metal-Amine Systems, by Leslie Reggel, Charles Zahn, Irving Wender, and Raphael Raymond. 1965. 57 pp. 30 figs. A series of vitrains (ranging from 67.9 to 93.1 percent C, maf) and a natural graphite were reduced on a small scale by a novel reagent—lithiumethylenediamine at 100° C. At this low temperature, coal is very reactive and adds large amounts of hydrogen. Even a high-rank coal and graphite, which are very difficult to hydrogenate catalytically at high temperatures and pressures, were reduced by the lithium-ethylenediamine system. Studies on model compounds consisted of reduction of hydrocarbons and oxygenated compounds with lithium-ethylenediamine, isomerization of olefins and dehydrogenation of cyclic dienes by *n*-lithioethylenediamine, reductive dimerization of naphthalene by sodiumethylamine, and formation of imidazole derivatives and cleavage of carbon-carbon bonds by *n*-lithioethylenediamine and *n*-sodioethylenediamine. Work done in cooperation with the Union Carbide Corp. (Out of print.)

8 620. X-Ray Diffraction Data for Aromatic, Hydroaromatic, and Tetrahedral Structures of Carbon, by Sabri Ergun, W. F. Donaldson, and R. W. Smith, Jr. 1965. 104 pp. 1 fig. Presents new theoretical data for the intensity of X-rays diffracted from randomly oriented aromatic and alicyclic molecules and diamondlike structures such as are found in coals, cokes, and carbonaceous materials. Data have been computed using the Debye interference function. Computations for the smaller molecules have been made with the Univac 120 computer; those for large structures, with either the IBM 704 or Bendix G-20 computer. A brief theoretical introduction of the Debye interference function is given, and an outline is made of the treatment of experimental data so that the experimental interference function can be obtained. (Out of print.)

B 621. Some Statistical Techniques for Analyzing Mine and Mineral-Deposit Sample and Assay Data, by Scott
W. Hazen, Jr. 1967. 223 pp. 75 figs. A comprehensive summary is presented of the results of several years of research at the Bureau of Mines Mining Research Center at Denver, Colo., on adapting and applying techniques of statistical analysis in mine and mineral-deposit sampling and in computing grade and tonnage of ore for a mineral deposit. In addition to elementary statistical theory, the material presented in the bulletin includes (1) certain special statistical techniques that have been found useful in mining applications; (2) problems, implications, and limitations that may be encountered in applying these techniques in mine sampling and evaluation; and (3) numerous examples to demonstrate application of the theory and techniques. \$1.25.

8 622. Hydrogenation of Cool in the Batch Autoclave, by C. O. Hawk and R. W. Hiteshue. 1965. 42

C. O. Hawk and R. W. Hiteshue. 1965. 42 pp. 13 figs. Tests were made on the hydrogenation of bituminous coal by a dry method, which featured charging the autoclave with dry ingredients only coal, catalyst, and hydrogen. This innovation limited the products to those made from the coal charged. Tin catalysts showed the highest activity in the widest variety of forms and were the easiest to disperse; dry mixing in the autoclave during the heating-up period usually sufficed. Ammonium molybdate was inactive when dry mixed, but it compared favorably with the best catalysts known when applied by impregnating the coal with a solution of a molybdenum compound. As a group, metal naphthenates were the most effective; molybdenum naphthenate was the most active catalyst the tests disclosed. Onehundredth of a percent of molybdenum in this form (calculated as the metal in weight-percent of maf coal) induced 90-percent conversion of coal. However, because of their high costs, naphthenates have as yet only technical significance in coal hydrogenation. Long residence time and high reaction temperatures tended to increase the amount of thermal decomposition products formed (light hydrocarbon gases and/or char). High hydrogen pressure favored the production of liquids. (Out of print.)

B 623. State Compensatory Provisions for Occupational Diseases, by G. G. Morgis, Lena P. Beauregard, and Earle P. Shoub. 1967. 246 pp. An occupational disease is an illness resulting from exposure to an industrial health hazard commonly regarded as peculiar to, inherent in, or a natural accompaniment of the occupation in which it arises. This report is a compilation of those portions of the workmen's compensation laws of 49 States, the District of Columbia, Puerto Rico, and Virgin Islands that deal with occupational diseases. Direct quotes are reproduced from the annotated legal codes of the States, together with references to legal history and origin of the laws. Since each State functions independently in administering its own laws, there is no general uniformity in provisions or coverage. \$1.25.

B 624. Mangeness-Copper Damping Alloys, by J. W. Jensen and D. F. Walsh. 1965. 55 pp. 32 figs. Extensive research and development was performed on the manganess-copper vibration-damping alloys to determine the relationship between the properties of the alloys and variations in composition, fabrication, and heat treatment. Both standard and special methods of testing were employed to obtain data on strength, elastic modulus, hardness, resistivity, dilatation, microstructure, crystal lattice, and damping capacity. The extensive tabular and graphical data on these properties are presented for alloys containing 50 to 85 percent Mn, as quenched (solid solution) and after various aging treatments. (Out of print.)

B 625. Studies of High-Current Metallic Arcs, by F. W. Wood and R. A. Beall. 1965. 84 pp. 46 figs. Original experimentation in specially designed arc-melting furnaces and a comprehensive review of technical literature have helped with an understanding of electric arcs as used in metallurgical applications. Results relevant to the distribution of electric potentials and currents, temperatures, pressures, consumption of electrical conduction, and modes and mechanisms of discharge are presented and discussed. Present knowledge of high-current arcs is insufficient to test pertinent theoretical suggestions. However, the chief doubts concern the identities and the liberation or formation of current-carrying particles. It seems that either (1) novel formulations of existing concepts are needed or (2) essentially new concepts must be recognized to explain observations. An analysis of the situation has led the authors to favor the latter possibility and to suggest the existence of supplementary conducting particles. The conduction of current by the streaming of charged agglomerates is postulated. Another outgrowth of analysis is an equation for the arc potential as a function of current densities in the arc. In lieu of conclusions, the potentialities of practical applications and specific needs for fundamental clarification are summarized. Portions of the work done in cooperation with the Naval Reactors Division of the Bureau of Ships and the Pittsburgh Area Office of the U.S. Atomic Energy Commission. (Out of print.)

B 627. Flammability Characteristics of Combustible Gases and

Vapors, by Michael G. Zabetakis. 1965. 121 pp. 131 figs. Summarizes limit of flammability, autoignition, and burning-rate data for more than 200 combustible gases and vapors in air and other oxidants; supplies empirical rules and graphs that can be used to predict similar data for thousands of other combustibles under a variety of environmental conditions. Specific data are presented on the paraffinic, unsaturated, aromatic, and alicyclic hydrocarbons, alcohols, ethers, aldehydes, ketones, and sulfur compounds, and an assortment of fuels, fuel blends, hydraulic fluids, engine oils, and miscellaneous combustible gases and vapors. 75 cents.

B 628. Sulfur Poisoning of Fixed Bads of Iron Catalysts in the Fischer-Trepsch Synthesis, by R. B. Anderson, F. S. Karn, R. E. Kelly, and J. F. Schultz. 1965. 16 pp. 6 figs. Tests of two typical iron catalysts with synthesis gas containing known concentrations of H₂S were made to determine catalyst life as a function of sulfur concentration to ascertain the type of gas purification required. One objective of the present work was to determine if synthesis gas, purified by the Bureau of Mines hot-potassium carbonate process for removing H₂S of the gas purified by this process, is in the range of concentrations used in the present work. In constant-productivity tests of nitrided fused iron oxide catalysts with synthesis gas containing 6.9 mg S/m³, catalyst lives are nearly long enough for serious consideration of this mode of operation. However, factors relating to selectivity and stability of the catalyst indicate that this type of operation is impractical for a commercial process. (Out of print.)

8 629. Oilfields in the Willitton Basin in Montana, North Dakota, and South Dakota, by J. R. Hamke, L. C. Marchant, and C. Q. Cupps. 1966. 487 pp. The Williston basin is the largest known sedimentary basin on the North American continent. Two-thirds of this large basin lies within the United States in Montana, North Dakota, and South Dakota. Less than 10 years after the first commercial oil discovery in North Dakota in 1951, the petroleum industry became one of the largest industries in the three-state area. Crude petroleum is now the most valuable mineral resource in the area. In 1960 the basin produced 39 million barrels of oil worth \$100 million at the wellhead. Most of the 137 oil pools discovered are in Paleozoic carbonates at depths ranging from 3,000 to 13,000 feet. The major producing fields, centered on the Cedar Creek anticline in Montana and the Nesson anticline in North Dakota, produce from depths below 6,000 feet. This report presents descriptions of all phases of the Williston basin petroleum industry, including leasing, exploration, geology, drilling, production, transportation, and refining. Engineering, physical, and production data, maps, and crude petroleum analyses for 137 separate oil pools are included. Work done in cooperation with the University of Wyoming. \$3.

B 630. Mineral Facts and Problems, 1965 Edition, by Staff, Bureau of Mines. 1965. 1118 pp. 55 figs. Gives up-to-date, comprehensive information on all important minerals—metals, nonmetals, and fuels. This one-volume encyclopedia discusses individual mineral commodities separately in 89 chapters under such topics as history; geology and mineralogy; prospecting and exploration; mining and processing; uses and substitutes; reserves, production, and consumption; world trade; prices, costs, and taxes; employment; transportation; and research and outlook. Previous editions were B 556, published in 1956, and B 585, published in 1960. \$6.75.

8 431. Noture of the Carbides of Iron, by L. J. E. Hofer. 1966. 60 pp. 29 figs. Bureau of Mines research dealing with the preparation, properties, and reactions of iron carbides in the period 1948-60 (which was sponsored in part by Wright Air Development Laboratories) is analyzed and summarized. The inevstigations resulted in the first adequate characterization of epsilon iron carbide, which later proved to be an important intermediate in the tempering of martensite in steel. It was also found that chi iron carbide is probably an intermediate in the tempering of epsilon iron carbide to theta iron carbide as it proceeds in steels. Data from further studies indicated that epsilon iron carbide is an intermediate in the formation of chi iron carbide during its formation from carbon monoxide in the gas phase. 40 cents.

B 632. Infrared and Ultraviolet Spectrometric Techniques and Spectra-Structure Correlations, by R. A. Friedel and J. A. Queiser. 1966. 32 pp. 9 figs. The utilization by the Bureau of Mines of infrared and ultraviolet-visible spectometrv in connection with coal research has led to some basic improvements in methods, including a calibration method, a quantitative assessment of infrared spectral energy sources, and the development and perfection of infrared filters and cells. The adoption of a micropipet method to flush organic samples into absorption cells permits the investigation of vapors from organic liquids and the identification of volatile organic compounds. The spectral method has been used to investigate the infrared spectra of metal chelates, the chargetransfer complexing properties of aniline and nitrobenzene, an infrared method for determining the presence of methane in coal-mine air that has been adopted for use in enforcing the regulations of the National Coal Mine Safety Act, and atmospheric pollution including smog and odor-causing oxidation and decomposition of organic materials. Correlation of spectra and structure of organic compounds, particularly aromatics, was studied. 25 cents.

B 633. Hydrogenetion of Cool and Tar, by W. R. K. Wu and H. H. Storch. 1968. 95 pp. 92 figs. This bulletin traces the development of high-pressure coal and tar hydrogenation technology, based on an intensive review of the pertinent literature. The bulletin was written as a part of the Bureau of Mines research program on synthetic liquid fuels. It covers the history and economics of the process; the chemical aspect of hydrogenation of coal, tar, and middle oil; the engineering aspect of converting coal and tar to liquid fuels, principally gasoline; and the equipment for the process. The literature covered includes documents of the U.S. and British Governments, journals, and other publications. Bureau results in the hydrogenation field are also incorporated. \$1.25.

B 634. Analytical Methods in Mass Spectrometry, by A. G. Sharkey, Jr., J. L. Shultz, and R. A. Friedel.
 1967. 74 pp. 37 figs. The purpose of this inves-

tigation was to develop methods for analyzing coal derivatives and products from the Fischer-Tropsch synthesis. As part of this investigation it was necessary to study the mass spectral characteristics of many classes of compounds. The mass spectra of alcohols, the trimethy silvl ether derivatives of alcohols, acetal-type compounds, ketones, esters, and naphthenes were correlated with structure, and analytical methods were formulated. A method was devised to determine the ratio of branched to normal hydrocarbons up to C₁₈ in the Fischer-Tropsch product. Low-ionizing-voltage mass spectrometry was combined with type analyses to analyze tar acids and neutral oils from coal. The necessary sensitivity correlations at low-ionizing voltage were developed, particularly for phenolic compounds. Spedeveloped, particularly for phenolic compounds. Spe-cial analytical techniques were developed for the mass spectral analyses of specific compounds and compound types including (1) oxides of nitrogen, (2) hydrogen sulfide, (3) isomers of butenes and pentenes, and (4) hydrogen deuteride. An investiga-tion was made of the effects of various hydrocarbons and compound computed compounds on the parts and oxygenated compounds on tungsten filaments in the mass spectrometer. The operating characteristics of rhenium filaments under similar conditions were studied. Several improved sample handling techniques were developed, including an automatic manometer and a self-filling micropipet. Studies were made of anomalous and negative peaks in the mass spectra of certain gases. 45 cents.

8 635. Development of the Bureau of Mines Gas-Cambustion Oil-Shale Retorting Process, by Arthur Matzick, R. O. Dannenberg, J. R. Ruark, J. E. Phillips, J. D. Lankford, and Boyd Guthrie. 1966. 199 pp. 132 figs. Presents results from research and development carried out by the Bureau of Mines on the gas-combustion oil-shale retorting process. Effects of the process variables, results of gas and shale distribution studies, tests on shale particle size, and other details of experimental programs are discussed. Various auxiliary information and problems associated with the retorting process also are included. Tabulation of the retorting test data and detailed oil recovery flow diagrams for the 6-, 25-, and 150-ton-per-day retorts and drawings relating to retorting equipment are given. \$1.

8 636. Characterization of the Resin Fraction From Various Low-Temperature Tar Pitches, by Clarence Karr, Jr., and Joseph R. Comberiati. 1966. 31 pp. Resins from a bituminous pitch, a bituminous coal, a lignate tar, a sub-bituminous pitch, and an electrode binder pitch were investigated by the Bureau of Mines. The compositions of these resins were determined by four independent methods of structural determination: (1) Molecular formula and ring analysis, including ring arrangement; (2) infrared and ultraviolet spectra; (3) combined pyrolysis/gas chromatography; and (4) catalytic dehydrogenation followed by spectra and pyrolysis. The resin structure was correlated with coal structure, and it was concluded that pitch resins probably consist of essentially unaltered coal molecules carried over with the tar vapors in low-temperature carbonization. 25 cents.

B 637. Identification of Distillable Paraffins, Olefins, Aromatic Hydrocarbons, and Neutral Heterocyclics From a Lew-Temperature Bituminous Coel Tar, by Clarence Karr, Jr., Patricia A. Estep, Ta-Chuang Lo Chang, and Joseph R. Comberiati. 1967. 198 pp. 34 figs. An extensive characterization was conducted on the neutral oil components in a low-temperature bituminous coal tar. A total of 133 individual compounds was identified with respect to individual isomers, and at least 55 other compounds were indicated to be present. The amounts were determined in all instances. A comparison of isomeric distributions in the tar with thermodynamic equilibrium distributions and kinetic distributions indicated that the composition of the tar largely reflected the structure of the coal from which it was formed. Detailed descriptions are presented for the separatory and qualitative and quantitative procedures for the characterization of the neutral oil components. These include microfractional vacuum distillation, displacement liquid chromatography, gas-liquid chromatography, countercurrent distribution, and infrared and ultraviolet spectrophotometry. Descriptions are given for the synthesis of authentic specimens of alkylindenes. The ultraviolet and infrared spectra of 134 polycyclic compounds, ranging from alkylindenes to alkylphenanthrenes, either found in the distillable neutral oil or thought likely to be present, are also given. \$1.

8 638. Methods of Analyzing and Testing Coal and Coke, by Staff, Office of the Director of Coal Research. 1967. 82 pp. 50 figs. This bulletin presents all analytical and test methods regularly used by Bureau of Mines laboratories for characterizing coal and coke. To provide better service to coal producers and consumers, the scope of this bulletin has been expanded to include important test methods used to evaluate coal properties for commercial processing. The methods described will prove valuable to all persons interested in analyzing and testing coal and coke. 50 cents.

B 439. Entrainment Carbonization of Texas Lignite, by W. S. Landers, Manuel Gomez, and E. O. Wagner. 1968. 44 pp. 16 figs. This bulletin is a detailed study of low-temperature, entrained-bed carbonization of a Towne lignite from the formula form. tion of a Texas lignite. The lignite studied was from the Sandow strip mine and is representative of the Rockdale Formation of the Wilcox Group. Carbonization was conducted in a continuous entrained-bed reactor at several temperatures in the 880° to 1,520° F range and at air-to-coal ratios in the 0 to 10.30 scf/1b range (moisture- and ash-free basis). Carbonization rates ranged from 97.1 to 410.0 1b/hr (as-received basis). At the higher air-to-coal ratios employed, all or most of the carbonization heat was provided by internal combustion with air in the reactor. At the lower air-to-coal ratios, part of the heat for carbonization was supplied externally. It was demonstrated that the entrained-bed carboniza-tion of lights a carbonization was demonstrated that the entrained bed carbonization the the second that the entrained-bed carbonization of lignite is a complex reaction and that several variables, of which carbonization temperature, airto lignite ratio, and the average size of lignite are important, act together to influence both the carbonization yields and the properties of the resultant products. Process variables established by pilot plant tests were used to design the industrial scale carbonizer operated at Rockdale, Tex., by the Texas Power & Light Company as agents for the Aluminum Company of America. Properties of the carbonization product obtained from the industrial scale reactor were essentially the same as those obtained from the pilot plant reactor operated under the same conditions. 30 cents.

B 640. Advances in Coal Spectrometry. Absorption Spectrometry, by R. A. Friedel, H. L. Retcofsky, and J. A. Queiser. 1967. 48 pp. 26 figs. The importance of infrared and ultraviolet-visible spectrometry in studies of the structure of coal and similar substances is described. Special experimental techniques have been developed for these studies.

Thin sections of coal are preferred, but halide pellets are easier to prepare. Information obtained from infrared spectra on chemical functional groups has been discussed; the importance of both intensities and wavelengths of absorption bands has been emphasized. Functional groups assigned include aliphatic and aromatic CH, methylene and methyl groups, hydrogen-bonded hydroxyls, hydrogen-bonded and chelated carbonyls, phenolic structures, min-erals, and aromatic structures that are benzenoid or polynuclear.

Infrared studies of structures of coal extracts, distillates, and reaction products of various proc-esses, both chemical and physical, are discussed. Coallike infrared spectra of chars of model com-pounds have been utilized extensively in studies of coal structure.

Ultraviolet-visible absorption spectra of coals show a lack of fine structure and low spectral intensities. These results have been applied to the questions of the chemical and physical structure of coal, par-ticularly the question of polynuclear aromaticity of coals. The color of coal is also treated. The physicalchemical origin of the color of coal may be due to free radicals, as interesting correlations of ultra-violet-visible spectra with electron paramagnetic resonance have been obtained. The optical color of coal has been explained and simulation of the color changes observed in thin sections has been carried out. The spectra and structure of coal derivatives and other carbonaceous materials are also discussed. Possible sources of error in absorption spectral measurements are pointed out.

Limited measurements of the ultraviolet-visible reflectance spectra of coal are described. 35 cents.

8 641. Optical Properties of Caals and Graphie, by J. T. McCartney and S. Ergun. 1967. 49 pp. 36 figs. Optical properties of U.S. coals of differing rank have been investigated by the Bureau of Mines for about 20 years. These investigations have been made to further the development of an objective and the properties of an objective basis for petrographic analysis of coal and to add to knowledge of the structure and composition of coal and coal components by determining their optical constants in various regions of the electro-magnetic spectrum. Various experimental techniques have been used in these studies, including determi-nation of reflectance from bulk specimens and transmittal of thin and ultrathin sections, interferometry, electron microscopy, and electron diffraction. Similar studies have also been made of graphite, the end product of coal metamorphism. The Bureau of Mines conducted the first U.S.

investigation of reflectance properties of coal com-ponents, laying the foundation for petrographic analysis based on arbitrary reflectance classes and for automated reflectance analysis of coals. Optical constants of differing rank and of graphite have been determined in the ultraviolet-visible-near infrared spectrum. Maxima in the optical constants of graphite were observed in the ultraviolet region and were interpreted to be related to transitions of electrons between the valence and conduction bands. Similar maxima for coals, especially high-rank coals, appeared to be characteristic of the presence of graphitelike layers. A special application of optical theory to absorbing, anisotropic materials like graphite and high-rank coals has been developed. Electron microscopic and electron diffraction studies of coals have revealed various ultrafine structures in coal components and have shown the evolution of an oriented, crystalline graphite structure in high-rank coals. 35 cents.

B 642. Qualitative and Quantitative Aspects of Crude Oil Composition, by Harold M. Smith. 1968. 125 65 figs. This publication summarizes the liter-DD. ature on the composition of petroleum with special emphasis on naphtha and gas oil, and provides a source book for the known qualitative and quantita-tive facts on crude oil composition. The discussion points out the known facts from supposition and suggests new research needed in various areas. \$1.

 B 643. Yields and Analyses of Tars and Light Oils From Carbonization of U.S. Cools, by J. G. Walters,
 C. Ortuglio, and J. Glaenzer. 1967. 91 pp. This bulletin presents, in collected and tabulated form,
 Bureau of Mines and American Gas Association
 CA asthenization data participant to the (BM-AGA) carbonization data pertaining to the chemical analysis of tars and the characterization of tars and light oils obtained from U.S. coals. 50 cents.

8 644. Tunneling: Recommended Safety Rules (Revision of Bulletin 439), by Staff, Health and Safety Activity, Washington, D.C., and Health and Safety District A. 1968. 48 pp. This publication is designed to be helpful in promoting health and safety in tunneling and related operations. The format has been selected and arranged to provide a condensed guide for safety personnel, inspection and investigative agencies, design and project engineers, and others responsible for the health and safety of workmen. All the precautionary measures recommended are based on actual conditions observed, from investigations of fatal or serious accidents, and from research conducted to find ways and means from research conducted to find ways and means of alleviating hazards and unhealthful conditions. Many of the recommended rules are included in State many or the recommended rules are included in State laws and in the general safety requirements of the construction industry. Explanatory, descriptive, and qualifying information has been largely omitted in this publication to keep basic data in more useful and compact form. Included in the appendixes are special precautions for gassy (methane atmosphere) tunnels and tunnels where petroleum products are encountered. 40 cents. encountered. 40 cents.

B 646. Cold-Mold Arc Mohing and Casting, by R. A. Beall and others. 1968. 151 pp. 167 figs. This bulletin reviews the historical background of the cold-mold arc-melting technology, with specific refer-ences to the development that led to homogeneous zirconium ingots. Descriptions are given of modern zirconium ingots. Descriptions are given of modern production arc-furnaces for vacuum melting of both exotic and conventional metals. Besides zirconium, specific data are given for production of chromium, thorium, and copper. The development of the skull-casting technique for titanium is detailed, and the application of the technique to such refractory metals as molybdenum and tungsten is described. Factors of operation of the apparatus and furnace design are considered. \$1.25. are considered. \$1.25.

B 645. Mineral Resources and Industries of Arkansas, by Raymond B. Stroud, Robert H. Arndt, Frank B. Fulkerson, and W. G. Diamond. 1969. 418 pp. 114 figs. This bulletin describes the mineral resources and industries of Arkansas. Items discussed include engineering, geological, and economic features; mineral reserves and resources; uses and markets; and the current status and future potential of mineral commodities available in the State. Data concerning the State economy, demography, mineral organizations, taxation, land resources and ownership, mining laws and regulations, transportation, and energy sources are treated briefly to assist the reader in understanding the place of mineral resources as a factor in the future economic growth of the State.

The bulletin is designed to serve the needs of industry, State and Federal agencies, and individuals and other organizations in planning and conducting effective programs for development of Arkansas minerals. \$4.25.

8 647. Fivorine Micae, by Haskiel R. Shell and Kenneth H. Ivey. 1969. 291 pp. 86 figs. While the original purpose of the Bureau of Mines work on fluorine micas was to synthesize large single crystals or film suitable to replace natural muscovite or phlogopite, the objective was broadened to include development of the many possible fluorine micas as a class of new, unique materials. Several methods were developed for the synthesis of the fluorine micas at atmospheric pressure: Solid state reaction, melting in crucibles, internal resistance electric melting, and arc resistance electric melting. The latter two methods are now used commercially. A variety of fluoromicas were synthesized by isomorphic substitution including disilic, trisilic, and tetrasilic. Fluorophlogopite, KMg.AlSiOuoFs, is the fluoromicas are completely stable to water, many water-swelling fluoromicas and fluoromotmorrilonoids were synthesized. Single crystals or film of the fluorine micas were grown to 2 inches or more by a number of methods, but none has as yet proved economical. In the report detailed data and descriptions are given on compositions, syntheses, products, and uses and on the properties including physical, dielectric, chemical, X-ray, optical and structural. \$2.75.

8 648. X-Rey Studies of Coals and Carbonaceous Materials, by Sabri Ergun. 1968. 38 pp. 28 figs. This report gives the result of investigations of coals of different rank, coal components, chemically and thermally treated and irradiated coals, and sedimented organic matter. In most studies the arbitrary parameters obtained from the usual quantitative profile analyses are not given largely because they lack physical meaning. Instead comparative interpretations are offered. X-ray patterns of high-volatile bituminous and lower rank coals are not selfsufficient for structural interpretation by the methods of analysis developed to date. The patterns of hydrogenated and dehydrogenated coals indicate that the basic change in the structure of bituminous coals with increase in rank is the conversion of alicyclic structures into aromatic layers. In lowrank anthracites the aromatic layers are about 10 Å in size. The increase in rank is the result of coalescence of layers. High-rank anthracites have layer sizes of 25 to 40 Å and exhibit the development of three-dimensional (hkl) reflections of graphite, indicating ordering of adjacent layers. In meta-anthracites the layers are >1000 Å and the basic structure is that of defective crystalline graphite. The well-known petrographic components in low-rank coals have different structures; the differences disappear in low-volatile bituminous and higher rank coals. The patterns of sedimented organic matter, except impsonites, differ from those of coals. Their hydrogen contents are high, and their X-ray patterns are consistent with those of alicyclic structures. In contrast to normal coals, the patterns of yran

In contrast to normal coals, the patterns of uranium-bearing coals show increased diffuseness with decrease in hydrogen content. The diffuseness is accompanied by increase in the uranium content of the coal. It is very likely that high uranium-bearing coals have predominantly tetrahedral structures. 45 cents.

8 649. Corbon-13 Nuclear Magnetic Resonance Spectra of Monosubstituted Pyridines, by H. L. Retcofsky and R. A. Friedel. 1969. 45 pp. 42 figs. Carbon-13 nuclear magnetic resonance (¹³C NMR) spectra of nine 2-substituted pyridines, seven 3-substituted pyridines, and nine 4-substituted pyridines have been obtained and analyzed. Substituents included both electron-releasing groups and electron-withdrawing groups. Substituent effects on the magnetic shieldings of the ring carbons, except for those in the 2-positions of 2-substituted pyridines, were found to be quite similar to the effects reported for the monosubstituted benzenes. Thus, at least to a first approximation, the two classes of compounds have similar shielding mechanisms. Shieldings of the carbon atoms in the 5-positions of 2-substituted pyridines were found to reflect electron release or withdrawal by substitutent groups. The pyridinium cation and the compounds 2,2'-dipyridyl and benzonitrile were also investigated. 50 centa.

MINERALS YEARBOOKS

- The Minerals Yearbook 1964 is the second annual review to be presented in four volumes, the fourth volume giving international mineral industry statistics on a country-by-country basis. The contents of the four-volume editions follows:
- Volume I, Metals and Minerals (Except Fuels), prepared by the staff of the Division of Minerals. 1965. 77 chapters. 1258 pp. 33 figs. Contains chapters on metal and nonmetal mineral commodities except mineral fuels. In addition it includes a chapter reviewing these mineral industries, a statistical summary, and chapters on mining and metallurgical technology, employment and injuries, and technologic trends. \$4.75.
- Volume II, Mineral Fuels, by the staffs of the Division of Anthracite, Division of Bituminous Coal, Division of Petroleum, Division of Statistics, Division of Economic Analysis, Division of Accident Prevention and Health, and Assistant Director-Helium. 12 chapters. 1965. 509 pp. 52 figs. Contains chapters on each mineral fuel and on such related products as helium, carbon black, peat, coke and coal chemicals, and natural gas liquids. Also included are data on employment and injuries in the fuel industries and a mineral-fuels review summarizing recent economic and technological developments. \$2.75.
- Volume III, Area Reports: Domestic, prepared by the staffs of the field offices of the Division of Mineral Resources of the Bureau of Mines. 1965. 53 chapters. 1152 pp. 56 figs. Contains geographic chapters for each State, as well as the island possessions and the Canal Zone. \$4.50.
- Volume IV, Area Reports: International, prepared by the staff of the Division of International Activities. 1966. 104 ch. 1350 pp. Present statistical and mineral industry information for the countries of the world (excluding the United States). \$5.00.
- Minerals Yearbook 1965, published in four volumes, provides a record of performance of the Nation's mineral industries during the year and a review of world mineral production, consumption, and trade on a country-by-country basis.
- Volume I, Metals and Minerals (Except Fuels), prepared by the staff of the Division of Minerals. 1966. 77 ch. 1095 pp. 30 figs. Contains chapters on metal and nonmetal mineral commodities except mineral fuels. In addition it includes a chapter reviewing the mineral industries, a statistical summary, and chapters on mining and metallurgical technology, employment and injuries, and technologic trends. \$4.25.

related products as helium, carbon black, peat, coke and coal chemicals, and natural gas liquids. Also included are data on employment and injuries in the fuel industries and a mineral fuels review summarizing recent economic and technologic developments. \$2.50. ٠

- Volume III, Area Reports: Domestic, prepared by the staffs of the field offices of the Division of Mineral Resources. 1967. 53 ch. 928 pp. 54 figs. Presents statistical data and mineral industry information for each State as well as the island possessions and the Canal Zone. Most chapters are prepared under cooperative agreements with State or island agencies for the collection of mineral data. \$3.75.
- Volume IV, Area Reports: International, prepared by staff of the Bureau of Mines. 1967. 105 ch. 1285 pp. Presents the latest available mineral statistics for more than 130 foreign countries and areas. A separate chapter reviews minerals in the world economy. \$4.75.
- Minerels Yearbook, 1966. In this edition of the Minerals Yearbook, Volume I, Metals and Minerals, and Volume II, Fuels, formerly published separately, are combined and issued as Volume I-II, Metals, Minerals, and Fuels. Volume III, Area Reports: Domestic, follows the format of previous years. Volume IV, Area Reports: International, will not be published for 1966. However, mineral production and trade tables for foreign countries are included in the combined Volume I-II.
- Volume I-II, Metals, Minerals, and Fuels, prepared by the staffs of the Division of Anthracite, Division of Bituminous Coal, Division of Economic Analysis, Division of International Activities, Division of Minerals, Division of Petroleum, Division of Statistics, Division of Accident Prevention and Health, and Assistant Director—Helium. 1967. 1352 pp. 35 figs. In this edition of the Minerals Yearbook, covering calendar year 1966, Volume I, Metals and Minerals, and Volume II, Minerali Fuels, formerly published separately, are combined and issued as Volume I-II, Metals, Minerals, and Fuels. This volume, consisting of 225 chapters, contains all the customary statistical data on production, consumption, imports, exports, and related subjects, collected by the Bureau of Mines from sources all over the world. In addition it includes a chapter reviewing the mineral industries chapter in this volume has been expanded and discusses the position of these basic industries in the national and international economics. \$5.
- Volume III, Area Reports: Domestic, prepared by the staffs of the field offices of the Division of Mineral Resources of the Bureau of Mines. 1967. 53 ch. 891 pp. 53 figs. Contains geographic chapters for each State, as well as the island possessions and the Canal Zone. Preprints of individual chapters are available at the prices listed. \$3.75.

- The Minerals Yearbook, 1967, published in three vol-umes, provides a record of performance of the Na-tion's mineral industries during the year and a review of world mineral production, consumption, and trade on a country-by-country basis.
- Volume I-II, Metals, Minerals, and Fuels, prepared by the staff of the Division of Mineral Studies, except for the Review of the Mineral Industries, except for the Review of the Mineral Industries, Statistical Summary, Injury Experience and Worktime in the Mineral Industries, and Helium chapters. Statistical data on the U.S. mineral in-dustry were collected and compiled by the staff of the Division of Statistics. World production and foreign activity trade tables were compiled in the Division of International Activities 1968 81 International Activities of the provided in the Division of International Activities. 1968. 81 ch. 1262 pp. 46 figs. Contains chapters on metal and nonmetal mineral commodities including mineral fuels. It includes a chapter reviewing the mineral industries, a statistical summary, and chapters on employment and injuries and technologic trends. \$6.25.
- Volume III, Area Reports: Domestic, prepared by staff of the Bureau of Mines. 1968. 53 ch. 892 pp. 53 figs. Contains chapters covering each of the 50 States, the U.S. island possessions in the Pacific Ocean and the Caribbean Sea, the Commonwealth of Puerto Rico, and the Canal Zone. This volume has a statistical summary chapter, identi-cal with that in Volume I-II, and a chapter on employment and injuries. \$5.25.
- Volume IV, Area Reports: International, prepared by the staff of the Division of International Ac-tivities. 1969. This volume contains 85 chapters presenting the latest available mineral statistics for more than 130 foreign countries and areas and division of the present of the statest discusses the importance of minerals to the econ-omies of these nations. A separate chapter re-views minerals in the world economy. \$5.75.
- Minerals Yearbook, 1968, published in three volumes, provides a record of performance of the Nation's mineral industries during the year and a review of world mineral production, consumption and trade on a country-by-country basis.
- Volume I-II, Metals, Minerals, and Fuels, prepared by the staff of the Division of Mineral Studies, except for the Review of the Mineral Industries, Statistical Summary, Injury Experience and Worktime in the Mineral Industries, and Helium chapters. Statistical data on the U.S. mineral in-dustrian explored ord combiled in the Division dustry were collected and compiled in the Division of Statistics. World production and trade were compiled in the Division of International Activi-ties. 1969. 80 ch. 1208 pp. 46 figs. Contains chapters on metal and nonmetal mineral commodities including mineral fuels. It includes a chapter reviewing the mineral industries, a statistical summary, and chapters on employment and in-juries and technologic trends. Preprints of individual chapters are available at the prices listed. \$6.25.

General reviews:

- Injury Experience and Worktime in the Mineral Industries, by Forrest T. Moyer. 14 pp. 10 cents.
- Review of the Mineral Industries, by Olman Hee and Jeannette I. Baker. 60 pp. 1 fig. 30 cents.

÷

- Statistical Summary, by Kathleen J. D'Amico. 39 pp. 20 cents.* Technologic Trends in the Mineral Industries (Metals and Nonmetals Except Fuels), by John L. Morning. 24 pp. 20 cents.
- Commodity reviews: Abrasive Materials, by J. Robert Wells. 12 pp. 1 fig. 10 cents.

Aluminum, by John G. Parker. 20 pp. 15 cents. Antimony, by L. E. Davis. 8 pp. 10 cents. Asbestos, by Paul W. Icke. 10 pp. 1 fig. 10

- cents.

- Barite, by W. Gene Diamond. 6 pp. 10 cents. Bauxite, by John G. Parker. 12 pp. 10 cents. Beryllium, by Henry C. Meeves. 5 pp. 10 cents. Bismuth, by Harrold J. Schroeder. 4 pp. 10 cents.
- Boron, by J. M. West. 4 pp. 10 cents. Bromine, by Keith S. Olson. 4 pp. 10 cents. Cadmium, by Donald E. Moulds. 6 pp. 1 fig.
- 10 cents.
- Calcium and Calcium Compounds, by Benjamin Petkof. 3 pp. 10 cents. Carbon Black, by William B. Harper. 11 pp. 1
- fig. 10 cents.
- Cement, by John R. Lewis. 25 pp. 20 cents. Chromium, by John L. Morning. 9 pp. 10 cents. Clays, by J. Robert Wells. 18 pp. 3 figs. 15 cents.
- Cents. Coal-Bituminous and Lignite, by W. H. Young and J. J. Gallagher. 17 pp. 30 cents. Coal-Pennsylvania Anthracite, by Walter C. Lorenz. 25 pp. 1 fig. 20 cents. Cobalt, by Gilbert L. DeHuff. 6 pp. 10 cents. Coke and Coal Chemicals, by Leonard Wester-strom. 38 pp. 20 cents.

- strom. 38 pp. 20 cents. Columbium and Tantalum, by Richard F. Stevens,
- Columbium and Tantaium, by Richard F. Stevens, Jr. 14 pp. 10 cents. Copper, by John W. Cole. 31 pp. 20 cents. Diatomite, by J. M. West. 3 pp. 10 cents. Feldspar, Nepheline Syenite, and Aplite, by J. Robert Wells. 6 pp. 10 cents. Ferroalloys, by John W. Thatcher. 10 pp. 10

- cents.
- Fluorspar and Cryolite, by J. Robert Wells. 8 pp. 10 cents.
- Gem Stones, by Benjamin Petkof. 5 pp. 10 cents. Gold, by J. Patrick Ryan. 21 pp. 4 figs. 15 cents. Graphite, by Lewis K. Weaver. 7 pp. 10 cents. Gypsum, by Paul L. Allsman. 8 pp. 10 cents. Helium, by Billy J. Moore. 4 pp. 10 cents. Iron and Steel, by John W. Thatcher. 18 pp.
- 15 cents.
- Iron and Steel Scrap, by John W. Thatcher. 12 pp. 1 fig. 10 cents. Iron Ore, by John L. Morning. 22 pp. 1 fig. 15
- cents.
- Iron Oxide Pigments, by John W. Thatcher, 4 pp. 10 cents.
- Kyanite and Related Minerals, by John W. Sweeney, 4 pp. 10 cents. Lead, by Donald E. Moulds. 27 pp. 1 fig. 20
- cents.
- Lime, by Paul L. Allsman. 10 pp. 1 fig. 10 cents. Magnesium, by John W. Cole. 6 pp. 10 cents. Magnesium Compounds, by John W. Cole. 7 pp. 10 cents.
- Manganese, by Gilbert L. DeHuff. 10 pp. 10 cents. Mercury, by J. M. West. 9 pp. 1 fig. 10 cents. Mica, by Benjamin Petkof. 9 pp. 10 cents.

^{*} Same chapter appears in volume III.

molyodenum, by John L. Morning. 9 pp. 10 cents.
Natural Gas, by William B. Harper and Leonard L. Fanelli. 28 pp. 3 figs. 20 ments.
Natural Gas Liquids, by William B. Harper and Leonard L. Fanelli. 17 pp. 1 fig. 15 cents.
Nickel, by Gilbert L. DeHuff. 11 pp. 10 cents.
Nitrogen, by John R. Lewis. 13 pp. 10 cents.
Pertite by William C. Hanker. 2 and 10 cents. Molybdenum, by John L. Morning. 9 pp. 10 cents.

- Perlite, by William C. Henkes. 3 pp. 10 cents. Crude Petroleum and Petroleum Products, by James G. Kirby and Betty M. Moore. 112 pp. 7 figs. 50 cents.
- Phosphate Rock, by Donald E. Eilertsen. 11 pp. 1 fig. 10 cents. Platinum-Group Metals, by J. Patrick Ryan. 10
- pp. 10 cents.
- Potash, by Donald E. Eilertsen. 11 pp. 1 fig. 10 cents.
- Pumice, by Carl L. Bieniewski. 5 pp. 1 fig. 10 cents.
- Rare-Earth Minerals and Metals, by John G. Parker. 8 pp. 10 cents.
- Salt, by Benjamin Petkof. 9 pp. 10 cents. Sand and Gravel, by Paul L. Allsman. 18 pp. 2 figs. 15 cents
- Silicon, by John W. Thatcher. 5 pp. 10 cents. Silver, by J. Patrick Ryan. 16 pp. 3 figs. 15
- cents.
- Slag—Iron and Steel, by John W. Thatcher. 5 pp. 10 cents.
- Sodium and Sodium Compounds, by Benjamin Petkof. 3 pp. 10 cents. Stone, by Paul L. Allsman. 2 pp. 15 cents.
- Sulfur and Pyrites, by Donald E. Eilertsen. 12
- pp. 2 figs. 10 cents. Talc, Scapstone, and Pyrophyllite, by John W. Hartwell. 6 pp. 10 cents. Thorium, by Richard F. Stevens, Jr. 6 pp. 10
- cents.
- Tin, by John R. Lewis. 15 pp. 15 cents. Titanium, by John G. Parker. 13 pp. 10 cents. Tungsten, by Richard F. Stevens. 14 pp. 1 fig. 10 cents.
- Uranium, by Richard F. Stevens, Jr. 24 pp. 20 cents.
- Vanadium, by Gilbert L. DeHuff. 7 pp. 10 cents. Vermiculite, by William N. Hale. 2 pp. 10 cents.
- Zinc, by Donald E. Moulds. 28 pp. 2 figs. 20 cents. Zirconium and Hafnium, by John G. Parker. 7
- pp. 10 cents.
- Minor Metals, by John W. Cole and Richard F. Stevens, Jr. 13 pp. 10 cents. Minor Nonmetals, by Benjamin Petkof. 8 pp. 10
- cents.
- Volume III, Area Reports: Domestic, prepared by the staffs of the field offices of the Division of Mineral Resources. 53 ch. Contains geographic chapters for each State. as well as the island pos-sessions and the Canal Zone. The complete volume will be published in 1970, but preprints of indi-vidual chapters are available at the prices listed.

General reviews:

- Injury Experience and Worktime in the Mineral Industries by States, by Forrest T. Moyer. 16 pp. 15 cents.
- Statistical Summary, by Kathleen J. D'Amico. 39 pp. 20 cents.*

The Mineral Industry of-

- Alabama, by Ronald P. Hollenbeck and W. Everett Smith. 13 pp. 1 fig. 10 cents. Prepared in cooperation with the Geological Survey of Alabama.
- Alaska, by Kevin Malone, Donald P. Blasko, and James A. Williams. 18 pp. 3 figs. 15 cents. Prepared in cooperation with the Division of Mines and Geology of the Alaska Department of Natural Resources.
- Arizona, by Leonard P. Larson and William C. Henkes. 23 pp. 2 figs. 20 cents. Prepared in cooperation with the Arizona Bureau of Mines.
- Arkansas, by William G. Park and W. D. Dietz-man. 14 pp. 1 fig. 10 cents. Prepared in cooperation with the Arkansas Geological Commission.
- California, by Francis C. Mitko. 32 pp. 1 fig. 20 cents. Prepared in cooperation with the California Department of Conservation, Divi-
- California Department of Conservation, Divi-sion of Mines and Geology. Colorado, by Carl L. Bieniewski and William C. Henkes. 30 pp. 2 figs. 20 cents. Connecticut, by Eugene C. Baker. 6 pp. 1 fig. 10 cents. Prepared in cooperation with the Connecticut Geological and Natural History Survey.
- Delaware, by Samuel A. Gustavson. 3 pp. 10 cents. Prepared in cooperation with the Delacents. Prepared in coor ware Geological Survey.
- Florida, by John W. Sweeney and Earl L. Max-well. 15 pp. 2 figs. 15 cents. Prepared in cooperation with the Geological Survey of Florida.
- Georgia, by Robert G. Hobbs and J. H. Auvil, Jr. 11 pp. 1 fig. 10 cents. Prepared in coopera-tion with the Geological Survey of Georgia. Hawaii, by Roy Y. Ashizawa. 5 pp. 10 cents. Prepared in cooperation with the Hawaii De-partment of Land and Natural Resources.
- Idaho, by Fred V. Carrillo, Mary Anne McComb, and Norman S. Petersen. 16 pp. 2 figs. 15 cents. Prepared in cooperation with the Idaho
- Bureau of Mines and Geology. Illinois, by Thomas O. Glover. 19 pp. 1 fig. 15 cents. Prepared in cooperation with the Illinois Geological Survey.
- Indiana, by Donald F. Klyce and Mary B. Fox. 18 pp. 1 fig. 15 cents. Prepared in coopera-tion with the Geological Survey, Indiana De-partment of Natural Resources.
- Iowa, by Guy A. Johnson. 14 pp. 1 fig. 10 cents. Prepared in cooperation with the Geo-logical Survey of Iowa.
- Kansas, by George T. McIntyre and A. L. Horn-baker. 18 pp. 1 fig. 15 cents. Prepared in cooperation with the State Geological Survey of Kansas.
- of Kansas. Kentucky, by H. L. Riley and Preston McGrain. 14 pp. 1 fig. 10 cents. Prepared in coopera-tion with the Geological Survey of Kentucky. Louisiana, by Owen W. Jones and Leo W. Hough. 19 pp. 1 fig. 15 cents. Prepared in coopera-tion with the Louisiana Geological Survey. Maine, by Robert E. Ela. 6 pp. 10 cents. Pre-pared in cooperation with the Geological Survey of Maine
- of Maine.
- Maryland, by Curtis D. Edgerton. 7 pp. 10 cents. Prepared in cooperation with the Maryland Geological Survey.
- Massachusetts, by C. Gordon Leaf. 8 pp. 1 fig. 10 cents.

^{*}Same chapter appears in Volume I-II.

- Michigan, by Donald F. Klyce. 19 pp. 1 fig. 15 cents. Prepared in cooperation with the Geological Survey Division of the Michigan De-
- Geological Survey Division of the Michigan De-partment of Natural Resources. Minnesota, by Keith S. Olson. 20 pp. 2 figs. 15 cents. Prepared in cooperation with the Minnesota Geological Survey. Mississippi, by S. O. Wood, Jr., and William H. Moore. 13 pp. 1 fig. 10 cents. Prepared in cooperation with the Mississippi Geological, Economic, and Topographical Survey.
- Missouri, by Joseph C. Arundale and James A. Martin. 15 pp. 1 fig. 15 cents. Prepared in cooperation with the Missouri Geological Survey and Water Resources.
- and water Resources. Montana, by Fred V. Carrillo, Mary Anne Mc-Comb, and William N. Hale. 20 pp. 2 figs. 15 cents. Prepared in cooperation with the Montana Bureau of Mines and Geology. Nebraska, by Arthur E. Falvey and William C. Henkes. 11 pp. 1 fig. 10 cents. Prepared in cooperation with the Nebraska Geological Sur-
- vev.
- Nevada, by Arthur C. Meisinger. 16 pp. 1 fig. 15 cents. Prepared in cooperation with the Nevada Bureau of Mines.
- New Hampshire, by William Cochran. 5 pp. 10 cents. Prepared in cooperation with the New Hampshire Department of Resources and Economic Development.
- nomic Development.
 New Jersey, by Richard J. Leary. 9 pp. 1 fig. 10 cents. Prepared in cooperation with the New Jersey Division of Resource Development, Bureau of Geology and Topography.
 New Mexico, by Lorraine Burgin and William C. Henkes. 29 pp. 8 figs. 20 cents.
 New York, by Robert G. Clark. 15 pp. 1 fig. 15 cents. Prepared in cooperation with the New York State Museum and Science Service.
 North Carolina, by V. A. Danielson and Stephen G. Conrad. 12 pp. 1 fig. 10 cents. Prepared in cooperation with the Geological Survey of North Carolina.

- North Carolina.
- North Dakota, by Franklin H. Persse and William C. Henkes. 9 pp. 1 fig. 10 cents. Prepared in cooperation with the State Geological Survey of North Dakota.
- Ohio, by Joseph Kirickich. 20 pp. 1 fig. 15 cents.
- Oklahoma, by Arel B. McMahon and William E. Ham. 17 pp. 1 fig. 15 cents. Prepared in cooperation with the Oklahoma Geological Survey.
- vey. Oregon, by Jerry J. Gray, Gary A. Kingston, and Mary Anne McComb. 13 pp. 1 fig. 10 cents. Prepared in cooperation with the Oregon De-partment of Geology and Mineral Industries. Pennsylvania, by Charles C. Yeloushan. 22 pp. 2 figs. 15 cents. Prepared in cooperation with the Pennsylvania Bureau of Topographic and Cochesia Survey.
- Geologic Survey.
- Puerto Rico, the Panama Canal Zone, the Virgin Islands, Pacific Island Possessions, and Trust Islands, Pacific Island Possessions, and Trust Territory of the Pacific Islands, by Harry F. Robertson, Eduardo Aguilar, and Roy Y. Ashizawa. 6 pp. 10 cents. Puerto Rico sec-tion of this chapter prepared in cooperation with the Mineralogy and Geology Section, Eco-nomic Development Administration, Commonwealth of Puerto Rico.
- Rhode Island, by Arthur Sykes Lees. 3 pp. 10
- South Carolina, by Robert C. Johnson and Henry S. Johnson, Jr. 8 pp. 1 fig. 10 cents. Pre-

- pared in cooperation with the South Carolina Division of Geology, State Development Board. South Dakota, by M. Clair Smith and William C. Henkes. 10 pp. 1 fig. 10 cents. Prepared in cooperation with the South Dakota State
- Geological Survey. Tennessee, by Doss H. White, Jr., and Robert E. Hershey. 15 pp. 2 figs. 15 cents. Prepared in cooperation with the Tennessee Division of
- Geology. Texas, by F. F. Netzeband and Roselle Girard. 35 pp. 1 fig. 20 cents. Prepared in coopera-tion with the Bureau of Economic Geology, The
- tion with the Bureau of Economic Geology, The University of Texas at Austin. Utah, by Douglas H. Hileman and William C. Henkes. 21 pp. 2 figs. 15 cents. Prepared in cooperation with the Utah Geological and Mineralogical Survey. Vermont, by Harold F. York. 6 pp. 10 cents. Virginia, by David J. Kusler. 17 pp. 1 fig. 15 cents. Prepared in cooperation with the Vir-ginia Division of Mineral Resources. Washington, by William N. Hale, Mary Anne Mc-Comb, and Paul McIlroy. 13 pp. 1 fig. 15 cents. Prepared in cooperation with the Wash-ington Division of Mines and Geology.

- ington Division of Mines and Geology.
- West Virginia, by Meherwan C. Irani. 13 pp. 1 fig. 10 cents. Work done in cooperation with the West Virginia Geological and Economic Survey.
- Wisconsin, by Keith S. Olson. 14 pp. 1 fig. 15 cents. Prepared in cooperation with the Wis-consin Geological Survey.
- Wyoming, by Earl F. Brauch and William C. Henkes. 20 pp. 1 fig. 10 cents. Prepared in cooperation with the Geological Survey of Wyoming.
- Volume IV, Area Reports: International, prepared olume IV, Area Reports: International, prepared by the staff of the Division of International Ac-tivities. 85 ch. This volume presents the latest available mineral statistics for more than 130 countries and areas and discusses the impor-tance of minerals to the economies of these na-tions. A separate chapter reviews minerals in the world economy. The complete volume will be pubworld economy. The complete volume will be pub-lished in 1970, but preprints of individual chapters are available at the prices listed.

Minerals in the World Economy, by E. J. Gealy and C. L. Kimbell. 49 pp. 25 cents.

The Mineral Industry of-

- Algeria, by Edgar J. Gealy. 7 pp. 10 cents. Angola, Mozambique, and Portuguese Guinea, by Eugene R. Slatick. 9 pp. 10 cents. Argentina, by Garn Rynearson. 12 pp. 10 cents.
- Australia, by Lester G. Morrell. 19 pp. 15 cents. Austria, by Roman V. Sondermayer. 10 pp. 10 cents.
- Belgium and Luxembourg, by Roman V. Sonder-
- mayer. 13 pp. 10 cents. Bolivia, by Robert A. Whitman. 6 pp. 10 cents. Brazil, by F. W. Wessel. 12 pp. 10 cents.
- Bulgaria, by Roman V. Sondermayer. 5 pp. 10
- cents.
- Burma, by Arnold M. Lansche and K. P. Wang. 4 pp. 10 cents.
- Canada, by Lester G. Morrell. 19 pp. 15 cents. Chile, by Garn A. Rynearson. 16 pp. 15 cents.
- Mainland China, by K. P. Wang. 12 pp. 10 cents. Colombia, by Gordon W. Koelling. 9 pp. 10 cents. Democratic Republic of the Congo (Kinshasa), by Eugene R. Slatick. 6 pp. 10 cents.

Cyprus, by Eugene R. Slatick. 4 pp. 10 cents. Czechoslovakia, by Bernadette Michalski. 6 pp. 10 cents.

Finland, by F. L. Klinger. 10 pp. 10 cents. France, by L. Nahai. 29 pp. 20 cents. Gabon, by Edgar J. Gealy and Agnes J. Dough-man. 5 pp. 10 cents. East Germany, by Bernadette Michalski. 5 pp.

10 cents.

Federal Republic of Germany, by L. Nahai. 32 pp. 20 cents.

pp. 20 cents. Ghana, by Edgar J. Gealy and Agnes J. Dough-man. 7 pp. 10 cents. Greece, by Bernadette Michalski. 8 pp. 10 cents. Hungary, by Joseph B. Huvos. 7 pp. 10 cents. Indonesia, by Arthur F. Grube. 10 pp. 10 cents. India, by Charles L. Kimbell and Charles W. Sweetwood. 20 pp. 15 cents. Indonesia, by Arthur F. Grube. 10 pp. 10 cents. Iran, by David A. Carleton. 8 pp. 10 cents. Iraq, by Edgar J. Gealy and Agnes J. Doughman. 5 pp. 10 cents.

5 pp. 10 cents. Ireland, by Columbus R. Gentile. 7 pp. 10 cents. Israel, by Walter C. Woodmansee. 9 pp. 10 cents. Italy, by F. L. Klinger. 23 pp. 15 cents. Japan, by Ta Cheng Li and R. A. Pense. 24 pp. 15 cents.

15 cents.
Kenya, Tanzania, and Uganda, by Eugene R. Slatick. 10 pp. 10 cents.
North Korea, by R. A. Pense. 7 pp. 10 cents.
South Korea, by R. A. Pense and Jean W. Pressler. 9 pp. 10 cents.
Kuwait, Kuwait-Saudi Arabia Neutral Zone, by David A. Carleton. 10 pp. 10 cents.
Liberia, by Walter C. Woodmansee. 5 pp. 10 cents.

cents. Libya, by Walter C. Woodmansee. 8 pp. 10 cents. Malaysia, by A. F. Grube. 10 pp. 10 cents. Mexico, by Burton E. Ashley. 10 pp. 10 cents. Morocco, by Henry E. Stipp. 8 pp. 10 cents. Netherlands, by Columbus R. Gentile. 16 pp. 15

cents.

cents. New Zealand, by John A. Stock. 9 pp. 10 cents. Nigeria, by David A. Carleton. 7 pp. 10 cents. Norway, by F. L. Klinger. 13 pp. 10 cents. Pakistan, by Charles L. Kimbell. 7 pp. 10 cents. Peru, by Robert A. Whitman. 11 pp. 10 cents. Philippines, by Arnold M. Lansche, R. A. Pense, and K. P. Wang. 9 pp. 10 cents. Poland, by Bernadette Michalski. 6 pp. 10 cents. Portugal, by F. L. Klinger. 9 pp. 10 cents.

Portugal, by F. L. Klinger. 9 pp. 10 cents. Rumania, by Joseph B. Huvos and Roman V. Son-

dermayer. 6 pp. 10 cents.

- Sierre Leone, by E. Shekarchi. 5 pp. 10 cents.
 Republic of South Africa, by Walter C. Woodmansee. 23 pp. 20 cents.
 Territory of South-West Africa, by Walter C. Woodmansee. 7 pp. 10 cents.
 Spain, by F. L. Klinger. 15 pp. 15 cents.
 Sweden, by F. L. Klinger and Bernadette Michalski. 18 pp. 15 cents.
 Taiwan, by R. A. Pense. 7 pp. 10 cents.
 Thailand, by A. F. Grube. 7 pp. 10 cents.
 Turnisia, by E. Shekarchi. 9 pp. 10 cents.
 Turkey, by E. Shekarchi. 9 pp. 10 cents.
 U.S.S.R., by V. V. Strishkov. 39 pp. 20 cents.
 United Arab Republic, by Henry E. Stipp. 6 pp. 10 cents. 10 cents.
- United Kingdom, by Columbus R. Gentile and Edgar L. McGinnis. 16 pp. 15 cents. Venezuela, by Gordon W. Koelling. 11 pp. 10
- cents. Yugoslavia, by Roman V. Sondermayer. 11 pp. 10 cents.

- Zambia, by E. Shekarchi. 7 pp. 10 cents. Other Areas of Africa, by Henry E. Stipp and Eugene R. Slatick. 43 pp. 20 cents. Islands of the Caribbean, by Burton E. Ashley. 20 pp. 15 cents.
- Central American Areas (British Honduras, Costa Rica, El Salvador, Guatemala, Honduras, Nicaragua, and Panama), by Burton E. Ashley. 16 pp. 10 cents. Other European Countries (Albania, Denmark

- Other European Countries (Albania, Denmark (including Greenland), Iceland, Switzerland), by Joseph B. Huvos, Bernadette Michalski, and Roman V. Sondermayer. 17 pp. 15 cents.
 Other Far Eastern and South Asian Areas, by Staff, Division of International Activities. 18 pp. 15 cents.
 Other Near East Areas (Bahrain, Jordan, Leb-anon, Muscat and Oman, Qatar, Southern Yemen, Syrian Arab Republic, Trucial States, and Yemen), by David A. Carleton, E. She-karchi, Eugene R. Slatick, and Walter C. Wood-mansee. 18 pp. 15 cents.
 Other South American Areas (Ecuador, French
- Other South American Areas (Ecuador, French Guiana, Guyana, Paraguay, Surinam, and Uruguay), by Burton E. Ashley and F. W. Wessel. 14 pp. 10 cents.
- Other South Pacific Islands (British Solomon Is-lands, Christmas Island, Fiji Islands, Nauru and Ocean Island, New Caledonia, New Heb-rides, and Papua and New Guinea), by John A. Stock. 9 pp. 10 cents.

RI 6573. Methods for Producing Alumina From Clay. An Evaluation of Two Ammonium Alum Processes, by Frank A. Peters, Paul W. Johnson, and Ralph C. Kirby. 1965. 47 pp. 17 figs. Evaluates the ammonium bisulfate leaching process and the ammonium sulfate baking process as methods for producing alumina from clay. Evaluations are based on published work, and the proposed plants are designed for a capacity of 1,000 tons of alumina per day. Under present economic conditions, these two processes are not competitive with the Bayer process for the production of alumina from bauxite. Future research work with these processes should be confined to areas likely to result in major cost reductions.

Rt 6574. Lightweight Aggregates. Expansion Properties of Selected Indiana Shales, by John W. Sweeney and Howard P. Hamlin. 1965. 28 pp. 12 figs. Gives data on shales from 14 locations in Indiana that were sampled, tested, and evaluated to determine the feasibility of producing lightweight aggregates by rotary-kiln and sintering methods. Discusses sampling procedures and the geology of the significant shale units. Four samples from the Borden group made suitable lightweight aggregate in the laboratory rotary kiln. Four samples tested by sintering methods made unsatisfactory aggregate.

RI 4575. Synthesis and Some Properties of Aluminum Borate Whiskers, by Robert C. Johnson and John K. Alley. 1965. 23 pp. 8 figs. Describes methods of growing aluminum borate whiskers or fibers and determining their properties. Better results were obtained by vapor deposition than by molten-salt bath; whiskers exceeding 25 mm in length were produced by vapor-deposition method. Three different aluminum borates (4.8Al₂O₃ + B₂O₃, 3.8Al₂O₄ + B₂O₃, and 2.5Al₂O₃ + B₂O₃) were identified by X-ray and chemical analyses. Optical data were obtained on the three aluminum borates. Additional whisker properties and growth factors were determined for vapordeposition and molten-salt methods.

RI 4576. Experimental Caustic Leaching of Oxidized Zinc Ores and Minerels and the Recovery of Zinc From Leach Solutions, by C. C. Merrill and R. S. Lang. 1965. 23 pp. 4 figs. Investigates the recovery of zinc from oxidized zinc minerals by the caustic soda leach and electrolytic or chemical precipitation method. With the exception of willemite, oxidized zinc minerals were readily soluble in 180 to 240 grams per liter of NaOH solutions. Zinc can be recovered electrolytically as a high-grade zinc flake, and the solution can be recycled to the leach stage. Zinc can also be recovered from leach solutions, or the addition of sulfur to boiling solutions, or the addition of sulfur to boiling solutions. Carbonation of the solutions could be recausticized for recycling. Zinc precipitated as the sulfide with sulfur was easily filtered and washed. Approximately half the sulfur added to solutions was lost in the form of sodium thiosulfate.

RI 6577. Extraction and Separation of Rare-Earth Elements

in Idoho Euxenite Concentrate, by Van E. Shaw and D. J. Bauer. 1965. 13 pp. 7 figs. Gives results of a study of conversion of euxenite concentrate to sulfates with sulfuric acid and solvent extraction of the yttrium-rare earth mixture with EHPA in order to determine extraction and separation characteristics. Separation of complex rareearth mixtures into light- and heavy-group fractions is feasible, and these fractions can be further processed to isolate ytterbium, neodymium, and dysprosium by changing processing conditions to obtain separation factors greater than two between these and adjacent elements.

Ri 4578. Evoluction of Electrowon Tungsten Powder, by G. H. Keith, B. D. Jones, and E. A. Rowe. 1965. 13 pp. 8 figs. Gives results of an investigation of electrowon tungsten powder with respect to particle size and shape, apparent density, flow rate, compressibility, green strength, and sintering characteristics. In addition its chemical purity, absolute density, and purification by melting were determined. Significant findings were higher flow rates and better compressibility than hydrogenreduced tungsten powder. The large particle size peculiar to the electrowinning process effectively prevented conventional sintering to a high-density material, but a new technique of hot swaging sheathed sintered-tungsten compacts was developed, permitting the production of small compacts of high density—92 percent of theoretical.

RI 6579. Phespherus, Chlorine, Sedium, and Petessium in U.S. Coals, by R. F. Abernethy, F. H. Gibson, and W. H. Frederic. 1965. 34 pp. Contains the quantitative values for phosphorus, chlorine, sodium, and potassium in U.S. coals. The samples tested were taken from commercial shipments and have been selected to represent the principal coal-producing areas of the country. Due to combining the analytical results from two separate surveys, values for the four elements are not available for all samples. (Out of print.)

RI 6580. Recovery of Scandium from Uranium Plant Iron Sludge and From Wolframite Concentrates, by J. R. Ross and C. H. Schack. 1965. 22 pp. 10 figs. Describes techniques for recovering scandium from uranium-plant iron sludges and from wolframite concentrates. The best procedure comprised (1) dissolution with sulfuric acid, (2) preliminary concentration by solvent extraction with a primary alkylamine, (3) further enrichment and purification by a combination of ion exchange, solvent extraction, chemical precipitation, and calcination. Recovery of scandium from these raw materials, which contained 0.058 and 0.14 percent scandium, ranged from 83 to 90 percent in products analyzing 99.6 to 99.9 scandium oxide.

RI 6581. Float Coal Hazard in Mines: A Progress Report, by John Nagy, Donald W. Mitchell, and Edward M. Kawenski. 1965. 15 pp. 10 figs. Gives results of initial research by the Bureau of Mines on the dust-explosion hazard of float coal and on the related factors of occurrence, rate of production, sampling techniques, transport, and deposition of float coal. Tentatively, it is suggested that where float-coal deposits prevail, a minimum of 80 percent incombustible be maintained in the top ¼-inch layer to neutralize the explosion hazard of the surficial coal deposit.

RI 6582. Specific Conductance, pH, Density, and Viscosity of Sodium Aluminate Solutions and Some Properties of the Aluminate Ion, by R. V. Lundquist. 1965. 11 pp. 2 figs. Gives data showing that the specific conructance of solutions of sodium hydroxide and of sodium aluminate was directly proportional to the temperature. The specific conductance of sodium aluminate solutions with identical sodium ion concentration and at constant temperature decreased with increase in aluminum concentration. The aluminate ion population in solution was shown to consist of a mixture of monovalent and polyvalent ions. Aluminate ions did not influence the temperature dependence of pH in causic solutions contain-ing sodium aluminate. The density and viscosity of a solution was inversely proportional to the tem-perature and directly proportional to the concen-trations of sodium and aluminate ions.

RI 6583. Heats of Formation of Lithium Chloride and Lithium Oxalate. Including Details on the Construction and Operation of a Solution Calarimeter, by B. B. Letson and A. R. Taylor, Jr. 1965. 12 pp. 4 figs. Gives heats of formation of lithium chloride and lithium oxalate determined with the aid of a Bureau-developed glass Dewar-type solution calorimeter which uses thermistors as its temperature sensing element. Values obtained at 298.15° K were -93.38 ± 0.54 kcal/mole for lithium chloride and -329.02 ± 0.79 standard state for carbon. Work done in coopera-tion with the University of Alabama.

RI 6584. Reduction of Seepage Losses From Canals by Chemical Sealants (in Two Parts). I. Laboratory Reicol Seclents (in Two Parts). I. Laboratory Re-search on Sodium Carbonate and Other Compounds, by W. W. Agey and B. F. Andrew. 1965. 33 pp. 2 figs. Evaluation of 74 different soluble salts re-vealed that several lithium and sodium salts de-creased by several hundredfold the hydraulic con-ductivity rate of highly porous canal material under both station and dynamic test conditions. Sodium both static and dynamic test conditions. Sodium carbonate was the most effective of the salts on a basis of cost and ability to reduce waterflows.

RI 6585. Dealkylation of Tar Acids From Low-Temperature

Lignie Tar, by John S. Berber and Leslie R. Little, Jr. 1965. 24 pp. 14 figs. Describes the results of a study made to test the effectiveness of 11 commercial catalysts at 700° to 1,000° F in the production of low-boiling phenols from high-boiling tar acids. While all process variables were not fully examined, data obtained indicate the relative effec-tiveness of the catalysts tested and are useful in selecting catalysts for optimization of the dealkylation process.

RI 6586. Distribution of Phenols in Low-Temperature Tar From Low-Rank Coals, by Manuel Gomez, W. S. From Low-Rank Cools, by Manuel Gomez, W. S. Landers, Janet L. Shultz, and A. G. Sharkey, Jr. 1965. 30 pp. 8 figs. Gives carbon number distri-butions that were obtained for tar acid fractions from five low-temperature tars by low-ionizing volt-age mass spectrometry. Quantitative data for phe-nols representing seven structural compound types were examined by statistical analysis. The total concentration of each structural type present was found to depend on the molecular weight and holing found to depend on the molecular weight and boiling point of the initial member of the group. Carbon distribution data for the tar acid fractions studied support the view that low-temperature tars contain the same chemical compounds as the parent coal but in different proportions.

RI 6587. Tin-Lode Investigations, Potato Mountain Area. Saward Paninsula, Alaska, by John J. Mulligan. 1965. 85 pp. 23 figs. Describes lode-tin deposits on Potato Mountain, Seward Peninsula, Alaska. Tin was found to occur as cassiterite associated with quartz, tourmaline, pyrite, arsenopyrite, and earthy clays, but the deposits lack the varied accessory minerals commonly found in tin districts. Sample values ranged as high as 12 percent tin, but the average grade may be about 1 percent tin.

RI 6588. Electrorefining of Titonium-Oxygen Alloys, by Oliver Q. Leone and F. S. Wartman. 1965. 20 pp. 5 figs. Studies the effect of oxygen content in the anode metal on titanium electrorefining characteristics. Increasing quantities of oxygen in the anode resulted in increased anode scale formation, decreased anode and cathode current efficiencies, lower titanium recovery efficiencies, and higher oxygen content of the cathode products. The titanium electrorefining process performed best when the anodes did not contain more than 0.5 percent oxygen, although anode dissolution was recorded for alloys containing up to 25 percent oxygen. Back emf af-fords a useful index of an alloy to electrorefining.

RI 6589. Anionic-Cationic Flotation of Mica Ores From Alabama and North Caroling, by James S. Brown-ing, Frank W. Millsaps, and Paul E. Bennett. 1965. 9 pp. 1 fig. Describes a new anionic-cationic method developed for recovering mica without dealiming or with a minimum of desliming to remove clay materials. In laboratory batch and continuous small-scale flotation tests, concentrates containing 98.1 percent mica were obtained from the Alabama peg-matite ore; the North Carolina pegmatite ore concentrates contained 97.2 percent mica. The recoveries were 83.8 and 81.6 percent, respectively. The process should be applicable to the commercial treatment of mica-bearing pegmatite ores and fine rejects that have been accumulated at various mica-milling oper-ations. Work done in cooperation with the University of Alabama.

RI 6590. Conversion to Metal of Dimolybdenum Carbide Electrosynthesized from Molybdenite, by H. J. Heinen, C. L. Barber, and Don H. Baker, Jr. 1965. 14 pp. 4 figs. Describes a method consisting of two steps: (1) Electrosynthesis of pure dimolybdenum carbide (Mo.C) from molybdenite (MoS.) and (2) carbide (Mo.C) from molybdenite (MoS.) and (2) interaction of Mo.C and molybdic oxide (MoO.) to produce pure molybdenum metal. Two molten-salt systems were satisfactory for electrosynthesizing Mo.C. The first was a mixture of potassium chloride (KCl), potassium fluoride (FK), and sodium meta-silicate (Na₂SiO₂), and the second consisted of sodium fluoride (NaF), potassium fluoride (KF), sodium tetraborate (Na₂B₁O₂), and sodium carbon-ate (Na₂CO₂). Yields up to 0.42 gram of Mo₂ per ampere-hour were obtained. The carbide, mixed with monitored amounts of MoO₂ was converted to with monitored amounts of MoOs, was converted to molybdenum metal of 99.9-percent purity by sintering at 1.500° C.

RI 6597. Effects of Substituting Cabalt for Nickel on the Corresion Resistance of Two Types of Stainless Steel, by M. M. Tilman. 1965. 17 pp. 4 figs. Cobalt substitutes to a maximum 2.2 weight-percent were made in types 302 and 309 austenitic stainless steels. Total-immersion corrosion tests were made in 10 volume-percent hydrochloric acid, and boiling-acid tests were conducted in 65 weight-percent nitric acid and in undiluted glacial acetic acid. For modified type 309 steel in acetic acid, corrosion rates decreased for additions greater than 0.57 weightpercent cobalt. Corrosion rates increased as cobalt was increased up to about 1 weight-percent for modified type 302 steel in nitric and hydrochloric acids and for modified type 309 steel in nitric acid, but these rates decreased with a further increase in cobalt content. A gradual increase in corrosion rates with increasing cobalt content was shown for

type 302 in acetic acid and for type 309 in hydrochloric acid. Cobalt substitutions in larger amounts (above a ratio of 8 Ni to 1 Co) may increase the corrosion resistance of the austenitic stainless steels.

81 6592. High-Temperature Heat Contents and Entropies of Gallium Phosphide, Indium Phosphide, and Indium Suifide, by L. B. Pankratz. 1965. 7 pp. 1 fig. Gives heat content measurements for GaPome and InProve over the temperature range from 298° to 1,100° K, and for In₂S_{2.007} over the range from 298° to 1,200° K. Both the actual experimental data and values adjusted to conform with the stoichiometric compositions (GaP, InP, and In₂S₃) were reported. Entropy increments above 298.15° K were calculated for the stoichiometric compounds, and heat content and heat capacity equations were derived.

RI 6593. Extraction of Aluminum From 2NA₂O·3CaO·5Al₂O₃ in Water and in Solutions of NaOH and Na₂CO₃, by R. V. Lundquist. 1965. 9 pp. 1 fig. About 99-percent extraction of sodium and aluminum from synthesized 2Na₂O·3CaO·5Al₂O₃ was obtained in solutions of NaOH-Na₂CO₃ at leaching temperatures of 50° C and above. Extractions in water were low because insufficient NaOH was generated by hydrolysis. Extractions in NaOH solutions were limited to about 80 percent owing to the precipitation of hydrated calcium aluminates. Rapid extractions, but the subsequent rapid precipitation of alumina trihydrate caused losses in alumina recovery.

RI 6594. The Hafnium-Vanadium System, by D. K. Deardorff, M. I. Copeland, L. L. Oden, and H. Kato. 1965. 11 pp. 4 figs. The hafniumvanadium phase diagram is of eutectic type with one intermetallic compound and a eutectoid reaction. The eutectic, peritectic, and eutectoid points occur at 1,395° C, 20 weight-percent vanadium; at 1,480° C, 36.3 weight-percent vanadium; and at 1,65° C, 6 weight-percent vanadium, respectively. The maximum solubility of vanadium was found to be 8 weight-percent in β-hafnium and 1 weightpercent in α-hafnium. The intermetallic compound has the face-centered cubic structure with α=7.38 A.

RI 6595. Field Testing of the Explosive-Anchored Rockbelt, by Edward W. Parsons and Lars Osen. 1965. 40 pp. 10 figs. Shows that the explosiveanchored rockbolts will produce anchorage superior in holding power to that produced by the expansionshell and wedge bolts when placed in medium to soft and spongy ground and equal to any rocket anchorage obtained in hard rock. The strength of the explosive train and length of the anchor unit required for the explosive-anchored rockbolt to produce suitable anchorage can be determined by pull testing a few tolts installed with different length anchor units. Without additional modification and testing, the explosive-anchored rockbolt should not be used in water-filled downholes.

RI 6596. The Recovery of Manganese From Open-Hearth Slags and Low-Grade Ores by Smelting and Selective Oxidation, by R. C. Buehl, Miles B. Royer, and J. P. Morris. 1965. 33 pp. 9 figs. Slag or ore was smelted in a blast furnace to produce spiegeleisen; the spiegeleisen was then blown with air in a basic converter to give an oxide slag. This slag product contained 60 to 75 percent manganese ore. In blowing the spiegeleisen, a cyclic procedure was developed that gave nearly 90 percent recovery of manganese in the slag product (synthetic ore) yet prevented excessive contamination of the slag by phosphorus and iron. The overall recovery of manganese was about 75 percent when iron ore sinter was used with the open-hearth slag in the smelting step. Work done in cooperation with the American Iron and Steel Institute.

RI 4597. Explosibility of Carbonaceous Ousts, by John Nagy, Henry G. Dorsett, Jr., and Austin R. Cooper. 1965. 30 pp. 5 figs. Dust explosion data obtained in laboratory studies are presented for activated carbon, asphalt, charcoal, carbon black, coal, coke, gilsonite, graphite, lignite, miscellaneous carbons, pitch, tunnel dust, and mixtures of these materials with other ingredients. The explosion hazard is shown to increase as the volatile content of the dusts increases.

RI 6598. Some Generalized Probability Distributions With Special Reference to the Mineral Industries (in Five Parts). 3. Computer Programs of Distribution Moments, by Robert M. Becker. 1965. 79 pp. Presents computer programs for evaluating moments and moment relationships of the generalized probability distributions extended or developed in earlier reports (parts 1 and 2). The principal program was for evaluating the first three moments and moment relationships of the compound-multinomial distribution for finite as well as for infinite populations. This was the generalized distribution for sampling to some amount of items per sample. Another program was for evaluating the first four moments, the moments of the mean, and the moment relationships of the multinomial and generalized hypergeometric distributions. This was a general moment program in sampling to some number of items per sample or for sampling to some number of items per sample or for sampling to some number of asamples. This program accepted either ungrouped data, frequency data, or probability data. Part 1 of this series was published as RI 6329, Sampling to λ Amount of Items per Sample. (Out of print.)

RI 6599. Magnesium Reduction of Rutile, by H. Dolezal, E. C. Perkins, D. E. Kirby, and R. S. Lang. 1965. 12 pp. 2 figs. Reductions made with charges containing magnesium chloride under hydrogen yielded products with oxygen contents close to the theoretical equilibrium composition. Two reduction products made from rutile proved amenable to electrorefining. Work done in cooperation with the General Services Administration.

RI 6600. A Pertable Helium Analyzer, by A. A. Sonnek, J. C. Meeks, Jr., C. L. Klingman, and C. A. Seitz. 1965. 15 pp. 9 figs. Describes a simple helium analyzer developed primarily for field use. The analyzer is based upon chromatographic principles; that is, separation of gas mixtures resulting from variable retention times of the components with respect to a separation medium (column-packing material). It uses thermistors for sensing detectors, a dry battery as source of power, and a microammeter for indicating helium concentration. The instrument requires approximately 15 minutes, after calibration, to determine the helium content of a natural gas sample.

RI 6601. Extraction and Separation of Rare-Earth Elements and Yttrium With Dodecyl Phasphoric Acid-Kerosine

Solvent, by J. G. Eisele and D. J. Bauer. 1965. 16 pp. 9 figs. Solvent-extraction characteristics of dodecyl phosphoric acid (DDPA) were investigated to determine its potential as a fractional or selective extractant in a rare earth-yttrium mixture. DDPA is an effective extractant for splitting rare-earth mixtures into light and heavy subgroups. Yttrium normally extracts with the heavy rare-earth elements but may be shifted toward an extraction sequence with the light rare-earth elements by increasing the pH. Elements in the light and heavy ends of the rare-earth elements by using diethylenetriaminepentaacetic acid (DTPA) as an aqueous phase counterextractant. Hydrogen-ion dependency of the distribution coefficients differs from that reported for similar systems at tracer-level concentrations.

RI 6402. Instrumental Techniques for Rapid Analysis of California Oil Well Scales, by George L. Gates and W. Hodge Caraway. 1965. 10 pp. 3 figs. Describes a rapid instrumental method of analyzing oil well scales containing primarily barium sulfate. After removal of oil and water by carbon disulfide, the scale was dissolved in strong hydrochloric acid. The cations, barium, calcium, strontium, magnesium, and iron, were determined with the flame photometer using the method of additions. Sulfate was determined colorimetrically after separation by selective adsorption on an alumina column. Phosphate was determined colorimetrically and carbonate titrimetrically.

RI 6603. Oil Recovery From 17 Water-Injection Projects in Clay, Jack, Montague, and Wise Counties, Tex., by Frank Parrish, Jr., and Paul Meadows. 1965. 101 pp. 56 figs. Describes projects producing from Pennsylvanian- and Permian-age reservoirs. Increased oil recovery resulted from injecting water in most cases; however, seven projects recovered less oil than the operators anticipated. Oil recovery by water injection ranged from 0.2 to 262 barrels per acre-foot, or 0.1 to 22.5 percent of the initial stock-tank oil in place. Major reasons suggested for poor performance include (1) adverse directional horizontal permeability, (2) channeling of injected water through fractures or zones of high permeability, and (3) lack of containment of injected water. One 330-foot-deep project is among the first successful shallow waterfloods in North Texas. Another project is the first successful Canyon sandstone waterflood reported in the area. Previous gas injection in two Cisco sandstone projects did not prevent the reservoirs from responding favorably to waterflooding. Work done in cooperation with the North Texas Oil and Gas Association.

RI 6604. Thermal Conductivity of Rock: Measurement by the Transient Line Service Method, by Robert L. Marovelli and Karl F. Veith. 1965. 19 pp. 11 figs. The thermal conductivities of six rocks were measured by the transient line source method over the temperature range of -85° to 1,500° F. Closefitting ceramic probes were used in 0.065-inchdiameter holes drilled through 5- to 6-inch-thick rock specimens. Taconite, granite, quartzite, and basalt were used in the tests. The method yields absolute data and is applicable to both laboratory and in situ measurements.

RI 6605. Destroying the Caking Quality of Bituminous Coal by Thermal and Oxidative Treatment in a Fixed Bed on a Pilot Plant Scale, by S. J. Gasior, A. J. Forney, and J. H. Field. 1965. 18 pp. 9 figs. Coal was treated in a fixed bed by heating through its plastic range under controlled temperatures in mildly oxidative atmospheres composed of inert gas and/or steam containing about 1 volume-percent oxygen. High-volatile A and B and low-volatile bituminous coals in the size range $\frac{1}{12}$ to $\frac{1}{2}$ inches were successfully treated at 0 (atmospheric pressure) to 300 psig in static beds 6 to 18 inches deep. Conditions of treatment ranged from 80 to 200 minutes at 350° to 510° C. Char produced in this manner from hvab coal was gasified with steam at 800° C and 100 psig in a fixed bed in one series of tests and in other tests was exposed to hydrogen in a dilute cocurrent free-falling-bed system at 750° C and 3,000 psig without agglomerating.

RI 4606. Performance Characteristics of Coal-Washing Equipment: Sand Cones, by Albert W. Deurbrouck and John Hudy, Jr. 1965. 26 pp. 6 figs. The performance of sand cones was evaluated in three preparation plants that utilized cones in various flow schemes. Three primary separations of raw coal effected between floats and sinks were excellent. The recovery efficiencies for the plus ¼-inch material ranged from 99.8 to 97.6 percent, the error areas ranged from 19 to 23 square centimeters, and the probable errors in specific gravity ranged from 0.033 to 0.024. The performance data of two secondary separations varied from excellent in one plant, where the separation was on a par with the primary separations, to somewhat inferior in another plant, where the secondary separation was effected at the middlings draw.

RI 6607. Heot Content and Specific Heat of Cools and Related Products, by Manuel Gomez, John B. Gayle, and Arthur R. Taylor, Jr. 1965. 45 pp. 23 figs. The heat contents of thermally dried lignite, subbituminous B coal, and their corresponding lowtemperature chars were determined at various temperatures below the highest temperature to which these materials had been exposed before testing. Similar studies were made on high-temperature char and coke, spent shale, and ash prepared from both coal and spent shale. Heat content of the carbonaceous materials tested correlated well with temperature. Heat content results for spent shale compared well with the published results. Statistical analysis of experimental data together with published information showed moisture, volatile matter, carbon content, and temperature to be the principal variables influencing the specific heat of coal. The specific heat of devolatilized carbonaceous substances, char and coke, approached that of graphite as the carbonization temperature was increased. The elemental specific heats of coal constituents, estimated from the ultimate analysis and the specific heat of coal, compared favorably with published elemental specific heats. Work done in cooperation with the University of Alabama.

 RI 6608. Entrained-Bed Carbonization of Bituminous Cael; Tests on an Australian Coal, by W. S. Landers,
 E. O. Wagner, Manuel Gomez, Charles C. Boley, and
 J. B. Goodman. 1965. 51 pp. 23 figs. Describes

J. B. Goodman. 1965. 51 pp. 23 figs. Describes continuous, entrained-bed carbonization of an Australian bituminous coal containing 5.5 percent moisture and 12.6 percent ash in an 8-inch-diameter reactor at 960° to 1,300° F and at air-to-coal ratios of 6.74 to 13.16 standard cubic foot per pound of moisture- and ash-free coal charged. Carbonization rates from 138 to 287 pounds per hour (as-carbonized basis) were achieved without prior oxidation of the coal or char recirculation. Yields of char ranged from 60.2 to 68.5 percent of coal charged (as-carbonized basis), and yields of tar plus light oil ranged from 11.3 to 16.1 percent of coal charged (as-carbonized basis). Volatile matter in the char produced ranged from 8.7 to 17.9 percent. Work done in cooperation with the Joint Coal Board, New South Wales, Australia.

RI 6609. Recent Catalyst Developments in the Hot-Gas-Recycle Process, by A. J. Forney, R. J. Demski, D. Bienstock, and J. H. Field. 1965. 32 pp. 11 figs. Previous work has shown that a gas with a heating value of more than 900 Btu per cubic foot and a carbon monoxide content of 0.1 percent or less can be synthesized from hydrogen and carbon monoxide using two reactors, the first containing steel lathe turnings and the second granular Raney nickel. When in the present work assemblies of solid Raney nickel plates or plates sprayed with nickel oxide were used in the second reactor, a gas was synthesized with a heating value of 925 to 943 Btu per cubic foot, and a carbon monoxide content of 0.8 to 1.8 percent. Pressure drop was reduced 90 percent in the second stage with the plate assemblies as compared with Raney nickel granules. When catalysts of these assemblies were used in the first reactor in single-stage operation, the heating value of the product gas ranged between 856 and 941 Btu per cubic foot, and the carbon monoxide concentration was between 0.3 and 4.3 percent. The best gas, 941 Btu per cubic foot and 0.3 percent carbon monoxide, was produced with solid Raney nickel plates operating at 300 psig, 1,252 hourly space velocity, and 300° to 360° C.

Rt 6610. Hydraulic Mining of Anthracite: Engineering Development Studies, by John W. Buch. 1965. 24 pp. 11 figs. Water pressure and quantity for mining Pennsylvania anthracite were arbitrarily established at 5,000 psi and 300 gpm (1,000 hp). For full-volume flow, hydraulic pressure was controlled by orifice size with the displacement pump. The hydraulic jumbo was designed for maneuvering on pitches from 0° to 20° in any direction and for a coalbed ranging in thickness from 10 feet, 6 inches, to 15 feet. All motions of the jumbo were by oil hydraulics. Jet flow was controlled at the face through an interlocked pushbutton system. From August 1961 to December 1963, 12,765 tons of bed material had been mined at an average mining-out rate of 0.821 ton per minute for chamber mining, with an average power requirement of 13.2 kilowatthours per ton. Work done in cooperation with the Glen Alden Coal Co. (Out of print.)

RI 6611. An Evaluation of the Western Phosphate Industry

and its Resources (in Five Parts), 2. Montana, by C. C. Popoff and A. L. Service. 1965. 146 pp. 62 figs. Reviews the phosphate deposits, mines, industry, and prospects in 10 districts covering most of the State's phosphate fields. Phosphate rock produced from underground mines in the Garrison district is shipped to Canada for processing to fertilizers, utilized locally for production of animal feed supplement, and pulverized and sold for direct application to the soil. Production from the Melrose district is shipped to Silver Bow and processed to elemental phosphorus. The Maxville-Philipsburg district is destined to become a major producer with the development of the Douglas Creek mine and beneficiation plant by Montana Phosphate Products Co. Montana ranks fourth in total annual production in the United States. Production has increased from about 60,000 long tons of acid-grade phosphate rock in 1940 to more than 660,000 tons of acid-, beneficiation-, and furnace-grade ore in 1961. Montana has the second largest potential resources in the Western field.

RI 6612. Extraction of Tungston From Ore Concentrates by Chloringtion, by A. W. Henderson, S. C. Rhoads, and R. R. Brown. 1965. 22 pp. 11 figs. Shows than tungston can be extracted from scheelite by chloringtion in the presence of carbon on a laboratory scale, but that operation of a large-scale chloringtor based on this reaction may be troublesome. Optimum recovery occurs at 500° C.

Ri 6613. Lood Relations in Preloaded Rockbolt Testing, by Lars Osen, J. L. Habberstad, E. W. Parsons, and E. R. Rodriguez. 1965. 24 pp. 17 figs. Shows that preload, the size, shape, and type of bearing plate, and the geometry of the system determine the point at which bolt load and applied load become equal. The effects on bolt load of both a theoretical solution and actual pull tests were analogous and led to similar results.

RI 6614. Lightweight Aggregates. Expansion Properties of Selected Illinois Shales and Clays, by John W. Sweeney and Howard P. Hamlin. 1965. 34 pp. 8 figs. Lightweight aggregates were produced from 16 Illinois shale samples by rotary-kiln processing under conditions which simulate those of a commercial operation. Of these 16 materials, 8 could not be considered as potential source materials for production of lightweight aggregate by commercial rotarykiln processing because of a narrow expansiontemperature range, which would cause processing difficulties. The remaining shales had good processing characteristics and produced good-to-excellent lightweight aggregates. The compressive strengthunit weight values of the concrete made from these aggregates all met ASTM specifications.

RI 6615. Carbonizing Properties of Coals From Wyoming and Mercer Counties, W. Va., by G. W. Birge, D. E. Wolfson, J. E. Wilson, and J. H. Lynch, Jr. 1965. 21 pp. 3 figs. The coals were mostly strongly coking and low in ash and sulfur content. Dry, mineral-matter-free fixed-carbon content of the Wyoming County coals ranged from 63.0 to 83.4 percent. The Mercer County samples were all low volatile in rank. Yields of carbonization products were generally in accord with yields from similar rank coals of the Appalachian region. Because of their expanding tendencies, most of the medium- and low-volatile coals would require blending with lower rank coal for normal coke production. Fifteen coal samples from Wyoming County represented the Winifrede, Chilton, Alma, No. 2 Gas, Powellton, Eagle, Douglas, Sewell, Beckley, Pocahontas No. 4, and Pocahontas No. 3 beds, and five samples from Mercer County represented the Fire Creek, Pocahontas No. 3, and Pocahontas No. 6 beds.

RI 6616. Crystallographic Modifications and Phase Transformation Rates of Five Rare-Earth Sesquioxides. Lanthanum Oxide, Noodymium Oxide, Samarium Oxide, Europium Oxide, and Gadolinium Oxide, by Stephan Stecura. 1965. 44 pp. 13 figs. Crystallographic modifications and kinetics of solid-state phase transformations were determined for five rare-earth sesquioxides—La₂O₃, Nd₂O₃, Sm₂O₃, Eu₂O₃, and Gd₂O₃. Oxides used for crystal modification studies were prepared by thermal decomposition of the following highpurity salts of the five rare-earth elements—carbonates, chlorides, fluorides, nitrates, oxalates, and sulfates. X-ray diffraction patterns of the cubic and hexagonal oxides were indexed by a graphical method and patterns of the monoclinic oxides by Itho's method. RI 6617. Heets of Fermation of Anhydrous Sulfates of Cadmium, Cobelt, Copper, Nickel, and Zinc, by L. H. Adami and E. G. King. 1965. 10 pp. The heats of formation determined by hydrochloric acid solution calorimetry, at 298.15° K, for formation from the metal, rhombic sulfur, and oxygen gas were as follows (cal/mole): CdSO₄, -222.0 ±0.3; CoSO₄, -212.0 ±0.4; CuSO₄, -183.4 ±0.6; NiSO₄, -208.1 ±0.2; and ZnSO₄, -233.1 ±0.2. Corresponding heats of decomposition to form the metal oxide, sulfur dioxide, and oxygen were derived from these results; heats of decomposition to form the metal oxide and sulfur trioxide were also derived.

RI 6618. Heats of Formation of Goethite, Ferrous Vanadate, and Manganese Molybdate, by R. Barany. 1965. 10 pp. Gives the heats of formation at 298.15° K by solution calorimetry. For formation from the elements, the heat values were --133.7 ±0.3 kcal/mole for goethite, --453.8 ±0.5 kcal/mole for ferrous vanadate, and --284.8 ±0.2 kcal/mole for manganese molybdate. For formation from the oxides, the heat values were --0.9 ±0.1 kcal/mole for goethite, --19.4 ±0.3 kcal//mole for ferrous vanadate, and --14.6 ±0.1 kcal/mole for manganese molybdate.

RI 6619. Mechanism of the Monoclinic to Tetragonal Tranformation of Zirconium Dioxide, by Clark F. Grain and Ronald C. Garvie. 1965. 19 pp. 9 figs. The monoclinic to tetragonal inversion of zirconium dioxide was studied by single-crystal X-ray methods, high-temperature X-ray diffractometry, and differential thermal analysis. The unusual features of the inversion, such as no definite transition temperature, hysteresis, and athermal kinetics, were confirmed for powders whose mean crystallite size was greater than 1.000 A. Samples of mean crystallite size below 1.000 A displayed classical kinetics, obeying a logarithmic rate law. A detailed mechanism based on Ubbelohde's theory of continuous phase transformations was proposed which is consistent with all the experimental facts.

RI 6620. Laboratory Investigation of the Effect of Oxidation on Coal Floration, by J. B. Gayle, W. H. Eddy, and R. Q. Shotts. 1965. 22 pp. 11 figs. Effect of air oxidation on the recovery of float coal was studied. Both batch- and continuous-type tests were made on six bituminous coals, representing the range in rank of coals now commercially used for carbonization, and on one anthracite coal. The effects on flotation recovery of oxidation at 100° C for periods up to 50 days were investigated using an alcoholtype frother and a kerosine-pine oil reagent. Float coal recovery was adversely affected by oxidation in all tests where the alcohol-type frother was used. Conversely, a small degree of oxidation improved recovery with kerosine-pine oil frother for some of the coals in continuous tests. Prolonged oxidation (beyond about 14 days) adversely affected float coal recovery for all coals, the effect being more pronounced for batch-type tests and for tests using alcohol-type frother. Work done in cooperation with the University of Alabama.

Ri 6621. Applicability of Gas Chromatographic Analysis in Thermal Oil-Recovery Tests, by T. E. Sterner. 1965. 17 pp. 13 figs. Investigates the use of a chromatographic gas analyzer in determining the concentration of combustion products in gas produced during field and laboratory thermal oil-recovery tests. Carrier-gas flow, cell current, sample size, and temperature were studied using a commercially available dual-column, dual-detector chromatographic gas analyzer which had been modified to provide close control of these variables. The apparatus made possible a much closer control of air- and gasinjection rates and provided adequate data for performing material-balance calculations and for determining oxygen utilization during the laboratory and field combustion tests. The chromatographic analysis also aided materially in evaluating and measuring bypassing and gas travel times and in detecting high-permeability zones that were present in the reservoir. .

Ri 6622. Analyses of Tipple and Delivered Samples of Coat Collected During the Fiscal Year 1964, by S. J. Aresco, J. B. Janus, and F. E. Walker. 1965. 38 pp. Presents results of analyses of 7,112 samples collected in connection with Government coal purchases. Heating value and proximate and ultimate analyses are given for all the samples; ash-softening temperature, free-swelling index, and Hardgrove grindability index are also shown for many samples.

RI 6623. Amenability of Coals from the Roslyn-Cle Elum (Washington) Field to the Production of High-Ath Boiler Fuel, by M. R. Geer. 1965. 16 pp. Samples of coal from six beds—Nos. 1, 2, 5, 6, 7, and 8—in the Roslyn-Cle Elum field of Washington were subjected to float-and-sink tests to determine their amenability to the production of high-ash boiler fuel for on-site power generation. Grindability tests and analyses of ash were made. All of the coals would require some degree of cleaning to insure a product of 25 percent ash. With two of the coals the entire size range would have to be washed. With the other four, it would suffice to clean only the coarse coal and bypass the raw fines. Work done in cooperation with the School of Mineral Engineering. University of Washington.

RI 6624. Electrorefining Uranium in a Chloride Electrolyte. by R. E. Campbell and T. A. Sullivan. 1965. 14 pp. 3 figs. Uranium metal of improved purity was prepared by electrorefining commercial magnesium-reduced uranium in a molten sodium chloride-uranium trichloride electrolyte. The best operating conditions for the preparation of refined metal was established as follows: An electrolyte containing 8.7 to 13.3 weight-percent uranium, initial cathode current densities from 300 to 1,500 amperes per square foot, and a molten-salt temperature of 860° C. Work done in cooperation with Lawrence Radiation Laboratory, University of California.

RI 6625. Steam-Fluidized Low-Temperature Carbonization of High Splint Bed Cool and Thermal Cracking of the Tor Vapors in a Fluidized Bed, by B. W. Naugle, C. Ortuglio, L. Mafrica, and D. E. Wolfson. 1965. 22 pp. 11 figs. Investigates the changes that occur in decomposition products when coal is carbonized in a fluidized bed with steam as the fluidizing medium and the vapors are subsequently cracked without condensation in a fluidized bed of high-temperature coke. The coal used was from the High Splint bed, High Splint mine, Harlan, Ky. Since this coal is agglomerating, it was blended with char. The integrated unit used consisted of a fluidized coal carbonizer, operated at 485° C, a cracker operated at 600°, 700°, and 800° C, and gas-cleaning and product-recovery systems. The process variables investigated were temperature, residence time, and con-centration of tar vapors in the cracker. The total tar yields decreased as the temperature of the cracker increased, and at a constant cracker temperature of 600° C, the yield of paraffins, acids, aromatics, and olefins in the distillate increased directly with the tar vapor concentration in the cracker. At 700° and 800° C, only the acids and aromatics increased with increased concentration. Bases remained essentially constant regardless of the temperature and concentration. Similar results were obtained when the tar from the carbonizer was condensed prior to feeding to the cracker.

Ri 6626. Use of Pelyester-Type Resin To Stabilize Fractured Rock: A Progress Report, by Richard H. Oitto, Jr. 1965. 16 pp. 13 figs. A polyester-type resin and deformed-steel reinforcing bars (rebars) were used in combination to strengthen and to stabilize bolted, fractured wall rock along passageways in a western gold mine. Reinforcing bars were placed in boreholes drilled into fractured rock and then were surrounded by resin pumped under pressure into the holes and intersecting fractures until the wall rock was thoroughly impregnated. Pumping and injection equipment and infusion procedures are described. Results suggest that resin-rebar support can be used advantageously and economically in repairing fractured or broken rock when compared with rock bolting or timbering.

RI 6627. Some Generalized Probability Distributions With Special Reference to the Minoral Industries (in Five Parts). 4. Experimental Confirmation, by Robert M. Becker. 1965. 57 pp. 11 figs. Particle mixtures were sampled in the laboratory, using ordinary sampling procedures, to determine whether or not the compound-multionomial probability distribution and other developments of part 2 agreed with experimental results. The objective was accomplished by comparing the moments and moment relationships of the appropriate probability models with their corresponding experimental values over a fairly wide range. The overall agreement between the corresponding theoretical and experimental values was both good and complete. Results demonstrate that sampling to a constant amount, such as weight, of items per sample is not the same, in general, as sample. Results seem to confirm all the developments of part 2 and the application of the compoundmultinomial function to bulk sampling. Part 1 was published as RI 6529; part 2, as RI 6552; and part 3, as RI 6598. (Out of print.)

RI 6628. Properties of Vanadium-Carbon Alloys, by D. R. Mathews and E. A. Rowe. 1965. 14 pp.

The solubility of carbon in electrorefined 8 figs. vanadium was determined to be approximately 0.27 weight-percent at the eutectic temperature of 1,650° C and 0.03 weight-percent at 700° C. The tensile strength and hardness of vanadium increased with carbon content to the solubility limit, but this effect was small, probably because of the narrow solubility range. Between the solubility limit and 0.3 weightpercent carbon, the second phase had essentially no strengthening effect in vanadium. The second phase contained high-carbon concentrations and was identified as V_2C by X-ray analysis. The V_2C in the grain boundaries contributed largely to the poor cold-and-hot workability of vanadium-carbon alloys. The average coefficient of thermal expansion increased slightly with increased carbon content up to the solubility limit and then remained constant for higher carbon contents. The room-temperature electrical resistivity of vanadium did not vary with carbon content within the composition range studied. RI 6629. Exchangeability of Synthetic Gases From Solid Fuels with Pipeline Natural Gas, by Joseph Grumer and Margaret E. Harris. 1965. 15 pp. 4 figs. The range of composition of gases synthesized from solid fuels which are exchangeable with natural gas on current gas appliances was evaluated by theoretical principles. The principles consider primarily the flashback, blowoff, and yellow-tipping characteristics of air-entraining burner flames. It was found that complete identity between the synthetic and natural product is not necessary. Gases such as may be obtained by hydrogasification of coal and other solid fuels without the removal of unreacted hydrogen offer advantages in flame characteristics. Between 25 to 37 percent hydrogen can be tolerated in the sendout gas.

RI 6630. Infrared Spectra of 27 Compounds in the Regions 15-35 and 15-200 Microns, by G. A. Crowder and D. W. Scott. 1965. 37 pp. 28 figs. Far infrared spectra, most of them in the region of 15 to 200 microns and for both the liquid or solution state and for the vapor state, were obtained for 27 compounds. Work done in cooperation with the American Petroleum Institute and the Advanced Research Projects Agency.

RI 6631. Electrorefining Vonadium in a Molten Bromide Electrolyte, by T. A. Sullivan and F. R. Cattoir. 1965. 12 pp. 4 figs. Vanadium metal of about 99.95 percent vanadium was prepared by electro-refining commercial vanadium in a molten sodium bromide, potassium bromide, and vanadium dibromide electrolyte. Variables investigated were operating temperature, current densities, electrolyte composition, and condition of the anode. Iron and oxygen in the 50- to 250-ppm range were the only major impurities. Metal with hardness numbers of 50 to 60 in the Rockwell F scale was prepared from feed material with a Rockwell B hardness of 90. The arc-melted metal was highly ductile and could be cold worked into sheet or foil.

RI 6632. Spectrochemical Analysis of Tungsten, by R. C. Gabler, Jr., and M. J. Peterson. 1965. 40 pp. 5 figs. Methods for the direct spectrochemical determination of impurities at the parts-per-million level in tungsten metal and oxide are presented. Numerous modifications were made in establishing procedures with improved precision and extended lower levels of determinability. A germanium carrier-distillation procedure is applicable to the determination of 13 elements in tungsten powder, a silver chloride carrier-distillation procedure provides for the determination of 24 elements in tungstic oxide, and a sustaining ac arc method is applicable to 26 elements in tungstic oxide. The investigations were undertaken to develop direct spectrochemical methods with increased accuracy and precision to determine impurities in high-purity tungsten and tungstic oxide, and to define the lower concentration levels of detectability and measurement for common impurities in tungsten by direct spectrographic means.

RI 6633. Purification, Purity Estimation, and Spectra of Some Organic Derivatives of Fluorine, Silicon, Boran, and Aluminum, by T. C. Davis and J. C. Morris. 1965. 34
pp. 12 figs. Nine organic derivatives of fluorine, silicon, boron, and aluminum were purified for thermodynamic studies using distillation, zone melting, and gas-liquid chromatography. The unusual properties of these compounds required the development of special techniques for handling and purification. To determine purities of purified samples, new techniques for analyzing spectral data were developed. Work done in cooperation with the Advanced Research Projects Agency and the Air Force Office of Scientific Research, U.S. Department of Defense, under Contract CSO 59-9, ARPA Order 24-59, Task 3, and the University of Wyoming.

RI 6634. Design of Drill-Hels Grid Spacings for Evaluating Low-Grade Copper Deposits, by Richard F. Hewlett. 1965. 46 pp. 29 figs. Describes how a limited number of preliminary exploration drillhole assays from a mineral deposit can be used to design grid spacing that is both economical and efficient for subsequent evaluation drilling of that deposit. Relationships between desired precision of the estimate of grade of ore and drilling cost are used to determine the economic drill-hole spacing. The statistical concept of precision in estimating grade of ore is used to determine the efficient drillhole spacing. Assay data from approximately 50 known copper deposits were studied, and the relationships of the estimates of grade of ore were computed. Drilling requirements for various precisions of the estimates of grade of ore were as guides for drilling future copper deposits. The effect of various geologic factors on the trend in grade of ore and, therefore, on the drilling requirements is shown for certain deposits. Work done in cooperation with the Bear Creek Mining Co. and the College of Mines, University of Arizona.

RI 6635. Extraction of Tantalum and Columbium From Orea and Concentrates by Chloringtion, by S. L. May and G. T. Engel. 1965. 8 pp. Shows that direct chloringtion of high-grade minerals in the presence of carbon at temperatures between 500° and 800° C will extract up to 99 percent of the tantalum and columbium. Metallurgical beneficiation of low-grade source materials by carbothermic reduction produces a ferroalloy that is amenable to chloringtion at a temperature of 500° C. Over 90 percent of the tantalum and columbium can be recovered.

RI 6636. Stainless Steel-Gadolinium Alloys, by M. Copeland, W. Barstow, C. Armantrout, and H. Kato. 1965. 29 pp. 14 figs. Phase relations of gadolinium alloyed, up to 40 weight-percent, with AISI 304-type stainless steel were established. Bodyand face-centered cubic iron-rich solid solution phases and several intermetallic gadolinium-containing compounds of variable composition that approx-imated the formulas Fe₃Gd, Ni₃Gd₂, Ni₃Gd, Fe₃Gd, NiGd, and NiGd₃ were identified. Body-centered cubic iron solid solution was stable from 1 to 2 weight-percent gadolinium to higher contents, 30 weight-percent gadolinium to higher contents, 30 weight-percent gadolinium or possibly more, and face-centered cubic iron, up to 12 weight-percent gadolinium below 1,200° C. The stability of these phases above 1,200° C was not resolved except for the melting points. A limited number of fabrication variables on well as mathematical and except for variables as well as mechanical and corrosion properties of alloys containing up to 5 weight-percent gadolinium were studied. Equilibrating and forming operations were best conducted at about 940° to 1,080° C. Some variability in the yield and tensile strengths of alloys was noted; however, there was a continual decrease in ductility and impact resistance with increasing gadolinium content. The resistance of gadolinium alloys to corrosion in water at 354° C was about the same as stainless steel. Work done under an agreement with the U.S. Atomic Energy Commission under Contract AT (11-1)-59.

RI 6637. Effects of interstitial impurities on the Mechanical Properties of Electrorefined Vanadium at Low Temperatures, by D. R. Mathews, G. H. Keith, and E. A. Loria. 1965. 23 pp. 16 figs. Electrorefined vanadium has yield strength and hardness values of about 18,500 psi and 63 DPH at 273° K. Carbon, oxygen, and nitrogen are effective strengtheners of vanadium. Nitrogen is the most potent strengthener, being approximately 1½ times more effective than carbon or oxygen. The ductile-brittle transition temperature of electrorefined vanadium was raised by at least 50° by 0.1 percent nitrogen or 0.175 percent oxygen. Electrorefined vanadium twinned profusely during tensile testing at 77° K. Twinning was completely suppressed by oxygen and nitrogen contents of 0.15 and 0.086 percent, respectively. Carbon, present as a second phase, had little effect on twinning.

RI 6638. Thermoelectric Properties of Depleted Uranium Selenides and Tellurides, by Lindsay D. Norman, Jr. 1965. 18 pp. 9 figs. The depleted uranium selenides and tellurides were semimetallic conductors exhibiting low Scebeck coefficients and electrical resistivities. Partial or complete degeneracy was in evidence, indicating a charge carrier energy distribution similar to that in a metal. Doping increased the Seebeck coefficients of the uranium monoselenides and monotellurides; however, the corresponding change in the power factor in the figure of merit was small because of the increase in electrical resistivity.

RI 6639. Calculation of Adsorption Energy, by Foster Fraas. 1965. 14 pp. 6 figs. The Bureau of Mines investigated a method for calculating values of adsorption energy. The goal was to devise an equation consistent with experimental data accumulated in the investigation of adsorption as related to ore separation processes. Numerical identification of the constants of a previously formulated equation provided an equation by which values of adsorption energy could be calculated. Values thus calculated checked with those obtained by calorimetric measurement. (Out of print.)

RI 6640. Heat of Formation of Europium Sesquioxide and Europium Trichloride, by J. M. Stuve. 1965. 9 pp. Provisional values for the heat of formation of europium trichloride and europium sequioxide were determined by solution calorimetry utilizing europium metal of more than 99-percent purity. The resulting values for the heats of formation of Eu₂O₈ (cubic) and EuCl₈ (hexagonal) were --386,970 ±1,200 cal/mole and --218,740 ±650 cal/mole, respectively, measured at 298.15° K.

RI 6641. Methods of Analyzing Oilfield Woters: Cesium and Rubidium, by A. Gene Collins. 1965. 18 pp. 3 figs. Describes a method for the detection of less than 0.01 milligram per liter of cesium and/or rubidium in a complex oilfield brine or water. Nitroethane was used for the extraction and flame spectrophometric determinations because it gave the highest sensitivity. Cesium-137 and rubidium-B6 were used to determine the extraction efficiencies, which were about 87 percent and 58 percent, respectively, using a single 10-milliliter nitroethane extraction from a distilled water matrix. The standard deviation of the determination was 0.0008 milligram for cesium and 0.0007 milligram for rubidium in the 0.01-milligram range. (Out of print.)

Ri 6642. Internal Friction as a Function of Orientation in Magnesium Single Crystals, by R. R. Nothdurft and A. E. Schwaneke. 1965. 18 pp. 10 figs. The internal friction of eight single crystals of mag-nesium with orientation ranging from 10° to 84° was measured at 33.5 kilocycles and 272° C, and the results were interpreted in terms of the pinned-dislocation model proposed by Granato and Lücke. Results show that the strain-amplitude-dependent decrement varies with orientation in a manner pre-dictable by the G-L model. Different values of strain-amplitude-independent decrement were observed at different orientation angles, but correla-tion with the theory was not conclusive. Problems and steps for further study are discussed. Work done in cooperation with the University of Missouri at Rolla, Mo.

RI 6643. Thermal Decompositions of Siderite and Consequen-tial Reactions, by H. E. Powell. 1965. 18 pp. 29 figs. Records basic data on the decompositions that take place during thermal decomposition of siderite ($FeCO_3$). Naturally occurring and a synthetically prepared mineral were studied by differential thermal, thermogravimetric, X-ray diffrac-tion, and chemical (including gas) analyses. Ther-mal decomposition was studied in the media of dry air, moist air, dry carbon dioxide, dry helium, and dry carbon monoxide and at atmospheric and reduced pressures. Results showed the thermal decomposition of FeCOs to be an extremely complex process, dependent on environmental factors and side reactions that cannot be completely controlled. Full understanding of the reaction involved must depend on additional research with advanced evaluation techniques.

RI 6644. Sulfatization of Nickeliferous Laterites, by F. E. Joyce, Jr. 1965. 16 pp. 3 figs. Describes sulfatization of nickeliferous laterites from Puerto Rico and the Philippines for recovery of water-soluble nickel and cobalt sulfates. Temperatures ranging from 665° C to 710° C and a 10 percent suffur dioxide-air reaction gas were employed during batch-roasting tests and during continuous counter-current treatment in a 2-inch-diameter shaft furnace. A maximum of 69 percent of the nickel and 76 percent of the cobalt was recovered from one sample of Puerto Rican laterite, and a maximum of 96 percent of the nickel and 91 percent of the cobalt was recovered from the Philippine laterite.

RI 6645. Statistical Analysis of Gamma-Ray Log Sample Data From a Uranium Deposit, Ambrosia Lake Area, McKinley County, N. Mex., by George R. Schottler. 1965. 49 pp. 20 figs. The objective was to find the ex-49 pp. 20 ngs. The objective was to find the ex-tent of the range of applicability of previously de-veloped statistical methods for determining grade and tonnage of ore to bedded uranium deposits. Uranium assays obtained from gamma-ray logs of exploratory drill holes were used to compute grade and tonnage of ore in the deposit by a standard polygonal method and by statistical analysis. The results obtained by the two methods are compared. The uranium-assay frequency distributions are shown to be lognormal and a simple transformation permits the use of standard normal curve statistics. The effects on the assay frequency distributions of stratified sampling, a required minimum mining thickness, and increased assay-interval length are investigated.

RI 6646. Evaluation of a Penstrameter for Estimating Roof-Bolt Anchorage, by Juel H. Stears. 1965. 23

pp. 10 figs. Research was done to determine if a hydraulically operated penetrometer developed by the Bureau of Mines could be used to estimate the roof-bolt anchorage capacity of mine-roof rock. Tests

were conducted both in the laboratory using cement cylinders and underground in shale rock. Hardness readings were measured by the penetrometer around the periphery of the bolt holes at the anchorage horizon. Roof bolts were then installed and sub-jected to an anchorage test. The results showed that the penetrometer readings could be used to determine the optimum stratum for roof-bolt anchorage but could not be used to make an accurate estimate of the anchorage capacity. (Out of print.)

RI 6647. Removing Copper From Copper-Clad Steel by Oxi-dation, by R. J. Leary. 1965. 12 pp. 4 figs. Oxidation testing of copper-clad steel strip was performed in a muffle furnace to determine whether copper in contact with steel scrap could be removed by oxidation in an airstream at high tem-peratures. Substantially all of the copper was oxidized before any significant iron oxidation occurred. The rate of copper oxidation was not affected by contact with iron. Copper oxide scale separated spontaneously from the underlying metal during cooling. Results indicate the possibility of removing light-gage copper coatings and components from ferrous scrap by oxidation in an incineration process.

RI 6648. A Computer Program for Electron Probe Microanal-ysis, by James D. Brown. 1965. 28 pp. The Bureau of Mines has written a computer pro-gram in FORTRAN to facilitate the calculation of concentrations from X-ray intensities in electron-probe microanalysis. Philibert's adsorption and Castaing's secondary fluorescence corrections are used: no stormic number of the build. used; no atomic number correction is included. Background and dead time corrections are applied to the data before calculating the relative intensities. Data from any type of electron-probe microanalyzer can be used with the program. (Out of print.)

RI 6649. A Study of the Chlorination Kinetics of Germanium, Silicon, Iron, Tungsten, Melybdenum, Columbium, and Tantalum, by Arne Landsberg and Frank E. Block. 1965. 26 pp. 12 figs. Gives results of a study of the chlorination kinetics of germanium, silicon, iron, trungsten, molybdenum, columbium, and tantalum to determine the effects of temperature, chlorine concentration, geometric surface area, and gamma radiation. The reaction products were volatile at the temperatures used, thus making it possible to follow the reaction rates by weight loss of the solid. Chlo-rination rates of germanium, silicon, and iron were found to be directly proportional to chlorine concen-tration while the rate for tungsten, molybdenum, columbium, and tantalum were proportional to the 0.5 to 0.6 power of chlorine concentration. A good correlation of reaction rate and geometric surface areas was not obtained because the true surface area of the samples could not be measured. Intense gamma radiation had no effect on reaction rates. The Arrhenius activation energies were determined over the temperatures used.

RI 6650. Lake Superior Iron Resources. Preliminary Sampling Nonmagnetic Taconites, by L. F. Heising and D. W. Frommer. 1965, 28 pp. 7 figs. The Bureau of Mines evaluated 191 composites from the central Mesabi range, Minn., chiefly by reductive roasting and magnetic separation. After reductive roasting and magnetic separation at minus 325 mesh, 28 composites produced concentrates that contained an average of 66.0 percent iron with less than 10 percent silica. Recovery of contained iron was over 90 percent. Natural magnetic material in excess of 5 percent was present in 142 composites. Trial flotation tests were used to evaluate three samples unresponsive to reductive roasting and magnetic separation procedures, and satisfactory concentrates having low silica contents (averaging 6.6 percent) were achieved.

RI 6651. Devitrification of Vacuum-Metted Gizzes of the Lithium Metasilicate-Silica Compositional Series, by Jack I. Paige, Henry W. Harris, and Hal J. Kelly. 1965. 15 pp. 11 figs. The devitrification of lithium silicate glasses was studied to determine the effect of annealing temperature, composition, and additives on nucleation and crystallization. Highpurity glasses, prepared from reagent-grade chemicals, had close to optical quality when prepared by a vacuum induction melting method developed during this research. The progress of devitrification was traced by differential thermal analysis and thermal expansion for those lithium metasilicatesilica. Microscopic studies of glasses partially devitrified at various temperatures and annealing times indicated that the primary initial mode of formation of individual crystals was from densely crystalline zones that filled in as crystallization advanced. Of the additives tested, calcium, potassium, and sodium helped promote devitrification with the least cracking or surface deformation. Tin oxide was most effective in reducing volume contraction during devitrification but was not as effective in preventing cracking as calcium or potassium additions.

RI 6652. Froth Flotation Washability Data of Various Appalachian Coals Using the Timed Release Analysis Technique, by Joseph A. Cavallaro and Albert W. Deurbrouck. 1965. 48 pp. 20 figs. Describes the timed release analysis technique that was developed to serve as a tool for assessing the froth flotation cleaning potentials of fine-size coals. Using this technique, 16 coals from 10 different coalbeds were tested. All of the coals included in this study were quite amenable to froth flotation. Float-and-sink analyses of the coals tested are shown to be of limited value in predicting froth flotation cleaning potential. The fixed carbon content of the samples collected was found to correlate with the floatability of the coals. The higher rank coals were the most readily floatable coals while the lower rank coals did not respond quite as well to flotation.

RI 6653. Stresses Induced Around Mine Development Workings by Undercutting and Caving, Climax Molybdenum Mine, Colorado (in Two Parts). 1. Use and Evaluation of Gages for Measuring Strain or Deformation, by Stephen Utter and William J. Tesch, Jr. 1965. 26 pp. 20 figs. Stresses induced by block-caving mining were estimated from in-place measurements of strain or deformation in rock and concrete around mine openings. Four types of gages were used for measurements in the Climax molybdenum mine during 1959-61. Gage performance in the laboratory was evaluated by stressing instrumented rock and concrete specimens in a universal testing machine and by comparing measurements taken by the gages and a standard gage. Gage performance in the mine was evaluated by comparing measurements taken during an 18-month test. The gage, the strain meter, and the extensometer proved suitable for the investigation; the strain cell, effective in the laboratory tests, gave erratic measurements in the mine.

RI 6654. Autoignition of Hydrocarbon Jet Fuel, by J. M. Kuchta, A. Bartkowiak, and M. G. Zabetakis. 1965. 25 pp. 14 figs. Experimental data are presented on the autoignition temperature (AIT) characteristics of the hydrocarbon jet fuel, JP-6, in various oxygen-nitrogen atmospheres under conditions of constant volume and constant pressure. AIT's of this fuel in air varied little with fuel injection pressure but increased greatly with decreasing fuel content at low fuel-air ratios. AIT's also increased with decreasing oxygen content of the fuel vaporoxidant atmosphere. Consistent with thermal ignition theory, the ignition temperatures increased with decreasing initial pressure, ignition delay, and vessel radius; expressions are given which define the observed variation of AIT with these variables for JP-6 fuel vapor-air mixtures. The significance of autoignition temperature data obtained using various ignition criteria is discussed to show the usefulness of such data in evaluating fire and explosion hazards. In addition, data are presented on the extent of oxidation that occurs prior to autoignition

RI 6655. Hydrorefining Cool-Oils to Fuels for Supersonic Air-croft, by C. O. Hawk, M. D. Schlesinger, Paul Dobransky, and R. W. Hiteshue. 1965. 31 pp. 3 figs. Distillable oils derived from coal were desul-furized and hydrogenated at 2,500 psig in a two-step vapor-phase catalytic operation to give a product rich in saturated cyclic hydrocarbons. The first step was mainly a desulfurization at 400° C, the second a saturation at 300° C. One of the oils used as feed stock was from low-temperature carbonization of a bituminous coal, the other was from the liquid-phase hydrogenation of coal in the Bureau's pilot plant. The product from the saturation step was distilled to remove the light ends and high-boiling residue and to recover a fraction having acceptable properties with respect to heating value, density, freezing point, viscosity, and boiling range according to specifications suggested by the Air Force for ultra-high-speed aircraft fuel. Quantities of the fuel fraction available were too small for the fuel stability test approved by the Air Force. The experiments comprised mostly a study of the effect of varying the oil feed rate (at constant oil-to-hydrogen ratio) on the yield of the desired fuel fraction. The yield of the fuel fraction made from low-temperature carbonziation oil was a little more than 1 percent of the weight of the coal carbonized, that from coal-hydrogenation oil was about 12 percent of the weight of coal hydrogenated. Attempts to do both desulfurization and saturation in one operation with sulfur-resistant catalysts, developed for vapor-phase hydrogenation or hydroforming, were unsuccessful. By leaving the low-boiling ends in both feed stocks to desulfurization, another product was obtained: a low-sulfur aromatic cut boiling below 200° C. This material would be suitable as a solvent or a chemical raw material.

RI 6656. An Economic and Technical Evaluation of Magnesium Production Methods (in Three Ports). 1. Metallethermic, by K. C. Dean, D. A. Elkins, and S. J. Hussey. 1965. 76 pp. 6 figs. Report is the first of a series concerned with processes for producing magnesium. These reports will evaluate metallothermic, carbothermic, and electrolytic production methods and will furnish a cost basis for comparing the processes. Areas deemed most promising for future research will be delineated for each procedure. This report presents briefly the history of the metallothermic process and describes the operations of the Defense Plant Corporation (DPC) plants that employed the process. A hypothetical plant designed to produce 12,000 tons of magnesium per year, using ferrosilicon as a reductant, is described, and raw materials, energy, and major equipment requirements are estimated. Several process modifications are suggested for future research.

RI 6657. Relation of Density and Poresity Data to Struc-tural Features of Anthracite, by Jerry W. Ram-sey, G. A. Brady, and J. W. Eckerd. 1965. 24 pp. 3 figs. Reports examination of a low-, a medium-, 3 figs. and a high-volatile Pennsylvania anthracite by densimetric methods using four mesh sizes of each anthracite. Using high-pressure mercury porosim-etry, the macropore volumes and distributions of these pore volumes were determined, densities in mercury were calculated, and specific pore volumes were obtained from these mercury densities in con-unation with bolium densities. junction with helium densities. The helium densities were also used with the ultimate analyses of these anthracites in calculating structural parameters by statistical densimetric methods. The effect of 10⁶ or 10^s rads of gamma irradiation in the presence of air and in vacuum upon the properties was studied with two mesh sizes of each anthracite. Results of the statistical densimetric method seem to show some breakdown of condensed ring structural units at the lower irradiation level, with subsequent polymerization at the longer period of gamma irradiation. The structural parameters obtained also indicated that in going from high- to low-volatile anthracite, either the number of condensed rings per structural unit increased or the degree of polymerization increased.

RI 6658. Oil Well Scale Formation in Waterflood Operations Using Grean Brines, Wilmington, Calif., by G. L. Gates and W. H. Caraway. 1965. 28 pp. 12 figs. Scales formed in producing wells in the Wilmington field, California, were studied. The scales were primarily barium sulfate and resulted from the mixing of injected sea water and formation waters; there was excess sulfate in the injection water and the formation waters contained appreciable barium. After breakthrough, the produced brines were supersaturated with barium sulfate precipitated quickly when the supersaturated brines were agitated with crystals of barium sulfate and fairly rapidly when more sulfate solution was added. Precipitation occurred slowly on standing or under nonturbulent conditions. Both the apparent and equilibrium solubilities of barium sulfate in these brines were determined and compared with equilibrium solubilities in distilled water and sodium chloride solutions.

81 6659. Flammability Characteristics of Ethylene, by George S. Scott, Robert E. Kennedy, Irving Spolan, and Michael G. Zabetakis. 1965. 10 pp. 7 figs. Experiments were conducted on ignition, flammability, and decomposition of gas mixtures containing ethylene to determine its flammability characteristics at elevated pressures and ambient temperatures. Pure ethylene was found to propagate a decomposition reaction at 1,000 psig and ambient temperatures when ignited with 1 gram or more of guncotton in a 2-inch-inside-diameter bomb. The decomposition products were primarily carbon, methane, and hydrogen.

RI 6660. Foaming Agents for Removing Problem Liquids From Gas Wells, by J. L. Eakin. 1965. 14 pp. 2 figs. The Bureau of Mines determined agents that are effective in foaming heavy brines and oil from gas wells in severe concentrations of sodium chloride, in severe concentrations of calcium chloride, or in moderate oil-brine mixtures. Dynamic foam tests were designed to select the more effective foaming agents. Numerous foaming agents were tested in concentrated simulated brines, in oilfield brines having varied concentrations of ions, in heavy natural brines, and in a commercial brine generally used as a reservoir pressure-balancing fluid. Several agents were detected that could perform efficiently in the field under the most severe saline conditions. Agents that promote foaming in oil-brine mixtures were also determined. Work done in cooperation with the American Gas Association and the State of Oklahoma.

RI 6661. Electron-Beam Melting of YWrium, by W. E. Anable and R. A. Beall. 1965. 14 pp. 4 figs. The Bureau of Mines studied the purification of commercially available yttrium by melting it in a 100-kw electron-beam furnace. Button-scale melts were made to determine the ultimate purification that could be attained by melting yttrium at 1,733° to 1,770° C at low pressure (0.05 to 0.1 micron) for 1 to 120 minutes. In addition, numerous melts were made to study the effect of doping yttrium with carbon, 17 selected metallic additions, and 3 compounds. Except for nickel and zirconium, the metallic impurities in yttrium were lowered significantly on extended treatment; silicon was lowered only slightly. The nonmetallic impurities, oxygen, nitrogen, and carbon, were not lowered except on short exposures. In isolated instances, the oxygen content was lowered from 5,860 ppm to about 5,000 ppm. In most instances the carbon content was lowered from 545 to about 220 ppm in 20 minutes and then increased again. It was concluded that yttrium cannot be purified by direct heating or by the doping technique employed. Work done under agreement with the U.S. Atomic Energy Commission.

RI 6662. Hydrogen Reduction of Galena and Sphalerite, by J. D. Spagnola. 1965. 17 pp. 10 figs. The Bureau of Mines conducted research to obtain comparative data on the extent of reduction of galena and sphalerite with molecular hydrogen and with hydrogen from the thermal cracking of am-monia and methane at various time intervals. Galena reductions of 95 to 99 percent were obtained with H_2 and with decomposed NH₃, while reductions of 70 to 80 percent were obtained with cracked CH. Sphalerite reductions of 99 percent were obtained at 1,000° C with H₂ and with decomposed NH₃; however, complete volatilization of the free zinc from the remaining concentrate and the subsequent recombination of zinc and sulfur vapors resulted. A promoted iron catalyst brought about a decrease of 100° C in the temperature required for complete decomposition of ammonia. It was found that HaS retards NH₃ decomposition and that nitrogen retards the reduction of galena by H2. A mixture of N2 and H₂ in about the same ratio as that obtained by the thermal cracking of NH3 gave about 15 percent less reduction of galena than was obtained with decomposed NH₃; this indicates that a portion of the hydrogen obtained by NH₃ decomposition is in an active form.

RI 6663. Heat of Fermation of Iontalum Carbide, by Alla D. Mah. 1965. 5 pp. The heat of combustion of TaCo.com was determined by oxygen bomb calorimetry to be ---302.8 ±0.4 kcal/mole. The corresponding heat of formation of TaCo.com is ---35.4 ±0.5 kcal/mole, and the calculated heat of formation of TaCo.com is ---35.5 ±0.5 kcal/mole.

RI 6664. Some Thermel Properties of Beryllium Fluoride From 8° to 1,200° K, by A. R. Taylor, Jr., and T. Estelle Gardner. 1965. 15 pp. 8 figs. The heat capacities of a-quartz from beryllium fluoride were measured at approximately 3-degree intervals from 8° to 300° K, using an adiabatic calorimeter. At 298.15° K the heat capacity and entropy were 12.39 cal/deg mole and 12.75 ±0.04 eu, respectively. Enthalpy measurements were made with an ice Enthalpy measurements were made with an ice calorimeter at approximately 30-degree intervals on the quartz and glassy forms of beryllium fluoride between 300° and 1,200° K. A melting point of 825° K and an α - β type transition at 500° K with a heat effect of 75 cal/mole were determined from the enthalpy data for the quartz-type sample. Bryllium fluoride glass crystallized spontaneously into the quartz modification at 500° K. The heat of the reaction, BeFs (α -quartz) BeFs (glass), was found to be 1,125 \pm 16 cal/mole at 298° K by solution calorimetry. This value, when corrected to 273° K, was used to correct for the heat absorbed by the formation of glassy BeF, when the sample was dropped into the ice calorimeter from tempera-tures above the melting point. Using corrected calorimeter at approximately 30-degree intervals on tures above the melting point. Using corrected enthalpy measurements, the heat of fusion was determined to be 1.13 kcal/mole at 825° K. Work done in cooperation with the University of Alabama.

 RI 6665. Preparation Characteristics of Coal From Fayette County, W. Va., by Albert W. Deurbrouck.
 1965. 52 pp. 3 figs. Describes the preparation characteristics of 23 coal samples collected from nine of the more significant coalbeds of Fayette County, W. Va., Coalburg, Fire Creek, Gilbert, Little Eagle, No. 2 Gas, Pocahontas No. 6, Powellton, Sewell, and Winefrede beds. Of the 23 coal samples collected, 11 would require some upgrading to provide metallurgical quality products, 11 were accept-able as received, and 1 was a noncaking coal. Cleaning these coals to metallurgical standards would require only the removal of the sink 1.58 specific gravity material which would be quite easy as very little near-separating-gravity material was present at this gravity.

RI 6666. Stresses Induced Around Mine Development Workings by Undercutting and Caving, Climax Molybdenum Mine, Colorado (in Two Parts). 2. Strain and De-formation Measurement, by R. L. Bolmer. 1965. 27 pp. 19 figs. During 1959-61 the Bureau of Mines investigated the strain and deformation induced in rock and concrete linings around mine openings by retreat panel caving at the Climax molybdenum mine. Two concrete-lined slusher drifts on the Phillipson level of the mine were instrumented with both electrical strain gages and extensometers. Changes in strain and deformation were recorded over an 18 month period during the underwitting over an 18-month period during the undercutting and caving of the mining panel. General agreement was found between the strain and deformation measurements and the hypothesis that the vertical component of the stress field on the openings is almost completely removed by undercutting. This phenomenon is a possible explanation for the structural failures that occur in the slusher drifts during the undercutting cycle.

RI 6667. Growth and Properties of Zirconia and Titania Whiskers From Fused Salt Baths, by Robert C. Johnson and John K. Alley. 1965. 15 pp. 3 figs. Single crystal whiskers of ZrO₂ and TiO₂ were grown by solution and crystallization of these ox-ides in molten baths. Mixtures of Na₂B₁O₂ and LiCl were the most suitable growth media for zirconia were the most suitable growth media for zirconia. Sodium borate alone and Na₂CO, plus SiO₂ were

best suited for titania. The solubilities of zirconia and titania in molten sodium borate were determined. Whether zirconia whiskers were dendritic or nondendritic depended on the temperature used. The best crystal whiskers were grown below 1,100° C. Titania whiskers always grew as single crystals. The tensile strengths of zirconia and titania whisk-ers were about 15,000 psi and 50,000 psi, respec-tively. Modulus of rupture was about 49,000 psi for zirconia whiskers and 75,000 psi for titania whiskers. Chemical analyses showed the zirconia and titania whiskers to be pure. The zirconia and titania whiskers were shown by X-ray analysis to be, respectively, baddeleyite and rutile.

RI 6668. Flotorion of California Mica Ore, by James S. Browning and Paul E. Bennett. 1965. 7 pp. 1 fig. The Bureau of Mines conducted laboratory batch and pilot plant flotation tests to determine the technical feasibility of recovering commercial-grade mica from a California micaceous schist. Best results in the laboratory batch tests were obtained using sodium carbonate and sodium silicate for pH control and quartz depression, and a combi-nation of fatty acid and cationic reagents as the mica collector. In continuous pilot plant flotation tests, an alkaline-fatty acid-cationic method recovered about 70 percent of the mica in a concentrate ana-lyzing 95.6 percent mica. Work done in cooperation with the University of Alabama and Kelly-Moore Paint Co., Inc.

RI 6669. Low-Temperature Heat Capacities and Entropies at

298.15° K of Anhydrous Sulfates of Cobalt. Cop-per, Nickel, and Zinc, by W. W. Weller, 1965. 6 pp. Heat capacity measurements of anhydrous cobalt sulfate (CoSO₄), copper sulfate (CuSO₄), nickel sul-fate (NiSO₄) and zinc sulfate (ZnSO₄) were con-ducted over the temperature range 51° to 298° K. The results were used to evaluate the following entropies at 298.15" K (cal/deg mole): CoSO, 28.1; CuSO, 26.8; NiSO, 24.8; and ZnSO, 26.4. Entropies were combined with heats of formation to give free energies of formation.

RI 6670. Vertical Flaw of Oil and Gas Mixtures in Small-Diameter Siphon-Type Flowstrings, by G. E. Ren-nick and R. L. Rough. 1965. 50 pp. 21 figs. A siphon-type laboratory airlift well was designed and operated to study the concurrent flow of air and oil in small-diameter pipes. Glass flowstrings ranging from ¼ to 1 inch in diameter and from 14 to 64 feet in length were equipped with various-sized air-entry jets. Liquid holdup volumes were used to correlate vertical-flow data, and empirical equations for computing gas requirements were derived. The effect of flowstring length on flow efficiency, oil- and gas-production rates, and gas-oil ratios was relatively minor at all flowing pressures. Air-jet sizes and flowstring diameters, however, had a marked effect on flow efficiency and oil- and gas-production rates. The small air-jet sizes increased maximum flow efficiency and its associated flowing pressures but decreased oil- and gas-production rates. An increase in flowstring diameter increased maximum flow efficiency with its associated flowing pressure and also increased the production rates of oil and gas.

RI 6671. The Mass Spectra and Correlations With Structure for 14 Alkylthiophenes, by Norman G. Foster, D. E. Hirsch, R. F. Kendall, and B. H. Eccleston. 1965. 31 pp. 5 figs. The mass spectra of 14 previously unreported alkylthiophenes are presented. Low-ionization-voltage data of selected compounds from these 14 and 23 previously reported alkylthiophenes are presented and discussed for their value in supporting fragmentation mechanisms and analytical correlations. A comparison with and corroboration of earlier correlations is made. Additional correlations concerning detection of side chain branching and the detection of ethyl-alkyl and propyl-alkylthiophenes are made. A discussion of the possible fragmentation routes and mechanism of fragmentation is given. Speculative structures are inferred about some of the ions and hence this work provides a basis for suggesting fragmentation mechanisms for the alkylthiophenes according to modern theories of mass spectrometry. Verification of these mechanisms must await the availability of isotopically labeled molecules which are labeled in specific locations that permit the definition of the paths of fragmentation. Some suggestions for further work to generalize on the correlations and studies made to this point are presented.

RI 6672. The Thermodynamics of Combustion Gases. Computed Compositions of Methane-Air, Propane-Air, and Ethylene-Air Flames, by Robert W. Smith, Jr., and Edwin B. Cook. 1965. 30 pp. Reports the equilibrium compositions of product gases for mixtures of air with methane, propane, or ethylene at and around flame temperatures. For each hydrocarbon, compositions are given for five fuel-to-air ratios two lean, two rich, and one stoichiometric—at five pressures, from 1 to 20 atmospheres, and at an ambient temperature of 25° C.

RI 6673. Determination of a Part of the Magnesium-Zirconium Liquidus, by R. L. Crosby and K. A. Fowler. 1965. 19 pp. 8 figs. A part of the liquidus of the magnesium-zirconium system was determined by chemical analysis of suction samples taken from the melt in the approximate temperature range of 850° to 1,450° C. The melt was prepared in a furnace pressurized with an inert gas. The average zirconium value in weight-percent of the liquidus composition at each sampling temperature was 0.96 at 867° C, 1.40 at 1,062° C, and 2.96 at 1,402° C. The equilibrium solid phase was zirconium.

81 6674. Preparation of Primary Standard Gos Mixtures for Analytical Instruments, by J. E. Miller, A. J. Carroll, and D. E. Emerson. 1965. 10 pp. 1 fig. Primary standard gas mixtures were developed for more accurate calibration of analytical instruments and for calibration of analytical instruments used in the helium conservation program. A 10-kilogramcapacity balance is used to weigh a 4-kilogram metal cylinder filled to high pressure (1,800 psi maximum) with the component gases of the desired mixture. At 1,800 psi, a cylinder contains about 60 grams of helium, or 420 grams of nitrogen. An accuracy of ± 0.05 mole-percent or better is claimed for each component in the mixtures.

81 6673. Distribution of Stress in the Westvace Trone Mine, Westvace, Wyo., by Thomas A. Morgan, William G. Fischer, and William J. Sturgis. 1965. 58 pp. 44 figs. Gives the distribution of stress adjacent to each of 25 mine openings determined by the borehole stress-relief method in the FMC Corp. Westvace trona mine. The purpose of the stress determination was twofold: First, to study the effect on the distribution of various factors such as opening shape. stress level, and loading history; and, second, to estimate the distribution of stresses adjacent to extensive high-extraction (85 to 100 percent) extraction areas. Stress distributions in areas of low average stress correspond closely to the theoretical distributions based on elastic theory. However, in areas of high average stress, the stress distributions are of a type associated with plastic failure. The stresses adjacent to a mined-out area supported by remnant pillars were significantly higher than the stresses adjacent to another area in which the remnant pillars were removed. (Out of print.)

RI 6676. Automated Modified Fischer Retorts for Assoying Oil Shale and Bituminous Materials, by Arnold B. Hubbard. 1965. 19 pp. 12 figs. Automatic control instruments were utilized for routine assays of large numbers of oil shale samules and other bituminous materials. The standard Fischer assay method was automated by automatically controlling the heating cycles of a battery of 12 electric heaters with electronic controllers and programers. The condensers were cooled with a modified automatically controlled refrigeration bath. The complete assembly consisted of 12 retort units, necessary control instruments, and the refrigeration bath. This equipment was capable of producing more consistent results than those previously obtained with the gasheated retorts and of increasing the output of assays substantially with no increase in operating personnel. Work done in cooperation with the University of Wyoming.

RI 6677. Freeseproofing Lignite, by Robert C. Ellman, John W. Belter, and Leroy Dockter. 1965. 28 pp. 9 figs. Investigates the factors that cause agglomeration of lignite by freezing during winter shipment to find methods of avoiding it. Tests showed that lignite may be freezeproofed by removal of the relatively small quantity of moisture involved in forming the frost crystals which cement particles together, or by controlling the crystal characteristics. Adding dried lignite fines proved to be an effective and superior freezproofing method. Commercial adoption of this method has been successful.

RI 6678. Blast Furnace Operations With Very Lew Slag Rates, by P. L. Woolf, J. F. Pearce, W. M. Mahan, and J. A. Basso. 1965. 14 pp. 3 figs. Two blast furnaces, one a commercial furnace and the other the Bureau of Mines experimental furnace, were successfully operated with extremely low slag volumes. The lowest slag rate obtained on the industrial furnace was 335 pounds per ton of metal. Using the same burden materials a 245-pound slag volume was achieved on the small furnace. The coke-rate saving and increase in productivity resulting from lowered slag rates are discussed as well as the factors limiting a low slag practice. Work done in cooperation with Wabush Mines.

RI 6679. Effects of Decoupling and Type of Stemming on Explosion-Generated Pulses in Mortar: A Laboratory Study, by D. E. Fogelson, D. V. D'Andrea, and R. L. Fischer. 1965. 18 pp. 12 figs. In a factorial experiment, blasting caps were detonated in three sizes of shotholes in mortar with three types of stemming—dry sand, wet sand, and hydrostone. Free-surface displacement pulses were recorded with a capacitive-displacement gage at a distance of 15 inches. The effects of decouping and the type of stemming on the amplitude and the duration of the displacement pulse were significantly decreased by increasing the decoupling, but they were little affected by the type of stemming.

RI 6680. Siress Corresion Cracking of Vanadium, Molybdenum, and a Titanium-Vanadium Alloy, by J. P. Carter, C. B. Kenahan, and David Schlain. 1965. 18 pp. 10 figs. Vanadium, molybdenum, and a titanium-10 percent vanadium alloy were evaluated

for their susceptibility to stress-corrosion cracking in a number of corrodents. Tests were conducted utilizing conventional U-bend techniques with subsequent evaluation in a pneumatic constant-load apparatus. Vanadium and molybdenum were gen-erally resistant to stress-corrosion cracking in the media studied. U-bend specimens of vanadium showed evidence of stress-corrosion cracking in 6 Nshowed evidence of stress-corrosion cracking in 6 Nhydrochloric and 18 N sulfuric acids; however, ten-sile stress specimens exposed to these solutions did not exhibit stress cracking. Similar results were obtained when U-bend specimens of molybdenum were immersed in 10 percent formic acid. Titanium-10 percent vanadium alloy was susceptible to stress-corrosion cracking in 10-percent (2.85 N) hydrochloric acid solution. Heat treating the alloy greatly reduced its corrosion rate and its susceptibility to stress-corrosion cracking in this medium.

RI 6681. Measurement of Backscattered Electrons in an Elec-

tron Probe Microanalyzer, by Philip G. Burk-halter. 1965. 22 pp. 10 figs. Total yield and backscattered electron coefficients were measured in this study in an electron-probe microanalyzer as a function of atomic number and of primary energy in the 15- to 35-kilovolt range. The electron coefficients were obtained indirectly from measurements of the specimen electron current and the primary beam current collected in a Faraday cage and were measured with a precision better than 0.5 percent. Secondary electron emission was suppressed with an opposing potential applied to a screen grid sur-rounding the specimen. The values of the backscattered electron coefficients agreed with published values within 5 percent.

RI 6682. A Tarsion Effusion Apparatus for Vapor Pressure RI 6682. A Torsion Effusion Apparatus for Vapor Pressure Measurement. Vapor Pressure of Silver From 1.200° K, by Larry A. Haas and C. W. Schultz. 1965. 18 pp. 7 figs. The Bureau of Mines constructed a torsion effusion apparatus to measure the equilibrium vapor pressure of pure metals, alloys, and compounds at temperatures up to 1,500° K. The reliability of the apparatus was established by determining the vapor pressure of silver. The data obtained on solid and liquid silver in the temperature range 1,200° to 1,500° K can be expressed by the following equations: expressed by the following equations:

Solid,
$$\log P_{mm} = -\frac{14,938 \pm 818}{T} + 9.666 \pm 0.679$$
,

Liquid,
$$\log P_{mm} = -\frac{14,203 \pm 145}{T} + 9.115 \pm 0.077$$

The heat of sublimation at 298° K of 66.76 \pm 0.19 was calculated by the third-law method.

RI 6683. Oil-Reservoir Analysis and Predicted Recovery by Waterflooding, Clinton Sand, Lagan Hocking Oil-field, Hocking County, Ohio, by D. W. Boley, H. R. John-son, and W. K. Overbey, Jr. 1965. 43 pp. 23 figs. Contains the results of an analysis of the Logan oilfield, Hocking County, Ohio, and predicts the re-covery of oil from the Clinton sand by waterflooding. Core analyses, electrical and radioactivity wellsurvey logs, reservoir-fluid analysis, and geologic and production data were used for this study. Con-sidered in the evaluation were the reservoir geom-etry, depth, lithology, continuity of the rock proper-ties, fluid saturations, fluid characteristics, rock wettability, and relative permeability-fluid satura-tion relationships. The study indicates that a properly engineered waterflood should recover approxi-mately 135 barrels per acre-foot of effective sand. The predicted recovery warrants the initiation of a pilot waterflood in this field.

RI 6684. A Study of Radioactive Contamination Resulting From the Use of Nuclear Explosives for Stimulating Petroleum Production, by C. E. Arthur and F. E. Arm-strong. 1965. 11 pp. 2 figs. Investigates the problem of radioactive contamination using nuclear explosives to fracture petroleum reservoirs in an attempt to stimulate production. It was concluded that some contamination of petroleum products will almost certainly occur. However, the degree of contamination cannot be predicted except by a full-scale experiment, since simulating the problem in the laboratory is economically impossible because of the extremely high temperatures and pressures that must be reached in extremely short time intervals if a reasonable analog is to result. Work done under an agreement with the U.S. Atomic Energy Commission.

 RI 6685. Hydraulic Coal Mining Research. Development Min-ing in a Steeply Pitching Coalbed, Reslyn, Wash., by George C. Price and Frank Badda. 1965. 16 pp. 8 figs. Gives results of a study in the Roslyn No. 5 coalbed to determine the feasibility of mining No. 5 coalbed to determine the feasibility of mining hydraulically the portion of the coalbed that was steeply pitching. All of the experimental mining was done while advancing raises and rooms. A Bureau-developed hydraulic mining machine was used successfully in the pitching coalbed. It con-sisted of a remotely controlled monitor mounted on a self-advancing roof-support unit of the type commonly used for roof support in longwall mining sys-tems. The coal-cutting rates averaged 0.73 and 0.54 tons per minute in raise and roof mining, respectively, while using water volumes up to 230 gpm at a pressure of 4,000 psig. Productivity averaged 4.7 and 5.2 tons per man-shift for raise and room mining, respectively, compared with 7.5 and 8.5 tons per man-shift, respectively, by conventional hand-mining methods. Two previous publications, RI 5915, published in 1961, and RI 6276, published in 1963, described the equipment and gave the results of mining in a flat-lying coalbed and a steeply pitch-ing coalbed. Work done in cooperation with the Northern Pacific Railway Co.

RI 6686. Prerefining Pig Iron With a Vortex Cone. Improvements in Desiliconizing Techniques, by F. X. Tartaron. 1965. 12 pp. 4 figs. Describes work done by the Bureau to simplify the design and oper-ation of the vortex cone, a new device for prerefin-ing blast-furnace iron. Three new apparatus ar-rangements were tested. Results with one of these arrangements averaged 74.2 percent silicon removal and 61 percent outcome (disconduction) and 61 percent oxygen efficiency (disregarding re-moval of carbon and manganese). A previous re-port, RI 6388, published in 1964, described the design and operation of the vortex cone.

RI 6687. Heats of Formation of Anhydrous Ferric Sulfate and Indium Sulfate, by R. Barany and L. H. Adami. 1965. 8 pp. The heats of formation of anhydrous ferric sulfate and indium sulfate were determined by solution calorimetry. At 298.15° K the heats of formation from the metal. rhombic sulfur, and oxygen were -615.6 ± 0.7 kcal/mole for ferric sulfate and -649.6 ± 0.6 kcal/mole for indium sulfate. Heats of decomposition at 298.15° K are given for the reaction that forms metal oxide, sulfur dioxide, and oxygen and for the reaction that forms the metal oxide and sulfur trioxide.

 Ri 6688. Removal of Waterblacks From Gas-Producing Formations, by J. L. Eakin, J. S. Miller, and
 W. E. Eckard. 1965. 24 pp. 1 fig. Describes a method developed in the laboratory and in the field to relieve capillary waterblocks in gas wells. Impaired gas permeability was improved by this inexpensive chemical treatment which lowers the surface tension of the water held in the capillaries of the formation. Effectiveness of the alcohol-surfactant treatment was tested with a variety of chemicals and with sandstone cores cut from rocks having relatively low permeability. Field tests on 20 gasproducing and storage wells demonstrated the effectiveness and limitations of the method. The productive capacity of some wells was doubled by the treatment. The final test was evaluated by the neutron logging technique for measuring changes in apparent liquid saturation. Maximum apparent liquid saturation was reduced by 52 percent; gas production rate increased from 2.3 to 3.5 million cubic feet per day. Work done in cooperation with the Pipeline Research Committee, American Gas Association.

RI 6689. Instrumentation for Frimary and Secondary Excitation of Low-Energy X-Ray Spectral Lines, by John W. Thatcher and William J. Campbell. 1965. 29 pp. 17 figs. A demountable X-ray tube vacuum spectrograph was designed by the Bureau for the determination of long-wavelength X-ray spectra from the light elements. This instrument was operated for both secondary and combined primarysecondary excitation of the aluminum K-series. There was an increased analytical sensitivity for elements in period 3, and an indication that with improved X-ray tubes or direct electron excitation of the sample, X-ray determination of elements in period 2 is also possible.

RI 6690. Thermal Expansion Anistotropy and Preferred Orientotion in Rolled Zinc Alleys Containing Copper and Titanium, by J. T. Dunham, L. E. D. Pease, Jr., and P. G. Barnard. 1965. 16 pp. 6 figs. Gives results of study by dilatometry of the effect of titanium on the thermal expansivity of hot-rolled zinc and Zn-1 percent Cu alloy. The titanium content of the alloys was varied up to 0.3 percent. Expansion coefficients were determined from measurements made both parallel and perpendicular to the plane of the rolled sheet. Titanium reduced expansion parallel to the plane of the sheet, especially in the rolling direction, but increased exvansion perpendicular to the sheet. Basal-plane pole figures showed that the degree of preferred orientation increased with the titanium content in the alloy and that anisotropic expansion can be correlated to sheet texture.

RI 6691. Diberides in the Pseudobinary System TiB-CrB: Electrical Properties, by Gilbert M. Farrior. 1965. 26 pp. 14 figs. The electrical resistivity, the coefficient of electrical resistivity, the Hall coefficient, and the absolute thermoelectric power were determined in this investigation for nine compositions of the TiB₂-CrB₃ subsystem. The numerical values of the electrical resistivity and the thermoelectric power were greater for the intermediate compositions than for the end members. The absolute values of the Hall coefficients and the coefficients of electrical resistivity were less for the intermediate compositions than for the end members. The electrical resistivities and Hall coefficients were about the order of magnitude of most metals—from 34 to 202 microhm-cm and from about 0 to -23.3 $\times 10^{-4}$ cm³/coulomb. The thermoelectric power was somewhat greater than that of most metals—up to 15.6 microvolts per ° C.

RI 6692. Extraction of Manganese From Georgia Umber Ore by a Sulfuric Acid-Ferrous Sulfate Process (in Two Parts). 1. Countercurrent-Decantation Extraction and Agglomeration of Leached Residue Tests, by H. P. LeVan, E. G. Davis, and F. E. Brantley. 1965. 21 pp. 7 figs. Research was conducted to examine the feasibility of extracting manganese from Georgia umber ore by a three-stage continuous sulfuric acid-ferrous sulfate pickle liquor leaching process. A continuous cyclic process for treating the umber was operated successfully, using a synthetic solution simulating a ferrous sulfate fortified anolyte solution discharged from a manganese electrolytic cell as the leaching medium. Leaching efficiency based on removal of the manganese from the ore ranged from 83 to 89 percent for all systems tested. Work done in cooperation with the University of Alabama.

RI 6693. Comparative Study of Explosives in Granite. Third Series of Tests, by Harry R. Nicholls and Verne E. Hooker. 1965. 46 pp. 19 figs. Six different chemical explosives were detonated in a test series to compare their relative performance in granite. From 5 to 255 feet from the detonation point, strain, acceleration, and particle velocity were recorded and analyzed for amplitude and pulse shape. Strain energy was calculated from strain data, and displacement data were obtained from particle velocity data bv integration. Results show that explosives which have a characteristic impedance more closely matching that of the rock generate larger peak amplitudes than explosives with a lower characteristic impedance. The results also show that as the ratio of characteristic impedance of explosive-to-rock approaches unity, more rock is crushed and a larger percentage of the available explosive energy is transferred to the rock as seismic energy. The effect of characteristic impedance is shown to be greater than the effect predicted from acoustic theory and is believed to be indicative of shock wave effects at the explosive-rock boundary.

RI 6694. Continuous Attrition Grinding of Coarse Kaolin (in Two Parts). 2. Closed-Circuit Tests, by Martin H. Stanczyk and I. L. Feld. 1965. 13 pp. 3 figs. The Bureau of Mines studied continuous closedcircuit attrition grinding of a coarse commercial filler-grade kaolin to produce paper-coating-grade clay having a particle size analysis of at least 70 percent minus 2-micron equivalent sperical diameter (esd). The coarse clay, containing about 12 percent minus 2-micron-esd material, was ground in a Bureau-developed 10-inch-diameter attrition grinder in closed circuit with a 5-foot-diameter bowl classifier. In the best test, a finished product containing 82.7 percent minus 2-micron-esd material was obtained when grinding 20 pounds of raw clay per hour at 45 percent solids with a 100-percent circulating load. Energy consumption was about 341 kilowatt-hours per ton of clay feed, or 487 kilowatthours per ton of minus 2-micron-esd material produced. Closed-circuit grinding gave somewhat greater particle size reduction and lower energy consumption than either batch or continuous opencircuit grinding. Work done in cooperation with the University of Alabama.

RI 6695. Vibration tevels Iransmitted Across a Presplit Fracture Piane, by James F. Devine, Richard H. Beck, Alfred V. C. Meyer, and Wilbur I. Duvall. 1965. 29 pp. 16 figs. Describes tests conducted at three sites to determine if, and to what extent, a vertical presplit fracture plane placed between a blast point and detection point will reduce vibration levels. Statistical analyses indicate that the presplit fracture plane did not reduce the vibration level. RI 6696. Voriables in the Use of Hat-Finished Mild Steel Coupons for Corresion Inhibitor Testing, by Jerry B. F. Champlin and Don R. Thompson. 1965. 17 pp. 5 figs. Describes an accelerated testing procedure developed for evaluating commercially available corrosion inhibitors. Ultrasonic agitation of the corrodent solutions and the hot-finished mild stel test coupons was used to evaluate the effects of several variables on the effectiveness of two corrosion inhibitors. Small changes in the weight of the test coupons in both controlled and inhibited corrodents, before and after exposure, affected the precision and accuracy of the results. Minute amounts of oxygen in the systems were found to be causing the relatively large deviations in the corrosion developed in the controlled tests. Microscopic examination of the test coupons revealed that both surface preparation and internal strains resulting from fabrication methods materially affect corrosion behavior. Work done in cooperation with the State of Oklahoma.

Ri 6697. Heat of Formation of Neodymium Trichlorlde, by J. M. Stuve. 1965. 4 pp. Heat of solution measurements of high-purity neodymium metal and neodymium trichloride (NdCl_a) in 4.360 molal hydrochloric acid (HCl) were used to determine the standard heat of formation (ΔH_f^0) of NdCl_b. From solution data obtained, the heat of formation of NdCl₁ (c) was computed as $-248,970 \pm 260$ cal/mole at 298.15° K.

RI 6698. Moss Spectra of Organic Sulfur Compounds, by Glenn L. Cook and G. U. Dinneen. 1965. 86 pp. Correlations between mass spectra and molecular structures of 186 organic sulfur compounds are discussed. The olefinic ions, the alkyl ions, the $C_{s}H_{En-s}$ S ions, the m/e 61 ions, and the m/e 35 ions in the spectra of thiols are related to molecular structure. In the spectra of sulfides, the olefinic ions, the m/e 61 ions, the m/e 35 ions, the $C_{s}H_{En-s}$ SH ions, and the $C_{s}H_{En+s}$ SH₂ ions are correlated with molecular structure. For disulfides, the correlations relate HSSH and RSSH ions to molecular structure. Base peaks of alkylthiophenes are correlated to their molecular structures. Some unimolecular reactions of sulfur compounds in the mass spectrometer are considered. A cyclic intermediate is suggested for the reaction which produces m/e 47, CHS⁺, and m/e 48, CHS⁺, ions in the spectra of sulfides. An expanded ring is suggested as a possible intermediate in the reactions of thiophenes. Heats of formation of sulfur-containing ions and their appearance potentials are presented in tabular form. Ionization potentials for sulfur-containing radicals and molecules are also given. Discussion of the spectra, tabulated in the appendixes, provides an insight into the relationship of the molecular structure of a compound to the mass-to-charge ratios and the intensities of the ions in its mass spectrum. Correlations of the mass appedixes of mass spectra because they can be employed by observing regularities in the spectra of the reference compounds. Correlations extend the usefulness of mass spectra because they can be employed to determine the molecular structure of an unknown compound. Work done in cooperation with the University of Wyoming and the American Petroleum Institute, Research Project 48.

RI 6697. Adsorption Phenomena and the Reduction of Iron Oxides. Relation of Heat of Adsorption to Heat of Activation for the Reduction of Wustite and Magnetite, by S. E. Khalafalla, C. W. Schultz, and T. N. Rushton. 1965. 18 pp. 8 figs. The Bureau of Mines investigated variations in the activation energy for the carbon monoxide reduction of magnetite and ferrous oxide with respect to the state of aggregation of the oxide material. Reduction phenomena can only be satisfactorily explained by including an adsorption step in the reduction process. Summation of the values of the exothermic heat of chemisorption and the variable apparent activation energy for reduction yields a nearly constant value of about 50 kcal for either ferrous oxide or magnetite regardless of whether they are aggregated in pelletized form or coarsely crystalline particles.

RI 6700. Comparison Between End and Axial Methods of Detonating an Explosive in Granite, by Wilbur I. Duvall and Joseph M. Pugliese. 1965. 11 pp. 7 figs. A linear array of shot and gage holes 30 feet deep in a granite outcrop was used to compare the size and shape of radial strain pulses produced in the rock when short cylindrical charges of cast composition B were detonated axially or at one end. The axially detonated charges produced radial strain pulses that had shorter rise times and larger peak strain than the strain pulses produced by end detonated charges.

RI 6701. Measurement of Lateral Pressure Generated From Cylindrical Explosive Charges, by Lippe D. Sadwin and Norman M. Junk. 1965. 8 pp. 4 figs. Describes a high-speed streak camera technique for measuring the lateral shock pressure generated by a cylindrical explosive charge detonated from one end. Experimental data show that the magnitude of the lateral pressure is approximately 50 percent that of the pressure generated from the terminal end of the charge for the three explosives studied.

RI 6702. Prediction of Compressive Strength From Other Rock Properties, by D. V. D'Andrea, R. L. Fischer, and D. E. Fogelson. 1965. 23 pp. 13 figs. Nine rock properties were determined for rocks coming from 49 locations and having a wide range of compressive strengths. Plots of the nine rock properties versus each other were prepared. A stepwise multiple linear regression analysis was performed to obtain several equations for predicting compressive strength. Both linear and curvilinear relationships were assumed between compressive strength and the other rock properties. The prediction equations had multiple correlations coefficients ranging from 0.947 for an equation with 1 variable (point load tensile strength) to 0.986 for an equation with 25 variables. Of the properties tested only point load tensile strength could be used alone to estimate compressive strength with fair accuracy.

RI 6703. Creep in Model Pillers, by Leonard Obert. 1965. 23 pp. 25 figs. Considers the deformational behavior (creep) of pillars made from three quasi-plastic rocks—salt, trona, and potash ore. The first phase of this study considers the design of a model pillar suitable for creep tests; in the second phase, six model pillars were prepared from salt from two sources, from trona, and from potash ore. The pillars in each group were subjected to a different but constant axial stress, and the axial strain was measured for 1,000 hours.

RI 6704. Explosive-Expansion Center-Hole Anchor, by Edward W. Parsons and Lars Osen. 1965.
 14 pp. 11 figs. The explosive-expansion center-hole anchor was designed and developed for use as a component of an instrument system that measures differential ground movement within a small drill hole in rock. The anchor has a thick-walled center tube and a thin-walled outer tube. Low-

energy detonating cord, wrapped around the center tube and detonated with a mild end primer, expands the outer tube to produce anchorage. The explosive-expansion center-hole anchor can be installed easily in drill holes of any inclination but cannot be installed under water. Centering of the anchor is critical with regard to its subsequent holding power. The anchor is safe to make and handle.

RI 6705. Heat of Formation of Scandium Trichloride, by J. M. Stuve. 1965. 5 pp. Calorimetric data for the dissolution of scandium sesquioxide and scandium trichloride in 4.360 molal hydrochloric acid were used to evaluate the standard heat of formation of $ScCl_s(c)$. The heat of reaction for $Sc(c) + 1.5Cl_2(g) = ScCl_s(c)$ at 298.15° K was computed as $-225,440 \pm 340$ cal/mole.

Ri 67D6. Flow Properties of Powdered Cool-Water Slurries, by W. R. Huff, J. H. Holden, and Jack A. Phillips. 1965. 15 pp. 10 figs. Yield stress and plastic viscosity values, determined from shear rateshear stress relationships, were found to be a linear function of coal concentration for coal-water slurries containing 40, 45, 50, and 55 weight-percent of powdered coal. In the laminar region, the flow is described by an equation derived from the fact that the square root of the shear stress varied linearly with the square root of the shear rate. In the turbulent region, the friction factor was found to be inversely proportional to the velocity to the 0.12 power.

RI 6707. Preparation Characteristics of Coal From Barbour County, W. Va., by Albert W. Deurbrouck. 1965. 32 pp. 3 figs. Twelve samples from six Barbour County coalbeds—Bakerstown, Pittsburgh, Redstone, and Upper, Middle, and Lower Kittanning—were analyzed for this report. The samples collected were generally high sulfur content coals, frequently exceeding 3 percent in the raw-coal sample. Many of them could not be upgraded to acceptable metallurgical standards even by rigorous preparation procedures. The production of coal in the county in 1963 amounted to almost 3 million tons of which 44 percent was mechanically cleaned.

 RI 5708. High-Temperature Heat Contents and Entropies of Two Zinc Sulfides and Four Solid Solutions of Zinc and tron Sulfides, by L. B. Pankratz and E. G. King. 1965. 8 pp. Heat contents, measured above 298.15°
 K, and derived entropy increments are presented in tabular and equation form for the two crystalline forms of zinc sulfide (sphalerite and wurtzite) and for four solid solutions of iron and zinc sulfides having the compositions Zneyes Ferriers, Zneys, Zneys, Zneys, S.

RI 6709. Analysis of tight Oils From Fluidized Carbonization, by J. G. Walters and C. Ortuglio. 1966. 25 pp. 4 figs. Analyses of light oils produced from the fluidized carbonization of coal at 485°, 550°, 600°, and 660° C are presented. Tar vapors from 485° C fluidized carbonization were thermally treated at 600°, 700°, and 800° C, and the analyses of light oils produced by this treatment are also presented. Procedures were developed for analysis of coal carbonization light oil by gas chromatography to permit a more definitive analysis than can be obtained by the conventional distillation procedure. An increase in low-oiling olefins, benzene, and toluene, a decrease in low-boiling paraffins, and little change in the remainder of the aromatics were observed with increased temperature of carbonization. RI 6710. Stoppings for Ventilating Coal Mines, by Edward M. Kawenski, Donald W. Mitchell, George R. Bercik, and Angelo Frances. 1965. 20 pp. 15 figs. Tests were made in the Bureau's Experimental Coal Mine on stoppings similar to those used in operating coal mines to obtain information on air leakage through the face and the rupture strength of a stopping subjected to a pressure differential. Block stoppings were made from cinder, slag, and gravel aggregates with and without mortared joints and coatings. Sheet stoppings were uncoated brattice cloth and nylon or brattice cloth and expanded-metal-lath coated with asphalt, latex, mortar, or rigid urethane foam. Limited data were obtained on air leakage through stoppings subjected to simulated roof convergence and to shock forces created by the firing of an adjacent charge of explosive. The pressure differential required to rupture stoppings was determined. The research shows that coating the face of a stopping, particularly those with mortared joints, are more resistant to pressure and shock forces than are sheet stoppings. Where ground movement is a factor, sheet stoppings

RI 6711. Devitrification of a Lithium Disilicate Glass, by Henry M. Harris, John E. Kelley, and Hal J. Kelly. 1965. 14 pp. 7 figs. A glass containing approximately 17 percent lithia and 83 percent silica was investigated to establish a method of devitrifying cast and rolled shapes. Glass shapes with high strength were made by melting, forming, and rapid cooling of the composition, and the shapes subsequently were converted to a crystalline condition by heat treatment. The best devitrification schedule included rapid cooling of the glass to below 300° C, followed by reheating at a rate of 50° to 400° C per hour, depending on the size of the shape, followed by a dwell of 60 to 70 hours at 500° C and another cooling period of 15 hours at 800° C. Attempts to use faster heating rates or slow cooling to accomplish devitrification resulted in deformation of the shapes. The crystalline shapes had flexural strengths that averaged over 33,000 psi, achieved with an annealing time of 60 to 70 hours at 500° C.

Ri 6712. Reduction of Ferrous Oxide (Wustite) of High Temperatures, by J. P. Hansen, T. N. Rushton, and S. E. Khalafalla. 1966. 25 pp. 12 figs. Wustite beds were reduced with carbon monoxide and mixtures of hydrogen and nitrogen in the temperature range 900° to 1,300° C to determine the effect of temperature, gas flow, and surface area on the rate of reduction to iron. The composition of the gas stream as it passed through the wustite bed was continuously measured. The change in composition was used to calculate the reaction rates. The velocity of reduction is dependent on the area of reacting interface and the driving potential of the gas as well as the exponential temperature effect. The reaction rate was independent of the gas velocity over the range of conditions studied.

RI 6713. Vopor Deposition of Cobalt-Iungsten Alleys, by J. G. Donaldson. 1965. 15 pp. 7 figs. Cobalt-tungsten binary deposits were formed in laboratory experiments by hydrogen reduction of the anhydrous mixed vapors of cobaltous chloride and tungsten hexachloride. The materials were sublimed in separately heated zones of a reaction tube and were transported in a stream of purified helium into the deposition section of the tube where the chloride gases were reduced to metal by a counter-

current flow of hydrogen. Heat treating of the near stoichiometric binary metallic deposits converted nearly all to the intermetallic compound CosW, however, small quantities of both cobalt and tung-sten remained. Mechanical tests showed that the tensile strength of heat-treated 75 percent cobalt-25 percent tungsten deposits was twice as high as that of similarly treated deposits of cobalt.

RI 6714. Copper Extraction From a Low-Grade Ore by A Sutton. 1965. 21 pp. 11 figs. The environ-mental and nutritional characteristics necessary for maximum copper extraction from a low-grade ore by Ferrobacillus ferrooxidans have been explored as have many of the limiting parameters. Criteria considered were oxygen consumption, copper extracted, soluble copper concentration, temperature, pH, par-ticle size, nutrients, and other inorganic salt concentrations. A set of environmental and nutritional conditions were developed for F. ferrooxidans which supported cell reproduction and maximum microbial oxidation of a low-grade copper sulfide ore. Perco-lator tests conducted under these optimum conditions resulted in an 18-percent increase in the quantity of copper microbially extracted over that extracted under conditions considered to be standard. Manometric tests determined those extremes of environmental conditions and nutritional factors which were detrimental to the extraction of copper by F. ferrooxidans.

RI 6715. Corresion Properties of Molybdenum, Tungsten, Vanadium, and Some Vanadium Alloys, by W. L. Acherman, J. P. Carter, C. B. Kenahan, and David Schlain. 1966. 59 pp. 17 figs. Molybde-num, tungsten, and vanadium were found to possess generally superior chemical and galvanic corrosion properties in many aqueous corrosive media at temperatures up to the boiling point. The corrosion resistance of vanadium in certain solutions was resistance of vanadum in certain solutions was further improved by alloying it with such metals as columbium, tantalum, and titanium. Tungsten was susceptible to a type of crevice corrosion in mercuric chloride solutions, but no other instances of crevice corrosion were encountered. With few exceptions, molybdenum, tungsten, and vanadium were not adversely affected when coupled with dissimilar metals in galvanic corrosion experiments; in some cases one or both members of a couple were protected by contract. When exposed to aqueous ammonia spray at 60° C, all three metals were moderately attacked, but they were resistant in spray environments of substitute ocean water and ammonium dihydrogen phosphate.

RI 6716. Correlation of Yield Behavior in Electrorefined Va-nadium With Interstitial Impurities, by E. A. Loria, G. H. Keith, and E. A. Rowe, 1965. 31 pp. 19 figs. The Bureau analyzed the effects of oxygen, nitrogen, and carbon on the tensile properties of electrorefined vanadium in terms of the Petch equation. The effects of the different impurities and grain sizes on the yield and flow stress between 273° and 77° K were studied.

81 6717. Evaluation of a Formcoke for Blast Furnace Use, by P. L. Woolf. 1966. 6 pp. An investigation was conducted to evaluate the use of a formcoke as the total fuel in the Bureau of Mines experimental blast furnace. The formcoke performed very satisfactorily, and comparisons made with a metallurgical coke showed that the performance with the formcoke was somewhat superior under the experimental conditions used. Work done in cooperation with Blast Furnace Research, Inc.

RI 6718. Steam as a Coal Dewatering Aid During Vacuum Filtration: A Pilot Plant Study, by A. W. Deur-brouck. 1966. 8 pp. 3 figs. Four samples of Pittsburgh-bed coal, of various size consist and ash content, were dewatered in a pilot-size vacuum-disk filter partially enclosed with a steam jacket. Steam fed at 2.5 to 12.5 pounds per minute reduced the moisture content of the filter cakes from 2.8 to 13.8 percentage points more than normal vacuum de-watering. Approximately 1.5 pounds of steam was required to remove 1 pound of water.

RI 6719. Pilot Plant Flotation of Nonmagnetic Taconite and Semitaconite, by R. T. Sorensen and D. W. Frommer. 1966. 46 pp. 17 figs. Research and testing in a small-scale equivalent of a commercial flotation plant were completed on four low-grade, iron-bearing materials from the western Mesabi range. Closed circuit flotation of calcium-activated silica with fatty acid collector developed data for comparison with the batch process and highlighted problems not evident from previous bench testing. The four ore samples, containing from 27 to 39 per-cent Fe, were equally represented by nonmagnetic taconite and semitaconite type materials. Iron con-centrates containing 6.0 percent, or less, SiO₂ were made from all four samples. Of the two material types the semitaconite was the more amenable to treatment, yielding iron recoveries of about 90 percent as compared with 70 to 80 percent for the other. Work done in cooperation with the Hanna Mining Co.

RI 6720. Thermal Reactions of Shale-Oil Components: Methyl-

pyrroles, Butylpyrroles, and isopropylpyrroles, by I. A. Jacobson, Jr., and H. B. Jensen. 1966. 50 pp. 13 figs. Thermal reactions of 1-methylpyrrole, pp. 13 figs. Thermal reactions of 1-methylpyrrole, 1-butylpyrrole, and 1-isopropylpyrrole were investi-gated by a flow method in the temperature range of 450° to 575° C. Those of 1-butylpyrrole and 1-isopropylpyrrole were also investigated in the 340° to 400° C range in a static system. The 1-substituted pyrroles isomerize by an irreversible reaction to 2substituted pyrroles. A reversible isomerization re-action shifted the alkyl group from the 2- to the 3-position on the pyrrole ring. All of the isomerization reactions were homogeneous, unimolecular, nonchain, first-order reactions having similar mechanisms and transition states. There is decomposition and cleav-age of the longer alkyl side chain when it is in either the 2- and 3-position giving, as products, pyrrole, 2- and 3-methylpyrrole, 2- and 3-ethylpyrrole, pyri-dines, and hydrocarbons. The decomposition reactions appear to be by free-radical mechanisms. Pyridine homologs are formed by the expansion of the alkylpyrrole: butylpyrrole produces pyridine, and iso-propylpyrrole produces 3-methylpyridine. Approxi-mate Arrhenius equations are given for the forma-tion of the decomposition products. Work done in cooperation with the University of Wyoming.

RI 6721. Lurgi-Gasifier Tests of Pittsburgh-Bed Coal, by W. H. Oppelt, H. Perry, J. L. MacPherson, and E. J. Vitt. 1966. 31 pp. 1 fig. Two exploratory gasification tests of limited duration were made at Dorsten, Germany, with strongly coking Pittsburgh-bed coal in a fixed-bed pressure gasifier. To reduce the coking potential of the Arkwright coal, ash refuse from the gasification of Dorsten (Leopold) coal was added to prepare coal-ash mixtures which contained nominal 20 and 30 percent ash. Major adjustments in principal process variables at the beginning of the tests resulted in wide fluctuations in the rate of gas production, gas offtake temperature, and carbon dioxide concentration in the gas. Because a higher steam-to-oxygen ratio was used in the tests than was customarily employed for routine operation, gas production was lower, and steam and oxygen consumption was higher. After operating conditions had been improved, the results of a $12\frac{1}{2}$ -hour-long test with addition of sufficient ash refuse to obtain a nominal 30-percent ash concentration indicated that operation is feasible with this coal mixture using a fixed-bed pressure gasifier equipped with a rotating coal distributor and stirrer. Work done in cooperation with the Blaw-Knox Co.

RI 6722. The Matrix-Type Magnetic Separator, by Foster Fraas. 1966. 11 pp. 6 figs. A separator for minerals of low magnetic susceptibility and fine particle size in a water suspension is described. A ring-shaped matrix of ferromagnetic fragments rotating so as to pass successively through magneticfield and field-free regions provides for the separation. Application is illustrated in the separation of hematite and ilmenite from quartz.

RI 6723. Use of a Diphenyl Ether Calorimeter in Determining the Heat of Fusion of Iron, by J. P. Morris, E. F. Foerster, C. W. Schultz, and G. R. Zellars. 1966. 14 pp. 5 figs. A diphenyl ether calorimeter for measuring high-temperature heat contents of ferrous alloys and iron- and steelmaking slags was constructed and calibrated with specimens of molybdenum, alumina, and platinum that were heated to temperatures ranging from 1,720° to 1,875° K. The standard deviation of the calibration measurements was 0.37 percent. By measurements of the enthalpy of delta and liquid iron, the heat of fusion of iron was found to be 3,298 ±100 cal per mole.

RI 6724. Heats of Formation of Beryllium Sulfate and Its Hydrates, by A. R. Taylor, Jr., B. B. Letson, and D. F. Smith. 1966. 8 pp. Heats of formation of beryllium sulfate and its hydrates at 298° K were BeSO., -287.55 ± 0.13 kcal/mole; BeSO.*2H₂O, -435.25 ± 0.13 kcal/mole; and BeSO.*4H₂O, -578.80 ±0.13 kcal/mole. Previously existing values for the heats of formation of these compounds were based on rather old and somewhat uncertain measurements.

RI 6725. Face Ventilation in Underground Bituminous Coal Mines. Performance Characteristics of Common Jute Line Brattice, by R. W. Dalzell. 1966. 30 pp. 23 figs. The performance characteristics, efficiency, and operating pressure of jute line-brattice systems were studied under varying underground conditions; various fabric grades and installation methods were used. The test results indicate that line-brattice system efficiency is dependent upon the method of ventilation, the method of installation, porosity of fabric, and size of tight rib area.

RI 6726. Analysis of the Cool Industry in Boulder-Weld Coolfield, Colorado, by Raymond L. Lowrie. 1966. 79 pp. 25 figs. Coal deposits in the Boulder-Weld County coalfield in Colorado are analyzed in relation to economic factors governing the growth, stability, and competitive potential of the coal industry. Recoverable reserves, estimated to be 571 million tons, are discussed in detail, particularly those in the Erie and Frederick Quadrangles. Geology of the coal measures, quantity and quality of water resources, and chemical and physical properties of the coal are described. Coal production factors, including mining techniques and equipment, labor requirements, transportation facilities and rates, and markets, are considered for coal's position in competition with alternate fuels. Growth of the fuels market, through increasing thermal-electric power generation in the Denver Metropolitan Area, will stimulate coal production in Colorado. Reserves of the contiguous Boulder-Weld coalfield, if mined in a sustained, yearround, high-tonnage operation, could be used to supply much of that fuel demand.

RI 6727. Thermodynamic Properties of Vanadium and Its Compounds, by Alla D. Mah. 1966. 84 pp. The subject matter is divided into three main sections. The first summarizes basic metallurgical thermodynamic data for vanadium and its compounds. Included are heat capacities, entropies, heat contents, heats of vaporization, free energies of vaporization, vapor pressures, temperatures of phase changes, heats of phase changes, heats of formation, and free energies of formation. The second section, application of the basic data, contains heats, free energies, equilibrium pressures, and equilibrium constants of reactions of vanadium compounds with special emphasis on metallurgical reactions. The third section supplies basic thermodynamic data for elements and compounds associated with metallurgical reactions of vanadium. Sufficient auxiliary data have been included so that the calculated values contained in this paper may be followed or new calculations made for related metallurgical reactions.

RI 6728. Recovery of Manganese From Slag Formed by Selective Oxidetion of Migh-Manganese Pig Iron, by E. G. Davis, F. E. Brantley, and E. C. Wright. 1966. 16 pp. 4 figs. Describes laboratory-scale experiments made to examine technical possibilities of reclaiming manganese from slags produced by oxygen lancing of high-manganese pig iron. Ferromanganese was added to molten pig iron to yield a 4- to 5-percent manganese hot metal, which simulated a product obtainable from the blast furnace. This was injected with oxygen to reduce the metal to 1 percent or less manganese and form a slag containing about 40 percent manganese. The molten slag was water quenched, treated with H₂SO₄, roasted at 660° C, and water leached to give soluble manganese and iron sulfates. The sulfates were precipitated as hydroxides, converted to the oxide form, and smelted to produce a standard ferromanganese containing 74.6 percent Mn and 0.01 percent P. As an alternate method of manganese vas produced. Direct smelting of the high-manganese slag resulted in 74.2 percent ferromanganese meeting ASTM specifications except for phosphorus content. The high phosphorus content of the metal and high slag-to-metal ratio obtained made this approach unattractive. Work done in cooperation with the University of Alabama.

RI 6729. Laboratory Processes for Washing Tetrobromoethane From Mineral Particles, by James S. Browning, R. B. Tippin, and Thomas L. McVay. 1966. 10 pp. Organic heavy liquid adhering to or adsorbed on fine mineral particles can be effectively removed by a novel method embracing pulping or displacement washing with hot water alone or in combination with a detergent. Displacement washing with steam alone or in combination with a detergent also was effective for removing the heavy liquid. In tests of sized minus 48- plus 200-mesh mineral charges, both the hot water washing with detergents and detergent steaming effectively reduced the heavy liquid losses on the particles to about 0.2 pound per ton of mineral or less. Centrifuging of the wash solution permitted an almost complete recovery of heavy liquid from the solution as a pure heavy liquid product. Work done in cooperation with the University of Alabama.

RI 6730. A Cost Estimate of the Bayer Process for Producing Alumine, by Frank A. Peters, Paul W. John-son, and Ralph C. Kirby. 1966. 23 pp. 7 figs. The Bayer process for treating Jamaican bauxite was evaluated from an economic standpoint, using standard estimating methods and published data, to present a reference point for cost estimates for nonbauxite alumina processes. The estimated operating cost for a plant producing 1,000 tons of alumina a day is \$47.96 per ton of alumina when charging \$8 per ton for bauxite and \$2.30 per hour for direct labor. The estimated fixed capital cost is \$46 million.

RI 6731. Effect of Certain Process Variables on Vapor De-posited Tungston, by F. W. Hoertel. 1966. 15 pp. 17 figs. The effects of certain process vari-ables on the grain size, grain type, and microhard-ness of vapor-deposited tungsten were established, and the near-optimum parameters and the efficacy for the vapor densition process ware determined No. for the vapor deposition process were determined. No significant change in the grain size or microstructure resulted from ultrasonic vibrations of the substrate during deposition, from variations in the hydrogen to tungsten hexafluoride ratio, or from small increases in reaction-chamber pressure. Near-optimum conditions were continuous deposition at atmospheric pressure, a deposition rate of 2-mils thickness/square inch of substrate area/hour, a temperature of 550° C, and a hydrogen to WF. ratio of 4:1. The addition, individually, of about 2 volume-percent of butane, 24 volume-percent of carbon dioxide, or 4 volume-per-cent of propane to the hydrogen and WF, mixture produced deposits with the finest grain size for each gas. A corresponding increase in microhardness ac-companied the decrease in grain size. The addition of these gases did not alter the columnar microstruc-ture found in vapor-deposited tungsten.

RI 6732. Calculation of the Average Ground Stress Com-nents From Measurements of the Diametral De-formation of a Drill Hole, by Louis A. Panek. 1966. 41 3 figs. Describes a method of determining the pp. existing stresses in a rock medium, by cutting free (core drilling) an annulus containing the drill hole. Expressions are derived from which one can calculate the stress ellipsoid—the three-dimensional change of stress, or the existing three-dimensional stress field, as the case may be. Study of these equations shows that the stress components in three dimensions can be determined by measurements in only two drill holes, and yields general principles that are useful in planning an efficient program of drilling and measurement.

RI 6733. Changing Water-Injection Profiles by Selective Plugging. A Field Study, by Thomas M. Garland. 1966. 46 pp. 30 figs. A study was made to deter-mine the feasibility of changing the injection profile of water-input wells after water breakthrough at producing oil wells. A secondary objective was to study the particle size and quantity of plugging material required to change the input profile and the methods of applying these materials. Fifty-three injection wells were treated with various amounts and types of plugging materials, and the injection profile was definitely changed in most of the wells treated. Increased efficiency of water injection after treatment was indicated by tracer surveys and in-jection-well performance. There were some indications that the rate of water production was reduced and the rate of oil production was increased as a result of selective-plugging treatments, but it was found that an immediate change in the rate of oil and water production did not normally occur. In many cases, beneficial results from a treatment may never be observed in the rate of oil or water produc-tion due to the many factors that affect the performance of producing and injection wells. Work done in cooperation with the North Texas Oil and Gas Work done Association.

RI 6734. Electric-Arc Furnace Reduction of Tin Slag for Production of Columbium-Tantalum-Bearing Alloy, by Willard L. Hunter and Oliver C. Fursman. 1966. 19 pp. 1 fig. Tin slags from Malaya and the Congo (Geomines) were reduced by carbon in a small, single-phase, steelmaking furnace, and a three-phase, steelmaking furnace, and a three-phase, sub-merged-arc furnace. In all cases depleted slags were fluid and easily tapped from the furnace. However, unless diluted by iron additions, the metal product that could be removed from the furnace only by hand rabbling. In batch operations in the steelmaking furnaces, 90 percent of the columbium and 85 percent of the tantalum were recovered in the alloy. Although more than 90 percent of the columbium and tantalum were recovered by smelting tin slag in a submerged-arc, ferroalloy furnace, removal of alloy from the furnace hearth was extremely difficult. Alloy produced when smelting tin slag in either type of furnace, without iron addition, pos-sessed both physical and chemical properties required for further processing.

RI 6735. Efficiency of Gas Displacement From a Water-Drive Reservoir, by D. C. Crowell, G. W. Dean, and A. G. Loomis. 1966. 29 pp. 6 figs. Presents the results of a laboratory investigation of displacement of gas by injection or imbibition of water into sandstone models under essentially isobaric conditions. A brief discussion of scaling requirements is included. The influence on residual gas saturation of independently varying the parameters of dimensional ratios of the porous media, rates and methods of flooding, surface tension, initial water saturation, and permeability is shown. Of these variables, increased initial water saturation and decreased surface tension reduced residual gas saturation signifi-cantly, whereas variations in flooding rate and dimensional ratios had no apparent effect. No correlation was evident between absolute permeability and residual gas saturation.

RI 6736. Reaction Rate of Uranium Metal With Uranium Tetrafluorida in Molton Fluoride Solutions, by Bernard Porter, R. E. Meaker, and T. A. Henrie. 1966. 11 pp. 4 figs. The rate of the heterogeneous reaction between high-purity uranium metal and uranium tetrafluoride in molten lithium fluoride was measured. The apparent heat of activation for the re-action is 16.91 kilocalories per mole of UF. A sur-face-controlled mechanism is suggested in which UF. is adsorbed on the uranium metal surface. Additional UF. reacts with adsorbed species and the metal site to form an activated complex that decomposes to the product UF₃. The reaction is an important source of metal loss in the electrowinning of uranium metal.

RI 6737. Tin-Lade Investigations, Cape Mountain Area, Sew-(with Section on Petrography by Walter L. Gnagy). 1966. 43 pp. 9 figs. The Bureau investigated the tin deposits of the Cape Mountain area during July and August 1962 to test the effectiveness of detri-

tal-cover sampling in permafrost areas as a relatively cheap and simple means of guiding mine de-velopment and exploration. Results indicate that systematic detrital-cover sampling can be used effectively to delineate obscure deposits with sufficient accuracy to permit sampling with minimum of trenching or drilling. Extensions of known outcroppings were traced in sufficient detail to guide lode sampling and several previously unknown tin-bear-ing lodes were found and sampled. Lode sampling was limited to the minimum needed to establish the reliability of detrital-cover sampling results. The results of previous lode and placer investigations are summarized and detrital-cover sampling methods and results are described in detail.

RI 6738. Reduction-Volatilization Processes for Recovery of Manganese From Ores, by W. L. Falke and A. A. Cochran. 1966. 19 pp. 11 figs. Procedures in which manganese compounds are reduced and the metal is volatilized and selectively condensed were investigated. More than 95 percent of the manganese was recovered from high-melting-point ores whether vacuum volatilization or atmospheric pressure volacally attractive under present price-cost conditions.

RI 6739. Critical Path Planning and Scheduling Applied to Mining Operations, by Adrian J. Mathias and Donald E. Redmon. 1966. 48 pp. 18 figs. Illus-trates critical path planning and scheduling techniques as applied to typical mining operations. Detailed examples of arrow diagraming operations. Detailed examples of arrow diagraming and com-puter-oriented applications of critical path methods are given. Program Evaluation and Review Tech-nique (PERT) is discussed briefly in comparison to the Critical Path Method (CPM).

RI 6740. Preparation Characteristics of Coal From Buchanan

County, Va., by Albert W. Deurbrouck. 1966. Twenty-one samples were collected 3 figs. 49 pp. from 9 coalbeds in the county. Of these samples 13 were of metallurgical quality as received, and 8 required some upgrading to provide acceptable products. In general, the coals were of low to medium ash and sulfur content and ranked as medium- to high-volatile bituminous. In 1963, production in the county was in excess of 13 million tons, of which 2.2 million tons were mechanically cleaned.

RI 6741. The Mass Spectra and Correlations With Structure for 2-1-Butyl-, 3-1-Butyl-, 2,5-di-1-Butyl-, and 2,4-di-t-Butylthiophenes, by Norman G. Foster. 1966. 30 pp. 9 figs. The mass spectra of four tertiary butyl substituted thiophenes are reported. A comparison and contrast with earlier structure correlations made by ARI-RP48 mass spectroscopists is presented. The fragmentation routes of these types of molecules are discussed and explained in terms of existing theories in mass spectrometry. Low ionization voltage data are presented to support the mechanistic picture developed. Structures are inferred about some of the ions, and these are correlated with existing theories. Metastable peaks in the spectra are used to support the fragmentation paths. The presence of doubly charged ions in the spectra is noted and the possible implications toward mechanisms discussed. The general picture of simple, small fragments leaving the ion moiety upon further frag-mentation is developed in detail. Some suggestions are presented for further work utilizing isotopically labeled molecules to establish firmly the general picture of fragmentations of the alkylthiophenes.

Ri 6742. Electrowinning Tungsten in Malide and Phosphate Electrolytes, by John M. Gomes, Kenji Uchida, and Don H. Baker, Jr. 1966. 9 pp. 3 figs. Two molten salt systems were evaluated as electrolytes for the repetitive recovery of tungsten from tung-sten oxide (WO₃) made by calcining commercial-sten oxide (WO₃) made by calcining commercialgrade ammonium paratungstate. Using a sodium

chloride-sodium fluoride-potassium aluminum tetra-fluoride electrolyte at 800° C, 1 pound of 99.8 percent tungsten was recovered for each 2.7 killowatt-hours of energy consumed. The metal contained 1,100 ppm carbon, was in dendritic masses of spherical grains, and had an apparent bulk density of 5.41 g/cm³. Tungsten of 99.9-percent purity was won from a sodium pyrophosphate-sodium tetraborate-sodium chloride electrolyte at 1,000° C; 6.0 kilowatt-hours of energy was consumed for each pound of metal recovered. The metal contained 120 ppm of carbon, was in dendritic masses of hexagonal acicular crystals, and had an apparent bulk density of 7.25 g/cm³. Each metallic impurity-aluminum, calcium, copper, iron, nickel, and silicon-in the two tungsten products was 16 ppm or less.

RI 6743. Hydraulic Transport of Cool, by Arnold P. Pipi-len, Murray Weintraub, and A. A. Orning. 1966. 31 pp. 16 figs. In a study of the principal factors affecting the transport of coal-water mixtures through a centrifugal pump and a pipeline, the interrelation between solids concentration, velocity, and pressure drop was established for a bituminous lump coal (minus 2 inch) in concentrations of up to 48 weight-percent. An optimum concentration was found to exist for maximum capacity of a given pipeline and for minimum en-ergy requirements per ton of coal. Coal size deg-radation by particle fracture took place in the pump; abrasion and attrition to form fines took place in both pump and line. A novel system of studying flow of solid-liquid mixtures in pipelines by the determination of relative sound intensities was developed.

RI 6744. Extraction of Alumina by Leaching Melted and Quenched Anorthosite in Sulfuric Acid, by H. Leitch, H. G. Iverson, and J. B. Clemmer. 1966. 32 pp. 6 figs. Investigates melting, quenching, and sulfuric acid leaching on alumina from mixtures of albite and anorthite and from anorthosites containing 26 to 32 percent alumina. Variations in pouring temperature, quenching, and leaching conditions were studied with respect to the extraction of alumina and impurities. Virtually all of the alumina was dissolved by leaching melted and quenched California anorthosite in boiling 16-percent sulfuric acid solution for 15 to 30 minutes. The leach solutions were readily separable from the solid residue by conventional thickening and filtration techniques. Only 2 to 5 grams of SiO₂, Fe₂O₃, or CaO dissolved per 100 grams of alumina. The quantity of SiO₂ in solution varied inversely with the duration of the leach and with the concentration of the H₂SO, solution used. Melted and quenched Wyoming and Minnesota anorthosites with SiO2:CaO weight ratios of 4.3 and 3.2, respectively, were less amenable to sulfuric acid leaching than California anorthosite with an SiOs:CaO weight ratio of 5.3. However, excellent results were obtained on the Wyoming and Minnesota anorthosites by the addition of SiO₂ to these materials before melting, in quantities sufficient to adjust the SiO2: CaO weight ratios of the furnace charges to between 4 and 6.

RI 6745. Experimental Longwall Mining in a Pennsylvania Anthracite Mine (in Two Parts). 2. Use of a Shearer Loader, by Wilbert T. Malenka and Robert J. Brennan. 1966. 12 pp. 6 figs. In its search for a highly productive mining system for anthracite beds pitching from 10° to 20°, where conventional mobile equipment cannot be used, the Bureau initiated a longwall project by introducing a shearer drum cutter loader of European origin. Because of the undulating nature of the roof and floor and changing bed thicknesses, the machine proved inflexible and extra work was required in lifting bottom coal and blasting top coal. Part 1, Use of Yielding Steel Props, was published in 1964 as RI 6378. Work done in cooperation with the Glen Alden Coal Co.

RI 6746. Sympathetic Detonation of Ammonium Nitrate and Ammonium Nitrate-Fuel Oil, by R. W. V. Dolah, F. C. Gibson, and J. N. Murphy. 1966. 34 Dolah, F. C. Gibson, and J. N. Murphy. 1966. 34 pp. 19 figs. An investigation was made of the distances over which sympathetic detonation of am-monium nitrate (AN) and ammonium nitrate-fuel oil (AN-FO) might be expected. Large-scale gap tests used two types of AN-FO donor charges in three sizes with AN, both at ambient and elevated temperatures, and AN-FO acceptor charges. Donor sizes were varied to test the validity of a scaling law commonly used in quantity distance tables. The law commonly used in quantity distance tables. The, up-and-down experimental design was chosen to determine the 50-percent initiation point efficiently. The acceptor charges were instrumented to indicate initiation and to determine detonation velocity. Other electronic techniques for measuring the rate of growth, stability of detonation, and detonation pressures were employed. Air shock and fragment ve-locities between charges were measured by electronic and photographic methods, and determination of side-on air-blast pressures and impulse duration were made for about half the shots. Separation distances between donor and acceptor were found to be larger than anticipated both for the AN and AN-FO. With AN-FO acceptors and a 16-gage steel faced donor, one initiation occurred at a separation of 53 feet or nearly 16 charge diameters; with AN, initiation occurred at 4 to $5\frac{1}{2}$ charge diameters. Work done in cooperation with the Manufacturing Chemists Association.

RI 6747. In-Situ Measurements of Rock Deformation in a Voin-Type Deep Mine (in Two Sections). 1. Instrumenta-

tion and Techniques, 2. Analysis of Measurements in the Star Mine, Burke, Idoho, by Galen G. Waddell. 1966. 47 pp. 24 figs. Dilation and contraction of the rock surrounding horizontal access openings of a deep mine were analyzed during stope advance to determine what type of measurements, made with rela-tively inexpensive instrumentation, would best reflect the rock behavior. A variety of instruments, mostly mechanical extensometers, were used. Detailed descriptions are given of down-the-hole extensometers, floating rockbolt clusters, transit surveys, and other instruments and measuring techniques. Although all of the radial-deformation-rate graphs illustrated useful rock behavior data, the most informative graphs were compiled from data procured with the radial extensioneters that penetrated, to various depths, the rock around the access openings. An analysis is given of measurement data on the rock around lateral drifts and across and adjacent to the nearly vertical vein of the Star mine, Burke, Idaho. Several useful relationships were found between the rock deformation rate and the stoping process. Information was produced on the elastic state of rock around an underground opening, effectiveness of stope support, rheology of rock, zone of influence around stopes, effectiveness of rockbolts, axis of maximum strain in a plane perpendicular to the long axis of the lateral, and other phenomena. This information could be of particular value in determining location, design, and support of underground openings.

RI 6748. Flammability Characteristics of Selected Halogenated

Hydrocarbons, by H. E. Perlee, G. H. Martindill, and M. G. Zabetakis. 1966. 12 pp. 2 figs. Autoignition temperatures and limits of flammability of nine halogenated hydrocarbons in atmospheres of air, oxygen, and nitrogen tetroxide were measured in a modified standard autoignition apparatus and limit-of-flammability apparatus previously developed at the Bureau of Mines. Of the nine halogenated hydrocarbons investigated—bromochloromethane, bromotrifluoromethane, bromochlorodifluoromethane, 1,1,2-trichlorotrifluoroethane, 1-bromo-1-chloro-2,2,2-trifluoroethane, dibromodifluoromethane, 1,2-dibromo-1,1,2,2-tetrafluoroethane, 1,1,1,3,3pentachlorotrifluoropropane, and 1-bromo-2,4-dichloro-1, 1,2,3,3,4-hexafluorobutane—two formed flammable mixtures with nitrogen tetroxide and six with oxygen; none formed flammable mixtures with air. Three of the halogenated hydrocarbons formed no flammable zones with any of the three oxiding atmospheres. For those halogenated hydrocarbons that supported combustion in oxygen atmospheres, explosion pressures developed during constant-volume burning of mixtures near the middle of the flammable zone were observed to range from about 6 psig for dibromodifluoromethane. In all cases, the calculated burning velocities of these mixtures were less than 8 in/sec. Work done under Air Force Propulsion Laboratory Delivery Orders.

RI 6749. Effects of Certain Mineralogical Features on Pherphote Recovery, by J. W. Town, W. G. Gruzensky, and P. E. Sanker. 1966. 12 pp. 5 figs. The Bureau of Mines conducted phosphate beneficiation studies to determine the influence of mineralogical and textural features on the recovery of phosphate from select bed and composite samples representing different phosphate rock types of the western Phosphoria Formation. Batch heavy-liquid tests showed that ore grade, pellet size, and type of interstitial material were significant parameters affecting concentrate grade and recovery. Recoveries at acid grade (31.5 percent P_O.) ranged from 98 to 56 percent. Liberation was essentially complete at 28 mesh, and recoveries tended to drop when overgrinding occurred.

RI 6750. Rates of Adsorption of Methane on Pocahantas and Pittsburgh Seam Cools. by L. J. E. Hofer, James Bayer, and Robert B. Anderson. 1966. 13 pp. 3 figs. Determines rates for adsorption and desorp-tion of methane as a function of particle size and temperature, using coals from the Pocahontas No. 3 seam (lvb) from the Bishop mine of western Virginia, and the Pittsburgh seam (hvab) from the Pursglove No. 15 mine of northern West Virginia. For a given coal sample and temperature, the rate curves for adsorption and desorption are essentially the same when expressed on a fractional approach to equilibrium basis. The rates of adsorption and desorption increased eightfold as the particle size was decreased from 6-8 to 270-325 mesh per inch. The adsorption process appears to be diffusion controlled. Rate of sorption processes increased with increasing temperature; however, the amount adsorbed at equilibrium decreased.

RI 6751. Petrographic and Flotation Studies on the Meade Peak, Idaho, Phosphate Samples, by J. W. Town. 16 pp. 2 figs. Petrographic classification 1966 and flotation studies were made to determine if acidgrade concentrates could be obtained from individual and composite samples from the Meade Peak member of the Phosphoria Formation, Idaho. The petro-graphic studies were made to determine the effect of compositional features on concentration of phosphates. The ore grade, ovule size, and clay content were the main features affecting grade and recovery of phosphate. Flotation results on roasted ore with a tail oil emulsion scheme showed that beds con-taining over 10 percent P_7O_8 could be beneficiated and composited with the two high-grade beds to produce a composite concentrate containing 31.9 percent P.O. at 84.3 percent recovery. Treatment of these intermediate-grade phosphate beds by flotation increased ore reserves over 200 percent and increased the ore-to-waste ratio in the ore zone from 1:5.7 to 1:0.27.

Ri 6752. Analyses of Some Crude Oils From Fields in West Texas, by C. M. McKinney and Ella Mae Shelton. 1966. 163 pp. Bureau of Mines routine crude oil analyses are reported for 996 analysis. crude oil analyses are reported for 286 samples from the major producing geological formations of 161 fields in west Texas. Tables are included which show the geographical and geological source of the samples, their general characteristics, and the analyti-cal data determined and computed for each sample. A brief discussion covers use of the data to estimate the types of hydrocarbons present in distillate fractions obtained during the analysis.

RI 6753. Direct Determination of Oxygen in Coal, by R. F. Abernethy and F. H. Gibson. 1966. 21 pp. 1 fig. A modified Unterzaucher method was applied. to the direct determination of oxygen in coal. Coal samples were pyrolyzed in a nitrogen atmosphere, and the gaseous oxygen compounds liberated were converted to carbon monoxide by a platinized-carbon catalyst at 900° C. After passing over heated copper and through a tube containing soda asbestos and magnesium perchlorate, the purified carbon monoxide was oxidized to carbon dioxide by iodine pentoxide-liberating an equivalent amount of iodine. The iodine was titrated with 0.02 N sodium thiosulfate; in a few tests the weight of carbon dioxide produced was determined. Direct oxygen determinations of coal included organic oxygen from the coal substance, plus a small quantity of inorganic oxygen derived principally from carbonate minerals and from combined water of silicates in the mineral matter. The influence of mineral matter on the direct oxygen determination was investigated by testing (1) untreated coal, (2) demineralized coal from which most of the mineral matter except pyrite was removed by treatment with hydrofluoric and hydrochloric acids, and (3) coal samples treated with dilute hydrochloric acid.

RI 6754. The Thermodynamic Properties of the ZnO-Fe₂O₂-Fe3O, System at Elevated Temperatures (in Two Parts). 1. The Thermodynamic Properties as Related to the Spinel Structure, by R. L. Benner and H. Kenworthy. 1966. 44 pp. 16 figs. Describes an investigation of the ZnO-Fe₂O₃-Fe₃O, system at 1,000°, 1,300°, and 1,400° C, with oxygen pressures between 1.0 and 1×10-4 atmospheres. The results, divided into the thermodynamic properties as related to the spinel structure and the thermodyamic properties as related to zinc concentrate roasting, were used to calculate the activities of ZnO, Fe₂O₃, and Fe₃O₃ within the spinel solid solution region of the ternary system, and the pseudobinary activities of ZnFe.O. and Fe.O.. The activities of both systems show large positive deviations from Raoult's Law, especially at high Fe₂O, concentrations. The free energies, the enthalpies, and the entropies of mixing for the binary system were calculated from the binary activities, and the entropies of mixing were compared with two statistical models, one representing the mixing of a normal with an inverse spinel. The binary entropy of mixing seemed to be better represented by the latter statistical model, indicating that the tetrahedral and octahedral cations of the reactants tend to remain in the product, even at the high temperatures of the study. This comparison also indicated that the cations of the components are the major contributing factors to the thermodynamic properties.

RI 6755. Carbon Reduction of Chromite, by Willard L. Hunter and Danton L. Paulson. 1966. 20 pp. 9 figs. Studies the effect of temperature upon the reduction of chromite by carbon and the rela-tive reducibility of chromites as a function of their composition. Ferric oxide was also studied to provide comparative data. Based on the temperature at which chromite was 50 percent reduced in 15 minutes, Transvaal chromite reduced most easily, followed by Mouat, then by Kampersian, and finally by Rhodesian DFC material. Statistical analysis of test results indicated that the ferric iron content of chromites affects their reduction behavior more than any other constituent.

RI 6756. Carbon Deposition for Thermal Recovery of Petroleum. A Statistical Appreach to Research, by Harry R. Johnson and Edward L. Burwell. 1966. 21 pp. 5 figs. The carbon deposition characteris-tics of a high-gravity, paraffin-base crude oil were studied in the laboratory. The results indicate that a fuel supply adequate to initiate a combustion wave can be deposited in high-gravity-oil reservoirs. These results are significant because there has been considerable doubt whether oils over 35° API gravity are able to deposit sufficient fuel. Considered in these studies were the effects of air flux, temperature, initial oil saturation, and time on carbon deposition. Conditions that maximized carbon deposition in the laboratory and an understanding of the nature of carbon formation are shown by graphical inter-pretation of the data. Statistical techniques were used to design and analyze the results of the retort tests. For the same amount of laboratory work, this approach yields more information about the systems that were studied than the classical method of research presently used in many laboratories. In addition, the accuracy of calculating the effect of each variable on carbon deposition is twice that of the classical approach. This report develops the statistical approach to research without complex mathe-matics, thus enabling the reader to grasp the concept of how statistics can be applied to study many complicated problems.

RI 6757. High Energy-Rate Forging and Extrusion and the Effect on Structure and Properties, by Jack G. Croeni, John S. Howe, Jr., and Haruo Kato. 1966. 31 pp. 18 figs. Studies the influence of high energy-rate deformation on the structures and properties of low-carbon steel, stainless steel, titanium, titanium-6 percent aluminum-4 percent vanadium, beryllium, molybdenum, and tungsten. The purpose of this study was to determine relative formability, the effect of energy and temperature on metalworking parameters and resulting structures, and the properties of materials formed by this technique. Forming techniques were limited to upset forging and direct extrusion on pneumatic-mechanical forming machines. Results show that considerable grain refinement can be achieved by careful control of deformation and forming temperature by high-energy techniques. Significant improvements in strength were observed as a result of this refined structure Approximate deformation resistance as a function of temperature was determined for a variety of materials.

RI 6758. Ignition and Control of Burning of Coal Mine Refuse, by James W. Myers, Joseph J. Pfeiffer, Edwin M. Murphy, and Franklin E. Griffith. 1966. 24 pp. 23 figs. Laboratory experiments showed 24 pp. 23 hgs. Laboratory experiments showed that air permeates more readily segregated than nonsegregated refuse and that air permeability is greater in coarse than in fine particle refuse. Minus 3½-inch refuse ignites spontaneously more readily than minus ¼-inch refuse. The burning of a 1,000-pound conical coal pile was controlled by capping with an 18-inch-thick layer of minus ¼-inch refuse containing 37 percent combustible. In field trials, the burning of refuse at operating mines was con-trolled by capping with a layer of fine refuse trolled by capping with a layer of fine refuse. Water, applied as a spray or by injection, quenched surface flames and cooled the burning waste. Inspection of refuse piles at operating mines showed that the spontaneous ignition tendency is affected by the exposed surface relative to the total volume and the segregation of particles during dumping.

RI 6759. Use of a Continuous Borer in Mining Pitching An-thracite Beds, by W. H. Tavenner and J. T. Schimmel. 1966. 25 pp. 7 figs. Describes the use of a continuous borer to mine an anthracite bed 30 feet thick on a pitch of 15° to 45°. The continu-ous borer operated on a coal floor that was fre-quently soft because of heaving. The continuous borer could not bore openings on a grade exceeding 27 percent (15° pitch). Because 15° was also the lower limit of the pitch of the bed, the continuous borer was used only to drive gangways. This ma-chine virtually filled the workplace, leaving insuffi-cient space to place heavy-duty timber and cushion-ing material between the timber and coal back to allow for normal expansion of the uncut coal. The lightweight yieldable steel arch against the coal back gave inadequate support to control convergence, which in a disturbed area sometimes occurred with explosive violence. This exposed the machine operator to a hazardous condition and caused the com-pany to discontinue the use of the continuous borer. Work done in cooperation with the Raven Run Coal Co.

RI 6760. Computer Techniques for Calculating Shape Factors and Channel Volumes From a Potentiometric Model for Use in Waterflood Performance Calculations, by R. V. Higgins, D. W. Boley, and A. J. Leighton. 1966. 49 pp. 9 figs. Presents a computer program for 49 pp. calculating the shape factors and volumes of cells from a potentiometric model, using coordinates of the intersections of the stream lines and equal potentials and a few additional coordinates. Shape factors are used in flow computations when the geometry is complicated. The program also includes computer instructions to divide the channels into cells of equal volume to obtain the shape factor for each of these equal volume cells. An illustrated example using the potentiometric model for the waterflood of a sevenspot well-spacing pattern is presented. The information contained in the report is of value not only to those allied to the subject but also to others, because many of the techniques can be conveniently used in formulating other computer programs.

RI 6761. Equivalence of Cool Dust and Methane at Lower Quenching Limits of Flames of Their Mixtures, by J. M. Singer, A. E. Bruszak, and J. Grumer. 1966.
14 pp. 6 figs. Quenching distances for flames of methane-coal dust mixtures were determined with air and oxygen-enriched air. Coals used were Pitts-burgh, Sewell, and Pocahontas No. 3. Quenching distance of the seven and distances were greater for flames of hybrid mixtures of coal dust and methane than for methane flames of corresponding stoichiometry. From the data of quenching distances and methane-coal dust concentrations were calculated the quenching equivalence, which is the increase in coal dust concentration required to maintain a given quenching distance value as the methane concentration decreases. These equivalences could be useful in identifying hazardous methane-coal dust mixtures in mines.

RI 6762. Recovery of Manganese Sulfate Crystals From Solution by Submerged Combustion Evaporation and by Thermal Crystallization, by H. C. Fuller. 1966. 30 pp. 6 figs. Submerged combustion and inverse solubility methods were investigated as promising alternative means for crystallizing manganese sulfate from solutions produced by leaching manganese ores with either sulfuric acid or sulfur dioxide. Evaporation of water from typical manganese sulfate solutions by submerged combustion techniques enabled pro-duction of a slurry containing 32 to 39 pct MnSO. $H_{2}O$ crystals suspended in a saturated solution of manganese sulfate. Such a slurry required further processing by thickening or filtration and drying to produce crystals of MnSO. H2O. In a second to produce crystals of MnSU. H.O. In a second approach semicontinuous processing of manganese sulfate solutions by thermal crystallization under pressure effected a recovery of 94.5 pct of the MnSO. H_2O as dry free-flowing crystals. Treat-ment of a solution containing about 100 grams man-ganese per liter at 189° C produced a "barren" so-lution containing only 1.9 grams manganese per liter. Calculations made on comparable manganese sulfate solutions show that the heat requirement sulfate solutions show that the heat requirement of the thermal crystallization method was about one-third to one-fourth that of the submerged combustion method.

RI 6763. Derivation and Application of a Material Balance

Equation for Partly Depleted Oil Reservoirs Repres-sured With Ges, by Alton B. Cook and F. Sam Johnson. 1966. 16 pp. 6 figs. A material balance equation was derived for calculating (1) the initial oil volume and (2) the relationship of average reservoir pressure to net gas in storage in reservoirs used for natural gas storage operations. The equation is also applicable to secondary-recovery operations where reservoirs are completely repressured and gas cycled. This equation minimizes two probable sources of error in conventional material balance calculations; namely, inaccurate measuring of and accounting for produced gas, and differences between true reservoir pressure and average reservoir pressures as derived from bottom-hole pressure measurements. A new procedure is presented for calculating water encroachment. By solving the conventional material balance equation and the derived equation for gas storage simultaneously, the values for initial oil in place and net water encroachment can both be determined.

Magnetic Roasting of Iron Ores With Ferrous Scrap, RI 6764 by M. M. Fine and Charles Prasky. 1966. 23 pp. 7 figs. Describes the theory, experimental procedures, and the results obtained to date in the 23 pp. development of the Bureau's process for magnetically roasting iron ores using scrap iron as a means of reduction. Since magnetic separation is an operational step common to magnetic separation is an operational inary research studies emphasized only the novel magnetic roasting step. The studies included the use of automobile scrap, ferrous reductants such as borings and turnings, and pereduced pellets. Technical feasibility of the process was demonstrated both on a bench and pilot scale. Quality magnetic concen-trates with recoveries of over 90 percent were obtained from a direct shipping ore containing 59.5 percent Fe and from fine-grained semitaconites with about 30 percent Fe.

RI 6765. Improvement of a Commercial Hypereutectic Alumi-num-Silican Master Allay, by R. R. Lowery, J. G. Croeni, and H. Kato. 1966. 25 pp. 16 figs. De-scribes development of hypereutectic aluminum-silicon alloys which had better commercial properties than the unmodified hypereutectic alloy. A commervial aluminum-20 weight-percent silicon master alloy was selected as a binary base for improvement. The primary silicon grains were reduced from ASTM 4.5 to ASTM 8.5 by the use of phosphorus and phospho-rus compounds. The remaining eutectic matrix was refined by sodium metal additions of 0.2 weight-percent. Solid solution strengthening of the alpha alumi-num was obtained by adding 2 percent copper and 0.5 percent magnesium; also, 1 percent nickel was added to harden the alloy. Optimum thermal treatment consisted of a solution treatment for 10 hours at 480° C with hot water quench, followed by aging for 6 hours at 175° C. The final alloy exhibited a Rockwell B hardness of 75 ± 2 in the heat-treated condition. The ultimate tensile strength was 39,500 in the temperature range 20° to 300° C. No wear resistance data were collected.

RI 6766. Flammability Characteristics of Trichloroethylene, by H. E. Perlee, G. S. Scott, and G. H. Martindill. 1966. 8 pp. 3 figs. The concentra-tion limits of flammability and autoignition temperatures of trichloroethylene in atmospheres of air, oxygen, and nitrogen tetroxide have been determined in a spherical vessel. The autoignition temperatures of TCE in atmospheres of air, oxygen, and nitrogen tetroxide were found to be 419°, 396°, and 221° C, respectively. The flammability zones of TCE-air, TCE-oxygen, and TCE-nitrogen tetroxide mixtures at 100° C were found to be 10.5 to 41, 7.5 to 91, and 13.5 to 69 volume-percent TCE, respectively. In addition maximum combustion pressures of 50 psig and 140 psig were recorded for constant volume combustion of the lower limit mixtures of trichloroethylene in air and oxygen, respectively.

RI 6767. Sampling and Coking Studies of Caal From the Kukpowruk River Area, Artic Northwestern Alaska, by Robert S. Warfield, W. S. Landers, and Charles C. Boley. 1966. 59 pp. 14 figs. Eight samples of high-volatile bituminous coal, each large enough for a study of its coking properties, were obtained from a location along the Kukpowruk River, Arctic Northwestern Alaska. Bench scale and pilot plant carbonization studies with several patterns of coal blending were conducted. The data from these tests

were compared to data from similar tests on a coking blend used by the Kaiser Steel Corp. at Fontana, Calif. The majority of the samples representing the 20-foot seam was found to have significant coking properties and produced coke approaching metal-lurgical quality when blended with selected coking coals. Although oxidation effects were evident in the samples representing upper portions of the seam, it appears that the whole seam could be used.

RI 6768. Some Generalized Probability Distributions With Special Reference to the Mineral Industries (in Five Parts). 5. Theoretical Confirmation and Applications, by Robert M. Becker. 1966. 60 pp. 3 figs. Part 5, the last of this series, deals with the theoretical confirmation and application of results developed in parts 1 and 2. The bulk-sampling variances of Hassialis and Kassel and Guy are compared with those in part 2, both as to formulation and as applied to ores and coal. The results provide confirmation for much of the development in part 2. Examples are presented for determining the reliability of bulk samples with respect to various measurable charac-teristics. These characteristics include, for example, face area. The bulk samples considered consist either of a given weight, a given volume, or a given number of particles. In addition to problems of sample reliability, some of these examples may also be applicable to quality control. Several possible applications of results developed in parts 1 and 2 are outlined. These include tests for random data, degree-of-mixing indices, and particle-fineness indices.

RI 6769. The Thermodynamic Properties of the ZnO-Fe₂O₃-Fe3O, System at Elevated Temperatures (in Two Parts). 2. The Thermodynamic Properties as Related to Zinc Concentrate Reasting, by R. L. Benner and H. Ken-worthy. 1966. 16 pp. 5 figs. A compound stabil-ity diagram was constructed for the Zn-Fe-S-O system to show the phases that should be thermodynamically stable at various temperatures, oxygen pressures, and SO_2 pressures. The diagram was demonstrated to have good qualitative value for predicting stable phases that may, in turn, be related dicting stable phases that may, in turn, be related to the recovery of zinc in the leaching phase of the electrolytic zinc process. The study showed that roasting temperature is the most significant variable in preventing roaster formation of zinc ferrite, which is directly related to subsequent extraction of zinc in the leaching step. Part 1 was published as RI 6754.

RI 6770. A Streak Camera Method for Measuring Dynamic Equation of State Properties of Rock, by Lippe D. Sadwin, Norman M. Junk, and Wilbur I. Duvall. 1966. 14 pp. 6 figs. Describes a high-speed streak camera method for making equation of state measurements (shock and particle velocities) on samples of rock under dynamic loading conditions. Experimental data are given for tests on 12 samples repre-senting 5 rock types. Analysis of these data shows that the method is practical and that good repro-ducibility of results can be obtained. The pressure range covered in the tests was from 1 to 50 kilobars.

RI 6771. Consolidation and Mechanical Properties of Electrowon Mulybdenum, by E. A. Loria and J. M. Kees. 1966. 18 pp. 14 figs. High-quality sheet of electrowon molybdenum was attained by a sequence of procedures on pressed and arc-melted crystalline powders. These procedures included hightemperature, high-vacuum sintering treatments and the use of metal deoxidizers instead of carbon to

improve the mechanical properties of the molybdenum sheet. Rolled sheet 60 mils thick was evaluated by tensile and bend tests, hardness measurements, microstructures, and recrystallization treatments. After stress relieving, yield strength ranged from 85,000 to 110,500 psi (0.2-percent offset) and ultimate strength ranged from 87,200 to 117,250 psi with 4.5- to 25-percent elongation observed for arcmelted sheet, and 5.0- to 28-percent elongation observed for powder metallurgy sheet. In room temperature blend tests, the sheet yielded plastically, indicating that the ductile-brittle transition point was below room temperature. The diamond pyramid hardness (DPH) of the molybdenum sheet changed from 214 to 293 DPH for the stress-relieved condition to 177 to 185 DPH for the fully recrystallized condition. The brittleness of the recrystallized molybdenum, reported by other investigations as characteristic of sheet prepared from commercial-grade hydrogen-reduced powders, was not in evidence. Recrystallized tensile specimens pulled at room tem-

RI 6772. Demonstration and Evaluation of Five Methods of Secondary Backfilling of Strip-Mine Areas, by F. E. Griffith, M. O. Magnuson, and R. L. Kimball. 1966. 7 pp. 18 figs. Cost data are given for five methods of secondary backfilling of strip mines previously partially backfilled. The operations were conducted in north-central Pennsylvania; an average of 600 linear feet of highwall was backfilled in each trial.

linear feet of highwall was backfilled in each trial. Major obstacles and the relative merits of the methods are discussed. Work done in cooperation with the Department of Mines and Mineral Industries and the Department of Forests and Waters, Commonwealth of Pennsylvania.

RI 6773. Explosion Hazards of Ammanium Nitrate Under Fire Exposure, by R. W. Van Dolah, C. M. Mason, F. J. P. Perzak, J. E. Hay, and D. R. Forshey. 1966. 79 pp. 40 figs. An attempt has been made in this investigation to define the conditions under which ammonium nitrate (AN) might detonate as a result of involvement in fire. The initiation of detonation by shocks derived from explosives or from projectile impact was investigated as a function of temperature and charge diameter. A new technique was devised to investigate the burning of raw and contaminated AN under pressure. No transition to detonation in AN was obtained in the burning experiments. The critical diameter for detonation of fertilizer-grade AN was found to be quite small when the AN was at temperatures just below melting point; this indicates that initiation of detonation may be less difficult at elevated temperatures but such initiation by gas-phase detonation was shown to be unlikely. Transition from burning to detonation was obtained in vessels with restricted vents. However, the experimental results supported by an analytical study indicate that the initiation of detonation in AN from fire exposure in normal storage and from transportation incidents is quite improbable. The detonation of AN in recent incidents more likely may have resulted from the effects of adjacent explosions. Work done in cooperation, Jan.

RI 6774. Effect of Charge Weight on Vibration Levels From

Quarry Blasting, by James F. Devine, Richard H. Beck, Alfred V. C. Meyer, and Wilbur I. Duvall. 1966. 37 pp. 15 figs. The radial, vertical, and transverse components of particle velocity were recorded along gage arrays extending in one or two directions for 145 to 3,170 feet at five quarries. Of the 39 quarry blasts, 12 were instantaneous blasts, 5 were of the one hole per delay type, using millisecond delayed caps, and 22 were multiple hole per delay type employing millisecond delay detonating fuse connectors. Charge weight per hole ranged from 8 to 1,500 pounds, and the charge weight per delay interval, including the instantaneous blasts, ranged from 25 to 4,620 pounds. Statistical analysis of the particle velocity-distance data shows that the square root of the charge weight per delay interval can be used as a scaling factor in a propagation equation.

RI 6775. Reduction Rossting-Acid Solution Techniques in Laboratory Processing of Minnessta Manganiferous Ores, by P. L. Weston and M. M. Fine. 1966. 22 pp. 8 figs. High-temperature reduction roasting, magnetic separation, acid-leaching, and autoclave precipitation processes were used to recover iron and manganese from brown Cuyana range ores of Minnesota. Wet magnetic separation concentrated over 90 percent of the iron in 3 of 4 ores as high-grade products analyzing 74 to 85 percent iron, 2.5 to 6 percent manganese, and 3 to 10 percent SiOs. The nonmagnetic fractions were leached with dilute sulfuric acid extracting 83 to 93 percent of the contained manganese and small amounts of iron. The leach solutions contained Mn-to-Fe and Mi-to-SiO, ratios favorable enough for possible consumption in metallurgical manganese operations. Exceptionally pure Mn solutions were achieved by pressure precipitation of the remaining iron in an autoclave followed by lime precipitation of silica and alumina.

RI 6776. Drillability Studies. Impregnated Diamond Bits, by James Paone and Dick Madson. 1966. 16 pp. 8 figs. Drillability studies were made with impregnated diamond bits in the laboratory on 7 rock types and in the field on 21 different rock types. Results indicate that drill parameters of rotational speed, thrust, and torque must produce sufficient applied forces to induce stress levels that cause continuous failure in rock to achieve efficient penetration rates. Higher rotational speeds appear to be more effective in drilling relatively harder rocks, although the increased speed causes more bit wear; increases in thrust result in higher drilling rates but not linearly; and up to a critical value a linear relation exists between torque and penetration rate for a specific rock type. Penetration rates with impregnated bits show a trend similar to that obtained with surface-set bits for rock under 25,000 psi compressive strength.

RI 6777. High-Temperature Columbium and Tantalum Allays, by H. R. Babitzke, R. E. Siemens, and H. Kato. 1966. 16 pp. 7 figs. To develop alloys suitable for use at elevated temperatures, columbium and tantalum were combined with tungsten, hafnium, vanadium, zirconium, and titanium, and the resulting alloys were evaluated with respect to fabricability, hardness, electrical resistivity, strength at elevated temperatures, oxidation resistance, and bend transition. Of the 23 compositions tested, Cb-20Hf-5W-10Ti exhibited superior high-temperature properties. A recrystallized sample of this alloy was fabricable at room temperature, had a strength of 44,000 psi at 1,200° C, and had an oxidation rate of only 7.7 mg/cm²/hr at 1,000° C.

RI 6778. Using Probability Models as a Basis for Making Decisions During Mineral Deposit Exploration, by Scott W. Hazen, Jr., and William L. Meyer. 1966. 83 pp. 35 figs. This report documents 653 sets of sample data involving 78,366 assays obtained from past exploration for various minerals and metals. Most of these data have been taken from published reports describing exploration projects, conducted jointly by the Bureau of Mines and the Geological Survey, for the Strategic Minerals Program from 1940 through 1949. Means and standard deviations have been computed for the exploration assay data and have been plotted on graphs for 22 minerals and metals. A mathematical model, based on the binomial distribution, has been developed to explain the configuration of the plots of the exploration means and standard deviations. The two statistics, mean and standard deviation, which describe assay data, have been used for simulating probability models. These probability models then have been combined with the binomial model of the exploration assays and related to the sequential decision process associated with exploration drilling for mineral deposits. These probability regions can be used to form the basis for sequentially predicting the probable range of the average grade of mineral or metal that may be expected as an exploration drilling program is continued after the initial discovery of mineralization has been made.

RI 6779. Method of Analysis of Impurities in Helium in the Ponts-per-Billion Range, by G. W. Weems and David E. Emerson. 1966. 5 pp. 1 fig. The Bureau of Mines combined preconcentrating techniques and mass spectrometry to develop a parts-per-billion general analysis of impurities in helium. The impurities are preconcentrated using a Bureau traceimpurity analyzer; 35-mm Hg pressure of helium is left in the concentration trap to sweep the impurities into the mass spectrometer and provide a 10mm Hg sample pressure.

RI 6780. Volatilization of Cesium Chloride From Pollucite Ore, by I. L. Nichols and K. C. Dean. 1966. 8 pp. 1 fig. Volatilization of cesium from pollucite ore was investigated as an initial step in the production of purified cesium metal or cesium salts. High recovery of cesium and rubidium as chloride sublimates was accomplished by 2-hour roasts in a tube furnace using charges containing 1 part ore, 2 parts limestone, and 0.23 part calcium chloride. Recoveries of cesium in the sublimate product were 89.1, 92.9, and 95.2 percent, respectively, using 1,100° C and vacuum, 1,250° C with an air sweep, and 1,250° C without an air sweep. Most of the lithium, sodium, and potassium sublimed with the cesium and rubidium, but virtually none of the calcium, aluminum, and silicon in the charges was volatilized.

RI 6781. High-Temperature Heat Contents and Entropies of Two Proseedymium Oxides and Three Terbium Oxides, by L. B. Pankratz. 1966. 8 pp. 1 fig. High-temperature heat contents were measured for two praseedymium oxides and three terbium oxides. These were Pr₂O₃ (298° to 1,600° K), PrO₁₋₄₀₀ (298° to 1,050° K), Tb₂O₃ (298° to 1,050° K), TbO₋₁₄₀ (298° to 880° K), and TbO₁₋₅₁₂ (298° to 850° K). With the exception of PrO₁₋₅₄₄ all results were regular. PrO₁₋₅₄₄ had a small thermal anomaly at 760° K with an extra absorption of 380 cal.'mole. The measured heat content values, tabulated smooth heat contents, and entropy increments are reported. Heat content equations were derived.

RI 6782. Low-Temperature Heat Capacities and Entropies at 298.15° K of Ferrous Molybdate and Ferrous Tungstate, by W. W. Weller. 1966. 5 pp. Heat capacities of ferrous molybdate and ferrous tungstate were measured over the temperature range 51° to 298.15° K. Ferrous tungstate has a lambda-type heat capacity anomaly at 74° K. The 298.15° K entropies are FeMoO₄, 30.9 cal/deg mole and FeWO₄, 31.5 cal/deg mole.

RI 6783. Laboratory Investigation of the Response of Guard Electrodes in Oil-Well Lagging, by C. I. Pierce and J. Pasini III. 1966. 40 pp. 31 figs. An electrolytic tank model was used to investigate the response of guard electrodes of different dimensions under different simulated reservoir conditions. Sandstone disks from the Berea and Connellsville Formations were used as resistive beds in the model, and agar gel or water was used as conductive beds. In the experiments, bed thickness, hole diameter, mud resistivity, and bed resistivity were varied. The guard electrode is an excellent tool for determining true bed resistivity in the thin-bedded oil reservoirs of the Appalachian area. Vertical resolution and resistivity values are good when there is little or no invasion. Resistivity values are near true bed resistivity in beds thicker than about six hole diameters when the electrode-to-hole-diameter ratio is close to 1. However, low-resistivity muds cause false peaks to appear on the logs near bed boundaries in thick beds, and for resistive beds having a thickness approximately three to five times the hole diameter, apparent resistivity is low.

Rt 6784. Glass-Crystal Transformation of Nepheline and Wallastonite and Heat of Formation of Nepheline, by R. Barany. 1966. 8 pp. The heats of the glasscrystal transformation of nepheline (Na......K..... AlSiO.) and wollastonite (CaSiO₃) and the heat of formation of nepheline at 298.15° K were determined by solution calorimetry. For the glass-crystal transformations, the heat values were -9 ± 9.3 kcal/ mole for nepheline and -8.1 ± 0.6 kcal/mole for wollastonite. The heat of formation of nepheline was -34.8 ± 0.6 kcal/mole from the oxides and -501.0 ±0.5 kcal/mole from the elements.

RI 6785. Electrodeposition of Aluminum From Fused-Salt Electrolytes Containing Aluminum Chloride, by P. C. Good, M. O. Butler, and L. A. Yerkes. 1966. 13 pp. 3 figs. Work was done to determine conditions necessary for efficient electrodeposition of aluminum from fused chloride electrolytes. Aluminum was deposited from a molten chloride salt electrolyte over the temperature range of 150° to 750° At lower temperatures in a heat-resistant glass C. cell, aluminum was deposited on stainless steel and on aluminum cathodes. The deposit was recovered in the form of light, feathery dendrites that could not be consolidated. At 750° C, molten aluminum was deposited at cathode current efficiencies as high as 90 to 100 percent on titanium diboride cathodes and in molten aluminum cathodes. Nitride-bonded silicon carbide was the best cell material, although porcelain was also used. The electrolyte consisted of a mixture of sodium and potassium chlorides in 1-to-1 mole ratio, containing aluminum chloride in concentrations ranging from 2 to 30 weight-percent in cells holding up to 1,000 grams of electrolyte. Generally favorable results were attained in studies made at temperatures greater than the melting point of aluminum.

RI 6786. Effects of Bleeder Entries During Atmospheric Pressure Changes, by J. W. Stevenson and D. S. Kingery. 1966. 15 pp. 8 figs. Reports on the influence that atmospheric pressure changes exert in a gassy coal mine on a ventilating air current with a system of bleeder entries. During the season when abnormal barometric fluctuations usually occur, recording instruments monitored the air current ventilating an active coal-producing area. It was found that the rate of coal production caused a more significant change in methane concentration than did barometric change. The hazard that accompanies methane release due to expansion of the gob gases during atmospheric lows was minimized by the effective bleeder system.

RI 6787. Cell With Four Variable Compartments for Rapid Infrared Analysis, by Willis M. Beckering, C. M. Frost, and W. W. Fowkes. 1966. 8 pp. 4 figs. A cell was designed having four variable compartments in series to facilitate analysis of multicomponent mixtures. Use of the cell considerably decreases the time required for differential absorption analyses. A solution of a major component is placed in each compartment, and the light absorbed by each of these components is varied by increasing or decreasing the path length of the appropriate cell. Simple calculations then establish the amount of the component present. In analyzing unknown mixtures, compensation is made for compounds known to be present, and the differential spectrum representing components not accounted for is recorded and analyzed.

RI 5788. A Method for Determining the Electrical Resistivity of Solid Anthracits Specimens, by Albert F. Baker, G. A. Brady, and J. W. Eckerd. 1966. 18 pp. 8 figs. Techniques were developed and circuitry was assembled for measuring the total and volume resistances to the flow of electric current through solid specimens of anthracite. The two-, three-, and four-terminal test methods demonstrated the extreme sensitivity of resistivity to differences in anthracite characteristics and showed response to changes resulting from variations in structure, temperature, and moisture content.

RI 6789. Fused-Fluoride Electrowinning of Thorium-Base Alloys, by D. G. Kesterke, D. C. Fleck, and T. A. Henrie. 1966. 14 pp. 5 figs. Low-melting thorium-base binary alloys or metal solutions were prepared by two different techniques involving the electrolysis of ThO₂ dissolved in fluoride melts. Experiments were performed at 950° to 1,250° C using electrolytes containing ThF, and various alkali and alkaline earth fluorides. In the first method, electroreduction of ThO₂ and deposition of thorium on a nickel or iron cathode formed a molten alloy that dripped off and collected on the bottom of the cell, or in a tungsten cup. An electro-codeposition technique was used to prepare thorium-base alloys or solutions containing nickel, iron, chromium, or manganese. Electrolytic reduction of the two metals on a tungsten cathode yielded a liquid alloy product. Complementary experiments were performed on the fused fluoride electrowinning of dendritic thorium from ThO₂ at 1,075° to 1,200° C in which thorium crystals were recovered and arc-melted into buttons. Major contaminants were aluminum, carbon, copper, iron, oxygen, and silicon, totaling 0.2 percent.

RI 6790. Determination of Oxides of Nitrogen in Diesel Ex-

haust Gas by a Modified Saltzman Method, by Rogers F. Davis and William E. O'Neill. 1966. 5 pp. A new method was developed for the determination of oxides of nitrogen in diesel exhaust gas. The procedure, a modification of the Saltzman method, uses an NO₂ absorbent for the diesel exhaust gas; the colorless absorbent becomes purple on contact with NO₂. When used properly this procedure gives satisfactory results in 2 hours, whereas the standard phenoldisulfonic acid method required approximately 8 hours. The new method is not satisfactory for determination of oxides of nitrogen in the overrich fuel-to-air ratio range.

RI 6791. Vapor Pressure of Carbon Dioxide at the lee Peint, by Paul V. Mullins and Earle S. Burnett. 1966. 10 pp. 1 fig. Review and evaluation of all available data on the vapor pressure of carbon dioxide at the ice point, including previously unpublished results obtained by the Bureau of Mines, are presented. Suggested corrections and adjustments to all the data yield an average value of 26,136.4 mm mercury. Indicated agreement is within plus 1 part in 8,000 to minus 1 part in 11,000. A novel pressure bomb in which a sample of pure carbon dioxide is placed and sealed by a diaphragm fluid separator and its use as a reference pressure standard for extended and repeated use in the calibration of deadweight gages is described.

RI 6792. Analyses of Tipple and Delivered Samples of Coal Collected During the Fiscal Year 1965, by S. J. Aresco, J. B. Janus, and F. E. Walker. 1966. 38 pp. 35 cents. The Bureau of Mines has been active in promoting the purchase of coal for Government use under specifications that define the requirements in terms of heating value of the coal, expressed in British thermal units, and the composition as shown by proximate analyses. To these, when required, are added the ash-softening temperature, the free-swelling index, and the Hardgrove grindability index. Under most of these specification contracts, the bidders guarantee the quality of the coal, and that guar-anteed by the successful bidder becomes the standard of his contract. The deliveries are sampled in accordance with instructions issued by the Bureau of Mines; the samples are analyzed in the Bureau laboratory to determine whether the coal is of the quality guaranteed by the contractor; if it is not, a price adjustment is made. Analyses of the delivered coal and tipple samples (samples collected at mine tipples as coal is being loaded into railroad cars or trucks) provide valuable data for use in evaluating future bids. In addition, the continuous sampling of coal as delivered is a check on the practical results obtained in burning the coal. The Government purchased approximately 5 million tons of coal in fiscal year 1965. In connection with these purchases, the Bureau analyzed 7,448 samples. These are published for the use of Government officials and the public. A series use of Government omclais and the public. A series of publications has been completed on coal analyses by states, or, where production is small in any one state, by groups of adjacent states. In addition to analytical data showing composition and quality of coals of the states, the publications contain brief de-scriptions of the gradience of the grad scriptions of the geological structure of the coal basins, typical mining conditions in the various districts, the principal economic data of the industry, and the relationship of mine or channel samples to delivered and tipple samples. The present publication covers many states but deals only with the ana-lytical data of the coals. (Out of print:)

RI 6793. Evaluation of Ethylene as a Gas Tracer in Underground Gas Storages, by C. J. Walker and Ray V. Huff. 1966. 15 pp. 9 figs. Describes a theoretical and laboratory study undertaken to determine the feasibility of using ethylene as a tracer for natural gas in underground gas-storage reservoirs. The study indicated that ethylene was a useful gas tracer in underground gas storages. Tracer losses were not excessive. Laboratory tests were conducted at pressures as high as 500 psia in both wet and dry consolidated-sandstone cores, evaluating tracer loss with gas blends containing natural gas with different concentrations of thylene tracer. Under certain conditions losses were less than 17 percent. Work done in cooperation with the Pipeline Research Committee, American Gas Association.

RI 6794. Decomposition of Manganese Sulfate by a Partial Reduction Process, by H. C. Fuller and V. E. Edlund. 1966. 18 pp. 3 figs. A method was devised and developed for decomposing manganese sulfate at a significantly lower temperature than that required by the conventional procedure of using heat alone. This technique, called the partial reduction method, effected decomposition at 700° to 800° C, as compared to 900° to 1,000° C normally required. The process consisted of heating, in the absence of oxygen, a mixture of manganese sulfate and a controlled quantity of a reducing agent. The suitability of commercial-type equipment was tested in laboratory size models of an externally heated rotary kiln, a rabbled muffle-hearth furnace, and a fluidized-bed reactor. The rabbled-hearth furnace gave the best results with the least operating difficulty: It produced a gas containing more than 80 percent SO₂ and eliminated 96 percent of the sulfur when coal was used as the reductant. Sintering of the powdery decomposition product produced an agglomerate containing, in percent, 63.6 Mn and 0.4 S.

RI 6795. Presence of Thienothiephenes in Wasson, Texas, Crude Oil, by R. L. Hopkins, C. J. Thompson, H. J. Coleman, and H. T. Rall. 1966. 9 pp. 2 figs. The work described was performed to determine whether sulfur compounds of the thienothiophene class occur in crude oil. The presence or absence of various classes of sulfur compounds in crude oils is of interest and value to petroleum science. The Bureau of Mines, for the first time, identified hydrocarbon products of desulfurization that point directly to the identity of two individual thienothiophenes, namely 3-methylthieno[2,3-b]thiophene and 2-methylthieno[3,2-b]thiophene, in Wasson, Texas, crude oil. These identifications, described in detail, were accomplished using microdesulfurization, mass spectrometry, and gas-liquid chromatography.

Ri 6796. Synthesis of Alkyl Cycloolkyl and Dicycloolkyl Sulfides, by R. L. Hopkins, R. W. Higgins, H. J. Coleman, C. J. Thompson, and H. T. Rall. 1966.
12 pp. 5 figs. Fifteen alkyl cycloalkyl sulfides and three dicycloalkyl sulfides were synthesized to provide reference compounds in the search for these classes of sulfur compounds in crude oils. In synhesizing sulfides by alkaline alkylation, the order in which the reactants were added was shown to determine the yield and purity of the product.

RI 6797. Decaking of Coals in a Fluid Bed, by A. J. Forney, R. F. Kenny, S. J. Gasior, and J. H. Field. 1966. 22 pp. 17 figs. Summarizes the findings of methods of treating caking coals in a fluid bed to destroy their caking properties. In batch tests it was found that several coals, including those with a free-swelling index greater than 8, could be decaked at temperatures from 400° to 425° C with a fluidizing gas composed of inert gas or steam containing 0.2 percent oxygen and a minimum residence time of 5 minutes. When treatment decreased the free-swelling index from 8 to 1½ or lower, the resulting treated coal was noncaking. In a continuous unit with continuous feed and discharge of coal, slightly more severe conditions were required to decake the coal. For 18- to 100-mesh coal a temperature of 430° to 440° C and an oxygen-to-coal ratio of 0.4 cubic foot of oxygen per pound of coal feed was necessary. Finer mesh sizes required lower oxygen-to-coal ratios. In tests using air only as the fluidizing medium and treatment temperatures well below the softening range, the caking properties of 150- to 200-mesh coal were destroyed in 30 to 40 minutes of residence time at 200° C. Coarser sizes of 18 to 48, 48 to 100, and 100 to 150 mesh required longer residence time. The composition of the volatile matter in the coal was changed during treatment by the formation of oxygenated compounds. Carbonizing the treated coal at 538° C showed the oxygenated compounds that had been formed during treatment increased the yield of carbon oxides and decreased the yield of gaseous hydrocarbons, thus decreasing the heating value of the product gas.

RI 6798. Oil Recovery by Low-Pressure Gas Drive in the Keener Sand, Bonds Creek Oilfield, Lafayette District, Pleasants County, W. Va., by Leo A. Schrider and James A. Wasson. 1966. 46 pp. 21 figs. This report analyzes the successful low-pressure gas drive in the Keener sand of the Bonds Creek oilfield, Pleasants and Ritchie Counties, W. Va., and predicts its future performance. Core analysis from two wells and electrical and radioactivity logs were used to evaluate the reservoir characteristics. Production records of a 37-year period indicate that over 240,000 barrels of oil have been produced from the Keener sand by low-pressure gas injection. Decline-curve analysis shows that 165,000 additional barrels should be recovered from 108 acres of productive sand by continuing this secondary-recovery method.

RI 6799. Drop-Weight Testing of Explosive Liquids, by Charles M. Mason, Robert W. Van Dolah, and Milton L. Weiss. 1966. 15 pp. 8 figs. The Bureau of Mines evaluated equipment and procedures for drop-weight testing of explosive liquids as prescribed by Test 4, a widely used method. It was demonstrated that partial ignitions, originally designated as negative results, should be designated positives. It was also shown that wear or erosion of the sample cups and the type of mount used for the apparatus had important effects on the results. Relative sensitivity as measured by Test 4 was found to vary slightly with temperature. The Bureau also designed a fixed 2-kg weight and associated electromagnetic release, which subsequently were incorporated as standard in a revision of Test 4. The original concept that the test involves only adiabatic compression was found to be an oversimplification; an alternate mechanism for the initiation process is proposed in which due consideration is given to the effects of cavitation and microjets.

RI 6800. High-Temperature Corrosion Studies. Influence of Yttrium on Oxidation of Nickel at 1,200° C, by Robert M. Doerr, J. W. Jensen, and Charles C. Myers. 1966. 21 pp. 8 figs. The oxidation kinetics of Ni-Y alloys in the range 0.04 to 8 weight-percent Y and high-purity Ni were compared by the use of a sensitive volumetric apparatus. The reactions followed approximately the parabolic rate law; for oxidations in 0. at 0.5 atm and 1,200° C, the parabolic rate constant was about 0.37 + (0.064) (Y-2.11) mg cm-² min-¹/₂, where Y represents the weight-percent Y in the alloy. Internal oxidation of Y occurred in the alloy specimens and the resultant Y₂O₃ particles, which were in patterns related to the eutectic structure of the alloys, served as markers showing that the subsequent oxidation of the surrounding Ni was by inward diffusion of O. The scale consisted in each case of NiO, but the inner parts of the scale on the alloy specimens included the patterned Y_2O_2 particles. The thickness of the inner parts of the scale depended directly on the Y concentration, and the thickness of the Y_2O_2 -free outer parts of the scale were inversely related to the Y content of the alloys. There is thus a relationship between the thickness of the outer part of the scale and the protectivity of the scale. Outward diffusion of Ni and inward movement of O, from the inner boundary of the Y_2O_3-free part of the scale, is proposed as a mechanism for these results.

RI 6801. An Evaluation of the Western Phosphate Industry and its Resources (in Five Parts). 3. Idaho, by A. L. Service. 1966. 201 pp. 66 figs. Idaho has nearly 6 billion tons of potential sources of phospho-rite, 10 to 31 percent P.O. above and within 100 feet below entry level, the largest potential of any State in the United States. In 1963 Idaho ranked third after Florida and Tennessee in total mine and marketable production of phosphate rock; Montana ranked fourth. This report describes phosphate deposits, mines, and prospects in 10 districts covering most of the Idaho phosphate field. All mine production of phosphate rock in Idaho comes from surface mines and is processed to phosphate fertilizers, phosphoric acid, and elemental phosphorus. Producing districts are Fort Hall (Gay Mine), Trail Creek (Conda and Ballard mines), and Crow Creek (Georgetown Can-yon mine). FMC Corp. and J. R. Simplot Co. at for a full of the largest elemental phosphorus and fertilizer production facilities, respectively, in the State followed by Monsanto Co, and El Paso Natural Gas Products Co. (formerly Central Farmers Fertilizer Co.). The only other major phosphate processing plant in the State is the phosphate process-ing plant in the State is the phosphoric acid and phosphate fertilizer complex at Kellogg operated by the Bunker Hill Co. In 1963 a plant was constructed and put on line at Monsanto. Idahc, to recover vana-dium from ferrophosphorus produced by electric furnace operations in the area. El Paso Natural Gas Derducts Co. completed construction of a festilizer Products Co. completed construction of a fertilizer and phosphoric acid plant near Conda in 1965. There is a small fertilizer plant producing phosphate fertilizers for local consumption in Soda Springs.

RI 6802. Producing Hafnium-Enriched Feed Solutions From Zircon, by Gerald W. Elger, Lloyd H. Ban-ning, and Kenneth W. Moser. 1966. 22 pp. 12 figs. This report describes development of the fusion-leach crystallization-precipitation process for producing a high-hafnium-content feed material for hafnium-zirconium separation plants. Mixtures of zircon, potassium silicofluoride, and potassium carbonate (or potassium chloride) were fused to prepare soluble potassium zirconium hexafluoride-potassium hafnium hexafluoride salts. High extraction of these salts was obtained by countercurrent leaching the fused material in dilute hydrofluoric acid. About one-half of the hafnium was recovered in hafniumenriched mother liquor by cooling clarified leach liquor to crystallize most of the zirconium salt. Additional hafnium was recovered from the primary crystals in a multiple dissolution-recrystallization step. Hafnium-enriched oxides having a hafniumzirconium ratio of more than three times that of zircon were precipitated from the combined mother liquors. The hafnium and zirconium recoveries in the precipitate were 83 and 24 percent, respectively. About 71 percent of the zirconium and the remainder of the hafnium were recovered in potassium zirconium hexafluoride crystals of low hafnium content. RI 6803. Identification of Sulfur Compounds in Petreleum. Analysis of a Wasson, Texes, Crude Oil Distillate Boiling From 111° to 150° C, by H. J. Coleman, C. J. Thompson, R. L. Hopkins, and H. T. Rall. 1966. 20 pp. 18 figs. Knowledge of the types of naturally occurring sulfur compounds in petroleum is of both theoretical and practical interest to petroleum chemists and geologists. This knowledge has been extended by the identification of 77 sulfur compounds, including 36 thiols, 23 chain sulfides, and 18 cyclic sulfides in a 111° to 150° C boiling range distillate of Wasson, Texas, crude oil. The characterization procedure used in separating and identifying these compounds included isothermal distillation, vacuum fractionation, liquid-solid chromatography (alumina adsorption), chemical treatment, gas-liquid chromatography, microdesulfurization, and infrared analysis. The procedural steps described represent a systematic method of sulfur compound analysis considered applicable for determining the nature and concentration of the sulfur constituents present in any straight-run petroleum distillate of the above boiling range. Work done in cooperation with the American Petroleum Institute (Research Project 48).

RI 6804. Laboratory Evaluation of Flow Characteristics of Oil-Producing Sandstanes in Illinois, Indiana, and Kentucky, by Eliot J. White and Oren C. Baptist. 1966. 20 pp. 11 figs. The Bureau of Mines tested cores from 35 wells from 14 oil-producing zones in southern Illinois, southern Indiana, and western Kentucky to determine why rates of water injection were apparently low in some zones. Since these zones contain only minor amounts of clay minerals, it is concluded that permeability reduction results from movement of dislodged silica particles and other material, including the clays, that line the pores. Both single-phase and two-phase permeability measurements, however. indicated that most samples had only low to moderate water sensitivity, so that permeability reduction due to such particle movement should usually not be of practical significance. The effective permeability to water was considerably lower than the effective permeability to oil during two-phase flow measurements, as is typical of most reservoir rocks. It can be concluded, therefore, that relatively high injection pressures will be required in waterflooding thin zones or zones having low permeabilities.

RI 6805. Electrolyte Life in Winning Tungsten From Scheelite, by John M. Gomes, Kenji Uchida, and Don H. Baker, Jr. 1966. 9 pp. 4 figs. In the repetitive electrowinning of tungsten from scheelite, the calcium impurity buildup in the molten electrolyte results in decreased metal purity, metal recovery, and current efficiency. Periodic addition of B:O₃, which reacts with the lime liberated from the scheelite, more than tripled the life of the electrolyte in winning 99.9-percent-pure tungsten and also reduced the number of units of electrolyte required per unit of tungsten recovered from six to four.

RI 6806. Effect of Charge Diameter on Explosive Performence, by Harry R. Nicholls and Wilbur I. Duvall. 1966. 22 pp. 10 figs. The effect of varying the diameter of explosive charges on the generation and propagation of strain waves was studied. The parameters compared were strain amplitude, impulse, energy, and pulse shape. Three different explosives were detonated in three different charge diameters. Charges of cast 50/50 pentolite detonated at the same velocity in 5-, 2.5-, and 1.5-inch diameters. Charges of ammonium nitrate-fuel oil prills and 45-percent semigelatin dynamite showed a

strong detonation rate-diameter dependency. Detonation of these two explosives was considered nonideal. Differences in the diameter of the charge caused less difference in the strain-generating abili-ties of pentolite than in those of the other two ex-This was also true for impulse and energy. plosives. Rise and fall times of the strain pulses for all three explosives were proportional to detonation time and cavity volume, respectively.

RI 6807. Activity of Manganese in Liquid Iron-Manganese Alloys, by C. W. Schultz, N. Riazance, and S. L. Payne. 1966. 10 pp. 4 figs. The vapor pressure of manganese in equilibrium with a series of liquid iron-manganese alloys was determined by the carrier gas method over a broad range of alloy composition. From these data, the activities of manganese in the iron-manganese system were calcu-lated. The system appears to be ideal.

RI 6808. Oxidation Leaching of Copper Sulfides in Ammoniacal Pulps at Elevated Temperatures and Pressures, by Martin H. Stanczyk and Carl Rampacek. 1966. 13 pp. 1 fig. The Bureau of Mines investigated leaching of selected copper sulfide minerals and a composite of impure flotation concentrates at elevated temperatures and pressures with ammoniacal solutions. Copper extractions of 96 percent were obtaned by leaching chalcopyrite at 75° C under oxiobtaned by leaching chalcopyrite at 15° C under oxi-dizing conditions for 60 minutes. An extraction of 99 percent of the copper contained in the composite concentrate was obtained by leaching the product for 90 minutes at 75° C. In tests of bornite, chalco-cite, and covellite, 90 to 97 percent of the copper was extracted at 20° C provided an 8-hour reaction period was used. At 75° C essentially complete dissolution of the copper from these three minerals was accomplished in 60 minutes. Additions of ammonium sulfate to the leach solutions were required to obtain high-percentage extractions of the copper from bornite, chalcocite, and covellite. Although ammo-nium sulfate was not required when digesting chalcopyrite, copper extraction was enchanced and less free ammonia was required when ammonium sulfate was added to the leach pulps. The chemistry of leaching copper minerals was studied. It was determined that chalcocite altered to covellite as one step in the dissolution reaction. When leaching iron-bearing copper sulfides, hydrated iron oxide formed on the mineral surfaces, indicating that a diffusion process prevailed. No evidence of covellite was de-tected. Work done in cooperation with the University of Arizona.

RI 6809. Extraction and Separation of Selected Lanthanides With a Tertiary Amine, by D. J. Bauer. 1966.

9 figs. Demonstrates the feasibility of frac-13 pp. tionating lanthanide nitrates with a tertiary amine on lanthanum-cerium and thulium-ytterbium pairs. Optimum values were determined for pH, phase con-centration, and percent chelation of metal ions in the aqueous phase. Percent extraction is markedly dependent on the concentration of lithium nitrate in the aqueous phase. Selective masking of the heavier element in each extraction system with DTPA or EDTA aqueous-phase chelating agents resulted in lanthanum-cerium separation factors of 8.5 and thulium-ytterbium separation factors of 3.4

RI 6810. Piezoelectric Pulsing Equipment for Sonic Velocity

Measurements in Rock Samples From Laboratory Size to Mine Pillors, by Francis X. Cannaday and Gary M. Leo. 1966. 23 pp. 18 figs. The Bureau of Mines developed equipment to measure the sonic velocity of pulses transmitted through rock samples

varying in size from laboratory specimens to mine pillars in place. Pulses are produced by electronically excited piezoelectric ceramic transducers. Special equipment components were developed by Bureau facilities; other components are commercially available. The technique permits a nondestructive, repeti-tive, stable, shaped pulse to be used in place of explosive caps or hammer blows. Longitudinal wave travel time measurements were taken on an oscilloscope screen; transverse wave measurements were taken under special field conditions. Results were consistently repeatable within the accuracy of the oscilloscopes utilized.

RI 6811. Thermal Phenomena During Ignition of a Heated Dust Dispersion, by John Nagy and Donald J. Surincik. 1966. 25 pp. 9 figs. The Bureau of Mines adapted thermal theories explaining combustion of gases to correlate parameters affecting igni-tion of dust dispersions. The dust dispersions were ignited in a Godbert-Greenwald furnace at atmos-pheric pressure. Ignition temperature and the con-centrations of fuel, admixed inert powder, and atmos-pheric oxygen were related mathematically. Values for these parameters obtained in laboratory experiments for cornstarch agreed with theory. The developed equation permits extrapolation; the predicted upper ignition limits correspond with limited experimental data from laboratory- and large-scale tests. Explanation of the effect of fineness of dust on igniface-area constant to modify the activation energy. Arguments are presented to show that the ignition process is a solid-gas phase reaction rather than an ignition of prevolatilized gases.

RI 6812. Photoelastic Study of an Internally Stressed Circular Opening in a Biaxial Stress Field, by M. S. Oudenhoven and G. T. Krempasky. 1966. 25 pp. This Bureau of Mines investigation was 15 figs. conducted to obtain an experimental solution of stress changes in the vicinity of a circular opening in an infinite plate. Plates were stressed biaxially in com-pression and subjected, by four different-length shoes, to a uniform pressure at opposing points on the opening periphery. The principal stresses along the vertical and horizontal axes, which result from peripheral pressure, were obtained from the photo-elastic analysis of four frozen-stress epoxy models. These principal stresses were then superimposed on the mathematically determined principal stresses (along the same axes) obtained from a theoretical biaxial stress field in which the magnitude of the lateral pressure was one-third that of the vertical pressure. The results indicate that an increase in shoe length increases the radial compressive stress and the tangential tensile stress (except tangential compression at r/a=1, which exists for all shoe lengths). Also, a partial control of the stresses within one-half radius of the opening surface is accomplished by a change in the magnitude and placement of peripheral pressure.

RI 6813. Crystalline Titanium by Sodium Reduction of Titanium Lower Chlorides Dissalved in Sodium Chloride, by V. E. Homme and M. M. Wong. 1966. 27 pp. 11 figs. Low- and high-temperature reduction techniques were employed by the Bureau of Mines in study of conditions favorable to the formation of massive titanium crystals. The low-temperature method, feeding molten sodium to solidified titanium lower chloride-sodium chloride, produced higher quality and high quantity crystalline metal. The percentage of crystalline titanium was increased

with increasing reactor diameter, melt depth, and titanium dichloride concentration. The high-temper-ature technique, feeding molten sodium to melts above 800° C, produced needle-type crystals of lower quality and with less consistent results than the lowtemperature method. Layers of titanium foil, sponge, fine needles, wool, and crusts of sintered granules were formed during the early part of the low-temperature reduction, and massive crystals were produced beneath this barrier in the latter part of the reduction. Crystalline titanium having an aver-age hardness of Bhn 76 and representing 58 percent of the total titanium was obtained. Lamellar crystals up to 1½ inches long with a hardness as low as Bhn 54 were also produced. A second-stage reduc-tion for reclaiming titanium from offgrade sponge is described. Titanium produced by this method was comparable in quality to that from sodium reduction of titanium tetrachloride.

RI 6814. Mechanical Strength of Coke and Iron Pellets at Elevated Temperatures, by G. W. Birge, J. H. Lynch, Jr., and D. E. Wolfson. 1966. 16 pp. 4 figs. The Bureau of Mines investigated the effect figs. of temperature on the mechanical strength of cokes of the type normally used in blast furnace opera-tions. Eight samples of industrially produced cokes tions. Eight samples of industrially produced cores were subjected to ASTM tumbler tests at tempera-tures as high as $1,100^{\circ}$ C (2,012° F); these tempera-tures had no significant effect on tumbler results for cokes with stability indexes of 40.6 to 59.9. Two vated temperature (900° C) decreased slightly in tumbler stability. Iron ore pellets made from a variety of ores and by various industrial methods were not significantly affected by temperature when tested in an oxidizing atmosphere at $1,000^{\circ}$ C $(1,832^{\circ}$ F) by the tentative standard ASTM method.

RI 6815. An Improved Method for Evaluating the Incendivity

of Explosives to Coal Dust. A Progress Report, by N. E. Hanna, P. A. Richardson, and R. W. Van Dolah. 1966. 13 pp. 5 figs. Experience with the current version of Gallery Test 4, in use since 1913 to evaluate the incendivity of permissible explosives in the presence of coal dust, has shown the procedure to have inadequate discrimination. Consequently the Bureau of Mines used the up-and-down method of statistical design to investigate the incendivity of permissible explosives in the presence of coal dust and gas. A suitable device was developed to meas-ure coal-dust concentrations in the air-gas mixtures and to disperse the dust in the gallery atmosphere. A proposed testing method which uses suspended shots in a predispersed coal dust-gas-air mixture was evaluated. The new method can discriminate between different explosives with respect to their incendivity. Maximum ignitibility of the coal dust cloud by permissible explosives occurred in the vicinity of 0.3 oz/cu ft. About 10 percent sodium chloride in permissible explosive formulations had a very significant effect in reducing the probability of ig-niting coal dust. Bundled charges were more incendive than column charges.

RI 6816. Infrared Spectrascopy Studies of a Xanthate-Galena System, by R. E. Coleman and H. E. Powell, 1966. 24 pp. 10 figs. The molecular species oc-curring at the mineral-reagent interface of the galena-aqueous potassium ethyl xanthate system was studied by developing a technique for using an attenuated reflection method in conjunction with standard infrared spectroscopy procedures. Lead ethyl xanthate was detected from the infrared

spectra of all galena surfaces treated in the pH range of 7 to 11. At pH 8.5, lead ethyl xanthate formed as a film chemically bonded to the galena surface. A solvent extraction sampling method was employed with infrared spectroscopy to obtain quanemployed with infrared spectroscopy to obtain quan-titative data on the lead ethyl xanthate removed from the galena surface. The data showed that be-tween pH 7 and 11 the quantity of lead ethyl xan-thate physically adsorbed decreased as the pH was decreased; in the same pH range, the quantity of the free lead ethyl xanthate in the aqueous medium remained constant, and the amount of unreacted xanthate varied.

RI 6817. High-Energy-Rate Extrusion of Low-Density Tungs-ten Pewder Billers, by Jack G. Croeni, John S. Howe, Jr., and H. Kato. 1966. 12 pp. 9 figs. The Bureau of Mines developed a method to extrude low-density tungsten powder billets into rods and sheet bar with high-energy-rate forming equipment. Billets were compacted and sintered in an atmos-phere of hydrogen to obtain a density of approxi-mately 60 percent. Extrusion was conducted at re-duction ratios of 6.25 to 1 and 9 to 1 at 1,800° C to produce high-density, sound material. Yield strengths obtained were higher than those of material produced by conventional powder-metallurgy techniques, but ductility was lower at high temperatures.

RI 6818. Electrolytes for Electrorefining Hafnium, by M. M. Wong, J. M. Hiegel, and G. M. Martinez. 1966. 9 pp. 3 figs. Salt mixtures consisting of 1966. 9 pp. 3 figs. Salt mixtures counter inves-KCl, BaCl, and HfCl, with RbCl or CsCl were inves-electrolytes for refining hafnium. The tigated as electrolytes for refining hafnium. The presence of RbCl or CsCl in the electrolyte appeared presence of RDCI or CsCI in the electrolyte appeared to suppress the volatility of HfCl.. Best electrore-fining was obtained with an electrolyte containing 50.7 percent KCl, 27.1 percent BaClc., 15.7 percent CsCl, and 6.5 percent HfCl.. In this electrolyte, hafnium metal with an average oxygen content of 470 ppm was produced from an anode feed contain-ing 1,600 ppm oxygen. All metallic impurities were lowcord over titerium mannance of the lowered, except titanium, manganese, and tin.

RI 6819. Analyses of Crude Oils From 546 Important Oil-fields in the United States, by C. M. McKinney, E. P. Ferrero, and W. J. Wenger. 1966. 345 pp. The Bureau of Mines analyzed 626 crude oils from 510 cited by the United States that under a 500 546 oilfields in the United States that produced 2,500 BOPD or more during at least I of the last 3 years. Included also are crude oil analyses from eight fields that produced less but which were located in areas having few or no fields that produced 2,500 BOPD. The tables show the geographical and geological source, general characteristics, and determined and computed analytical data for each sample. The analyses were made according to the Bureau of Mines routine method and are directly comparable to other previously published analyses. \$1.75.

RI 6820. Determination of Cesium and Rubidium by Flame Photometry, by Kenneth R. Farley and H. E. Peterson, 1966, 19 pp. 9 figs. The Bureau of Mines developed a rapid and accurate flame photometric procedure for determining cesium and rubidium in ores and in products associated with the extractive metallurgy of these elements. The effect of associated ions is neutralized by addition of buffer solution; alkali metal effects are neutralized by parallel analyses made on standard solutions similar in composition to the sample being studied. The overall accuracy of the method is within 2.5 percent of the amount of cesium or rubidium present; the range from 1 to 25 percent is the most accurate.

RI 6821. Reclaiming Magnetite in Dense-Medium Circuits by Froth Flotation, by J. A. Cavallaro and A. W. Deurbrouck. 1966. 11 pp. To determine whether magnetite consumption could be reduced and salable coal production increased by using froth flotation units in series with magnetic separators, the Bureau of Mines conducted laboratory froth flotation tests on primary magnetic separator effluents obtained from three coal preparation plants. Tests were performed in a standard 500-gram-capacity laboratory batch flotation cell. Oleic acid and methylisobutyl carbinol were used as the collector and frother, respectively. Magnetic recovery was comparable to that expected from secondary magnetic separation, and salable float coal recoveries of 0.8 to 7.6 tons per hour were obtainable. The economics of the proposed technique appear to be sound.

RI 6822. Heats and Free Energies of Formation of Anhydrous Carbonates of Barium, Strontium, and Lead, by L. H. Adami and K. C. Conway. 1966. 71 pp. The heats of formation of anhydrous barium carbonate (witherite), strontium carbonate (strontianite), and lead carbonate (cerussite) were determined by solution calorimetry. The solution mediums were hydrochloric acid for barium and strontium carbonates and perchloric acid for lead carbonate. The heats of formation at 298.15° K are as follows: BaCOs, -297.5 ± 0.8 kcal/mole; SrCOs, -294.6 ± 0.5 kcal/ mole; and PbCOs, -168.0 ± 0.3 kcal/mole.

RI 6823. Analysis of Stresses in a Rock Disk Subjected to Peripheral Thermal Shock, by T. S. Chen and R. L. Marovelli. 1966. 50 pp. 28 figs. A study was made by the Bureau of Mines of the temperature and thermal stress distributions in thin circular disks subjected to peripheral thermal shock at various rates of heat transfer. The theoretical analysis is based on one-dimensional radial heat flow by conduction in the disk, and on heat exchange by convection between the disk and its surroundings. Preliminary experimental data obtained from shock tests on thin circular disks of basalt, quartzite, and taconite show reasonably good agreement with theory. The case of constant properties and plane stress is treated. Solutions of the stress distribution are presented for both cooling and heating shocks. The elastic energy stored at fracture is examined, and on this basis an average stress theory is formulated. Physical properties vital to the studies include thermal conductivity, thermal diffusivity, tensile strength, Young's modulus, and linear coefficient of thermal expansion. This work is of importance in predicting the thermal shock responses of a rock body of finite size.

RI 6824. Calibration of a Rotating Piston Deadweight Gage by Means of a Mercury Column Less Than 1 Meter High. Significance of Piston Constants and Their Applications, by E. S. Burnett and P. V. Mullins. 1966. 22 pp. 2 figs. Rotating piston deadweight gages have been used for many years for measurement of pressure to several hundred atmospheres. They have been calibrated by comparison of fluid pressures produced by various loads bearing on the piston bases, as measured by corresponding heights of balancing columns of mercury. When expressed in appropriate units, these ratios of column heights to piston loads are called piston constants. Experimental arrangements and procedures for their determination are presented in this paper, followed by a discussion of their significance and of their subsequent applications.

 RI 6825. Preparation Characteristics of Coal From Webster Caunty, W. Va., by A. W. Deurbrouck. 1966.
 30 pp. 3 figs. This report describes the preparation characteristics of the significant coalbeds from which samples could be obtained in Webster County, W. Va. In 1964 approximately 825,000 tons of coal was produced in the county, of which 732,000 tons was mechanically cleaned in three preparation plants. The Sewell coalbed accounted for 94 percent of the coal produced. Twelve samples were collected from five coalbeds—Lower Kitanning, Peerless, Iager, Sewell, and Fire Creek. Four of the samples would require upgrading to meet metallurgical requirements; two others of just over 8.0 percent ash would require some upgrading. In general the coalbed samples collected in the country were of medium-sulfur and medium- to low-ash content as received or after removal of the sink 1.58-specific-gravity material.

RI 6826. Two- and Three-Phase Relative Permeability Studies, by Erle C. Donaldson and Gordon W. Dean. 1966. 23 pp. 14 figs. Gas-displacement tests were made in Berea Sandstone and Arbuckle Limestone cores to determine the relative permeabilities to gas, oil, and water for two- and three-phase dynamic systems. Three-phase relative permeabilities were obtained by displacing oil and water from the core with gas and measuring the flow rates of the three fluids simultaneously. It was found that relative permeabilities to fluids in a porous medium are affected by the saturation distributions of other fluids in the medium as well as by their own saturation distributions.

RI 6827. Reoction Interface Speed as a Reducibility Index for Iron Ore, by J. P. Hansen, T. N. Rushton, and C. W. Schultz. 1966. 33 pp. 16 figs. Reducibility tests were run by the Bureau of Mines on an open hearth lump ore and four groups of pellets whose smelting characteristics had been determined previously in the Bureau's experimental blast furnace. When reduction data from various tests were plotted on specially prepared paper 1-(1-percent reduction; 100)^{1/3} against time, the plots were linear. The iron-wusite interface therefore advances at a constant rate. The rate of the interface advance in mm/min was used as a reducibility index. The reducibility index areas, however, duplicate reducibility indices varied considerably. When enough tests were run to give a stable mean, the mean reducibility index did correlate with blast furnace production for the four peliet groups. Results indicated that if the interface speed itself were to be used for correlation with blast furnace production, a sample size of about 180 grams of minus 0.742- plus 0.525-inch particles should be used with a test temperature of 900° C and a flow of 0.45 cu ft hydrogen per minute.

RI 6828. Nonpegmetitic Beryllium Occurrences in Arizone, Colorado, New Mexico, Uteh, and Four Adjacent States, by H. C. Meeves. 1966. 68 pp. 25 figs. The nonpegmatitic sources of beryllium in Arizona, Colorado, New Mexico, Utah, and four adjacent States investigated by the Bureau of Mines are described. The investigations included 155 properties from which over 6,200 rock samples were collected; more than 5,500 samples were analyzed by the nuclear beryllium-detection technique. Twenty-four of the properties examined had rock containing more than 0.10 percent BeO. Many of the beryllium determinations were made in the field with portable detection instruments by direct scanning of outcrops and by testing samples of rock brought to the instrument. The large domestic resources of low-grade nonpegmatitic beryllium ore in Utah, which were discovered by private enterprise and which respond favorably to small-scale treatment processes, may come into commercial use and thus reduce the dependence of the United States on imported beryl.

RI 4829. Reaction of Coal in Argon and Argon-Hydrogen Plasmas, by Walter Kawa, Richard D. Graves, and Raymond W. Hiteshue. 1966. 19 pp. 3 figs. Coals of various rank were reacted by the Bureau of Mines in plasma jets generated from argon and argon-hydrogen mixtures containing up to 33 volume-percent hydrogen. Average plasma temperatures ranged from about 3,400° to 12,000° C. Products were a solid residue and a gas containing hydrogen, methane, acetylene, diacetylene, and oxides of carbon. The highest yield of acetylene obtained with argon plasmas was 15 percent by weight of moisture- and ash-free coal. The data indicated that acetylene yields of 40 percent or higher can be obtained from the reaction of coal in argon-hydrogen plasmas, although results from these experiments could not be correlated with operating variables because of low recoveries. The plasmas contained sufficient energy to heat the coal to temperatures as high as 9,000° or 10,000° C, but complete devolatilization did not occur in any experiment.

RI 6830. Selective Flotation of Mica From Georgia Pegmatites, by James S. Browning and Ralph B. Adair. 1966. 9 pp. 1 fig. The Bureau of Mines conducted laboratory and small-scale continuous tests of weathered mica pegmatite ores from Hart County, Ga., to determine the technical feasibility of recovering commercial-grade mica concentrates by flotation. Two modifications of the Bureau-developed anionic-cationic method were used. In one method, sodium carbonate and calcium lignin sulfonate were used for pH control and quartz depression; this method yielded mica concentrates containing 98.5 percent mica with a recovery of 91.4 percent. In the other modification, lime and sodium silicate were used with the calcium lignin sulfonate; concentrates containing 98.9 percent mica with a recovery of 86 percent were obtained. Work done in cooperation with the University of Alabama.

RI 6831. Laboratory Study of Effect of Cement and Dispersant Additives on a Hydraulic Backfill, by D. R. Corson. 1966. 15 pp. 7 figs. The Bureau of Mines is conducting research on the effects of various established and potential soil-stabilization additives to hydraulic backfill. This initial phase is an evaluation of the effect of inclusion of varying amounts of portland cement and combinations of cement and a dispersant on the bearing strength of backfill. Results of unconfined compression tests are given for over 200 sample cylinders incorporating a fill material with cement or cement and dispersant. Inclusion of a minor amount of dispersant (0.2 percent by weight) is found to yield a significant increase in strength for 20-to-1 and leaner sand-cement mixes. An apparent optimum concentration of dispersant exists beyond which no further increase in strength is achieved. A dispersant-cement ratio of 1.8-to-1 yielded a strength increase of 515 percent over the strength of untreated 40-to-1 sand-cement mixes. The significance of the investigation with respect to the mining industry is discussed.

RI 6832. Adsorption Phenomena and the Reduction of Iron Oxides. Mechanism of Reduction of Iron Oxides With Carbon Manaxide, by S. E. Khalafalla, C. W.

Schultz, and T. N. Rushton. 1966. 22 pp. 5 figs. The Bureau of Mines investigated the kinetics of reduction of wustite and magnetite with carbon monoxide. A mechanism was postulated wherein the interaction between gaseous and adsorbed carbon monoxide appears to be the rate-determining process. This mechanism fully accounts for the experimental rate equation which relates the velocity of reduction to the pressure of the reducing gas at constant temperature. It also explains the variability of the heat of activation of the reduction process with the state of aggregation of the oxide material. The integrated rate equation is in perfect agreement with the experimental reduction-time curves.

RI 6833. Delination of Texas Lignite Beds by Statistical Techniques, by G. S. Koch, Jr., and Manuel Gomez. 1966. 38 pp. 9 figs. Statistical methods applied at the Bureau of Mines Denver Mining Research Center to data from metallic ore bodies were used to evalaute lignite reserves from core data and to predict the extent of lignite horizons in some Texas lignite beds. Six lignite seam units were studied using data from 361 drill holes. The data indicate a total of 214.2 million tons of lignite in the area examined and probable reserves of 113 million tons in an area 2,000 feet beyond the limits established by the drill holes. It was demonstrated that lignite reserves present in lenticular beds could be reliably determined by statistical techniques and that core drilling could be optimized to yield maximum information with minimum drill holes. The technique described is applicable to other coalbeds. Work done in cooperation with the Texas Power & Light Co.

RI 4834. Influence of Repetitive Electrolysis on Winning Molybdenum, by H. J. Heinen and D. H. Baker, Jr. 1966. 11 pp. The Bureau of Mines studied repetitive batch electrowinning of molybdenum from molybdic oxide (MoO₃) to determine the effects on electrolyte life, purity of metal product, and overall cell performance. The electrolyte contained 54.0 weight-percent sodium tetraborate (Na₂B,O₂), 23.6 weight-percent sodium tetraborate (Na₂B,O₂), 23.6 weight-percent sodium chloride (Na₂C), 14.9 weight-percent sodium fluoride (NaF), and 7.5 weight-percent MoO₃. The feed materials were pure and technical-grade MoO₃. Electrolysis was conducted at 1,000° C in a graphite cell in an atmosphere of air and carbon oxides. Electrolyte degradation did not occur during repetitive winning of molybdenum from pure MoO₃ in an 8-day (5,400ampere-hour) period of operation. Electroown metal contained <0.1 percent total impurities. The electrode configuration is a key factor in the direct conversion of technical-grade MoO₃ to metal by repetitive cyclic electrolysis. The best configuration found was a cathode crucible and a central anode. Metal purity 0 99.8 percent and a current efficiency of 91 percent were maintained until the combined impurity buildup in the electrolyte reached 4.7 percent silicon, 1.0 percent aluminum, and 0.6 percent iron. One pound of molybdenum was produced per 1.5 pounds of solvent salts employed. About 25 percent of the initial NaCl and NaF contents of the electrolyte were lost owing to volatilization and crucible penetration.

RI 6835. Preparation of Submicron Tungston Powder by Hydrogen Reduction of Tungston Hexachloride, by J. E. Tress, T. T. Campbell, and F. E. Block. 1966. 14 pp. 4 figs. The Bureau of Mines prepared submicron tungsten powder by reducing tungsten hexachloride with hydrogen. The particle diameters of the resulting tungsten powders ranged from 0.015 to 0.046 micron. Within the limits of the variables investigated, no clear-cut correlation was found between process conditions and final size of the powder. Oxygen was the major contaminant in the product, being present both as an adsorbed gas and as suboxides of tungsten. Studies showed that the powder yielded compacts of approximately 45 percent of theoretical density when compacted mechanically. Low-temperature sintering produced more rapid densification in these compacts than in compacts prepared from conventional powders. Adding up to 20 percent ultrafine powder to conventional tungsten powder caused an increase in densify upon compaction with maximum densification occurring at approximately 12 percent ultrafine powder.

ÅI 6836. Density and Molar Volumes of Binary Flueride Mixtures, by B. Porter and R. E. Meaker. 1966. 13 pp. 8 figs. The densities of LiF, NaF, and KF, of binary mixtures of these alkali fluorides, and of binary mixtures of UF., ThF., YF., LaF., and CeF. with each of the alkali fluorides were measured as functions of the melt composition and temperature. Molar volumes at 1,000° C were calculated for all the mixtures. Binary systems containing LiF exhibited molar volume ideality. Binary fluoride systems containing either NaF or KF as the alkali fluoride exhibit positive deviations from molar volume additivity. However, molar volumes in the NaF-KF system are ideal.

RI 6837. Fire Hazard of Urethane Foom in Mines, by Donald W. Mitchell, Edwin M. Murphy, and John Nagy. 1966. 29 pp. 15 figs. Certification tests for urethane-foom systems and techniques for applying foam safety in mines are described. Fire hazard from foam exists if flame propagates beyond the ignition source or penetrates the foam. Foam that passes the certification tests can be applied on stoppings, continuous sections of ribs of relatively wide passageways (with no foam on the roof), short sections of roof such as overcasts, roof cavities, and intersections (with no foam on the ribs), and between buntons on one wall of a shaft. Foam on the ribs and adjoining roof presents a fire hazard. Stoppings covered with foam passing the certification tests are more resistant to penetration of heat, flame, and smoke than similar stoppings without foam. Flame propagation can be arrested by water sprays. Spontaneous ignition of foam can be prevented.

RI 4838. Inelastic Deformation of Rock Under a Hemispherical Drill Bit, by James Paone and Sathit Tan-danand. 1966. 26 pp. 16 figs. The Bureau of Mines studied the behavior of rocks at the initial state of crater formation that results from the stresses created under a drill bit to determine which mechanical properties of rock are important in rock fragmentation by drilling. Although a definite relation between the drilling strength and relevant mechanical properties has not been established, max-imum yield strength of rock is aparently a parame-ter of drillability of rock. The strengths of rock were considered from the Mohr-Coulomb criterion from which the surface of failure was constructed. The results from previous triaxial tests on Solenhofen limestone were adopted to verify the criterion of failure. Inelastic behavior of some rock types was observed under a low-velocity impact of a hemispherical bit and under static indentation with a similar bit. Permanent set at low applied loads in the indented area was measured with an interferometric technique. Quantitative determinations of strengths of Solenhofen limestone, Indiana limestone, and Tennessee marble were made under static indentation. The maximum yield strength estimated from the average stress over the indented area was

٠

used as the crushing strength of rock under a drill bit.

RI 6839. Influence of Continuous Carbonization Method, Temperature, and Carrier Gas on the Amounts of Individual Pyrolysis Products From a Subbituminous Coal, by C. Karr, Jr., J. R. Comberiati, K. B. McCaskill, and P. A. Estep. 1966. 9 pp. 1 fig. The Bureau of Mines studied the influence of carbonization method, temperature, and carrier gas on the composition of eight different low-temperature tars produced from a Colorado subbituminous coal. A fluidized bed was compared with an entrained bed, temperature was varied from 500° C to 650° C, and external heating using recycle gas as the carier gas was compared with internal heating using oxygen-containing gas. The entrained bed yielded significantly more *m*-cresol and *m*-ethylphenol, indicating that thermodynamic equilibrium was more nearly approached in the system. Increasing the temperature greatly increased the yield of benzenes and naphthalenes, while paraffins, olefins, and total tar acids were reduced. Using oxygen in the carrier gas decreased the yield of low-boiling phenols and increased that of paraffins and olefins at 650° C.

RI 6840. Detention Initiation in Alkane-Oxygen Mixtures, by E. L. Litchfield and M. H. Hay. 1966. 6 pp. 3 figs. The techniques for direct initiation of detonation, developed by the Bureau of Mines, have been applied to gaseous mixtures of oxygen with methane, ethane, propane, butane, or hexane. An exploding wire was used as the initiation source to determine minimum stored electrical energies required to effect detonation of mixtures between onehalf and two times the stoichiometric fuel ratios. Detonations were obtained in the most easily initiated mixtures of ethane, propane, butane, and hexane for initiation energies between 24 and 33 joules at 1 atm and 28 to 43 joules at 0.5 atm initial pressure. Methane mixtures, at 1 atm, were not observed to detonate when initiated with up to 484 joules.

RI 6841. Recovery of Additional Beryllium From Fluoferrate Leach Residue, by R. O. Dannenberg and J. M. Maurice. 1966. 12 pp. 3 figs. This Bureau of Mines report describes the results of research to develop a process for recovering additional beryllium from a commercial mill waste product, fluoferrate leach residue. Forty-five percent of the total beryllium in the leach residue was recovered in a beryllia product assaying over 98 percent BeO by a process comprising (1) leaching with 1 N sulfuric acid, (2) adjusting the acidity of the leach liquor to pH 2, (3) extracting the beryllium with di-2-ethylhexyl phosphoric acid (EHPA), (4) stripping the loaded extract with sodium hydroxide solution, (5) boiling the sodium beryllate strip solution to precipitate beryllium hydroxide, and (6) calcining the beryllium hydroxide. Calculated reagent requirement per pound of BeO recovered by a proposed flowsheet were 28.1 lb sulfuric acid, (DA), 0.22 gal kerosine, and 6.3 lb sodium hydroxide.

RI 6842. Yield and Ultimate Strengths of Rock Balts Under Combined Leading, by Lars Osen and Edward W. Parsons. 1966. 22 pp. 15 figs. The Bureau of Mines investigated (1) the effect of torsion on yield and ultimate strengths of bolts when the torsion is applied first and tensile load is applied independently of torsion and (2) various methods of increasing the tension-torque ratio and/or narrowing the data spread of the tension-torque relationship. A special torsional attachment was fabricated to attach to a universal testing machine to independ-ently subject rock bolts to combined tensile and torsional loads. It was found that initially installed torsion is nullified during tensile loading and the tensile yield and ultimate strengths are not significantly reduced. Lubricating various components of a bolt assembly or using hardened washers will improve the tension-torque relationship during con-ventional installation; however, the torsional load is not nullified during this type of loading. Hence, a bolt is subjected to a combined stress throughout the loading cycle; the yield point will thus be lowered compared with the pure tensile yield if care is not taken during installation to stay below the torsional yield.

RI 6843. Presplitting Rock in the Presence of a Static Stress Field, by Harry R. Nicholls and Wilbur I. Duvall. 1966. 19 pp. 17 figs. Preliminary tests on presplitting rock in the presence of an in situ static stress field were undertaken to study the influence of a horizontal static stress field on the creation of a vertical presplit fracture plane. These tests indicated that it is easier to fracture the rock parallel to the in situ maximum compressive stress than in other directions. Instrumented shots indicate that the interaction of stress waves generated by the detonating charges is probably responsible for starting tensile fractures between shotholes and that starting tensile fractures between shotholes and that expanding gases may propagate these initial cracks by a wedging action. The hole spacing for good presplitting appears to be equal to the half wave-length of the stress wave. However, wider hole spacing appears feasible if the initial fracture is started by closer hole spacing.

RI 6844. Chemical Processing of Florida Phosphote Rock Slime, by M. H. Stanczyk and I. L. Feld. 1966. 11 pp. The Bureau of Mines made benchscale laboratory tests on a sample of typical Florida phosphate slime to determine alumina and phosphate extractions obtainable by agitation leaching, by baking and curing, and by a leach-electrolysis scheme. Recovery of mineral values from leached slime pulps by resin-in-pulp ion exchange contact and the reaction of the leached pulps to filtration, flocculation, and settling were also investigated. The best extractions of alumina and phosphate were obtained by (1) agitation leaching with sulfuric, hydrochloric, or nitric acid at an elevated temperature or (2) curing or baking the slime with sulfuric acid. Alumina extractions ranged from 80.8 to 90.0 per-cent and phosphate extractions ranged from 93.3 to 98.4 percent when the slime was leached at 90° with sulfuric, hydrochloric, or nitric acids. Baking the slime with sulfuric acid at 200° C for 4 hours yielded an alumina extraction of 92.3 percent and a phosphate extraction of 97.0 percent, whereas curing with sulfuric acid at 100° C for 24 hours gave slightly higher alumina and phosphate extractions. Flocculation and settling properties of the slime were virtually unaffected in all cases. Filter area requirements, although somewhat improved as compared to untreated slime, remained relatively high. The lowest filter area requirement obtained was 44 square feet per ton of dry solids treated per day. Contacting leached slime pulps with ion exchange resins depleted the leach pulps of solubilized values; however, the filtration and settling properties of the barren pulps were unaffected. A leachelectrolysis scheme resulted in some concentration of solubilized phosphorus, but the method showed little promise of being commercially feasible. Work done in cooperation with the University of Alabama.

RI 6845. Tungsten Recovery From Low-Grade Concentrates by

Amine Solvent Extraction, by P. E. Churchward and D. W. Bridges. 1966. 17 pp. 4 figs. The Bureau of Mines developed a process using amines for recovering tungsten as ammonium paratungstate from alkaline leach liquors without producing syn-thetic scheelite as an intermediate product. Over su percent of the tungsten in low-grade scheelite or ferberite concentrate was recovered as ammonium paratungstate by (1) autoclave leaching the con-centrate with Na₂CO₃, (2) solvent extraction of the acidified leach liquor with kerosine solutions of either a quaternary amine (Aliquat 336) or a pri-mary amine (Primene JM-T), (3) stripping the tungsten values from the quaternary amine with ammoniacal NH₁Cl, or from the primary amine with NH₁OH, and (4) crystallization of ammonium para-90 percent of the tungsten in low-grade scheelite or ammoniacai NH,Cl, or from the primary attime with NH,OH, and (4) crystallization of ammonium para-tungstate from the strip liquor. Reagent consump-tion in pounds per pound of WO, recovered was, for the quaternary amine, 3 Na₂CO₃, 3.5 H₂SO₄, 2.2 NH,Cl, 1 NH₃, and 0.4 glacial acetic acid; for the primary amine, it was 3 Na₂CO₃, 3.5 H₂SO₄, 0.06 NH,Cl, and 0.9 NH₃. Both reagents extract molybdenum along with tungsten. Silicate and phosphate are partly extracted and contaminate the product; leach liquors containing these impurities require preliminary purification.

RI 6846. Crude Oil Characterizations Based on Bureau of Mines Routine Analyses, by H. M. Smith and J. H. Hale. 1966. 28 pp. 12 figs. Data from the Bureau of Mines routine method for the analysis of crude petroleum are used to characterize crude oils. Some data are used directly while other data are used to calculate aromatic, naphthalene, and par-affin contents of the distillation fractions and the correlation index of the paraffin-naphthene portion of the fractions. The calculated properties show significant differences in composition between crude The methods of calculation and interpretation oils. of data are explained and illustrated.

RI 6847. A Laboratory Comparison of the Adsorptivity of Ri 6847. A Laboratory Comparison of the Adsorptiony of Eight Commercially Available Charcoals, by C. L. Klingman, A. A. Sonnek, and J. D. Marshall. 1966. 17 pp. 10 figs. The Bureau of Mines tested eight commercially available, activated charcoals experi-mentally to compare the following characteristics: Capacity for adsorption of nitrogen at 77° K and 170 theorem. atmospheres' pressure, surface area, carbon tetrachloride adsorption capacity, hardness, and density. The nitrogen adsorption test was devised to simulate plant conditions occurring in the final step of purification in Bureau helium facilities. The remaining tests were patterned after empirical acceptance tests that are widely used throughout the adsorbent industry. Surface area and carbon tetrachloride adsorption correlated well with nitrogen adsorption. The samples with low density generally had better adsorption qualities than those of higher density. The carbon tetrachloride test appeared to be the most practical for selecting a charcoal to be purchased, but an attrition, or hardness, test should also be run to be sure the charcoal will not crumble in use.

RI 6848. Nitrogen Gas in Five Oilfields on the Nesson Anticline in North Dakota, by L. C. Marchant. 24 pp. 16 figs. This Bureau of Mines report 1966. tabulates data on nitrogen-gas reservoirs and isolated occurrences of inert gases in several Williston basin oilfields. Recoverable reserves of nitrogen gas in the Minelusa nitrogen interval within the areas of five oilfields on the Nesson anticline in North Dakota are estimated at about 1.27 trillion standard cubic feet, based on computer analyses of logs from over 300 wells. This volume of nitrogen represents a large source of high-pressure inert gas and warrants consideration of possible application in oilproduction operations. Drill-stem tests made in two of the fields indicated that nitrogen can be produced at rates up to 28 million cubic feet per day. Work done in cooperation with the University of Wyoming.

RI 6849. A Knudsen Effusion Apparatus for Vapor Pressure Measurements, by Stephen D. Hill, Arnold Adams, and F. E. Block. 1966. 18 pp. 6 figs. The Bureau of Mines devised and constructed a modified Knudsen effusion apparatus, permitting a constant measure of the weight of effusing vapor, to determine the equilibrium vapor pressure of metal halides at temperatures up to 1,200° K and over the pressure range 10-5 to 10-2 torr. The reliability of the apparatus was established by determining the vapor pressure of potassium chloride. After correcting for partial dimerization of the vapor, data obtained on solid KCl between 750° and 950° K can be expressed by the following equation:

$$\log P_{\rm atm} = 7.369 \pm 0.008 - \frac{11,207 \pm 75}{T}$$

A third-law treatment of the data yields an average heat of sublimation for the reaction $KCl_*=KCl_*$ at 298.15° K of 53.394 ± 0.015 kcal/mole. The corresponding second-law value is 52.633 ± 0.331 kcal/mole.

RI 6850. Preparation of High-Purity Molybdenum by Molton Salt Electrorefining, by R. E. Cumings, F. R. Cattoir, and T. A. Sullivan. 1966. 24 pp. 10 figs. The Bureau of Mines made electrorefining tests in inert-atmosphere, molten salt cells to develop methods for the preparation of high-purity molybdenum. Seven of the electrolytes investigated were suitable for the preparation of refined metal. The electrolytes were composed of molybdenum chloride in alkali chlorides. An electrolyte composed of potassium chlorides. An electrolyte composed of potassium chloride and potassium hexachloromolybdate was selected for a larger scale, more detailed study on the basis of its ease of preparation, its ability to retain the molybdenum salt, and the type of deposits obtained. High-purity molybdenum in the 99.99-percent-purity range was successfully prepared as dense plate up to 80 mils thick and as dendritic crystals. The temperature of electrolysis and the current density were major factors in determining whether plate or dendritic crystals of molybdenum were obtained.

RI 6851. Thermoelectric Properties of Yttrium Selenides and Tellurides, by L. D. Norman, Jr. 1966. 19

The Bureau of Mines investigated the thermoelectric properties of yttrium selenides and tellurides from room temperature to 900° C. X-ray crystallographic data were determined for the yttrium-selenium and yttrium-tellurium compounds that were orthorhombic with a cubic substructure. The yttrium selenides and tellurides exhibited semimetallic to insulator conduction properties with figures of merit of 10^{-9} to 10^{-4} °C⁻¹. The monoselenide and monotelluride behavior was partially degenerate; unsatisfied bonds were the source of the large number of charge carriers. The higher stoichiometry selenide compounds were intrinsic semiconductors, but with high electrical resistivities. A critical defect or impurity ionization energy for carrier activation appeared to exist in the majority of telluride compounds. Mobility and energy band determinations are required to interpret completely the observed effects in most of the compounds studied.

RI 6852. Determination of Copper With Disodium Ethylanedinitrilo Tetracetete (EDTA), by R. E. Stiles and D. L. Munneke. 1966. 12 pp. The modified perchloric-EDTA method devised by the Bureau of Mines for the determination of copper in high-grade samples gives results that are more precise and more accurate than those from the classical sulfuriciodometric method. Although the perchloric-EDTA method is more costly than the conventional method, the saving in time alone largely offsets this difference. Specifically, the modifications made in the conventional procedure comprise (1) use of perchloric acid instead of sulfuric acid for dissolution of copper minerals, (2) precipitation of copper as copper sulfide from dilute perchloric acid solution, (3) wet oxidation and dissolution of the precipitated copper sulfide, (4) use of larger amounts of indicator than those employed in the Schwarzenbach method of titrating low-tenor copper solutions with disodium ethylenedinitrilo tetraacetate and murexide indicator, and (5) use of refrigeration to partially stabilize aqueous solutions of the indicator.

RI 6853. Vapor Deposition of Molybdenum-Jungston Alloys, by J. G. Donaldson and H. Kenworthy. 1966. 12 pp. 5 figs. Binary alloys of molybdenum and tungsten were prepared by the Bureau of Mines in laboratory-scale experiments by hydrogen reduction of their vaporized hexafluorides. Near-optimum deposition parameters were determined, and the nature of the deposited alloys was investigated. Dense, homogeneous alloys were codeposited between 650° and 750° C with a reduction efficiency of more than 75 percent. The alloy composition was uniform when the hydrogen ratio in the gas feed mixture did not exceed three times the stoichiometric requirement. Regulating the proportions of the metal hexafluorides in the gas feed provided a large degree of control over the composition of the deposit. Hardness of the deposits varied directly with the proportion of excess hydrogen in the gas feed and with the weight-percent of tungsten in the alloy. Hardness was not affected by deposition temperature over the range 650° to 750° C for specimens of similar composition. Extreme brittleness and unsuitable physical shapes of the alloys prevented tensile strength measurements.

Ri 6854. Mass and infrared Spectro of Selected Unsaturated Hydrocarbans and Oxygenates, by R. F. Kendall and B. H. Eccleston. 1966. 107 pp. Only a limited number of mass and infrared reference spectra of high-purity unsaturated hydrocarbons and oxygenates are presently available in the literature. To aid Bureau of Mines research programs requiring such references, 64 mass spectra and 70 infrared spectra were obtained and are reported. The individual compounds, acquired from commercial sources, were purified by preparatory gas chromatography. Purity determinations were made using a combination of analytical gas chromatography, microhydrogenation, and catalytic deoxygenation. These spectra will aid spectroscopists in the identification of compounds of the types reported.

RI 6855. Radioactive Techniques for Continuously Measuring Flotation Froth Density and Pulp Flow Rates, by J. V. Batty, H. L. Gibbs, and A. M. Poston, Jr. 1966. 18 pp. 9 figs. The Bureau of Mines devised techniques involving the use of beta- and gammaray-emitting radioisotopes and successfully adapted these techniques to the density of mineralized flotation froths, the rate of flow of finely ground ore pulps, and the residence time of pulps in processing circuits. Specifically, the water and mineral loads of flotation froths were continuously measured by determining the proportion of a constant-strength beam of beta rays that was absorbed by the froth column. Continuous measurement of the rate of flow of an ore pulp was accomplished by measuring the changing width of a free-falling stream of the pulp with a collimated beam of beta rays. The residence time of solids in conditioning and resin-in-pulp circuits was accurately measured by following the progress through these circuits of a portion of the pulp that had been tagged with the gamma-emitting Ag¹¹⁰ radioisotope.

RI 6856. Film Coefficients of Meet Iransfer for Helium at 2,000° to 2,500° F in Turbulant Flow, by N. H. Coates and A. F. Galli. 1966. 22 pp. 10 figs. The Bureau of Mines determined average film coefficients of heat transfer for helium flowing through smooth, water-cooled tubes at Reynolds numbers of 5,000 to 25,000, helium inlet temperatures of 1,600° to 2,600° F, average temperature difference across the helium film of 800° to 1,300° F, and the heat flux to 215,000 Btu/(hr)(sq ft). Since helium was the only gas used, the ranges of values for physical properties of the fluid are limited—thermal conductivity from 0.15 to 0.20 Btu/(hr)(sq ft)(° F/ft), viscosity from 0.082 to 0.104 lb/(ft)(hr), and Prandtl number from 0.63 to 0.68. Four equations, three of them dimensionless, correlate these coefficients with other properties of the helium—bulk temperature, film temperature, dimensionless parameters based on temperature, and the ratio of wall temperature to bulk temperature,

$$\frac{H_{i}D_{i}}{k_{b}} = 0.020 \left(\frac{D_{i}G}{\mu}\right)_{b}^{\circ.s} \left(\frac{C_{p\mu}}{k}\right)_{b}^{\circ.4},$$

$$\frac{h_{i}D_{i}}{k_{f}} = 0.0197 \left(\frac{D_{i}G}{\mu}\right)_{f}^{\circ.s} \left(\frac{C_{p\mu}}{k}\right)_{f}^{\circ.4},$$

$$\frac{h_{i}D_{i}}{k_{b}} = 0.0215 \left(\frac{D_{i}G}{\mu}\right)_{b}^{\circ.s} \left(\frac{C_{p\mu}}{k}\right)_{b}^{\circ.4} \left(\frac{\mu_{ic}}{\mu_{b}}\right)^{\circ.14},$$

$$h_{i} = 0.0198 \frac{G^{\circ.8}}{D_{i}^{\circ.2}}$$

Values of the average inside film coefficient of heat transfer determined from these equations agree within 10 percent. Work done under an agreement with the U.S. Atomic Energy Commission.

RI 6857. Het Gas Ignition Temperatures of Hydrocarbon Fuel Vapor-Air Mixtures, by J. M. Kuchta and R. J. Cato. 1966. 14 pp. 9 figs. The Bureau of Mines used laminar hot air jets of $\frac{1}{4}$ - to $\frac{3}{4}$ -inch diameter to determine the hot gas ignition temperatures of various combustible vapor-air mixtures. The combustibles were *n*-hexane, *n*-octane, *n*-decane, a hydrocarbon jet fuel (JP-6), and an adipate ester aircraft engine oil (MIL-L-7808). Minimum ignition temperatures occurred at a fuel-to-air weight ratio of about 0.5 and were not greatly sensitive to variations of fuel concentration. Moderate variations of jet velocity also had little influence on these ignition temperatures. However, these temperatures decreased with increase in heat source dimensions (jet diameter). The hot gas ignition temperatures of the combustibles weer not necessarily much greater than corresponding autoignition and wire ignition temperatures when the size of the heat source and the ignition criterion were the same. Work done under a U.S. Airforce Aero Propulsion Laboratory Delivery Order.

RI 6358. A Coal-Fired Water Pump, by J. E. Zeilinger, Walter Kawa, P. S. Lewis, and R. W. Hiteshue. 1966. 12 pp. 3 figs. The technical feasibility of using energy from explosive ignitions of coal dust to pump water was demonstrated in an exploratory investigation. Ignition of small amounts of pulverized coal that were dispersed in air over columns of water pumped 5.3 gallons of water per cycle when operated against a head of 30.75 feet. Water displacement was accomplished by either manual or automatic operation through a single cycle and by automatic operation through a continuous series of cycles of 1-minute duration. Operating through single cycles, slurries containing up to 3 pounds of coal and 4.6 gallons of water were also pumped. Possible uses of an efficient coal-fired pump would include pumping water for irrigation purposes, removing water from mines, transporting coal from mines in the form of a slurry, and pumping water to elevated reservoirs at electric powerplants so that it could be used to generate electricity during peak periods of demand.

RI 6859. A One-Step Operation for Recovery of Manganese as Chloride From Ores and Slags, by Å. A. Cochran and W. L. Falke. June 1967. 22 pp. 12 figs. The Bureau of Mines studied the development of practical methods for recovering manganese from the extensive, domestic resources of low-grade ores and open hearth slags. A one-step operation was developed on a laboratory scale in which manganese and iron compounds are treated with chlorine, volatilized, and separated by selective condensation. Manganese recoveries of 90 to nearly 100 percent were obtained from nine of the most important domestic ores. Analyses of the manganese chloride product indicated that it was suitable for aqueous electrolysis with little additional purification. A complete, integrated process that provides for the process appears to have distinct advantages over previously proposed manganese recovery processes, and, in sharp contrast to leaching procedures, it is applicable to practically any manganese-bearing material.

RI 6860. Stresses in Rack Outcrops Near Atlanta, Ga., by Verne E. Hooker and Wilbur I. Duvall. 1965. 18 pp. 7 figs. The Bureau of Mines conducted an investigation to determine the state of stress in crystalline rock outcrops near Atlanta, Ga. The secondary principal stresses in a horizontal plane near the surface are compressive and are 500 to 3,000 psi. The maximum compressive stress is northeast-southwest in the Stone Mountain-Lithonia district but changes to northwest-southwest near Douglasville. The elastic constants were determined from data obtained by static and dynamic laboratory methods and in situ velocity measurements. Results show Young's modulus to be dependent upon both stress level and anisotropy in the rock. Average secant moduli obtained from triaxial tests were used to compute the applied stress from borehole deformation measurements.

RI 6861. Thermodynamic Data for Molybdenum Carbide and Tantalum Carbide, by L. B. Pankratz, W. W. Weller, and E. G. King. 1966. 10 pp. 2 figs. The heat capacity of dimolybdenum carbide (Mo₂C) was measured from 51° to 298° K, and the entropy at 298.15° K was evaluated. Heat content measurements above 298.15° K were conducted for dimolybdenum carbide and monotantalum carbide (TaC). The results were combined with known heats of formation and the 298.15° K entropy for TaC to obtain values of the heat and free energy of formation from 298.15° K to 1,400° K for Mo₂C and from 298.15° K to 1,800° K for TaC.

RI 6862. High-Temperature Heat Content of Lithium Columbate, by L. B. Pankratz and E. G. King. 1966. 9 pp. 3 figs. The heat content above 298.15° K of ferroelectric lithium columbate (LiCbO₀) was measured to 1,770° K. The Curie temperature was determined to be 1,450° K, the melting point 1,540° K, and the heat of fusion 16.94 kcal/mole. Heat content and entropy increments have been tabulated for the temperature range from 298.15° to 1,800° K. Heat contents are also given in equation form.

RI 6863. Test Operation of a Pneumatic Vibrating-Blade Planer. A Progress Report on Phosphate Mining Research, by Webster S. Anderson. 1966. 16 pp. 11 figs. Bureau of Mines planer mining tests on the phosphate bed of the Douglas mine, near Drummond, Mont., indicated that a competent bed with a Mohs' scale hardness of 3 to 4 cannot be mined economically with the planer. Although planer mining was feasible where the bed was fractured enough for a 4-inch depth of cut to be consistently maintained, the depth of cut in the competent beds at the Douglas mine did not exceed 0.5 inch. Average production rates were 0.15 ton per minute and 9 tons per man-shift.

RI 6864. Surface Area Studies of Anthracite by Carbon Dioxide Adsorption, by Jerry W. Ramsey, J. O. Mapstone, G. A. Brady, and J. W. Eckerd. 1966. 10 pp. 1 fig. The Bureau of Mines studied two Pennsylvania anthracites using low-temperature carbon dioxide adsorption. A modified form of the Brunauer-Emmett-Teller equation was used to calculate specific surface areas. Two mesh sizes of each anthracite were used to determine how gamma irradiation at 10° and 10° rads, both in vacuum and in the presence of air, affected the carbon dioxide surface areas. Results show that anthracites have a system of pores that are all interconnected rather than isolated; that anthracites differ from one another in specific surface, which may correlate with density; and that irradiation in vacuum has no discernible effect on specific surface of anthracite, but irradiation in air dues produce changes in specific surface.

RI 6865. A Machine-Test Method for Measuring Carbon Dioxide in the Inspired Air of Self-Contained Breathing Apparetus, by E. J. Kloos and J. A. Lamonica. 1966. 11 pp. 6 figs. The Bureau of Mines devised a new machine-test method for measuring carbon dioxide inspired by a wearer of self-contained breathing apparatus. The new method compares favorably in speed and precision with standard man-tests, in which the apparatus is tested while actually worn, and is scheduled for use in future approval tests for facepiece carbon dioxide measurements. Man-tests will still be used to measure the efficiency of the carbon dioxide sorbent materials in closed-circuit breathing apparatus.

RI 6866. Intermediate Phases in the Magnesium-Cerium System Between Magnesium and Mg.Ce, by R. L. Crosby and J. L. Holman. 1966. 18 pp. 4 figs. Microscopical and X-ray diffraction techniques were used to identify two intermediate phases in that part of the solid region of the magnesium-cerium system between magnesium and Mg₃Ce. Previous literature had reported only one intermediate phase for this region, but chemical analysis determined the approximate composition of the two compounds to be Mg₂Ce₂ and Mg₁₇Ce₂. The range in composition of the two intermediate phases was found to be limited to less than 0.3 atomic percent cerium. The study did not determine the crystal structure of Mg₁₇Ce₂, but that of Mg₂₇Ce₂ is tetragonal with a=10.33 A and c=19.51 A.

RI 6867. Investigation of Correlation Between Assay Values and Unequal Sample Interval Lengths, by Scott W. Hazen, Jr., and William L. Meyer. 1966. 46 pp. 23 figs. Relationships that may exist between assays and sample-interval lengths when using unequal sample intervals in mine sampling have been investigated as part of the problem of adapting statistical methods to the analysis of weighted average grades. The theoretical relationship between the amount of difference in the weighted and unweighted average grade of ore and the size of the correlation coefficient between assay value and sample-interval length was found to be linear. Differences between actual field data and the expected theoretical linear relationship are examined. It is hypothesized that the use of unequal sample intervals in mine sampling is, in fact, stratified sampling in a statistical context. Statistically, methods currently used in mine sampling, involving unequal sample intervals, fail to consider differences in the inherent variances in grade of ore within the various strata established by using unequal sample intervals. Consequently, the strata are samoled with different precision. This difference in precision of sampling between strata may account for much of the deviation between the plotted points representing actual field sampling data and the theoretical linear relationship between the amount of the difference between weighted and unweighted average grade of ore and the size of correlation coefficient between assays and sampleinterval lengths.

RI 6868. Comparison of Products from High-Temperature Irradiation and Carbonization of Cool, by A. G. Sharkey, Jr., J. L. Shultz, and R. A. Friedel. 1966. 9 pp. 9 figs. The Bureau of Mines investigated gases from flash and laser irradiation of Pittsburgh seam (hvab) coal to determine the action of high temperatures on irradiation. Temperatures in excess of 1,000° C were reached with both types of irradiation. Craters about 300 microns in diameter were produced in the coal with millisecond pulses from the laser unit rated at 1.7 joules' output. Gaseous products from laser and flash irradiations in vacuum contained 21 and 8 percent acetylene, respectively. Diacetylene, vinylacetylene, and other products to molecular weight 130 were indicated in the mass spectrum of the gas from the laser study. Single experiments were also conducted in which the laser energy, particle size of the coal, and atmosphere were varied. The results indicated that the distributions of products obtained from the flash and laser irradiations of coal were different from that produced in high-temperature carbonization.

RI 6869. Fly Ash as a Coagulant Aid in Water Treatment, by Richard C. Ballance, John P. Capp, and Jerry C. Burchinal. 1966. 13 pp. 9 figs. Fly ash from four sources and in certain proportions was shown to assist chemical coagulation of turbid water and settling of chemically induced floc. Fly ash reduced the time required to form the first visible floc, promoted more uniform flocs about 2 mm in diameter, and increased the mean settling rate of floc particles. Also, the additon of fly ash produced denser sludges than those obtained with alum alone. Final turbidities were independent of fly ash particle size and carbon content. Optimum proportions of fly ash additive are given.

RI 6870. Recovery of Additional Oil From Water-Drive Reser-

voirs, by Larman J. Heath and C. H. Riggs. 1966. 11 pp. 1 fig. The Bureau of Mines explored the use of air or natural gas for recovering additional oil from natural water-drive reservoirs with little or no original gas saturation. Engineering and production data for a field in the Mid-Continent area, results of limited laboratory experiments, and data shown in the literature were considered. Injecting air into a water-coned well could seriously damage the well. Injecting natural gas into the watered-out zone could improve the producing wateroil ratios. In the reservoir studied, oil recovery can be increased by injecting natural gas to decrease water-oil ratios. Laboratory tests on a core from the field show an increase in oil recovery of 7.6 percent of the original oil in place as a result of increasing the free gas saturation. This recovery could amount to as much as an additional 6 million barrels of oil from this field.

RI 6871. Correlation of BM-AGA Carbonization Yields from 13. and 18.1nch-Diameter Retorts, by C. Ortuglio and J. G. Walters. 1966. 19 pp. Equations were developed to determine the relationship of yields and products obtained from Bureau of Mines-American Gas Association method carbonization in 13- and 18inch-diameter retorts. The developed equations indicate that results of carbonization in 18-inch-diameter retorts can be predicted from results obtained with 13-inch-diameter retorts.

RI 6872. Carbonizing Properties of Cools From Fayette and Greenbrier Counties, W. Va., by D. E. Wolfson and J. H. Lynch, Jr. 1966. 18 pp. 1 fig. Twentytwo samples of West Virginia coals were carbonized at 900° C by the Bureau of Mines-American Gas Association (BM-AGA) method, and yields of products and physical properties of cokes were determined. Eighteen samples represented the Coalburg, No. 2 Gas, No. 2 Gas and Peerless, Powellton, Eagle, Big Eagle, Lower Eagle, Sewell, Fire Creek, and Pocahontas No. 6 beds in Fayette County, and four samples represented the Sewell and Fire Creek beds in Greenbrier County. Expansion characteristics of the majority of samples were determined in the Bureau of Mines sole-heated oven. Chemical analyses were determined for all coals. The coals in Fayette County are high volatile A, medium volatile, and low volatile in rank, and the Greenbrier coals are medium volatile in rank. Most of the coals are chemically suitable for metallurgical coking. All coke strength indices are within acceptable limits for metallurgical coking coal. All the high-voltage A coals contracted and the medium- and low-volatile coals expanded in the sole-heated oven expansion test.

RI 6673. Heats of Formation of Lithium Sulfate and Five Potassium- and Lithium-Aluminum Silicates, by R. Barany and L. H. Adami. 1966. 18 pp. The heats of formation of seven substances were determined by solution calorimetry. At 298.15° K, the heat of formation of lithium sulfate from lithium, rhombic sulfur, and oxygen was -343.1 ±0.7 kcal/ mole, and the heat of formation of lithium sulfate monohydrate from lithium, rhombic sulfur, oxygen, and hydrogen was -414.3 ± 0.7 kcal/mole. For the silicates, the heats of formation at 298.15° K from the elements were kaliophilite, -503.8 ± 0.5 kcal/ mole; leucite, -721.6 ± 0.8 kcal/mole; eucryptite, -505.2 ± 0.6 kcal/mole; alpha spodumene, -727.9 ± 0.9 kcal/mole; and beta spodumene, -721.1 ± 0.9 kcal/mole. The corresponding heats of formation at 298.15° K from the constituent oxides were kaliophilite, -42.7 ± 1.1 kcal/mole; leucite, -42.8 ± 1.1 kcal/mole; eucryptite, -16.1 ± 0.7 kcal/mole; alpha spodumene, -21.0 ± 0.7 kcal/mole; and beta spodumene, -14.3 ± 0.7 kcal/mole.

RI 4874. Preparation Characteristics of Coal From Randolph County, W. Va., by A. W. Deurbrouck. 1966. 30 pp. 3 figs. The Bureau of Mines analyzed 13 samples collected from three Randolph County coalbeds. The Peerless and Sewell bed samples were generally of metallurgical quality as received from the mines or could be easily upgraded. However, the Lower Kittanning coalbed samples proved to be quite inimical to upgrading to metallurgical quality.

RI 6875. Electrolytic Methods for Producing Titanium and Titanium Alloyt, by E. K. Kleespies and T. A. Henrie. 1966. 10 pp. 5 figs. A technique was demonstrated for electrowinning titanium from titanium nitride and titanium dioxide. Titantiumnickel-copper metal solutions containing 26 to 61 weight-percent titanium were prepared by electrolyzing titanium nitride in molten mixtures of potassium fluotitanate and sodium chloride or barium chloride and depositing titanium on nickel-copper cathodes. A titanium-nickel alloy was prepared by electrolyzing titanium dioxide in an electrolyte of potassium fluotitanate, sodium fluoride, and calcium fluoride and depositing titanium on solid nickel cathodes. This alloy contained 21 weight-percent titanium and had a combined oxygen-carbon content of less than 0.1 weight-percent. A compartmented cell confined the oxide feed near the anode and inhibited oxygen contamination of the metal.

RI 6876. A Computer Method of Fitting Surfaces to Assay and Other Data in Three Dimensions by Quadratic-Regression Analysis, by Richard F. Link, Norman N. Yabe, and George S. Koch, Jr. 1966. 42 pp. 22 figs. A statistical technique, useful for analysis of assay and other data characterized by location in three dimensions, is described. If present, trends in the data are defined for the purposes of improving ore estimation, predicting ore beyond existing workings, and aiding geological interpretation. The technique is to fit linear and quadratic polynomial equations to the data through the statistical method of regression analysis. The fitted linear equations have the geometric form of hyperplanes; the fitted quadratic equations have the geometric form of ellipsoids or elliptic hyperboloids of one or two sheets. To visualize these three-dimensional froms, contour maps of a series of plane sections through the fitted surfaces are plotted. Both the fitting of the polynomial equations and the plotting of the contour maps are done by electronic computer to facilitate calculations and to obtain accurate results. Computer programs are described in appendixes. Methods employed are illustrated by an example analysis, based on data from a part of the Fresnillo mine, Zacatecas, Mexico.

RI 6877. Separation of HF from HF-SiF.-H.O Mixtures, by Robert K. Koch, Arden D. Fugate, and Henry E. Blake, Jr. 1966. 15 pp. 5 figs. Separating HF from HF-SiF.-H.O mixtures by passing the mixed gases through a sodium fluoride slurry in an airlift scrubber and forming a mixed precipitate of NaHF. and Na₂SiF was investigated. The ovendried precipitate was thermally dissociated in two stages. The first stage was carried out at 400° C and dissociated NaHF₂ to NaF and HF. Condensation and analysis of the evolved HF proved it to be 97 to 99 weight-percent HF containing 0.79 to 0.99 weight-percent H.O and 10 to 93 ppm silicon. The second stage was carried out at 700° C and dissociated Na₂SiF_w to NaF (for recycle) and SiF₄. The quantity of HF recovered from gaseous HF-H₂O-air mixtures decreased with increasing relative H₂O concentrations. Air was beneficial when scrubbing extremely dilute wet HF gases. At HF partial pressures of 0.24 and 0.013 mm Hg in the scrubber entrance gases, HF partial pressures of 6.2×10^{-4} and 9×10^{-5} mm Hg were obtained, respectively, in the scrubber exit gases. Scrubber efficiencies were 99.7 and 99.3 percent.

RI 6676. Electrorefining of Titenium-Nitrogen Alloys, by Oliver Q. Leone and D. E. Couch. 1966. 11 pp. 4 figs. Electrorefining tests using titaniumnitrogen alloys as anode material showed that no significant quantity of nitrogen was transferred to the cathode deposit. The nitrogen of the anode remained in the scale, and the titanium-nitrogen alloy was anodically insoluble in the electrolyte when the nitrogen content was 11 weight-percent.

RI 6879. Sulfur Compound Characterization Studies on High-Boiling Petroleum Fractions, by C. J. Thompson, N. G. Foster, H. J. Coleman, and H. T. Rall. 1966. 17 pp. 8 figs. This study describes the preparation of sulfur compound concentrates boiling from 225° to 400° C and reports the sulfur types detected in these concentrates by low-voltage mass spectrometry (LVMS). Existing LVMS methods were extended; the procedures described should be generally applicable to high-boiling petroleum distillates and concentrates as a preliminary means of narrowing the number of fractions to be considered for more detailed separation and identification studies. The following major sulfur compound constituents of petroleum are indicated by the data: benzothiophenes, dibenzothiophenes, naphthanothiophenes, naphthenobenzothiophenes, and homologs and isomers of these. Cyclic and chain sulfides comprise a significant portion of the gas-oil range sulfur compound types. The presence of some classes of sulfur compounds containing two sulfur atoms per molecule was indicated. Work done in cooperation with the American Petroleum Institute.

RI 6880. Drillability Studies, Statistical Regression Analysis of Diamond Drilling, by James Paone, William E. Bruce, and Pauline R. Virciglio. 1966. 26 pp. 6 figs. This report shows the feasibility of predicting drillability, analytically, by using regression analysis techniques. The approach is new in diamonddrilling research. Further, the study shows that this technique may be of value to drill manufacturers and others in mathematically delineating performance characteristics of new drills in specific rock types. Another application might be the prediction of penetration speeds in extraterrestrial material based on the physical properties of the materials as samples become available. Prediction equations for penetration rates are presented for 9 rocks drilled in the laboratory and for 20 rocks drilled under field conditions. The prediction equations are based on drill operating parameters and on characteristics of the rock penetrated. No single physical property appeared consistently in the best predictor equations, and all the physical properties were found to be highly correlated with each other.

RI 6881. Effect of Gamma Radiation on the Reaction of Anthracite With Fluorine and Chlorine, by Ralph Husack, G. A. Brady, and J. W. Eckerd. 1966. 17 pp. 7 figs. The Bureau of Mines investigated the effect of gamma radiation on reactions between Pennsylvania anthracite and fluorine and chlorine. In the tests with fluorine about 90 percent of the coal reacted at 350° C to form volatile products whether or not irradiation was employed. Up to 0.8 ml of liquid products per gram of anthracite was collected. Among the 25 compounds indicated by gas chromatography, fluoroform and 1,1-difluoroethylene were tentatively identified from their relative retention times and perfluorocyclopentane from its infrared spectrum. In addition, a clear, hard wax, probably a fluorocarbon, was formed at 45° C in both the presence and absence of radiation. With chlorine there was no significant difference due to radiation, and preliminary tests indicated that the chlorine reacted more with the organic matter of anthracite at 200° C than with inorganic matter. At 400° C the results were inconclusive because of excessive corrosion in the reaction vessel.

RI 6882. Electrowinning and Tapping of Lanthanum Metal, by E. S. Shedd, J. D. Marchant, and T. A. Henrie. 1966. 10 pp. 3 figs. The Bureau of Mines investigated electrowinning and tapping lanthanum metal from lanthanum oxide in a fluoride bath. The electrolyte was composed of LaF₃, BaF₇, and LiF. Metal containing 0.2 percent impurities was produced at a rate of over 2 pounds per hour. Principal impurities were carbon, aluminum, and silicon. Low-carbon metal was produced by continually discharging the carbon oxide gases and maintaining 0.1-atmosphere pressure. Anode reactions and cell design were found to be important factors in cell operation. Both frozen electrolyte skulls and tungsten metal crucibles proved satisfactory for collecting the metal and did not react with the molten lanthanum.

RI 4883. Stratigraphic and Geographic Variation of Shale-Oil Specific Gravity From Colorado's Green River Formation, by John Ward Smith and John W. Harbaugh. 1966. 11 pp. 3 figs. Variations in specific gravity of oil retorted from oil shales of the Eocene Green River Formation in northwestern Colorado were evaluated statistically, demonstrating that these variations are very strongly associated with stratigraphic position and less strongly but still significantly associated with geographic location. Specific gravity of oil retorted from these oil shales apparently varies with the carboxyl group content of the oil shale's organic matter. Higher temperatures accompanying increasing depth of burial probably progressively decarboxylated oil shale's organic matter, producing the decrease of oil specific gravity associated with deeper stratigraphic position. The geographically associated oil-gravity variations were probably produced by regional variation in the original thickness of late Cenozoic extrusive rocks once overlying the Green River Formation.

RI 6884. The Use of Cool and Modified Coals as Adsorbents for Removing Organic Contaminants From Waste Waters by G. F. Johnson J. M. Kunka, A. J. Fornay

Weters, by G. E. Johnson, L. M. Kunka, A. J. Forney, and J. H. Field. 1966. 56 pp. 11 figs. Batch tests of coals and coal-derived materials were made

by the Bureau of Mines to determine their effectiveness in removing organic contaminants (COD or chemical oxygen demand, comprising those organic compounds that can be chemically oxidized, and ABS or alkylbenzene sulfonate, common household deter-gents) from the final effluent of secondary-treated waste waters. The adsorptive capacities of fly ashes, coals, including at least one sample of each rank found in this country, pretreated coals, and miscel-laneous materials, including commercial chars and coke, were determined and compared with that of granular activated carbon. The coals, though not as effective as activated carbon, possess an economic duption of the coals in the coals of the compared with advantage—they are relatively inexpensive, and they can still be burned as fuel without any loss of fuel value after use in waste-water treatment. A hvcb coal was found to be one of the best, having about one-fourth the capacity of activated carbon for COD, adsorbing about 4 percent of its weight before it became saturated. Several coals contained constituents that added to the COD content of the of the coal is necessary to insure selection of a proper coal as adsorbent. Some of the fly ashes tested were quite effective, removing as much as 66 percent of the COD and 76 percent of the ABS present. The effectiveness of the fly ashes improves with increasing carbon content. Coals pretreated by mild oxidation were ineffective as adsorbents. Work done U.S. Department of Health, Education, and Welfare.

RI 6885. Reconnaissance of Yttrium and Rare-Earth Resources in Northern New Jersey, by Roger L. Williams. 1967. 34 pp. 7 figs. Northern New Jersey was investigated as a potential future source of yttrium and the rare-earth elements. The studies consisted of geophysical surveying, sampling, and exploratory drilling. Thirty-three deposits were investigated, of which five demonstrated some potential resources of yttrium and rare-earth minerals. Results indicate that the deposits examined do not contain quantities of yttrium and the rare-earth elements recoverable under present economic conditions. Detailed studies conducted at the Scrub Oaks mine, near Dover, N.J., delineated an yttrium and rare-earth-bearing zone within the magnetite-hematite ore body that represents a potential low-grade deposit. Two hundred and eighty-five feet of diamond drill core was obtained from exploration studies conducted at the Benco prospect in Sussex County. Low-grade deposits were identified at the Canfield phosphate mine and the Tanners Brook monazite placers in Morris County, and the Marble Mountain prospect in Warren County.

Ri 6886. Heat Content of Some Blast-Furnace and Synthetic Slags, by E. F. Foerster and P. L. Weston, Jr. 1967. 21 pp. 6 figs. The Bureau of Mines used a diphenyl ether calorimeter to determine the heat contents of natural and synthetic blast-furnace slags. For solid slags, enthalpy $(H_T - H_{max})$ at 1,448° to 1,680° K ranged from 282.1 to 348.5 cal/g (±3 percent); liquid slag values were 400.1 to 514 cal/g (±3 percent) in the temperature range between 1,626° and 1,890° K. Experimental results for liquid slags were 14.3 to 16.2 percent higher than the enthalpies calculated from thermodynamic tables; values for solid slags ranged from 5.3 percent lower to 3.9 percent higher than calculated values. Experimental results for liquid synthetic slags ranged from 14.9 to 24.3 percent higher than the calculated enthalpies; values for solid synthetic slags were from 1.0 to 3.4 percent higher. .

RI 6887. Deep Mine Stress Determinations Using Flatjack and Borehole Deformation Methods, by Robert W. Ageton. 1967. 25 pp. 14 figs. The Bureau of Mines investigated the in situ vertical component of the rock stress in the rib of the haulage drift on the 6100-level of the Star mine, Burke, Idaho, using the flatjack and borehole deformation methods. The estimate of the vertical component of stress about 2 feet into the rib at a station along the haulage drift on the 6100-level of the Star mine by the flatjack method is approximately 5,875 psi, whereas the borehole deformation procedure at this station yielded a value of 5,500 psi for the same depth into the rib. The test zone is approximately 5,625 feet below the surface. No attempt was made to extrapolate stress estimates beyond the depth of the flatjack installation.

RI 6888. Comparison of Iwo Methods for Studying Relative Performance of Explosives in Rock, by Thomas R. Bur, Lyle W. Colburn, Harry R. Nicholls, and Thomas E. Slykhouse. 1967. 40 pp. 20 figs. The strain and pressure gage methods for evaluating the relative performance of explosives in rock were compared. This comparison was based on a study of the responses of strain and pressure gages to explosiongenerated seismic waves. Several explosives, representing a wide range of detonation pressures, were used. In general the relative performance of these explosives, as determined from amplitude, impulse parameter, and energy parameter measurements, is the same if the compressive portion of the strain pulse and the comparable portion of the pressure pulse are considered. Other similarities and differences of the two methods are also discussed. Work done in cooperation with the Dow Chemical Co.

Ri 6889. Refining Iron-Contaminated Zinc by Filtration and Contrifugation, by J. A. Ruppert and P. M. Sullivan. 1967. 15 pp. 6 figs. The Bureau of Mines investigated methods of refining iron-contaminated zinc to marketable quality and developed a laboratory-scale process in which aluminum. added as a refining agent, reacted with the iron, forming solid Fe.Als which floated to the surface of the melt. Solids were separated by both filtration and centrifugation, using a unique type of "dipping" centrifuge devised during the work. Typical zinc recovery was 95 percent, and iron content of the metal was lowered from 0.37 to 0.02 percent.

RI 6890. Theoretical Stress Distribution Near Explosively Expanded Rock Boit Anchors, by M. S. Oudenhoven and Lars Osen. 1967. 10 pp. 5 figs. The Bureau of Mines conducted an investigation to determine the theoretical stress distribution in the vicinity of explosively expanded rock bolt anchors independent of their bolts. Plane-strain solutions applicable to this problem were obtained by combining the field pressure with the uniform pressure that would be produced by vertically placed anchors having 2-, 3-, and 4-foot spacings. High rock stress which would be produced by an anchor was localized, as would be expected from St. Venant's effect, and increased as the field pressure decreased.

 RI 5891. Bench-Scale Production of Carbon Disulfide From Lignite Char and Sulfur, by E. A. Sondreal,
 A. M. Cooley, and R. C. Ellman. 1967. 20 pp. 11
 figs. The Bureau of Mines investigated the use of
 lignite char for producing carbon disulfide; CS:
 production rates were as high as when wood char-

coal was used as raw material. The maximum space velocity for CS. produced in the bench-scale study was 9,280 hour 1, reacting sulfur and lignite char at 792° C. The reaction temperature and the temperature at which the char was carbonized were the two most important factors in determining CS. production rates. Increasing the carbonization temperature in nitrogen from 400° to 900° C advanced the temperature at which carbon disulfide was first produced from 550° to 850° C. The average activation energy for reacting chars with sulfur was 44,000 cal/g mole. The reaction was first order with respect to the partial pressure of sulfur. In-creasing the rate of sulfur admision caused a decrease in rate of production at otherwise similar conditions. Rates were not affected by either char size or sodium carbonate catalysis. High space velocities at moderate temperatures using inexpen-sive lignite chars could offer an economic advantage in the manufacture of carbon disulfide provided that vields were attractive.

RI 6892. Investigations of the White Mountain Mercury Deposit, Kuskokwim River Basin, Alaska, by Ray-mond P. Maloney. 1967. 94 pp. 15 figs. The Bureau of Mines investigated the White Mountain mercury deposit, in the Kuskokwim River basin, to better determine the extent of mercury mineraliza-tion and to encourage its development by private industry. A program of diamond drilling, augering, buldozer trenching, and sampling was carried on during four field seasons, from 1960 to 1963, inclusive. Significant amounts of cinnabar, with only trace amounts of arsenic and antimony, occur in dolomite over an area about 4,000 feet long and 1,500 feet wide. The deposit differs from other mer-cury deposits in the Kuskokwim River basin by the absence of silica-carbonate and rhyolite intrusives. Small-scale mining was started in 1963 as the result of Bureau investigation and continued during the summers of 1964 and 1965. The investigations indi-cate that open-pit mining might be the most feasible method of working this deposit.

RI 6893. Flexible Liners for Underground Support. Applica-

bility Considerations and Experimental Procedures, by Ernest L. Corp and Robert C. Bates. 1967. 90 pp. 42 figs. First in a projected series on the use of flexible liners for support of underground mine openings, this report presents information obtained from an extensive review of the literature on this subject. It also includes results of some preliminary test work by the Bureau of Mines. Investigations thus far indicate that flexible liners offer numerous advantages over rigid-type supports. By deforming in the direction of the applied stress, the stresses are redistributed from the liner to the surrounding material. The corresponding buildup of passive resistance in the direction of diametric extension causes an equalization of stresses around the liner, thereby enabling the liner to carry loads in a more efficient manner. However, additional experimental data are needed to establish design criteria that will permit maximum utilization of the flexible liner concept in mining. Testing of small-scale models, accompanied by measurement of free-field stresses in material surrounding the model, is recommended as the most suitable approach to the problem. The experimental procedures necessary to such an approach are outlined in detail, and a statistical design for the experiments is proposed. The report also describes a device developed by the Bureau for measuring freefield soil pressures to 1,000 psi and a technique for evaluating the response of the device.

RI 6894. Solid-State Electromigration of Impurities In Cerium Metel, by J. D. Marchant, E. S. Shedd, and T. A. Henrie. 1967. 13 pp. 11 figs. The Bureau of Mines studied solid-state electromigration to determine the value of the technique as a method of purifying cerium metal. Cermium metal in bars 6 inches long and ½ inch in diameter was refined at 600° by solid-state electrolysis to remove iron, copper, and manganese. Iron and manganese were electrotransported to the anode, and copper was electrotransported to the cathode. The concentration of iron at the anode of a cerium bar was 800 times greater than the concentration at the cathode. The concentration of manganese at the anode was twice the value at the cathode. The concentration of copper was 170 times greater at the cathode than at the anode. A radiotracer technique was used to follow the iron migration in the cerium metal. Molybdenum, silicon, and aluminum impurities were not electrotransported.

RI 6895. Lake Superior Iron Resources. Preliminary Samples and Metallurgical Evaluation of Selected Michigan-Wisconsin Iron Formations, by L. F. Heising and D. w Frommer. 1967. 31 pp. 8 figs. The Bureau of Mines evaluated 42 composite samples from selected Michigan-Wisconsin iron formations by reductive roasting-magnetic separation and flotation at minus 325 mesh. Samples having poor to marginal response on initial examination by conventional methods were reevaluated by finer grinding, by reagent suite modifications, and by selective flocculation-desliming techniques. Results ranged from excellent on Menominee range samples to relatively negative on Gogebic range ores. Marquette range samples ranged from responsive to nonresponsive, depending upon grain size and mineral association.

RI 6896. Equation of State for Helium-Nitrogen Mixtures from 133.15° to 748.15° K With Pressures to 300 Atmos-pheres, by Robert E. Wood, W. J. Boone, Jr., J. D. Marshall, and F. W. Baer. 1967. 178 pp. 15 figs. The compressibility factors, Z, of helium, nitrogen, and helium-nitrogen mixtures in the three-dimensional space of temperature, pressure, and gas com-position have been related to the Leiden form of the virial equation of state. The dependency of virial co-efficients through the fifth on temperature and gas composition has been established for the tempera-ture range 133.15° to 748.15° K. Compressibility factors, Z, have been computed from the equation of state and tabulated as functions of gas composition, pressure, and temperature. Tabular values of Z are presented for 30.00 through 100.00 percent helium for temperatures from 240° through 700° R for pressures from 14.696 through 3,050 psia and for temperatures from 720° through 1,300° R for pressures from 14.696 through 1,500 psia. Tabular values of Z are presented at increments of 5.00 percent helium and 20° R, for pressures greater than 50 psia, at increments of 50 psi. A comparison of the equation of state with 2,508 experimental compressibility factors within the pressure, gas composition, and temperature range of the compressibility factor tables presented herein gives the following results:

Root mean squared error in Z = 0.0007;

Mean of the absolute deviations in Z = 0.0004.

The accuracy of the tabulated compressibility factors varies; however, it is estimated that no com-pressibility factor presented will differ from any reliable experimental compressibility factor by more than 3 parts in 1,000. The equation of state has also been compared with experimental compressibility factors for gas compositions, temperatures, and pressures outside the range of those presented in the tables. The equation of state can be used to compute the compressibility factors of helium, nitrogen, and any given helium-nitrogen mixture over the entire temperature range 133.15° to 748.15° K (239.67° to 1,346.67° R). However, to obtain compresibility factors which do not differ from those derived from experimental data by more than 3 parts in 1,000, the pressure range must be restricted in some regions.

RI 6897. Gold Distribution in Diamond-Drill Core from the Homestake Mine, tead, S. Dak., by George S. Koch, Jr., and Richard F. Link. 1967. 27 pp. 7 figs. As a means of investigating the distribution and variability of gold in ore from the Homestake mine, Lead, S. Dak., the Bureau of Mines performed a designed sampling experiment, and assay results were statistically interpreted. Fifty-six feet of diamond-drill core from five boreholes was sawed into 1-inch-long cylinders, which were sampled randomly and were assayed. Analyses of variance of the assay results were used to compare and assess the different types of variation: within drill holes, among paired drill holes, among unpaired drill holes, and among furnace runs. The extreme variability in gold mineralization found is the natural variability on the smallest scale that can be detected by fire assay: most of the variability is associated with among-feet rather than within-feet sample intervals. Because of the extreme variability, on-half of the gold is in 3 percent of the samples.

RI 6898. Linear Discriminant Analysis of Multivariate Assay and Other Mineral Data, by Richard F. Link and George S. Koch, Jr. 1967. 25 pp. 7 figs. The objective of this report is to explain a statistical method for the summarization, organization, and classification of multivariate assay and other data from the mineral industry. Multivariate data are those characterized by several measurements at each data point, such as assay data from a mixed metal mine or blast furnace data. A specific method of linear discriminant analysis, the Mahalanobis d^2 procedure, is explained, starting from elementary principles; the d^2 procedure enables many measurements at many data points to be studied by investigating the interrelationships among the data. The relation of linear discriminant analysis to other statistical methods for treating multivariate data, in particular the eigenvalue technique of factor analysis, is also explained. Example analyses are made on data from the Frisco mine, San Francisco del Oro, Chihuahua, Mexico. The data comprise assay values for silver, lead, copper, and zinc taken at some 19,000 sample points distributed into 91 groups. (Out of print.)

RI 6899. Carbonizing Froperties of Coals From Legan and Minge Counties, W. Va., by D. E. Wolfson, C. Ortuglio, and J. H. Lynch. 1967. 16 pp. 1 fig. The Bureau of Mines carbonized 35 coal samples from Logan and Mingo Counties, W. Va., at 900° C, using the Bureau of Mines-American Gas Association method, and determined yields of products and physical properties of cokes. Twenty samples represented the No. 5 Block, Stockton, Chilton, Cedar Grove, Lower Cedar Grove, Alma, No. 2 Gas, and Eagle beds in Logan County, and 15 samples represented the Coalburg, Buffalo Creek, Winifrede, Cedar Grove, Lower Cedar Grove, Alma, and No. 2 Gas beds in Mingo County, W. Va. Chemical analyses were determined for all coals. All coals in both counties rank as high-volatile A bituminous. Most of the coals are chemically suitable for metallurgical coals. Coals with acceptable ash and sulfur contents can be used as major constituents in coking blends with higher rank coal to yield coke with satisfactory properties for blast furnace use.

RI 6900. Nonlinear Regression and the Principle of Least Squares. A Method of Evaluating the Constants and a New Method for Calculating Variances and Cavariances, by Robert E. Barieau and B. J. Dalton. 1967. 21 pp. This report gives the principles of the method used by the Helium Research Center of the Bureau of Mines when solving nonlinear-regression problems and contains the mathematical equations necessary to accomplish the following objectives: The evaluation of the parameters in such a way that the sum of the weighted squares of the residuals of an experimental observable is a true minimum, regradless of the functional relationship between the variables and these parameters; and the evaluation of all variances and covariances of the parameters by means of the usual approximation of the law for the propagation of errors.

RI 6901. Effect of Lime Structure in Oxygen Steelmaking, by F. X. Tartaron and J. D. Ruschak. 1967. 41 pp. 39 figs. Behavior of hard-burned quicklime was compared with that of soft-burned quicklime in an oxygen converter utilizing oxygen blowing in a rotating cylindrical vessel, set at a 30° to 60° angle to the horizontal and operated at a predetermined speed of rotation. Four pairs of tests were made, each comparing hard lime with soft lime. Three of the pairs differed from one another in the quantity of lime employed, and the fourth differed in blowing time. All four pairs showed an increase in yield when soft lime was used. Three of the pairs revealed that the ratio of the oxygen consumed with soft lime to the oxygen consumed with hard lime was the same as the ratio of metal yield with soft lime to the metal yield with hard lime. The fourth pair contained an error and could not be included. Finally, a close inverse relation was found between the combined iron in the slag and the combined lime in the slag, which can be expressed by the equation percent Fe = 52.67 - 0.906 (percent CaO).

RI 6902. Heats of Formation of Ytterbium and Thulium Trichlorides, by J. M. Stuve. 1967. 7 pp. Standard heats of formation $(\triangle H_i^{\circ})$ of YbCl₃ (c) and TmCl₄ (c) were measured by solution calorimetry. Heat of solution data are given for ytterbium and thulium metals and corresponding anhydrous trichlorides in 4.360 molal hydrochloric acid. The derived standard heats of formation of Ybcl₃ (c) and TmCl₆ (c) were $-229,370 \pm 720$ and $-235,820 \pm 400$ cal/mole, respectively, at 298.15° K. The resulting heats of formation for YbCl₃ and TmCl₄ are about 1 kcal and 6.3 kcal more negative than previously published values.

Ri 6703. Further Studies on Sympathetic Detanation, by R. W. Van Dolah, F. C. Gibson, and J. N. Murphy. 1966. 35 pp. 22 figs. The Bureau of Mines extended its investigations into sympathetic detonation of ammonium nitrate (AN) and ammonium nitrate-fuel oil (AN-FO) to define the scaling law for safe separation from detonating AN-FO Both missile- and non-missile-producing AN-FO donors, weighing up to 5,400 pounds, were employed with acceptors of the same size. The usual cube-root scaling law was not confirmed; exponents for the relationship $S=f(W^x)$ for AN were 0.51 with nonmissile-producing donors and 0.61 for missile-pro-

ducing donors. For AN-FO an exponent of 0.80 was indicated in the missile-producing case. AN-FO in polyethylene bags appeared somewhat more easily initiated than bulk AN-FO. The efficacy of barri-cades in protecting AN charges was investigated. Sympathetic detonation distances were reduced from one-third to one-seventh when sand-filled barricades were employed. The investigation was extended to boxed dynamite with both types of donors. With 1,600-pound missile-producing donors and an equivalent weight of dynamite, initiation would be expected in 50 percent of the trials at 167 feet. The pected in 50 percent of the trials at 167 feet. The corresponding value in the non-missile case was 67 feet. The data developed in this program of sym-pathetic detonation will allow the development of a rational set of safe separation distances for AN, AN-FO, and explosives. Work done in cooperation with the Manufacturing Chemists' Association.

RI 6904. Analyses of Tipple and Delivered Samples of Coal.

Collected During Fiscal Year 1966, by S. J. Aresco and J. B. Janus. 1967. 43 pp. The Bureau of Mines has been active in promoting the purchase of coal for Government use under specifications that define the requirements in terms of the heating value of the coal, expressed in British thermal units, and the composition as shown by proximate analyses. To these, when required, are added the ash-softening temperature, the free-swelling index, and the Hard-grove grindability index. Under most of these speci-fication contracts the bidders guarantee the quality of the coal, and that guaranteed by the successful bidder becomes the standard of his contract. The bidder becomes the standard of his contract. The deliveries are sampled in accordance with instruc-tions issued by the Bureau of Mines; the samples are analyzed in the Bureau laboratory to determine whether the coal is of the quality guaranteed by the contractor; if it is not, a price adjustment is made. Analyses of the delivered coal and tipple complex (complex collected of mine tipples as and samples (samples collected at mine tipples as coal samples (samples collected at mine tipples as coal is being loaded into railroad cars or trucks) provide valuable data for use in evaluating future bids. In addition, the continuous sampling of coal as delivered is a check on the practical results obtained in burn-ing the coal. The Government purchased approxi-mately 5.5 million tons of coal in fiscal year 1966. In connection with these purchases, the Bureau ana-lyzed 7,211 samples. These are published for the use of Government officials and the public. (Out of print) print.)

RI 6905. Reactions of Manganese With Silico, by H. G. Iverson and E. L. Singleton. 1967. 16 pp. 4 figs. Solid state reactions of manganese with

silica were investigated in high-temperature tests. Reactions of 0.5 to 4.0 moles manganese (Mn) with 1 mole silica (SiO₂) at 1,100° C and of 2.0 Mn:SiO₂ mole-ratio mixtures at 1,000° to 1,150° C yielded products consisting of a slag phase and a metallic phase. At 1,100° C, the slag phase from reactions of the low Mn:SiO, mole-ratio mixtures was comof the low Mn:SiO₂ mole-ratio mixtures was com-posed of SiO₂ and rhodonite (MnSiO₃), and the slag phase from the high Mn:SiO₃ mixtures was com-posed of MnSiO₃ and tephroite (Mn₂SiO₄). The metallic phase from the corresponding low Mn:SiO₄ mole-ratio reactants consisted of two manganese silicides, Mn.Si, and Mn.Si; from the high Mn.SiO, mixtures, it was Mn and the manganese silicide (Mn.Si). For the higher mole ratios of Mn.SiO. the manganese content in the metallic phase increased, while the manganese and silica contents of the slag phase remained nearly constant. The slags did not contain free or uncombined manganese oxide (MnO). For the 2.5 to 4.0 Mn:SiO₄ mole-ratio mixtures reacted at $1,100^{\circ}$ C, the maximum quantities

of silica reduced and of the manganese in the slag appeared to become asymptotical at about 41 and 48 percent, respectively. A brominating procedure was developed that was highly selective in removing the metallic constituents from the reaction product, leaving the slag phase as residue. X-ray diffraction patterns were obtained on prepared silicides Mn₂Si, Mn₃Si, and MnSi.

RI 6906. Extraction of Euxenite Metal Values by Fusion With Ammonium Sulfate or Ammonium Bisulfate, by Van E. Shaw and R. E. Lindstrom. 1967. 11 pp. 6 figs. Fusion of an 86-percent euxenite concentrate with ammonium sulfate was investigated by the Bureau of Mines. Reaction for 4 hours at 400° C results in conversion of both the rare-earth elements and the titanium-columbium components to water-soluble compounds. Similar results are obtained with ammonium bisulfate. Stirring the fusion mass with ammonium bisulfate. Stirring the fusion mass decreases the reaction time substantially. Alterna-tively, treating the fusion product with a 3-hour, 650° C calcining step renders the non-rare-earth constituents insoluble, thereby allowing selective leaching of a pure rare-earth fraction with an overall yield of 97 percent.

RI 6907. Effects of Rare-Earth Additions on Plain-Carbon Steel, by P. G. Barnard. 1967. 25 pp. 4 figs. The Bureau of Mines investigated the effects of various additions of rare-earth metals or rare-earth oxides on the mechanical properties of cast and wrought plain-carbon steels. Rare-earth metals, as misch metal, were added to medium-carbon steel in amounts to 0.70 weight-percent; rare-earth oxides, as a commercial mixture, were added in amounts to 1.50 weight-percent. The melting and casting of conditoned steels were done in a vacuum-induction furnace, to avoid formation of oxides from the melting atmosphere and to provide better control over chemical composition. At room temperature, data for tensile strength, yield strength, elongation, and hardness of cast and wrought steels were obtained by standard testing equipment and procedures. Im-pact tests were conducted on as-cast steel specimens. The greatest amount of tensile ductility and impact strength was obtained in as-cast steel with 0.50 to 0.70 weight-percent misch metal additions. No significant improvement on mechanical properties was indicated in wrought steels containing rare-earth metal additions in the range from 0.10 to 0.70 weight-percent. In general, the rare-earth oxide additions up to 1.50 weight-percent had little effect and annealed, or wrought and normalized condition.

RI 6908. Experimental Studies of Incineration in a Cylindrical Combustion Chamber, by Murray Weintraub, A. A. Orning, and C. H. Schwartz. 1967. 39 pp.

28 figs. In an investigation of the incineration of combustible wastes, the Bureau of Mines studied the effect of dimensional parameters, process variables, and fuel properties on the operation of an incinerator that consisted of a single cylindrical combustion chamber in which all combustion air was supplied tangentially above the fuel. Construction and operation of three designs of such a device proved that the tangential overfire air design is effective in providing efficient combustion and low concentration of particulate matter in the effluent gas. A correlation was found that related burning rate with air rate, chamber diameter, and inlet port diameter. In one of the incinerator models, ignition was by radiation from a preheated surface. The temperature of this surface was required to be 1,400° to 1,600° F to

insure ignition of moist refuse; however, this had little effect on combustion rates. In the combustion of moist refuse, evaporation of the water proceeded through the fuel bed as a wave, with an ignition wave following the evaporation. (Out of print.)

RI 6909. Reservoir Oil Characteristics, Cut Bank Field, Mentane, by C. Q. Cupps and J. Fry. 1967. 36 pp. 8 figs. In view of increased interest in secondary recovery of oil in the Cut Bank field, Montana, a review has been made of unpublished data obtained during a 1943-44 study of reservoir oil characteristics in this field. Considerable uncertainty was attached to interpretations of subsurface oil sample analyses from six Cut Bank zone wells, one Lander sand well, and one Moulton sand well, because of adverse sampling conditions and wide range in the data. Much of this uncertainty has been removed by this review which has shown two of the Cut Bank zone samples and the Moulton sand sample to be representative of the reservoir oils. Estimates of original reservoir oil characteristics derived from differential-liberation analyses of these samples show that the oil in the Cut Bank zone was initially saturated at the gas-oil contact pressure, 750 psia, and the oil in the Moulton sand was undersaturated with a saturation pressure of only 380 psia.

RI 6910. Design of Ges-Motivated Solids Dispersion Devices, by Murray Weintraub. 1967. 6 pp. 3 figs. The Bureau of Mines investigated the aerodynamic factors that control the functioning of the blowcase devices used in pneumatic processes for dispersing solids. Alumina powder of 8-micron massmean diameter was placed in 0.75-inch-diameter by 10-inch-long cylinders, and a blowcase technique was employed. It was determined that dimensions and gas rates for discharging the powder from the cylinder by a stream of gas may be calculated by assuming a fluidization mechanism and extrapolating residues to a desired finite quantity or to zero at the terminal velocity. The state of agglomeration of a powder at discharge may be determined from measurements of the velocity required for zero residue.

RI 6911. Infrared Vibrations of Benzene Rings in Condensed Thiophenes, by F. R. McDonald and G. L. Cook. 1967. 25 pp. 6 figs. This report presents a discussion of the spectra of 39 condensed thiophenes in which the structure includes at least 1 benzene ring. The vibrational bands present in three regions of the infrared spectra of these thiophenes were interpreted by comparing the similarities of the spectra of condensed thiophenes with the spectra of substituted benzenes. In the overtone-combination region 23 of the 39 condensed thiophenes had spectra which contained sufficient detail to be usable for correlating this region of the spectrum with the appropriate benzene spectrum. In the in-plane deformation region it was possible to make correlations for the vibrations of 18 of the 39 condensed thiophenes whose infrared spectra were studied. In the out-of-plane deformation region the C-H out-ofplane vibrations for hydrogen on benzene rings in the condensed thiophenes can be correlated using known data from substituted benzenes.

RI 6912. The Application of an Improved Continuous Electro-

phoresis Apparetus to the Study of Petroleum, by R. J. Heemstra and R. T. Johansen. 1967. 24 pp. 13 figs. A continuous flowing paper electrophoresis cell was used to separate petroleum and petroleum extracts into characteristic patterns. The electrophoresis of Bachaquero, Lagunillas, Boscan, and Gibson petroleum in nitrobenzene and acetic acidbased electrolytes was investigated. The extent of separation in the patterns was studied by measuring the metal and porphyrin contents of the effluents. Qualitative separations were achieved in some systems, whereas either system demonstrated only a high degree of electrophoretic migration.

RI 6913. Dielectric Constants and Dissipation Factors for Six Rock Types Between 20 and 100 Megaheriz, by Russell E. Griffin and Robert L. Marovelli. 1967. 21 pp. 14 figs. Dielectric constants and dissipation factors were measured for six rocks over the 20- to 100-megaheriz frequency range by means of the susceptance-variation method. Results for both dry and moist specimens are presented and compared with data reported by others. Loss factors calculated from the data presented are important to the Bureau's study of rock fragmentation by means of dielectric heating.

RI 6914. Processing of High-Iron Arkansas Bouxite Ores, by T. E. Hill, Jr. and W. A. Calhoun. 1967. 18 pp. 3 figs. Laboratory metallurgical treatments

18 pp. 3 figs. Laboratory metallurgical treatments of three high-iron bauxite ores from Arkansas were conducted to determine the relative effectiveness of experimental methods for recovering alumina and a commercially acceptable iron concentrate. The standard for evaluating recoveries from experimental processes was the Al₂O₃ recovery from Bayer digests of the crude ores; recoveries from digestion of the three ores were 74.1, 87.4, and 88.7 percent. Flotation, magnetic separation, or various combinations of digestion, calcination, and reduction-sintering, leaching, and magnetic separation of leach residues failed to produce Al₂O₃ recoveries as high as the standard. A high-iron-bearing fraction, containing between 68 and 78 percent of the total iron, was produced in a three-phase treatment involving a caustic lime reduction-sinter of the crude ore, water extraction of Al₂O₃ from the sinter, and magnetic separation of the leach residue.

RI 6915. Rhenium and Rhenium-Tungsten Deposition by Theriminary Study, by F. W. Hoertel and J. G. Donaldson. 1967. 14 pp. 7 figs. Near-optimum parameters were determined by the Bureau of Mines for vapor deposition of rhenium on heated copper substrates by hydrogen reduction of rhenium hexafluoride (ReF₆). High-purity deposits of nearly 90-percent theoretical density were obtained with the reaction chamber at 250° C, with an H, to ReF₆ volume ratio of 25 to 1, and with an ReF₆ flow rate of 5 grams per hour. Some rhenium deposited as a loose, black powder. When the established near-optimum parameters were carefully followed, this could be minimized but never completely avoided. Varying the reaction chamber pressure, both above and below atmospheric, yielded excessive quantities of rhenium powder. Deposition efficiencies, based on only the coherent metal, ranged between 70 and 75 percent. Massive deposits contained only spectrographic traces of impurities. The average microhardness (Knoop, 100-gram load) of vapor-deposited rhenium was 907. Limited research on the deposition of rhenium-tungsten alloys by reduction of the mixed hexafluorides produced deposits in which linear composition gradients were pronounced; this nonhomogeneity was attributed to the wide variation in optimum hydrogen-reduction temperatures of the two hexafluorides (250° C for ReF. and 550° C for WF.). Using deposition temperatures between 250° and 550° C did not eliminate the composition variations.

RI 6916. Phthelic and Maleic Anhydrides from Low-Temperature Lignite Ter, by John S. Berber, Richard L. Rice, Arthur L. Hiser, and Howard W. Wainwright. 1967. 17 pp. 10 figs. To improve the economics of low-temperature carbonization of coal, the Bureau of Mines is conducting research on the upgrading of the product tar to marketable chemicals. This report describes experiments on the catalytic hydrodealkylation, followed by catalytic vapor-phase oxidation of the dealkylate to phthalic and maleic anhydrides, of mixed residues from the urea adduction of lignite-neutral oil fraction and on the catalytic thermal dealkylation experiments were conducted at pressures from 1,000 to 1,750 psig and at temperatures from 600° to 1,000° F. The oxidation was, in all cases, at atmospheric pressure and 950° F. Maximum yield of maleic anhydride, based on the liquid feed to the hydrodealkylation unit, was 12.2 percent at 750° F and 1,500 psig; that of phthalic anhydride was 6.9 percent at 650° F and 1,600 psig. Maximum yield of combined anhydrides was 18.8 percent at 650° F and 1,500 psig. The nondealkylated feed material, upon oxidation, yielded 8.9 percent and 3.8 percent maleic anhydride and phthalic anhydride, respectively.

RI 6917. Theoretical and Field Waterflood Performance, Kane Sand, Kane Oilfield, Elk County, Pa., by Leo Schrider, John R. Duda, and Harry R. Johnson. 1967. 26 pp. 12 figs. A prediction for oil recov-ery from a pilot waterflood in the Kane oilfield, located in Elk, Forest, and McKean Counties, Pa., was made and compared to actual field performance. Water-injection and production histories, well logs, other field data, and results from laboratory tests of core material were used in this analysis. Performance of the pilot waterflood, initiated in January 1963, was predicted using a modified Craig, Geffen, and More calculation technique. Maximum recovery from this low permeable, preferentially oil-wet for-mation was predicted to be about 22,500 barrels of oil after 300,000 barrels of water had been injected into the pilot waterflood area. After additional field data were collected it became necessary to reevaluate the pilot waterflood area. The gas saturation prior to the waterflood was estimated to have been 20 percent, based on an assumption regarding the required cent, based on an assumption regarding the required volume of water injected to initiate oil production. In view of the actual field performance, a gas sat-uration of 13 percent is indicated. When this gas saturation and the method originally proposed by Craig and others are used, the predicted results are more representative. In December 1965, field per-formance was further analyzed using a hyperbolic-decline curve as presented by Arps. Based upon this evaluation mathod the pilot waterflood in the this evaluation method, the pilot waterflood in the Kane sand should produce 37,000 to 42,000 barrels of oil with the injection of 300,000 barrels of water into the pattern. By continuing this secondaryrecovery project to a reasonable economic limit, ultimate oil recovery may be as much as 50,000 to 55,000 barrels, or 129 to 142 barrels per acre-foot from 36.5 acres.

RI 6918. Evaluation of a Battery-Powered Vehicle, by W. P.

Haynes and H. B. Neilson. 1967. 47 pp. 20 figs. To evaluate the potential use of batterypowered vehicles, the Bureau of Mines studied the performance of a battery-powered truck propelled by a 9.6-kw dc motor in considerable detail under various driving conditions. Some of the factors investigated were gear ratios, payload (1,468-lb maximum), road grade, stops made per mile, and charging time. With the exception of some difficulty with brush wear, operation and maintenance of the truck was generally trouble-free. On range tests carrying an 868-lb payload a distance of about 50 miles at an average speed of about 19 mph in normal driving, the Bureau's battery-powered truck averaged 1.6 to 1.9 miles per ac kwhr input. Stop-and-go tests indicated that prospects for the use of batterypowered trucks in house delivery service within city limits are good; performance of the Bureau truck was sufficiently high for that type of service. The estimated power cost of 2.65 cents per mile while making 10 stops per mile was attractively low from the standpoint of fuel costs.

RI 6919. Geometry of Metal Distributions in Five Vains of the Fresnille Mine, Zacalecas, Mexico, by George S. Koch, Jr., and Richard F. Link. 1967. 64 pp. 75 figs. As a part of a larger study of the distribution figs. As a part of a larger study of the distribution of metals within ore deposits, the geometry of dis-tribution of gold, silver, lead, copper, and zinc in five veins of the Fresnillo mine, Zacatecas, Mexico, was established. The purpose was to obtain basic data necessary for evaluation of geological theories about processes of vein formation and useful for presting mining applications in one astimation and practical mining applications in ore estimation and prediction of ore beyond present workings. The Bureau of Mines investigation comprised statistical analysis of 64,000 assay values from some 16,000 mine samples. The samples were taken at 2-meter intervals in drifts exposing the veins through a vertical range of some 750 meters. Within individual veins, the metals are distributed in domelike pat-terns with highest metal contents tending to occur in ore-shoots at the center of the developed parts of the veins. However, in the block of ground containing all five veins, base metals define mathematical domes with highest contents near the center; precious metals define mathematical basins or troughs with low contents near the center. The ratio of silver assay values to lead assay values corresponds to two geographically distinct types of mineralization: one in which silver is closely related to lead, and another in which silver is independent of lead. Other metal ratios also vary regularly from one place to another. The statistical methods employed in this study would be useful for other geologists or engineers who need to analyze large amounts of assay or similar numerical data.

RI 6920. Bureau of Mines Coal-Fired Gas Turbine Research Project. Test of New Jurbine Blade Design, by Jack Smith, Robert W. Cargill, Donald C. Strimbeck, William M. Nabors, and J. P. MeGee. 1967. 77 pp. 69 figs. New turbine blades designed to resist ash erosion were tested by the Bureau of Mines in a pilot-scale coal-fired gas turbine. After a total of 1,963 hours, the rotor blades were only slightly eroded, and they had an estimated useful life of 20,000 to 30,000 hours. Changes in aerodynamic design of the blades succesfully concentrated the ash at the outer casing, but stepped sidewalls for the rotor drum and wear strips at the bases of the rotor blades are still needed to minimize wear at these points. Stepped sidewalls and wear strips did not adequately protect the stator blades. Ash slightly eroded their leading edges, above the inserts, and cut notches into their trailing edges near the bases. Stator blade life was estimated at 5,000 to 7,500 hours. Blade erosion in these tests was less severe than with previous designs, but more efficient combustors and ash separators are required to reduce the amount and size of ash entering the turbine to achieve acceptable blade life for commercial opera-

72

tion. Work done in cooperation with Bituminous Coal Research, Inc.

RI 6921. Effect of Weather on Sound Transmission From Ex-plosive Shore, by R. L. Grant, J. N. Murphy, and M. L. Bowser. 1967. 13 pp. 12 figs. The Bureau of Mines applied automatic computational methods to analyze the degree of correlation be-tween sound transmission and atmospheric condi-tions. Statistical analysis of data collected over a 5-month period indicated that the following weather variables listed in order of decreasing importance variables, listed in order of decreasing importance, have a significant effect on the transmission of sound in the atmosphere: (1) Winds in the direction of travel of the sound wave increase the sound intensity and duration; (2) barometric pressures are related to low sound intensities and durations; (3) high temperatures are related to low sound intensities and durations. Inversion of the atmospheric temperature did not appear to affect sound transmission under the conditions of this study.

RI 6922. Vibratory Compaction of Mine Hydrautic Backfill, by David E. Nicholson and William R. Wayment. 1967. 52 pp. 35 figs. In a Bureau of Mines investigation of the dynamic compaction of mine hydraulic backfills, two basic forms of mechan-ical vibration inducers were used and compared for effectiveness of compaction. Internal compaction, using concrete probe vibrators of various sizes, and external compaction, using plate vibrators, were studied and evaluated for use in underground stopes. An aluminum plate, which was light and displaced sufficient volume to remain afloat in fluid fill, and a steel plate were both used in the external compac-tion tests. Efficiency of compaction was better in studies conducted with internal probe vibrators. Tests were conducted in an underground backfilled stope with three different-sized probe vibrators (2-, stope with three different-sized probe vibrators (2-, 4-, and 6-inch-diameter) to determine an approxi-mate area of influence. Results showed the areas of influence to be approximately 3, 4, and 5 feet in diameter, respectively, for the three different probes. Physical properties of hydraulic slurries were deter-mined; preferred grain-size distributions, water exudation properties, and water contents of hy-draulic slurries are reported. The best compaction results were obtained with moderately well-graded. results were obtained with moderately well-graded, fully saturated backfills, with slow rates of water exudation, which were capable of remaining in a semifluid state during the compaction process.

RI 6923. Recrystallization of Chrome Spinel, by J. W. Town, W. A. Stickney, G. T. Engel, and P. E. Sanker. 1967. 30 pp. 8 figs. Recrystallization studies on chrome-bearing spinel materials were made by the Bureau of Mines to determine the effects of certain fluxing agents and cooling rates on the chromium to iron ratio of recrystalized spinel. Statistically designed and evaluated tests showed that the ratio of chromium to iron in naturally oc-curring chrome spinel could be increased from 1.5 to 1 to over 7 to 1 and that the ratio of chromium to iron in the chrome spinel in a stainless steel slag could be raised to over 18 to 1. Silica, magnesia, and lime had significant positive effects, while alumina had a significant negative effect. Cooling rates of 20° C per hour in a programed spiral globar electric furnace were satisfactory for growing crystals of recoverable size.

RI 6924. Equations for Calculating the Thermodynamic Properties of Fluids, Including Those in the Two-Phase

Region, From an Empirical Equation of State, by Robert E. Barieau. 1967. 42 pp. General expressions for evaluating practically all the thermodynamic properties of a fluid from a single equation of state are derived. Most of the formulas are expressed in terms of the compressibility factor, with this factor being an explicit function of the temperature and the molal density. Similar expressions are given using reduced variables.

RI 6925. Low-Temperature Thermodynamic Properties of the Hydrates of Beryllium Sulfate, by T. Estelle Gardner and A. R. Taylor, Jr. 1967. 9 pp. 1 fig. Heat-capacity measurements were made over the range 8° to 350° K on beryllium sulfate dihydrate and beryllium sulfate tetrahydrate using an adiabatic calorimeter. No anomalies were noted in the curve for either compound. Smooth values of heat curve for either compound. Smooth values of heat capacity, entropy, enthalpy function, and free-energy function were calculated from the heat-capacity data at 10° K intervals and at 273.15° and 298.15° K. The entropy values calculated at 298.15° K were 39.01 \pm 0.12 entropy units (eu) for the dihydrate and 55.68 \pm 0.17 eu for the tetrahvdrate.

RI 6926. Laboratory Testing and Evaluation of Porous Perme able Rock for Nuclear Weste Disposal, by J. B. F. Champlin, R. D. Thomas, and A. D. Brownlow. 1967. 32 pp. 11 figs. The continuing development of the nuclear industry in the United States requires a program of waste disposal that incurses activity a program of waste disposal that insures against the release of large amounts of radioactivity to the environment. This paper describes research on one proposed means of disposal of this waste, that of injection into geologic formations at depth. Nuclear production plant wastes were simulated and injected into samples of sedimentary rock obtained from outcrops, quarries, and deep wells. Changes in the chemical and physical characteristics of the rocks caused by the interaction of ions and suspended particles in the waste solutions with the cementing material and claylike particles in the rock are dis-cussed. Laboratory tests show that nuclear wastes can be injected into many natural porous, permeable geologic formations. Injectivity can be maintained over a longer period of monitoring the ionic balance and particle-size distribution of waste streams. The combination of permeability and porosity with low cation-retention capacity, as exhibited by most sand-stones, would satisfy the engineering requirements for the subsurface disposal of nuclear waste. Shales and clays with their low permeability and high cation-retention capacity would make excellent confining formations. The amount of cation retained by sedimentary rocks increases with increasing valence or concentration of the cation or decreasing brine concentration. The use of rock cores as model reservoirs has proved successful in determining some of the parameters that need to be considered in full-scale field disposal of wastes. Work done in cooperation with the U.S. Atomic Energy Commis-sion and the State of Oklahoma.

Ri 6927. Methods for Producing Alumina From Clay. An Evaluation of a lime-Soda Sinter Process, by Frank A. Peters, Paul W. Johnson, John J. Henn, and Ralph C. Kirby. 1967. 38 pp. 16 figs. An evalu-ation is made of a lime-soda sinter process for extracting alumina from clay. In this process, alumina is extracted by sintering clay with soda ash and limestone and then leaching the sinter with a dilute sodium carbonate solution. The sodium aluminate solution formed during leaching is separated from the residue and treated with lime in autoclaves to remove dissolved silica before alumina trihydrate is precipitated with carbon dioxide. The trihydrate

is then calcined to a-alumina. Two options, dry grinding and wet grinding, are used in the sintering step. The fixed capital costs for plants producing 1,000 tons of alumina per day are \$72 million for the dry grinding option and \$66 million for the wet grinding option on a Marshall and Stevens chemical equipment index basis of 240.0. Specific geographic locations of plant and raw material sources are not assigned, but since this process requires large quantities of both limestone and clay, the plant site is considered as variable with relation to the clay mine and limestone quarry. A nomograph is given to find operating costs at various delivered costs of clay and limestone. If the plant is located nearer the limestone quarry so that the delivered cost of clay is \$2 per ton and the delivered cost of limestone is \$1 per ton, the operating costs are \$76.47 and \$71.61 per ton of alumina for the dry grinding and wet grinding options, respectively. On the other hand, if the plant is located nearer the clay mine so that the delivered cost of clay is \$1 per ton and the delivered cost of clay is \$1 per ton and the delivered cost of clay is \$1 per ton, the operating costs are \$80.15 for dry grinding and \$75.34 for wet grinding. This process when treating clay, using either option, is not competitive under current economic conditions with the Bayer process for treating bauxite to produce alumina.

RI 6928. Preliminary Process Development Studies for Desulfating Great Salt Lake Brines and Sea Water, by D'Arcy R. George, J. M. Riley, and Laird Crocker. 1967. 34 pp. 11 figs. A process for removing sulfate from Great Salt Lake brines and other natural brines, including sea water, has been developed. Sulfate is quantitatively removed by precipitation as barium sulfate in a cyclic process employing ion-exchange techniques. Barium is continuously recovered and recycled, and sodium carbonate and sulfur or sulfuric acid are produced as byproducts in quantities sufficient to more than defray the cost of desulfation.

RI 5929. Properties of Vanadium-Base Tungsten and Chromium Alloys, by D. R. Mathews and H. G. Iverson. 1967. 22 pp. 25 figs. The Bureau of Mines investigated the effects of tungsten and chromium, separately and combined, on improving the mechanical properties and oxidation resistance of vanadium. Binary and ternary vanadium-base alloys were prepared and tested for oxidation resistance and tensile strength. Softening occurred with less than 1 weight-percent of either tungsten or chromium, followed by strengthening with higher alloying contents. Vanadium alloys containing up to 9.8 weight-percent chromium or 14.1 weight-percent tungsten were more resistant to oxidation in air at 600° C than unalloyed vanadium. For the alloys with 12.20 weight-percent chromium or 14.56 weightpercent tungsten, the maximum concentrations used, the lower yield strengths were about twice that of 38,600 psi for the unalloyed vanadium. Recrystallization temperatures for these alloys were 100° and 150° C higher, respectively. Alloys containing both chromium and tungsten had properties similar to those of the vanadium-tungsten alloys.

RI 6930. Batch and Continuous-Circuit Beneficiation of Western Phosphate Ores, by J. W. Town, C. W. Clark, C. W. Sanders, and E. E. Sullivan. 1967.
42 pp. 6 figs. The Bureau of Mines made continuous-circuit beneficiation studies to determine the optimum conditions for concentrating phosphate minerals from the intermediate- and marginal-grade ores of the Phosphoria Formation in southeast Idaho.

Intermediate-grade ore was represented by a sample from Georgetown Canyon and marginal-grade ore from the Gay mine near Fort Hall. Two flowsheets were developed: The first involved roasting, attrition scrubbing, sizing to remove a concentrate, grinding of the oversize, desliming, and flotation; in the other flowsheet roasting was eliminated. Controlled attrition scrubbing was used to remove clay and silt-size quartz particles imbedded in the phosphate pellets without breaking the pellets. The minus 35- plus 200-mesh fraction was removed by sizing as a finished-acid-grade concentrate. The plus 35-mesh material was ground in a rodmill to minus 35 mesh and recycled to the attrition scrubber. The minus 200-mesh fraction was deslimed at about 800 mesh to remove clay slimes and floated with 3 to 4 pounds of emulsion per ton of feed. The aqueous fatty-acid oil emulsion consisted, by weight, of 3 parts No. 2 diesel oil, 3 parts crude tall oil, and 0.5 part water-soluble petroleum sulfonate. Results on the intermediate-grade Georgetown Canyon sample (head assay of 24.6 percent PrO:) showed a coarse, minus 30- plus 200-mesh concentrate containing 32.1 percent PrO., at 71.6-percent recovery. Flotation of the minus 200- plus 800-mesh material recovered 16.9 percent of the phosphate at 29.0 percent PrO. Combined concentrate contained 31.4 percent PrO. da a recovery of 88.5 percent. The minus 35- plus 200-mesh concentrate obtained on the marginalgrade Fort Hall shale sample (head assay of 19.4 percent PrO.) contained 31.6 percent PrO. at a recovery of 51.2 percent. Flotation of the minus 200- plus 800-mesh material recovered an additional 26.0 percent of the phosphate at 24.5 percent PrO. The combined concentrates contained 28.0 percent PrO. at a recovery of 77.5 percent.

RI 6931. Equivalences and Lower Ignition Limits of Coal Dust and Methane Mixtures, by J. M. Singer, E. B. Cook, and J. Grumer. 1967. 35 pp. 9 figs. This study was undertaken to obtain some fundamental information about hazardous mixtures of coal dust and methane (firedamp) likely to occur in mines. Fuel concentration limits for ignition of mixtures of coal dust, methane, and air have been determined by a hot-gas ignition method. The limiting concen-tration of each of the two fuels was usually less than that corresponding to its lean flammability limit in air. The lean limits of flammability of coal dust vary with the type and size of the dust; in this study coal dust concentrations were less than 80 mg/liter. Ignition jets were turbulent pulses (emerging from a channel of 0.5-cm diam) resulting from explosions of stoichiometric mixtures of methane, oxygen, and nitrogen. Temperatures of the ignition jets were varied by changing the oxygen index (OI) $= O_2/(O_2 + N_3)$ of the primary methane-oxygen-nitrogen mixture (adiabatic flame temperatures from 2,000° to 3,000° K). The objectives of the study were to establish quantitative relations between concentrations of each fuel at ignition limits of hybrid mixtures and to study the mechanism of ignition of these hybrid mixtures by hot turbulent gases. Empirical equaitons were fitted to concentrations for four coals, namely, Pittsburgh seam (sizes A, B, and C), Sewell No. 2 seam, Pocahontas No. 3 seam, and anthracite. Equivalences of coal dust to methane were computed from these equations; equivalence being defined as $-\Delta c/\Delta m$ where c is the coal dust concentrated and m is the methane concentration, each in milligrams per liter of air. It was found that the equivalence increases as the temperature of the hot-gas jet decreases. In general, the equivalence is also an inverse function of volatile content of the coal and a direct function of the particle size. However, volatile content in itself is not a sufficient correlating variable, nor is the specific surface area of the coal dust. Some evidence of a synergistic combination of coal dust and methane was obtained in certain concentration ranges. Observations also indicate that the relatively larger particles in the coal dust do not participate totally, on a weight basis, in the ignition process, perhaps being only partly burned in the primary combustion zone of the limit flame.

RI 6932. Chattencoga Shele Investigations, by R. C. Hickman and V. J. Lynch. 1967. 55 pp. 13 figs. Preliminary evidence indicated that the Chattanooga Shale might constitute a potential vast low-grade source of uranium. Investigation by core drilling indicated that while the Chattanooga Shale may constitute a resource for the future, the very low (0.006 percent) average uranium content is not economic when compared with the relatively higher grade western ores. A total of approximately 12,000 feet of test drilling was done in 72 drillholes, and large samples were mined for extractive and metallurgical testing. An experimental mine site was selected on the basis of the drilling project.

RI 6933. Lime-Soda Sinter Process. Correlation of Reaction Products With Extractability of Alumina From Anorthonite, by Sarkis G. Ampian. 1967. 44 pp. 15 figs. Extraction of alumina was correlated with the sinter and leach products from the lime-soda sinter process for anorthosite. The effect of composition and grain size of reactants, time and temperature of sintering, and techniques of sample preparation were investigated. Greater than 90 percent Al_O, extractions were obtained from dry-mixed minus 200-mesh anorthosite sinter mixes having mole ratios of CaO/SiO₂ = 1.8 and Na₂O/Al₂O₃ = 0.8. These sinter mixes were briquetted at 15,000 psi and fired between 1,200° C and 1,320° C for 20 to 60 minutes. The sinter phases that contribute to low alumina recovery were determined by X-ray diffractometry, optical microscopy, and electron probe X-ray spectrography. The mechanism of the sintering reaction was investigated by high-temperature X-ray diffractometry. The contrasts in the lime-soda sinter process for clays and for anorthosites are discussed. Explanations and suggested solutions are presented for problems such as gelation and variable alumina recovery encountered by previous investigations.

RI 6934. An Evaluation of the Western Phosphate Industry and Its Resources (in Five Parts). 4. Wyoming and Urah, by J. S. Coffman and A. L. Service. A pril 1967. 158 pp. 79 figs. Wyoming is estimated to have more than 700 million tons and Utah more than 2.5 billion tons of +10 percent P₂O₂ phosphate rock considered to have some future economic potential. In Wyoming, the +24 and +18 percent P₂O₂ rock potential resources total nearly 250 and 450 million tons, respectively. In Utah, the +31, +24, and +18 percent rock total approximately 33 million, 222 million, and 2.2 billion tons, respectively. These resources are all located above the local drainage levels and do not include latent resources. All of the mining and beneficiation of phosphate rock in the two States is done by San Francisco Chemical Co. The facilities include open-pit mines at Vernal, Utah, and Leefe, Wyo., an underground mine in the Crawford Mountains, Utah, and beneficiation plants at Leefe and Vernal. One of the principal markets for the phosphate rock is Western Phosphates, Inc., ferand development have been undertaken by different companies in the Southeastern Wind River Range, Sublette Range, and Crawford Mountains. The facilities at Leefe and Vernal are in the process of expansion. Some of the areas of western Wyoming contain vast quantities of phosphate rock in minable units, but, because of their remote location, are classed as latent areas. In these areas, there are estimated to be about 700 million, 2 billion, and 3 billion tons of phosphate rock in the ± 24 , ± 18 and ± 10 percent P₂O, grade classes, respectively. The Snake River Range of Idaho and Wyoming is also estimated to contain roughly 21, 106, 177, and 214 million tons of potential resources in the ± 31 , ± 24 , ± 18 , and ± 10 grade categories, respectively. This area also contains a large amount of latent rock in the more remote areas. The possibility of exploitation of the undeveloped deposits of Wyoming and Utah depends on market conditions. In view of the vast, untapped open-pit resources available, particularly in Idaho and Utah, and the rapid expansion of all facilities in the Western phosphate field, it appears that it will be some time before market conditions warrant opening any but the best of the Wyoming or Utah deposits.

RI 6935. An Evaluation of the Western Phosphate Industry and its Resources (in Five Parts). 5. Trends and Outlook, by A. L. Service and N. S. Petersen. May 1967. 131 pp. 30 figs. In 1965 the Western phosphate industry ranked third after Florida and Tennessee in total mine and marketable production of phosphate rock and phosphate rock products. It has become an important regional industry and, since the close of World War II, it has become important in the national phosphate economy. This report includes an evaluation of the trends and outlook for the Western phosphate industry through 1975 as part of the Bureau's program to determine the rate at which the Nation's mineral resources are being utilized. The first part of this report is concerned with the relationship between the Western phosphate industry and that of the United States and the world. It describes the principal phosphate deposits and discusses production, export, and import of phosphate industry and discusses trends and outlook through 1975. Projections for the utilization of phosphate rock, phosphate fertilizers, and elemental phosphorus have been developed and extended through 1975 in an effort to provide data and information pertaining to the rate of depletion of the Nation's phosphate resources.

RI 6936. Isotopic Abundance of Neon, Argon, and Nitrogen in Natural Gass. Relationship to Holium Genesis, by Lowell Stroud, Thomas O. Meyer, and David E. Emerson. 1967. 27 pp. 2 figs. Ten natural gases containing from 0.023 to 8.4 percent helium were investigated. In seven high-helium samples, the isotopic abundance of Ne²¹ was greater than in the atmosphere, being supplemented by 33 to 85 percent of "excess" or "radiogenic" Ne²¹. The ratio of He⁴/Ne²¹(rea) in these gases was evaluated and found to vary between 2.9 \times 10⁷ and 5.9 \times 10⁷, a factor of approximately 2. Argon concentrations were determined by the isotope dilution method. The isotopic ratios of Ar⁴⁰/Ar³⁶ in the high-helium gases were from 5 to 75 times the atmospheric value, with the Ar¹⁰ being about 80 to 99 percent radiogenic in nature. The ratios of He⁴/Ar⁴⁰(read) in all 10 gases were evaluated and found to range from 4 to 18. The isotopic ratio of N¹⁴/N¹⁵ in four of the highhelium gases was essentially the same as in the atmosphere; in three cases it was approximately 5 percent higher than the atmosphere value of 272.0. The genesis of nitrogen and the relationship of nitrogen to helium in natural gases were reviewed and are discussed in terms of a theory for the concurrent generation of nitrogen, helium, radiogenic neon 21, and petroleum (hydrocarbon gases and liquids).

RI 6937. A Mine Production-Scheduling Model and Critical Peth Analysis of Mine Development Work for Long-Range Mine Planning, by Adrian J. Mathias. 1967. 48 pp. 13 figs. This report presents the results of an investigation of a mine production-scheduling model and a critical path analysis for long-range mine planning. An example is given to illustrate how these techniques might be used to plan long-range development and production scheduling for a large underground mine. The model, based on estimated ore block grades and tonnages, and on designed mine development layout, simulates mining of ore blocks in a sequence necessary to fulfill mill requirements for ore tonnage and grade evaluation within pre-established system restrictions. Simulated production schedules are obtained as output from the model. These production schedules are then incorporated into a critical path analysis to determine the sequence for the long-range development work co as to fulfill the production schedules and thereby meet the ore grade and tonnage requirements of the mill. (Out of print.)

RI 6938. Effects of Uitrasonics on Electrodeposition of Copper Alloys From Cycnide Electrolytes, by Charles B. Kenahan, David Schlain, and Edmond Chin. April 1967. 32 pp. 16 figs. The effects of ultrasonic radiation on the electrodeposition of copper-zinc, copper-cadmium, and copper-tin alloys from cyanide baths were investigated by the Bureau of Mines at frequencies of 18.5 and 38 kilocycles per second and at acoustic intensities up to 0.5 watt per cm². Significant changes occurred in the composition of the deposited alloys; some of these deposits were brighter, harder, more adherent, or of finer grain size than nonirradiated deposits. The irradiated deposits were also smoother and less porous, and they afforded better corrosion protection for the substrate metal in sodium chloride solution. The limiting current densities of the cyanide baths were increased by the application of ultrasonics. Anode and cathode current efficiencies also were increased, and cell voltages lowered; the relationship of these effects to current density is discussed. Electrode potential measurements showed significant depolarization effects at both electrodes during ultrasonic irradiation. The resulting decrease in cell voltage was due chiefly to depolarization at the anode, and the anode became less passive. (Out of print.)

Ri 6939. Adaptation of the Pedersen Process to the Ferruginous Bauxies of the Pacific Northwest, by Henry E. Blake, Jr., Oliver C. Fursman, Arden D. Fugate, and Lloyd H. Banning. April 1967. 21 pp. 4 figs. This work was done to determine the technical feasibility of using the Pedersen process to produce cellgrade alumina and an iron byproduct from the high-silica and titania bauxites of the Pacific Northwest. Smelting of these bauxites with lime and coke at about 1,750° C in an electric arc furnace produced calcium aluminate slags in which at least 80 percent of the alumina was leachable by sodium carbonate solution. After a lime-desilication of the sodium aluminate, leach liquors, neutralization of these solutions with carbon dioxide resulted in precipitation of an alumina hydrate of sufficient purity for calcination to cell-grade alumina. Recoveries of byproduct iron averaged over 90 percent; however, the iron contained about 1 percent phosphorus and would require additional refining. Additional smallscale tests on these slags showed the following: (1) Titania had little effect on leachability if sufficient additional lime was added to form calcium titanate (CaO-TiO₂); (2) a slag containing about 14 percent silica required a slower cooling rate than one containing 7 percent silica for formation of high percentages of soluble aluminates; and (3) high-silica slags leached better at room temperature for long periods than at 65° C for shorter periods, but lowsilica slags leached well by either method.

RI 6940. Extraction of Germanium and Gallium From Coal fly Ash and Phosphorus Furnace Flue Dust, by R. F. Waters and H. Kenworthy. April 1967. 33 pp. 5 figs. Laboratory-scale selective volatilization methods developed by the Bureau of Mines to recover germanium and gallium concentrates from coal fly ash and phosphorus furnace flue dust are summarized. In the better experiments between 85 and 98 percent of the germanium was recovered as the lower oxide and as sulfides, and between 75 and 97 percent of the gallium was recovered as the lower oxide and as the trichloride. Grades of the condensates were inconsistent and varied between a few tenths of a percent and 8 percent, depending on the method used. In the primary extractions of germanium alone, the degree of enrichment surpassed 100 to 1, and for gallium the best ratio was 30 to 1. Upgrading of condensates by vaporization retreatment and by leaching and precipitation is discussed. An appreciable degree of mechanical preconcentration by attrition scrubbing and elutriation was possible on two fly ash samples.

RI 6941. Kinetics of Gas Synthesis Using Recycle Systems, by J. F. Schultz, F. S. Karn, and R. B. Anderson. April 1967. 23 pp. 19 figs. The Bureau of Mines investigated the hydrogenation of carbon monoxide and carbon dioxide over Raney nickel catalyst and nitrided fused-iron catalyst using both a single-pass and a recycle system. Activation energy over Raney nickel catalyst is 29 to 32 kcal/ mole for synthesis from either CO or CO₂. Pressure dependence of the gas conversion is to the 0.3 power for synthesis from CO and to the 0.5 power for synthesis from CO₂. Nitrided fused-iron catalysts were tested using high recycle rates and $3H_2+1CO_1$ $2H_1+1CO_1$ and $1H_2+1CO_1$ feed gas at 21.4 atmospheres absolute pressure. The relative usage of hydrogen (moles H₂ consumed per moles H_2+CO consumed) was larger than in corresponding single-pass tests, and the relative usage of hydrogen approached the feed gas ratio monotonically as conversion increased. Activation energy was found to be 12 or 13 kcal/mole fresh feed gases of $3H_2+1CO_1$ results and the relative usage of hydrogen approached the same conditions was 19 to 21 kcal/mole

RI 6942. Underground Combustion Oil-Recovery Experiments in the Venango Second Sand, Reno Pool, Venango County, Pa., by G. G. Campbell, E. L. Burwell, T. E. Sterner, and L. L. Core. April 1967. 45 pp. 28 figs. The Bureau of Mines conducted two underground-combustion oil-recovery experiments in the Venango Second sandstone in the Reno pool, Foster-Reno-Oil City field, Sugar Creek Township, Venango County, Pa., to determine the applicability of the process for reservoirs producing Pennsylvania-grade paraffin-base crude oil. Tests were terminated when analyses of produced gas showed that a self-sustaining combustion front did not exist. It was thought that insufficient fuel had been deposited in the formation. Laboratory retort tests made after the second field test was concluded showed that crude oil from the Reno area would deposit enough fuel to support combustion if air flux, temperature, and time were maintained within defined limits. Work done in cooperation with the Quaker State Oil Refining Corp.

RI 6943. Predicted Oil Recovery by Waterflood and Gas Drive, Bradford Third and Sartwell Sonda, Sartwell Oilfield, McKean County, Pa., by John R. Duda, William K. Overbey, Jr., and Harry R. Johnson. April 1967. 56 pp. 22 figs. The Bureau of Mines Morgantown Petroleum Research Laboratory, with the cooperation of the Penn York Oil Co., cored the Dewdrop, Bradford Third, Lewis Run, and Sartwell sands in the Sartwell oilfield, McKean County, Pa. This report contains a review of the geology and depositional history of the field and an evaluation of the feasibility of secondary recovery of oil from the Bradford Third and Sartwell sands by waterflood or gas drive. Core analysis, geologic data, and electrical and radioactivity logs were used to evaluate the reservoir characteristics. Reservoir geometry, rock properties, fluid characteristics and saturations, and relative permeability-saturation relationships were used to assess the floodability of these two sands. The results of this study indicate that between 53,000 and 61,000 barrels of oil can be recovered by water or gas injection. The success of a waterflood or gas drive will depend on the field injection rates of the reservoirs comprising this oilfield. Following an economic evaluation, additional field work is recommended to further test the floodability of the reservoir.

Ri 6944. Metallurgical Testing of Hawaiian Ferruginous Bouxites-Concluding Report, by W. A. Calhoun and T. E. Hill, Jr. May 1967. 37 pp. 10 figs. Progress made in a second and final metallurgical investigation by the Bureau of Mines of nearsurface Hawaiian bauxite deposits from Kauai, Maui, and Hawaii Islands, and on a deeper deposit from Kauai, is reported. Previously reported Al₂O₂ extractions were increased by modifying conventional processes to fit the ore being tested. Increases in Al₂O₂ extraction were: Kauai, from 82.8 to 95.4 percent; Maui, 85.5 to 94.1 percent; and Hawaii, from 70.5 to 86.4 percent. Use of a caustic-reduction sinter, leaching, and magnetic separation process for Al₂O₄ extraction also produced an iron concentrate of commercial grade, except for titanium content. No successful method was developed for the recovery of a satisfactory titanium concentrate.

RI 6945. Experimental Study of Pressure Drop Across Fixed Beds of Anthracite Briquets and Blast Furnace Materials, by A. F. Baker, W. S. Sanner, R. F. Tenney, and J. W. Eckerd. May 1967. 28 pp. 16 figs. The Bureau of Mines conducted pressure-drop studies in a 4-foot-diameter simulated blast furnace shaft to compare anthracite metallurgical briquets with coke and formcoke. The test materials were used alone, layered, and in mixed burdens of commercial fuel-to-ore ratios. Anthracite briquets had a higher pressure drop per foot than furnace coke, but they had a lower pressure drop per foot than formcoke. This appears to be due to packing and shape, as well as to particle size. The superficial air velocities at which beds of briquets and furnace coke disrupted were about the same. However, if briquets of the shapes and sizes tested are substituted for furnace coke in commercial metallurgical furnaces, higher blowing pressures will be required to deliver comparable amounts of air. Test burdens with more than 5 percent material smaller than ¼-inch diameter showed significant increases in resistance to airflow. Work done in cooperation with Bethlehem Steel Corp.

RI 6946. An Economic and Technical Evaluation of Magnesium Production Methods (in Three Parts).
Carbothermit, by D. A. Elkins, P. L. Placek, and K. C. Dean. May 1967. 74 pp. 5 figs. This report is the second of a series of three that will evaluate, in order, the metallothermic, carbothermic, and electrolytic methods of magnesium production. The historical development of the carbothermic process is outlined. Production costs varying from 38.9 to 21.8 cents per pound of magnesium are estimated for different versions of the process. Additional suggested process modifications are listed. The technical and economic potentials of the different versions are compared. Areas deemed most promising for future research on the process are delineated.

RI 6947. New Gap-Sensivity Methods for Explosives, by R. L. Grant, N. E. Hanna, and R. W. Van Dolah. May 1967. 17 pp. 9 figs. The Bureau of Mines developed two new gap-sensitivity methods for explosives, and especially permissible explosives, to overcome certain disadvantages of the present routine half-cartridge method. The revised methods are based on the statistical up-and-down method and give more useful requirements of the 50-percent gap values than the nonstatistical routine method. The new methods use full cartridges and incorporate certain physical improvements such as the use of cardboard tubes for containing the explosives and coal dust gaps to simulate actual mining conditions. A total of 60 samples of permissible explosives was evaluated simultaneously with the 2 improved methods and with the half-cartridge method.

RI 6948. Coking Properties of Selected Utah Coals and Blends, by W. S. Landers, Manuel Gomez, and Charles C. Boley. May 1967. 55 pp. 12 figs. Nine high-volatile bituminous Utah coals were carbonized singly and in blends with low- and medium-volatile bituminous coals. Of the nine coals, two are in commercial use as the base coals in blends that produce industrially acceptable metallurgical coke, while seven are regarded as weakly coking and are not used commercially in coking blends. The carbonization tests were made in a 10-inch-diameter, cylindrical retort, using 50-pound charges. Sunnyside coal blended with autogenous charges sumyside duced larger and stronger coke than was yielded by straight Sunnyside coal. The volatile matter of the char and the concentration of the char in the blend appear to be important parameters influencing coke size and strength. A blend of 10 percent autogenous char of 7.2 percent volatile matter with Sunnyside coal yielded coke that was larger, stronger, and of higher apparent specific gravity than coke produced from an industrial coke oven blend consisting of 15 percent medium-volatile coal and 85 percent Sunnyside coal. Work done in cooperation with the Kaiser Steel Corporation, the Columbia-Geneva Division of the United States Steel Corporation, the Pacific Coast Company. The Colorado Fuel and Iron Corpo-ration, and the Colorado School of Mines Research Foundation. Inc.

RI 6949. Concerning Physical Parameters for Use in an Absolute Gas Viscosimeter, by R. A. Guereca, H. P. Richardson, J. L. Gordon, and J. E. Miller. May 1967. 30 pp. 9 figs. Accurate measurements of physical dimensions of a section of stainless steel capillary tubing are presented and used to develop two final working equations for an absolute gas viscosimeter. The effects of pressure and temperature on these dimensions are considered. The internal surface finish and nonuniformity of the capillary bore are discussed, as well as entrance, kinetic energy, gas slippage, and gas compressibility correction factors.

RI 6950. Thermodynamic Properties of a Van Der Waals Fluid in the Two-Phase Region, by Robert E. Barieau. June 1967. 184 pp. 90 figs. General expressions for evaluating thermodynamic properties applicable to the van der Waals equation of state have been derived. These formulas were subsequently used to evaluate various thermodynamic functions in the two-phase region. The results indicate that, for a van der Waals fluid, there is a finite discontinuity in the second derivative of the vapor pressure curve, in the second derivative of the chemical potential or Gibbs free energy at the critical point, and in the heat capacity at constant volume measured at the critical density. Numerical values are tabulated and graphs are presented for all functions calculated.

RI 4951. Spark-Source Mass Spectra of Several Aromatic Hydrecarbons Using a Spinning Electrode, by T. Kessler, R. A. Friedel, and A. G. Sharkey, Jr. May 1967. 11 pp. 8 figs. The purpose of this investigation was to evaluate the application of a spark-source mass spectrograph equipped with a spinning-electrode system for the study of various high-molecular-weight materials derived from coal. Conclusions from the investigation of anthracene, phenanthrene, chrysene, coronene, truxene, a coaltar pitch (80° to 85° C softening point), and anthracene-chrysene synthetic mixtures follow: 1. Simplified mass spectra of anthracene, phenanthrene, chrysene, coronene, and truxene, from which the molecular weights were easily determined, were obtained by the spinning-electrode system. 2. Eight structural types having molecular weights from 178 to 252 corresponding to compounds previously observed in an electron impact mass spectrum of a coal-tar pitch sample were affirmed by this technique. 3. Mass spectra obtained from synthetic mixtures of anthracene and chrysene demonstrated that the technique is applicable for semiquantitative analysis.

RI 5952. Pendulum Sclerometer for Surface Hardness Studies, by O. Terichow and W. C. Larson. May 1967. 19 pp. 9 figs. A pendulum sclerometer designed by the Bureau of Mines is described. Its method of operation is given, along with the results of tests made on representative mineral samples of Mohs' hardness scale to determine the applicability of the device for research on rock testing. The sclerometer hardness values obtained from the tests indicated that reproducibility and accuracy were good. A quantitative comparison of the pendulum hardness values with microhardness and surface energy values published by other investigators showed good agreement on minerals with Mohs' hardness numbers of 2 to 9.

RI 6953. Selective Flotation of a Fluerspar Ore From Illinois, by W. H. Eddy, James S. Browning, and James E. Hardemon. May 1967. 10 pp. 8 figs. The Bureau of Mines conducted laboratory batch flotation tests and continuous pilot plant flotation tests on a complex calcareous fluorspar ore from Cave-in-Rock, Ill., to determine the technical feasibility of producing commercial-grade concentrates by the sodium fluoride-calcium lignin sulfonate-fatty acid method of concentrating fluorspar previously developed by the Bureau. The continuous flotation tests, treating about 150 pounds of ore per hour, produced fluorspar concentrates assaying 96.4 percent CaFs; 90 percent of the fluorspar was recovered. Work done in cooperation with the University of Alabama.

RI 6954. Reduction of Incendivity of Mot Goses to Methane and Cool Dust by Sedium Chloride and Sodium Nitrate, by Joseph M. Singer, Norman E. Hanna, Robert W. Van Dolah, and Joseph Grumer. May 1967. 15 pp. 5 figs. Having established that sodium chloride reduces the incendivity of explosives, the Bureau of Mines studied the effect of sodium nitrate in reducing ignition hazards. Gallery experiments showed that sodium nitrate reduced the incendivity of certain explosives to 8 percent natural gas in air but increased their incendivity to coal dust predispersed in air. Laboratory experiments using hot jets from explosions of stoichiometric mixtures of methane-oxygen-nitrogen showed that both sodium chloride and sodium nitrate reduced the incendivity to methane, to mixtures of coal dust and methane, and to coal dust. The difference between the gallery and laboratory results with respect to coal dust is attributed to temperature-time effects.

RI 6955. Assigning an Area of Influence for an Assay Ob-tained in Mine Sampling, by Scott W. Hazen, Jr. July 1967. 75 pp. 9 figs. Two statistical techniques, the mean-square-successive-difference test and correlation, are used to investigate the problem of assigning an area of influence to an assay. Data from five hydrothermal deposits, Climax molybdenum, Cebolla Creek titaniferous iron, San Manuel copper, Piedra Hueca copper, and Butte cop-per, are studied. Two groupings of the assays are used for the mean-square-successive-difference tests. One group involves an increasing sample volume by reaveraging assays to represent longer sample intervals, the other by regrouping assays to represent longer sample intervals without a change in sample volume. Each deposit has different mineralization characteristics, and although all test results are not entirely consistent, the results, as would be expected, are related to the nature of the mineralization and the structural environment. At Climax, the area of influence of an assay is less than 2 feet in the 0.2to 0.4-percent grade zone studied. Breccialike char-acteristics of the deposit probably account for the small area of influence. The area of influence of an assay in the Cebolla Creek deposit ranges from 4 feet to 36 feet, depending on the sample volume used. licon and titanium assays, although correlated, have different areas of influence. There is evidence of a cyclical trend in the area of influence along drill holes, probably resulting from the pod and lens type of mineralization in the deposit. Tests for the churnof mineralization in the deposit. Tests for the churn-drill holes and underground diamond-drill holes at San Manuel are inconclusive, because of a lack of sufficient assays to extend the tests for intervals greater than 100 feet. However, there is some evi-dence to indicate that the area of influence in the vertical churn-drill holes is about 100 feet. Correla-tion between secure is ediport of the hole. tion between assays in adjacent churn-drill holes indicates that the area of influence with the dip of the structure may be around 200 feet. At Piedra Hueca, assays from samples obtained by sampleplant processing of entire rounds of crosscuts driven along horizontal NX diamond-drill holes give high correlation with the drill-hole assays for sample intervals equivalent in length to the individual crosscut rounds. The area of influence of an assay is 16 to 20 meters (53 to 66 feet) in one crosscut and over 20 meters in the second crosscut. At Butte, the area of influence of an assay is 12 to 30 feet for weightedaverage drift assays along one narrow vein and 8 to 32 feet in raises on this same vein. Assay data from the vein were too few for really conclusive results, indicating variability in mineralization along the vein. The area of influence is 6 feet or less for drift, raise, and stope assays in the horsetail-vein area. Tests with and without sample volume changes gave virtually the same results.

RI 6956. The Tungstan-Cobalt System for Compositions to 85 Atomic Percent Cobalt, by L. A. Neumeier and J. L. Holman. June 1967. 73 pp. 29 figs. A refinement of the tungsten-cobalt phase diagram is presented for compositions to 85 at. pct cobalt and for temperatures to the solidus. Preparation of alloys by powder metallurgy methods is described, and the results of studies made by a combination of techniques involving microscopy, X-ray diffraction, thermal analysis, and dilatometry are discussed. The existence of μ -W₂Co₇ is confirmed (rhombohedral D8; structure). The W₂Co₇ phase forms peritectically at 1,685°±15° C by reaction of liquid with primary W; the peritectic melt is at 71 at. pct cobalt. The homogeneity range of μ -W₂Co₇ extends to both sides of the ideal stoichiometric ratio, through a composition range of about 5 at. pct. The compositional limits for μ -W₂Co₇ vary slightly below 1,471°±5° C, the temperature of the eutectic reaction forming μ -W₂Co₇ plus α . The eutectic composition is at 79 at. pct cobalt. The existence of WCo₅ is confirmed (hexagonal D0₁₀ structure). WCo₅ forms peritectoidally at 1,093°±5° C by reaction between α - and μ -W₆Co₇ and exists over a narrow homogeneity range of 0.5 to 0.6 at. pct. The solid solubility of cobalt in tungsten is low (maximum 0.9 at. pct cobalt) and results in contraction of the tungsten lattice. Tungsten is extensively soluble in α -Co at higher temperatures; the α -Co lattice is expanded by the presence of tungsten in solid solution. There was no indication of the formation of a σ -phase nor of any intermediate phases other than W₆Co₇ and WCo₅. The W₆Co₇ and WCo₅ phases are compared with similar phases in other systems.

RI 6957. Electrowinning High-Purity Neodymium, Proseodymium, and Didymium Metals From Their Oxides, by E. Morrice and T. A. Henrie. May 1967. 11 pp. 2 figs. High-purity neodymium, praseodymium, and didymium (a cerium-free mixture of light rareearth elements) were prepared by electrolysis of the oxides in a medium consisting of the respective rare-earth fluorides and lithium fluoride. The metals were electrodeposited in the liquid state and collected as nodules on a skull of frozen electrolyte. Cells were operated from 1,000° to 1,100° C. The requisite temperature was maintained by passing alternating and direct currents through the bath. Graphite was used for the anodes and tungsten for the cathode. The metal products contained <0.02 percent each carbon and oxygen and <0.025 percent tungsten as major impurities. Analysis of typical didymium metal nodules showed an approximately twofold enrichment in neodymium and praseodymium over their respective concentrations in the cell feed. The lanthanum content of the metal was about one-half its content in the oxide.

RI 6958. Flame Characteristics Causing Air Pollution: Production of Oxides of Nitrogen and Carbon Monexide, by J. M. Singer, E. B. Cook, Margaret E. Harris, Valeria R. Rowe, and J. Grumer. 1967. 34 pp. 4 figs. Methods are proposed for predicting concentrations of nitrogen oxides and carbon monoxide in the combustion gases of flames, specifically of lean, stoichiometric, and rich propane-air flames. Calculations are based on kinetic and thermodynamic theory. These theoretical data are compared with concentrations observed experimentally downstream of flat grid-type burner flames (approximately 25,000 Btu/hr) that were used to simulate gas appliances such as water and space heaters. Air pollutant concentrations are also computed for (1) flames chemically perturbed by recycling flue gases into the primary fuel-air mixtures; (2) flames thermally perturbed by cooling the burned gases at different rates; and (3) flames perturbed by combination of these two effects. In general, experimental and computed concentrations agree to within a factor of 2 to 7 with the experimental values always being higher than the theoretical. The theoretical analysis indicates that cooling the primary flame by recycling cold flue gases (with and without excess air) reduces the relative emission of nitric oxide and increases emission of carbon monoxide if the flame stoichiometry does not radically change. Cooling rates of about 5,500° to 10,000° R/sec starting at about 3,500° R generally suffice to prevent nitric oxide concentrations in lean flames from increasing much above the initial values at the combustion zone; these same cooling rates do not prevent oxidation of most of the initial carbon monoxide.

RI 6959. Bromide and todide in Oilfield Brines in Some Tertiary and Cretocceous Formations in Mississippi and Alabama, by A. Gene Collins, William P. Zelinski, and Cynthia A. Pearson. June 1967. 27 pp. 1 fig. The Bureau of Mines undertook research to determine the bromide and iodide content of Mississippi and Alabama oilfield waters of the Tertiary and Cretaceous Period to determine genetic relationships of the ions, to determine their origin, and to deter-mine their genetic relation to petroleum. The 280 samples were analyzed after a pretreatment to re-move interferences. The iodide was oxidized to iodate and was titrated with thiosulfate. The bromide was oxidized to bromate and was determined iodometrically. A computer was used to calculate the correlation coefficients of iodide to bromide and to other ions. The other ions are sodium plus potassium, calcium, magnesium, chloride, bicarbonate, and sulfate. The mineral content of the samples ranged from 52 to 1,760 mg/l for bromide and from 2 to 65 mg/l for iodide. The mean bromide-to-chloride and iodide-to-chloride ratios were 0.0065 and 0.0002, respectively. The correlation coefficient matrix and linear plots indicated a definite bromide-to-calcium relationship for the brines investigated.

RI 6960. Deposition of Barium Sulfate From Sec Water in Oil-Well Retery Pumps, by G. L. Gates and W. H. Caraway. June 1967. 16 pp. 7 figs. The Bureau of Mines in cooperation with the City of Long Beach, Calif., studied some physical factors affecting the deposition of barium sulfate scale in oil-well rotary pumps. Freshly formed barium sulfate was obtained by combining sulfate in sea water with barium from a barium chloride solution. The rate of scale deposition was measured quantitatively by weighing the pump impellers and diffusers. The results of the tests showed that coating the impellers with plastic significantly reduced the rate of barium sulfate deposition.

RI 6961. Hydrogenation Studies of Distillate Fuels, by Charles S. Albright, Frank G. Schwartz, and Cecil C. Ward. June 1967. 25 pp. 6 figs. This report describes hydrogenation of petroleum distillate fuels in bench-scale equipment and the effects of hydrogenation on the storage stability and the composition of the fuels. Two distillate fuels were hydrogenated in laboratory equipment using a commercially available cobalt molybdate catalyst. Reactor temperatures were varied from 600° to 850° F and pressures from 100 to 600 psig. Product fuels were analyzed by ASTM, Bureau of Mines, mass, and infrared methods. Hydrogenation of a catalytically cracked fuel from Oklahoma crude oil significantly improved the storage stability, reducing insoluble gum formed during 9 months of storage at 110° F from 19.0 to 1.3 mg per 100 ml fuel, average. Conversion of the olefins to other hydrogenation—at 700° to 850° F the conversion was mainly to aromatics, at 650° F about 50:50 to saturates and aromatics, at 660° F principally to saturates. Processing a fuel composed of a mixture of virgin distillate and catalytically cracked stock, both from Illinois crude, at 700° F and 200 psig effected marked improvement in stability; the buildup of insoluble gum in storage was lowered from 18.3 to less than 1 mg per 100 ml fuel. Work done, in part, under an agreement with the Bureau of Ships, U.S. Department of the Navy.

Ri 6962. Thermedynamic Properties of Forsterite and Serpentine, by E. G. King, R. Barany, W. W. Weller, and L. B. Pankratz. June 1967. 19 pp. 4 figs. The Bureau of Mines made experimental determinations of the heats of formation of forsterite and chrysotile at 298.15° K. The heat capacities of two polymorphs of serpentine, chrysotile and antigorite, were measured over the temperature range from 50° to 298° K and the entropies at 298.15° K were evaluated. The heat content of antigorite above 298.15° K was measured to 850° K. These thermochemical data were combined with other pertinent data to give heat and free energy of formation values at high temperatures. Free energy values are given for the reaction, forsterite + water = brucite + serpentine at different temperatures and pressures.

RI 6963. Tests for Tin-Lead Solders and Solder Jointe, by V. R. Miller, A. E. Schwaneke, and J. W. Jensen. June 1967. 27 pp. 21 figs. The Bureau of Mines investigated methods for testing the tensile and shear strength of cast specimens of bulk solder and of soldered joints in order to increase the strength and extend the useful temperature range of soft solders. A spread-area test for determining the wettability of solder on copper surfaces was developed. Mannitol was used as a flux in spread tests to control spreading and to avoid plating, etching, and other side effects of regular fluxes. Data on commercial and high-purity solders obtained by these methods show more consistency than those reported by others from similar tests.

EI 6964. Columbium and Tantalum Alley Dovelopment, by H. R. Babitzke and H. Kato. June 1967. 18 pp. 9 figs. The purpose of this Bureau of Mines investigation was to develop columbium and tantalum alloys suitable for use at elevated temperatures. Columbium and tantalum were combined with tungsten, hafnium, zirconium, molybdenum, vanadium, and titanium, and the resulting alloys were evaluated with respect to workability, hardness, electrical resistivity, strength at elevated temperatures, oxidation resistance, and weldability. Cb-33Hf-10W-10Ti, Cb-20Hf-5Mo, and Cb-30Hf-5Mo exhibited superior high-temperature properties. Cb-33Hf-10W-10Ti had tensile strength values of 44,300 psi at 1,200° C and 16,500 psi at 1,400° C, Cb-20Hf-5Mo had values of 35,700 and 20,700 psi, respectively. The corresponding values for Cb-3Hf-5Mo were 38,900 and 17,800 psi. These alloys are fabricable by conventional methods with excellent strength at temperatures up to and including 1,400° C. An oxidation rate of 7 to 21 mg/cm²/hr was observed up to 1,000° C.

RI 6965. Some Anisotropic Considerations in Rock Stress Determinations, by Robert M. Becker and Verne E. Hooker. June 1967. 23 pp. 5 figs. The evaluation of existing rock stresses from measurements of the change in diameter of a borehole that is stress relieved by overcoring has become a common practice. The stress evaluation has been generally based on isotropic relations whereas rock in varying degrees is anisotropic. A plane elasticity solution for a circular hole along one axis of an orthotropic medium is adapted for evaluation of in situ stress from borehole deformation measurements. A consistent triaxial testing approach for determining elastic properties of the overcore is also outlined. Comparison of isotropic with anisotropic interpretations of the state of stress show that large errors in evaluation may occur if the anisotropic character of the rock is neglected.

RI 6966. Clinton Hematitic Sandstone Deposits, Butt Mountain RI 6966. Clinton Hematitic Sandstene Deposite, But Mountain Area, Giles County, Va., by George E. Fish, Jr., with a section on beneficiation evaluation by W. E. Lamont, C. E. Spruiell, Jr., and I. L. Feld. June 1967. 39 pp. 11 figs. As a part of a study of iron ore resources in the Appalachians, nine diamond drill holes aggregating 1,580.7 feet were drilled in a portion of the Butt Mountain area of northeastern Giles County, Virginia. Three hematitic sandstone beds were intersected in the Clinton Formation but only one was consistent in thickness and grade in only one was consistent in thickness and grade in all nine drill holes. This bed averages 18.9 percent iron over an average thickness of 24 feet. The drill cores were logged and chemical analyses were made on 161 individual samples and 22 composite samples. Beneficiation studies were made of three composite hematitic sandstone samples each represent-ing a separate bed containing 14.6, 19.8, and 20.0 percent iron. Major mineral constituents of the samples were hematite, quartz, and sericite. The easy sliming characteristics and the iron oxide mineralization of the samples precluded the use of conventional mineral dressing methods for producing high-grade iron ore concentrates with good iron recovery. Beneficiation techniques, such as sink-float. attrition scrubbing, dry magnetic separation, and flotation, failed to yield effective separation of the iron values. The best concentrates were obtained by reduction roasting, fine grinding, and magnetic separation. Magnetic concentrates were produced that contained 49.5, 53.9, and 56.7 percent Fe with recoveries of 89.0, 91.7, and 92.6 percent, respectively. These medium-grade concentrates contained a relatively large amount of phosphorus and also would require agglomeration before the material could be used as furnace feed.

RI 6967. Hot Rolling of Oxide-Glass Compositions, by Henry M. Harris, John E. Kelley, Paul H. Sunset, and Hal J. Kelly. June 1967. 41 pp. 17 figs. A study was made by the Bureau of Mines to determine if shapes of oxide-glass compositions could be roll-formed at high temperatures and to find the conditions required for adequate formability. A unit with directly connected furnaces and heated rolls

that allowed forming of most of the compositions was developed. Glasses of the feldspar type were chemically unreactive with the alumina grains, and allowed the best roll forming. Optimum forming was attained at temperatures of 1,400° to 1,530° C, with compositions containing 30 or 40 percent feld-spar and 60 or 70 percent alumina. Formability was better when compositions contained minus 325mesh materials, rather than coarser or finer powders. In many cases, roll-formed shapes had physical properties equal to or better than the sintered shapes of the same composition. or better than the normally

RI 6968. Phase Relations in the Uranium Monocarbide Region of the System Uranium-Carbon-Oxygen at 1,700° C, by Jack L. Henry, Danton L. Paulson, Robert Blickensderfer, and Hal J. Kelly. July 1967. 42 pp. 16 figs. The monocarbide region of the ternary of C. has been investigated at 1,700° C as the first phase of a more extensive study of a portion of the four-component system U-C-O-N. An portion of the four-component system U-CO-N. An area bounded by the following compositional limits in atomic percent was studied: U, 44 to 55; C, 30 to 60; O, 0.2 to 20. Compacts composed of mixtures of uranium, graphite, and uranium dioxide powders were sintered at 1,700° C under an equilibrium pres-sure of carbon monoxide to produce uranium oxycarbide specimens having a variety of compositions. Sintered specimens were evaluated by X-ray, chemical analysis, and ceramographic techniques. Solidestablished, and the effects of composition on the lattice parameter as well as the decomposition pres-sure have been investigated. Oxygen can be substituted for carbon in stoichiometric uranium monocarbide to the extent of about 17 atomic percent at 1,700° C. The composition range of the oxycarbide solid solution extends from about 48 to 51 atomic percent uranium in the low oxygen region. Above 10 atomic percent oxygen the composition range narrows to less than 1 atomic percent uranium. Carbon monoxide exists as a gaseous phase in equilibrium with all compositions which contain oxygen. Five separate phase fields were found bounding the solid-solution area. Other phases within this portion of the system include uranium, uranium dioxide, uranium dicarbide, and uranium sequicarbide. Decomposition pressures of oxycarbide com-positions at 1,700° C have been found to vary from a few microns for stoichiometric and uranium-rich compositions to 35 torr for carbon-oxygen-rich specithe U to C + O ratio as well as upon the extent of substitution of oxygen into the stoichiometric mono-carbide lattice. Work done under an agreement with the U.S. Atomic Energy Commission.

RI 6969. Heavy Liquid Cyclone Concentration of Minerals (in Two Parts). 1. A Study of Liquid Cyclone Variables Influencing the Concentration of Minerals, by R. B. Tippin and James S. Browning. July 1967. 36 pp. 19 figs. The heavy liquid separation (HLS) process was investigated by the Bureau of Mines to develop a means of concentrating minerals from natural Various spodumene ores were tested in a ores. 0.4-inch diameter cyclone using pure tetrabromo-ethane (TBE) as the heavy liquid. Studies were initiated to examine the influence of (1) pulp density, (2) feed grade, (3) cyclone pressure, (4) cyclone apex opening size, (5) cyclone vortex finder open-ing size, and (6) mineral particle size on the separation efficiency. Each of these factors were found to affect the heavy liquid separation in some degree; the mineral particle size exhibited

ĩ

the greatest effect and the ore feed grade the least. Conditions necessary to yield an 85 per-cent spodumene concentrate with an 85-percent recovery were determined to be 70 psig pressure, 10 percent solids, 0.08-inch apex opening, 0.11-inch vortex finder opening, and a minimum amount of minus 200-mesh fines in the feed. Operation of multiple cyclones in series resulted in spodumene concentrates assaying over 90 percent and indicated mineral recoveries exceeding 90 percent. Work done in cooperation with the University of Alabama.

RI 6970. Synthesis of Cyclic Sulfides, by R. L. Hopkins, R. W. Higgins, H. J. Coleman, C. J. Thomp-son, and H. T. Rall. July 1967. 20 pp. 7 figs. Some typical thiacyclopentanes and thiacyclohexanes were synthesized to provide reference compounds needed for the identification of sulfur compounds in crude oils. Two general methods of synthesis were employed: (1) cleavage of 2-alkyltetrahydropyrans with hydrogen bromide followed by the reaction of the resulting dibromoalkanes with sodium sulfide and (2) the catalyzed reaction of cyclic ethers or 1.4- or 1.5-alkanediols with hydrogen sulfide. Both methods produced mixtures of 2-alkylthiacyclo-pentanes and 2-alkylthiacyclohexanes with 2-alkyl-tetrahydropyran as the starting material. The structures of the reaction products were established by analysis for sulfur; desulfurization; gas-liquid chromatography (GLC); mass, infrared, and nu-clear magnetic resonance (NMR) spectra; and an alternate synthesis. The synthesis of the cyclic sulfides contributed substantially to the identification of 10 members of this class of sulfur compounds in ican Petroleum Institute.

RI 6971. Investigation of Stress Distributions in Burst-Prone Cool Pillore, by A. J. Barry, A. Zona, J. L. Gilley, and R. H. Oitto, Jr. July 1967. 12 pp. 7 figs. Stress distributions induced in rectangular, burst-prone coal pillars by retreating pillar extrac-tion lines were investigated. Pressure changes within two pillars were monitored continuously, using hy-draulic pressure cells installed at depths of 10, 15, 20, and 25 ft in each pillar. This investigation was made in the Pocahontas No. 4 coalbed in southern West Virginia. Stress distributions were determined from pressure changes in 32 hydraulic pressure cells. The results indicated that (1) the stress distribution changed continually as pillar mining approached the test sites, (2) the maximum stress developed pro-gressively deeper into the pillars and increased steadily in magnitude, and (3) the change in stress was influenced by the distance between the roof-cave line and extraction line. This investigation demon-strated that the hydraulic pressure cells are satisfactory for determining stress distributions in coal pillars.

RI 6972. An Electrolytic Process for Producing Ductile Vanadium, by K. P. V. Lei, F. R. Cattoir, and T. A. Sullivan. July 1967. 22 pp. 11 figs. The Bureau of Mines investigated molten salt electrorefining in helium atmosphere cells as a means for the production of ductile vanadium. Electrolytes composed of NaCl-VCl₂, LiCl-NaCl-VCl₂, BaCl₂-KCl-NaCl-VCl₃, KCl-LiCl-VCl₃, and CaCl₂-NaCl-VCl₃, were tested. Two electrolytes, KCl-LiCl-VCl₃ and CaCl₃-NaCl-VCl₃. CaCl-NaCl, were selected for laboratory-scale production tests. A molten salt electrorefining process was developed for the production of ductile 99.6 percent vanadium from a commercial 90-percent grade. Using the CaCl-NaCl-VCl. electrolyte, an 87-percent recovery of ductile vanadium was made: an 85-percent recovery was made with the KCl-LiCl-VCL electrolyte.

RI 4973. Chlereform Extractions of Coels and Chars, by J. G. Walters, J. L. Shultz, and J. A. Glaenzer. July 1967. 28 pp. 6 figs. This report presents the results of an investigation in which the chloroform solubilities of coals and chars are related to rank, temperature of thermal treatment, time at a given temperature, vacuum thermal treatment, plasticity, oxidation, blending, and mass spectral analyses and molecular weights of the extracts. It was found that the quantity of chloroform extract obtained from chars can be altered by creating a vacuum above the charge during preparation of the char, increasing the time at temperatures within the plastic temperature range, and by utilizing different rates of heating to attain a given tempera-ture. Relationships found between the chloroform solubilities of chars produced at temperatures within the plastic temperature range and the relative fluidities in this temperature range indicate that the chloroform-soluble portion of the char is a signifi-cant component of the plastic mass. Chloroformextract yields from chars made from blends of coals cannot be calculated from chloroform-extract yields obtained from chars made from the component coals.

RI 6974. Noble Metals, Molybdenum, and Tungsten in Hydro-carbon Synthesis, by J. F. Shultz, F. S. Karn, and R. B. Anderson. July 1967. 20 pp. 12 figs. The Bureau of Mines extended its investigation of methanation catalysts. The noble metals (platinum, palladium, ruthenium, rhodium, osmium, and rhenium), molybdenum, and tungsten were tested in hydrogenations of carbon monoxide and carbon dioxide at 21 atmospheres in a temperature range between 200° and 600° C. From the 8 metals studied, 25 catalysts representing 5 catalyst types were prepared and tested. The impregnated 0.5-percentruthenium catalyst proved to be the most active and versatile of all the catalysts produced. Tungsten and the noble metals other than ruthenium were low in activity and usually required temperatures above 500° C for appreciable production of hydrocarbons. Molybdenum was moderate in activity, but further improvement in molybdenum catalysts seems possible.

&I 6975. Developing a Thermochemical Model for the Iron Blast Furnace. Mathematical Model of the Reduc-tion Zone, by Hillary W. St. Clair. July 1967. 35 pp. 7 figs. The reduction zone of the iron blast furnace is represented by a mathematical model of the chemical reactions and heat transfer that occur between gas and solids during the deoxidation of iron oxide. The model consists of a set of equa-tions and an algorithm whereby the equations may be solved to give the temperature and composition of gas and solids at any position in the reaction zone and at any time after a specified initial state. The model is applied to the special case in which ferric oxide is reduced by graphitic carbon and carbon monoxide produced by burning carbon in dry air. The rate of reduction, carbon consumption, and maximum temperature are shown as functions of the temperature and rate of flow of the incoming reducing gas and external heat loss. The model of the reduction zone is the essential part of a general mathematical model for simulation of the iron blast furnace. The simulation model will serve as a research tool to be used in conjunction with an experimental or operating furnace. After the simulation model has been correlated with the real furnace,

it is proposed that further experimentation be done mostly with the model. The real furnace will then be operated primarily to test and confirm the model.

RI 6976. Laboratory and Pilot Plant Development of Flota-

tion Procedures for Fine-Grained Hematitic Ories of Marquette Range, Michigan, by R. T. Sorensen and D. W. Frommer. July 1967. 34 pp. 5 figs. Bench-scale and continuous testing were performed to adapt the anionic process for flotation of calcium-activated silica to the fine-grained hematitic-goethitic jaspers silica to the nne-grained hematice-goetnitic jaspers from the Marquette range, Michigan. These ores typically contain about 35 percent Fe and require grinding to about 80 to 100 percent minus 400 mesh to insure an adequate liberation of gangue from the iron oxides. A method for removal of troublesome slime fractions without excessive iron loss, by first dispersing the quartz and then selectively flocculating the iron oxides, was evolved in the laboratory and successfully accommodated to pilot plant practice. The efficiency of the flotation process was improved with respect to both reagent usage and concentrate grade and recovery by using the selec-tive flocculation-desliming technique as a pretreat-ment. The benefits of the combined desliming-flotation procedure were most evident in pilot plant processing. The best tests on two ores yielded recoveries of about 84 percent in concentrates containing 65.1 percent Fe and 4.8 percent SiO₂ and 66.2 percent Fe and 3.9 percent SiO, respectively. These results are in comparison to recoveries about 10 percent lower than the above and to concentrates containing 63.9percent Fe and 6.6 percent SiO₂ in the one instance, and 63.6 percent Fe and 7.2 percent SiO₂ in the other, obtained by flotation without the prior de-sliming treatment. Reagent savings of about 25 cents per long ton of concentrate were counted as an additional benefit from use of the combination treatment. Work done in cooperation with the Cleve-land Cliffs Iron Co.

RI 6977. Blast Furnace Operation With Natural Gas Injection and Oxygen-Enriched Binst, by R. J. Leary and colf. July 1967. 24 pp. 7 figs. The Bu-P. L. Woolf. July 1967, 24 pp. 7 figs. The Bu-reau of Mines experimental blast furnace was blown with oxygen-enriched blast in combination with natural gas injected at the tuyeres. The air blast was augmented with oxygen to form an enriched blast containing 24.8 pct oxygen, and tests were run at natural gas injection rates of 4.5, 6.0, and 8.3 pet of the air blast. Similar enrichment to 26.8 pet oxygen was tested at natural gas rates of 7.2, 9.1, and 11.0 pet of the air blast. At intermediate pro-portions of natural gas to oxygen, (1) the fuel rate and the replacement ratio of coke by natural gas were unaffected by oxygen injections and (2) the productivity increased about 4 pct for each 1 pct oxygen added to the blast. The higher proportions of natural gas to oxygen were less efficient; in return for a lower coke rate, the fuel rate increased and productivity declined. A deficiency in reducing gas imposed a limit upon lower than normal proportions of natural gas to oxygen. Beyond this limit the formation of reducing gas was insufficient to support the rate of metal production. When this condition was encountered, the coke rate requirement for specification iron was abnormally high and production fell off badly. Adjabatic flame temperature is discussed as a means for proportioning oxygen and natural gas additions.

RI 6978. Effects of Ultrasonic Energy on Fluid Flow in Porous Media, by C. A. Komar and C. I. Pierce. July 1967. 12 pp. 2 figs. The Bureau of Mines conducted experiments on one synthetic and three natural sandstone samples to investigate the effects of acoustic energy on the flow of brine in porous media. Ultrasonic energy at a frequency of 20 kc per second and an intensity of 55 watts per cm² was irradiated in the direction of the fluid flow and in the opposite direction for distances of $\frac{1}{2}$ and 2 inches between the vibrating device and the sample face and under conditions of suppressed and nonsuppressed cavitation. Forty tests were conducted: 32 with a pressure differential of 0.64 psi across the samples, 2 with 5 psi, and 6 with 15 psi. Acoustic waves altered the rate of flow of the brine through the samples, but this effect was observed only at low differential pressures and from a practical point of view was insignificant. As a result of irradiation, however, the samples exhibited reduced permeability. This reduction was probably caused by the shifting of solid particles dislodged by the acoustic waves.

RI 6979. Correction for Nonuniformity of the Bore of a Copillary Tube Viscosimeter, by John E. Miller, R. A. Guereca, H. P. Richardson, and J. L. Gordon. July 1967. 24 pp. 5 figs. Absolute viscosity values for gases usually are determined with a capillary tube viscosimeter. One of the correction factors applied to the experimental data is that for nonuniformity of the capillary bore. This report contains useful analytic expressions of the nonuniformity correction for the following cases: ellipse, cone, sine wave, sawtooth wave, square wave, and the general case. The methods herein described are applied to estimate the nonuniformity of a section of stainless steel capillary tubing to be used at the Bureau of Mines Helium Research Center. Several other examples are given to illustrate the usefulness of the present results.

RI 6980. Relative Pressure Changes in Coal Fillers During Extraction: A Progress Report, by Ernest A. Curth. July 1967. 20 pp. 13 figs. The Bureau of Mines studied pressure changes in coal pillars by using encapsulated hydraulic pressure cells to measure relative changes in stress developed during mining. The data indicate that (1) abutment stresses were detected when the pillar line is within 42 to 100 feet, (2) vertical pressure increases as coal is mined in the pillars, (3) at first pressure is higher at the edge of the pillar than in the core, but as mining progresses, the higher pressure is measured is the core of the stump, and (4) in the two instances where lateral pressures were measured, they remained lower than the vertical pressures during pillar extraction. The data also indicate that the mean vertical pressure increase, ΔP, in a pillar is roughly related to the percent of pillar extracted, A, by the empirical parabolic equation

 $\Delta P = -0.11 \ A + 0.356 \ A^2.$

RI 6981. A Rapid Colorimetric Method for Field Determina-

tion of Nitrogen Dioxide in Fumes From Explosives, by E. J. Murphy. July 1967. 21 pp. 5 figs. The Bureau of Mines developed a fast, reliable modification of the Griess-Ilosvay procedure suitable for field analysis for NO, in the fumes from explosives. Known concentrations of NO-air mixtures were analyzed for the nitrous acid or nitrite formed in the reaction with three Griess-Ilosvay-type reagents by diazotizing and coupling. Comparison was made of the Rider-Mellon, Saltzman, and Patty-Petty procedures; the three procedures are in agreement if sufficient time of contact between NO₂ and the reagents is allowed. In experiments to obtain an accurate factor for converting NO₃ to nitrite, overnight contact was allowed in order to be sure conversion was complete. The factor was found to be 75 percent with a standard deviation of ± 3.2 . Low and erratic results were found using either the Saltzman or Patty-Petty reagents as absorbing liquids unless several hours' contact was allowed. If dilute NaOH solution was used as the absorbing liquid instead of a Greiss-Ilosvay-type reagent, 92 percent of the overnight conversion factor was found after a 3-minute shaking time and a 10-minute standby time. The Saltzman reagent was preferable for fieldwork with the dilute NaOH solution as the absorbent because of its easy application, rapid reaction, and intense color at low NO₂ concentrations.

RI 6982. Continuous Flatation of Fluorspar From a Calcareous

Illinois Ore, by W. H. Eddy, James S. Browning, and James E. Hardemon. July 1967. 10 pp. 3 figs. The Bureau of Mines made small-scale continuous tests and large-scale commercial plant tests of a calcareous fluorspar ore near Cave-In-Rock, III., to determine if the application of the lignin-fluoride process of fluorspar flotation would be industrially feasible for treatment of fluorspar ores, and also to compare the lignin-fluoride process with the quebracho process, which is the method currently used for concentrating calcareous fluorspar ores. The small-scale continuous tests yielded fluorspar concentrates analyzing 93.6 percent CaF₂ with a recovery of 87.6 percent of the total fluorspar in the ore. In large-scale commercial plant tests, a fluorspar concentrate analyzing 93.3 percent CaF, with a recovery of 78.0 percent was produced by the quebracho method. About 86.0 percent of the fluorspar was recovered in a metallurgical-grade fluorspar concentrate from the lignin-fluoride circuit which analyzed 89.9 percent CaF, with a much simpler flowsheet than that in the current commercial application. Work done in cooperation with the University of Alabama and the Minerva Co.

RI 6983. The Hafnium-Carbon Phase Diagram, by D. K. Deardorff, M. I. Copeland, and R. P. Adams. July 1967. 16 pp. 8 figs. The purpose of this work was to investigate the hafnium-carbon phase diagram. Alloys used to study this system were prepared from high-purity components by both consumable- and nonconsumable-electrode arc melting. Data for the diagram were obtained on the alloys by metallography, optical pyrometry, thermal analysis, heat treatment, and X-ray diffraction. The data indicate that a carbide compound occurs over considerable range of composition and that one of each of the following types of reactions occurs in the hafnium-carbon system: peritectoid, peritectic, and eutectic. The maximum melting temperature of hafnium carbide is 3,840° C at 49 to 50 atomic percent carbon, and the composition range of hafnium carbide at temperatures of 2,150° to 2,380° C is from 37.0 to 48.5 atomic percent carbon. The hafnium α - β transformation temperature is raised on alloying with carbon from 1,750° to 1,890° C, where a peritectoid reaction isotherm occurs. Alloying hafnium with carbon increases the hafnium melting temperature from 2,190° to 2,250° C, at which temperature a peritectic reaction occurs. Hafnium carbide and carbon react at 3,055° C to form a eutectic of 68.3 atomic percent carbon.

RI 6984. Purification of Tungsten Hexachloride, by F. A. Skirvin, T. T. Campbell, and F. E. Block. July 1967. 17 pp. 7 figs. Purification techniques were investigated for removing low-level metallic impurities from tungsten hexachloride. These techniques included distillation, fused-salt scrubbing, zone refining, and adsorption. Fractional distillation of tungsten hexachloride was found to be an effec-tive purification method. The impurity levels of molybdenum, iron, nickel, copper, magnesium, and inanganese were reduced to provide a tungsten halide sample which contained a total of less than 10 ppm detectable metallic impurities. Purification by fusedsait scrubbing of tungsten hexachloride in a lithium chloride-potassium chioride eutectic produced a hexachloride product which was of approximately the same quality as that obtained by distillation. Zone same quality as that obtained by distillation. Zone renning and adsorption did not appear to be as effective as distillation of fused-salt scrubbing.

El 6985. Spectrochemical Analysis of Coal Ash, by J. B. Zink, W. D. Washington, and M. J. Peter-son. July 1967. 14 pp. The Bureau of Mines de-veloped a spectrochemical method to determine six con tituation and ach in the following concentration. constituents in coal ash in the following concentra-tion ranges: Silica, 9 to 63 percent; alumina, 7.5 to 35 percent; ferric oxide, 2 to 30 percent; calcium oxide, 1 to 29 percent; magnesium oxide, 0.5 to 6 percent; and titanium oxide, 0.5 to 4 percent. Samples of coal ash are fused with a mixture of lithium tetraborate and vanadium pentoxide. The resulting beads are crushed, mixed with powdered graphite, and briquetted. The pellets are analyzed spectro-graphically, using controlled high-voltage spark ex-citation. Vanadium serves as the internal standard. Effects due to matrix variations are minimized by fusion with lithium tetraborate. Intensity ratios of selected analytical lines are determined photometrically. Concentrations are read from analytical curves, prepared from synthetic standards, relating log intensity ratios to log concentrations. A com-bustion procedure is used to determine sulfur trioxide. The method is most useful when large num-bers of coal ashes must be analyzed but a high degree of accuracy is not essential.

RI 6986. Projectile Impact Initiation of Condensed Explosives, by Milton L. Weiss and Elton L. Litch-field. July 1967, 17 pp. 8 figs. Studies were made on the projectile impact sensitivity of explosives by subjecting explosive samples to the impact of metal projectiles fired from a 0.50-caliber gun. The projectiles, in the form of right cylinders, made plane surface contact with the explosives. Pressures in the explosive were investigated with an expendable pres-sure transducer in some instances. The physical model of the projectile-explosive interaction de-scribes, in principle, the duration of the peak shock pressure in terms of the projectile and explosive geometry and the steady-state penetration of the ex-plosive. Of the explosives studied, liquid hydrogen-solid oxygen and liquid oxygen-solid or liquid hydro-carbon fuel were the most shock sensitive (requiring an initiating shock of about 1.0 kb or 987 atmos-pheres pressure); cast TNT was the least sensitive (requiring an initiating shock of more than 110 kb pressure). Measurements of pressure in the explosive showed some moderate space resolution by the transducer and gave pressure distributions in agree-ment with expectations from the model of the shock processes. The appearance of the recovered projectiles and the calculated initiation shock pressures indicate the solid explosives were initiated directly to high-order detonation, whereas the liquid explosives were probably initiated to low-order detonation -with a subsequent, later transition to high-order detonation.

Mine Water Research. Neutralization, by Maurice Deul and E. A. Mihok. 1967. 24 pp. 18 RI 6987. figs. A special short-term research project was ini-

tiated to develop plant design parameters for treating mine waters to yield an effluent acceptable for discharge into streams and a sludge amenable to effective and economical disposal. Neutralization was investigated to provide simple and direct treatment of ferruginous acid waters using lime, coarse limestone, and limestone followed by lime. Limestone treatment was accomplished using a small cement mixer as a simple reactor to provide abrasive agita-tion of limestone and mine water. Results from tests with nine mine waters encompassing a wide range of iron and acid concentrations showed that coarse limestone, one of the cheapest neutralizing agents limestone, one of the cheapest neutralizing agents known, is potentially useful for treating mine water discharges. However, process variables must be de-fined more completely before the practical applica-tions and limitations of the process can be fully es-tablished. In all the tests a pH of >7.2 was ob-tained ultimately with limestone. Reaction time to reduce the iron contant below 7 ppm in the water reduce the iron content below 7 ppm in the water was dependent on the original ferrous iron concentration. For waters with high ferrous iron contents, treatment with limestone folowed by lime rapidly produced an acceptable treated water. Sludges with good setting and handling characteristics resulted when limestone was used for neutralization either alone or with subsequent treatment. Reaction rates are expressed graphically as pH change and iron depletion curves; characteristic solids-settling curves are shown. The temperature dependency of ferrous iron oxidation was verified.

RI 6988. Study of Columbium-Base Alloys, by Renpei Yoda, H. R. Babitzke, and H. Kato. July 30 pp. 30 figs. An investigation was con-1967.ducted to develop columbium alloys with elevated-temperature strengths higher than those exhibited by more common commercial columbium alloys, and attention was given to improving the oxidation re-sistance and ease of fabrication. Additions of carbon, aluminum, and chromium were made to some columbium-base alloys, and their effects on workability, recrystallization, oxidation resistance, and mechanical properties at elevated temperatures were explored. The additions were made to take advan-tage of (1) solid solution strengthening and (2) precipitation hardening. Three alloys displayed good high-temperature properties with relatively good oxi-dation resistance at 1,000° C and tensile strengths from 26,000 to 32,200 psi at 1,400° C. When the properties of these alloys were compared with those of commercial alloys, B-66 and FS-85, the outcome was favorable for the alloys studied in this investigation.

RI 6989. Preparation Characteristics of Pennsylvania Anthracite from the Bottom Red Ash Bed, Northern Field, by W. S. Sanner. July 1967. 36 pp. 6 figs. Seven samples were analyzed from the major reserves of the Bottom Red Ash bed, Northern anthracite field. The data show variations in thickness and geologic structure and in the amount of coal that can be recovered. Recovery of market-grade (less than 17 percent ash) coal is high for all samples, ranging from 76 to 95 percent in the 34 - by 9/16-inch sizes. The occurrence of coal containing less than 5 percent ash varies from 19.5 to as much as 57.5 percent. Crushing the coarse sizes to minus 9/16 inch increased recovery of market-grade coal in six of seven bed samples. Crushing released sufficient im-purities to cause substantial increases in yield of coal containing less than 5 percent ash for all samples. Analyses of the float indicate that the quality of coal is comparable for all samples.

RI 6990. Estimation of low-Temperature Carbonization Preduct Yields: Utch Coalfields, by Manual Gomez,
W. S. Landers, and C. K. Boyd. July 1967. 32 pp. 7 fgs. Low-temperature carbonization product yields for 129 coals representative of 12 Utah coalfields were estimated, using regression equations developed from heating value and proximate and ultimate analysis data. It was shown that yields of char, tar plus light oil, water of decomposition, and gas, as well as the gas volume and the heating value of the gas, could be predicted with reasonable accuracy. Published and experimental results from eight Utah coals carbonized at selected temperatures in the 450° to 1,000° C range were used to determine the effect of temperature on product yields. Carbonization temperature, heating value, oxygen, and volatile matter of coal appear to be the principal variables influencing carbonization product yields. Data presented show that the heating value and the residual volatile matter in low-temperature char may be predicted using relationships developed from proximate analysis data for 220 coals.

RI 6991. Lake Superior Iron Resources. Reexamination of Nonmagnetic Tacconite Occurrences in the Hibbing, Minn., Area by Flotation, Magnetic Separation, and Petrographic Methods, by L. F. Heising, C. B. Daellenbach, and E. E. Anderson. July 1967. 21 pp. 8 figs. Ten composite samples of Mesabi range nonmagnetic taconite from the Hibbing, Minn., area were evaluated by flotation and by reduction roasting-magnetic separation to determine their potential as a future source of iron ore. Only one of the composites yielded concentrates that could be considered marketable, using as a criterion a 10-to-1 iron-to-silica ratio. Cursory petrographic examinations of all 10 composited samples and a detailed mineralogical study on 1 sample suggest that unfavorable mineralogical associations between iron and gangue minerals are responsible for their poor beneficiation characteristics.

RI 6992. Reservoir Study of the William Kaufman Lease, Clover-Rush Run Oilfield, Roare County, W. Va., by Karl-Heinz Frohne. July 1967. 17 pp. 7 figs. This report presents the findings of a study of a portion of the Clover-Rush Run oilfield located in Roane County, W. Va. The study was made to investigate the possibilities of secondary oil recovery in the Big Injun sandstone underlying the William Kaufman lease. Reservoir properties, original reserves, and primary oil recovery are also presented. The investigation is based on a core analysis and related laboratory tests, well records, field production data, and subsurface information from the Kaufman property. A theoretical primary oil recovery of 9.7 percent of original oil in place is predicted for the reservoir. A waterflood performance prediction of a hypothetical pilot area was made by use of a computer. The prediction showed that, based on laboratory oil-water relative permeability curves, the water-injection time needed to initiate oil production is excessive and that the stabilized waterinjection and corresponding oil-production rates are very low. This precludes waterflooding the reservoir on an economic basis. A prediction for secondary oil recovery by gas injection was attempted but could not be completed because essential reservoir data were not available. In July 1965, the lease operator initiated, and is currently conducting, a gas-injection program, but there had been no increase in oil production up to November 1966.

 RI 6993. Liberation and Concentration of Phosphate Minerals by Attrition Grinding and Sizing (Supplement to RI 6749), by J. W. Town, P. E. Sanker, and J. C. White. August 1967. 28 pp. 16 figs. Studies were made by the Bureau of Mines to determine the influence of textural features on the beneficiation of phosphate minerals (pellets) from selected bed and composite samples representing different rock types of the western Phosphoria Formation. The particle size of the samples were reduced by attrition grinding to minus 20, 28, or 48 mesh depending on ore grade and gangue matrix. Sizing of the ground material showed that the phosphate pellets would concentrate in the plus 200-, 270-, or 325-mesh size fractions sufficiently so that the phosphate content was above the 31.5 percent P_aO . required for acidulation. The phosphate content of essentially pure phosphate pellets was shown to range from 33 to 39 percent P_aO . Microscopic identification of the particles in each size fraction showed that the phosphate was either in the pellet form and readily liberated or so intimately associated with the gangue matrix that size reduction necessary to obtain liberation was impractical.

Ri 6994. Hydrogen Cyanide From the Reaction of Coal With Ammenia, by Glenn E. Johnson, W. A. Decker, A. J. Forney, and J. H. Field. August 1967. 17 pp. 5 figs. The Bureau of Mines investigated the production of hydrogen cyanide by reacting powdered coal (minus 300 mesh) with ammonia at 1,250° C in a bench-scale study. Both metallic and ceramic reactors were used. Yields up to 0.7 cubic foot of hydrogen cyanide per cubic foot of ammonia consumed were obtained. The resulting ammonia conversion of about 75 volume-percent approximates conversion obtained commercially in processes utilizing natural gas and platinum catalysts. The coals that had higher volatile-matter contents gave the best yields of hydrogen cyanide. Allowing the coal to absorb ammonia before reaction resulted in increased yields of hydrogen cyanide. Cost studies for a plant with 40-million-pound-per-year capacity indicate that hydrogen cyanide can be profitably coproduced wth carbon black, from coal and ammonia, at the current market price of hydrogen cyanide (11.5 cents per pound). These figures are based on heating the reactor electrically. If a cheaper heating method were devised, the economics of the process would be more favorable.

R| 6995. Steady-State Laminar Flow Boundary Conditions for a Stainless Steel Coiled-Capillary Viscosimeter, by R. A. Guereca, H. P. Richardson, and L. M. Walker. August 1967. 15 pp. 6 figs. The Bureau of Mines conducted an analysis to determine criteria for steady-state laminar flow boundary conditions for a coiled-tube gas viscosimeter by comparing experimental data from a thick-walled, stainless steel capillary in a horizontal, straight-tube condition, with similar data taken after the same capillary was formed into a helix. Overlapping volumetric flowrates and pressure drops are covered for both configurations at pressure levels of 28, 225, and 1,000 psia at 300° K. Friction factor, Reynolds number, and Dean number correlation plots show conditions where the coiled-tube flow deviates from straight-tube flow. The coiled-tube data indicate departure from Poiseuille steady-state laminar flow at a Reynolds number close to 390 and a Dean number of about 15. Below these conditions and consistent with the data reported, Dean's circulation appears negligible. For the particular coil used, a conservative upper limit of 10 is chosen for the Dean number corresponding to an upper limit of about 250 for the Reynolds number.

RI 6996. Fracturing a Deposit With Nuclear Explosives and Recovering Copper by the In-Situ Leaching Method, William R. Hardwick. November 1967, 48 pp. bν 24 figs. Present information indicates that a copper deposit can be safely fractured with a nuclear explosive and the copper successfully recovered by the in situ leaching method. The process is not yet at the stage where it can be presented to the mining industry as a technique proven in all its aspects, but it is a method with high success potential. Un-known factors must be evaluated by a full-scale test before the economics or the extent of the use of the method by the mining industry can be predicted. Preliminary calculations indicate that the cost of fracturing a copper deposit with nuclear explosives may range from 1.8 to 55.2 cents per ton or in some cases less than a cent per pound of recoverable copper. Copper may be recovered at less cost than by conventional methods. Deposits with 4 pounds of recoverable copper may be economic and production from a deposit may begin in less than half the time required for conventional methods. Work done under an agrement with the San Francisco Operations Office, U.S. Atomic Energy Commission.

RI 6997. Stress Ellipseid Determination in a Rock-Burst-Prone Area at a 4,000-Foot Depth, Gelena Mine, Wallace, Idaho, by Robert W. Ageton. August 1967. 23 pp. 10 figs. Optimal planning for mining the deep lead-zinc-copper deposits of the Coeur d'Alene mining district, Shoshone County, Idaho, could be facilitated by a knowledge of the magnitude and direction of the pressure acting in the virgin rock. The distribution of primary stresses should be considered in order to prevent possibly destructive mininginduced stress concentrations. This particular investigation was concerned with determining stress in a zone 4,000 feet below the surface and known to be under stress concentrations due to mining operations. Disking of the stress-relief cores obtained in a vertical down hole permitted qualitative evaluation from visual observations; the results indicate that a high lateral stress existed at the time the measurements were made. Stress-ellipsoid determinations gave a compressive principal stress of -11,000 psi oriented about N 45° W and nearly horizontal, a compresive principal stress of -11,000 psi oriented about S 45° W and about 60° off the vertical pointing away from the vein, and a compressive principal stress of -7,000 psi oriented N 45° E and about 60° off the vertical pointing toward the vein. Subsequent to the overcoring stres-relief drilling, a rock burst occurred about 100 feet northwest of the test site.

RI 6998. Reaction of Tungsten-Cobalt Allays With Oxygen et 1,000° and 1,100° K, by Robert M. Doerr, L. A. Neumeier, and J. W. Jensen. August 1967. 22 pp. 9 figs. The purpose of the investigation was to determine the oxidation behavior of selected tungsten-cobalt alloys. Specimens of W and W-Co containing 0.7, 1.7, 3.4, and 9.7 weight-percent Co were subjected to pure Os at 1,000° and 1,100° K, and specimens of W-Co containing 29.8 weightpercent Co, at 1,100° K. Reaction kinetics were determined volumetrically. For specimens other than those containing 29.8 percent Co, the reactions proceeded at about a constant rate at either temperature, indicating the formation of a scale of constant protectivity; the reaction rates were essentially independent of the Co concentrations. The scales on these alloy specimens of a 29.8 weight-percent Co alloy, consisting primarily of the WsCO; phase, oxidized with only slight deviations from the parabolic rate law at 1,100° K. The protective scale on these specimens consisted chiefly of Co₃O₄, CoWO₄, and $W_{1s}O_{4s}$; Co₃O₄ was outermost, and the $W_{1s}O_{4s}$ was adjacent to the alloy. The results suggest that the Co-rich outer scale inhibited the inward transport of O to an extent sufficient to greatly limit the amount of the nonprotective WO₃ formed, so that protective $W_{1s}O_{4s}$ formed instead.

RI 6999. Electric Smelting of Complex Lead-Zinc Sinter, by Richard N. Spencer, Seth C. Schaefer, and James E. Mauser. August 1967. 28 pp. 7 figs. Electric-furnace smelting for simultaneous recovery of zinc spelter and lead bullion from complex leadzinc sinter was investigated. Reduction of lead and zinc was satisfactory. Condensation of lead and zinc vapor to pyrophoric metal powder in a watercooled, shock-condensing system produced excellent recoveries. Metal-splash condensation to produce zinc spelter was unsatisfactory. Special smelting experiments differentiated the effects of several smelting parameters on zinc metal recovery. The principal cause for unsatisfactory zinc metal recovery was transfer of iron to the condenser and subsequent degradation of zinc in a mixture composed of lead and an iron-zinc intermetallic compound. Limitations of the process were determined. Slag-resistance open-bath electric smelting of complex lead-zinc sinter is not considered feasible.

RI 7000. Mass Spectrometric Analyses of Coal-Tar Distillates and Residues, by J. L. Shultz, R. A. Friedel, and A. G. Sharkey, Jr. August 1967. 14 pp. Mass spectrometric analyses were obtained for naphthalene and anthracene oils, heavy creosote, and three fractions of a pitch. The average molecular weight, aromaticity, and mean structural unit were determined for each fraction. The investigation of these fractions of coal tar has resulted in semiquantitative data for 38 structural types and carbon number distribution data for their alkyl derivatives. The molecular weights of 10 of these structural types indicate ring systems not previously reported in products from high-temperature carbonization of coal. Two of these structures are polynuclear aromatic hydrocarbons, two are oxygen-containing compounds, one contains sulfur, and five are nitrogencontaining compounds.

RI 7001. Thermodynamic Preperties of Three Lithium-Aluminum Silicates, by L. B. Pankratz and W. W. Weller. August 1967. 13 pp. 2 figs. The Bureau of Mines measured heat capacities of alpha and beta spodumene (LiAlSi,0.6) and of beta eucryptite (LiAlSi0.) over the temperature range 51° to 298° K. The entropies at 298° K were found to be 30.9 ± 0.2 cal/deg mole for alpha spodumene, 36.9 ± 0.2 cal/deg mole for beta spodumene, and 24.8 ± 0.2 cal/deg mole for beta spodumene, and 24.8 ± 0.2 cal/deg mole for beta spodumene, $1,600^{\circ}$ K for the same compounds. Measurements were made to $1,150^{\circ}$ K for alpha spodumene, $1,600^{\circ}$ K for beta spodumene, and $1,470^{\circ}$ K for beta eucryptite. Tables of heats and free energies of formation are given from the elements and from the constituent oxides.

RI 7002. Stresses and Displacements Surrounding an Open

Pit in a Gravity-Loaded Rock, by Wilson Blake. August 1967. 20 pp. 7 figs. The Bureau of Mines used a mathematical model based on the finite element method of stress analysis to calculate stresses and displacements surrounding an open pit mine in a gravity-loaded rock mass. Comparison of the finite element solution for a semicircular notch in a gravity-loaded plate with the theoretical solution for a semicircular notch in a plate under uniform compression parallel to the free boundary demonstrates the inapplicability of the latter method to openings at the free surface of a gravity-loaded medium. High stress concentrations are formed at irregularities along the boundary of an open pit in a gravity-loaded continuous competent rock; however, for this type of rock the magnitudes of the stresses are too low to be considered a major factor in open pit slope stability. High stress magnitudes will occur if, in addition to the gravity stress field, a large horizontal stress field exists.

RI 7003. A Two-Constant Equation for Helium from 30° to 1,473° K, by Jonnie M. Estes and Philip C. Tully. August 1967. 18 pp. 3 figs. A two-constant equation is presented for helium from $30^{\circ} \leq T \leq 1,473^{\circ}$ K. This equation is developed by modifying a generalized equation of state originally presented by Redlich and Kwong. The modification consists of setting $B = 0.06372 \ T_c/P_c T$. This modified equation represents the compressibility factors of each of 80 isotherms tested in this temperature range to less than 1-percent average deviation.

RI 7004. Preparation Characteristics of Coal From Upshur County, W. Va., by A. W. Deurbrouck. August 1967. 32 pp. 3 figs. This Bureau of Mines report describes the preparation characteristics of the significant coalbeds from which samples could be obtained in Upshur County, W. Va. One of the 14 samples collected was of metallurgical quality as received, 6 could be sufficiently upgraded to provide acceptable products, and 7 could not be upgraded to metallurgical quality because of their high sulfur contents.

Ri 7005. Reaction Rates of the Titanium-Oxygen Alley System and Titanium Chlorides in Molten Sodium Chloride, by E. K. Kleespies, J. Jackson, Jr., and T. A. Henrie. August 1967. 12 pp. 4 figs. The rate of the heterogeneous reaction between titaniumoxygen solid solutions and titanium trichloride in molten sodium chloride was determined at high temperatures. In the alpha phase, the reaction rate decreases uniformly with the increasing concentration of oxygen. The gamma crystalline form of titanium (above 33 atomic percent oxygen) was much less reactive than the alpha phase, and the reaction rate approached zero at 50 atomic percent oxygen. The activation energy for the reaction of titanium-oxygen solution containing 22.8 percent oxygen was 11.7 kcal/mole of TiCls as compared with 8.3 kcal/mole of TiCls for pure titanium.

RI 7006. Unique Properties of Permeability Curves of Concorn to Reservoir Engineers, by R. V. Higgins,

D. W. Boley, and A. J. Leighton, August 1967. 19 pp. 16 figs. The Bureau of Mines investigated the use of electronic computers for obtaining more information about relative permeabilities of reservoir rock to oil and water. It was found that there are many possible combinations of relative permeability curves that will result in virtually the same recovery versus injection, but they require different times and rates to recover the oil even with different mobility ratios. Permeability curves obtained by the use of nonviscous oil and employed for calculating the waterfloods of viscous oils can lead to serious inaccuracies. For viscous oils, the wettability curve affect recovery nearly as much as other portions of the curve; this, however, is not true for nonviscous oils in water-wet reservoir rock.

RI 7007. Prospects for Secondary Recovery of Oil by Waterflooding. Mitchell and Berea Sands, Lower Newport Field, Newport Township, Washington County, Ohio, by James A. Wasson. August 1967. 22 pp. 6 figs. The Mitchell and Berea sands were cored and logged in Fred Link well K-1, Lower Newport field, Washington County, Ohio. Core and reservoir fluid analyses and available field data were studied to determine if these sands could be successfully waterflooded. The results of the study indicate that there is insufficient oil in place to form an oilbank in either the western Mitchell pool or the Berea sand, and that no commercial recovery of oil by waterflooding can be obtained in these reservoirs.

RI 7008. Reaction Rate of Solid Yttrium Metal With Molton Lithium Fluoride, by Bernard Porter, R. E. Meaker, and T. A. Henrie. August 1967. 13 pp. 4 figs. The rate of the heterogeneous reaction between reactor-grade yttrium and lithium fluoride in lithium fluoride-yttrium fluoride mixtures was measured using a quartz spring balance. At 950° C the magnitude of the rate of reaction is 10-5 grams of yttrium/cm²-sec. The heat of activation for the reaction is 38.3 kilocalories per mole of LiF. A surface-controlled mechanism is proposed in which LiF is adsorbed on the yttrium metal surface. An activated complex is formed when additional LiF reacts with the adsorbed LiF-metal site. The activated complex then decomposes to the products, which are lithium metal and YFs. The importance of the reaction in the electrowinning of yttrium metal from fluoride electrolytes is discussed.

RI 7009, Minimum Ignition Energy and Quenching Distance in Gassous Mixtures. Techniques and Apparatus, by E. L. Litchfield, M. H. Hay, T. A. Kubala, and J. S. Monroe. August 1967. 11 pp. 5 figs. De-scriptions are given of the techniques and apparatus used by the Bureau of Mines for determinations of flat plate ignition quenching distance and minimum spark ignition energy. The descriptions include dis-cussions of reaction vessel materials, shapes, and sizes and discussions of electrode configurations. Spherical, hemispherical, or flat plate electrodes are recommended. The preferred metal in electrodes and electrode supports is stainless steel; the flat plate electrodes incorporate flanges of low electrical conductivity which are most frequently formed from glass. Various aspects of the electrical energy supply system are discussed and suitable arrangements of components are indicated. The concept of a thermal relaxation time is introduced as a basis for the choice of a minimum interspark time during the testing of a gas mixture. The following indicate the varied conditions under which these techniques were utilized: Mixture pressures between 10 mm Hg and 45 psig, initial temperatures between -78° and $+198^{\circ}$ C, and gaseous mixtures representing wide ranges of chemical reactivity and corrosiveness. Minimum ignition energies were determined which varied from about 10-7 joule to nearly 103 joules.

Rt 7010. Pulverizing lignite in a Ball Mill, by Leroy Dockter, J. W. Belter, and R. C. Ellman. August 1967. 13 pp. 5 figs. The grinding characteristics of lignite in a ball mill were investigated. The variables studied were initial lignite moisture content, degree of in-the-mill drying, and lignite source. The mill tested was a pilot-plant-size conical ball mill which had a maximum output of from 80 to 180 lb/hr pulverized product depending on the lignite and test conditions. The capacity of the test mill ranged from 82 to 103 lb/hr, depending upon mine source, in pulverization of as-mined lignite with minimum drying. The capabilities of the ball mill could not be correlated to Hardgrove index of the individual lignites or other observed physical properties. Predrying lignite from its 35 to 40 percent raw moisture content to about 10 percent moisture before grinding improved the mill capacity 87 percent, compared to an increase in capacity of 74 percent with in-themill drying to the same product moisture.

RI 7011. Computer Techniques for Predicting Three-Phase flow in Five-Spot Waterfloods, by R. V. Higgins and A. J. Leighton. August 1967. 45 pp. 7 figs. This report presents computer instructions for calculating the performance of three-phase flow of gas, oil, and water. The calculated results for an illustrative example are presented. The example is the waterflood of a reservoir containing free gas in the reservoir as a result of the partial depletion of the oil by the expansion of the gas initially in solution. The flood pattern for the example is a five-spot.

RI 7012. Dewatering Anthracite Slurry, by G. A. Brady, Harold H. Griffiths, and J. W. Eckerd. August 1967. 13 pp. 3 figs. Laboratory tests were conducted to determine the technical feasibility of separating anthracite particles from a water-anthracite slurry by atomizing the water and removing the resulting mist in an air current. Products containing 21 percent or less moisture were obtained from slurries made with minus 60-mesh anthracite. Typical recoveries ranged between 67 and 79 percent of the feed when the slurries were atomized in air currents with velocities below 70 ft/min.

RI 7013. Gas-Reservoir Properties from Pressure-Buildup Date, by George L. Gates and W. Hodge Caraway. September 1967. 19 pp. 5 figs. The Bureau of Mines studied pressure-buildup data from a number of California gas wells to determine if the reservoir properties calculated from these data correlated with field-observed reservoir properties. Pressure-buildup curves from 24 wells showed distinct changes in slope, indicating changes in permeability of the reservoir rock. Calculated distances from the wells to indicated permeability changes were in fair agreement with distances determined in the field. Presure-buildup curves from three wells had more than one distinct change in slope, indicating multiple permeability changes. Thus field data supported the theoretical relations used to calculate reservoir properties from pressure-time relations measured in gas wells.

RI 7014. Electron-Beam Purification of Vanadium, by W. E. Anable. September 1967. 24 pp. 7 figs. The Bureau of Mines studied the purification of commercially available vanadium in the 100-kw electronbeam furnace. Purification studies were conducted on a 100-gram-button scale by melting and holding the liquid vanadium at temperatures ranging from 2,060° to 2,080° C at a pressure of 5(10)-5 tor for periods ranging from 5 to 20 minutes. The effect of doping vanadium with carbon and metallic additions was determined. This study demonstrated that hydrogen was readily removed to 3 ppm or less, oxygen and carbon were reduced to less than 100 ppm each, and the metallic impurities were reduced to the range of 10 to 500 ppm. The nitrogen content was not reduced in any of the buttons; rather, the nitrogen concentration generally increased as samples were held for successively longer periods. pletely when vanadium was doped with small carbon additions or one of several dopes prior to melting.

RI 7015. Three-Component Borshele Deformation Gage for Determining the Stress in Rock, by Robert H. Merrill. August 1967. 38 pp. 23 figs. This Bureau of Mines report summarizes the design and tests of a gage that will simultaneously measure the deformation of a borehole along three diameters 60 degrees apart; the measurements are in a single plane normal to the axis of the borehole. The inherent errors in measurement are considered together with the problems associated with the use of the gage in the relatively severe environments in and around mine openings. These problems were treated in the design and tests of the gage and the results establish that the gage can be used to satisfactorily determine estimates of the stresses in rock.

RI 7016. Electrodeposition of Thick Coatings of Platinum and Palladium on Refractory Metals From Aqueous Elec-

Folladium on Ketratory Metals from Aqueous Electrolytes, by Stephen D. Cramer, Charles B. Kenahan, Richard L. Andrews, and David Schlain. September 1967. 64 pp. 27 figs. The objective of the present studies was to develop thick adherent and coherent coatings of platinum and palladium on refractory metals and other substrates of industrial and engineering importance. Existing platinum and palladium electrolytes were modified to make them suitable for the electrodeposition of thick deposits. The optimum operating conditions for these electrolytes were established. Pretreatment procedures for columbium, copper, graphite, molybdenum, nickel, stainless steel, tantalum, titanium, tungsten, vanadium, and zirconium substrates were studied. New pretreatment procedures for columbium, molybdenum, stainless steel, tantalum, tungsten, and nickel were developed. The internal stress and hardness of selected electrodeposits were measured. The effects of heat treatment upon the properties of electrodeposits were studied.

RI 7017. Electrochemical Reduction of Cool, by Heinz W. Sternberg, Raymond E. Markby, Charles L. Delle Donne, and Irving Wender. September 1967. 38 pp. 7 figs. A method for the electrochemical reduction of the benzene ring was developed and applied to the electrochemical reductions of a vitrain from low-volatile bituminous coal in ethylene-diamine saturated with lithium chloride resulted in the addition of 53 hydrogens per 100 carbon atoms. Ultimate analyses and pyridine solubility of the vitrain recovered after each reduction showed that hydrogen added at the beginning has a much greater effect on solubility than hydrogen added at a later stage. Surprisingly, the removal of sulfur from the vitrain takes place only after the more reactive aromatic rings are reduced. Nuclear magnetic resonance analysis and average molecular weight determination of the extracts of the reduced vitrain samples, representing about 18 percent of the vitrain, showed that these fractions had 95 percent of their hydrogen content on saturated carbon atoms and an average molecular weight of 800 to 900. A study of the effect of operating variables on current efficiency showed that current efficiency is highest with aluminum as cathode material and with lithium chloride as electrolyte. A substantial increase in current efficiency of difficultly reducible olefinic double bonds was achieved by adding a proton donor. This result is significant in connection with the electrochemical reduction of coal which proceeds from readily reducible aromatic double bonds to difficultly reducible isolated double bonds. It is proposed that reduction is achieved by electrolytically generated and sub-sequently solvated electrons and hence does not require prior adsorption of the substrate at the electrode surface. This offers a distinct advantage for electrolytic reduction of sparingly soluble or insoluble substrates such as coal.

RI 7018. Electrorefining Yttrium, by C. C. Merrill and M. M. Wong. September 1967. 10 pp. 3 figs. Studies were made to determine the amenability of yttrium to fused-salt electrorefining in a controlled atmosphere. Tests were conducted in a LiCl-YCl₃ electrolyte system at 710° C. The major variables studied were the YCl₃ content of the electrolyte, from 1.7 to 18.4 mole-percent, and the initial cathode current density, from 410 to 1,630 amperes per square foot. Vacuum distillation was employed to remove salt from the deposited metal. Metallic to remove sait from the deposited metal. Metallic impurities, except for lithium, could be reduced to near or below their lower analytical limits, ranging from 10 ppm for Cu to 300 ppm for Ta; reduction of oxygen content, however, was accomplished only in metal produced from electrolytes with 5.4 mole-percent YCl; or less. Initial cathode current density had little effect on the purity of the product.

RI 7019. Power Required To Circulate Gas-Solids Suspensions, by C. N. Rosenecker, N. H. Coates, and H. G. Lucas. September 1967. 10 pp. 8 figs. The power required to circulate a gas-solids suspension was determined using a centrifugal compressor and a closed system. The suspension consisted of 18- to 40-micron glass beads in a mixture of 89 percent N_s and 11 percent CO₂ at 20 psig. Solids-to-gas (S/G) ratios were 0 to 2.2 lb/lb; gas flow rates were 1.2 to 2.5 lb/min. Power requirement was found to follow the relationship $hp_i = hp_0 \left(\frac{G}{S} + 1\right)$, where hp_i = the total power, and hp_g = the power required for pure gas. Work done under an agree-ment with the U.S. Atomic Energy Commission.

RI 7020. A Method for Treating PVT Data From a Burnett Compressibility Apparatus, by Robert E. Bar-ieau and B. J. Dalton. September 1967. 34 pp. This report describes a method for treating pressure-volume-temperature (PVT) data obtained with a Burnett compressibility apparatus. The method makes use of a general nonlinear least-squares technique developed at the Bureau of Mines Helium Research Center. It is assumed that an adequate functional form is available for the expression of the compressibility factor as a function of either the molal density or the pressure. The functional form of the compressibility factor can be either linear or nonlinear in the parameters to be evaluated. For-mulas are given for calculating variances and covariances of all parameters evaluated and for calculating the variance of calculated quantities of interest.

RI 7021. Process Development in Removing Sulfur Dioxide From Hot Flue Gases (in Four Parts). 3. Pilot Plant Study of the Alkalized Alumina System for SO₂ Removal, by D. Beinstock, J. H. Field, and J. G. Myers. July 1967. 52 pp. 36 figs. The use of alkalized alumina in removing sulfur dioxide from a coal-combustion flue gas at 625° F was investigated on a pilot plant scale. The absorber was 26 feet long and 1.6 inches ID. Countercurrent gas-solids flow at gas velocities of 8 to 15 ft/sec in the presence and absence of baffles, as well as solids entrainment at gas velocities of 20 to 23 ft/sec with solids recycle, were employed.

1

]

1

The spent absorbent was regenerated as a fixed bed with the reducing gases—reformed natural gas and hydrogen. Twenty cycles of absorption-regeneration were successfully completed using the alkalized alumina rolled into spherical granules 10 to 16 mesh. There was no loss in activity of absorbent toward SO, with a modest attrition equivalent to 0.1 percent of the solids fed. Supporting studies were con-ducted on the effect of the sodium content in the absorbent, the composition of the reducing gas, thermal treatment to increase absorbent hardness, and removal of absorbed chlorine from the absorbent. A mathematical model was formulated to de-scribe the removal of SO₂ by alkalized alumina from fixed and falling beds.

RI 7022. Vapor Pressure of Metal Halides. The SnCl-ZnCl-Binary System, by L. C. George, J. W. Jensen, and Robert M. Doerr. September 1967. 22 pp. 8 figs. The Bureau of Mines measured vapor pressures of selected mixtures in the binary system SnCl₂-ZnCl₂ by the static pressure method. Equations expressing the vapor pressure and the heat and free energy of vaporization as functions of temperature were developed by numerical analysis based on the sigma-plot method. It was found that the vapor pressure of any SnCl₂-ZnCl₂ mixture, at any tem-perature within the range of this investigation, could be accurately calculated from the derived values for the heat and free energy of vaporization for the mixture, with a probable error of 0.01 cm Hg or less.

RI 7023. Electrodeposition of Iridium From Fused Sodium Cyanide and Aqueous Electrolytes. A Preliminary Study, by R. L. Andrews, C. B. Kenahan, and David Schlain. September 1967. 12 pp. 4 figs. The Bureau of Mines investigated means of electrodeposit-ing iridium to form thick coatings suitable for the protection of such metals as tungsten and molybde-num, which oxidize rapidly at high temperatures. Using a fused sodium cyanide bath, thick, adherent, and coherent deposits of iridium up to 15 mils thick were plated on tungsten and molybdenum substrates at 600° C and current densities of 10 to 100 ma/cm². Limited oxidation testing of molybdenum encapsulated with pure indium indicates that the coating may offer protection to approximately 1,000° C in flowing air, but that at higher temperatures, the volatility of its oxide limits use of pure indium. Alloy coatings of iridium with platinum, palladium, and rhodium up to 4 mils thick were formed from a fused sodium cyanide electrolyte; because their oxides are less volatile, these alloys may protect sub-strates at higher temperatures. Deposits made from aqueous electrolytes either had very low rates of deposition or were highly stressed and cracked when heavy deposits were made.

RI 7024. The Effect of Carbonization Conditions and Caal Properties on Coke Size and Strength Parameters, by Manuel Gomez, J. G. Walters, and J. B. Gayle. September 1967. 34 pp. Published experimental coke data from a pilot plant slot-type oven were examined by statistical regression analysis. Quantitative relationships were found to exist between the coking rate, bulk density, and fine grinding of the coal, sole-oven expansion, volatile matter, moisture, ash, and carbon content of the coal and coke parameters indicative of size and strength. Regression equations developed from coke data were shown to yield computed values that were in good agreement with experimental results for 11 coke properties. Prediction equations developed were evaluated with an independent set of data. Present results indicate that the variables cited undergo much interaction and the sum of these interactions determines coke size and strength.

RI 7025. Thermoelectric Properties of Yttrium-Group V and Yttrium-Group VI Binary and Ternary Compounds, by Timothy J. Driscoll, Jr., and Lindsay D. Norman, Jr. September 1967. 14 pp. 6 figs. The thermoelectric properties of yttrium monoarsenide, yttrium monoantimonide, and ternary materials from the Y-As-Se and Y-Sb Te systems were investigated by the Bureau of Mines from room temperature to 1,000° C. The maximum calculated figure of merit for yttrium monoarsenide and yttrium monoanti-monide was $2 \times 10^{-5} \circ C^{-1}$. YAs and YSb were semimetallic conductors with low Seebeck coefficients and electrical resistivities. The values of the Seebeck coefficient and electrical resistivity of the Y-As-Se and Y-Sb-Te materials were between those of the yttrium selenides and tellurides and of YAs and yttrium scientides and tellurides and of YAS and YSb, respectively. The maximum power factor cal-culated for the Y-As-Se materials was 2×10^{-5} watt/cm ° C² which yielded an estimated figure of merit of 6×10^{-4} ° C⁻¹. Most of the Y-As-Se com-pounds had high Seebeck coefficients and moderately low electrical resistivities. The Y-Se-Te materials were degenerate semiconductors with power factors of 6 \times 10-" watt/cm ° C². The Y-As-Se materials consisted of a YSe, major phase with 1 percent arsenic and 1.25 < X < 1.45. The minor phase was primarily a solid solution of YAs and YSe containing approximately 25 percent arsenic. The materials that displayed power factors greater than 10^{-9} watt/cm ° C² contained 10 to 20 percent of the minor phase. The Y-Sb-Te materials were two-phase, consisting of YSb and Y₂Te₅.

RI 7026. Thermodynamic Data for Cuprous and Cupric Ox-ides, by Alla D. Mah, L. B. Pankratz, W. W. Weller, and E. G. King. September 1967. 20 pp. 2 figs. Heat content and entropy data at high tem-peratures were obtained for cuprous oxide (Cu₃O) and cupric oxide (CuO). Experimental results and emonth values are reported. Equations are given smooth values are reported. Equations are given for heat content increments and heat capacities above 298° K. Low-temperature heat capacity data were obtained for cuprous oxide. Evaluation of the 298° K entropy gave

 $S^{\circ}_{3.5,13}(Cu_2O) = 22.08 \pm 0.10$ cal/deg mole.

Heat of formation values were determined for cuprous and cupric oxides. The values are: $\triangle H^{\circ}_{264.15}(Cu_{2}O) = -40,830 \pm 300 \text{ cal/mole,}$ and

 $\triangle H^{\circ}_{291,15}(CuO) = -37,230 \pm 150 \text{ cal/mole.}$

Heat and free energy of formation data are tabulated for cuprous oxide (298°-1,600° K) and for cupric oxide (298°-1,400° K). Heat, free energy, and equilibrium pressure values are given for the dissociation of cupric oxide (298°-1,400° K).

RI 7027. Chamical Reactions Produced by Exposing Coal Derivatives to Ultrasonic Energy, by Theodore Kessler, A. G. Sharkey, Jr., and R. A. Friedel. October 1967. 11 pp. 4 figs. The purpose of this Bureau of Mines investigation was to determine what new organic compounds or high concentrations of a particular organic species can be formed by exposure of coal derivatives to ultrasonic energy. Tetralin, 1-methylnaphthalene, and pyridine were used as model compounds. Gaseous and solid reaction products resulting from the ultrasonic irradiation of these coal derivatives were determined using mass spectrometry. Products from the irradiation of tetralin were studied as a function of time,

atmosphere, and sample size. The sonolysis (chemical reactions produced by ultrasonic energy) of tetralin and 1-methylnaphthalene produced CiHa, HCN, CH., H., CO, and CO., depending upon the experimental conditions. The ultrasonic irradiation of tetralin also produced diacetylene under certain experimental conditions. The cleavage of organic chemical bonds by ultrasonic cavitation in the abence of water was also observed in this study.

RI 7028. A Statistical Evoluation of Same Factors in the Preparation of Boron by Fused-Salt Electrolysis, by James H. Russell and Hal J. Kelley. October 1967. 16 pp. 4 figs. The Bureau of Mines used a statistical approach to evaluate the effects of temperature, current density, and composition of the electrolyte on the purity of boron prepared by electrolysis of a fused mixture of boric oxide in potassium fluo-borate. The quadratic equation which best fits the data was calculated for a temperature of 650° to 850° C, a cathode current density of 40 to 1,150 amp/ft², and a boric oxide content of 0.3 to 7.1 molal. The best products, better than 95 percent boron, were obtained when the current density was less than 100 amp/ft^2 and the boric oxide content was less than 2 molal.

RI 7029. Design and Development of a Lightweight Recover-able Hydraulic Prop. by Webster S. Anderson. October 1967. 19 pp. 12 figs. The design, development, and testing of hydraulic props to provide a lightweight, high-strength, recoverable unit is described. Modifications in design incorporating threaded components resulted in the development of a lightweight hydraulic prop fabricated from aluminum alloy tubing. This new design facilitates interchange and replacement of component parts, and the as they are when welding is required. This new prop has a maximum load capacity of 65,000 pounds and has a lower weight-to-load capacity ratio than the hydraulic props now available.

RI 7030. Nonuniform Radia) Loads Applied to the Boundary of a Circular Hole in an Infinite Plate, by Wilbur I. Duvall and Wilson Blake. October 1967. 16 pp. 5 figs. In this report, the Bureau of Mines presents a theoretical solution for the stresses and displacements in an infinite elastic plate containing a circu-lar hole the boundary of which is loaded by applied radial stresses over four separated arcs. The problem solved is a two-dimensional approximation of the stresses and displacements developed by a large tunnel-boring machine anchored in a circular tunnel. Analysis of the solution shows that the tangential tensile stresses induced on the boundary of the circular opening can be minimized in the roof and maximized in the floor of the opening by proper spacing and loading of the four arcs.

RI 7031. Developing a Thermochemical Model for the Iron Blast Furnace. Measurement of Rate Coefficient for Reduction of Iron Ors Pellets in a Packed Bed, by Hillary W. St. Clair. October 1967. 20 pp. 5 figs. The effective coefficient for rate of reduction of a sample of granular iron ore may be determined by passing the reducing gas through a bed of the ore at constant flow rate and periodically analyzing the effluent gas. The method of analyzing the data is based on a mathematical model that takes into account the variation in composition of the gas and solids with time and position in the bed. A method is described for determining the value of the rate coefficient that gives best agreement between the observed and calculated analyses of the effluent gas.

RI 7032. Reservoir Evaluation, I. D. Morgan Lease, Smithfield Oilfield, Grant District, Wetzel County, W. Va., by Charles E. Whieldon, Jr., and C. David Locke. October 1967. 17 pp. 7 figs. This report presents the results of a study on part of the Smithfield oilfield, Wetzel County, W. Va. The primary purpose of the investigation was to determine the original and the present volume of stocktank oil in the formations and to investigate the feasibility of waterflooding the Gordon Stray, Gordon, and Fourth sands underlying the I. D. Morgan lease. The study was based on laboratory core analyses, geophysical well logs, geologic considerations, and various field prediction data from the I. D. Morgan lease. The Bureau found that, of the three sands cored, the Gordon Sand was the best prospect for waterflooding and that a properly engineered waterflood should recover 136 to 230 barrels of oil per acre-foot from this formation.

RI 7033. Synthesis of High-Btu Gas in a Raney-Nickel-Coated Tube-Wall Reactor, by J. J. Demeter, A. J. Youngblood, J. H. Field, and D. Bienstock. October 1967. 17 pp. 9 figs. A tube-wall reactor with a Raney nickel catalyst deposited on the outer wall of the tube by flame spraying is effective in the practically complete conversion of $3H_s+1CO$ synthesis gas to a high-Btu gas (methane) at an hourly space velocity of 7,000 volumes of gas (NTP) per hour per volume of annular volume. Partially reacted synthesis gas containing an appreciable amount of methane can also be treated in this reactor to increase the heating value to over 900 Btu per cubic foot. Excellent heat removal through the metal wall to a coolant and temperature control were obtained. The heat transfer coefficient from the catalyst to the coolant was about 275 Btu per hour per square foot per ° F. Synthesis tests were conducted with tubes 1.2 inches in od by 6 inches long, and 1.3 inches in od by 36 inches long. When operating at a synthesis gas rate of 100 to 120 scfh per square foot of catalyst-coated tube, catalyst life was long enough to realize a catalyst coat for the raw Raney nickel alloy of about 0.3 cent per 1,000 cubic feet of pipeline gas (900 to 950 Btu per scf). Gas recycling at ratios of 1:1 to 3:1 was effective in increasing conversion and in extending the life of the catalyst to about 16 weeks. In cost and in operating characteristics the tube-wall reactor compares favorably with the fluidized-bed and hot-gas-recycle reactor systems for the synthesis of high-Btu gas from H₂+CO.

RI 7034. Laboratory Study of Factors Influencing Waterflow in Mine Backfill. Classified Mill Teilings, by Robert C. Bates and William R. Wayment. October 1967. 45 pp. 16 figs. Variations in water percolation rates through saturated cohesionless hydraulic backfill (mill tailings) have been studied in relation to the many physical aspects of the system to determine the most important factors in causing these variations. A multivariable least-squares regression analysis of 135 separate tests shows that a reliable estimate of the water percolation rate through typical hydraulic backfill can be made if the bulk density (unit weight), specific gravity, and grainsize distribution are known or can be estimated. Equations for predicting percolation rate, coefficient of permeability, and seepage velocity are developed both for the range of data analyzed and for extrapolation. The prediction equations for use within the range of data studied are quite accurate, while the ones developed for extrapolation are less accurate but still give reasonable approximations of flow rates. The equations given are valid for cohensionless materials that are free of clays and micas, exemplified by classified mill tailings. The prediction equation for percolation rate is rather complicated, so for practical use a nomograph that simplifies the solution of the prediction equation was developed.

RI 7035. A Study of Heat Transfer to Water-Cooled Copper Crucibles During Vacuum Arc Meline, by P. G. Clites and R. A. Beall. October 1967. 36 pp. 21 21 36 pp. figs. This study was conducted to determine the patterns of heat transfer to water-cooled copper crucibles during vacuum arc melting. Values of heat flux from the ingot to the crucible were determined during nonconsumable electrode vacuum arc melting of zirconium and during consumable electrode vac-uum arc melting of titanium, zirconium, and steel. The results of these studies confirm the existence of a high thermal resistance between the ingot and the crucible wall which results from the shrinkage of the ingot as the metal solidifies. Maximum heat flux values of heat flux of 1.4 \times 10⁵ Btu/ft² hr were observed during small-scale consumable electrode arc melting of zirconium and titanium. The maximum metting of zirconium and tranium. The maximum heat flux for consumable electrode arc melting of 8-inch-diameter ingots was 0.5×10^6 Btu/ft² hr. The effects of electrode material, electrode diameter, arc current, and arc potential on heat flux from the ingot to the crucible were studied. Data were also obtained on crucible wall temperatures and on the effect of years arrow any low restor isches. Work effect of very narrow annular water jackets. Work done under an agreement with the U.S. Atomic Energy Commission.

RI 7036. Molten-Solt Electrorefining Vanadium Scrap, by K. V. P. Lei and T. A. Sullivan. October 1967. 18 pp. 7 figs. The Bureau of Mines investigated molten-salt electrorefining as a practical method for reclaiming vanadium from vanadium scrap. An electrolytic process utilizing a KCI-LiCI-VCl₂ electrolyte at 615° C was developed for producing ductile vanadium with a purity over 99.9 percent. The recovery of the vanadium in the cell feed ranged from 88 to 93 percent with a current efficiency from 83 to 95 percent.

RI 7037. Long-Term Storage of Lignite at Garison Dam, Riverdale, N. Dak., by Robert C. Ellman, John W. Belter, and Leroy Dockter. October 1967. 56 pp. 14 figs. Stockpiles containing 2.3 million tons of lignite constructed in the period 1948-56 in conjunction with the construction of Garrison Dam on the Missouri River demonstrate successful stable longterm storage of lignite. Uniform and thorough compaction of each of the 1-foot-thick layers by which the piles were constructed produced a bulk density of 70 lb/cu ft. Air penetration into the stockpiles was restricted to a degree that prevents spontaneous heating or deterioration of the stored lignite. A continuing record of observations beginning with stockpiling operations in 1948 has been accumulated. This includes periodic fuel analysis, analysis of pile gases, and measurement of pile temperatures on the first large stockpile, pile 5. This report describes the stockpiling method, the changes in heating value, pile gas composition, and pile temperature and summarizes observations from 1953 to 1964. Data accumulated attest to the stability of the stored lignite. The variation of the average heating value of periodic pile-depth samples is only 160 Btu/1b (11,990 to 11,830) on the moisture- and ashfree (maf) basis during almost 10 years of storage. Temperature levels of the pile interior are progressively decreasing. At pile surface, cyclic variations occur with the season. The only problem encountered with the large stockpiles is wind and water erosion of the pile surface. The partially successful control measures used are described.

BI 7038. Load-Displacement Measurement in a Backfilled Stope of a Deep Vein Mine, by D. R. Corson and W. R. Wayment. November 1967. 51 pp. 42 figs. The Bureau of Mines instrumented an operating stope in a deep vein mine to determine the amount of wall closure and the magnitude of loads imposed on a backfilled stope. Hydraulic pressure cells used to monitor pressures in the fill, with bolt closure points to measure vein-wall movement and the procedure for their installation, are described, and the results of the laboratory calibration analysis of the reliability of these cells are given. An attempt to monitor density and moisture changes in the backfill with a nuclear density-moisture device was only partly successful, owing to either deformation of access tubing or relative displacements of the vertical vein walls relative to the emplaced tubes. Data from the instrumentation indicate vein-wall closure in excess of 20 inches and pressures within the fill approaching 600 psi. Analysis, incorporating field data with results of laboratory tests of the compressibility of timber and tests defining the constrained moduli of the fill, points out the limited restraint to vein closure offered by timber sets. Ground movement induced by mining activity could be more effectively controlled by the use of densely compacted backfill.

RI 7039. Reaction Rate of Titanium-Iron Alloys and Titanium Trichleride in Molten Sadium Chleride, by E. K. Kleespies and T. A. Henrie. October 1967. 11 pp. 4 figs. The Bureau of Mines determined the kinetics of the reaction of titanium-iron alloys with titanium trichloride dissolved in sodium chloride to provide a basis for understanding the reactions occurring in metallurgical processes involving reduction of the metal halides or alloy refining in fused salts. The rate of the heterogeneous reaction was determined between titanium-iron alloys and titanium trichloride to elucidate the effects of alloy composition on the rate. Measurements were made in an inert atmosphere with a high-temperature thermobalance using high-purity reactants. The rates of the reactions were about 1×10^{-3} g Ti/cm²-sec, and the reaction was phase-boundary controlled. Titanium alloys of the body-centered cubic beta structure reacted faster than those with the hexagonal close-packed alpha structure. The intermetallic compound, TiFe, reacted very slowly, whereas $TiFe_2$ was inert. Alloys con-taining above 89 atomic percent iron gained weight by reacting with titanium species in the salt solu-tion and depositing titanium in the alloy. The effect of TiCl₃ concentration on the reaction rate was determined from 2 to 12 weight-percent TiCl₂ and at various alloy compositions. At high iron contents, above 50 atomic percent, the TiCla concentration effect was small. At lower iron contents, the TiCls concentration effect was greater for beta-crystalline alloys than for alpha-crystalline alloys. The tem-perature dependence of the reaction between ti-tanium alloy containing 8.7 atomic percent iron and titanium trichloride was measured over the tem-perature range 1,062° to 1,220° K, and the energy of activation was 7.7 kilocalories for the reaction.

RI 7040. High-Temperature Heat Contents and Entropies of Sodium Bremide and Sodium Iodide, by T. Estelle

Gardner and A. R. Taylor, Jr. October 1967. 8 pp. 2 figs. The Bureau of Mines made enthalpy measurements on sodium bromide and sodium iodide in the temperature range 400° to $1,200^\circ$ K using an ice calorimeter. Equations representing enthalpy as a function of temperature were derived from the data by the method of least squares. These equations were used to calculate smooth values of heat capacity, enthalpy, and entropy at 50° K intervals from the ice point to $1,200^\circ$ K. The melting point determined for sodium bromide was $1,020^\circ$ K; the melting point of sodium bromide and sodium iodide were calculated to be 6,270 and 5,680 cal/mole, respectively. Work done in cooperation with the University of Alabama.

RI 7041. Electrical Resistivity of Fly Ash at Temperatures to 1.500° F, by C. C. Shale, J. H. Holden, and G. E. Fasching. March 1968. 17 pp. 8 figs. Electrical resistivities for various coal ashes in air and in a nitrogen atmosphere are given over the range 100° to $1,500^{\circ}$ F. Resistivity of low-carbon ash in air is very high at low temperature, rises to a maximum at about 250° F, decreases very rapidly with increasing temperature to about 800° F, then decreases gradually to approach an asymptote at 1,500 F. Resistivity of high-carbon ash in air follows this same general trend at values which are much lower and are proportional to the carbon content. After the carbon has been burned off, resistivity of the remaining ash approaches the high values corresponding to low-carbon ash of similar chemistry. Two factorial experiments show the effects of temperature range proposed for coal-fired turbines. Resistivities of all low-carbon ashes tested fall in the range 10° to 10° ohm cm at 1,500° F and should be removable by electrostatic precipitators. Ashes containing carbon in excess of about 8 percent, however, have low resistivity (as determined in nitrogen), especially at high temperatures. Therefore, high-carbon residues from partial combustion of coal probably could not be removed effectively at high temperatures.

RI 7042. Recovery of Lead and Copper From Blast Furnace Matte, by D. A. Wilson and P. M. Sullivan. November 1967. 21 pp. 6 figs. A process was developed on laboratory scale in which a solid-waste byproduct from refining of secondary lead was converted into three valuable products. Roasted lead blast furnace matte was leached with water to recover copper. This was followed by brine leaching to recover lead. Residues were finally smelted to yield pig iron. Copper was precipitated as cement copper, and the lead product obtained was a mixture of pure 3PbO.PbCl_{2.x}H₂O and Pb(OH)Cl. Copper recovery was 89 percent and lead recovery was 96 percent.

RI 7043. Leonardite and Other Materials as Drilling-Fluid Dispersants and Viscosity Control Agents, by M. L. Odenbaugh and R. C. Ellman. November 1967. 22 pp. 12 figs. The viscosity reduction effect of varied concentrations of leonardite (a naturally oxidized form of lignite) and leonardite-caustic on the rheological properties of a standard bentonite drilling fluid was studied and evaluated. The minimum plastic viscosity was found to occur at application rates of 4 lb of leonardite and 1.33 lb of caustic per barrel of drilling fluid. Leonardite-caustic treatment was not beneficial in treatment of salt-contaminated drilling fluids. Although filter loss rate was reduced, both yield values and gel strength were increased. Compared with other viscosity control agents, including quebracho, lignosulfonate, humic acids ex-tracted from leonardite, as well as other reaction products of lignite, leonardite is less effective at low application rates but is an effective treating agent at rates of 2 lb/bbl or more. Considering the comparable merits of the substances tested, the major factor in determining which agent to use should be based on cost consideration.

RI 7044. Laboratory Investigation of the In Situ Combustion Process for Recovering Pennsylvania Grade Crude Oil, by T. E. Sterner and W. T. Wertman. Novem-ber 1967. 30 pp. 11 figs. A laboratory investiga-tion was conducted to determine the applicability of the thermal oil-recovery method as a means of in-creasing ultimate oil recovery in the Appalachian region. The primary objective was to establish self-sustained combustion in consolidated and unconsolidated sand test assemblies saturated with various amounts of Pennsylvania Grade crude oil and synthetic brine. Tests using blocks of sandstone were unsuccessful because of sealing problems and fracturing of the rock due to thermal stresses. A com-bustion wave of about 700° F was propagated through the sand-oil-water packs in the linear tube tests. The high air flux used resulted in high oil consumption and rapid movement of the combustion wave through the tubes. Analytical tests on the sand pack showed that sufficient fuel was deposited during the linear tube experiments for a self-sustained combustion wave.

Ri 7045. Taic and Asbestes at Dadeville, Ala., by Thorn-ton L. Neathery, Herbert P. LeVan, H. William Ahrenholz, and James F. O'Neill. November 1967. 57 pp. 24 figs. Geologic investigation of a mineralized zone in eastern Alabama indicates that large quantities of talc and soapstone are scattered over a wide area close to the surface. Laboratory over a wide area close to the surface. Laboratory experiments show that this material may be up-graded to a high-quality talc. A market survey indicates that the talc deposits may be of current and long-range interest. The anthophyllite asbestos which is associated with the talc does not appear to occur in sufficient quantities to be considered as a primary commercial source.

RI 7046. Heats of Formation of Holmium and Terbium Tri-chlorides, by J. M. Stuve. November 1967. 7 pp. The standard heats of formation (\(\triangle H^\)^\)) of holmium trichloride and terbium trichloride were measured by solution calorimetry. Heats of solution of holmium and terbium metals and their anhydrous chlorides were measured in 4.360 molal HCl at 298.15° K. From these measurements $\triangle H^\circ$, for HoCl₃ (c) was calculated as $-240,290 \pm 1,700$ cal/ mole, and $\triangle H^{\circ}$, for TbCl₃ (c) was calculated as $-238,330 \pm 1,500$ cal/mole at 298.15° K.

RI 7047. The Cause of Fuming in Oxygen Steelmaking, by J. P. Morris, J. P. Riott, E. G. Illig, and R. H. Jefferson. November 1967. 24 pp. 12 figs. The Bureau of Mines investigated the mechanics of fuming of iron-carbon melts during top-blowing with oxygen. Melts weighing 45 lb were prepared in an induction furnace and blown with oxygen by means of water-cooled lances. The rate of fuming was measured and correlated with the operating variables. The data showed that the primary cause of fuming was a boil at the bath surface in the impingement zone of the oxygen jet. Nucleation of the carbon monoxide bubbles producing the boil was ap-parently brought about by the precipitation of an oxide phase. The actual fuming mechanism involved partial oxidation and vaporization of bubble films and fine metal spray generated by the bursting of the bubbles. Bubbles that formed outside the im-pingement zone produced little fume. The distribution of trace elements between the metal and fume strongly indicated that the fume contained fine spray from vapor. The rate of fuming was found to be proportional to the carbon content of the metal, the concentration of oxygen in the jet, and the bath temperature, provided that a continuous boil oc-curred. In the absence of a boil, very little fume was produced.

RI 7048. Zeta Potential and Pendulum Sclerometer Studies of

Granite in a Solution Environment, by W. W. Engelmann, O. Terichow, and A. A. Selim. Novem-ber 1967. 16 pp. 8 figs. The electrokinetic (zeta) potentials of a charcoal granite in an aluminum chloride solution and in an oleylammonium acetate solution have been correlated with the specific damping values as measured by the pendulum sclerometer. This investigation shows that the pendulum specific damping attains a minimum at the isoelectric point for the charcoal granite-aluminum chloride and charcoal granite-oleylammonium acetate systems, and thus indicates that the penetration of the diamond points is a maximum at the isoelectric point.

RI. 7049. Secondary Oil-Recovery Possibilities in the Basal Greenbrier Dolomite Zone, Sycamore-Millstone Field, Sherman District, Calhoun County, W. Va., by James A. Wasson. November 1967. 20 pp. 8 figs. This re-This report analyzes the petroleum-production potential of bort analyzes the performer production potential of the basal Greenbrier dolomite zone, Sycamore-Mill-stone Field, Sherman district, Calhoun County, W. Va., through the application of certain secondary-recovery methods. The well logs obtained and the core recovered from a well in this formation per-mitted an evaluation of the productive capability of the reservoir. Approximately 120,000 stb of oil may be produced from a 20-acre five-spot unit at breakthrough if the property is waterflooded. At an assumed limiting producing gas-oil ratio of 20,000 scf/stb, approximately 69,000 stb of oil should be recovered by low-pressure gas drive.

RI 7050. Effect of Operating Variables on the Production of Chemical Coke by the Traveling-Grate Process, by M. J. Kovalik and D. E. Wolfson. November 1967. 20 pp. 4 figs. The effects of the process variables on the production of chemical coke on a chain grate on the production of chemical coke on a chain grate stoker, a type of traveling grate, were studied. Six bituminous coals, ranging in volatile matter from 16.7 to 43.8 percent, were successfully carbonized, yielding chemical coke with acceptable physical prop-erties. The coke yields were dependent on the volatile-matter content of the coal. The air-fuel ratio had the most marked effect on the yield and characteristics of the resultant coke, and the gen-eral furnace performance. Results can only be preeral furnace performance. Results can only be pre-dicted; the actual yield and quality of coke obtained from any given coal can only be determined by actual tests using the optimum processing variables to obtain a coke with minimum volatile-matter content and to retain as much of the fixed carbon in the original coal as possible.

RI 7051. Oil Yields of Sections of Green River Oil Shale in Colorado, 1957-63, by K. E. Stanfield, J. W. Smith, and L. G. Trudell. December 1967. 284 pp. 103 figs. Oil-yield results are presented for 65 oilshale sections in Piceance Creek basin, Colorado, sampled during the period 1957 through 1963. Including previously published data, oil-yield results for 203 sampled sections have now been released by the Bureau of Mines to aid in appraising the shale oil potential of the basin. Oil yields of core samples (135 sets) were regarded as reliable bases for appraising the Mahogany-zone interval, but only five sets of cores sampled the deeper, lower zone oil shales. Drill cuttings (68 sets) sampled the lower zone oil shales, but their oil yields are principally indicative and should be confirmed by analyses of cores. More complete core sampling of the lower zone oil shales is needed.

RI 7052. Gravitational Pressure Gradient in Oil Reservoirs Containing Free Gas. Model Studies of the Elk Hills Oilfield, California, by O. C. Baptist. December 1967. 19 pp. 6 figs. The gravitational pressure gradient (GPG) in porous sandstone containing free gas was determined to define the proper GPG to use when calculating the rate of downdip flow of oil in the Sub-Scalez No. 1 sand, Elk Hills field, Naval Petroleum Reserve 1. The GPG was determined at several gas saturations using long, artificially consolidated sandstone models that were mounted vertically in some tests and horizontally, with rotation, in others. Also determined by laboratory and field tests were relative permeabilities, capillary pressure relations, critical gas saturation, water sensitivity, and depletion drive performance. The critical gas saturation in the models having an absolute permeability of 1 to 2 darcys was about 2 percent of pore volume. The GPG with the critical gas saturation was that due to the weight of the gas-saturated oil. The GPG in the upper part of the models was reduced as gas saturation increased to a value considerably larger than the critical. The exact gas saturation at which the GPG became less than that due to the weight of the oil could not be determined but was estimated to be of the order of 10 percent of pore volume. Tests indicate that the rate of oil production is not permanently reduced by exposure of the sand to fresh water but that the rate of injection of fresh water will be considerably less than that of brine. Methods for determining the factors mentioned above are discussed. Work done in cooperation with the University of Wyoming.

RI 7053. Fire Herord of Conveyor Belts, by Donald W. Mitchell, Edwin M. Murphy, Allan F. Smith, and Samuel P. Polack. December 1967. 14 pp. 4 figs. The fire hazard of neoprene, polyvinyl chloride, and rubber conveyor belts was studied at the Bureau of Mines Experimental Coal Mine. The effects of intensity of ignition source, velocity of ventilating air, and type of belt were investigated at three levels in small-scale gallery experiments. Studies were made in the mine on the effects on ignition and flame propagation of belt-entry dimensions, belt widths, and belt configuration. Methods for extinguishing belt fires were also investigated under simulated mining conditions, and during these trials coal dust and grease were placed on the belt. The research showed that conveyor belts will burn. Neoprene, polyvinyl chloride, and rubber belts, with and without carcass, ignited and propagated flame. The highest rate of flame propagation was obtained on rubber belt. The fire hazard increased with increase in intensity of ignition source and air velocity. Flame propagated only when air was forced through the test zone; propagation was not obtained when forced ventilation was not used, as would exist in a neutral entry in a mine. Automatic water sprays and high-expansion foam effectively arrested flame propagation; direct application of water and bicarbonate dusts was ineffective.

RI 7054. Method for Determination of Fluorine in Coal, by R. F. Abernethy and F. H. Gibson. December 1967. 13 pp. 1 fig. The work discussed in this report was done by the Bureau of Mines to develop a method for determining trace amounts of fluorine in coal. Samples of coal mixed with calcium oxide as a fixative agent for fluorine were ashed at 600° C and the residue was fused with sodium carbonate. The melt was dissolved in phosphoric and sulfuric acids and distilled to separate the fluorine, which was determined in the distillate by a SPADNSzirconium spectrophotometric method. Fluorine determinations of 83 commercial coals ranged from 0.001 to 0.019 percent.

ı

RI 7055. Lightweight Aggregates. Expansion Properties of Selected Michigan Sholes, by James H. Aase. December 1967. 23 pp. 5 figs. Shales from 10 locations in Michigan were sampled, tested, and evaluated to determine their suitability as raw materials for producing lightweight aggregate by rotary-kiln methods. Sampling procedures and the geology of the shale units tested are discussed. Preliminary testing in a muffle furnace preceded extensive testing in a 16-inch by 14-foot rotary kiln. Rotary-kiln products from these shales ranged in weight from 35.5 to 61.2 pounds per cubic foot (pcf). Concrete test specimens made with selected aggregates were evaluated to determine the qualities of the concrete. Compressive strengths of the concrete ranged from 2,830 to 4,240 psi after 28 days of curing. Unit weight of the concrete ranged from 94.8 to 101.5 pcf. Lightweight aggregate suitable for use in structural concrete meeting ASTM standards was produced by the rotary-kiln method using shale samples from two locations.

RI 7056. Weterflooding of Oilfields in Nebroska, by Joseph N. Harstead, Donald P. Blasko, and Paul Biggs. 97 pp. 51 figs. This Bureau of Mines report provides information on the first 49 waterflood projects (or units) in Nebraska. All injection was in the "D" or "J" Cretaceous sands of western Nebraska. Specific data presented include location, map, discovery and development, water supply and injection, oil and water production, estimates of oil in place, and primary and secondary recoveries. The 49 projects studied, including four dual-zone projects, should recover about 126.5 million barrels of oil. Eighty-six percent of the estimated oil had been recovered by the end of 1966. Abundant water was found near most projects.

RI 7057. Heat Iransfer Coefficients for Continuously Recirculated Gat-Solid Suspensions, by Dean E. Bluman, A. F. Galli, N. H. Coates, J. D. Spencer, and C. N. Rosenecker. December 1967. 19 pp. 9 figs. The Bureau of Mines investigated the convective heat transfer coefficients for recirculated suspensions of 30-micron glass beads in inert gas. Coefficients for the suspensions were not significantly higher than coefficients for the pure gas. Reynolds numbers of the suspensions were 20,000 to 35,000; solids loadings ranged from 0.0 to 0.7 pound per pound of gas. Comparison of the results with published data showed the direction of heat flow to have no effect at the test conditions.

RI 7058. Calcium Vanadate Precipitation and Processing, by C. J. Chindgren, L. C. Bauerle, and B. K. Shibler. December 1967. 17 pp. 1 fig. The Bu-

reau of Mines investigated the technical problems involved in recovering commercial-grade vanadium products from alkaline solutions of low vanadium content. Conditions were defined for precipitating calcium vanadates from sodium vanadate solutions with calcium chloride and calcium hydroxide and for dissolving the precipitates with acid, sodium carbo-nate, and sodium bicarbonate to obtain vanadiumanci, and solutions from which either red cake or ammonium metavanadate was recovered. Calcium vanadates with CaO:V:Os mole ratios of 2, 3, and 4 were produced with recoveries of 93 to 100 percent. Optimum recovery of the low-lime variety of cal-Uptimum recovery of the low-lime variety of cal-cium vanadate was obtained by employing excess calcium chloride and adjusting the pH to a range of 8.0 to 8.5. High vanadium extractions were obtained in concentrated solutions by dissolving the calcium vanadate precipitates with any of the reagents tested. The resulting extracts contained 25 to 125 grams V_2O_5 per liter. Conventional procedures used to precipitate either red cake or ammonium meta-vanadate from the enriched solutions gave excellent vanadate from the enriched solutions gave excellent vanadium recoveries.

RI 7059. Sulfur Content of Crude Oils of the Free World, by C. M. McKinney and Ella Mae Shelton. 1967. 36 pp. 4 figs. Sulfur content data from Bureau of Mines routine analyses of 1,060 United States crude oils were used with crude oil production data for the years 1956-66 to prepare tables and charts that illustrate the volume and percentage distribution according to sulfur content of crude oil produced in 10 geographical areas of the United States. Similar relationships for foreign crude oils States. Similar relationships for foreign crude oils based on analyses of 201 crude oils and production during 1966 are illustrated for Africa, Canada, Middle East, and South America. Tables are in-cluded giving field name, sulfur content, geologic name and age of producing formation, depth of producing formation, and production during 1966 for 882 United States crude oils and 201 foreign crude oils. Between 1955 and 1966 the average ulfur content of crude oils notoucod in the United sulfur content of crude oils produced in the United States decreased from 0.73 to 0.67 percent. (Out of print.)

RI 7060. Physical Strength of Iron Ore Pellets at Elevated Temperatures, by J. L. Reuss and M. M. Fine. January 1968. 24 pp. 8 figs. The Bureau of Mines investigated the softening characteristics of Mines investigated the softening characteristics of both unfired and indurated iron ore pellets as meas-ured by hot compression strength in a laboratory ured by hot compression strength in a laboratory study. A surprisingly high hot strength (240 lb per ½-inch spheroid) was developed by unfired mag-netic pellets near 900° C; lesser maxima were de-veloped by pellets made from hematite and specu-larite concentrates near 1,000° C. Those from veloped by pellets made from hematite and specu-larite concentrates near 1,000° C. Those from goethite remained weak throughout the preindura-tion heating. Fully indurated commercial pellets retain a high resistance to softening when heated in air. On the contrary, in a hot reducing atmosphere their high cold crushing strength dissipates rapidly. At 1,000° C, for example, the average compression strength of seven different commercial pellets was 110 lb; at 1,100° C, the hot strength was only 60 lb. After a rather sharp initial drop, the loss of strength with increase of temperature was gradual strength with increase of temperature was gradual. There was no sudden collapse nor any significant difference in behavior of commercial pellets whether made from magnetite or hematite concentrates.

RI 7061. Initiation of Spherical Detonation in Acetylene-Oxy-

gen Mixtures, by Elton L. Litchfield, Marilyn H. Hav, and David J. Cohen. 6 pp. 1 fig. The Bureau of Mines determined minimum energies for

direct initiation of expanding gaseous detonation waves in acetylene-oxygen mixtures. Composition limit ranges for the initiation of detonation with fixed energies have been compared to data in the literature. Assuming that the stored electrical energy is completely converted to thermal energy, the agreement between the energy of primary explosive initiators and the energy of electrical discharge initiators was good. Minimum energies for initia-tion of detonation in the most sensitive composition (40 percent C₂H₂ plus 60 percent O₂) were 0.64 joule at an initial pressure of $\frac{1}{4}$ atmosphere, 5.0×10⁻² joule at $\frac{1}{2}$ atmosphere, and 3.7×10^{-3} joule at 1 atmosphere. Fuel concentrations in mixtures initiated to detonation by 4.9×10^2 joules ranged from 10 to 65 percent C_2H_2 at $\frac{1}{2}$ atmhophere, 10 to 67 percent C_2H_2 at $\frac{1}{2}$ atmosphere, and 9 to 68 percent C₂H₂ at 1 atmosphere.

RI 7062. Optical Properties of Glass: Transmission Losses of Eyepieces Used in Mine Environment, by C. Gary Reiness and Carmon L. Marano. January 1968. 9 pp. 6 figs. A safety glass eyepiece which had been repeatedly exposed to mine environment over a number of years was studied to determine some of its optical properties. In the regions from 385 to 400 $m\mu$ and from 625 to 760 $m\mu$, the transmittance was less than the 89 percent required by the American Standard Safety Code for Head, Eye, and Respira-tory Protection. From 200 to 320 m μ the relative transmittance of two parts of the eyepiece was found to vary widely, having a maximum of 38 percent difference at 315 m_{μ} . Irradiation of the glass by ultraviolet light caused enhanced absorption in the range from 200 to $1,200 \text{ m}_{\mu}$. There was a time-dependent increase of 1016 color centers per cubic centimeter throughout this range after 36.5 hours of irradiation. The rate-of-growth curve for the optical density, at 243.5 m_{μ} and 23° C, was resolved into linear and saturable components, indicating zero order and first order kinetics.

 RI 7063. Vapor Pressures of Liquid Molybdenum (2,890° to 2,990° K) and Liquid Zirconium (2,229° to 2,795° K), by R. K. Koch and W. E. Anable. January 1968.
 22 pp. 5 figs. The vapor pressures of liquid molybdenum and liquid zirconium were determined by the Langmuir free-evaporation method. An electronbeam furnace with a water-cooled copper crucible was used for melting. Temperature was measured with a two-color ratio pyrometer. The vapor-pres-sure data led to the following equations:

$$\log p (atm) = 5.429 - \frac{28,380}{T}$$

for liquid molybdenum in the range 2,890° to 2,990° K, and

$$\log p$$
 (atm) = 6.521 - $\frac{30,940}{T}$

for liquid zirconium in the range 2,229° to 2,795° K. Third-law evaluations of each data set gave mean heats of sublimation (298.15° K) of 157.6 \pm 1.8 kcal/mole and 148.4 \pm 2.4 kcal/mole for molybdenum and zirconium, respectively, where the uncertainties are two standard deviations. Second-law standard heats of sublimation determined from sigma plots and tabulated enthalpies were 143.5 \pm 2.7 kcal/mole and 149.2 \pm 3.8 kcal/mole for molybdenum and zirconium, respectively. The better agreement in heats of sublimation for zirconium is attributed to the 566° K temperature range studied which permitted a more accurate definition of the vapor-pressure curve than could be obtained from

the 100° K span for molybdenum. This supposition was verified by making a sigma-prime plot which utilized solid vapor-pressure data for molybdenum to extend the evaluation range by 800° K. This gave a standard heat of sublimation of 155.2 ± 1.6 kcal/ mole which is in good agreement with the third-law value. The plot also gave a standard entropy of sublimation (298.15° K) of 35.73 ± 0.48 eu.

RI 7064. Kinetics of Formation of Carbon Dioxide and Carbon From Carbon Monexide in Presence of Iron Pellets, by L. A. Haas, S. E. Khalafalla, and P. L. Weston, Jr. January 1968. 29 pp. 17 figs. A kinetic study of the carbon deposition reaction was undertaken by the Bureau of Mines as part of a broad investigation of metallurgical reactions in the iron ore blast furnace. The disproportionation of carbon monoxide on iron pellets was investigated at carbon monoxide pressures between 0.5 and 2 atmospheres (absolute) and temperatures from 400° to 1,075° C. Gas flow in the range from 0.25 to 0.85 standard liter per minute was found to have little effect on the reaction velocity. The addition of nitrogen and helium to carbon monoxide exerted only a dilution effect on the rate of carbon deposition. However, an addition of 1 percent hydrogen increased the rate about 100 times. Small amounts of carbon dioxide in the inlet gas exerted little effect on the rate of carbon deposition. The maximum rate for carbon deposition in the first 2 hours occurred at 550° C. The apparent molar activation energies at various stages of the reaction were found to vary from 13 kcal initially to 36 kcal during the latter stages of the reaction. The reaction rate behavior was tentatively explained by an adsorption step followed by the diffusion of iron through a shell of inactive iron carbide.

RI 7065. Piezoelectric Pulsing Equipment for Shear Wave Velocity Measurements in Rock Samples, by Francis X. Cannaday. January 1968. 25 pp. 27 figs. Equipment and techniques were developed with Bu-reau of Mines facilities for measurement in the laboratory of sonic shear wave velocity in variously shaped rock specimens in a wide range of sizes. A variety of rock types was tested. The shear wave front is produced by electronically excited, piezo-electric ceramic, disk-shaped transducers. Trans-mitter and receiver are interchangeable. Special equipment components were Bureau produced; other components were commercially available. The equipment permits quick measurement of shear wave velocity on variously shaped specimens with a minifavorable conditions, allows for determination of the moment of arrival of the shear wave when it is superimposed on a weak longitudinal wave.

RI 7066. Thermodynamics of Nonlinear Electromagnetic-fluid Systems, by W. F. Hughes. January 1968. 8 pp. The thermodynamics of an electro-1968. 8 pp. The thermodynamics of an electro-magnetic field-fluid interaction system are discussed. A review of the thermodynamics of linear media (the permittivity and permeability taken as func-tions of density and temperature) is presented; then an extension is made to nonlinear media (the per-mittivity and permeability taken as functions of the fields). Expressions for thermodynamic properties and reversible work are derived and the first law of thermodynamics for magnetohydrodynamic flow is discussed.

RI 7067. Performance of the Hydrocyclane as a Fine-Coal Cleaner, by Paul Sands, Michael Sokaski, and M. R. Geer. January 1968. 38 pp. 12 figs.

Single- and two-stage tests were made with 6-inch coal-cleaning hydrocyclones to determine the effect of hydrocyclone geometry, operating conditions, and feed composition on performance. Most of the testing was conducted in an open-circuit pilot plant that had a maximum capacity of about 9 tons per hour. The coals used in the investigation had top sizes of 1 ne coals used in the investigation had top sizes of 1/4 inch and 28 mesh. Considerable latitude was found in the range of geometry variables that could be used without affecting performance adversely, although a certain minimum ratio of overflow to be the performance adversely. underflow openings had to be maintained for best operation. Two-stage cleaning proved distinctly better than operation with a single hydrocyclone, be-cause clean coal lost in the refuse product of the primary unit can be partly recovered in the sec-ondary. There is an unusually great difference in the specific gravities at which the individual sizes of the feed are separated in the hydrocyclone. This militates against high efficiency because maximum yield occurs when all sizes are cleaned at the same specific gravity. The size composition of the feed and, more particularly, the size composition of the impurity have a greater influence on the efficiency attainable in the hydrocyclone than in most other types of fine-coal cleaners.

RI 7068. Methods for Producing Alumina From Anorthosite. An Evaluation of a Lime-Soda Sinter Process, by Paul W. Johnson and Frank A. Peters. January 1968. 42 pp. 16 figs. An evaluation is made of a lime-soda sinter process for extracting alumina from anorthosite. In this process, alumina is extracted by sintering anorthosite with soda ash and limestone, and then leaching the sinter with a dilute sodium carbonate solution. The sodium aluminate solution formed during leaching is separated from the residue and treated with lime in autoclaves to remove dissolved silica before alumina trihydrate is precipitated with carbon dioxide. The trihydrate is then calcined to a alumina. Two options, dry grinding and wet grinding, are used in the sintering step. This process is not competitive under present economic conditions with the Bayer process of treating bauxite to produce alumina.

RL 7069. Parameters Affecting Reduction-Inducation of Unfired Magnetite Pellets, by R. B. Schluter and M. M. Fine. January 1968. 22 pp. 19 figs. Magnetite pellets were simultaneously reduced and in-durated on a laboratory scale in order to determine the effects of temperature, induration time, degree of metallization, and sulfur content upon the physical and chemical properties of prereduced pellets. The reductants were commercially pure tank gases. Among the findings were these: 1,000° C is the minimum temperature that will produce acceptably hard pellets using carbon monoxide as the reducing gas. Prolonged treatment time improves the pellets' crushing strength, but the rate of improvement falls off sharply after 2 hours' induration. At 1,120° C, 75-percent metallization produces the maximum crushing strength; there was no corresponding peak at 900° or 1,050° C. Sulfur in the furnace atmosphere lowers the required induration temperature. A few tenths of 1 percent sulfur in the pellet increases the sintering rate of metallic iron in pellets by forming a liquid FeS phase that facilitates iron transfer.

New England Beryllium Investigations, by William RI 7070.

R. Barton and Carl E. Goldsmith. 1968. 177 pp. 64 figs. Sampling to determine develop-ment potential of beryllium deposits was conducted

in 31 New England localities. A total of 54 additional areas where the geochemical environment appeared favorable were sampled to determine if economically interesting percentages of beryllia (BeO) might occur. Newry Hill-Plumbago Mountain, Maine, Iron Mountain, N. H., and Long Island, Maine, were investigated in some detail to determine the size and grade of deposits. The mineralized pegmatites at Newry Hill-Plumbago Mountain are extensive but very low grade; at Iron Mountain the ore bodies are very rich but of small volume; at Long Island beryl occurs with molybdenite, wolframite, and scheelite, but the tonnage of ore was not determined.

RI 7071. Oil Yields of Green River Oil Sheles From Colorade Corohole No. 1, by John Ward Smith, Laurence G. Trudell, and George F. Dana. January 1968. 28 pp. 7 figs. Oil-yield data are presented for core samples from Colorado Corehole No. 1, drilled by the Bureau of Mines and the Atomic Energy Commission in a previously untested oil-shale area near the northern edge of Colorado's Piceance Creek basin. Continuous oil shale 2,068 feet thick, averaging 18.41 gallons of oil per ton of shale and representing 1.8 billion barrels of oil per square mile, occurs at the core site. Work done in cooperation with the University of Wyoming.

RI 7072. Extraction of B-Hydroxyquinoline Complexes of Thomas E. Green. February 1968. 17 pp. 2 figs. A solvent extraction procedure using 8-hydroxy-quinoline and chloroform was investigated by the Bureau of Mines as a preconcentration technique for the determination of aluminum, calcium, cobalt, conper, iron lead magnasium managements middal copper, iron, lead, magnesium, manganese, nickel, and zinc in large samples of high-purity tungsten. X-ray spectrographic and atomic absorption methods were used to determine the trace metals after preconcentration. The presence of 10 grams of tungsten had a pronounced effect on the distribution of 8-hydroxyquinoline between the aqueous and chloro-form phases. This change in the 8-hydroxyquinoline distribution in turn had an adverse effect on the extraction of the trace metals. Extraction efficiencies can also be adversely affected by an increase in the quantity of extractable metals present, as shown by radiotracer tests using zinc-65. Excess 8-hydroxyquinoline in the extracts did not interfere with the determination of the extracted metals by atomic absorption, but caused serious interference in the combined ion-exchange paper-X-ray spectrographic method. Although preconcentration by 8-hydroxyquinoline extraction was found to be partially successful, other preconcentration methods based on ion exchange and dithizone extraction were found to be superior.

RI 7073. High-Temperature Heat Contents and Entropies of

1

Dehydrated Analcite, Kaliophilite, and Leucite, by L. B. Pankratz. February 1968. 8 pp. 1 fig. The Bureau of Mines conducted heat-content measurements above 298.15°K for dehydrated analcite (NaAlSi₂O₂) to 1,000° K, kaliophilite (KAlSiO₄) to 1,800°K, and leucite (KAlSi₂O₂) to 1,800 K. Heat content and entropy increments were tabulated, and the heat content data were given in equation form. A first-order transition was noted for kaliophilite near 810° K with a heat absorption of 160 cal/mole. Leucite had a second-order transition which became complete near 955° K. In this transition a crystal change occurred from tetragonal (low-temperature form) to cubic (high-temperature form). R: 7074. Diesel Exhaust Contamination of Tunnel Air, by John C. Holtz and R. W. Dalzell. February 1968. 23 pp. 9 figs. The Bureau of Mines studied air contamination caused by diesel exhaust in a 10,000-ft ventilated tunnel. Sequential air samples were taken at the ends and middle of the tunnel during an operating cycle. Observed and calculated results for carbon dioxide, carbon monoxide, and nitrogen oxides were essentially in agreement. Nitrogen dioxide was present only in trace amounts. It was found that contamination was related to the volume of ventilating air, the number of haulage trips, train speed, and engine load.

RI 7075. Revegetation Studies at Three Strip-Mine Sites in North-Central Pennsylvania, by M. O. Magnuson and R. L. Kimball. February 1968. 8 pp. As part of an experiment in the restoration of lands stripmined for coal, revegetation studies were conducted at three backfilled strip-mine sites in north-central Pennsylvania. The sites were subdivided into plots that were given varying amounts of lime and fertilizer. In tests conducted cooperatively with State and Federal agronomy experts, the plots were then planted with a variety of trees, shrubs, and grasslegume mixtures. Initial tree and shrub survival was not appreciably affected by lime and fertilizer applications where the spoil pH was above 4.5. Of 14 species of trees and shrubs tested, Norway spruce, black locust, Japanese larch, pitch pine, and white pine were the hardiest. The ground-cover percentage of grass-legume mixtures in the second growing season was substantially increased by using lime and fertilizer. Mixtures comprised partly of fescue were the most satisfactory.

RI 7076 Equations for Calculating Various Thermodynamic Functions of a Two-Component System From an Empirical Equation of State, Including Liquid-Vapor Equilibria Data, by B. J. Dalton and Robert E. Barieau. February 1968. 69 pp. This report gives general expressions for evaluating various thermodynamic properties applicable to a two-component system, including liquid-vapor equilibria. In addition, expressions are developed for some of the quantities useful in making thermodynamic consistency checks on phase equilibria data. These formulas were developed from the general principles of thermodynamics and are expressed in terms of the compressibility factor, which is assumed to be an explicit function of the molal density, the absolute thermodynamic temperature, and the composition.

RI 7077. Performance of Open-Circuit Self-Contained Breathing Apparatus at -25° F, by E. J. Kloos, L. D. Raymond, and L. Spinetti. February 1968. 16 pp. 5 figs. Bureau of Mines-approved self-contained breathing apparatus of the compressed air demand type were evaluated for performance at low tem-perature. Apparatus durations, breathing resistances, and airflow rates were measured on machine tests at room temperature and -25° F. Man tests under actual wearing conditions verified the machine test results. Many serious functional changes in apparatus performance occurred at low temperature. Pressure regulators malfunctioned when diaphragms lost flexibility. Under certain conditions frozen condensed moisture sealed exhalation valves and fogged eyepieces. High-pressure leaks, not encountered at ordinary temperatures, developed at low temperature. Tests results are discussed generally and specifically for each apparatus. Recommendations are given to obtain optimum performance from demandtype breathing apparatus at low temperatures.

RI 7078. Investigation of Flame Propagation Characteristics in Layered Gas Mixtures, by Israel Liebman,

Henry E. Perlee, and John Corry. February 1968. 35 pp. 22 figs. The Bureau of Mines conducted an investigation to determine those factors that are significant in affecting the velocity of flames propagating along the boundary separating gaseous fuel and air. In addition the aerodynamic motion of the gases in the vicinity of such interfacial flames was delineated. Parameters in the study included flammable zone thickness, flammable zone concentration of gradient, fuel type, and position of the flame relative to various environmental surfaces. Of all these factors, the flammable zone thickness and burning velocity of the stoichiometric mixture were found to have the most significant effect on the flame speed. Motion of the gases in the vicinity of the interfacial flames was examined by particle track and interferometric techniques. The relative velocity of the interfacial flame with respect to the unburned gas on the central streamline was found to equal the burning velocity of a stoichiometric homogeneous fuel-air mixture. In addition, it was observed that the composition of the lean fuel-air mixture at the boundary of the combustion zone appears to be less than that defined as the fuel's lower flammable limit.

RI 7079. Recovery of Alumina and Iron From Pacific Northwest Bauxies by the Pedersen Process, by Oliver C. Fursman, Henry E. Blake, Jr., and James E. Mauser. February 1968. 22 pp. 4 figs. The Bureau of Mines undertook this investigation in order to determine the feasibility of producing commercially acceptable alumina and iron by application of the Pedersen process to high-silica, high-titania, ferruginous bauxites of the Pacific Northwest. Calcium aluminate slags were produced by smelting bauxite with coke and lime in an electric-arc furnace. Over 90 percent of the total alumina can be extracted by sodium carbonate solution from slags of properly controlled ternary-phase composition (CaO-Al,Os-SiO₂) that are cooled slowly enough to permit adequtae crystallization of the 2CaO-SiO₂ and the calcium aluminate compounds. Most of the iron charged was recovered in the regulus; the slag contained about 2 percent iron (as iron oxide), regardless of smelting time.

RI 7080. Kinetics of the Initial Reduction Stages of Magnetite in Mydrogen, by T. N. Rushton and S. E. Khalafalla. February 1968. 28 pp. 12 figs. Rate minima are encountered in the reduction of magnetite with hydrogen. In a certain temperature zone, the reaction rate decreases with rise in temperature. This is inexplicable by classical kinetic theories; neither is a transition in reduction mechanism suitable for interpreting the observed behavior. This anomaly can be fully explained by hypothesizing two species of chemisorbed hydrogen with different adsorption. Competition between two energetic states of adsorption occurs with temperature rise, with the low energy state predominating below the anomalous temperature zone and the high energy state above it. The presence of two possible adsorption sites appears to be characteristic for oxidic adsorbents.

RI 7081. Liquidus Temperatures of Titanifereus Slags (in Three Parts). 1. TiO_-Al_O_-SiO_-CaO-MgO, by Wesley T. Holmes II, Lloyd H. Banning, and Lawrence L. Brown. February 1968. 21 pp. 4 figs. This report describes the first phase of an investigation aimed at obtaining a wider knowledge of the problems involved in smelting titaniferous magnetites. Liquidus temperature measurements were made on selected slag compositions in the titaniaalumina-silica-calcia-magnesia system. Both the melting-holding-quenching method and the hot-stage microscope method were used in the tests. Liquidus temperatures of slags studied ranged from 1,217° to 1,667° C. The lowest liquidus temperature of the slags occurred when the difference between CaO plus MgO and SiO₂ was less than 12 weight-percent. Liquidus temperatures were also lowered when SiO₂ was substituted for TiO₂ plus Al₂O₃ when CaO and MgO levels were held constant. Improved methods for the measurement of liquidus temperature on very small samples are described.

RI 7082. An Electrolytic Process for Separating Nickel and Cobob, by T. A. Sullivan, B. E. Barton, and F. R. Cattoir. February 1968. 17 pp. 7 figs. Refining in a molten-salt electrolyte was investigated as a means of recovering nickel containing less than 1 percent and preferably less than 0.2 percent cobalt from nickel products containing up to 5 percent cobalt. Electrolytic separation of nickel and cobalt was accomplished in a molten KCl-LiCl-NiCl₂ electrolyte. Nickel containing less than 0.10 percent cobalt was routinely prepared. Factors that influenced the transfer of cobalt to the refined product were the nickel concentration of the electrolyte, the cobalt to cobalt in the electrolyte, and the cathode current densities. A method of recovering the cobalt from the electrolyte was developed. The possibility of preparing high-purity nickel by this process was shown, as well as the preparation of various cobaltnickel-tungsten alloys.

RI 7083. Liquidus Temperatures of Titoniferous Slags (in Three Parts). 2. TiO-Al-O-FeO-SiO-CaO-MgO, by Wesley T. Holmes II, Lloyd H. Banning, Lawrence L. Brown, and Gerald G. Thompson. February 1968. 17 pp. 23 figs. This report describes the second phase of an investigation aimed at obtaining a wider knowledge of the problems involved in smelting titaniferous magnetites. Liquidus temperature measurements were made on selected synthetic slag compositions in the TiO-Al-O-FeO-SiO₂-CaO-MgO system. Both the hot-stage microscope and the strip furnace (melting-holding-quenching technique) were used during test procedure to determine the effects of CaO, MgO, and SiOs on the liquidus temperature of slags.

The liquidus temperatures of slags studied ranged from 1.241° to 1.900° C. The lowest liquidus temperature for each TiO₂ plus Al₂O₃ plus FeO weightpercent generally occurred when the difference between CaO plus MgO and SiO₂ was less than 12 weight-percent. In this investigation substitution of either CaO or MgO for SiO₂ and MgO for CaO raised the liquidus temperature of more than 50 percent of the reported base slags when TiO₂, Al₃O₃, and FeO contents were held constant. The results of this investigation may serve as guidelines for determining flux requirements in smelting a wide variety of titaniferous magnetite concentrates or ores.

RI 7084. Storage Stability of Gasoline, Comparison of Storage and Rapid Bomb Aging, by Charles S. Allbright, Frank G. Schwartz, and Cecil C. Ward. February 1968. 33 pp. 18 figs. To develop a method for predicting the stability of a fuel during long-term storage from rapid aging tests at 200° F, the Bureau of Mines determined the stabilities of three gasoline base stocks and an alkylate blending stock in both sealed storage and aerated storage at 110° F for periods extending to 32 weeks. Stabilities of samples contining gasoline-additive compounds were compared by aging, using two methods—rapid aging in a bomb at 200° F for intervals up to 16 hours and storage at 110° F. The additives used were an uninhibited tetraethyllead motor mix, N.N'-di-sec-butyl-p-phenylenediamine and 2,6-di-tert-butyl-4-methylphenol. Results were related by graphs that enable predictions of gum and sediment formation during storage from data obtained in bomb tests.

A premium-gasoline base stock and the alkylate proved to be stable, but the two regular-grade gasoline base stocks were found to be unstable. Addition of the diamine antioxidant improved the stability of both of the regular gasoline base stocks, while the phenol antioxidant improved only one of them. The presence of the tetraethyllead decreased the storage stability of all four fuels, both with respect to formation of gum and precipitation of inorganic sediment. The rapid test at 200° F appears to offer promise as a basis for a method of predicting gasoline stability in long-term 110° F storage. Work done under an agreement with the Research Division of the Army Materiel Command.

RI 7085. Face Ventilation in Underground Bituminous Coal Mines. Airflow Characteristics of Flexible Spiral-Reinforced Ventilation Tubing, by R. G. Peluso. February 1968. 13 pp. 7 figs. Methods and results of studies to determine friction and shock losses encountered in auxiliary face ventilation systems utilizing flexible, spiral-reinforced ventilation tubing are presented. The results, tabulated in graphic form, simplify fan selection and enable mine operators to design adequate auxiliary ventilation systems. A sample problem illustrates the use of graphs.

RI 7086. Properties of Anthracite From the Bottom Ross Bed, by G. A. Brady and H. H. Griffiths. February 1968. 29 pp. 3 figs. Seven samples of Pennsylvania anthracite from the Bottom Ross bed were analyzed and tested to obtain data on cleaning characteristics, proximate and ultimate analyses, specific gravity, grindability, heating value, and ash softening temperature. Ash content of the samples varied irregularly from 9.0 to 34.4 percent, the range being narrowed to an upper limit of 14.8 percent ash by removing impurities dense enough to sink in a medium with a specific gravity of 1.90. Ash content of the sink material with specific gravity greater than 1.90 ranged from 56.4 to 80.4 percent; corresponding specific gravities were 2.095 to 2.534. Volatile matter contents were indicated to be higher for the ash-forming minerals than for the pure coal substance in the various specific gravity fractions of a given sample. Specific gravities of anthracites with comparable ash contents but from different locations in the bed varied as much as 0.06. The grindability index increased significantly with increasing ash content of specific gravity fractions from all the samples.

RI 7087. Transverse Force Produced by Tensioned Expansion-Shell-Type Rock-Bolt Anchors, by Edward W. Parsons and Lars Osen. March 1968. 10 pp. 6 figs. The transverse force developed by expansionshell rock-bolt anchors on the wall of a drill hole as the bolt is tensioned was measured by the Bureau of Mines using a device specially designed and fabricated for attachment to a universal testing machine. Load cells equipped with electrical-resistance strain gages provided the data from which the transverse force, in pounds, was calculated. Seven different expansion-shell anchors were tested, and the ratio of transverse force to bolt-tension load was found to range between 0.98 and 1.94. The drag load appeared to be the major cause of the transverse-force variation, but the relative effects of individual factors that affected the ratio between the transverse force and the bolt tension were not determined.

RI 7088. Lew-Temperature Chlorination of Ferrochromium. Proliminary Studies, by R. L. de Beauchamp and T. A. Sullivan. March 1968. 8 pp. 2 figs. A preliminary investigation was made of the extraction of chromium from ferrochromium by low-temperature chlorination in the 340° to 525° C range. The objective was to devise a method for separating chromium from iron in high-carbon ferrochromium produced from domestic chromite concentrates. The majority of iron was removed as a volatile chloride; chromium was contained in the residue as a nonvolatile chloride, which was separated from carbon and unattacked ferrochromium by dissolution. A small rotary chlorination apparatus was designed, built, and used for the chlorination tests, and samples of commercial-grade high- and low-carbon ferrochromiums were chlorinated for comparison of chlorination characteristics. Low-temperature chlorination of three types of ferrochromium resulted in the removal of 81.9 to 91.6 percent of the iron content as sublimed FeCls. Recovery of chromium in a leach solution of the reactor product varied from 82.4 to 93.1 percent.

RI 7089. Evaluation of Rolling Slabs of Zinc-Copper-Titanium

Alloys Cast Under Semicontinuous Conditions, by L. A. Neumeier, J. T. Dunham, and P. G. Barnard, March 1968. 24 pp. 20 figs. Sound experimental ingots of zinc alloys for use as rolling slabs were cast with a specially constructed, semicontinuous zasting machine. Nominal alloy compositions of Zn-1.0 percent Cu, Zn-0.12 and 0.36 percent Ti, and Zn-1.0 percent Cu-0.03 to 0.36 percent Ti were cast. This Bureau of Mines study was conducted to evalu-ate the suitability of the casting procedure for providing stock for rolling into sheet. Microscopic examination of ingot sections revealed structures in which grain size varied from the outer to center ingot zones. Columnar grains present in the center zone of the Zn-1.0 percent Cu ingot were absent in the titanium-containing ingots. The ingots with titanium displayed a finer grain size and eutectic structure in the center ingot zone than in the outer zone; the transition in grain size between the two zones was quite abrupt in some ingots. The overall grain size of the titanium-containing ingots was finer than that of alloys cast by more conventional methods. Chemical analysis revealed that compositional segregation is not a significant factor in the formation of the ingot structure. Microstructural studies of small ingots of similar alloys solidified at slow, fast, and intermediate rates confirmed that the ingot structure in the semicontinuous-cast ingots is related to cooling rate, which is, in turn, related to the particular casting machine design and the influx of cooling water on the withdrawing ingots. Microstructures of thin sheet hot-rolled from slabs of the semicontinuous-cast ingots demonstrated that the ingot structure does not preclude the rolling of sheet having a uniform microstructure. Results of hardness surveys of the semicontinuous-cast ingots demonstrated that copper and titanium exert essentially additive hardening effects in these cast alloys.

RI 7090. Hydraulic Cool Mining Research, Assessment of Parameters Affecting the Cutting Rate of Bituminous Cool, by R. S. Fowkes and J. J. Wallace. March 1968. 23 pp. 12 figs. Jetstream pressure distributions and coal cutting rates were determined for a number of nozzles and under different operating conditions. The jetstream pressure distribution data were fitted to an assumed curvilinear equation by the utilization of a numerical least-squares technique with the aid of a digital computer. Subsequent manipulation of the approximation equation showed that the total force of the jetstream, rather than its maximum pressure or total kinetic energy per unit time, was the most significant quantity affecting the coal cutting rate. A shorter method for assessing the ability of a nozzle to cut coal was found.

RI 7091. Effects of Adding Rare-Earth Silicides, Aluminum, and Cryolite to Molten Steel, by R. J. Leary, R. T. Coulehan, H. A. Tucker, and W. G. Wilson, March 1968. 42 pp. 16 figs. This investigation was conducted to determine the effects of various rare-earth metal addition practices upon the macro-structure and the pattern of sulfur distribution in steel ingots. Heats of plain carbon steel were melted in a 1-ton, basic electric-arc furnace. Melts were treated with mixtures of rare-earth silicides, aluminum, and cryolite either in the furnace before tap or in the ladle after tap to determine the effects of this form of rare-earth treatment upon ingot macrostructure. Steels thus treated with rare earths in the furnace were characteristically free of the gross subsurface nonmetallics which typically result from conventional rare-earth treatments. Steel treated in the ladle showed only a few such nonmetallics, and practical techniques were developed for eliminating most of these. Results showed that furnace deoxidation was controlled by the concentration ratio of rare earths to aluminum. During casting, deoxida-tion was controlled by the concentration of rare earths. Oxygen contents equivalent to vacuum ladle degassing resulted from air-melt furnace treatments with the rare-earth mixtures described. Rare earths in steel inhibited the onset of equilance growth tion during ingot freezing and also virtually prein steel inhibited the onset of equiaxed grain formavented interdendritic segregation of sulfides. Work done in cooperation with the Molybdenum Corporation of America, New York.

RI 7092. Changes in Breaking Strength of Model Rack Pillars Resulting From End Constraint, by Clarence O. March 1968. 19 pp. 9 figs. Model pil-Babcock. having length to diameter ratios of 3:1, 2:1, 1:1, and 0.5:1 were broken in axial compression to determine whether lateral end constraint affected the breaking strength. Steel rings bonded to the ends of the model pillars with epoxy provided, during the loading cycle, a lateral end constraint of about 17 to 30 percent of the average axial stress. The effect of this constraint was to increase the breaking strength of the rock as compared to cylindrical pillars without constraint. The percentage increase in breaking strength varied with rock type and increased as the length to diameter ratio decreased. The maximum increase in breaking strength was 35 percent for marble pillars having a length to diameter ratio of 0.5:1. A theory was developed which relates the expected constraint to the physical properties of the ring and rock.

RI 7093. Dependence of Coking Time on Coal Properties and Carbonization Parameters, by Manuel Gomez, J. G. Walters, and John B. Gayle. March 1968. 28 pp. 5 figs. Coking time was investigated as a function of coal properties, carbonization parameters, and the interaction between these variables. The results indicate that coal properties and carbonization conditions interact to influence the coking time, and these interactions may be determined quantitatively. Prediction equations were developed and used to simulate the effects of bulk density, flue temperature, and oven width on coking times for coals having a wide range of properties. The data presented provide additional information on the carbonization process to permit the coke oven operator to maintain closer control of coke production and coke uniformity.

RI 7094. Measurement of Oleic Acid on Mineral Surfaces Using a Radioactive Tracer, by J. Vance Batty, Agey, and B. F. Andrew. March 1968. 24 W. W. Agey, and B. F. Andrew. March 1968. 24 pp. 4 figs. Two methods were devised and evalu-4 figs. pp. ated for quantitatively measuring the amount of oleic acid on flotation products and in flotation waters. One method involved use of an organic solvent to remove carbon-14-tagged oleic acid from mineral surfaces and flotation water phases with subsequent radiometric analysis of the extracts. Studies showed this method to be slow and subject to large variations in accuracy and reproducibility. In the second procedure, tagged oleic acid was measured directly on the surfaces of dried mineral products. Oleic acid in the water phase was determined by adsorbing it on fine mineral, drying, and radiometric counting. Quantitative analysis of oleic acid on flotation products from bench-scale flotation tests with synthetic mixtures of ore minerals and quartz and with natural ores showed this method to be fast, accurate, and reproducible.

RI 7095. A Method of Measuring Surface Texture of Rack, by Frank G. Horino, John R. Hoskins, and Merlyn L. Ellickson. March 1968. 14 pp. 8 figs. This report describes an instrument designed by the Bureau of Mines for quantitatively identifying texture of rock surfaces produced by grinding or extremely rough surfaces beyond the range of commercial surface measuring instruments. The transducer for the instrument is a linear variable differential transformer that converts mechanical motion caused by surface roughness, wavines, and lay to an electrical output. The electrical output is recorded graphically as an X-Y plot of the line traversed on the rock surface. Details of the synthesized device and its calibration are given. The sensitivity of the unit is 2 percent of the scale setting of the amplifier. The horizontal scale is adaptable from ¼ inch to 15 inches of specimen length with a sensitivity of 0.01 inch if a 10 to 1 magnification is used and 0.1 inch if a 1 to 1 magnification is used.

.

RI 7096. Determination of the Heat of Formation of Vanadium Trichloride, by R. V. Mrazek, D. W. Richardson, H. O. Poppleton, and F. E. Block. March 1968. 15 pp. 2 figs. The heat of formation of vanadium trichloride was determined at 298.15° K. Measurements were made in a solution calorimeter in which an aqueous hydrochloric acid-potassium dichromate solvent was employed. Data are presented for the heats of solution of vanadium trichloride and the vanadium trioxide "backup" compound, and for appropriate dilution reactions needed to preserve stoichiometry. The resulting heat of formation of vanadium trichloride (VCl₃) at 298.15° K was found to be $\Delta H^{\circ}_{206.15^{\circ}}$ K = -138.89 ±0.37 kcal/g mole. RI 7097. Iwe Borehele Photograph Geniemeters, by Perry N. Halstead, Richard D. Call, and S. Jackson Hubbard. April 1968. 22 figs. This report describes two goniometers that, by simple manipulation, can be used to ascertain the attitude of a joint, vein, or fracture plane observed on the planar projection of a borehole photograph taken with an NX borehole camera of the type developed by the U.S. Army Corps of Engineers. One goniometer was designed to interpret photographs taken in vertical drill holes and the other for photographs taken in inclined drill holes. In practice, several measurements are made on each photograph with the goniometer. These data are then substituted into mathematical equations, which are derived in this report, and the attitudes of fracture planes are determined. Work done in cooperation with the Kennecott Copper Corp., Western Mining Divisions, Engineering Department.

RI 7098. Predicted Results of Cleaning Appelachian Coals at Low Density for Sulfur Reduction, by M. R. Geer. March 1968. 20 pp. 1 fig. The Bureau of Mines examined the washability data for 25 Appalachian coals requiring low-density washing to reduce sulfur content to 1 percent, using the distribution-curve method. The purpose was to estimate how closely theoretical sulfur values could be approached, what yields of washed coal could be expected, and the recovery efficiencies that might be achieved. Assuming that the run-of-mine coal would be crushed to % inch and cleaned in dense-medium cyclones, the calculations indicate that theoretical sulfur contents could be approached closely when cleaning at a specific gravity of separation as low as 1.30. With coals that have favorable specific gravity compositions, the recovery efficiency anticipated for cleaning at 1.30 specific gravity is surprisingly high. Similar calculations for cleaning with concentrating tables at intermediate specific gravities indicated that theoretical sulfur contents at 1.50 specific gravity could be approached closely with some coals but not with others. The calculations suggest that operating a table at a specific gravity of separation much lower than about 1.50 probably would be unsatisfactory with most coals.

RI 7099. Modified Redlich-Kwong Equations for Hydrogen and for Neon, by Philip C. Tully and Jonnie M. Estes. April 1968. 27 pp. 5 figs. These modifications to the Redlich-Kwong equations for pure hydrogen and neon were developed after an unsuccessful attempt to generalize a modification technique previously developed for helium. New coefficients of the *B* terms were developed by minimizing the residual. No changes were made in the coefficients of the *A* terms. For normal hydrogen, *B* was changed to

$\frac{0.08063T_{c}}{P_{c}T}$

for temperatures from 98° to 423° K and pressures up to 1,050 atm. The average deviation in Z was 0.36 percent with maximum deviations less than 1 percent for all but a few low-temperature points. For neon, B was changed to

$\frac{0.1025T_{c}}{P_{c}T}$

for temperatures from 120° to 973° K and pressures up to 1,500 atm. The average deviation in Z was 0.34 percent with maximum deviations less than 1 percent for all but a few high-pressure and lowtemperature points. Efforts to attain a lower temperature range to comparable accuracy with this type of modification were unsuccessful. In the range of applicability, these equations should be used with caution when calculating derived thermodynamic functions, such as the isobaric specific heat.

RI 7100. Extraction Behavior of Cerium-Group Lanthanides in a Primary Amine-Chelating Agent System, by D. J. Bauer, R. E. Lindstrom, and K. B. Higbie. February 1968. 12 pp. 6 figs. A primary amine extraction system was investigated for fractionating a cerium-group, lanthanide sulfate mixture. Addition of diethylenetriaminepenta-acetic acid (DTPA) to the amine extraction system resulted in separation factors as high as 5.4 for lanthanum-cerium, 8.0 for cerium-praseodymium, 3.7 for praseodymium-neodymium, and 7.0 for neodymium-samarium. In multistage studies of a cerium-free lanthanide mixture, 96 percent of the lanthanum was recovered with a purity of 95 percent.

RI 7101. Evaluation of Continuous Recording X-Ray Ash Meter, by J. Hudy, Jr., and A. W. Deurbrouck. April 1968. 2 pp. 4 figs. An investigation has been made to determine the applicability of the Cendrex X-ray instrument for the measurement of the ash content of washed bituminous coal products. The results obtained for selected products from six preparation plants in the Appalachian region and one preparation plant in the midwestern region are described. Emphasis of the study was placed on low-ash bituminous coal products suitable for utility or metallurgical markets. There was good agreement between the results obtained by conventional ash-determination methods and by ash determination using the Cendrex for all products tested.

RI 7102. Evaluation of Synthetic Organic Floculants in the Treatment of Coal Refuse Sluries, by Kenneth J. Miller and A. W. Deurbrouck. April 1968. 14 pp. 6 figs. To determine the effectiveness of the many new flocculants available to the coal industry, 20 of these reagents were evaluated treating slurry feeds to four refuse thickeners. Settling rates and supernatant liquid clarities were determined for each of the flocculants on the four slurries, and zeta potential measurements of the slurry solids were made. The test results showed that the flocculants provided comparable results when judged categorically as anionic, nonionic, or cationic. It was also apparent that control of zeta potential insures maximum benefit from a flocculant.

RI 7103. Limits of Flame Propagation of Coal Dust-Methane-Air Mixtures, by J. M. Singer, A. E. Bruszak, and J. Grumer. April 1968. 12 pp. 4 figs. Flame propagation of lower limit hybrid coal dust-methaneair mixtures in vertical and horizontal flame ducts of 15.2 cm id and 1.8 m length has been investigated to provide information bearing on safety in mines. Fuel concentrations at lower limits of flame propagation and equivalences of coal dust and methane are much higher for continuing flame propagation than for short-span flame propagation in the vicinity of an "overdriving" ignition source. As the energy of the ignition source was increased, the flame speed and the distance of flame propagation from the ignition source increased, whereas the total fuel concentration at the lower limit decreased. (Out of print.)

RI 7104. Analyses of Tipple and Delivered Samples of Coal Collected During Fiscal Year 1967, by S. J. Aresco and J. B. Janus. 1968. 43 pp. The Bureau of Mines has been active in promoting the purchase of coal for Government use under specifications that define the requirements in terms of the heating value of the coal, expressed in British thermal units, and the composition as shown by proximate analyses. To these, when required, are added the ash-softening temperature, the free-swelling index, and the Hardgrove grindability index. Under most of these specification contracts the bidders guarantee the quality of the coal and that guaranteed by the successful bidder becomes the standard of his contract. The samples are analyzed by the Bureau of Mines to determine whether the coal is of the quality guaranted by the contractor; if it is not, a price adjustment is made. Analyses of the delivered coal and tipple samples provide valuable data for use in evaluating future bids. In addition the continuous sampling of coal as delivered is a check on the practical results obtained in burning the coal. 30 cents.

RI 7105. Analyzing Midget Impinger Dust Samples With an Electronic Counter, by Floyd G. Anderson, Thomas F. Tomb, and Murray Jacobson. April 1968. 8 pp. 4 figs. Bureau of Mines studies show that an electronic counter can be used for determining dust concentrations from midget impinger samples collected in bituminous coal mines. A sample correlation coefficient of 0.91 for data obtained using the electronic counter and the Bureau of Mines microprojector procedures indicates a significant linear relationship between the methods. The electronic counter provides better counting precision and reduces analytical time.

RI 7106. A High-Temperature, Two-Phase Extraction Technique for Tungsten Minerals, by John M. Gomes, Kneji Uchida, and Don H. Baker, Jr. April 1968. 13 pp. 6 figs. A two-phase molten halidesilicate technique for extracting tungstic oxide (WO₃) from scheelite (CaWO₄) and wolframite ((Fe, Mn)WO₄) was investigated. The halide phase extracted over 99 percent of the WO₃ whereas the lower silicate phase retained about 90 percent of the calcium, iron, or manganese oxides. The most efficient extraction and separation of tungsten from scheelite was accomplished at 1,080° C in a molten system containing, in mole-percent, 9 calcium tungstate (CaWO₄), 42 sodium chloride (NaCl), 28 sodium fluoride (NaF), 17 sodium metasilicate (Na₂SiO₄), and 4 alumina (Al₂O₃). Wolframite was also treated at 1,080° C; the molten system contained, in mole-percent, 11 (Fe, Mn)WO₄, 74 NaCl, and 15 Na₂SiO₄.

RI 7107. Ferrite Control by Cobalt Additions to a Semiaus-tenitic Stainless Steel, by M. M. Tilman. April 1968. 14 pp. 8 figs. The objectives of this research were to determine the practicability of using cobalt as a means of controlling the amount of ferrite in the microstructures of semiaustenitic stainless steels and to determine the effects of reduced ferrite content on mechanical properties of these steels. Cobalt additions of up to 3 weight-percent were made to type 17-7 PH (AISI 631) stainless steel. Ferrite contents were determined for alloys in the aged condition and for alloys quenched from the hot working temperature. Ferrite can be completely eliminated from the microstructure of 17-7 PH stainless steel by additions of cobalt, but complete elimination of the ferrite phase results in lower tensile strength, yield strength, and hardness. Tensile properties, hardness, and impact strength were determined for aged material. A subzero temperature treatment before heattreating was necessary to obtain maximum strength in the alloys containing cobalt. Addition of 2 weight-percent cobalt enhances mechanical properties of 17-7 PH stainless steel.

RI 7108. Sampling and Analysis of flue Gas for Oxides of Sulfur and Nitrogen, by J. F. Smith, J. A. Hultz, and A. A. Orning. April 1968. 21 pp. 5 figs. A series of studies of emissions from large coal-fired steam generators have included measurements of the concentrations of oxides of sulfur and oxides of nitrogen. The sampling equipment, method of sampling, and analytical techniques used for processing of these samples are detailed. A method based on the precipitation of benzidene sulfate was developed for determining both SO₀ and total oxides of sulfur in the presence of interfering acidic components in the stack gases. In addition, difficulties encountered with sampling and analytical techniques are also described. Work done under an agreement with the U.S. Department of Health, Education, and Welfare.

RI 7109. Recovery Percentage of Bituminous Coal Deposits in ground Mines, by Raymond L. Lowrie. April 1968. 19 pp. 2 figs. For many years it has been con-sidered that an average of 50 percent of the coal in the deposits exploited has been recovered. Owing to many changes in mining methods during the past two decades, this study was initiated to obtain an up-to-date measurement of recovery percentage and thus establish part of the basis from which presently recoverable reserves may be estimated. Recovery percentages were determined within mined areas of 200 underground coal mines. These comprised a statistical sample selected to be representative of operating mines in relation to their significance to depletion of reserves. The results ranged from 29 to 91 percent and averaged 57.0 ± 1.7 percent (95-percent confidence limit). Six factors were identified mathematically as significantly affecting recovery percentages: (1) Pillaring system, (2) top rock and conditions, (3) bottom rock and conditions, (4) marketability, (5) coalbed thickness, and (6) productivity. Skill and attitude of mine operators toward recovery, although not measured, were probable factors. Five other variables that were tested did not show any significant relationship with recovery percentages. Also, five mining equipment features were identified, through discussions with mine officials, as affecting adversely recovery percentage at some mines.

RI 7110. Dewatering Coal Flatation Tailing by the Admixture of Crushed Washery Refuse, by M. R. Geer, P. S. Jacobsen, and M. Sokaski. A pril 1968. 15 pp. 1 fig. The ever-increasing need to guard against stream pollution has intensified interest in the problems of handling and disposing of flotation tailing. Therefore, the Bureau of Mines investigated the possibility of using crushed washery refuse to adsorb the free water in thickened flotation tailings on a bench scale and then in a pilot plant because the conventional methods of disposing of coal flotation tailings—impounding them or filtering them so they are dry enough to be conveyed to the refuse dump are sometimes either impractical because of space limitations or costly because of low filter capacity. Most of the refuse samples tested were of similar mineralogical composition and exhibited similar water retention capability. The amount of crushed refuse required to adsorb the water in a particular tailing was influenced greatly by the fineness of the solids in the tailing and hence the percentage of solids to which it could be thickened. The ratio of crushed refuse to tailing solids required to provide a mixture dry enough to be carried on an inclined con-veyor belt varied from 2.4 to 6.4. Several chemical agents that were tested were very effective in turning the free water in tailings into a stable gel. Fly ash also was very effective in adsorbing water.

RI 7111. Improved Method for Calculating Areas and Shape Factors of Flow Nets, by R. V. Higgins and A. J. Leighton. April 1968. 32 pp. 3 figs. This paper describes a method and a computer program for calculating shape factors and areas of channels that turn more than 90° and conduct fluids into the backs of wells. The program represents an improve-ment over a previous Bureau of Mines investigation by using a 4-moint Lagrange interpolation coustion by using a 4-point Lagrange interpolation equation instead of a 3-point and by summing areas of trapezoids with either x altitudes or y altitudes. Some of the techniques reported in this paper can also be used to compute the areas between contours and the lengths of lines that turn more than 90°.

RI 7112. Chromium by Thermel Decomposition of Bisbenzene Chromium, by B. D. Nash, T. T. Campbell, and F. E. Block. April 1968. 19 pp. 8 figs. The object of this research was to investigate the technical feasibility of preparing chromium metal by the thermal decomposition of bisbenzene chromium. Bisbenzene chromium, a pi-bonded sandwich type organometallic compound, was thermally decomposed under reduced pressure to form a metal plate on a heated substrate. Metal recovery was close to 100 percent of theoretical, with deposition rates up to percent of theoretical, with deposition rates up to 20.8 mg/hr/cm². Metal purity was dependent not only upon the purity of the starting material but also upon the sublimation rate of bisbenzene chro-mium. Total detectable metallic impurities ranged from a low of 18 ppm to several hundred ppm. In general, metallic impurities were less than 100 ppm. Carbon, the major nonmetallic impurity, ranged from less than 0.3 percent to more than 10 percent. The carbon contamination is most likely a result of The carbon contamination is most likely a result of the decomposition of the organic portion of bisbenzene chromium. An unusual property of some of the deposits was their outstanding corrosion resist-ance. Unlike pure electrolytic chromium, which dissolves readily, these deposits were insoluble in hot mineral acids.

RI 7113. Effects of Boron and of Boron With Carbon on the Mechanical Properties of Vanadium, by H. G. Iverson, D. R. Mathews, and J. S. Winston. April 1968. 18 pp. 12 figs. The effects of adding boron and boron plus carbon to electrorefined vanadium were evaluated with respect to mechanical properties at low temperatures and response to heat treatment. Grain size was significantly decreased with the addition of 0.05 percent boron, the decreases ranging from 30 percent at 800° C to 75 percent at 1,100° C. Increasing the boron content resulted in only a small increase in strength at room temperature, but at 77° K boron contents of 0.005 to 0.076 percent increased the yield strength of vanadium over 50 percent, from 70,000 psi to 110,000 psi. When boron and carbon were present together, the individual grain-refining effects obtained with either element were retained. Approximately a twofold increase in strength was obtained by age-hardening the alloys containing both boron and carbon. Alloys with only boron additions did not age-harden.

RI 7114. Three-Piece Concrete Sets for Small Openings.

Progress Report, by K. R. Dorman, M. E. Poad, and M. O. Serbousek. April 1968. 51 pp. 28 figs. To develop the potential of precast concrete sets as a support medium in underground mines, a threepiece precast concrete drift set was designed for a small opening and tested to destruction in an under-ground straining frame. Thirty-six tests were made with three sizes of members using three different loading conditions. In addition, 14 members were tested individually in the laboratory. Test results are compared with theoretical calculations. A cost comparison shows the use of concrete sets would be advantageous where conventional wooden timber requires excessive replacement.

RI 7115. Preparation of Biodegradable Synthetic Detergents

From Low-Temperature Lignite Tar, by John S. Berber and Robert V. Rahfuse. April 1968. 8 pp. 4 figs. Olefin and paraffin mixtures (C_{10} - C_{16} and C_{10} - C_{16}) were separated from low-temperature lig- $C_{in}-C_{ac}$) were separated from low-temperature lig-nite tar by urea adduction and sulfated to yield secondary alkyl sulfate detergents. The C_{10} - C_{10} secondary alkyl sulfate showed a 99.3 percent bio-degradability, and the C_{10} - C_{22} fraction showed a 96.8 percent biodegradability, exceeding the required standard of 80 percent for the biodegradability of anionic detergents in washing and cleaning com-pounds. Chlorination of paraffins yielded a deter-gent of 93.2 to 33.4 percent biodegradability pounds. Chlorination of paraffins yielded a deter-gent of 93.2 to 93.4 percent biodegradability.

RI 7116. Study of Columbium and Tantalum Alloys, by Herbert R. Babitzke and Jack G. Croeni. April 1968. 16 pp. 8 figs. The purpose of this investigation was to optimize the high-temperature properties of columbium and tantalum. Columbium and tantalum were combined with selected alloying elements to achieve solid solution and dispersion strengthening. Fifty-six alloys were evaluated to determine their formability, hardness, strength at elevated temperatures, and oxidation resistance.

The following six alloys showed high-temperature strength:

Cb-15Hf-5W-2Zr-4Al-4Ti-2N	Ta-20Hf-4Al
Cb-15Hf-5W-5Zr	Ta-30Hf-4Al
Cb-15.3Ti-4.1Zr-13.7Hf	Ta-20Hf-5W-4A1

At 1,200° C the columbium alloys had strength At $1,200^{\circ}$ C the columbium alloys had strength values of 40,000 psi or greater, and the tantalum alloys had strength values from 50,000 to 58,000 psi. For a 2-hour test period at 1,000° C, weight gains of only 9 and 8 mg/cm², respectively, were observed on oxidation testing of two alloys, Cb-15Hf-5W-2Zr-4Al-4Ti-2N and Ta-20Hf-4Al.

RI 7117. Silver Recovery From Waste Photographic Solutions by Metallic Displacement, by R. O. Dannenberg and G. M. Potter. April 1968. 22 pp. 5 figs. A able steel wool or steel window screen, was devised and successfully used for the recovery of silver from waste photographic fixing solutions. Laboratory and prolonged commercial-scale testing established that the iron filament type unit will efficiently precipitate silver, as a high-grade sludge, from acidic waste photographic fixing solutions ranging in grade from les than 1 to over 10 grams of silver per liter. Data and design information are presented to facilitate the construction and operation of a practical unit of any desired size. A smelting process for recovering pure silver from precipitated sludge containing 27 to 80 percent silver was devised.

RI 711B. Tungsten Whiskers by Vapar-Phase Growth, by A. G. Starliper and H. Kenworthy. April 1968. 13 pp. 11 figs. Laboratory studies were made to produce whiskers of tungster, over a wide range of operating temperatures. Hydrogen reduction of tungsten hexachloride in a vacuum furnace at temperatures from $2,700^{\circ}$ to $3,300^{\circ}$ C yielded a small quantity of tungsten whiskers, provided a low degree of supersaturation was maintained. Direct measurements of 3,000,000 to 4,000,000 psi were obtained for the ultimate tensile strengths of individual whiskers averaging 3 to 4 microns in diameter with average aspect ratios of 1,000. This compares with strengths of 300,000 to 400,000 psi for 13-micron-diameter commercial filaments.

RI 7119. Nonpyritic Smelling of Copper Concentrates, by J. L. Reuss and M. M. Fine. April 1968. 10 pp. 2 figs. The Bureau of Mines investigated the technical feasibility of smelting copper concentrates containing chalcocite (Cu₂S) and native copper using nonpyritic sulfur-bearing materials to aid matte formation. The procedure consisted of combining various proportions of commercial chalcocite concentrate, smelter slag, fluxes, and matte-forming constituents to produce charges of comparable compositions. The mixtures were charged in fire-clay crucibles and smelted in an induction furnace at 1,300° C. The research proved that either sulfur or gypsum can replace pyrite as a matte-forming material and that gypsum produces an exceptionally high-grade copper matte. The addition of small quantities of metallic iron to the nonpyritic smelting charge furthers the removal of sulfur, improves the recovery of copper, and makes it possible to utilize gypsum as the exclusive flux and matte-forming ingredient, thereby eliminating the necessity of adding limestone.

RI 7120. Hydroulic Mining of Anthracite. Analysis of Operating Variables, by Wilbert T. Malenka. April 1968. 19 pp. 10 figs. A modified factorial experiment was used to determine the effect of operating factors in hydraulic mining of anthracite. Seven basic factors at various levels were considered. The significant factors were found to be pressurevolume, pattern, and jet traverse speed. Mining data were programed for computer, and a prediction equation was determined from printout information based on the hydraulic "jumbo" operating parameters and characteristics of anthracite. The source of error is discussed. The prediction equation is general in nature and might be useful in delineating performance characteristics in the design of equipment and/or more effective utilization in a medium with characteristics similar to those of anthracite. Work done in cooperation with the Glen Alden Coal Corp. (now Blue Coal Corp.).

RI 7121. Effects of Cobalt an Precipitation Hardening of AM 350 Stainless Steel, by M. M. Tilman. April 1968. 6 pp. 3 figs. A series of alloys was laboratory prepared by adding up to 4 weight-percent cobalt to the basic composition of type AM 350 (AISI 633) stainless steel. Aging curves were established for each alloy at 750°, 850°, and 950° F for lengths of time up to 100 hours. A series of annealed steels containing as much as 1 weight-percent cobalt was cold-rolled 50 percent and aged for 3 hours at 850° F. No improvement in hardness due to cobalt was observed in the steels transformed by heat treatment. Slight improvements in hardness were observed in the steels transformed by cold working.

RI 7122. Similar Compositions of Alkanes from Coal, Petroleum, Natural Gas and Fischer-Tropsch Product. Calculation of Isomers, by R. A. Friedel and A. G. Sharkey, Jr. April 1968. 10 pp. Data on compositions of natural substances are important in the study of possible interrelationships. The similarity of the low-molecular-weight alkane isomers from crude oil and Fischer-Tropsch catalytic synthesis product has been reported. A similar composition for the alkane isomers from high-temperature coal carbonization has been found. The composition of the C, to C₇ alkane isomers from these three sources can be calculated quantitatively with the equations previously developed to calculate alkane isomers in Fischer-Tropsch products. An interesting reversal of the concentrations of the monomethyl isomers from C₆ (2 Me > 3 Me) to C₇ (3 Me > 2 Me) occurs in all three products; fragmentary comparisons at higher carbon numbers indicate some dissimilarities.

Naphthene isomers in the C₆ to C₇ range for crude oil and high-temperature coal carbonization also have similar compositions. Aliphatic hydrocarbons from low-temperature coal carbonization processes are considerably different, consisting mainly of normal alkanes.

RI 7123. Recovery of Cerium and Lanthanum by Ozonation of Lanthanide Solutions, by D. J. Bauer and R. E. Lindstrom. May 1968. 9 pp. 2 figs. Oxidation of mixed lanthanide solutions with ozone at pH 4.5 and at ambient temperature resulted in precipitation of 98 percent of the original cerium present. Corresponding cerium purity was increased from 50 to 98 percent. A second ozone oxidationprecipitation step produced cerium of 99.9-percent purity in high yield from the 98-percent-pure material. Alternately, ozonation at pH 6.5 and 85° C differentially precipitated cerium and rare-earth elements heavier than cerium and left 89 percent of the original lanthanum in solution at a purity of 95 percent. Subsequent recovery of cerium from the heavier rare-earth elements in the precipitate was accomplished by dissolving the cerium with ozone at pH 4.5 and at ambient temperature. The filtrate contained an enriched praseodymium-neodymiumsamarium-europium mixture that is amenable to separation by ion-exchange or solvent extraction.

RI 7124. Analysis of Mineral Matter in Coals by X-Ray Fluorescence, by Martin Berman and Sabri Ergun. May 1968. 20 pp. 9 figs. The Bureau of Mines investigated the mineral matter content of 38 American coals using X-ray fluorescence. Measurements of the Ka intensity for magnesium, aluminum, silicon, sulfur, calcium, and iron permit the determination of those elements as well as an indirect determination of the ash content of the coals. The percentage of each of the six elements was corrected for absorption by all six elements as well as by hydrogen, carbon, nitrogen, and oxygen. It made little difference whether the values used for hydrogen, carbon, and nitrogen were obtained from chemical analysis or whether average values for all coals were used. In all cases, oxygen was obtained by difference. The correction for absorption by all these elements involved the inversion of a 6 × 6 matrix and was performed by computer. Assuming that the elements magnesium, aluminum, silicon, calcium, and iron were present in the ash as oxides, the quantity of ash was determined. The results for the mineral elements as well as for ash and oxygen

Particle size was found to have a significant effect on fluorescence intensities. A study of size effects was made for pyrite particles, since the sulfur content of coals is of particular interest. Theoretical equations were derived and verified relating the intensity to particle size. It was found that the coal samples must be ground to less than 2 microns. Sulfur appears in several forms in coal, and the effect of sulfur form on intensity was investigated. It was found that the K_{α} intensity was independent of sulfur form but the K_{β} intensity varied with the type of sulfur. Thus, the K_{α} intensity was used for determination of the quantity of sulfur present. Utilization of the sulfur K_{β} intensity did not permit a determination of the proportions of sulfur forms present in coal. However, for synthetic mixtures of cystine and pyrite in carbon black, measurement of sulfur K_{α} and K_{β} permit determination of each constituent from measurements of sulfur intensities alone.

RI 7125. Vapor Pressures of Liquid Columbium (2,740° to 3,140° K) and Liquid Hafnium (2,500° to 2,810° K), by R. K. Koch, W. E. Anable, and R. A. Beall. May 1968. 24 pp. 11 figs. The vapor pressures of liquid columbium and liquid hafnium were determined by the Langmuir free evaporation method as a part of the Bureau of Mines program on the study of transition metals. An electron-beam furnace with a water-cooled copper crucible was used for melting. Temperature was measured with a two-color ratio pyrometer. Least-squares analyses of the vapor pressure data gave the following equations:

.

.

(

;

f

1

C

$$Log p (atm) = 5.429 - \frac{31.310}{5}$$

for liquid columbium in the range 2,740° to 3,140° K, and

 $\log p (atm) = 5.690 - \frac{28,850}{m}$

for liquid hafnium in the range $2,500^{\circ}$ to $2,810^{\circ}$ K. Third-law evaluations of each data set gave mean heats of sublimation (298.15° K) of 175.1 ± 3.2 kcal/mole and 148.3 ± 1.2 kcal/mole for columbium and hafnium, respectively. Second-law standard heats of sublimation determined from sigma plots and from sigma-prime plots agreed fairly well with the third-law values. The sigma-prime plots gave standard entropies of sublimation of 30.96 ± 0.84 eu and 33.56 = 0.44 eu for columbium and hafnium, respectively.

RI 7126. Oxidation of Lead Blast Furnace Matte by Ferrobacillus forroaxidans or a Dilute Acid Solution, by John D. Corrick and Joseph A. Sutton. May 1968. 19 pp. 8 figs. A dilute sulfuric acid leach was developed for extracting lead and copper from lead blast furnace mattes and the chemistry was defined. The possible application of Ferrobacillus ferroaxidans to the problem of salvaging lead and copper from blast furnace mattes was also investigated. C perating conditions were varied to determine their effect on the oxidation and hence extraction of lead and copper from the matte. Conditions varied were temperature, pH, reaction time, aeration in the slurry, and particle size of the matte. A set of optimum conditions was developed that

A set of optimum conditions was developed that resulted in maximum lead and copper sulfide oxidation. Tests employing these optimum conditions resulted in 82.3 percent of the lead and 98.7 percent of the copper being extracted by a dilute acid leach, while maximum lead and copper extracted using F. ferrooxidans was 69.8 percent of the lead and 78.4 percent of the copper. Tests conducted with a different sample of blast furnace matte indicated that the dilute acid leach might have wide application in extracting lead and copper from other such blast furnace mattes.

RI 7127. The Incendivity of Permissible Explosives in Cool Dust-Gas-Air Mixtures, by C. M. Mason, P. A. Richardson, and R. W. Van Dolah. May 1968. 12 pp. 2 figs. Mechanical mining produces large quantities of very fine coal dust called float dust. The associated increase in hazard requires a reexamination of the Bureau of Mines method of evaluating the incendivity of explosives in coal dust-gasair mixtures. A technique recently developed by Bureau of Mines laboratories for evaluating the incendivity of explosives in coal dust-air mixtures was applied, with modifications, to coal dust-air-natural gas mixtures. A series of permissible explosives were evaluated by this modified technique. Results indicate that the modified technique could be the basis of a more discriminatory procedure than that presently in use.

RI 7128. Developing a Thermochemical Model for the iron Blast Funace. Rate of Reduction of Granular Ferrous Oxide by Carbon Monoxide in a Packed Bed, by Hillary W. St. Clair. May 1968. 13 pp. Reaction rate coefficients were determined from analyses of the effluent gas for the reduction of granular ferrous oxide to metallic iron by passing carbon monoxide through a packed bed of oxide at a controlled rate in the temperature range 1,000° to 1,300° C. Coefficients were determined by the comparison of observed analyses and calculated analyses using a mathematical model that takes into account the nonuniform composition of both the solid oxide and the gas. A method is also given for finding the value of the rate coefficient that best fits the observed data.

RI 7129. Shales for lightweight Aggregate in Appelachian Region, Kentucky and Tennessee, by Ronald P. Hollenbeck and M. E. Tyrrell. May 1968. 54 pp. 14 figs. Shales in the Appalachian region of Kentucky and Tennessee were sampled and tested to determine their use as raw materials for the manufacture of lightweight aggregate by the rotary-kiln method. Nine samples were obtained from eastern Kentucky and 143 samples were obtained from eastern Kentucky and 143 samples were obtained from eastern determ Tenneessee. As a result of preliminary testing of these samples, two sources in eastern Kentucky and 11 sources in eastern Tennessee were resampled for rotary-kiln tests. The rotary-kiln tests showed the two sources in Kentucky and seven sources in Tennessee contained shale that would produce satisfactory aggregate. Lightweight aggregate processed from these nine sources was tested in concrete shapes and was found to be suitable for use in structural concrete.

RI 7130. Application of Filiform Tungsten To Reinforce Metals, by A. G. Starliper and H. Kenworthy. May 1968. 18 pp. 12 figs. The Bureau of Mines made laboratory investigations to determine the feasibility of utilizing fine tungsten wires to reinforce a number of nonferrous metals and alloys and a superalloy, S-816. The composites of tungsten filament and metals were chosen to attain elevated temperature strength and corrosion resistance. Oriented clean or precoated tungsten wires were incorporated with the other metals by extrusion, swaging, and infiltration casting. Although widely varying characteristics were found in the composites, none were considered satisfactory for high-temperature use, chiefly because of reactions between the matrix metal-tungsten surface. Diffusion, solution, and chemical reactions between matrix and tungsten wires were sufficiently slow for some combinations, such as 15 v/o S-816, to exhibit increased hightemperature strength for a limited time. A few metals failed to wet or bond to the tungsten surfaces, while a few responded after precoating with a third metal. RI 7131. Carbonizing Properties of Coals from Fayette, Greene, and Washington Counties, Pa., by D. E.
Wolfson and C. Ortuglio. May 1968. 14 pp. 1 fig. The Bureau of Mines carbonized 21 coal samples from Fayette, Greene, and Washington Counties, Pa., at 900° C, using the Bureau of Mines-American Gas Association (BM-AGA) method, and determined yields of products and physical properties of the coke. These samples represented high-volatile A Pittsburgh, Sewickley, Waynesburg, and Upper Freeport and medium-volatile Upper Freeport and Lower Kittanning coals. About 20 percent of all coals presently carbonized in commercial coke ovens in the United States are mined in Greene and Washington Counties, principally from the Pittsburgh seam. Sulfur content of the Pittsburgh coals in these counties is moderately high (1.0 to 3.2 percent) but, because of extremely large reserves, accessibility to Eastern United States markets and excellent blending characteristics to yield strong coke, these counties will continue to be an important source of metallurgical coals in the future. Most coals from the other seams contained more than 2 percent sulfur, which would limit their use as metallurgical coals.

RI 7132. Dust Explosibility of Chemicals, Drugs, Dyes, and Pesticides, by Henry G. Dorsett, Jr., and John Nagy. May 1968. 23 pp. 1 fig. Dust explosion data obtained in laboratory tests by the Bureau of Mines are presented for 73 chemical compounds and mixtures, 29 drugs, 27 dyes, and 46 pesticides. Information is given on ignition temperatures of cloud and layer, minimum igniting energy, minimum explosive concentration, percent of inert dust required to prevent flame propagation, limiting oxygen concentration in the atmosphere to prevent ignition, and pressures and rates of pressure rise at dust concentrations of 0.1.0.2, 0.5, 1.0, and 2.0 ounces per cubic foot. Explosibility indexes are computed where data are available to permit comparison of the relative explosion hazard. Variations of explosibility parameters with chemical compositions are discussed. General means for minimizing the dust explosion hazard are reviewed.

RI 7133. Methods for Determining Nitrogen Oxides in Automotive Exhausts, by Basil Dimitriades. May 1968. 29 pp. 9 figs. Five recently developed methods for determining nitrogen oxides in automotive exhausts have been evaluated from the standpoint of accuracy and applicability in current exhaust studies. Results showed that methods requiring conversion of nitric oxide to nitrogen dioxide as a part of the analytical procedure are subject to errors introduced by the instability of NO₂. The extent of some of these errors has been determined and procedures have been developed to minimize undesirable influences. On the basis of the results obtained from this study, recommendations are made regarding procedures for batch type or continuous measurement of nitrogen oxides in exhaust streams. Work done in cooperation with the Coordinating Research Council, Inc.

RI 7134. Heavy Liquid Cyclone Concentration of Minerals (in Two Parts). 2. A Study of Liquid Cyclone Concentration of Various Mineral Systems, by R. B. Tippin and James S. Browning. June 1968. 53 pp. 25 figs. Research investigations conducted on five ore samples show the applicability of heavy liquid separation (HLS) techniques to mineral processing. Under proper operating conditions, semicontinuous tests in small fluid cyclones yielded 90 percent sinkfloat concentrates with recoveries exceeding 90 percent on minus 35-mesh ore samples of kyanite, potash, spodumene, fluorspar, and beryl. Although none of the ores were examined in detail, their response to this novel concentration method provides basic examples that are typical of the process.

Various aspects of cyclone design and operational characteristics of heavy liquid cyclone circuits were studied which demonstrated the flexibility of HLS by using multiples units connected in series. A comparison of two heavy liquid solutions, tetrabromoethane and methylene bromide, exhibited their individual advantages and limitations. Unique problems relative to this process are discussed including liquid viscosity, mineral composition of the ore, toxicity, and material handling hazards. Work done in cooperation with the University of Alabama.

RI 7135. Measurement of Olsic Acid on Mineral Surfaces Using a Gas-liquid Chromatograph, by Jerry L. Huiatt, J. Vance Batty, and B. F. Andrew. May 1968. 22 pp. 2 figs. An accurate and reproducible procedure was developed using the gas-liquid chromatograph to quantitatively measure oleic acid on flotation products and in flotation water phases. The method comprised extraction of the oleic acid from the mineral surfaces with alcoholic NaOH, esterification of the extracted oleate, and chromatography of the methyl ester with an internal standard. Quantitative analysis of oleic acid on flotation products from test tube and bench-scale flotation tests with pure minerals and with natural ores proved the applicability of the method on a variety of minerals. The accountability of oleic acid added was 100 percent ± 5 percent.

RI 7136. Elastic Pressure Distortion of the Volumes of a Burnett Compressibility Apparatus, by Ted C. Briggs and Robert E. Barieau. June 1968. 32 pp. 1 fig. Equations for the elastic pressure distortion of the volumes of a Burnett compressibility apparatus are developed and presented in this report for volumes under internal and external applied pressures. An experimental method for the determination of the external-pressure distortion coefficients is presented. Young's modulus and the internalpressure distortion coefficients are computed from the experimentally determined external-pressure distortion coefficients. The temperature dependence of the pressure distortion coefficients and of Young's modulus is evaluated for the temperature range 0° to 80° C.

RI 7137. Cost Hafnium Carbide-Carbon Alleys: Preparation, Evaluation, and Properties, by R. P. Adams, M. I. Copeland, D. K. Deardoff, and R. L. Lincoln. June 1968. 50 pp. 26 figs. Because of the extreme interest in materials with high melting temperatures and the advantages offered over the powder route for making high-density material, arc-melting and centrifugal-casting methods were investigated for preparing shapes of hafnium carbide with and without excess carbon. Highly satisfactory equipment was constructed and efficient operating procedures were established. Also, methods for preparing consumable electrodes and shrink-tolerant graphite molds were developed. Although crack-free hafnium carbide (6.3 weight-percent carbon) shapes were not made, coherent castings containing 9 to 13.5 weightpercent carbon were produced; the same compositions were shown to be resistant to thermal shock. Selected physical and chemical tests were performed on castings chosen for investigation by chemical and nondestructive inspection techniques. Electrical conductivity and thermal expansion measurements were made. Measurable oxidation of all the compositions studied was observed to start between 500° and 600° C. Attack by nitrogen, however, did not occur until temperatures exceeded 2,000° C. A linear relationship of the logarithm of the diamond pyramid hardness to the temperature was noted. Considerable scatter of the bend-rupture strengths at room temperature and of the tensile strengths up to 2,000° C was found. However, at the latter temperature and above, a definite relationship of strength to temperature was observed and some ductility was noted. Work done under an agreement with the U.S. Atomic Energy Commission.

RI 7138. Effect of Ammonia in Cyanide Solution on Copper Extraction From a Michigan Ore, by A. F. Colombo. May 1968. 7 pp. 1 fig. Bench-scale research was undertaken to determine if adding ammonia to cyanide leaching solutions would enhance the extraction of copper from an argillaceous Michigan copper ore. Two leaching techniques, (1) rolling using a tumbling bottle and (2) aerating using a modified Buchner funnel, and variations in pulp temperature were employed in evaluating the effect of ammonia concentration on copper extraction. Under these experimental conditions, the extraction of copper was shown to be independent of ammonia concentration and entirely dependent on cyanide concentration.

ı,

1

RI 7139. Electrification of Ammenium Nitrate in Pneumatic Loading, by E. L. Litchfield, M. H. Hay, and J. S. Monroe. June 1968. 19 pp. 6 figs. The electrification of ammonium nitrate-fuel oil (AN-FO) blasting agents by pneumatic loaders is described and discussed. The consequences of the electrification are considered in light of the initiation requirements of electric blasting caps. It is recommended (1) that semiconductive loading tubing be utilized and (2) that the resistivity of the AN-FO be controlled; it is further recommended that the operator (3) test to assure continuity of the electric detonator legwire-bridgewire-legwire circuit prior to insertion of the cap into charge or borehole, (4) keep the legwires shunted but not otherwise connected to ground during loading of the blasting agent into the borehole, (5) assure that the borehole is discharged prior to hooking up the detonator leads, (6) assure that he is himself discharged prior to handling the detonator leads, and (7) assure that the blasting cap leads are never carried to the AN-FO loader. The basis and significance of these recommendations are explained.

RI 7140. Centrifugal Dewatering of Jamaican Red Mud, by Philip C. Good and O. C. Fursman. June 1968. 10 pp. 1 fig. Red mud residue from Bayer process treatment of Jamaican bauxite was dewatered in batch and in continuous centrifuges. Solids content of the residue was increased from its original value of 20 to 25 percent to about 40 percent by centrifuging. Clear effluent amounting to approximately 40 percent of the slurry liquid was recovered containing dissolved alumina and soda values for potential recycle to the alumina plant. Addition of a chemical flocculant to the centrifuge increased capacity by about 35 percent. Manufacturer's estimate of large-scale equipment requirements, based on data collected in this investigation, was that a proposed installation for dewatering 16,000 tons per day of Jamaican red mud would require twenty-two 24- by 60-inch solid-bowl-tvpe centrifuges. Cost analysis of a proposed installation, based on a Jamaican red mud tonnage of 16,000 per day, is included also. RI 7141. Entrained-Bed Carbonization of Highly Fluid Bituminous Coals, by Manuel Gomez, W. S. Landers, and E. O. Wagner. June 1968. 34 pp. 1 fig. Bituminous coals having maximum fluidity values in the 40- to 25,400-dial-divisions-per-minute (ddpm) range were carbonized in a continuous, entrained-bed reactor. Carbonization was conducted in an 8-inch-diameter vertical reactor at temperatures from 955° to 1,345° F and at air-to-coal ratios ranging from 4.63 to 16.12 scf/lb of moisture- and ash-free coal charged. Carbonization rates from about 118 to 360 lb/hr, as-carbonized basis, were examined. It was demonstrated that carbonization temperature and air-to-coal ratio must exceed minimum values for continuous operation. Within the operating conditions discussed, highly fluid bituminous coal was carbonized to produce tar and nonagglomerated char. The yield of tar ranged from 21.3 to 38.9 gallons per ton and the char yield ranged from 1,109 to 1,563 pounds per ton, all units expressed on a moisture- and ash-free basis. It was demonstrated that the maximum fluidity and the average size of the coal along with the air-to-coal ratio and the carbonization product yields and certain properties of the products. Prediction equations were developed from the data for product yields and selected properties of the char, tar, and gas.

Ri 7142. Development of a High-Temperature Interferometric Dilatometer Using a Laser Light Source, by P. M. Johnson, R. L. Lincoln, and E. R. McClure. June 1968. 13 pp. 7 figs. A design for a laser-powered optical interferometer, using a specimen whose thermal expansion is to be measured as part of the optical system, was conceived and applied in a prototype dilatometer. The object of this work was the development of an absolute dilatometer capable of use at elevated temperatures, particularly above 1,000° C. The prototype has been operated at temperatures exceeding 1,500° C. Results obtained with this device agree within 2.5 percent with the published data for the coefficient of expansion of columbium.

RI 7143. An Anisotropic Elastic Solution for Testing Stress Relief Cores, by Robert M. Becker. June 1968. 15 pp. 2 figs. A thick-wall cylinder solution applicable to the evaluation of anisotropic elastic parameters is derived for the interpretation of stress relief data. For a restricted class of problems, a special relationship among certain orthotropic moduli yields stress distributions for the plane orthotropic problem that are identical to the corresponding isotropic case. A ring or hollow cylinder with these specialized anisotropic properties subjected to uniform radial loads is one of the problems in this class. Consequently, known stress solutions are used to develop the strains and displacements for a specialized orthotropic thick-wall cylinder under uniform pressures. The results are consistent with anisotropic equations used in the evaluation of in situ rock stresses.

RI 7144. Laboratory Oil-Recovery Experiments Using Ultrasonic Energy, by C. I. Pierce and C. A. Komar. June 1968. 8 pp. 1 fig. The Bureau of Mines conducted laboratory tests to determine if ultrasonic energy could reduce either the residual water or oil content of petroleum reservoir-rock samples from Appalachian area oilfields. Brine-saturated core samples were flooded with oil to residual brine saturation and subjected to 20 kilocycles per second ultrasonic energy. Then they were flooded with brine to residual oil saturation and again subjected to ultrasonic energy. Additional water displaced as a result of the application of ultrasonic energy to the flow system ranged from 0 to 4.3 percent of the original brine and averaged 1.9 percent. The increase in oil recovery as a result of the ultrasonic energy ranged from 0 to 9.0 percent of the original oil and averaged 3.1 percent. On the basis of the tests, it appears that 20-kcp acoustic waves would not have field application for oil recovery.

Rt 7145. High-Purity Vanadium by Metallathermic Reduction of Vanadium Trichloride, by M. J. Ferrante, F. E. Block, and J. L. Schaller. July 1968. 22 pp. 8 figs. The preparation and subsequent reduction of vanadium trichloride was investigated as a process for the production of high-purity vanadium metal. Chlorine was reacted with vanadium oxide in the presence of carbon to form vanadium tetrachloride. The contaminant vanadium oxytrichloride was also formed and later converted to tetrachloride by reaction with chlorine in the presence of activated charcoal. Vanadium tetrachloride was stirred continuously during thermal dissociation to vanadium trichloride powder from which volatile contaminants were removed by distillation. The vanadium trichloride feeding of the trichloride into molten magnesium. Excess reductant and byproduct salt were removed from the vanadium sponge by high-vacuum distillation. Batches as large as 6.5 kilograms of sponge metal were prepared at an average reaction efficiency of 98 percent. Vanadium sponge after consolidation by arc-melting contained 820 to 1,330 ppm of interstitial impurities and had a hardness between Rockwell B 40 and 70. This metal exhibited excellent workability at room temperature. The purification of impure vanadium metal by electronbeam melting resulted in lowering interstitial impurities from 1,890 to 504 ppm and hardness from Rockwell B 87 to 28.

RI 7146. Direct Electrolysis of Rare-Earth Oxides to Matals and Alloys in Fluoride Melts, by E. Morrice, E. S. Shedd, and T. A. Henrie. June 1968. 12 pp. 3 figs. Techniques developed by the Bureau of Mines for the preparation of high-purity rare-earth metals and their alloys by electrolysis of the oxides in fluoride media are summarized. Cerium, lanthanum, neodymium, praseodymium, dysprosium, gadolinium, and yttrium metals, the mixture didymium, and specific alloys of these materials and samarium with iron, nickel, chromium, and cobalt were prepared. Individual metals were electrodeposited in the liquid state on tungsten or molybdenum cathodes. Allovs were prepared by electrodepositing the rareearth metal on a consumable cathode, at a temperature above the melting point of the eutectic formed between the rare-earth element and the cathode material. Cells were designed for electrowinning metal products in gram and pound quantities, and methods for continuous electrowinning of cerium and lanthanum were developed.

RI 7147. Pressure Pulses Produced by Underground Blasts, by N. E. Hanna and M. G. Zabetakis. June 1968. 16 pp. 12 figs. An investigation was made of pressure pulses produced by unconfined explosive blasts in underground openings. Four tests were made with TNT or modified amatol charges ranging in weight from 60 to 2,000 pounds; each test involved either single or multiple charges. Pressuretime profiles were obtained using mechanical selfrecording pressure gages. The cube-root scaling law for peak pressure was found to be valid within about 1 tunnel diameter; at greater distances, the pressures obtained along direct paths were generally higher than this scaling law would indicate.

RI 7148. Beryllium Reseurces of Idaho, Washington, Montana, and Oregon, by Eldon C. Pattee, Ronald M. Van Noy, and Robert D. Weldin. July 1968. 169 pp. 78 figs. Reconnaisance samples of reported beryllium occurrences in Idaho, Washington, Montana, and Oregon were chemically and spectroscopically tested in a mobile laboratory. The two predominant types of occurrences were green beryl associated with Cretaceous intrusions and disseminated aquamarine associated with Tertiary intrusions. Although the beryllium content of known deposits in the Northwest is too low for economic development at present, total submarginal-grade beryllium resources in pegmatites are estimated to be 570,000 to 1,870,000 tons containing 0.024 to 0.167 percent BeO. A potential source of 500,000 to 700,000 tons of beryllium-bearing tactite in Idaho and Montana averages 0.033 to 0.080 percent BeO. Work on the Idaho Bureau of Mines and Geology.

RI 7149. Development and Evoluction of Nonincendive Detonoting Cord, by C. M. Mason, J. L. Uraco, and J. C. Cooper. June 1968. 9 pp. 2 figs. A method for evaluating the relative incendivity of detonating cord in natural gas-air mixtures was developed. The method consisted of firing short lengths of cord in bundles to determine the number of strands per bundle which would ignite natural gas-air mixtures 50 percent of the time in the 45cubic-foot gallery of the Bureau of Mines. The relative efficiency of a flame quenching agent, potassium acid tartrate (KHT), when incorporated in both the pentaerythritol tetranitrate (PETN) core and the polyethylene sheath, was explored. The effects of sheath thickness, sheath composition, core weight, and core composition were evaluated. The bundle method established a quantitative scale for evaluating the relative incendivity of cords. The relative incendivity determined by the bundle method was then compared with the incendivity of 100-foot lengths of detonating cord when initiated in 8 percent natural gas in the 640-cubic-foot gallery of the Bureau of Mines.

RI 7150. Boron and Boron Carbide by Vapor Deposition, by J. G. Donaldson, James B. Stephenson, and A. A. Cochran. June 1968. 15 pp. 10 figs. The Bureau of Mines investigated the formation of boron and boron carbide coatings by vapor-phase reactions. Optimum parameters were determined for hydrogen reduction of boron trichloride and for the formation of boron carbide coatings on graphite by reaction with the depositing boron. At 1,300° C, about 85 percent of the boron was deposited. Tungsten substrates did not react with the boron deposit; other substrates reacted to various extents. The hydrogen reduction of boron tribromide was briefly investigated. Boron carbide was deposited at 1,300° C by adding methane to the boron trichloride-hydrogen feed gas. The chemical composition of the vapordevosited boron carbide approximated B.C. A method of etching B.C was developed to study its microstructure. When boron was deposited on graphite at 1,500° C, very hard, uniform, strongly adherent coatings of B.C were formed that might be useful in rocket nozzle applications.

RI 7151. A Model for Molton Pools in Arc Melting, by F. W. Wood. July 1968. 33 pp. 22 figs. The use of consumable-electrode arc melting as a production technology is growing. One advantage of this process is that it avoids ingot contamination by soluble crucible materials by employing a chilled metal crucible. Because the thermal balance under these conditions is rather delicate and does not necessarily provide a favorable environment for solidification, catastrophic imbalances can occur. The effectiveness and mechanistic roles of various factors are mostly unknown, and more intelligent insight into the distribution of temperature and heat is needed.

Experience has provided several pertinent observations, some of which are quite superficial. The most meaningful data have resulted from studies of molten pool shapes and sizes and from measurements of heat flow through crucible walls. Overall experience, intuitively interpreted and supplemented, is sufficient nevertheless as a basis for a boundary-value treatment of the problem. A mathematical analysis based on a separation of variables, using conventional differential equation methods, provides a useful solution. For a cylindrical ingot, the tem-perature varies as a Bessel function of an argument perature varies as a based function of an argument proportional to the radius and as an exponential function of longitudinal position.

Trial calculations using the problem solution seem with experience. The role and nature of solution parameters are also clarified, although not entirely resolved. It is revealed that the barrier to heat flow at the ingot-crucible surface has a prominent in-fluence. The utility of the model embodied in the problem solution is readily demonstrated by considering a variety of contemporary questions about arc melting.

RI 7152. Conversion of Jungsten Oxychloride to Jungsten Hexachloride by Chlorination, by A. W. Hender-son, D. H. Yee, and F. E. Block. June 1968. 14 pp. 6 figs. Methods for converting WOCl, to WCle were investigated in a small-scale laboratory apparatus to devise a method for preparing pure WCle suitable for conversion to tungsten metal. Chlorine, COCl₂, and CCl. slone and in combination with various and CCl., alone and in combination with various and CCI, alone and in combination with various forms of carbon, were tested as chlorinating agents at various temperatures. More than 95-percent con-version of WOCl₄ to WCl₆ was achieved with all reagents at 800° C in the presence of activated car-bon. Only CCl, maintained its effectiveness in the absence of carbon at 800° C. The effectiveness of carbon was found to be related directly to its surface area.

RI 7153. Rare-Earth Silicide Additions to an Alloy Steel to Increase Taughness and Ducility, by H. A. Tucker, R. T. Coulehan, and W. G. Wilson. June 1968. 30 pp. 13 figs. This Bureau of Mines in-vestigation was conducted to determine the appropriate quantities of rare-earth metals in the form of silicides to add to an alloy steel for the purpose of increasing toughness and ductility. The work was conducted in a vacuum induction furnace with the rare-earth additions required to deoxidize and de-sulfurize a simulated basic oxygen furnace vacuumdegassed steel initially containing 0.013 to 0.016 per-cent sulfur. The product proved to be as good or better than the best basic electric furnace steel of the same composition made by the steel industry.

1

1

ŧ

Twenty-three experimental heats of 5 Ni-Cr-Mo-V steel were made, cast into 50-lb ingots, and hotworked in a press and a rolling mill to 1/2-inch plates which were then heat-treated to 130/150 ksi yield strength. Impact and tension tests showed that the addition of 0.025 to 0.100 percent, or 1/2 to 2 lb

per ton, respectively, of rare-earth metals when compounded with silicon were appropriate for in-creasing toughness and ductility. These quantities resulted in retained cerium contents of 0.014 to 0.025 percent and increased the Charpy V-notch energy absorption and the percent reduction of area significantly as compared with base heats at the same sulfur content levels. All the test heats, including those with rare-earth additions of as much as 4 lb/ton, had greater Charpy V-notch energy absorption values than the base composition could have de-veloped at the starting sulfur range of 0.013 to 0.016 weight-percent. Work done in cooperation with the Molybdenum Corp. of America, N.Y.

.

RI 7154. Performance Characteristics of Coal-Washing Equipment: Dense-Medium Coarse-Coal Vessels, by J. Hudy, Jr. July 1968. 29 pp. 9 figs. The performance of six dense-medium washers was evalu-ated in five preparation plants. Three of the plants were making a two-product separation that pro-duced a clean coal and a refuse; one plant employed dense-medium vessels in series to effect a primary and a secondary separation; and one plant was equipped with a two-compartment washer effecting two separations in one vessel. The separate secondary drum-type washer produced a low-ash metal-lurgical coal and an intermediate-ash product suitable for plant fuel or steam generation. The two-compartment washer produced a premium anthracite product and a middlings product. The sharpness-of-separation values ranged from good to excellent for the five primary separations and for the secondary separation.

RI 7155. Effects of Planes of Weakness on Uniaxial Compres-

sive Strength of Model Mine Pillers, by Frank G. Horino. July 1968. 24 pp. 17 figs. The Bureau of Mines studied the uniaxial compressive strength of model rock pillars as a function of the angle and spacing of noncohesive planes of weakness. The model pillars were prepared from NX 2¹/₄-inch-diameter drill core of limestone, sandstone, and granite. The planes of weakness were diamond saw cuts ground flat and smooth. The angle of the planes of weakness, measured from the horizontal, varied from zero to 57° in approximately 15° increments. When two planes of weakness were used, the thickincrements. ness-to-diameter ratios of the wafer were 14, 1/2, and 1.

Approximately 400 model pillars were tested in uniaxial compression. The results indicate that the uniaxial compressive strength of model pillars decreases rapidly as the angle of the plane of weak-ness increases from 30° to 57° and that the spacing of these planes of weakness has only a minor effect on the strength. The effect of the number of hori-zontal planes of weakness, with a spacing of ¼ and 1/2 of the diameter, upon the compressive strength of model pillars was also investigated. These results indicate that as the number of planes of weakness increases the compressive strength of the pillar decreases. Normalizing the data provides useful estimates of model pillar strengths for any rock type.

RI 7156. An Evaluation of an Ammonium Sulfate Leaching

Process for Recovering Manganese From Minnesoto and Maine Resources. by John J. Henn, Frank A. Peters, Paul W. Johnson, and Ralph C. Kirby. July 1968. 68 pp. 21 figs. An evaluation is presented of an ammonium sulfate leaching process designed to extract manganese from Cuyuna, Minn., and Aroostook, Maine, deposits. In this process the man-

ganese and iron in the ore are reduced to MnO and Fe₂O₄ in a shaft furnace; the reduced ore is then leached with ammonium sulfate solution forming reached with ammonium suffate solution forming soluble manganous sulfate while leaving most of the iron undissolved. After filtration, the manganese and some impurities are precipitated from solution as carbonates which are then pelletized and calcined to form a product composed mainly of Mn_iO_i . The plants are designed to produce 100 tons per day of manganese contained in a product that is witchle for the production of formersponses A

day of manganese contained in a product that is suitable for the production of ferromanganese. A byproduct credit, together with the extra processing cost, is included for the Cuyuna ore processing plants, because Fe₂O₃ may be recovered for use in blast furnaces. The estimated operating costs per ton of manganese, excluding income taxes and re-turn on investment, are as follows:

Ore	Without byproduct recovery	With byproduct recovery
Cuyuna black Cuyuna brown	\$202.20 262.22	\$184.81 208.46
Aroostook northern district	321.95	

The process with or without byproduct recovery, when treating Cuyuna or Aroostook ores, is not eco-nomically competitive with ores available at \$71.43 per ton of contained manganese,

RI 7157. Hollow-Core Anthracite Briquets as Blast Furnace Fuel, by J. W. Eckerd, R. E. McKeever, P. L. Woolf, and W. S. Sanner. July 1968. 13 pp. 6 figs. Metal production rates of 42 to 45 tons per day were obtained with hollow-core anthracite briquets in an experimental blast furnace. Tuyere pressures were about the same for both coke and briquet operations, but from 150 to 175 pounds more of briquets ations, but from 150 to 175 pounds more of origuets were required per ton of metal than were needed with coke. Furnace operations were comparatively smooth, furnace hanging occurring less often than in previous tests with anthracite briquets. Dust production was substantially higher than with coke, however, and metal quality could not be controlled by according budgeting and metal quality could not be controlled by corrective burdening and moisture control.

RI 7158. Analysis of the Northern Great Plains Province Lig-RI 7158. Analysis of the Northern Great Plains Province Lig-nites and Their Ash: A Study of Variability, by Everett A. Sondreal, Wayne R. Kube, and James L. Elder. August 1968. 94 pp. 14 figs. Data are presented on the characteristics of lignites with emphasis on the composition and fusion properties of the ash. Differences in the analyses of commer-cial-grade lignites are related primarily to varia-tion main waiture and och contents. Jurite ach is tions in moisture and ash contents. Lignite ash is generally characterized by high concentrations of alkaline earth oxides and a greater tendency for retention of sulfur in the ash than higher rank coals. Composition of ash varies significantly within and between mines. The differences within mines are significant for short distances and may be eliminated under certain circumstances by normal mixing occurring during mining.

The sulfur in lignite averages 0.6 percent and is found primarily in the organic or pyritic forms with only a trace of the sulfate. During the standard laboratory ashing procedures, from 60 to 100 percent of the original sulfur is retained in the lignite ash. Trace elements, such as uranium and germanium, in the ash from commercial-grade lignites are pres-ent in low concentrations, but others, primarily copper and silver, are present in specific samples in concentrations approaching those found in some commercial ores.

RI 7159. Flotation of Mica From Pegmatites of Randolph

County, Ala., by Ralph B. Adair and J. S. Browning. July 1968. 11 pp. 2 figs. The Bureau of Mines conducted laboratory and small-scale continuous tests of weathered mica-pegmatite ores from Randolph County, Ala., to determine the feasibility of recovering commercial-grade mica concentrates by flotation. Two flotation methods were used in utilized acid-cationic flotation for the recovery of coarse mica and alkaline-anionic-cationic flotation for the recovery of fine mica. This method yielded mica concentrates containing 98.6 percent mica with a recovery of 85.9 percent. The other method was based on the Bureau-developed alkaline-anionic-cationic method and yielded concentrates containing 97.5 percent mica with a recovery of over 90 percent. In both methods, preconcentration of the ground ore on a Humphreys spiral was employed to reject over half of the feed in a product virtually free of mica. Work done in cooperation with the Black Warrior Petroleum Co., Inc., and the University of Alabama.

RI 7160. Sulfur Retention in Anthracite Ash, by J. J. Demeter and D. Bienstock. July 1968. 12 pp. 5 figs. Anthracite from the four producing regions in Pennsylvania was both ashed in the laboratory and burned on a chain-grate stoker to determine the sulfur-retention properties of its ash. The retention of sulfur in laboratory-prepared anthracite ash was shown to be related to ashing temperature and to the amounts of sulfur and calcium present in the coal. At the usual laboratory ashing temperature of 750° C sulfur retention ranged from 0.8 to 13.2 percent of the total coal sulfur. Sulfur retention in the ash was negligible, 0 to 0.3 percent at 1,200° which is the thermal decomposition temperature C. of calcium sulfate; thus calcium sulfate does not form and cannot serve as a sulfur-retaining agent. In several tests the anthracite was mixed with 6 or 10 percent dolomite prior to firing in the chain-grate stoker. The dolomite did not improve sulfur retention owing to the high temperature in the fuel bed. Sulfur retention was, however, related to the unburned carbon in the ash. The relationship of the percentage of original coal sulfur retained in the ash(Y) to the percentage of the original carbon in the coal remaining in the ash (X) is expressed by Y = -0.579 + 0.914X. The percentage of sul-fur retained is almost directly proportionate to the percentage of original coal carbon in the ash.

RI 7161. Performance of a Low-Permeability Sandstone Oil Reservoir, West Avant Field, Osage County, Okla., by Kenneth H. Johnston. July 1968. 28 pp. 9 figs. Information and data necessary for research on improving methods of oil recovery from low-permeability reservoirs and for evaluation of performance and comparison of such reservoirs with those producing from more permeable sands were obtained. Core analyses, well logs, production tests, well stimulation techniques, primary and secondary production records, and data on two waterflood projects were examined for wells producing from the Bartlesville sand, West Avant field, Osage County, Okla. Overall recovery from the study area was generally poor with only 9.0 percent of the pore volume recovered to January 1, 1968. Larger fracture treatments (8,000 to 12,000 gal) could have resulted in an in-crease in primary oil recovery. Secondary recovery by waterflooding accounted for only 1.9 percent of the pore volume because of the inability to control the large volume of injection fluid that escaped from

the flood patterns and the excessive volumes of water produced with the oil. Future waterflood develop produced with the oil. Future waterflood develop-ment in other low-permeability reservoirs should include the drilling of new input wells, use of in-jectivity surveys to locate possible natural fracture systems or zones of high permeability, and control of injection fluids by altering flood patterns and/or plugging of the more permeable zones. Work done in cooperation with the State of Oklahoma and on the recommendation of the Oil Recovery Committee of the Independent Petroleum Association of America America.

RI 7162. Alumina Extraction by Autoclave Precipitation of Basic Sodium Aluminum Sulfate, by H. G. Iverson and H. Leitch. August 1968. 27 pp. 8 figs. An investigation was conducted on the conditions affecting the precipitation of aluminum by autoclaving synthetic solutions containing Na₂SO₄, Al₃(SO₄)₃, H₂SO₄, and H₂O. Virtually all of the alumina could be precipitated as natroalumite (NaAl₃(SO₄)₂(OH)₆). This product could be readily filtered and dried. Results are reported in terms of alumina precipitated in this compound and not in terms of alumina itself. Solutions of ~ 0.30, ~ 0.60, and ~ 0.80 mole/liter Al.O₃ and various concentrations of H₂SO, and Na.SO, were investigated. The optimum time and temperature for autoclaving were 20 to 30 minutes at 200° C.

The highest yields of natroalunite were obtained from solutions containing little H:SO, and ~ 2 moles Na.SO, per mole Al₂O₃. Acid in guantities of 0.3 to 0.5 mole/mole of alumina in solution depressed the yield to 90 percent or less.

In differential thermal analysis, at 1,000° C the In differential thermal analysis, at $1,000^{\circ}$ C the natroalunite precipitate decomposed without melt-ing to yield SO, and SO₂ gases, a solid composed of Na₂SO, and gamma and alpha Al₂O₃. Continued heating to 1,200° C produced Na₂SO, and alpha Al₂O₂. Water-leaching of this product removed the Na₂SO, and left a final residue of alpha Al₂O₃.

RI 7163. Evaluation of the Explosive-Anchored Rock Bolt, by

John B. Shutack and Norman E. Hanna. July 1968. 15 pp. 9 figs. In an effort to improve the performance of the explosive-anchored rock bolt, the Bureau of Mines studied the effect of the detonathe Bureau of Mines studied the effect of the detona-tion velocity of the explosive and type of charge (linear or nonlinear) on the fracturing tendency of the anchor tube. Also, different types of tubing were compared to determine the one most suitable for use as an anchor tube. The Bruceton up-and-down method was applied in tests in which steel shooting blocks having borcholes repring from 134 to 214 blocks having boreholes ranging from 1³/₄ to 2⁴/₆ inches in diameter were used. Of the four types of incres in diameter were used. Of the four types of tubing evaluated, a welded A-178 tubing that was drawn over a mandrel and renormalized gave the most promising results. The A-179 seamless tubing that is normally used with the explosive bolt was the most inferior. Both types, however, gave sig-nificantly better anchorage than the conventional shell when tested in both laboratory and under-ground experiments. Within the range of velocities studied (5.000 to 7.000 m/sec), the type of explosive studied (5,000 to 7,000 m/sec), the type of explosive showed no significant effect on anchor-tube per-formance. In general, linear explosive charges provided better anchorage than nonlinear charges.

Ę

RI 7164. An Acoustical Bench for an Ultrasonic Pulse System, by R. E. Thill, R. J. McWilliams, and T. H. Bur. July 1968. 22 pp. 12 figs. The ultrasonic pulse measurement system described measures velocities of longitudinal (compressional) and shear waves in rock to give values that can be used with

density values to determine the dynamic elastic constants of rock. A special feature of this pulse measurement system is its unique acoustical bench that minimizes the errors in pulse transit times which are commonly associated with coupling, sample alinement, and sample orientation. Some special features of the acoustical bench are its highly versatile transducer cartridges, a pneumatic ram coupling device, an orientation mechanism, and a vacuum of the acoustical bench assures automatic alimement of samples and versatility in accommodating samples of various shapes and sizes.

٠

RI 7165. Miniature Bilevel Alarm for Oxygen-Deficient Atmos-

pheres, by Robert A. Bradburn and Merle L. Bowser, August 1968, 15 pp. 15 figs. The Bureau of Mines has developed a miniature, portable two-level oxygen-deficiency alarm and produced three prototype models. Each operates from a 4.2-v dc power source, and the highest current drain of any model is 80 ma. An electrochemical cell, which produces an electrical output in proportion to the produces an electrical output in proportion to the partial pressure of oxygen to which it is exposed, is used as an oxygen detector. The output of the cell is applied to an electronic circuit that detects two different levels of oxygen percentage below that of normal air and produces distinct audible signals at these levels. The hazard alarm mode is activated when the oxygen percentage first drops below normal and produces a 500-cps beep tone with an intermit-tency of 1 cps. The danger mode produces a continuous 500-cps audible signal when the oxygen percentage drops still lower.

RI 7166. Purification and Concentration of a Cyclic Manganese leach Solution by Elevated Pressure-Temper-ature Methods, by F. E. Brantley, E. K. Landis, and W. R. Cureton. August 1968. 11 pp. 3 figs. Op-timum autoclaving conditions were determined for separation of iron and manganese values from gregnant leach liquor produced in extracting man-ganese from low-grade umber ore. The umber was leached with a synthetic anolyte, similar to a recycle solution used in manganese electrolysis cell operations, that had been renewed with ferrous sulfate and sulfuric acid. The equipment used and the re-sults obtained are presented for the several condi-tions employed. The kinetics of the separation were studied. Rate equations were derived for the formation of solid ammonium-manganese sulfate, $(NH_i)_2$ Mn₂(SO_i)₃. Work done in cooperation with the University of Alabama.

RI 7167. Heats of Formation of Four Anhydrous Sadium Borates, by L. H. Adami and C. J. Joe. August 1968. 9 pp. Heats of formation were ob-tained for four anhydrous crystalline sodium borates tailed for four anhydrous crystalline sodium borates by hydrochloric acid solution calorimetry. The heats of formation at 298.15° K from the elements are NaBO₂, -233.2 ± 0.6 kcal/mole; Na₂B,O₅, $-786.4 \pm$ 1.0 kcal/mole; NaB₂O₅, -549.9 ± 0.8 kcal/mole; and Na₂B,O₁₀, $-1,412.5 \pm 2.0$ kcal/mole. The heats of formation from the constituent oxides are NaBO₅, -23.5 ± 0.2 kcal/mole. $NaBO_5 \pm 0.2$ kcal/mole. $31.5 \pm 0.8 \text{ kcal/mole; Na}_2B_4O_7, -78.8 \pm 1.3 \text{ kcal/}$ mole; NaB₁O₂, -44.1 ± 0.8 kcal/mole; and Na₂B₅O₂₃, -96.7 ± 1.5 kcal/mole.

RI 7168. Investigation of Operating Variables in the Attrition Grinding Process, by Martin H. Stanczyk and I. L. Feld. August 1968. 28 pp. 4 figs. Benchscale, laboratory batch attrition grinding tests were made of a coarse commercial kaolin in a stainless steel, 5-inch-diameter attrition grinding machine to

study the effect of a number of basic operating variables on particle size reduction and electric energy consumption. The results of the investigation showed that the more important operating variables influencing the efficiency of kaolin comminution and energy consumption requirements were type, size, and shape of grinding media, grinding media to clay weight ratio, peripheral rotor speed, clay slip pulp density, degree of pulp dispersion, and the angular arrangement of the rotor and stator bars. The tests also indicated that variables having less influence on grinding efficiency and energy consumption were pulp temperature, design of rotor cage, rotor clearance, rotor-stator bar interval, addition agents, pulp level, degree of pulp aeration, and chamber liners. The research showed that grinding media had the greatest influence on abrasion of machine parts and that spherical-shaped grinding media were superior to sharp angular or long bladed media with respect to media degradation, machine abrasion as well as grinding efficiency. Work done in cooperation with the University of Alabama.

RI 7169. Corrosion Properties of the TZM and Melybdenum-30 Tungsten Alloys, by W. L. Acherman, J. P. Carter, and David Schlain. August 1968. 23 pp. 4 figs. The Bureau of Mines found the chemical and galvanic corrosion behavior of the TZM and molybdenum-30 tungsten alloys to be generally equal or superior to that of unalloyed molybdenum in many aqueous solutions of acids, bases, and salts. Notable exceptions occurred in 1 N nitric acid, where both alloys corroded appreciably faster than molybdenum. In mercuric chloride solutions, the TZM alloy was susceptible to a type of crevice corrosion which was not due to differential aeration. The alloys were usually not adversely affected by contact with dissimilar metals in galvanic couple experiments, but the dissimilar metals sometimes corroded galvanically. Both alloys were resistant to substitute ocean water spray at 60° C.

RI 7170. Ultrafine Grinding of Anthracite, by W. S. Sanner. August 1968. 17 pp. 7 figs. Grinding experiments were conducted to determine the finest anthracite particles that could be produced in a ball mill. Continuous and batch tests were run in a dry-grinding ball mill. Batch grinding produced the finest coal particles. They averaged 2.2 microns in diameter and were 99.0 percent smaller than 37 microns. Continuous grinding yielded a product 6.1 microns in diameter, with 96 percent smaller than 37 microns.

RI 7171. Effect of End Conditions on Determining Compressive Strength on Rock Samples, by John R. Hoskins and Frank G. Horino. August 1968. 22 pp. 10 figs. The Bureau of Mines conducted an investigation to more exactly define the influence of some end conditions on the laboratory-determined uniaxial compressive strength of rock samples. Limestone, marble, sandstone, and granite were used to provide a range of specimen modulus of elasticity from 2.7×10^6 psi to 10×10^6 psi. Four variables were studied: Nonparallelism and surface texture of specimen ends were the specimen variables investigated; the end platen size and the adjustable or spherical head friction were the machine variables studied. It was concluded that the loading ends of small laboratory models and samples should be prepared with surface irregularities that do not vary from a plane surface by more than 0.001 inch. It was also concluded that nonparallelism of the specimen ends should not exceed 8 minutes for a rigid head load or 15 minutes for an adjusting head load. The measured compressive strength of specimens prepared with these tolerances will be statistically the same with any diameter or thickness of platen and any degree of head friction if initial alinement of the specimen is assured.

RI 7172. Characteristics of Green River formation Oil Shales at Bureau of Mines Wyoming Corehole No. 1, by John Ward Smith, Laurence G. Trudell, and Kenneth E. Stanfield. September 1968. 92 pp. 6 figs. The Bureau of Mines drilled Wyoming Corehole No. 1 in Sweetwater County, Wyo., to sample Green River Formation oil shale. Core obtained was assayed for oil yield to determine richness and stratigraphic distribution of oil shale in the deposit. Oil shale in place at Wyoming No. 1 site represents over 200 million barrels of oil per square mile. Additional data useful in evaluating the deposit, including generalized stratigraphy and mineralogy, detailed lithologic descriptions of the core, rock specific gravity, and bore-hole logs, are presented with the oil-yield data. The sampled Wyoming oil shale resembles Mahogany-zone oil shale in rock properties and gross mineralogy. A statistically derived equation relating shale density to oil yield for the Wyoming Corehole No. 1 is calibrated for direct oil-yield logging. The alternating rich and lean beds of shale at this site may permit creating the permeability necessary for direct production of shale oil from the shale in place. Work done in cooperation with the University of Wyoming.

RI 7173. A Petrofabric Study of Tectonic and Mining-Induced Deformations in a Deep Mine, by Elbridge W. Gresseth and Rolland R. Reid. September 1968. 64 pp. 35 figs. Rock deformational structures in a deep mine were analyzed by petrofabric techniques to learn (1) the relative magnitude and direction of the principal stresses involved in tectonic deformations prior to mining, (2) the preferred orientation of rock planar discontinuities which define rock anisotropy prior to mining, and (3) the relationship of mining-induced rock failure to inherent rock stresses and inherent rock anisotropy. Rock fabric elements used for petrofabric analysis consisted of bedding planes, faults, joints, fractures, foliation, sericite plane (001), quartz axis [0001], quartz deformation lamellae, and microfractures. Structures and structural symmetries from different areas within the mine and from different scales of observation were compared to learn the nature of rock anisotropy and the orientations.

Analysis of such fabric as regional and macroscopic faults, b-c joints, quartz [0001], sericite (001), and microfractures indicates that during the epochs of tectonic deformation, the maximum and minimum principal stresses were horizontally oriented and acted along northwest and northeast axes, respectively. This condition of regional stress appears to have continued during folding and the associated period of faulting. The most recent tectonic deformation represents a rotation of the minimum principal stresses into a vertical position, as shown by the development of a tensile joint system, quartz deformation lamellae, and microfractures. Good interscale correlation and statistical homogeneity of tectonic fabric indicate a stress field homogeneity in this area during tectonic deformation. Rock physical anisotropy is genetically associated with tectonic fabric and consists of preferentially oriented planar discontinuities intersecting along a nearly vertical axis.

The mining-induced deformations were correlated with the inherent rock anisotropy which either di-rectly controls or greatly affects their development. This phase of rock deformation shows a greater degree of stress field heterogeneity than was the case with tectonic deformations. This is explained as a result of noncontinement afforded by underground openings and the increase in ground stresses due to mining activity.

RI 7174. Proparation Characteristics of Coal From Clarion County, Po., by J. E. Zeilinger and A. W. Deurbrouck. September 1968. 34 pp. 3 figs. This Bureau of Mines report describes the preparation characteristics of the significant coalbeds of Clarion County, Pa. Of the 15 samples collected, one was of metallurgical quality as received, four could be sufficiently upgraded to provide acceptable products, and the remaining 10 samples could not be upgraded to metallurgical quality because their sulfur con-tents could not be lowered to meet the standard. For steam or power generation, one sample was of low sulfur content as received, one sample could be upgraded to low sulfur content, and 10 samples could be upgraded to medium sultur content. The original sulfur content of the remaining three samples can be appreciably reduced by removal of the sink 1.58 specific gravity material; however, these coals would be classified as medium sulfur coals both before and after removal of the sink material.

Ri 7175. Amino Acida as Retaining Agents for Separation of Rare-Earth Elements on Ion-Exchange Resin, by J. O. Winget and R. E. Lindstrom. September 1968.
8 pp. 3 figs. Amino acids were investigated in conjunction with rare-earth separation by ion ex-change to determine whether they can be utilized effectively as retaining agents for metals separa-tion using ethylenediaminetetraacetic acid (EDTA) eluant at 85° to 90° C. Hydroxyethylethylenediation using ethylenediaminetetraacetic acid (EDIA) eluant at 85° to 90° C. Hydroxyethylethylenedia-minetriacetic acid (HEDTA) and diethylenetriamine pentaacetic acid (DTPA) were the most effective amino acids investigated. Elements of atomic num-bers 39 and 57 through 68 were effectively retained, whereas elements of atomic numbers 69 through 71 whereas elements of atomic numbers 69 through 71 passed through the retaining-agent band. Utiliza-tion of HEDTA or DTPA retaining agents allows an increase of 75 percent in the EDTA eluant con-centration over that possible with hydrogen- or copper-retaining ions without precipitation occur-ring. Eighty-five percent recovery of the EDTA eluant collected before rare-earth breakthrough and during elution of lutethium withothium and thulium during elution of lutetium, ytterbium, and thulium, and essentially complete recovery of the HEDTA or DTPA retaining agents, are possible without extensive processing.

ŧ

RI 7176. Changes in Ash Composition of North Dakota lignife Treated by Ion Exchange, by Leland E. Paulson and Walter W. Fowkes. September 1968. 18 pp. 15 figs. This investigation examined the feasibility of altering the inorganic component of North Dakota lignite by ion exchange. Lignite of specific size consist was washed with various ionic solutions and examined for evidence of exchange. Ions of higher valance substituted preferentially at equivalent concentrations. Results indicate that a major portion of the inorganic material associated with lignite is combined in exchangeable form with the organic component. Particle size of the treated

coal is a critical factor in determining the rate of exchange. The data indicate that monovalent ions are easily replaced by divalent and trivalent ions, and the presence of ionic material in slurries containing finely divided lignite significantly increases filtration rates.

.

RI 7177. A Multistage Probability Model of Sample Reduc-tion in the Mineral Industries, by Robert M. Becker. December 1968. 121 pp. 2 figs. A multi-stage probability model for assessing the reliability of mineral samples following any number of stages of sample reduction is presented. Sample reduction is the process of alternately crushing or grinding and sampling mineral particles prior to assaying. The final multistage model developed accurately de-scribes the ideal sample reduction practice. This model is based on previously developed and experimentally tested models for a single stage of sampling.

The problem is approached through the probability distributions for the various stages of sampling. The probability distribution, moments, and moment relationships for a single stage of sampling are first reviewed, and the useful concept of unit moments is defined. In presenting the models for two stages of sampling, emphasis is placed on the physical descrip-tion of the sample reduction process which leads quite naturally to its mathematical representation. In this representation, crushing or particle-size reduction between the stages of sampling is viewed as a random process with respect to the number and proportion of particles of the various kinds pro-duced. The physical and mathematical description is extended to more than two stages of sample reduction, and the first three moments for any number of stages are developed.

In common sample reduction practice the effects of a finite population (finite amount of material) at each stage of sampling appear to be important in describing the variance contribution of each stage. This is also true for the third moment about the mean. An example is cited in which the skewness increases by more than an order of magnitude when several stages of sampling are considered. This is largely due to the dependence of the multistage third moment about the mean on the variance. In general the model and results should be useful in helping to understand, control, and reduce the random errors that arise in the sample reduction process.

Rt 7178. Chlorine Dissolution of Several Ferroalleys, by D. H. Chambers, P. M. Sullivan, and L. L. Kupper. September 1968. 14 pp. 1 fig. Diges-tion studies were undertaken to develop a method for the rapid dissolution of high-temperature ferroalloy scrap. Laboratory tests showed (1) dissolution of alloy scrap with ferric ion as the leaching agent was a moderately rapid method of digestion; (2) the dissolution process can be considered as a typical reaction of a metal with chlorine gas, although evidence was obtained to show dissolution as a twostep process, one step as the reduction of ferric ion by the soluble alloy constituents and the other as the oxidation of ferrous ion with chlorine gas; and (3) the attack of ferric ion on the alloy was a function of alloy composition, ferric to ferrous ion ratio, and area of contact between leach solution and alloy.

The exceedingly complex nature of alloy compositions and dissolution products generally precluded satisfactory analytical determinations. Results of moderate accuracy were obtained using complex modifications of standard analytical and spectrographic techniques.

RI 7179. A Comparison of Infrared and Gas Chromatographic

Methods for Determination of Methane in Mine Air, by R. W. Freedman and H. W. Lang. September 1968. 4 pp. The gas chromatographic method, de-vised by the Bureau of Mines for analyzing routine mine air samples, was compared with the infrared method used for confirmatory determination of methane in mine air. While maintaining the speci-ficity of the infrared method for methane determination, the gas chromatographic method is more precise, much more rapidly performed, and more convenient.

RI 7180. Gas Chromatographic Analyses of the Principal Con-stituents of Mine Atmospheres, by R. W. Freed-man, H. W. Lang, and M. Jacobson. September 1968. 13 pp. 1 fig. The Bureau of Mines has developed a gas chromatographic method for the second developed and the second developed for the second developed. rapid and accurate determination of oxygen, nitrogen, carbon dioxide, methane, and, if present, carbon monoxide in mine air. This method replaces such presently used gas-reaction types as the Haldane or Orsat analysis, offering advantages in terms of pre-cision, accuracy, speed, and convenience.

RI 7181. Magnetic Separation of Pyrite From Coals, by Sabri Ergun and Ernest H. Bean. Sep-tember 1968. 25 pp. 2 figs. Previous studies of magnetic separation of pyrite from coals have been reviewed critically. Magnetic susceptibilities of United States coals of differing rank have been measured. The effects of crushing, magnetic mixing, drying, weathering, and heat treatment on the en-hancement of the magnetism of pyrite have been hancement of the magnetism of pyrite have been analyzed. The importance of size distribution of pyrite in the coal and the necessity of crushing to liberate the pyrite have been discussed.

It has been found that the inherent susceptibilities of the carbonaceous, mineral-free portions of coals $(\simeq -0.5 \times 10^{-6} \text{ in cgs units})$ and of relatively pure pyrite isolated from coals $(\simeq -0.3 \times 10^{-6})$ do not permit efficient separation of pyrite from coal; the average susceptibility of the magnetic fraction of coal must be raised to 3×10^{-6} . Friction tion of coal must be raised to 3×10^{-6} . Friction' forces encountered in crushing sedimentary pyrite embedded in coal do not increase its susceptibility. Subsequent weathering or heat treatment below 400° C leads to the formation of iron sulfate and hence increases the effective paramagnetism of pyrite. Ferromagnetic compounds of iron are not formed in significant quantities at temperatures below 400° C. The degree of liberation and apparent susceptibility of pyrite are the most important parameters in its separation. It is concluded that effective beneficiation of coals can be achieved by effective beneficiation of coals can be achieved by magnetic separation.

magnetic separation. A sufficient increase in the susceptibility can be achieved by converting less than 0.1 percent of pyrite into ferromagnetic compounds of iron. Such conversions occur only at temperatures $>500^{\circ}$ C. An investigation of the dielectric properties of coals and pyrite in the frequency range 0.1 to 60 Mhz indicates that the imaginary dielectric constant of the pyrite is about 100 times larger than that of coal. Exploratory experiments indicate that nyrite coal. Exploratory experiments indicate that pyrite can be selectively heated to temperatures above 500° C without appreciable rise in the temperature of coal. It appears that dielectric heating of coals in the Ghz frequency range is the most feasible method of enhancing the paramagnetism of pyrite.

RI 7182. Copper Comentation Using Automobile Scrap in a Retating Drum, by Karl C. Dean, Rees D.
 Groves, and Sherman L. May. September 1968. 12
 pp. 1 fig. The Bureau of Mines studied the pre-

cipitation of copper from dilute acidic sulfate solutions using shredded automobile scrap in a rotary drum. The tests established that the scrap in the completely than shredded, detinned, tinplate scrap a launder, with comparable iron consumption. Although power is required to rotate the drum, the faster precipitation and continuous recovery of cement copper are advantages of the tumbler method. Cost evaluation indicates that the rotary drum method, which uses relatively inexpensive and readily available shredded automobile scrap, is competitive with the launder method, which uses rela-tively high-cost shredded tinplate scrap or detinned shredded cans.

RI 7183. Processing Characteristics of Crude Oils From the Williston Basin in Montana, North Dakota, and South Dakota, by W. J. Wenger and J. C. Morris, 1968. 95 pp. 4 figs. Results of the analyses of 151 crude oils from 123 oilfields in the Williston basin are presented. Production statistics are compiled by geographical areas within the basin, by geological age of the producing zones, by States, and by field for the nine fields with the greatest pro-duction. Characteristics of the oils are tabulated, and correlations are included to show relationships between properties of the oils and some factors in the environment. Properties of the oils in some instances imply that there has been migration and mixing of the oils between productive formations of different geological time periods.

RI 7184. Colorimetric Method for Aronsic in Coul, by R. F. Abernethy and F. H. Gibson. October 1968. 10 pp. 1 fig. A chemical method of deterinning microgram quantities of arsenic in coal was investigated by the Bureau of Mines to supplement a semiquantitative spectrographic method of determining arsenic in coal ash. In accordance with a method recommended by the International Organiaction for Standardization, I-gram samples of coal are decomposed by wet oxidation with boiling sul-furic acid (H_2SO_i) and nitric acid (HNO_2) to re-move the organic matter. After heating to fumes of SO the organic matter was a sub- SO_4 to remove HNO₃, the arsenic is separated as arsine by the action of zinc in H₂SO, solution. The arsine is absorbed in dilute iodine solution in which, the arsenic is determined colorimetrically by the molybdenum-blue reaction. Two modifications of the method for obtaining the arsenic in solution, in addition to the wet oxidation method, give satisfactory results. The modifications are (1) furnace ashing with MgO added to the coal, followed by treatment with H.SO., and (2) extraction of arsenic from the coal by dilute HNOs without ashing. Float and sink tests show that arsenic is associated mainly with mineral matter in the three coals examined. High-temperature ashing tests show that very little arsenic is volatilized from coal ash below 1,000° C, but it is virtually all removed from the ash at 1,300° C.

RI 7185. Recovery of Sulfur From Molybdenite, by F. P. Haver, K. Uchida, and M. M. Wong. Octo-ber 1968. 15 pp. 4 figs. The Bureau of Mines developed a process to extract about 90 percent of the sulfur from molybdenite flotation concentrate by compacting the concentrate with one-quarter of its weight of aluminum powder, heating it at 800° C for 30 minutes, and then allowing the product to react with water. This thermite reduction yields an impure molybdenum alloy plus aluminum sulfide. The latter readily hydrolizes, to yield pure hydrogen sulfide which can be converted to elemental sulfur

by the Claus process. At least 95 percent of the molybdenum can be subsequently recovered as 99.95-percent-pure molybdic oxide.

RI 7186. Field Freezing of a Cerium-Iron Alloy, by J. E. Murphy, E. Morrice, and T. A. Henrie. October 1968. 14 pp. 8 figs. Field freezings was used by the Bureau of Mines to effect the redistribution of the components in a cerium-12.5-atomicpercent-iron alloy. The application of the electric field caused the iron to migrate toward the anode. A field intensity of 0.04 v/cm and a current density of 240 amp/cm² were used. The conditions that yielded the greatest redistribution of alloy components were a small thermal gradient along the speciment (from 5° C/cm to 10° C/cm) and a very slow freezing rate (0.15 cm/hr). Under these conditions it was possible to process specimens of $\frac{1}{2}$ -inch diameter as compared with the capillary-size specimens used by most previous investigators.

RI 7187. The Reactivity of Ammonium Nitrate-Fuel Oil With Pyrite-Bearing Ores, by D. R. Forshey, T. C. Ruhe, and C. M. Mason. October 1968. 10 pp. The recent occurrences of fatal accidents in copper mines, presumably due to premature ignition of loaded holes by the heat from reacting ammonium nitrate-fuel oil (AN-FO) and pyrite-bearing ores, has led to an examination of this reaction. The reactivity of prilled AN-FO mixtures with pyritebearing ores and the effects of water, dilute sulfuric acid, and potential inhibitors on reactivity of the mixtures were evaluated. Initiation of an exothermic reaction was observed as low as 150° F with acid in the absence of inhibitors. Low concentrations of urea, calcium carbonate, zinc oxide, and magnesium oxide were effective in inhibiting the reactivity of the mixtures. The temperatures produced during the reaction of mixtures of AN-FO and pyritebearing ores, in the absence of inhibitors, always exceeded the temperature at which electric blasting caps are thermally initiated.

RI 7168. Flotation Characteristics of Some Beryllium Minerals and Associated Gangue Minerals, by Andrew J. Fergus, Gerald V. Sullivan, and Garry F. Workentine. October 1968. 22 pp. 8 figs. The purpose of this study was to provide basic information to aid further research on beryllium mineral flotation. Contact-angle and microflotation (Hallimond tube) methods were used to study collector action and flotation response of beryllium minerals and associated gangue minerals with representative commercial surfactants. Chrysoberyl received prime attention. Results indicated that selective flotation of beryl and chrysoberyl from fluorite and quartz is possible with sodium isooctyl phosphate below pH 2, and fluorite and topza are readily collected by both anionic and cationic surfactants. Several modifying reagents were studied at 1 pH and one level of collector concentration. Aluminum sulfate, starch, and sodium silicate proved to be depressants in chrysoberyl flotation.

t,

RI 7189. Microflatation Studies of Some Columbium-Tantalum Minerals, by Andrew J. Fergus and Gerald V. Sullivan. October 1968. 29 pp. 13 figs. A study of the flotation characteristics of columbiumtantalum minerals was made by contact-angle and microflotation methods, and the findings were confirmed by flotation of two natural ores. In the contact-angle study conditions for collection of columbite, pyrochlore, and tantalite were determined for (1) sodium oleate with a sulfonate; (2) sodium isooctyl phosphate; (3) a short-chain primary amine; (4) a long-chain primary amine; and (5) a quaternary amine. These conditions were confirmed in microflotation tests. Information about collector action on common gangue minerals was also obtained by these two methods.

In batch flotation tests on a pyrochlore ore and a columbite ore, it was demonstrated that collectors selected on the basis of contact-angle and micro-flotation studies would float columbium minerals from a complex natural ore. However, multiple cleaner and scavenger flotation steps will be necessary to produce commercial concentrates. From a pyrochlore ore containing 0.54 percent Cb₂O₅, a 44.4 percent Cb₂O₅ concentrate was made containing 36.4 percent of the total Cb₂O₅. For a columbite ore the corresponding values were 4.35, 54.6, and 67.1 percent. During the batch flotation study, wetting agents were found to aid in the gangue-ore mineral separations.

RI 7190. Thermodynamic Properties of Helium, Nitrogen, and Helium-Nitrogen Mixtures From 240° to 950° R for Pressures Between 14.696 and 3,000 PSIA, by Robert E. Wood. October 1968. 361 pp. 15 figs. The Leiden form of the virial equation of state was used in thermodynamic equations to compute specific volume, enthalpy, entropy, internal energy, Joule-Thomson effect, fugacity-pressure ratio, isobaric specific heat, and excess enthalpy and entropy of mixing values for the helium-nitrogen system. Tabular values for these properties for helium, nitrogen, and nine helium-nitrogen mixtures, at 10.00 percent helium increments, are presented for 46 temperatures in the range 240° to 950° R, and for 26 pressures in the range 14.696 to 3,000 psia.

The equation of state relates pressure, volume, temperature, and gas composition by virial and interaction virial coefficients through fifth virial coefficients. It is suitable for computing the variations in the isothermal thermodynamic properties of all possible helium-nitrogen mixtures within the temperature and pressure domain of the equation of state given herein. Accurate analytical expressions are given for the zero pressure of ideal-gas properties so that variations in the thermodynamic properties along isobars or isometrics are tractable.

The computed thermodynamic properties are compared with experimental Cp and J-T data and properties derived from other equations of state. The agreement between the derived thermodynamic properties and experimental data is, in general, within the inherent accuracy with which properties have been obtained by direct experimental measurements. For example, gas phase Cp values derived from the equation of state are within 1 to 2 percent of like quantities obtained from flow calorimetry. However, the difference in computed and experimental values may rise to 10 percent as critical conditions are approached.

RI 7191. Mine Water Research, The Limestone Neutralization Process, by E. A. Mihok, Maurice Deul, C. E. Chamberlain, and J. G. Selmeczi. September 1968. 20 pp. 14 figs. A pilot plant for treating mine drainage by neutralization with limestone was designed, fabricated, and operated by the Bureau of Mines. The process consists of (1) producing a very fine (minus 400-mesh) limestone slurry, (2) mixing the slurry with the mine water, (3) aerating the resulting mixture to remove carbon dioxide and precipitate iron, and (4) separating the solids from the liquid by sedimentation.

A mine discharge of pH 2.8, containing 1,700 ppm total acidity, 36 ppm ferrous iron, and 360 ppm

total iron was treated at rates from 300 to 400 gpm. The treated water ultimately reached a pH of 7.4 and contained no detectable iron. The resulting sludge compacted to approximately one-third the volume of sludge from mine water neutralized with lime.

The advantages of the limestone process, compared with the conventional lime process are as follows: Widespread distribution and lower cost of run-ofmine, indigenous limestrone; simplicity of plant de-sign; reduced hazards and plant operating and maintenance costs accruing from the use of a less reactive chemical agent; higher solids concentration of the precipitated sludge; and no deleterious effect caused by accidental overtreatment.

RI 7192. Low-Temperature Performance of Compressed Oxy-gen Closed-Circuit Breathing Apparatus, by E. J. Kloos, A. J. Beckert, and R. H. Schutz. October 1968. 12 pp. 6 figs. Two self-contained breathing apparatus of the closed-circuit compressed-oxygen type were evaluated for performance at 32° to -25° F. Low-temperature effects of oxygen and carbon dioxide concentration, visual properties of the facepiece, and mechanical operation of the apparatus were studied. Although operation varied with the wearer, his breathing rate, the apparatus precooling time, and the temperature, results sug-gest that general use of currently approved com-pressed-oxygen closed-circuit breathing apparatus be limited to temperatures above 32° F.

RI 7193. Determination of Incombustible Content of Mine Dust by Nuclear Method, by Joseph W. Martin and Robert F. Stewart. October 1968. 12 pp. 7 figs. The Bureau of Mines investigated the backscattering of low-energy gamma rays as a method for rapidly determining the incombustible content of for rapidly determining the incombustible content of coal mine dust. In this method, 60-kev gamma rays from americium-241 penetrate the dust and are re-flected by elements in the dust to a thin crystal scintillation detector. The number of backscattered gamma rays is proportional to the incombustible content. Tests of 40 dry, mine-dust samples con-taining 50 to 100 percent inert material show an average error of 2 percent. Calibration of the ap-paratus is necessary for each rock dust to account for variable composition. Results for samples con-taining more than 6 percent moisture are subject to taining more than 6 percent moisture are subject to error, but the values are lower than values obtained by chemical analysis and thus fall on the safe side. Development of a small meter based on the backscatter principle appears feasible. Such a meter would find application within coal mines to check the effectiveness of rock dusting procedures.

RI 7194. Preparation of Anhydrous Chromous Chloride, by Robert L. de Beauchamp and Thomas A. Sullivan. October 1968. 7 pp. 3 figs. The Bu-reau of Mines designed a chlorination apparatus to prepare CrCl₂ free of CrCl, by the direct reaction of chlorine and chromium. Equipment and procedures were developed for routine preparation of 25-pound batch quantities of anhydrous CrCl₂, Calcium, iron, nickel, and silicon impurities were in the 0.01 to 0.05 percent range and all other impurities were blow percent range, and all other impurities were below 0.01 percent.

RI 7195. Development of Slurry Explosives for Use in Poten-

tially Flormable Gas Atmosphere, by R. W. Van Dolah, C. M. Mason, and D. R. Forshey. Octo-ber 1968. 9 pp. 2 figs. The feasibility of formu-lating cap-sensitive slurry explosives for use in underground mines with potentially flammable gas atmospheres was examined. Formulations contain-

ing aluminum metal as sensitizer and sodium chloride to reduce incendivity were prepared; some were cap-sensitive and had adequate air gap. Flaked aluminum metal rather than the atomized type proved to be the more effective sensitizing agent. Of the formulations tested for incendivity in the large gallery of the Bureau of Mines, some were found to be suitably nonincendive.

RI 7196. Large-Scale Studies of Gas Detonations, by D. S. Burgess, J. N. Murphy, N. E. Hanna, and R. W. Van Dolah. November 1968. 53 pp. 27 figs. The characteristics of gas-phase detonations were observed in 20 instrumented firings within earthen tunnels, in 100 such detonations in a 24-in-diam by 163-ft-long steel pipe, and in about 200 smaller scale firings. Most of the fuels studied were representa-tive hydrocarbons—acetylene, propane, gasoline, and a roughly equimolar mixture of methylacetylene, pronadiene, and propane. propadiene, and propane.

In a pipe with two closed ends, the detonable limits were demonstrated to be very nearly the same as reported limits of flammability. The side-on im-pulses (pressures integrated over 200-msec inter-vals) were shown to be the same function of con-centration regardless of whether deflagration or detonation had occurred detonation had occurred.

In a pipe with only the initiation end closed, the impulses of all fuel-air systems tended toward the same level when averaged over comparable ranges of fuel concentration; the lower pressures with satu-rated hydrocarbons were nearly compensated by longer durations of pressure transient. In all fuelair systems, unexpectedly high impulses were ob-tained with slightly lean mixtures.

In earthen confining structures, the impulse of the explosion was efficiently converted into momentum of the failing wall. In the configurations studied, an earth velocity of about 20 fps was critical to over-come the soil's resistance to shear. The destructive effect was determined by gas pressure rather than by total energy release.

The assignment of a "TNT equivalent" to an explosive gas mixture is discussed in terms of the confinement of the mixture.

RI 7197. Storage Stability of Gasoline: Oven Test for Pre-RI 7197. Storage Stability of Gasoline: Oven Test for Pre-diction of Gasoline Storage Stability, by Frank G. Schwartz, Charles S. Allbright, and Cecil C. Ward. December 1968. 28 pp. 13 figs. The Bu-reau of Mines developed a rapid test method for predicting the stability of motor gasoline during long-term storage. The amounts of gum and inor-ganic residue formed in 13 gasolines during a 16-hour oven test at 200° F were compared with the amounts formed in the same gasolines stored at amounts formed in the same gasolines stored at 110° F and analyzed following 8-, 16-, 32-, 44-, and 52-week storage periods. Satisfactoriy methods were developed for predicting gum and inorganic residue formation during fuel storage periods as long as 32 weeks at 110° F, the approximate equivalent of 5.7 years at 80° F. The only data required to ap-ply the methods are the amount of gum and inor-ganic residue formed and the amount of gum and ganic residue formed, and the amount of oxygen that reacted, during a 16-hour oven test. A direct relationship existed between inorganic residue formed during the over test and during 110° F storage. Statistical treatment of the data showed predicted values were as reliable as determined values.

By use of a modified Arrhenius equation, the 110° F storage time can be extrapolated to equivalent time at any temperature below 110° F. Thus by combining the stability prediction method with the mathematical extrapolation, the storage performance of motor gasoline for extended periods can be esti-mated at any temperature up to 110° F.

RI 7198. Earth Pressure at Rest and One-Dimensional Com pression in Mine Hydroulic Backfills, by David E. Nicholson and Richard A. Busch. October 1968. 40 pp. 27 figs. The Bureau of Mines has constructed a special compression chamber for developing stress-strain relationships of mine backfill and simulating the high compressive ground pressures encountered in underground mines. A one-dimensional or earth-pressure-at-rest model is proposed for backfills subjected to these pressures. Results of the compression tests performed in the chamber indicate that reliable stress-strain relationships can be developed from these tests.

The primary objective of the test series was to evaluate the effectiveness of compaction of common backfills in retarding ground closure. Analysis of the stress-strain data shows an eightfold reduction in relative strain in optimum well-graded, compacted backfills over poorly graded, loose backfill material.

Analysis of the one-dimensional compression test data also indicates a significant retardation of transmitted stress in dense compacted samples of backfill and natural sands. Although not fully understood, a deformation mechanism is thought to occur at the intergranular contacts in cyclic fashion causing frictional heat loss and a reduction in transmitted stresses in the densely packed materials. The experimental values of transmitted stress are compared with theoretical values of effective stress calculated from the one-dimensional compression rela-tionships developed by Hendron. These experimental values of transmitted stress compare very closely with the theoretical values of effective stress.

RI 7199. Laboratory Studies on the Use of Sodium Sulfate for Removing Copper From Molten Iren, by H. V. Makar, B. W. Dunning, Jr., and H. S. Caldwell, Jr. November 1968. 14 pp. 2 figs. Laboratory tests were performed to obtain a quantitative de-scription of the effectiveness of sodium sulfate (Na.SO) for removing copper from molten iron and to determine the effectiveness of Na2SO, on actual auto scrap. The tests were conducted on induction melted heats of iron averaging 0.58 and 1.50 perment initial copper and on cupola-melted auto scrap containing 0.45 percent initial copper. The Na2SO. was added in powder form in amounts ranging from 2.9 to 43.8 percent of the weight of iron being treated.

The data showed that copper removal for the various Na SO, treatments followed a similar trend, regardless of the iron composition that was tested. The equation $Y = 1 - e^{-3.23r}$ approximately reflects the relationship between copper removal and amount of Na₂SO, added, where Y is the fraction of copper removed and x is the ratio of the weight of Na₂SO. added to the weight of metal treated. Copper removals ranged from 3.3 to 74.5 percent and reductions down to less than 0.10 percent final copper were achieved in the auto scrap. Copper removals were generally accompanied by sulfur removal, and intial sulfur contents ranging from 0.10 to 0.20 percent were reduced to as low as 0.02 percent. High temperatures and long slag reaction times tended to induce copper and sulfur reversion from the slag, but, generally, the Na₂SO, treatments were effective up to approximately 2,820° F with reaction times not exceeding 7 minutes.

RI 7200. Stresses and Displacements Induced in Rock by Tun-

nel Soring Machine Props, by Wilbur I. Duvall and Wilson Blake. November 1968. 29 pp. 5 figs. The Bureau of Mines presents a theoretical solution for the stresses and displacements in an infinite elastic plate containing a circular hole whose boundary is subjected to applied shear loads over four separated arcs. The results for the applied shear loads can be superimposed on the results for applied radial loads, given in a previous publication, to obtain a complete two-dimensional approximation of the stresses and displacements induced in the rock by tunnel boring machines anchored in a circular tunnel by means of four props. Analysis of the various solutions shows that the tangential tensile stresses induced on the boundary of the circular tunnel by applied radial loads can be minimized in the roof and floor of the tunnel by the application of appropriate shear loads to each of the four props. Thus, when planning tunnel boring operations, con-sideration should be given to the in situ stress field in the rock and the induced stresses in the rock resulting from the applied radial and shear loads produced by the props of the boring machine.

RI 7201. High-Temperature Heat Contents and Entropies of Four Crystalline Sodium-Calcium Silicates, by L. B. Pankratz. November 1968. 8 pp. 1 fig. Heat contents were measured for Na.CaSiO, and Na.Ca.Si.O. between 298° and 1,300° K, for Na.Ca.Si.O. between 298° and 1,500° K, and for Na.Ca.Si.O. between 298° and 1,350° K. Copperblock drop calorimetry was employed. Reversible, first-order transitions were found for Na₂CaSiO, and Na₂CaSiO₋. The transition for Na₂CaSiO, is at 830° K with a heat absorption of 160 cal/mole; that for Na₂CaSiO₋ occurs at 750° K with a heat absorption of 1,550 cal/mole. Results for the other two silicates showed no irregularities. A table of heat content and entropy increments above 298.15° K and heat content equations are included for use in thermydynamic calculations.

RI 7202. Comparison of Trip Lights and Reflectors, by R. H. Oitto, D. W. Mitchell, R. A. Hood, and J. H. Stears. November 1968. 17 pp. 3 figs. To determine whether reflectors could substitute for the trip lights referred to in the Federal Mine Safety Code, the Bureau of Mines studied trip safety devices under simulated herebare and different The devices under simulated haulageway conditions. The noticeability of reflectors compared with trip lights and fluorescent panels was evaluated from distances of up to 850 feet with light source intensities of up to 1.6 foot-candles. Reflectors tested consisted of a reflective lens in a holder secured to a frame that can be attached to a trip.

Reflectors were found to be suitable for use as a trip safety device. In fact, for the conditions in many underground haulageways some reflectors would be more effective than a permissible trip light.

RI 7203. Coal-Derived Humus: Plant Growth Effects, by Philip G. Freeman and Walter W. Fowkes. November 1968. 16 pp. 8 figs. The growth-pro-moting properties of coal-derived humus were tested by a variety of bioassay methods. Humate materials used included leonardite, a form of naturally oxidized lignite, and humic acids extracted from leonardite. It was found that the greatest effects were evident when water-soluble humic acid was applied to excised root tips. No significant short-term effect was noted when water-soluble humic acid was applied to stem or coleoptile sections. Root initiation was promoted in bean stems when high concentrations of coal-derived humate were applied. Gross weight of tomato plants was increased by up to 40 percent when coal-derived humates were added in concentrations of 10^1 to 10^4 ppm to the nutrient in a hydroponic growth test of 6 weeks' duration. It is concluded that coal-derived humate promotes the uptake of minerals, specifically iron, by serving as a metal chelate.

RI 7204. Composition and Characteristics of Municipal Incinerator Residues, by C. B. Kenahan, P. M. Sullivan, J. A. Puppert, and E. F. Spano. December 1968. 20 pp. 8 figs. The Bureau of Mines is developing methods for reclaiming the metal and mineral values contained in municipal incinerator residues. This report describes the first phase of the research, in which reliable methods for sampling and analyzing municipal residues were established and the composition and characteristics of the residues were determined. Samples were obtained from a variety of grate-type furnaces and also from a rotary kiln furnace. The samples were processed on a batch basis and separated into their natural categories by a variety of methods including screening, magnetic separation, air separation techniques, and handpicking. The main components of the residues were determined to be metal and metal oxides, glass, and ash.

RI 7205. Evaluation of Phesphate Fines From Southeastern Idobo, by J. W. Town and P. E. Sanker. December 1968. 9 pp. 5 figs. The Bureau of Mines determined the physical properties of southeastern Idaho phosphate fines as related to mineral composition, particle size, and liberation, beneficiation, and potential use in structural clay products. The phosphate mineral in the fines was identified by unit-cell dimensions to be essentially the same as the phosphate mineral fluorapatite identified in the coarser sizes. The mean particle frequency as determined by electron microscopy and pipet analyses was between 0.5 and 0.2 micron. Liberation of the phosphate could not be definitely determined because of the weathered condition of the minerals and their extreme finenesss. No beneficiation scheme was developed that would concentrate the phosphate into a marketable fertilizer product; therefore, forming and firing tests were made to demonstrate that the fines can be used to manufacture structural clay products.

RI 7206. Field Investigation and Testing of a Minnesota Clay Resource for Iron Ore Pellet Banding, by James H. Aase and George E. Leonard. December 1968, 17 pp. 8 figs. Selected glacial lake clay deposits in Minnesota were sampled, tested, and evaluated to determine their suitability for use as a bonding agent in iron ore pellet manufacturing. Preliminary tests conducted on clay samples obtained from five ancient glacial lake basins identified the clays in the Lake Agassiz glacial lake basin near Cook, Minn., as having the greatest bonding potential. An auger drilling program was conducted to obtain substantial quantities of representative material for detailed testing. The drilling indicated the presence of large clay reserves in excess of 500 million tons within the 12-square-mile area investigated.

Bench-scale tests indicated that the bonding properties of Cook area clays, when activated with relatively small quantities of sodium carbonate monohydrate ($Na_2Co_2 \cdot H_0O$), imparted excellent strength characteristics to iron ore pellets. Larger scale continuous pelletizing tests were made to confirm the bench-scale results. These tests indicated that use of 1 percent activated clay alone as binder gave the iron ore pellets an overall strength slightly lower than with 0.75 percent bentonite, considered the industry standard. Use of 0.5 percent activated clay plus 0.5 percent bentonite produced better pellet strength qualities than use of 0.75 percent bentonite alone, without increasing the silica plus alumina content.

The data from both bench-scale and larger scale continuous tests suggest that the Cook, Minn., clays can be utilized after activation either alone or in combination with bentonite at an economic advantage over present pelleting practice with bentonite.

RI 7207. Effect of Physical Parameters on the Reaction of Graphite With Silita in Vacuum, by L. A. Haas and S. E. Khalafalla. December 1968. 21 pp. 12 figs. The degree of reduction of various silicagraphite mixtures was studied in a batch reactor to determine optimum physical conditions for maximizing the carbothermic reduction of silica. The extent of interaction was determined for reactant mixtures in loose powder and briquet forms at pressures less than 0.01 torr and temperatures up to 1,445° C. Molar ratios were varied from 0.05 to 6.5 with maximum reaction at a ratio of about 1.5. The solid-solid reaction did not appear to involve gaseous intermediates. The extent of reactants. Carbonized with the number of interparticle contacts than with the true surface area of the reactants. Carbonized dextrose was a better reductant than graphite. Work done under an agreement with the National Aeronautics and Space Administration.

RI 7208. Explosibility of Miscellaneous Dusts, by John Nagy, Austin R. Cooper, and Henry G. Dorsett, Jr. December 1968. 31 pp. 1 fig. Dust explosion data obtained in laboratory tests by the Bureau of Mines are presented for 181 miscellaneous materials that present an explosion hazard. Data are given also for 50 dusts that present primarily a fire hazard and for 88 dusts that did not present an explosion hazard.

RI 7209. Reaction of Cool With Steam at High Pressures, by Sam Friedman, Paul S. Lewis, Richard D. Graves, and Raymond W. Hiteshue. December 1968. 25 pp. 10 figs. The Bureau of Mines conducted experiments using bench-scale apparatus to explore the effect of large changes in process variables on the yield and composition of the gases produced by passing 800° C steam through a fixed bed of Pittsburgh seam (hvab) coal. The total yield of combustible gases increased throughout the given range for the following variables: Superficial steam velocity increasing from 0.02 to 0.12 fps, pressure increasing from 0 to 600 minutes, and temperature increase in the yield of hydrogen in comparison with the increase in yield of methane reduced the gross heating value of the gas to around 470 Btu per scf at conditions giving the maximum yield.

J

at conditions giving the maximum yield. Pressures of 1,000, 3,000, and 6,000 psig at 0.09 fps steam velocity, 800° C, and 60 minutes residence time, respectively, produced methane yields of 20, 24, and 22 percent, based on maf coal, with the gross heating value of the CO_r -free gas decreasing from 552 to 520 and to 470 Btu per scf. Methane concentrations in the CO_r -free gas were 26, 22, and 14 percent, respectively. Based on the gross heating value of the coal, the percentage of the heating value recovered in the gas was 60, 71, and 87 percent, respectively.

The use of tungsten sulfide as a catalyst for converting carbon oxides, and hydrogen into methane was explored briefly using both a sulfur-free gas rich in methane and a sulfur-bearing synthesis gas $(3H_2:1CO)$.

Ri 7210. Removal of Nonferraus Matals From Synthetic Automabile Scrap on Meating in a Rolary Kiln, by Gerald W. Elger, Willard L. Hunter, and C. E. Armantrout. December 1968. 17 pp. 7 figs. To determine the feasibility of removing nonferrous metal impurities from automobile scrap by thermal treatment in a rotary kiln, the Bureau of Mines conducted four series of tests with synthetic scrap mixtures heated at various temperatures under oxidizing and reducing conditions. The treated scrap mixtures were melted in an electric-arc furnace and cast into small ingots for impurity evaluation. Analyses showed that the ingots were essentially free of residual metal impurities except for copper. Test data indicated that in an oxidizing atmosphere the percentage of copper removed increased with treatment temperature. Percent of copper removed in a reducing atmosphere was found not to be temperature dependent. A significant finding was that copper was embrittled under some of the operating conditions and was mechanically removed by fragmentation.

RI 7211. Columbium and Tantalum Alloy Development, by Herbert R. Babitzke, Laurence L. Oden, and Hal J. Kelly. December 1968. 12 pp. 2 figs. As part of a project to develop refractory metal alloys suitable for high-temperature structural applications, the Bureau of Mines applied solid solution and precipitation-hardening techniques to columbium and tantalum alloys. Thirty-three alloys were evaluated to determine their formability, strength, and oxidation resistance. Three alloys had tensile strengths near 40 000

Three alloys had tensile strengths near 40,000 psi at 1,200° C: Cb-1N-5W-5V-10Hf, Cb-15Hf-5W-0.5B, and Cb-15Hf-5W-1B. Oxidation resistance of the high-strength alloys was good. The first alloy gained only 34 mg/cm² at 1,200° C, and 21 mg/cm² at 1,000° C in 2 hours. Hot forming was done without any protection from oxidation.

RI 7212. Electrowinning Aluminum From Aluminum Chloride, Operation of a Two-Compartment Cell, by E. L. Singleton, D. E. Kirby, and T. A. Sullivan. December 1968. 15 pp. 8 figs. The electrochemical reduction of aluminum chloride to aluminum was investigated in a closed, two-compartment cell utilizing a molten chloride electrolyte. The externally heated cell was divided into a reduction compartment and a combination AlCl₃ feed and metal removal compartment. Aluminum was deposited at 700° C on a molten aluminum cathode from a KCl-NaCl-AlCl₄ electrolyte. The AlCl₅ content of the electrolyte was replenished by either vapor or solid additions. The chlorine evolved was collected and measured to give a quantitative evaluation of AlCl₅ reduction. The effects of anode and cathode current densities and AlCl₅ concentration on anode current efficiencies were studied. A range of 64 to 84 percent anode current efficiency was obtained with the 25-pound electrolyte capacity cell and related auxiliary equipment.

RI 7213. Recovery of Hydrofluoric Acid From Waste Fluosilicic Acid, Preliminary Studies, by Philip C. Good and Jack E. Tress. December 1968. 14 pp. 4 figs. Preliminary studies showed that direct hydrolysis of H₂SiF_{*} to SiO₂ and HF at elevated temperatures was subject to many mechanical difficulties and that corrosion of construction materials was a serious problem. Elimination of SiO₂ from the HF product was generally poor. An alternative procedure, hy-

.

drolysis of lime-neutralized H_2SiF_6 by steam at 950° to 1,100° C, yielded a product very low in SiO₂. Condensates containing up to 300 g/l HF were prepared.

RI 7214. Use of Fly Ash for Remote Filling of Underground Cavities and Passogawaya, by Edwin M. Murphy, Malcolm O. Magnuson, Pete Suder, Jr., and John Nagy. December 1968. 27 pp. 15 figs. Methods are described for filling underground cavities remotely with dry material pneumatically injected through a borehole to seal openings, prevent air movement, and reduce subsidence; this often brings underground fires under control by limiting the access of air. Large-scale tests were made in the Bureau of Mines Experimental Coal Mine, Bruceton, Pa., in an operating mine, and in an abandoned Pennsylvania mine. Supplemental trials were made aboveground in galleries and in the laboratory. The parameters studied include horizontal and inclined passageways, obstructions in the entry, water leakage into the borehole, dry material, and grout and slurry mixes. The materials studied were fly ash, crushed and pulverized limestone, and sand. Best results were obtained with dry fly ash, though satisfactory seals were obtained with the other materials. When a borehole is dry and ends at an open void, casing is not necessary. If more than 5 gpm of water flows in the borehole, if the void contains loose debris, or if coarse material is injected, a material feedpipe should be inserted through the borehole. Fly ash was most suitable for remote filling because of its low angle of repose (8') and its good flow characteristics. The depth of borehole through which the fly ash is injected has no appreciable effect on the filling operation.

RI 7215. Horizontal Zinc Retorts, by M. E. Tyrell and K. J. Liles, with appendix on statistical sampling plan for zinc retort research by F. Reid Creech. January 1969. 41 figs. 88 pp. Research objectives were to determine the reasons for erratic behavior of semisilica horizontal zinc retorts in service; to investigate potential corrective measures including the possible utilization of more refractory materials in the retort body; and to delineate laboratory tests suitable for process control in the manufacture of retorts.

Correlation of laboratory test results and data supplied by the cooperating smelters indicated that structural failures due to thermal shock and laminations in the retort body are largely responsible for the erratic behavior of horizontal zinc retorts in service.

The most promising modifications made in the retort body and evaluated on a laboratory scale included finer grinding of the plastic clay fraction, substitution of mullite grog for calcined fire clay and grain alumina for silica, plus the use of an organic binder. Lamination-free extrusions having excellent thermal shock resistance were prepared from a mixture composed of 50 percent low-silica Missouri plastic clay through 100 mesh, 25 percent mullite grog through 6 mesh, and 25 percent alumina through 100 mesh. The mix was pugged under 28inch vacuum with 1 percent ligno sulfonate binder in 12 percent tempering water.

Laboratory tests suitable for process control in the manufacture of retorts are described.

RI 7216. Preparation Characteristics of Coal From Clay, Gilmer, and Lewis Counties, W. Va., by J. E. Zeilinger. January 1969. 40 pp. 3 figs. This Bureau of Mines report describes the preparation characteristics of the significant coalbeds of Clay, Gilmer, and Lewis Counties, W. Va. In 1966, almost

1.3 million tons of coal was mined in these counties. of which more than one-half was from the Pitts-burgh coalbed. Washability analyses were made of le coalbed samples. Of these, only 11 samples could be upgraded to metallurgical quality. For steam or power generation five of the coals were of low sulfur content as received. The remaining samples were generally of medium sulfur content even after upgrading.

RI 7217. Hears of Formation of Chromium Carbides, by Alla D. Mah. January 1969. 9 pp. The heats of combustion of three chromium carbides, Cr_mC_e, Cr₇C₅, and Cr₅C₂, were determined by com-bustion calorimetry. Heats of formation calculated from the results follow:

 $\triangle Hf^{\circ}_{206} (Cr_{22}C_6) = -94.7 \pm 5.0 \text{ kcal/mole}, \\ \triangle Hf^{\circ}_{206} (Cr_7C_3) = -43.3 \pm 1.7 \text{ kcal/mole}, \\ \triangle Hf^{\circ}_{206} (Cr_3C_2) = -22.5 \pm 0.8 \text{ kcal/mole}.$

RI 7218. Copper Remaval From Steel Screp by Thermal Treatment. Feasibility Study, by R. R. Brown and F. E. Block. December 1968. 15 pp. 2 figs. The Bureau of Mines undertook a limited feasibility study to determine the practicality of removing copper from automobile scrap by thermal treatment Test specimens, prepared by wrapping bare and insulated copper wire around small steel coupons, were heated at 600° to 1,150° C in various atmos-pheres for different lengths of time under both static and dynamic conditions. The tests indicated that adequate removal of copper cannot be effected by thermal treatment of scrap above the melting point of copper. Tests showed that copper present in scrap as insulated wire is embrittled by thermal treatment at 800° to 900° C if the insulation con-tains lead and that the embrittled copper is almost completely removed by a mechanical action such as tumbling. Also chemical pretreatment of specimens to effect embrittlement of copper and the magnetic separation of oxide scale were studied. Tests showed that bare copper can be embrittled by depositing waterglass (Na $_{\circ}$ Si,O $_{\circ}$) on copper prior to thermal treatment.

RI 7219. Analyses of Tipple and Delivered Samples of Coal Collected During Fiscel Yeer 1968, by S. J. Aresco and J. B. Janus. 1969. 31 pp. The Bureau of Mines has been active in promoting the purchase of coal for Government use under specifications that define the requirements in terms of heating value of define the requirements in terms of heating value of the coal, expressed in British thermal units, and the composition as shown by proximate analyses. To these, when required, are added the ash-softening temperature, the free-swelling index, and the Hard-grove grindability index. Under most of these speci-fication contracts the bidders guarantee the quality of the coal, and that guaranteed by the successful bidder becomes the standard of his contract. The bidder becomes the standard of his contract. The deliveries are sampled in accordance with instructions issued by the Bureau of Mines; the samples are analyzed in the Bureau laboratory to determine whether the coal is of the quality guaranteed by the contractor; if it is not, a price adjustment is made.

Analyses of the delivered coal and tipple samples (samples collected at mine tipples as coal is being loaded into railroad cars or trucks) provide valuable data for use in evaluating future bids. In addition, the continuous sampling of coal as delivered is a check on the practical results obtained in burning the coal.

The Government, with the exception of the Tennessee Valley Authority, purchased approximately 6.1 million tons of coal in fiscal year 1968. In connection with these purchases, the Bureau analyzed 6,077 samples. These have been tabulated by States for the use of Government officials and the public. 40 cents.

RI 7220. Load Loss From Rock-Bolt Anchor Creep, by Ed-ward W. Parsons and Lars Osen. January 26 pp. 15 figs. To determine in what part 1969. and to what extent creep or movement exists in an installed rock-bolt anchor and the effect of the creep or bleedoff on the tension load on a rock bolt, as well as the effect of normal mining activity on the rock-bolt load and anchor, the Bureau of Mines conducted tests in the laboratory and in two mines using four types of expansion-shell anchors, the wedge bolt, and in one mine, explosive-anchored rock bolts.

2

)

)

)

Specially mounted heavy-duty springs, calibrated to obtain load readings from spring movement, were installed on the test bolts to prevent a drastic re-duction in tension load caused by slipping or seating of the anchor. A dial gage, reading to 0.0001 inch, measured movement of the anchor shell against the rock and seating of the anchor wedge plug in the shell. While all bolts had electrical resistance strain gages for load reading, only readings from the laboratory tests were used because those from the field tests were erratic.

The tests revealed that most load loss resulting from static loading is due to the slippage and seating of the serrations on the anchor shell into the drill-hole wall. Dynamic loading, primarily from sudden shocks from nearby blasting, and possibly from ground movement or mining activity, will cause the anchor wedge plug to seat in the anchor shell.

RI 7221. Beneficiation of Titanium Chlorination Residues. Pre-liminary Study, by C. C. Merrill, M. M. Wong, and D. D. Blue. February 1969. 7 pp. 1 fig. The Bureau of Mines beneficiated the wastes gen-erated by commercial titanium chlorination opera-tions to reaching motel values and reduce the Drah. tions to reclaim metal values and reduce the prob-lem of disposing of solid wastes. A water leach solubilized about 40 percent of the dry weight and over 75 percent of the metallic impurities. The resi-due from the water leach was rich in titanium dioxide and carbon; it was combined with rutile and recycled to a laboratory chlorinator. The contained carbon was used in lieu of part of the coke requirement.

RI 7222. Some Strain-Aging Effects in Electrorefined Vana-dium, by G. H. Keith and H. G. Iverson. February 1969. 26 pp. 15 figs. Oxygen and ni-trogen cause strain aging in electrorefined vana-dium, as evidenced by maxima in yield and tensile strengths and by Snoek internal friction peaks. Alloys containing up to 0.22 percent oxygen and 0.11 percent nitrogen were investigated. Tensile strengths of oxygen- and nitrogen-containing alloys were 66,000 and 68,000 psi at 300° to 400° C, compared with 53,000 and 62,000 psi, respectively, at room temperature. Total elongation decreases to about 7 percent at the temperature of maximum strength. At 600° C strain aging is not evident.

Based on interstitial contents calculated from internal friction measurement, the increases in strength caused by nitrogen and oxygen were 440,000 psi per weight-percent nitrogen and 260,000 psi per weight-percent oxygen. Application of the Schoeck and Seeger treatment to the Snoek effect in these systems results in a calculated lattice distortion of 0.24 and 0.15 caused by the presence of an interstitial nitrogen or oxygen atom, respectively.

Alloys containing boron or carbon were also investigated. Both elements refine the grain size but have no other effect because of their low solubility in vanadium.

RI 7223. Face Ventilation in Underground Bituminous Cool Mines. Airflow and Methane Distribution Petterns in Immediate Face Area-Line Brottice, by James V. Luxner. February 1969. 16 pp. 10 figs. The airflow and methane distribution patterns developed in an equipment-free entry 6.5 feet high and 12 feet wide, ventilated by line brattice operated blowing to or exhausting from the face, were determined by the Bureau of Mines for varying conditions. Results of these studies show that blowing line brattice systems of face ventilation are more effective than comparable exhaust systems. The face ventilating efficiency of any line brattice system is dependent upon the method of ventilation, the face distance, the tight rib distance, the volume of air delivered to the end of the line brattice, and the volume of methane released at the face. Experimental results indicate that maximum face ventilation efficiency is achieved when the inby terminus of the line brattice is installed 5 feet from the face and at a distance less than one-third of the entry width from the nearest rib. Analyses of data are based upon the ability of a face ventilation system to dilute methane in the immediate face area.

.

.

t

1

ť

ŧ

€.

RI 7224. Near-Surface Horizontal Stresses including the Effects of Rock Anisotropy, by Verne E. Hooker and Charles F. Johnson. February 1969. 29 pp. 4 figs. In situ stresses, based on isotropic and anisotropic relations, were evaluated using computer techniques from overcoring data obtained in dimension stone quarries along the Appalachian Piedmont, the Ozark uplift, and the Ouachita tectonic belt. Stresses in the horizontal plane near the surface are compressive and range from 100 to 4,500 psi. The direction of maximum compressive stress seems to be alined with the general tectonic structure for most of the determinations. The ratio of the maximum to minimum elastic parameters in the horizontal plane ranges from 1.05 to 2.46 for these competent rocks. Isotropic versus anisotropic stress determinations show differences only as great as 25 percent in stress magnitude and 25° in orientation.

RI 7225. Joining Refractory Metal Compounds by Hot Pressing, by John E. Kelley, Donald H. Sumner, and Hal J. Kelly. February 1969. 26 pp. 11 figs. The Bureau of Mines conducted a study to determine the feasibility of joining refractory metal compounds to each other and to oxide ceramics by a vacuum hot press-diffusion bonding method. Very satisfactory joins were made of ZrC to ZrB., ZrN to ZrB., ZrC to ZrN, and ZrC, ZrN, and ZrB. to Al_O. Each of these join assemblies contained a mixture layer comprising 50 weight-percent each of the two end compounds. The mixture layer, sandwiched between each end compound, enhanced bonding and smoothed out the thermal expansion gradient between the two end members.

Strength and thermal shock tests showed that the join areas of the ZrC, ZrN, and ZrB₂ joins were stronger and more shock resistant than the parent materials. Also included in the joining tests was one each of TiC to TiB₂, TiC to TiN, TiB₂ to TiN, and TiC to ZrB₂ joins. Each of these was well bonded, showing that the vacuum-hot-press method can be used for a variety of systems.

> RI 7226. Beneficiation of Ferrochromium by Molton Sait Electrolysis, by F. R. Cattoir and T. A. Sullivan. February 1969. 26 pp. 9 figs. This Bureau of

Mines study investigated molten salt electrorefining for beneficiating low-grade, high-carbon ferrochromium products which can be readily produced from domestic chromite concentrates. A second objective was to refine commercial ferrochromium into lowiron chromium products. Electrorefining of both types of ferrochromium in molten CaCl₂-NaCl-CrCl, CaCl₂-MgCl₂-CrCl₂, or KCl-LiCl-CrCl, electrolytes produced chromium-iron products with virtual elimination of other impurity elements and some lowering of the iron content. Over 90 percent of the chromium present in the feed materials was recovered. The electrodeposited products were upgraded further by magnetic separation techniques into chromium containing less than 5 percent iron. The technical feasibility of preparing a premium chromium product from a low-grade, high-carbon ferrochromium made from domestic chromite was demonstrated. Chromium virtually free of carbon, oxygen, and silicon from high-carbon ferrochromiums was produced. In addition, the amenability of three commercial grades of ferrochromium to electrorefining and magnetic separation for preparing chromium metal containing less than 5 percent iron was determined.

RI 7227. Improved Eluex Process for Eluting Uranium From Ion Exchange Resins, by D'Arcy R. George and J. Richard Ross. February 1969. 10 pp. 6 figs. The Bureau of Mines has developed, on a laboratory scale, a superior Eluex-type circuit for eluting and recovering uranium from ion exchange resins. The improved circuit differs from conventional Eluex practice in that a stage of uranium solvent extraction is coupled with each stage of resin elution rather than the elution and solvent extraction operations being conducted separately. The new system reduces the number of stages, retention time, and resin inventory in the elution circuit to one-fourth or one-fifth that in existing circuits. The system is applicable to both resin-in-pulp and moving-bed-type ion exchange uranium recovery circuits.

RI 7228. Dispersion-Strengthened Copper. Its Preparation and Properties, by D. H. Desy. March 1969. 24 pp. 15 figs. The Bureau of Mines studied the properties of copper that had been oxide dispersion strengthened with 2 volume-percent of either yttria or alumina. Compounds of copper and aluminum or yttrium, coprecipitated from aqueous solution, were converted to oxides; the copper was reduced, compacted, sintered, and extruded. For the resulting copper-dispersoid composites, room temperature tensile properties after annealing in hydrogen, elevated temperature tensile and stress-rupture properties, and electrical conductivity were determined. Compared with oxygen-free copper, copper-2 volumepercent alumina or yttria had improved strength after annealing between 400° and 1.000° C, and improved elevated temperature strength, with little loss in electrical conductivity.

RI 7229. Effect of Varied Extrusion Temperature on the Properties of a Zinc-Copper-Jitanium Allay, by L. A. Neumeier and J. S. Risbeck. February 1969. 22 pp. 16 figs. The Bureau of Mines evaluated the properties of a Zn-0.75 percent Cu-0.12 percent Ti alloy extruded at temperatures between 400° and 720° F. The extrusions were made with a reduction ratio of 28 to 1 and at relatively slow speed. Rod was also extruded at 560° and 640° F with a reduction of 255 to 1. With increased extrusion temperature, extrusion pressures decreased substantially and creep resistance of the rod improved significantly. Coefficients of thermal expansion were low in the long rod dimension. Microstructures, hardness, and tensile properties were also evaluated, and a limited evaluation was made of bend ductility at 32° F for the rod extruded with the 255-to-1 reduction.

RI 7230. Improving Returns From Mine Products Through Use of Operations Research Techniques, by Thys B. Johnson. March 1969. 78 pp. 9 figs. Operations research techniques for determining optimal shipping schedules and production and product allocation are discussed. A hypothetical mining operation model is formulated by the Bureau of Mines, and optimal production and product allocation are determined. The technique of sensitivity analysis is discussed and is used to illustrate the effect of the variability in a mining operation on the optimal production and product market plan.

RI 7231. Pyrite Size Distribution and Coal-Pyrite Particle Association in Steam Coals: Correlation With Pyrite Removal by Float-Sink Methods, by J. T. McCartney, H. J. O'Donnell, and Sabri Ergun. February 1969. 18 pp. 5 figs. In an effort to correlate the size of pyrite particles in coal and coal-particle association with the removal of pyrite before burning, the Bureau of Mines conducted a study of 61 coals presently being used for electric power production. The results were obtained by visual microscopic studies of polished briquets of minus 14-mesh samples. Mean pyrite particle sizes ranged from 20 to 400 microns and proportions of pyrite contained in coal particles to an extent greater than 50 percent by volume (estimated) ranged from 20 to 95 percent. These parameters were correlated with reductions in pyrite accomplished by float-sink tests at 1.60 specific gravity on 14-mesh, %-inch, and 1½-inch samples. The correlation coefficients between pyrite removal and mean pyrite particle size were 0.89, 0.84, and 0.79, respectively, for these samples. Correlation coefficients between pyrite removal and coal-pyrite association parameter were 0.92, 0.90, and 0.85, respectively. It is apparent that extent of pyrite removal can be fairly well predicted from microscopic analysis.

RI 7232. Liquidus Temperatures of Titaniferous Slags (in Three Parts). 3. Production of Nominal Slog Com-positions, by Wesley T. Holmes II and William A. Stickney. February 1969. 21 pp. 3 figs. In this final stage of a three-part investigation of the smelt-ing of titania-bearing iron materials, the Bureau of Mines conducted semicontinuous smelting tests in a laboratory electric arc furnace on four concentrates and one ore. The objective was to substantiate the significance of liquidus temperature measurements in predicting satisfactory slag compositions in electric furnace smelting of titaniferous magnetites to produce pig iron. Previously obtained liquidus temperature data were used in determining flux requirements. Self-fluxing pellets of either ore or concentrate plus fluxes and reductants were made to produce pig iron and slags containing 0.2 to 0.6 percent titanium. Individual constituents of the slags generally agreed within 5 percent with the value of the corresponding constituent of target composition. Liquidus temperature of furnace slags generally agreed within 50° C of the value obtained from corresponding nominal synthetic slag.

The results of the three phases of the investigation may serve as guidelines for determining flux requirements in smelting a wide variety of titaniferous magnetites and other titania and iron-bearing materials. RI 7233. Compressibility Factors for Helium and Carbon Dioxide Mixtures at 0°, 10°, 20°, 23°, and 35° C and to 900 PSIA, by G. W. Weems and N. L. Miller. March 1969. 41 pp. 8 figs. The Bureau of Mines used the Burnett method and apparatus to determine the compressibility factors for helium and carbon dioxide mixtures at 0°, 10°, 20°, 23°, and 35° C and to pressures of 900 psia. Tables of compressibility factors and approximations of the virtual coefficients are presented for seven binary mixtures as well as for helium and carbon dioxide. The results compare favorably with existing data.

J

١

1

)

.

2

ľ

L

ŷ

RI 7234. Influence of Spherical Head Size and Specimen Diameters on the Uniaxial Compressive Strength of Rocks, by John R. Hoskins and Frank G. Horino. January 1969. 16 pp. 8 figs. Uniaxial compressive strength of rock is usually determined in the laboratory from cylindrical samples that vary in diameter from % to 8 inches, using a spherically seated compression head of unspecified size. The Bureau of Mines conducted a series of tests on limestone, marble, sandstone, granite, and plaster of paris to determine the influence of the spherical head sizes and the specimen diameters themselves on the uniaxial compressive strength. Cylindrical samples of several different diameters of each rock type, all having a length of twice their diameter, were prepared and broken using at least three different diameter spherical heads.

Analysis of the data shows that spherical head size does not significantly affect the uniaxial compressive strength of cylindrical rock samples. However, the diameter of the rock specimens does significantly affect the uniaxial compressive strength. Within the range of specimen diameters tested, a coefficient of variation of 6.4 percent for plaster of paris can be attributed to the selection of specimen diameter alone. Similarly, a maximum coefficient of variation of 4.7 percent for the rock types tested can be attributed to the specimen diameter alone.

RI 7235. Use of Antifissurants in Making Better Coke from Sunnyside Coal From Utch, by M. J. Kovalik, D. E. Wolfson, F. Fischler, and L. Mafrica. February 1969. 15 pp. 3 figs. Lower Sunnyside seam coal from Utah was blended with various proportions of char and high-temperature coke to improve the quality of the coke obtained from carbonizing this coal. The Hanson 5-pound carbonizer was used as a "screening test" for the larger scale Bureau of Mines-American Gas Association (BM-AGA) tests, which were correlated with industrial production. Eighteen carbonization tests were made in the BM-AGA 13-inch retort, with a coal charge of about 90 pounds; the cokes were evaluated by the standard ASTM tumbler test. Carbonization of blends containing char and coke breeze yielded less fissured and blockier cokes of significantly higher ASTM 1-inch tumbler indices as compared with the value for the straight Sunnyside coal. It was found that the simultaneous addition of char and coke breeze yielded stronger cokes than that obtained by the addition of either one of these additives. Addition of a small proportion of Pocahontas No. 3 or Sewell coal to an optimum blend improved the resulting coke strength further.

 RI 7236. Carbonizing Properties of Coals From Nicholas, Randolph, and Webster Counties, W. Va., by
 D. E. Wolfson and C. Ortuglio. March 1969. 17
 pp. 1 fig. This report presents 900° C BM-AGA carbonization and related data for coals from the principal beds of Nicholas, Randolph, and Webster Counties, W. Va. Thirty-three samples from nine coal beds in three counties were carbonized at 900° C in the 18-inch-diameter BM-AGA retort, data from which have been correlated with industrial production. Most of the samples were chemically suitable for metallurgical use, and their coking properties were satisfactory. Except for four of the Lower Kittanning samples, the ranges of constituents in the coal seams were 1.8 to 9.0 percent ash and 0.4 to 1.1 percent sulfur, values within the range of acceptability for metallurgical coals. Coke strength indexes were normal for Appalachian coals of similar rank, and the tumbler stability indexes of the coke ranged from 35 to 57.

RI 7237. Application of Statistical Response Surface Fitting in Predicting Lignite Properties, by Manuel Gomez and William L. Meyer. March 1969. 64 pp. 13 figs. The Bureau of Mines used data from 31 core samples to develop prediction equations for evaluating chemical and carbonization properties of six seam units in a lignite deposit approximately 2 miles wide and 8 miles long in the Wilcox Formation of central Texas. Statistical response surfaces, based on core analyses, were computed for 14 parameters indicative of lignite quality. These computed surfaces, and their mathematical equations, can be used to predict values of the selected properties of the lignite seams at any desired surface coordinate position between core hole locations. The wide range of application shown by this study indicates that the methods of statistical regression analysis may be used to evaluate large deposits of lignite or higher rank coal. Work done in cooperation with the Texas Power and Light Co.

RI 7238. Rotary Coring of Appalachian Area Oil-Producing Formations With Mud or Air, by R. L. Rough. March 1969. 32 pp. 12 figs. The Bureau of Mines analyzed rotary-coring-operations data to compare mud and air as coring mediums, and to compare core recoveries, penetration rates, and cost data for the respective mediums as part of an investigation of the susceptibility to secondary-recovery techniques of petroleum reservoirs in Ohio, Pennsylvania, and West Virginia. This report describes the rotary-diamond coring equipment and operations employed while coring 20 wells—10 cored using mud and 10 cored using air. Data relevant to the draw works, rotary-table power, drill pipe, drill collars, core barrel, core head, mud pumps, or air compressors are tabulated. Average bit weight and rotary speed, core recovery, and penetration rates are listed for each formation cored. In general, core recoveries were better from the mud-cored wells, whereas penetration rates were faster for the air-cored wells. Goring costs were about the same for single-formation wells cored with either mud or air; however, costs increased considerably when multiple-formation wells were cored with air.

RI 7239. Pulverized-Coal Flames. Flame Propagation in the Absence of Recirculation, by C. R. McCann and A. A. Orning. March 1969. 22 pp. 12 figs. The Bureau of Mines conducted an experimental study of conditions needed to produce flames of pulverized coal when the heat needed for ignition is supplied only from the flame and hot furnace refractory. An electrically heated furnace which burned about 1 pound of coal per hour was designed and fabricated. A sheath of air, surrounding the primary coal and air stream, was used to prevent entry of hot gases from recirculating combustion products. Furnace temperatures needed for ignition ranged from about 1,830° F for an Illinois coal to 2,250° F for a Beck-

1

٩

ley seam coal. Apparent flame velocities were about 2 to 5 feet per second, increasing with volatile content of the coal and with distance from the burner mouth to the flame. The time required for ignition, approximately 0.02 to 0.07 sec, was a better measure of flame behavior than was velocity.

RI 7240. Major Ash Constituents in U.S. Cools, by R. F. Abernethy, M. J. Peterson, and F. H. Gibson. 1969. 9 pp. Analytical results, including ash fusibility data, are presented by the Bureau of Mines for 10 major constituents in coal ash from 373 samples of commercial U.S. coals. Determinations of SiO₂, Al₂O₄, Fe₂O₃, and P₂O₅ were made by colorimetric methods, Na₂O and K₂O by flame photometry, TiO₂, CaO, and MgO by a spectrochemical method, and SO₃ by a gravimetric method. In bituminous coal ashes the silicon, aluminum, and iron calculated as oxides often make up about 90 percent of the ash. 25 cents.

RI 7241. Continuous Monitoring of Diesel Exhaust Gas for Carbon Dioxide, Carbon Monoxide, Oxygen, Methane, and Nitrogen Oxides, by Helen W. Lang, W. E. O'Neill, B. A. Coulehan, and R. W. Freedman. March 1969. 14 pp. 3 figs. This report describes a monitoring system applied by the Bureau of Mines to provide rapid, continuous determination of the main constituents of exhaust gas during the Bureau's approval schedule testing of diesel engines for underground use. Commercially available continuous analyzers with strip chart readout are employed for nitric oxide (mass spectrometric), carbon dioxide (nondispersive infrared), methane (NDIR), carbon monoxide (NDIR) and oxygen (polarographic). Good correlation is obtained between the continuous instrumental results and those obtained by batch chemical and gas chromatographic methods.

RI 7242. Reduction Roosting of Steep Rock Iron-Bearing Materials, by Charles Prasky and Willard S. Swanson. March 1969. 21 pp. 7 figs. The Bureau of Mines investigated the conversion of nonmagnetic iron minerals to magnetic form through reduction roasting operations. The primary objective was to obtain a concentrate that could be used as a direct shipping material for blast furnace consumption. Crude iron materials from the Steep Rock Lakes, Ontario, area were prepared into a blend of 8 parts siliceous ore, 3 parts pyritic ore, and 1 part tailings. Experimental work included laboratory reduction roasting tests, two continuous 10-day campaigns, and one 12-hour test, all in a 34-inch by 36-foot rotary kiln. The objective of the project was achieved in producing an iron concentrate containing about 66 percent iron with over 90 percent iron recovery. Desirable operating conditions were developed in the kiln, but optimum process variables were not completely established. Work done in cooperation with the Dravo Corp.

RI 7243. Transformations of the Elastic Constants for Anisotropic Media by Successive Simple Rotations, by Thomas R. Bur. March 1969. 15 pp. 1 fig. This method of performing general transformations by use of Eulerian angles greatly reduces the time required for the determination of values for the elastic compliance constants (s,.), elastic stiffness constants (c;.), Young's modulus, shear modulus, or Poisson's ratio for any orientation of the cartesian coordinate system in an anisotropic material.

RI 7244. Raw Materials for Lightweight Aggregate in Appa-

lechian Region, Alabama and Georgia, by Ronald P. Hollenbeck and M. E. Tyrrell. March 1969. 21 pp. 5 figs. Samples of clays, shales, and slates from 29 locations in the Appalachian region of Alabama and Georgia were tested and evaluated to determine their suitability as raw material for the manufacture of lightweight aggregate by the rotarykiln method. Samples from 11 locations in Alabama (one each in Etowah, Lawrence, and Morgan Counties and two each in Colbert, Cullman, Tuscaloosa, and Walker Counties) and one location in Walker County, Ga., produced satisfactory lightweight aggregate.

RI 7245. Separation of Feldspar, Quartz, and Mica Fram Granite, by T. E. Hill, Jr., H. Kenworthy, R. A. Ritchey, and J. A. Gerard. March 1969. 25 pp. 2 figs. The Bureau of Mines investigated the possibility of physically separating Missouri and Minnesota granites into commercially usable fractions of feldspar, quartz, and mica by mineral dressing techniques. The probability of recovering a feldspar fraction from raw granite suitable for commercial uses was developed through correlation of the iron oxide content by extensive petrographic studies. This probability evaluation also included Wisconsin granites and a high-feldspar iron ore concentration tailing from Missouri. Laboratory recoveries of feldspar and quartz were on the order of 80 percent. Mineral content of each fraction was generally over 95 percent, indicating excellent response to separatory techniques. Acid leaching of feldspar and quartz concentrates to remove iron oxide improved the grades chemically; however, occluded iron oxide particles in the leached products prevented attaining top grades of feldspar. Mica was removed as scrap grade at low recoveries. Each concentrate conformed to some category of commercial feldspar, quartz, or mica.

RI 7246. Phose Diagram for the KF-YF₃ System, by Bernard Porter, R. E. Meaker, and P. R. Bremner. March 1969. 8 pp. 2 figs. Differential thermal analysis measurements were used to characterize a phase diagram for the KF-YF₃ system at compositions between 0 and 60 mole-percent YF₃. A congruent melting point compound was observed at 3KF·YF₃, which melts at 965° ± 5° C and undergoes solidstate decomposition at 725° ± 2° C. One peritectic and two eutectic compositions are also defined.

Ri 7247. Preparation of Tungston Carbide by Electrodeposition, by John M. Gomes and M. M. Wong. April 1969. 13 pp. 2 figs. The preparation of tungsten carbide by molten-salt electrolysis was investigated. Sodium tungstate in the electrolyte and carbon from the graphite anode were the source materials. Optimum results were obtained with an electrolyte consisting of 83 mole-percent sodium chloride and 5.7 mole-percent each of sodium tungstate, sodium metaborate, and sodium hydroxide; a temperature of 1,000° to 1,025° C: an anode current density of 37 amp/dm² or less; and an initial cathode current density of 150 amp/dm². The yield was approximately 0.45 g/amp hr. The electrolytic tungsten carbide product contained approximately 5.4 weight-percent for pure tungsten carbide. Microhardness of the electrolytic tungsten carbide, determined with a 50-gram load, varied from 3,480 to 3,970 dph. The material was friable and could be ground in a laboratory ball mill to less than 400mesh particle size.

RI 7248. Theoretical Relationship Between Density and Oil

Yield for Oil Shales, by John Ward Smith. April 1969. 14 pp. 2 figs. The Bureau of Mines derived equations expressing the theoretical relationship between density of oil-shale rock and its organic content. Effects on theoretical shale density produced by variations in mineral composition and organic matter properties were evaluated. The theoretical relationship was extended to relate oilshale density to oil yield in both oil weight and volume units by considering the fraction of organic matter converted to oil and the specific gravity of the oil produced. Corollary equations relating organic content by volume to organic content by weight and to oil yield were developed. The general relationships apply to an oil-shale deposit uniform in character. Application of the theoretical relationships to Green River Formation oil shales was demonstrated. Work done in cooperation with the University of Wyoming.

۱

RI 7249. Five-Piece Concrete Sets for Small Mine Openings: A Progress Report, by K. R. Dorman. April 1969. 45 pp. 26 figs. To further investigate the potential of precast concrete sets as a support medium for underground mines, the Bureau of Mines designed a five-piece precast concrete drift set for a small opening and tested it to destruction in a straining frame. Twenty-seven tests were made with three sizes of members using three loading conditions. In addition, six tests were made with sets in a distorted configuration. Test results and typical failure patterns are presented. A comparison of results with those previously reported for the threepiece set shows the five-piece set supports considerably larger total loads than does the three-piece set of equivalent cross section designed for the same size of opening. Recommendations are made for improvements in design.

RI 7250. Experimental Leaching of Gold From Mine Waste, by H. J. Heinen and Bernard Porter. April 1969. 5 pp. Excellent gold recovery was demonstrated in a laboratory-scale leaching test on waste material from an open-pit mine in northeastern Nevada. An injection system of leaching was applied in which the sodium cyanide solution was introduced into the interior of the dump at selected points. Dissolution of gold from the waste material, which assayed 0.06 ounce gold per ton, was readily achieved because the gold occurred as submicroscopic particles in a porous host rock. Gold recovery of 80 percent was obtained in 11 days from material crushed to 1 inch in size, and recovery was 90 percent after 21 days.

RI 7251. Recovering Gold From a Graphitic Schist From Tallopoota County, Ala., by G. V. Sullivan, James S. Browning, and S. J. Saunders. April 1969. 11 pp. 3 figs. The Bureau of Mines conducted preliminary beneficiation studies of a gold-bearing graphitic schist from Blue Hill, Tallapoosa County, Ala. The average analysis of the material was 0.08 oz/ton gold. Tabling of minus 35-mesh material recovered 83 to 94 percent of the gold at grades of 6.925 to 2.165 oz/ton, respectively. A combination of jigging and tabling resulted in a concentrate assaying 24.3 oz/ton gold and contained 87 percent of the total gold. Treatment of the material by jigging, tabling, and amalgamation recovered 86.5 percent of the gold. Work done in cooperation with the University of Alabama.

RI 7252. Some Aspects of the Aerodynamics of Formation of Float Coal Dust Clouds, by J. M. Singer, N. B. Greninger, and J. Grumer. April 1969. 26 pp. 8 figs. The Bureau of Mines investigated the threshold of dispersal of monolayers and piles of rock dust, anthracite, and Pittsburgh seam coal dust in a small wind tunnel that simulated a coal mine gallery, with the objective of preventing or limiting the formation of flammable dust clouds. The effect of selected variables on entrainment velocity was examined. Mode of entrainment flow and processes in the wake region of dust configurations were investigated by means of high-speed motion pictures. Significant results were as follows:

1. Local minimum air velocities required for dispersal were only slightly higher for shallow dust ridges than for dust particles.

2. Minimum velocities for entrainment of dust particles from smooth glass and coal surfaces increased in the order rock dust, anthracite, Pittsburgh seam coal.

3. The mechanism for dispersal of dust piles depended significantly on dust pile geometry, cohesiveness of dust, bulk density and compaction of dust, adhesive surface, and vibrations perturbing the supporting surface.

4

.

1

t

t

(

RI 7253. Energetics of Percussive Drills, by William E. Bruce and James Paone. April 1969. 31 pp. 20 figs. The Bureau of Mines performed drill calibration tests on two industrial percussive drills of 2%- and 2½-inch piston diameters to determine operating characteristics for their use in conjunction with penetration rate data in developing drillability equations and furthering the knowledge of percussive drills. The use of a linear velocity transducer for measuring piston velocities and application of its instrumentation are described. Data presented include relationships between maximum piston velocity and feed air pressure. Other results confirm the theory or data of previous investigators, and some comparisons are made with the performance prediction formulas of other investigators.

RI 7254. Recevery of Rhenium From Jungsten-Rhenium Alley, by M. J. Ferrante, F. E. Block, A. D. Fugate, and F. A. Skirvin. April 1969. 11 pp. 3 figs. The Bureau of Mines recovered rhenium powder from scrap tungsten alloy containing approximately 25 percent rhenium. Oxidation of the scrap at 950° C separated voaltile rhenium heptoxide from tungsten trioxide. Minor amounts of tungsten, iron, and nickel were removed by selective precipitation from a rhenium solution from which was recovered crystalline ammonium perrhenate. Experimentation showed that hydrogen reduction of minus 325-mesh ammonium perrhenate at 1,000° C produced rhenium powder averaging 2.1 microns in size (Fisher Sub-Sieve method). The powder contained <50 ppm of total metallic impurities and 1,070 ppm of total interstitial impurities. Sintered compacts had a density of 95 percent of theoretical. Approximately 96 percent of the rhenium contained in the scrap alloy was recovered.

RI 7255. Turbine Blade Wear by Coal Ash in Working Fluid at 1,200° F, by J. P. McGee, Arthur J. Liberatore, Donald C. Strimbeck, and Gerald B. Goff. April 1969. 15 pp. 13 figs. A 1,000-hour test with a gas turbine at 1,200° F showed a working fluid of 1 gr of ash per 100 scf of powder gas (79 percent of the ash 7 to 35 microns in diameter) to be excessive for acceptable blade wear for commercial practicability. Blades in the turbine consisted of about 20 percent each of chromium, cobalt, and mickel; 3 percent molybdenum; 2.5 percent tungsten; and smaller amounts of manganese, columbium and tantalum. Erosion of both the fronts and backs of the turbine nozzles was particularly heavy, the trailing edges being worn to a featheredge. Erosion of the buckets was less marked, although the leading edges were somewhat pitted. A refractory-lined combustor performed efficiently and with little abrasion of the lining by the ash-laden gas.

RI 7256. A Microscope System Using Automated Reflectance Scenning To Study Coal Components. Application to Analysis of Pyrite Distribution, by J. T. McCartney and S. Ergun. May 1969. 15 pp. 3 figs. The Bureau of Mines has developed an automated reflectance scanning microscope system, primarily for determination of volume proportions, size distribution, and mode of association of the physical (petrographic) components of coals. The process, which is potentially more rapid and objective and less tedious than a visual microscopic procedure, involves magnetic tape recording of several millions of reflectance readings on micro-meter sized areas of polished coal surface and computer analysis and interpretation of some characteristics of the coal components. The system was tested in a study of pyrite distribution in steam coals. The application was essentially successful, but defects in polished pyrite surface characteristics and problems in adequate sampling prevented completely satisfactory results. Pyrite content and coal-pyrite particle association could be determined nearly as well as by visual microscopy, but size distribution data were less acceptable.

RI 7257. Calculating Equilibrium Compositions of Multiconstituent, Multiphase, Chemical Reacting Systems, by H. F. Feldmann, W. H. Simons, and D. Bienstock. May 1969. 22 pp. 2 figs. This Bureau of Mines report presents a method for the computer solution of the equilibrium compositions of any complex, multiphase, chemical system for which appropriate thermodynamic data are available. The method describes in detail the computation of systems in which solid or liquid species can form by heterogeneous chemical reactions where these species do not occur in any equilibrium equations. Also described are the calculation of phases formed by condensation (pure or solutions) and the inclusion of other system restrictions such as electroneutrality. The method is being used to compute the equilibrium composition of mixtures of an electrically conductive plasma and a liquid slag phase arising from the high-temperature combustion of coal for magnetohydrodynamic power generation. These mixtures can contain up to 65 species including gases, liquids, free electrons, and ions.

RI 7258. Effect of Microstructure on Superconductivity in the Columbium-Hafnium System, by R. E. Siemens, L. L. Oden, and D. K. Deardorff. May 1969. 22 pp. 21 figs. The Bureau of Mines sought to correlate the variation of structure-sensitive superconducting properties with microstructure in selected Cb-Hf alloys and to compare the experimental results with those predicted by the GLAG theory. Alloys in wire and rod form were evaluated by critical temperature, critical current, magnetization, resistivity measurements, and optical and electron microscopy. In the absence of an external magnetic field, the current carrying capacity of columbium was greatly reduced with addition of up to 85 wt pct Hf, but a large increase in *I.* occurred for Cb-90 wt pct Hf. Favorable *I.-H* behavior was observed in cold-drawn alloys containing 25 and 57 wt pct Hf. Correspondingly, a maximum in *T.* occurred at 10-25 and 90 wt pct Hf. Four- or five-hour treatments at 600° C resulted in maximum *I.* values and maximum hysteresis in magnetization. Dislocation pileup, polygonization, and fine precipitates, responsible for flux pinning, are listed in order of their effectiveness as pinning sites. Sites having an average separation of 1,500 to 3,000 A and a diameter of 1,000 A or less were most effective in influencing I-H and M-H behavior. The resistive critical fields increased smoothly to a maximum of 80 kOe between 60 and 65 wt pct Hf. High-field, mixed state, reversible paramagnetism was observed in some alloys; however, the GLAG theory was in good agreement with experimental results for the majority of the composition range studied.

RI 7259. Experiments on the Flow of Mercury in Porous Media in a Transverse Magnetic Field, by W. E. Wallace, C. I. Pierce, and W. K. Sawyer. May 1969. 13 pp. 3 figs. Volume-rate-of-flow measurements were made of the flow of mercury through porous samples under conditions of no field, magnetic field transverse to the direction of flow, and transverse magnetic field and electric current to determine if a magnetic method might be potentially useful in the study of pore-size distribution. No change was observed in the flow rate from the application of a magnetic field alone. The application of both field and current produced an electromagnetic pumping action with or against the direction of flow, depending upon the direction of the electric current. This pumping effect was observed to be greater in a rectangular porcelain sample than the calculated value for an equal-sized open channel.

RI 7260. Chlorine in Coel Combustion, by T. L. Iapalucci, R. J. Demski, and D. Bienstock. May 1969.
12 pp. 5 figs. To determine the behavior of chlorine in coal combustion, the Bureau of Mines burned 10 chlorine-containing coals, high., medium., and low-volatile, in a laboratory-scale pulverized-coal combustor. At carbon-combustion efficiencies of 94 to 98 percent, 1.6 to 7.1 percent of the chlorine or an average of 4 percent of the chlorine in the coal was retained in the ash; the balance, predominantly hydrogen chloride, was evolved in the combustion gas. Sulfur retention in the ash ranged from 2.3 to 10.7 percent or an average of 6.3 percent. Addition of alkali and alkaline earth carbonates to a medium-volatile coal containing 0.27 percent chlorine by preferentially reacting with the chlorine increased the Cl-S atom ratio in the ash. Lithium carbonate addition at 0.43 percent and K₂CO₃ at 1.59 percent increased the Cl-S ratio in the ash from 0.2 to 0.6.

RI 7261. Chemical and Vegetative Stabilization of a Nevada Copper Perphyry Mill Tailing, by Karl C. Dean, Richard Havens, and Kimball T. Harper. May 1969. 14 pp. 3 figs. The Bureau of Mines stabilized 10 acres of windblown copper mill tailings at McGill, Nev., by a combination chemical-vegetative procedure. Legumes, winter wheat, wheatgrasses, and wild rye were seeded, and the area was subsequently sprayed with a resinous adhesive chemical to stabilize the sands until the vegetation could grow. During the year since treatment, the area has been well stabilized against wind erosion. The established vegetation appears to be capable of self-perpetuation and renewal without irrigation. The cost of stabilizing the area was \$135.50 per acre.

RI 7262. Interactions of Titonium and Molybdenum Additions With Interstitial Impurities in Vanadium, by G. H.

Keith. May 1969. 22 pp. 10 figs. The Bureau of Mines determined the mechanism(s) involved in observed anomalous changes in mechanical properties of vanadium-base alloys. Tensile properties of electrorefined and commercial-purity vanadium-base alloys containing up to 5 atomic percent molybdenum or titanium were measured between 77° and 673° K. Snoek oxygen and nitrogen peak heights were measured to determine the changes in dissolved interstitial content caused by increasing quantities of solute. In addition, changes in lattice parameter were followed with precision X-ray techniques.

Softening, observed in alloys containing titanium, is explained by the formation of a second-phase titanium compound with oxygen or nitrogen. However, because of partitioning of titanium between compound formation and solid solution formation, about five times the stoichiometric amount was required for complete reaction. Addition of 1 percent titanium drastically lowered the strengthening due to strain aging at 673° K, and 2 percent titanium essentially eliminated it. All alloys were ductile at 77° K. Variations in the tensile properties of the molybdenum-containing alloys are explained by variations in the amounts of interstitial impurities present. The molybdenum did not react with these impurities and had no effect on strengthening due to strain aging. Commercial-purity vanadium alloys containing more than 2 percent molybdenum were brittle at 77° K.

RI 7263. Flotation of Muscovite From Alabama Graphiti-Mice Schist Ore, by Ralph B. Adair and James S. Browning. June 1969. 7 pp. 1 fg. The Bureau of Mines conducted laboratory and continuous pilot plant flotation tests to determine the feasibility of recovering commercial-grade mica from an Alabama graphite-mica schist. Preconcentration of the ground ore on a Humphreys spiral was employed to reject the heavy minerals and part of the quartz in a product virtually free of mica. The acidcationic mica flotation process recovered over 89 percent of the mica in a product containing 98.7 percent mica. Grinding of the mica concentrate in a fluid energy mill produced a product with a bulk density of 12 lb per cubic foot. Work done in cooperation with the University of Alabama.

RI 7264. Extraction of Aluminum and Fluorine From Leached Potlining Residues, by P. C. Good and W. G. Gruzensky. June 1969. 9 pp. The Bureau of Mines conducted a laboratory investigation of a sinter-leach method to recover aluminum and fluorine from waste carbon potlining residues from secondary cryolite recovery operations in aluminum reduction plants. After removal of carbon by burning, the residue was sintered at 900° to 1,100° C with silica and Na₂CO₃, then crushed and leached with dilute NaOH solution, dilute Na₂CO₃ solution, water, or water containing residual Na₃O which remained in the sinter after reaction and decomposition of Na₂CO₃. Over 90 percent of the contained fluorine were extracted from this waste product in the form of a mixed alkaline solution. Treatment of the alkaline solution with CO₃ yielded a white precipitate containing 89 percent of the original aluminum and 61 percent of the original fluorine as a mixture of synthetic cryolite and alumina, together with a variable excess of soda.

RI 7265. Preparation of Thorium Metal by Vacuum Distillation of Electradeposited Thorium-Chromium and Thorium-Manganese Alleys, by J. E. Murphy, E. Morrice, and M. M. Wong. June 1969. 9 pp. 1 fig. Highpurity thorium metal was prepared by the Bureau of Mines from electrolytically produced thorium alloys. The thorium-chromium and thorium-manganese alloys were separated into the component elements by vacuum distillation. Chromium and manganese impurities remaining in the thorium metal after distillation at 1,850° C were <0.005 weight-percent. Removal of volatile impurities such as aluminum. calcium, magnesium, and lead was also accomplished.

RI 7266. Dispersion-Strengthening in Copper-Alumina and Copper-Yttria Alleys, by R. L. Crosby and D. H. Desy. June 1969. 17 pp. 8 figs. The Bureau of Mines investigated alloys of copper with 2, 3, and 4 vol pct alumina and with 2 vol pct yttria. Alloys were prepared by a coprecipitation process and were fabricated by pressing and sintering of powders, extrusion, and swaging. Tensile properties at room and elevated temperatures, stress-rupture strength, electrical conductivity, and density were measured. The superiority in elevated temperature strength of dispersion-strengthened copper to OFHC copper was confirmed. Increasing the oxide content from 2 to 4 vol pct produced only a small improvement in strength properties and decreased the electrical conductivity. The 3 vol pct alumina alloy had the best overall combination of properties.

н

ŧ

(

t

C

RI 7267. Oxygen Consumption and Hydrogen Production by Shrink-Resistant Greuts in Confined Places, by Mary A. Barrett. June 1969. 8 pp. 5 figs. The Bureau of Mines conducted a laboratory-scale investigation of grouting mixtures containing iron or aluminum to determine the existence of health or explosion hazards, due respectively to oxygen depletion or hydrogen emission. Mixtures containing iron created an oxygen deficiency in less than 24 hours and released small amounts of hydrogen; a health hazard could occur but only under extremely unfavorable conditions. Mixtures containing aluminum released little hydrogen and consumed little oxygen; however, if improper on-site mixing yielded high local metallic aluminum concentrations, enough hydrogen might be released to produce an explosive atmosphere in a confined space.

RI 7268. Inductoslog Melting of Titonium, by P. G. Clites and R. A. Beall. June 1969. 20 pp. 12 figs. The Bureau of Mines developed techniques for induction melting of titanium in a split, water-cooled copper crucible. Calcium fluoride, which was used as an inert slag cover during melting, formed an insulating layer of solid slag between the ingot and the crucible wall. This thin layer of slag effectively insulated the ingot from the crucible and prevented the molten metal from shorting across the slits between adjacent segments of the crucible. The technique provides a means of melting loose titanium sponge and scrap and eliminates the need for fabricating a consumable electrode. This report describes the equipment developed and compares ingots produced from two varieties of titanium sponge, from titanium scrap, and from previously melted titanium with ingots prepared by vacuum-arc melting and electroslag melting. A melting scheme was also proposed and evaluated whereby loose titanium sponge was consolidated into a first-melt ingot for vacuumarc melting.

RI 7269. Elastic Moduli of Rock at Elevated Temperatures, by Carl F. Wingquist. June 1969. 8 pp. 8 figs. In support of Bureau of Mines studies of thermal fragmentation of rock, the elastic moduli of four types of rock were measured at temperatures ranging from room temperature up to 1,500° F (1,089° K). The sonic method was employed to determine the resonant frequencies of the rock specimens and from these frequencies, the elastic moduli were calculated. Data for Young's modulus, shear modulus, and Poisson's ratio are given as a function of temperature for Dresser basalt, Reserve taconite, Jasper quartzite, and Charcoal granite. Young's modulus and the shear modulus decreased with increasing temperature up to about $1,200^{\circ}$ F and then became relatively insensitive to temperatures from $1,200^{\circ}$ to $1,500^{\circ}$ F.

RI 7270. Bureau of Mines Portable Recording Methanometer, by Merle L. Bowser and William E. Thomas. July 1969. 6 pp. 3 figs. The Bureau of Mines has developed a portable recording methanometer that utilizes the Bureau's methane sensor. The methanometer can operate continuously for at least 30 hours on small, sealed, rechargeable lead-acid batteries.

RI 7271. Vapor Pressures of Liquid Titanium (2,008° to 2,379° K) and Liquid Platinum (2,045° to 2,442° K), by R. K. Koch, E. D. Calvert, C. R. Thomas, and R. A. Beall. July 1969. 14 pp. 4 figs. The vapor pressures of liquid titanium and liquid platinum were studied under the Bureau of Mines program for the determination of thermochemical data on the transition elements. Heating was done in a 2-kw electronbeam furnace with a water-cooled copper crucible to contain the melt. Temperature was measured with a disappearing-filament brightness pyrometer. The vapor pressure data for liquid titanium in the range 2,008° to 2,379° K are represented by the leastsquares derived equation

$$\log p (atm) = 6.268 - \frac{22,330}{T}$$
.

Two series of determinations were made on liquid platinum. Results of the first series are expressed by the least-squares derived equation

$$\log p (atm) = 8.240 - \frac{30,460}{T}$$

for the range 2,086° to 2,420° K. Results of the second series are expressed by the least-squares derived equation

$$\log p (atm) = 7.795 - \frac{29,580}{\pi}$$

in the range 2,045° to 2,442° K.

Third-law evaluations of each series gave mean standard heats of sublimation of 112.4 kcal/mole, 133.3 kcal/mole, and 133.8 kcal/mole for titanium, first series on platinum, and second series on platinum, respectively. Second-law heats of sublimation and equations for heats, free energies, and entropies of vaporization were obtained from sigma plots of each data set.

RI 7272. Gasflood Performance Prediction for the Cooper Sand of the Fork Run Pool, Warren and McKean Counties, Pa., by K-H. Frohne, L. A. Schrider, and M. K. Romeo. July 1969. 49 pp. 15 figs. This report presents a study of the Cooper sand of the Fork Run pool of Warren and McKean Counties, Pa., and a prediction of the secondary oil recovery by gasflooding the reservoir. A computer program employing a modification of the Craig, Geffen, and Morse secondary calculation was used to make the gasflood performance forecast and is presented in the appendix.

The Cooper sand reservoir in the Fork Run pool lies at a depth of about 1,900 feet and covers an area $\frac{1}{2}$ mile wide by $2\frac{1}{4}$ miles long. Original oil in place is estimated to have been 8,266,000 stb. The primary recovery mechanism is solution gas drive, and ultimate primary recovery may reach 20 percent over a well life of 90 years.

Two computer predictions were made for gasflooding the Cooper reservoir. The first was for a 25-acre pilot five-spot utilizing existing wells, but project economics were poor since only 25 percent of injection gas is utilized for pilot oil recovery. Recovery was 71,000 stb, or 22 percent of oil in place at flood initiation, but required 25,700 scf gas injected per stb of oil recovered. In the second prediction, pilot area performance

was projected for the entire Fork Run pool, and economics became good. Recovery was 1,753,000 6,400 scf per stb of oil recovered.

 RI 7273. Separation and Characterization of Metallo-Organic Materials in Petroleum, by C. W. Dwiggins, Jr.,
 K. W. Willcox, D. A. Doughty, and R. J. Heemstra. July 1969. 41 pp. 16 figs. The Bureau of Mines characterized the chemical and physical properties of metallo-organic materials in petroleum to deter-mine their effect on petroleum production and refining. The structures and physical properties of porphyrins and materials that normally contain metalloporphyrins such as crude oil and asphaltenes were investigated using elemental analysis, NMR analysis, absorption spectrometry, and small-angle X-ray scattering. Petroleum fractions greatly en-riched in metalloporphyrins were obtained using riched in metalloporphyrins were obtained using asphaltene precipitation, liquid extraction, and large-scale liquid-solid chromatography. Selected fractions containing porphyrins were further purified by chromatographic methods, crystallization, and de-metalation followed by chromatography. Nonpor-phyrin metals could not be appreciably concentrated from the bulk of the asphaltene from the bulk of the asphaltene.

RI 7274. Eight-Piece Concrete Sets for Small Mine Openings: A Progress Report, by M. O. Serbousek and K. R. Dorman. July 1969. 35 pp. 17 figs. To further investigate the potential of precast concrete sets as a support medium for underground mines, the Bureau of Mines designed an eight-piece pre-cast reinforced concrete drift set for a small opening. Twenty-two sets of three different member sizes were tested to destruction under two loading conditions. A discussion of the test results and typical failure patterns is presented.

RI 7275. Alkalized-Alumine Attritioning and SO₂ Sorption Rates, by Joseph W. Town, Philip E. Sanker, and Hal J. Kelly. July 1969. 29 pp. 18 figs. The Bureau of Mines conducted studies related to SO₂ Burpedu of mines conducted studies related to So air pollution to determine attritioning rates, SO_a sorption rates, and sulfur loads that could be obtained on commercial alkalized alumina sorbent pellets. Fluidized-bed attritioning rates ranged from 0.025 pct/hr for alkalized alumina with a crushing 0.025 pct/hr for alkalized alumina with a crushing strength of 4 kg to 0.075 pct/hr for 0.5 kg crushing strength material. Airlift attritioning rates ranged from 0.50 pct/hr for 3 kg crushing strength alka-lized alumina to about 3 pct/hr for 0.5 kg material. Attritioning rates for the commercial alkalized alumina were comparable to those obtained for sorbent pellets prepared in the Bureau of Mines labobent pellets prepared in the Bureau of Mines labo-ratory. Sorption rates were related to SO_2 concen-tration in flue gas, temperature, and presence of nitrogen oxides in the gas stream. Sorption rates at 300° C were $0.35 \times 10^{-5} \text{ gS/gp/sec}$ (grams sulfur per gram pellet per second) in 0.045 percent SO_2 gas, $5.1 \times 10^{-5} \text{ gS/gp/sec}$ in 10 neuront SO_2 gas, and $ST_2 = 10^{-5} \text{ gS/gp/sec}$ in 10 neuront SO_2 gas. For $65 \times 10^{-5} \text{ gS/gp/sec}$ in 10 percent SO₁ gas. For the 0.34 percent SO₂ gas, sulfur loads of 0.10 gS/gp (the projected load for regeneration) were obtained in 47 minutes at 130° C and in 116 minutes at 300° C. The presence of either NO or NO2 in the 0.34 percent SO₂ gas increased the SO₃ sorption rates 2 to 3 times at 300° C but had no effect at 130° C.

RI 7276. Operating Characteristics of a High-Temperature Electrostatic Precipitator, by C. C. Shale and G. F. Fasching. July 1969. 19 pp. 7 figs. A semicommercial, high-temperature electrostatic precipitator and adjunct equipment are described; oper-ating characteristics at 1,470° F and 80 psig are presented for both positive and negative polarity. Removal efficiency for negative corona was about 91 to 96 percent while that for positive corona was only about 75 to 77 percent. Results are compared with those from bench-scale invesigations, and equip-ment limitations are discussed. Theoretical aspects of the precipitation process are related to the operating characteristics.

RI 7277. Factors Affecting Detonation Velocities of Desensi-

tized Nitroglycerin in Simulated Underground Frac-tures, by J. S. Miller, W. D. Howell, J. L. Eakin, and E. R. Inman. July 1969. 19 pp. 9 figs. The Bureau of Mines conducted surface tests to determine the feasibility of using liquid explosives for underground rock fracturing. The effects of con-figuration, confinement, length, critical layer thicknguration, confinement, length, critical layer thick-ness, and fracture-propping sand on detonation and explosive propagation velocity of desensitized nitro-glycerin were studied, using polymethyl methacry-late and glass-plate reservoirs through lengths from 3 to 12 ft, with explosive-layer thicknesses from 0.1875 to 0.0312 inch and in aluminum tubes 8 feet long with diameters from 2.000 to 0.125 inch. Interval and continuous detonation velocity data were obtained.

Under the test conditions detonation velocity was dependent upon explosive confinement and fracturepropping sand. The detonation velocity of a confined nitroglycerin explosion in aluminum tubes can be reduced by as much as 85 percent, when the tube contains fracture-propping sand. The shape of the reservoir, whether triangular or rectangular, has reservoir, whether triangular or rectangular, has little effect on the detonation velocity or explosive propagation. The critical or minimum explosive-layer thickness between glass plates, capable of supporting propagation, was 0.0312 inch. The pres-ence of a fracture-propping sand in the sheetlike layers increased the critical explosive layer thick-ness to 0.025 inch. In pitzoelycerin filled and ritzo ness to 0.0625 inch. In nitroglycerin-filled and nitro-glycerin-sand filled tubes, the minimum tube diameters successfully tested were 0.125 inch and 0.375 inch, respectively.

RI 7278. Effects of Pressure, Temperature, and Type of Oil on Voporization of Oil During Gas Cycling, by Alton B. Cook, F. Sam Johnson, George B. Spencer, Abdo M. Bayazeed, and C. J. Walker. July 1969. 26 pp. 9 figs. Data are presented to show oil vaporization resulting from the passage of natural gas through a sand-packed tube saturated with synthetic reservoir oils. The Bureau of Mines performed 13 experiments, using reservoir oils synthesized with base crude oils of approximately 22°, 35°, and 45° API, at 100°, 175°, or 250° F and 1,100, 2,600, or 4,100 psia. It has been determined that the amount of vaporization is significant if proper conditions exist. These experiments show that oil vaporization depends on pressure, temperature, volatility of the oil, and amount of gas cycled. Increases in each of these conditions increase the volume of oil vaporized.

RI 7279. Explosion Development in a Spherical Vessel, by John Nagy, John W. Coun, and Harry C. Verakis. August 1969. 22 pp. 12 figs. The Bureau of Mines examined explosion development in a closed spherical vessel, mathematically correlating

flame travel, pressure, and time with parameters defining the reaction. The model assumes that burnt and unburnt zones are separated by a thin, radially moving flame front. Isothermal and adiabatic systems are considered. Correlation with gas and dust explosion data is better for the adiabatic system, but the isothermal development is simpler and in reasonably good agreement.

Interpretation of the explosion phenomena is facilitated by expressing the rate of mole change in the flame front in terms of elementary parameters. This expression is developed by examining the components of spatial-flame velocity.

RI 7280. Thermodynamic Data for ferric Sulfate and Indium Sulfate, by L. B. Pankratz and W. W. Weller, July 1969. 8 pp. 2 figs. The Bureau of Mines determined low- and high-temperature thermodynamic properties for anhydrous ferric sulfate and anhydrous indium sulfate. Low-temperature heat capacities were measured between 50° and 298° K, and enthalpy increments above 298° K were determined. The high-temperature measurements of Fe₂(SO₄), extended to 900° K and those of In₂(SO₄), to about 1,000° K. A minor transition was found for Fe₂(SO₄), at 800° K, with a heat of transition of 540 cal/mole. Tabulations were made of the lowtemperature heat capacities and the high-temperature enthalpy and entropy increments. The 298° K entropies derived from the low-temperature measurements were 67.6 ± 0.5 cal/deg mole for ferric sulfate and 72.2 \pm 0.5 cal/deg mole for indium sulfate. High-temperature enthalpy increments were also given in equation form.

RI 7281. Spectrochemical Analyses of Cool Ash for Trace Elements, by R. F. Abernethy, M. J. Peterson, and F. H. Gibson. July 1969. 20 pp. 2 figs. The Bureau of Mines made spectrochemical analyses of ash from 827 U.S. commercial coals for barium, beryllium, boron, chromium, cobalt, copper, gallium, germanium, lanthanum, lead, lithium, manganese, molybdenum, nickel, scandium, strontium, tin, vanadium, ytterbium, yttrium, zinc, and zirconium. These 22 elements were detected in almost all of the ash samples examined. In addition, arsenic, bismuth, cerium, neodymium, nicbium (columbium), rubidium, and thallium were detected in many samples.

RI 7282. Entrainment Drying and Carbonization of Wood Waste, by Charles C. Boley and W. S. Landers. August 1969. 15 pp. 1 fig. The Bureau of Mines dried and carbonized two wood wastes, one softwood (redwood) and one hardwood (oak), using continuous, vertical entrainment techniques previously developed for use with coal. It was demonstrated that these techniques are readily applicable to wood waste and that appreciable changes in the yields of carbonization products can be obtained by varying operating conditions.

8

1

L

3

1

l

A limited amount of experimental work was done on briquetting the charcoals. Firm briquets were formed with oak charcoal, although greater quantities of starch binder than used commercially for kiln-produced charcoal were required. Redwood charcoal did not briquet successfully under the test conditions employed. Work done in cooperation with the Silver Corporation (Silver Engineering Works Division), Denver, Colo.

RI 7283. Materials Handling Research: Hydraulic Transporta-

tion of Course Solids, by R. S. Fowkes and G. A. Wancheck. August 1969. 36 pp. 16 figs. The Bureau of Mines constructed a fully automated pilot plant facility to study the hydraulic transportation of solids through a lock hopper feeder system. An equation for the energy requirements to transport coarse solids hydraulically proved applicable to this system. Optimum velocities were obtained for limestone, mine refuse, and bituminous coal. The experimental data, calculations, and graphs show the effect of velocity, specific gravity, and solids concentration on head loss and power requirements. Other data were obtained and evaluated to determine the effect of particle size on head loss. Results also are given for (a) tests using friction reducing polymers; (b) tests using seven test sections of steel alloy pipe to determine their wear characteristics; (c) tests to determine spatial segregation of moving particles; and (d) tests to determine the effect of shape, size, and specific gravity on particle velocity in a horizontal pipeline. The lock hopper feeder system was found practical for continuous hydraulic transportation of the material types and size ranges tested.

RI 7284. Influence of Residence Time, Temperature, and Steam Concentration on Coal-Steam Gasification Reactions, by J. L. Konchesky and R. F. Stewart. August 1969. 19 pp. 16 figs. The Bureau of Mines investigated the main reactions of coal gasification by steam. Coal (minus 70 mesh)-water slurry was fed into a laboratory-scale tube-coil gasifier to show the effects of residence time (0.6 to 1.1 sec), steamcoal ratio (2 to 11 b/lb), and temperature (1,600° to 1,900° F), at about 1½ atm. Devolatilization was very rapid: about 70 percent of the coal's volatile matter evolved within 0.6 sec at about 1,600° F; temperature increase released more volatile matter until about 95 percent was driven off at 1,900° F. Devolatilization was not increased by raising steam concentrations and was only slightly increased by extending residence time. Below 1,600° F, there was no evidence of the steam-carbon reaction, but at 1,900° F more than 80 percent of the coal's fixed carbon was converted to gas; the conversion was increased significantly by increased residence time and the steam-carbon reaction, approaching equilibrium with increased residence time and temperature and decreased residence time and temperature and decreased steam concentration.

RI 7285. Tensile and Stress-Rupture Properties of Rolled Pb-Cd-Sb Alloys, by M. M. Tilman. August 1969. 11 pp. 8 figs. In a Bureau of Mines investigation to develop lead alloys with improved tensile strength and creep resistance, lead-base alloys containing cadmium and antimony in norminal 1-to-1 atomic ratios were melted in air, cast, and rolled into sheet to 90 percent reduction at temperatures varying from room temperature to 175° C. Tensile testing at room temperature and stress-rupture testing at 90° \pm 3° F were conducted on the asrolled alloys. The best tensile properties were observed in an alloy of Pb-4.2 wt pct Cd-4.5 wt pct Sb which exhibited an average tensile strength of 7,270 psi with 36 percent elongation in 2 inches. An alloy of Pb-5.5 wt pct Cd-6.0 wt pct Sb had 100-hour stress-rupture values of approximately 2,100 psi and 1,000-hour values of approximately 1,700 psi.

RI 7286. Determination of Dawsonite and Nahcolite in Green

River Formation Oil Shales, by John Ward Smith and Neil B. Young. August 1969. 20 pp. 3 figs. An analytical method developed by the Bureau of Mines to determine dawsonite, nahcolite, and nondawsonite alumina (called excess alumina) extractable from Green River Formation oil shales is presented. The method requires water extraction of nahcolite followed by HCl-extraction of dawsonite and an unidentified mineral yielding excess alumina from the water-leached residue. Instrumental determination of sodium in the water extract and sodium and aluminum in the HCl extract measures the sample's content of the minerals. Detailed evaluation shows the method to be adequately specific, precise, and reproducible and free from uncorrectable interferences. The method's results define precisely the production of sodium carbonates and alumina possible from a sample of oil shale and the interval it represents. Shale-oil yields, nahcolite contents, and yields of extractable alumina determined on 83 samples representing an 821-foot section of dawsonite-nahcolite-bearing shale from Colorado Corehole No. 3, drilled in the north part of Colorado's Piceance Creek basin, are presented. These samples resulted in nahcolite contents to 53.3 percent, oil yields to 48.3 gallons per ton, and alumina yields to 5.80 percent. Use of these data to evaluate the production potential of a section of the formation are suggested.

RI 7287. Compressibility Data for Helium at 0° C and Pressures to 800 Atmospheres, by Ted C. Briggs, B. J. Dalton, and Robert E. Barieau. August 1969. 54 pp. 5 figs. The Bureau of Mines is evaluating the thermodynamic properties of helium and heliumcontaining mixtures. Twenty-two compressibility runs were made with helium at 0° C and pressures to 800 atmospheres using a Burnett-type apparatus. Data from the 22 runs were treated simultaneously and as separate runs while different functional forms and weighting factors were used.

A fourth-degree-polynomial equation in the pressure gives a statistically satisfactory representation of the compressibility factor when the data are treated simultaneously and a weighting factor of $P_r^{-3/+}$ is used.

The second viral coefficient of helium at 0° C from this investigation is 11.997 ± 0.015 em³ mole⁻¹. The stated uncertainty is the random error standard deviation. Compressibility factors determined by this investigation are precise to better than 0.01 percent and are believed to be accurate to better than 0.02 percent.

RI 7283. Chemical Stabilization of the Uronium Tailings at Tuba City, Ariz., by Richard Havens and Karl C. Dean. August 1969. 12 pp. 4 figs. Acidic and basic uranium leach plant residues located on the Navajo Indian Reservation, Tuba City, Ariz., were successfully stabilized against wind erosion using a relatively low-cost chemical method. An elastomeric polymer chemical was applied to the dike areas and a calcium magnesium lignosulfonate to the beach areas of three tailings ponds. The watersoluble chemicals were applied with an automated sprinkling system. The stabilization cost was \$335 per acre for the 34.5-acre tract.

RI 7289. Electrical Resistivity of Hyperstoichiometric Colum-

bium and Zirconium Carbide Materials at Elevated Temperatures, by Danton L. Paulson and Gene Asai. August 1969. 30 pp. 21 figs. Elevated temperature electrical resistivity measurements were made by the Bureau of Mines on arc-melted, spin-cast, and hot-pressed columbium carbide-carbon (CbC-C) and zirconium carbide-carbon (ZrC-C) materials up to 2,000° C. The CbC-C materials displayed electrical resistivity values ranging from 35.20 microhm cm at 23° C for hot-pressed material containing 12 wt pct carbon to 242.64 microhm cm at 1,622° C for arc-cast material containing 17.0 wt pct carbon. Electrical resistivity values ranged from 29 microhm cm at 20° C for arc-cast ZrC-C containing 16 wt pct carbon to 279 microhm at 1,951° C for hotpressed ZrC-C containing 21 wt pct carbon. Data from a previous report were included to establish comparison between the electrical resistivities of the CbC-C, ZrC-C, and HfC-C systems.

Ri 7290. Metallization of Iron Ores With Solid Reductants, by M. M. Fine and R. B. Schluter. September 1969. 19 pp. 7 figs. Research on the solidfuel reduction of Knob Lake iron ores was conducted to upgrade lean and high-grade ores and recover metallized products suitable for ironmaking or steelmaking. The program included bench-scale tests plus a number of continuous campaigns in a 34-inch by 30-foot rotary kiln. In the laboratory, metallizations in excess of 90 percent were achieved by reduction of crushed ore with lignite at 950° C. Subsequent grinding (to minus 20 mesh) and wet magnetic separation yielded concentrates analyzing less than 3.0 percent SiO₂ and more than 90 percent Fe. Virtually complete recovery of the iron occurred. During early continuous tests the crushed ore created a serious ringing in the kiln which was solved by balling the fines with bentonite. Unfortunately, at this temperature (950° C) the bentonite militates against the concentrates of 89.5 percent Fe and 4.5 percent SiO. At 900° C the adverse effect of bentonite disappeared and concentrates of 88.4 percent Fe and only 2.5 percent SiO₂ resulted. However, with comparable feed rates, the metallization dropped to 73 percent.

RI 7292. Magnetic Separation of Minerals of Low Susceptibility and Small Particle Size, by Foster Fraas. September 1969. 14 pp. 7 figs. This Bureau of Mines report describes a method for separating

Mines report describes a method for separating minerals at magnetic susceptibilities within the diamagnetic susceptibility range. The maximum feed rate varies directly with the square root of the lower limit of permissible susceptibility, while the lower limit of permissible susceptibility varies inversely as the square of the magnetic field strength. Minerals may be separated at particle sizes smaller than those possible on conventional dry-type magnetic separators.

RI 7293. Mass Spectrometry. Residual Gas Analysis During Vacuum Metting, by W. E. Anable and E. D. Calvert. September 1969. 11 pp. A 180° magnetic deflection residual gas analyzer mass spectrometer with a mass range of 2 to 200 amu was used to study the nature of gases evolved during arc and electron-beam melting of certain reactive and refractory metals. The partial pressure of residual gases over molten molybdenum, hafnium, titanium, and iron was found to be similar: Water and hydrogen were evolved from the samples and from the furnace components, carbon dioxide and carbon monoxide resulted from deoxidation of some of the melts. Argon and acetone were residuals in the system, and methane was a decomposed organic compound from the oil diffusion pump.

2

2

RI 7294. Preparing Alkalized Alumina, by Laurance L. Oden and Paul E. Francoeur. September 1969. 16 pp. 5 figs. The Bureau of Mines studied three processes for preparing NaAl (OH) COs, the intermediate compound which is calcined to produce alkalized alumina: (1) Mixing of Na₂CO₃ and of Al₂(SO₄)₃ solutions, (2) digestion of aluminum hydroxide in solutions of Na₂CO₃ and NaHCO₃ at 90° C, and (3) addition of CO₂ at 25° C to caustic solutions of aluminum to precipitate aluminum hydroxide followed by digestion at 90° C. The first process had the highest raw material consumption and washing requirements, and successful applica-tion of process 2 dependent upon the availability of active aluminum hydroxide. Process 3 was the most effective, considering both process technology and raw material requirements. Procedures were also investigated for washing, filtering, drying, and cal-cining precipitates. Analytical methods included X-ray diffraction, atomic absorption spectroscopy, differential thermal analysis, and thermogravimetric analysis.

RI 7295. Bureau of Mines Coal-Fired Gas Turbine Research

Project. Test of Combustor and Ash Separators for Open-Cycle Plan, by Donald C. Strimbeck, Arthur J. Liberatore, Gerald B. Goff, and James P. McGee. September 1969. 12 pp. 9 figs. The Bureau of Mines designed a down-fired refractory-lined combustor that efficiently burned retractory-lined com-bustor that efficiently burned pulverized coal to produce a gas suitable as working fluid for an open-cycle gas turbine. The gas contained relatively little carbon, so the load on the ash separation equipment was significantly reduced. Moreover, reduction in carbon content of the gas increased the average density of the solid particles making them more amenable to removal by centrifugation. Centrifugal-type separators failed to remove sufficient ash, however, to limit blade wear enough to achieve oper-ating periods generally deemed necessary for commercial practicability.

RI 7296. Laboratory Oil-Recovery Tests With Ultrasonically Formed Emulsions, by C. A. Komar and H. A. W. Moore. September 1969. 14 pp. 3 figs. The Bureau of Mines conducted oil-displacement tests in bureau of Mines conducted off-displacement tests in the laboratory with three water-in-oil and five oil-in-water emulsions that were created with ultra-sonic energy at a frequency of 20 kHz and an acoustic intensity of approximately 100 watts per cm². Emulsions of either crude oil or kerosine, brine, and 0.5 to 2 percent emulsifier were formed during 30 seconds of acoustic irradiation.

Results indicate that ultrasonic energy induces greater and more uniform dispersion of one liquid in another in the presence of small amounts of chemical emulsifiers. When the emulsions were in-jected as a buffer slug before waterflooding, recovery of the oil-in-place was 8 to 22 percent greater than with conventional waterflooding in the test specimens, regardles of the continuous phase (oil or brine). The emulsions do not appear to be appli-cable to the Appalachian area, however, because the oilfields are too "tight," the clays in the formation remove the emulsifier from the displacing fluid, and not enough additional oil is produced, compared with recovery using conventional waterflooding, to warrant the increased operating costs.

R.

3

¢

4

RI 7297. Structural Design Data For Unreinforced Concrete Tunnel Linings, by J. D. Dixon. October 1969. 43 pp. 7 figs. The Bureau of Mines has developed structural design data for unreinforced concrete tunnel linings in the form of stress and deflection coefficients from which bending, axial, shear, and boundary stresses, moments, thrusts, and shear forces, and structural deflections can be determined at any point on the lining. Results were obtained by structural analyses of nine concrete-lined

tunnel configurations subjected to 22 biaxial load conditions. The tunnel configurations include three basic shapes, circular, rectangular, and horseshoe, with dimensions based on designs evolved by the mining industry. These analyses were made by the direct stiffness matrix method, a computer-oriented procedure. Numerical results agree closely with those obtained experimentally.

RI 7298. Effect of increasing End Constraint on the Com-pressive Strength of Model Rock Pillars, by Clar-ence O. Babcock. September 1969. 18 pp. 7 figs. Model pillars of limestone, marble, sandstone, and granite with length-to-diameter (L/D) ratios of 3, 2, 1, 0.5, and 0.25 (0.286 for granite) were tested for the pillar of the sandstone of the test. to failure in axial compression to determine to what extent an increase in end constraint increased compressive strength. Adjustable steel rings, mechanically tightened about the ends of test specimens to create a radial prestress of 3,000 or 5,000 psi prior to the application of axial load, increased end conto the application of axial load, increased end con-straint more than was possible in previous tests using solid steel rings. (Solid rings, epoxy-bonded to the ends of dogbone specimens, increased compressive strength compared with that of straight specimens without ring constraint.) During the loading cycle, additional end constraint was produced by lateral expansion of the specimens against the rings. The effect of the end constraint was to increase the compressive strength 55 to 58 percent for the shorter pillars of dogbone shape compared with the com-pressive strength of straight pillars with the same L/D ratios without ring constraint. Most pillars with L/D ratios of less than 2 were made stronger by end constraint. Pillars with an L/D ratio of 3 did not benefit significantly from end constraint.

When the results from compression testing of straight specimens of rock in the laboratory are used to design mine pillars in situ, the pillars will sive stress is several thousand pounds per square sive stress is several thousand pounds per square inch greater than that resulting from the weight of the overlying rock alone. The L/D ratio can be increased by a factor of 1.76 for ratios in the range 0.25 to 3 and still provide the same compressive strength. The safety factor applied with straight specimen test results should also be acceptable for use with constrained piller test possible. use with constrained pillar test results.

1 7299. Methods for Producing Alumina From Clay. An Evaluation of Two Lime Sinter Processes, by John Henn, Paul W. Johnson, Earle B. Amey III, and RI 7299. Frank A. Peters. September 1969. 43 pp. 17 figs. Two lime sinter processes for recovering alumina from clay, the double-leach process and the single-leach process, are evaluated in this Bureau of Mines report. In both processes, clay and limestone are mixed and sintered to form calcium aluminate from which alumina is extracted as sodium aluminate by leaching with a dilute solution of sodium carbonate. The pregnant liquor is desilicated, then carbonated to precipitate alumina trihydrate which is recovered and calcined to α -alumina.

The fixed capital costs for plants producing 1,000 tons per day of alumina are \$85 million for the double-leach process and \$86 million for the singleleach process based on a Marshall and Stevens chemical equipment index of 240.0. Because plant locations are variable with respect to the proximity of clay and limestone deposits, a nomograph is included to determine operating costs at various delivered costs of clay and limestone. For plants at which the delivered cost of clay containing 30 percent Al₂O₃ is \$2 per ton and the delivered cost of limestone is \$1 per ton, the operating costs are \$81.04 and \$89.87 per ton of alumina for the double-leach process and single-leach process, respectively.

RI 7300. Drillability Studies-Laboratory Percussive Drilling, by James Paone, Dick Madson, and William E. Bruce. September 1969. 22 pp. 17 figs. The Bureau of Mines conducted laboratory drillability studies on nine rock types using two mining-type percussive drills. Percussive-bit action was simulated by dropping a known weight on a rock sample to obtain a coefficient of rock strength for each rock drilled. While no single physical property of a rock is completely satisfactory as a predictor of pene-tration rate, coefficient of rock strength showed a better correlation with penetration rate than did other physical properties. Results also indicate that over the range of energies investigated, energy per unit volume in a given rock is independent of blow energy. A drillability index for the percussive system is proposed that utilizes the coefficient of rock strength test to determine energy per volume for a given rock which, along with the rate of a given drill and the bit diameter, is used to predict the penetration rate as shown in the following equation:

$$R=\frac{1}{\pi D^2 E v},$$

where R = penetration rate, in/min, P = work rate, in lb/min, D = bit diameter, in, and Ev = energy required to produce a given volume of rock, in lb/in³. Laboratory tests indicate this method's potential as a simple and reasonably accurate method of predicting penetration rates with any percussive drill and bit combination.

RI 7301. Extraction of Copper From Oxides Using Iron and Steel Scrap. Principles and Application to Pure Systems, by S. E. Khalafalla, H. W. Kilau, and L. A. Haas. October 1969. 13 pp. 5 figs. The Bureau of Mines investigated the metallothermic reduction of kines investigated the metallotnermic reduction of copper oxide as a function of temperature, re-actant proportions, form of reductant, and gaseous environment, using iron and steel scrap reductants. The reactions proceeded rapidly with powdered iron at temperatures above 560° C, attaining over 95 percent copper metallization within 3 hours. The importance of interreactant contacts on the extent of the reaction was evident from the variable, but usually lesser, degree of metallization obtained with usually lesser, degree of metallization obtained with iron from tin cans and automobile scrap. Reduction decreased as the molar ratio of copper to iron in-creased between 1 and 3. The most favorable gaseous environment for the reaction was a static helium atmosphere containing about 0.6 percent water vapor. Ferrothermic extraction of copper from its oxides appears to be essentially a "solid-state ce-mentation" process. While ordinary cementation processes must be preceded by leaching, the ferro-thermic method avoids this generally slow step and thermic method avoids this generally slow step and also water pollution caused by the leaching agents. Sulfidic copper concentrates could likewise be re-duced with metallic iron following their complete oxidative roasting.

RI 7302. Destructive Distillation of Scrap Tires, by D. E. Wolfson, J. A. Beckman, J. G. Walters, and D. J. Bennett. September 1969. 19 pp. 4 figs. Destructive distillation (carbonization) was shown to be a feasible method of disposing of scrap tires. The Bureau of Mines conducted tests under a variety of conditions. Solid, liquid, and gaseous products were produced, recovered, and analyzed. The quantities of the various products were shown to be

quite dependent on the test temperature. Variability in composition of the liquid and gaseous products with changes in test temperature was also sig-nificant. Work done in cooperation with The Firestone Tire and Rubber Co.

RI 7303. Gas Combustion Retarting of Oil Shale Under Anvil Points Lease Agreement: Stage I, by J. R. Ruark, H. W. Sohns, and H. C. Carpenter. November 1969. 109 pp. 13 figs. This report presents results of mining operations and of research and development work done during stage I of the gas combustion retorting research program conducted by the Colo-rado School of Mines Research Foundation and six major oil companies at the Bureau of Mines Anvil Points Oil Shale Facilities. A brief description of the gas combustion process is given and the ex-perimental program is discussed. Included in this perimental program is discussed. Included in this discussion are (1) air-gas distributor development, (2) results of gas and shale distribution studies, and (3) effects of other process variable studies. The report concludes with a statistical evaluation of experimental results. Two appendixes present a chronological account of the experimental work and tabulations of data for all retorting runs conducted during stage I. Work done in cooperation with the University of Wyoming.

RI 7304. Radiotracer Procedures for Mechanistic Studies in Air Pollution Research, by M. L. Whisman and Basil Dimitriades. October 1969. 36 pp. 3 figs. Radiotracer techniques were developed for stoichio-Ranotracer techniques were developed for stoichio-metric studies of photochemical reactions associated with atmospheric smog formation. Stock blends of separate hydrocarbon and oxygenated compounds were prepared and calibrated. C⁺⁴-labeled reactants and products in reaction systems involving hydro-carbons and nitrogen oxides at the ppm level were analyzed for qualitative and quantitative data. Pre-cision and accuracy of these methods developed by the Bureau were determined by replication and statistical treatment of data, and these methods are described.

RI 7305. A Systems Approach to Recovering Gold Resources in Jefferson County, Mont. Introductory Review, by Robert W. Ageton, George T. Krempasky, and Wil-liam L. Rice. October 1969. 16 pp. 5 figs. The Bureau of Mines is currently conducting a comprehensive study to evaluate all aspects of recovering nensive study to evaluate all aspects of recovering gold from large, low-grade deposits in the Golden Sunlight area, Whitehall mining district, Jefferson County, Mont. Prior to World War II this area produced significant quantities of gold. The study includes geologic mapping, diamond drilling, assay-ing, computer analysis of assay data, metallurgical research and ore testing, mine and mill planning, and an economic evaluation of all factors bearing on the setablichment of a producing gold mine Proon the establishment of a producing gold mine. Pre-liminary evaluation of the deposit indicates about 31 million tons of submarginal gold resources. This report presents the geology and mining history of the area, together with a summary of Bureau work in progress.

.

ì

Rt 7306. Infrared Evaluation of Starch Products Used in iron Ore Flotetion, by A. F. Colombo and A. R. Rule. October 1969. 16 pp. 7 figs. Infrared spectroscopy employing attenuated total reflectance (ATR) techniques on thin films of dried gelatinized starch solution was used during Bureau of Mines research to determine the structural and impurity differences in starch products and to correlate these characteristics with the flotation response of a nonmagnetic taconite. All of the starch products evaluated gave spectrograms which were characteristic of the anhydroglucose monomer and its polymeriza-tion product. Distinct infrared absorption peaks caused by the protein molecule were observed and were used to classify the starches.

Correlation of laboratory flotation of calcium-activated gangue from a Mesabi range nonmag-netic taconite and infrared spectra produced from gelatinized starches showed that protein impurities and linear chain structure limited the effectiveness of starches as iron mineral depressants. Starch products having spectrograms similar to pure amy-lopectin were generally good depressants for iron oxides; they were effective at about one-half the addition that was required for starches that gave infrared responses similar to pure amylose and yielded acceptable iron concentrates containing 61.5 percent iron and 6.5 percent silica.

 Ri 7307. Vapor Pressures of Metal Halides. The CdCl, SnCl., CdCl=ZnCl., PbCl=SnCl., and PbCl=ZnCl.
 Binary Systems, by L. C. George, A. Visnapuu, Barbara C. Marek, and Robert M. Doerr. October 1969. 15 pp. 12 figs. The Bureau of Mines meas-ured the vapor pressures of selected mixtures in the binary systems CdCl2-SnCl2, CdCl2-ZnCl2, PbCl-SnCl2, and PbCl2-ZnCl2 by the static pres-sure method. These data were evaluated by the sure method. These data were evaluated by the second-law (sigma-plot) method. Equations express-ing the vapor pressures and the heats and free energies of vaporization as functions of temperature are given.

RI 7308. Preparation of Rare-Earth and Yttrium Metals by Electrodeposition on Vacuum Distillation of Alloys, by E. Morrice, J. E. Murphy, and M. M. Wong. Octuber 1969. 11 pp. 2 figs. Gadolinium, dyspro-sium, and yttrium are difficult to electrowin as high-; us ity liquid metals because of their high melting points (>1,300° C). Samarium metal is difficult to prepare directly by electrolysis because the metal reacts with the electrolyte. In this Bureau of Mines study, the rare-earth metal was electrodeposited on a solid manganese, chromium, or iron cathode to form a low-melting alloy. The alloy was then vacuum dis-tilled to separate the rare-earth metal from the ferrous metal. A typical samarium metal product, obtained as the distillate from vacuum distillation of a samarium-iron alloy, contained 150 ppm oxygen, 80 ppm carbon, and 50 ppm iron as impurities. Gadolinium metal obtained as a residue from the distillation of a gadolinium-chromium alloy contained 300 ppm oxygen, 200 ppm carbon, and 100 ppm chromium.

RI 7309. Gamma and Beta Distribution Functions Applied to Size Distribution of Mineral Products, by Hillary W. St. Clair. November 1969. 33 pp. 3 figs. This report describes a mathematical procedure for analyzing size distribution data by the method of moments. The method was applied to Andreasen's data on a variety of grinding mill products. It was found that the observed size distributions could be represented by gamma and beta distribution functions over a wide range of sizes. A computer pro-gram, written in BASIC, is described for calculating moments, distribution parameters, and the weight fraction in any size range.

1

1

t

l

ť

RI 7310. Effect of Cetane Improvers in the Fuel on Nitrogen Oxides Concentration in Diesel Exhaust Gas, by H. W. Lang, A. J. Sippel III, and R. W. Freedman. October 1969. 5 pp. 2 figs. The Bureau of Mines conducted an investigation to observe the effect of cetane improvers upon nitrogen oxides concentration in diesel exhaust gas. Amyl nitrite and amyl nitrate were used as additives to the fuel used in a fourcycle, single cylinder type test engine. It was con-cluded that nitrogen oxide concentrations were not enhanced at fuel-air ratios above 0.03 pound of fuel per pound of air.

RI 7311. Relative Effects of Grouped Physical Variables on

the Revenue-Cost System of a Lead-Zine Mining Operation, by Richard E. Dawes. November 1969. 26 pp. 5 figs. Physical variables, a principal <u>fac</u>tor in the economies of mineral production, affect both capital and direct operating costs. By using a revenue-cost system for the framework, the analyses of revenue and cost categories demonstrate the relative importance of groups of physical variables, whether explicitly defined or not, to a lead-zinc mining operation.

Physical variables affecting the producer represent about 60 percent of the total system influence as expressed by cost ranking. Other physical variables affect the remaining costs as controlled by the smelter, the transporter, and the landowner. Such resource conservation aspects as mineral losses due to mining method and mineral processing constitute a portion of the total revenue effects of physical variables. The physical variable revenue-cost sys-tem presented in this report offers a framework for cost-benefit analysis of mineral related research.

RI 7312. Thermodynamic Properties of a Redlich-Kwong Fluid in the Two-Phase Region, by B. J. Dalton and Robert E. Barieau. December 1969. 181 pp. 114 figs. The Bureau of Mines Helium Research Center has as a long-range objective the development of an equation of state for helium that will allow all of the thermodynamic properties to be calculated with-in the accuracy with which they are known. If this objective is to be realized, a method of calculation must be known. This report gives the principles of the method used in such problems.

A computer program was developed for predicting these properties, including those at the critical point, that is perfectly general and applicable to any equation of state. To demonstrate the efficacy of the method, this computer program was used to evaluate thermodynamic properties of a Redlich-Kwong fluid in the two-phase region. Expressions for calculating various thermodynamic functions specific for this particular equation of state are derived. Numerical values are tabulated and graphs are presented for all functions calculated It is are presented for all functions calculated. It is shown that for a Redlich-Kwong fluid there are finite discontinuities in (1) the second temperature derivative of the Gibbs free energy or chemical potential at the critical point, (2) the second derivative of the vapor pressure curve with regard to the temperature on passing through the critical point, and (3) the measured heat capacity at constant volume on passing through the critical temperature when the calorimeter is filled to the critical density. It is also shown that the heat of vaporization is infinite for a Redlich-Kwong fluid at absolute zero.

RI 7313. High-Purity Zinc and Tin by Amalgam Electrore-fining, by D. H. Chambers and A. W. May-nard. November 1969. 10 pp. 3 figs. The Bunard. reau of Mines developed a process for producing high-purity zinc and tin by electrorefining from liquid amalgams. Commercial-grade metals were dissolved in mercury to produce saturated amalgams at room temperature. Amalgams were also prepared by electrolytic transfer from soluble anodes of the metals to a mercury cathode. Amalgams formed by

both methods were used as anodes in electrorefining cells to produce high-purity cathodes. Metal impurities, excluding mercury, were at levels of less than 5 ppm in zinc and 9 ppm in tin. Mercury content was about 2 to 10 ppm in zinc products, and this was effectively removed by heating the cathodes in a vacuum. Mercury was excluded from tin cathodes by pumping the tin electrolyte through tin turnings and controlling the cell temperature.

RI 7314. Production of Metellic Concentrates from High-Silica tron Oree, by H. D. Jacobs and R. B. Schluter. November 1969. 17 pp. 8 figs. The Bureau of Mines developed a concentration method to upgrade and utilize marginal natural or directshipping iron ores and fine-grained lean iron ores. Presently these ores receive little beneficiation and accordingly have low iron-silica (Fe-SiO₂) ratios. Ore samples were roasted with equal weights of solid reductant at 1,100° C for 1 hour to metallize the iron and for an additional hour at 1,200° C to promote grain growth. Concentration was effected by crushing and screening techniques and/or wet magnetic separation. Sized concentrates (minus 4 plus 35 mesh) derived from crushing-screening processes contained from 80 to 85 percent iron that was 90 percent metallized. Iron-silica ratios as high as 12:1 and iron recoveries from 75 to 94 percent were obtained. The sized concentrates were judged suitable for use as blast furnace feed. Minus 200mesh metallized concentrates derived from roasted minus 1-inch plus 8-mesh ore fractions and magnetically concentrated contained 90 percent Fe and 4 percent or less SiO₂, chemically qualifying them as feed for electric furnaces. Roasting minus 8mesh ore with hydrogen, then magnetically concentrating it, produced iron concentrates containing 57 to 67 percent Fe and 3.6 to 8.4 percent SiO₃. The concentrates having Fe-SiO₂ ratios ranging from 8:1 to 12:1 were considered adequate for use as blast furnace feed. Overall iron recoveries for the 12 ores tested ranged from 56 to 94 percent with an average iron recovery of 86 percent.

RI 7315. Refining Zinc-Base Die-Cast Scrap Using Low-Cost Fluxes, by D. Montagna and J. A. Ruppert. October 1969. 10 pp. 2 figs. Large quantities of zinc-base die-cast scrap containing 3 to 4 percent aluminum are presently refined by mixing with other secondary zinc products, such as galvanizer dross, and distilling in a retort. The Bureau of Mines investigated alternate aluminum removal processes utilizing low-cost fluxes. Basing the investigation on the metallurgical principle that a re-active impurity can be removed from a less reactive a salt or oxide of a metal less reactive than the im-purity, three separate flux mixtures were studied. In the first flux system, FeCL + NaCl, part of the aluminum is eliminated by the formation of volatile aluminum chloride and the rest by the creation of a high melting point iron-aluminum intermetallic compound that can be separated from the remaining molten zinc by filtration. Aluminum removal in the second system, $Fe_2O_3 + CaCl_1 + NaCl_1$ is effected by the formation of the iron-aluminum compound and possibly aluminum oxide. The third system, spent sal skimmings-essentially a mixture of ZnCl₂, NH,Cl, and ZnO-depends solely on aluminum chloride formation. Of the three flux systems investigated, the best results obtained were with system 3. Aluminum was reduced in the molten die-cast alloy from 4.10 percent to 0.01 percent when depleted sal skimmings were used.

RI 7316. Chemical Reclaiming of Superalloy Scrap, by P. T. Brooks, G. M. Potter, and D. A. Martin. November 1969. 28 pp. 15 figs. This Bureau of Mines study describes a process for recovering nickel, cobalt, molybdenum, and chromium contained in complex waste superalloy grindings that, for lack of an economical domestic recovery process, are being largely marketed abroad. The process, devised by laboratory-scale operations, includes scrap preparation, dissolution of metalics in hot chlorinated acidic liguor, carbon adsorption, three successive solvent extraction separations, and selective chemical precipitations. Nearly 90 percent of the nickel, cobalt, molybdenum, and chromium were separated and recovered as oxides, carbonates, and basic sulfate products.

RI 7317. The Electrohydraulic Effect: Petential Application in Rock Frogmentation, by H. K. Kutter. December 1969. 35 pp. 21 figs. The pressure pulse generated by an underwater spark was investigated in relation to its potential use for rock fragmentation. The study established (1) the relation between the peak discharge current and the peak wave pressure; (2) the relationships among the peak wave pressure, the discharge voltage, and the spark gap width; (3) the type and pulse duration of the generated wave; (4) the percentage of energy transmitted in the spark as a function of spark gap width and discharge voltage; and (5) the percentage of energy converted into the pressure wave as a function of gap width and discharge voltage. Spark-generated fractures were studied in two- and threedimensional rock and plastic specimens. The laboratory results indicated that the pressure pulse generated by an underwater spark is a potential practical tool for rock fragmentation. The paper contains an appendix describing the capacitive pressure gage specially developed for the laboratory tests.

RI 7318. Effect of Sodium Nitrate on the Incendivity of Explosives in Cool Dust-Gas-Air Mixtures, by C. M. Mason and P. A. Richardson. November 1969. 7 pp. 1 fig. A series of gelatinous permissible explosives was prepared with increasing sodium nitrate content and subjected to an improved technique for evaluating incendivity in coal dust-air and coal dustgas-air mixtures. Those explosives containing an appreciable amount of sodium nitrate were found to be very hazardous in coal dust-air and coal dustgas-air mixtures.

RI 7319. Selective flotation of Minerals From North Carolina Mice Trailing, by W. H. Eddy, James S. Browning, and James E. Hardemon. November 1969. 10 pp. 1 fig. Laboratory batch and smallscale continuous flotation tests were conducted by the Bureau of Mines on a mica waste tailing from Kings Mountain, N.C., to determine the feasibility of producing high-quality mica, feldspar, and glass sand. Mica was recovered by two methods; one was by flotation in an alkaline circuit, which produced a mica concentrate assaying 92.0 percent mica with a recovery of 87.1 percent, and the other by flotation in an acid circuit, which produced a mica concentrate assaying 91.0 percent mica with a recovery of 79.4 percent. Continuous flotation processing yielded a feldspar concentrate assaying 1.10 percent Na₂O and 13.50 percent K₂O, with recoveries of 66.4 and 80.6 percent, respectively. The feldspar tailing was high-quality quartz glass sand analyzing 98.6 percent SiO₂ and 0.02 percent Fe₂O₃. Work done in cooperation with the University of Alabama.

ľ

RI 7320. The System Al.C.-AIN-AI₂O₂. Powder Forming and Sintering Behavior, Phase Identification, and Refractory Composition Properties, by Jack L. Henry, James H. Russell, and Hal J. Kelly. November 1969. 24 pp. 7 figs. The ternary system Al₂C₂-AIN-Al₂O₆ has been examined to determine compositions which may display desirable high-temperature refractory properties. Powder methods were employed in the synthesis of all test compositions. Forming and sintering behavior was examined and hot-pressing parameters were measured. Several properties were studied for each composition of interest in the system. The properties included hydrolysis rate in moist air, elevated temperature oxidation rate, density, softening point, tensile strength, and rupture strength. In most cases equilibrium was not achieved, and the data are representative of a nonequilibrium system. Approximately 16 separate phases have been observed in the system.

Forming behavior and selected properties of five compositions of interest were compared with those of aluminum oxide and aluminum nitride. None of the compositions compared favorably. Oxidation and vaporization appear to be serious drawbacks to the use of these compositions at elevated temperatures.

RI 7321. Sampling and Coking Studies of Several Coalbeds in the Kokolik River, Kukpowruk River, and Cape Beaufort Areas of Arctic Northwestern Aleska, by R. S. Warfield and Charles C. Boley. December 1969. 58 pp. 12 figs. Several reconnaissance-type surface and drill core samples of Arctic Northwestern Alaska coals were taken during the summer field seasons of 1964 and 1966 for coking studies. Surface samples were taken from the Kokolik River and the Cape Beaufort areas; core samples were obtained from the Kukpowruk River and the Cape Beaufort areas. Only one Kokolik River surface sample possessed coking properties. This sample, representing an 11.6-ft coal seam, made coke approaching metallurgical quality when a 30-percent portion of selected blending coals was added. Four Kukpowruk River core samples, each representing the same 19- to 20-ft coal seam, were all of about the same coking quality. No differences of coke quality attributable to depth of permanently frozen overburden were found, but the data confirm previously reported information that the 19- to 20-ft coalbed is a potentially satisfactory base coking coal. In the Cape Beaufort area, a core sample with appreciable coking properties was taken at depth from a coalbed determined to be noncoking from a surface sample.

RI 7322. Fluidized-Bed Lew-Temperature Carbonization of Bituminous Coal and Thermel Cracking of the Tar Vepers, by W. S. Sanner, B. W. Naugle, and D. E. Wolfson. November 1969. 19 pp. 7 figs. A High Splint coal was carbonized in a low-temperature, fluidized-bed system to study the effects of thermal cracking on the products of decomposition. The coal was fluidized in recycle gas at 485° to 600° C, and the products were cracked at 600°. 700°, and 800° C in a bed of fluidized coke. Yields of tar, pitch, paraffins, and olefins decreased as carbonization temperature increased. Thermal cracking of the tar vapors produced the highest tar yields at 600° C, and light oil yield increased at cracking temperatures up to 700° C. At an 800° C cracking temperature, the yield of light oil decreased.

RI 7323. Heats of Formation of Three Oxides of Rhenium, by E. G. King, D. W. Richardson, and R. V. Mrazek. November 1969. 13 pp. Heats of formation of three crystalline oxides of rhenium (ReO_s, ReO_s, and Re₂O₇) have been determined by the method of solution calorimetry, using an aqueous perchloric acid—ceric perchlorate solvent. Copper metal and cupric oxide were utilized as auxiliary substances. Heats were determined at 298° K for the reactions Re + 2CuO = ReO_s + 2Cu, Re + 3CuO = ReO_s + 3Cu, and 2Re + 7CuO = Re₂O₇ + 7Cu. Standard heats of formation were derived using the value of -37.23 ± 0.15 kcal/mole as the heat of formation of CuO.

The standard molal heats of formation of the rhenium oxides were determined: $\text{ReO}_{s_1} - 107.3 \pm 0.8 \text{ kcal}$; $\text{ReO}_{s_1} - 140.8 \pm 0.9 \text{ kcal}$; and $\text{Re}_{s}\text{O}_{s_1} - 301.9 \pm 1.8 \text{ kcal}$.

RI 7324. Preparation Characteristics of Coal From Beaver and Lawrence Counties, Pa., by J. E. Zeilinger. December 1969. 23 pp. 3 figs. This Bureau of Mines report describes the preparation characteristics of the significant coalbeds of Beaver and Lawrence Counties, Pa. Washability analyses were made on seven coalbed samples, none of which were of metallurgical quality as received. Five of the samples could be sufficiently upgraded to produce acceptable products, and the remaining two samples could not be upgraded to metallurgical quality because their sulfur contents could not be lowered to meet the standard. For steam or power generation, one sample was of low sulfur content as received, one sample could be upgraded to low sulfur content, and three samples could be upgraded to medium sulfur content. The original sulfur content of the remaining two samples can be appreciably reduced by removal of the sink 1.58 specific gravity material; however, these coals would be classified as medium sulfur coals both before and after removal of the sink material.

RI 7325. Storage Stability of Aviation Turbine Fuels. A Radiotracer Technique for Estimating Component Contribution to Thermaily Induced Deposits, by Marvin L. Whisman, John W. Goetzinger, and Cecil C. Ward. December 1969. 23 pp. 13 figs. A radiotracer technique developed by the Bureau of Mines extends to the parts-per-billion range the sensitivity for determining contributors of deposits formed in stored and thermally stressed jet fuels. The method depends upon measuring radioactivity associated with thermally induced deposits from fuels containing one labeled compound. The technique was applied to 88 test blends, representing 12 fuels and nine carbon-14 labeled fuel constituents or fuel additives, or both. Data from results of these tests are included in this report. With this radiotracer technique, the contribution of fuel components and additives to thermally induced deposits in a variety of fuel environments was estimated before and after storage. Work done under an agreement with the Aero Propulsion Laboratory, Research and Technology Division of the Air Force, Wright-Patterson Air Force Base, Ohio.

RI 7329. Energetics of Percussive Drills-Longitudinal Strain Energy, by Robert G. Lundquist and Carl F. Anderson. December 1969. 23 pp. 11 figs. The Bureau of Mines compared longitudinal strain energy output of a percussive drill to energy determined by measuring maximum piston velocity. Strain gages were used to determine the strain-time waveform and its amplitude at seven levels of operating pressure and eight levels of thrust. The longitudinal strain energy was found to be approximately 14 ft lb less than the maximum piston energy at comparable operating conditions.

-

RI 7333. An Ultrasonic Method for Determining the Elastic Symmetry of Materials, by Thomas R. Bur, Richard E. Thill, and Kenneth E. Hjelmstad. December 1969. 23 pp. 10 figs. Symmetry theory, based on groundwork established in the study of single crystals and experimental procedures utilizing ultrasonic pulse velocities of spherical specimens plotted on equal area polar projections, enables the direct identification of a material's elastic symmetry system and the determination of its orientation, as well as the position of the elastic coordinate axes. The method is especially useful for elasticity studies of polycrystalline and amorphous materials for which this knowledge of symmetry is a prerequisite in determining the independent elastic constants. Projections based on theoretically derived velocities are given for a single crystal from each of the major crystallographic symmetry systems except the triclinic. Projections based on experimentally derived velocities are given for one brass and several rock spheres.

RI 7334. Suggested Orientation Conventions for Elastically Anisotropic Polycrystalline and Amorphous Mate-rials, by Thomas R. Bur. December 1969, 9 pp. 1 fig. The order of identification and in some cases the magnitude of the elastic constants of an anisotropic material depend on the orientation of the cartesian coordinate axes with respect to a set of reference coordinate axes with respect to a set of reference coordinate axes within the material; thus confusion will result unless standard orientations are used. In this paper the relationship between the cause (the internal fabric) and the effect (the elastic properties in this case) is discussed for single crystals and for polycrystalline and amorphous materials. While reference axes based on the cause are used in the IRE (Institute of Radio Engineers) standard for piezoelectric crystals, it is shown that a reference coordinate system that would be suitable and practicable for all anisotropic polycrystalline and practicable for an amsorrous possessed directly on and amorphous materials must be based directly on a three-dimensional expression of the effect. The conventions offered are similar to the IRE standards for piezoelectric crystals but use the elastic coordinates of the wave surface which can be quite readily established experimentally as the reference coordinates.

RI 7335. An Ultrasonic Method for Determining the Attenuation Symmetry of Materials, by Thomas R. Bur, Kenneth E. Hjelmstad, and Richard E. Thill. December 1969. 8 pp. 2 figs. The amplitude of the first peak of an ultrasonic pulse which has traversed the diameter of a sphere is obtained for many directions in the sphere. This amplitude is relative to an input which is held constant for all measurements on a given sphere. Since the boundary conditions, distance of travel, and the controllable experimental factors are constant for all measurements, variations in this amplitude reflect variations in the attenuation or absorption with direction. The data are plotted and contoured as an equal area projection. The attenuation symmetry is the symmetry expressed by the contour pattern. Analysis of the data from several rock types indicates that the amplitude expresses a higher percentage of anisotropy than the velocity. In most cases the attenuation symmetry appears to be of the same system as the elastic symmetry expressed by the velocity. Results are shown for three rock spheres.

RI 7337. Mine Water Research. Catalytic Oxidation of Ferrous Iron in Acid Mine Water By Artivated Carbon, by Edward A. Mihok. December 1969. 7 pp. 1 fig. Laboratory batch-flow tests conducted on a highly ferruginous acid mine water with an activated carbon showed that ferrous iron is rapidly oxidized. This indicates that air oxidation of ferruginous acid in mine waters is catalyzed by activated carbon. The ferrous iron content of an acid mine water flowing through an aspirated activated carbon column was reduced from about 700 to about 10 parts per million in less than 1 minute. Highly efficient ferrous iron oxidation was achieved by conditioning the activated carbon by repeated treatment with acid mine water and air. The reaction proceeds rapidly in the acid environment (pH about 2.5) engendered by ferrous iron oxidation. The activated carbon was used repeatedly with little loss in efficiency, and no discoloration or solids deposition. In these batch tests, about one-third of the iron was adsorbed by the carbon, but with continuous flow, little iron adsorption is expected. Incorporating a catalytic oxidation step in the treatment of acid mine waters containing ferrous iron would greatly facilitate neutralization —precise control of pH, lower reagent costs, elimination of aeration equipment, and smaller holding ponds.

RI 7350. Dismantling a Typical Junk Automobile To Produce Quality Scrap, by Karl C. Dean and Joseph W. Sterner. November 1969. 17 pp. 1 fig. All components of 15 automobiles manufactured between 1954 and 1965 were analyzed, and it was determined that a representative junk automobile would have the following composition (all figures in pounds): steel, 2,532; cast iron, 511; copper, 32; zinc, 54; aluminum, 51; lead, 20; rubber, 145; glass, 87; miscellaneous, 142. Time and motion studies and a cost evaluation were made to determine if such a typical vehicle could be economically burned in a smokeless incinerator and hand-dismantled, and if the resultant steel could be baled into a high-quality No. 2 bundle containing less than 0.10 percent copper. The cost evaluation showed that processing the composite car would cost about \$51 to produce about \$56 worth of marketable ferrous and nonferrous metal products and provide an annual rate of return on investment of 19 percent.

ł

ł

1

ł

(

1

1

t

IC 8225. Copper: A Meteriels Survey, by A. D. McMahon. 1965. 340 pp. 37 figs. Summarizes the de-mand-supply position in the United States and in-cludes information on production, consumption, im-ports, exports, capacities, substitutes, and pertinent history. The properties and uses of copper and its pending allows and compared and a set described Tark principal alloys and compounds are described, Exploration, mining, metallurgical, and fabrication methods are discussed. Domestic and foreign primary and secondary resources and reserves are covered. An extended presentation of the structure of the industry, employment and productivity, research and development, legislation, taxes, and Government war-time controls is included. \$1.75.

Analyses of Natural Gases of the United States, IC 8241. 1963, by Richard D. Miller and Geraldine P. Norrell, 1965, 102 pp. 1 fig. Contains routine anal-yses and related source data for 295 natural gas samples from 18 States collected during calendar year 1963 as part of a continuous survey of the United States for occurrences of helium in natural gas. This survey has been conducted by the Bureau of Mines since 1917. The analyses published herein were made by mass spectrometer and a special helium analysis apparatus, which are described in Bulletins 486 and 576. (Out of print.)

IC 8244. Minerals for Chemical Manufacturing. A Survey of Supply and Demand in California and Nevada, by Wallace W. Key. 1965. 164 pp. 16 figs. Results of the first detailed survey of mineral raw materials consumed for chemical manufacturing in California and Nevada are presented and analyzed from the standpoint of supplier and would-be supplier, as well as from the consumer and potential-consumer view-point. Data are included on over 50 inorganic min-eral commodities and their uses by 800 California chemical plants which manufacture thousands of products under 31 different categories. The results of this study indicated certain changes in use patterns of minerals in chemical manufacturing; a shift in requirements from metals to nonmetals, from inorganics to organics, from natural to synthetic materials, and from distant to local sources of supply.

IC 8245. A Survey of Experimental Methods for Determining Enthalpies of Fluids, by Robert E. Barieau. 1965. 21 pp. Surveys the various methods that have been used to determine enthalpies and gives information on the organizations with such capabilities. The minimum information required for developing an en-thalpy diagram is presented, and the relative merits of the various methods are discussed. It is concluded that methods that require no mass flow rate or energy measurements are to be preferred.

IC 8248. Quartizite Mining and Processing Methods and Costs IC 8248. Quartisite Mining and Processing Methods and Coirs at the Honey Brocke, Pa., Plant of George F. Pettinos, Inc., by A. T. Harris, Jr., and W. T. Millar. 1965. 21 pp. 11 figs. Describes the mining and processing methods for producing ground quartzite, known in the industry as amorphous silica, from a quartzite deposit near Honeybrook, Pa., by George F. Pettinos, Inc. and gives data on mining and processing costs. Inc., and gives data on mining and processing costs. The quartite is mined by the open-pit method. A mill at the mine regularly produces five standard

grades of sand and one grade of crushed stone. Beneficiation is controlled by laboratory screen tests on samples taken during the preparation of the sand. Chief uses are for foundry operations, furnace lining, concrete aggregate, and other specialized uses.

IC 8249. Active List of Permissible Explosives and Blasting Devices Approved Before Jon 1, 1965, by N. E. Hanna and P. A. Richardson. 1965. 10 pp. Gives all permissible explosives (gelatinous and nongelat-inous) and permissible blasting devices on the Bureau of Mines active list as of January 1, 1965, and shows all changes, additions, and transfers since February 28, 1961. Supersedes IC 8087.

IC 8250. Oilfields in Mahoning, Calumbiana, Carroll, Jefferson, and Harrison Counties, Ohio, by Charles E. Whieldon, Jr., and C. I. Pierce, 1965. 20 pp. 11 figs. Gives data on the oilfields in Mahoning, Columbiana, Carroll, Jefferson, and Harrison Counties that were collected from scattered sources and compiled to make the information readily available to operators who may be interested in conducting secondary-recovery operations in the area. Presents general geology, oil production, oil-productive acreage, core data, reservoir calculations by townships, and miscellaneous data and reference material.

IC 8251. Coal Carbonization in the United States, 1900-62, by Eugene T. Sheridan and Joseph A. DeCarlo, 1965. S3 pp. 34 figs. Summarizes the history of the coke industry in the United States and describes significant trends and developments in coke-plant technology. Contains basic statistical tables on production of coke, coke breeze, and coal chemicals from 1900 to 1962.

IC 8252. Mercury Potential of the United States, by Bureau of Mines Staff. 1965. 376 pp. 16 figs. All mercury mines or prospects in the United States which have had any significant production have been described in reasonable detail, and all known mercury mines, prospects, or occurrences and the salient facts concerning each have been tabulated. This portion of the report provides a complete reference of mercury properties. Gives an engineering evaluation of mercury production potential at various price levels, ranging from \$100 to \$1,500 per flask (76-pound flask). This determination of resources available at high incentive prices gives a better overall picture of the domestic mercury industry's basic position and future than does a consideration of only those reserves competitive in present world markets. \$1.75.

IC 8253. Rack-Dust Disseminator Used in Return Air Currents, Kochler Mine, Kaiser Steel Corp., Kochler, N. Mex., by A. Z. Dimitroff and A. C. Moschetti. 1965. 7 pp. 5 figs. An improvised rock-dust disseminator, consisting of a 10-gallon galvanized metal milk can that dispenses rock dust in return air currents by the injection of compressed air has reduced the float-dust explosion hazards at the Koehler coal mine. Because of its simplicity, its low operating cost, and the excellent results obtained, this disseminator may have valuable application in many underground coal

mines. Its main advantage is the placing of rock dust into suspension at the same time float dust is in suspension so that both dusts settle out in a mixture. Once the dusts are intermingled in suspension, they are carried by the ventilating air currents into return airways, gobs, and caved areas.

IC 8254. Research and Technologic Work on Explosives, Explosions, and Flames: Fiscal Year 1963, by the Staff. Explosives Research Center. 1965. 35 pp. 10 figs. The principal activities of the Explosives Research Center are described briefly in part 1. Part 2 gives short abstracts of publications that appeared during fiscal year 1963; in general, the research reported in these publications was made before fiscal year 1963.

IC 8255. The Sulfur and Sulfuric Acid Industry of Eastern United States, by James R. Kerr, Lenox H. Rand, and James L. Vallely, 1965, 92 pp. 6 figs. Output of sulfur in the East is relatively small, and most of the area's sulfur requirements are met by gulf coast Frasch sulfur. Over the long term, recovered elemental sulfur from sour natural gas and petroleum may become the East's major source of sulfur. In 1958 sulfuric acid manufacture consumed over 80 percent of the area's sulfur requirements. The leading uses for sulfuric acid were the manufacture of superphosphates and chemicals. Over the years, unit requirements for sulfur and acid in many major markets have been reduced through improved technology, but new markets always have been developed to keep the industry vital and growing.

IC 8256. Recommended Safety Precautions for Active Cool Stockpiling and Reclaiming Operations, by R. W. Stahl and C. J. Dalzell. 1965. 7 pp. 5 figs. Gas accu-mulation and dust suspension are the major safety hazards in coal stockpiling and reclaiming opera-tions. This report presents a schedule of safety pre-cautions and nlart design fractures doubled by the cautions and plant design features devised by the Bureau of Mines to reduce danger from these and other sources.

1C. 8257. Silver: Facts. Estimates and Projections, by C. W. Merrill, E. T. McKnight, Thor H. Kills-gaard, and J. Patrick Ryan. 1965. 22 pp. 3 figs. U.S. Treasury stocks of silver have been reduced at such a rapid rate to meet industrial and coinage require-This report shows that alleviation of the silver problem will require increasing supply or reducing demand. Examines possible long-range resource development and research programs and improved secindary recovery. Discusses possible reduction or elimination of silver in coinage and development and introduction of substitutes in the arts and industry. Work done under an agreement with the Geological Survey.

IC 8258. Fire and Exposion Hazards in Fluidized-Bed Thermal Coal Dryer, by H. A. Schrecengost and Mau-rice S. Childers. 1965. 21 pp. 4 figs. Fire and explosion hazards are inherent in certain types of coal dryers in that (1) high temperatures are employed, (2) the sizes and volatility of material handled are capable of propagating explosions, and (3) drying gases are seldom, if ever, low enough in oxygen con-tent to prevent ignitions of dust clouds, distilled gases, or their combinations. This is especially true for fluidized-bed dryers in which the coal is dried in air suspension and in which atmospheric gas is constantly introduced to temper the heat furnace gases. Occurrence of fires on heated bedplates, in dust collectors, and in hot gas inlets was common in nearly all the dryers examined. Forceful explosions which produced external effects had occurred in 11 (39 percent) of the plants examined and internal "puffs" or 'bumps" had occurred in at least 24 (79 percent).

IC 8259. Petroleum Cake on the West Coast of the United

States. Its Production, Utilization, and Role in the Conservation of Petroleum, by William J. Kemnitzer and Curt D. Edgerton, Jr. 1965. 80 pp. 10 figs. Shows the growth of petroleum coking, determines trends and characteristics of marketing and utilization of coke on the west coast, and compares these data with those of the United States as a whole. Increasing coke production as well as significant market shifts away from California-produced coke have created excessive stocks of petroleum coke on the west coast. The causes of these market shifts were based mainly on economic factors and certain undesirable qualities of some of the petroleum coke produced in California.

IC 8260. Mineral Fillers for the California Pesticide Industry, by Wallace W. Key. 1965. 89 pp. 4 figs. The objectives of this report are to provide data on quantities, sources, specifications, and market conditions for minerals-clay, talc, limestone, diatomite, sulfur, and other minerals—used as fillers by California pes-ticide formulators. Specifications for mineral fillers have become more rigid and formulators have become more numerous in recent years. During 1962 over 1,200 firms registered 16,000 pesticide products with the Bureau of Chemistry in California. Factors which will tend to diminish future need for mineral fillers include the trend toward greater use of organic sprays rather than dusts and further development of biological controls, such as the development of sterile insect strains,

IC 8261. Brown Iron Ore Resources: Barbour, Butler, Crenshaw and Pike Countries, Ala., by James F. O'Neill. 1965. 59 pp. 6 figs. Brown iron ore resources in Bar-bour, Butler, Crenshaw, and Pike Counties were inbound Budget, Orenshaw, and The countries were mi-vestigated in a drilling program and geological study by the Federal Bureau of Mines in cooperation with the Alabama Geological Survey and the University of Alabama. While an indicated 2,198,000 dry long tons of usable iron ore can be recovered, sink-and-float tests show that it may be possible for 4,654,000 dry long tons to be recovered by other than log washing. However, applicable commercial processes have not been demonstrated.

IC 8262. Minerals and the New Tariff Schedules of the United States, by F. J. Kelly. 1965. 154 pp. Reviews those portions of the Tariff Schedules of the United States Annotated 1963 that are of interest to the minerals industry. Shows to what extent rates of duty were altered and provides a bridge where possible from the old Schedule A classification system to the new TSUS system of statistical reporting of import data.

ì

I

ł

.

IC 8263. Heavy Crude Oil Reservoirs in the United States: A Survey, by W. D. Dietzman, M. Carrales, Jr., and C. J. Jirik. 1965. 53 pp. 1 fig. Report presents general information on more than 2,000 heavy oil reservoirs in more than 1,500 fields in 26 states. Information given on each heavy-oil deposit includes the following items: Field and formation, location, support of properties of the the survey of the states. average or range of depth, average API gravity of average of range of depth, average AFI gravity of oil, average thickness of formation, area extent of field, total productive wells drilled in field, discovery date of field, field status in 1963, cumulative produc-tion to January 1, 1964, and all known types of secondary-recovery initiated (active and terminated) in the reservoirs. The geographical location of heavy oil accumulations in the United States is shown by a map, and a brief discussion of 14 different areas is more than 10 billion barrels of oil and are estimated given. As af January 1, 1964, 75 percent of the heavyoil reservoirs in the United States had produced more than 10 billion barrels of oil and are estimated to contain over 90 billion barrels of oil in place. It is also estimated that if the deposits which have had little or no production history, such as the one in Missouri, were included, the total remaining heavy oil in place would be in excess of 150 billion barrels. To find economical ways of recovering this vast re-serve of heavy oil, industry is developing technology in several types of thermal-recovery methods. Some of the general considerations and more suitable limitations in selecting a prospect to study for thermal-recovery techniques are lithology, depth, viscosity of reservoir fluids, gravity of oil, reservoir thickness, oil in place, and permeability and porosity. Work done in cooperation with the Independent Petroleum Association of America.

Brown Iron Ore Resources: Quitman County, Ga., by IC 8264. James F. O'Neill. 1965. 29 pp. 1 fig. Brown iron ore deposits in Quitman County were investi-gated; 91 holes were drilled, having an aggregate footage of 2,188 feet, and 71 holes penetrated 248 feet of iron mineralization. Average thickness of the ore zone was 3.5 feet under an average thickness of ore zone was 3.5 feet under an average thickness of 14.7 feet of overburden. Drilling developed inferred reserves of nearly 30 million long tons of crude ore with an average analysis of 28 percent iron plus minor quantities of manganese. Tests indicated that the ore could be upgraded by current log washer practice, with the use of a ½-inch screen, and yield 4.4 million dry long tons of concentrate with an av-erage analysis of 52.1 percent iron plus manganese. The weight recovery obtained was 14.7 percent. Studies showed that the weight recovery would be increased by changing the screen size without any appreciable sacrifice of grade. The average weight re-covery was increased to 18 percent with a 10-mesh appreciable sacrince of grade. The average weight re-covery was increased to 18 percent with a 10-mesh screen and to 22.8 percent with a 20-mesh screen. Screen-test studies indicated that there was no ap-preciable interlocking of the iron and manganese minerals and the clay and silica waste particles of the materials were retained on a 200-mesh screen. Clay was prominent in micron-size slimes. Silica was deleterious in the minus 20-mesh size. Work done in cooperation with the University of Alabama and the State of Georgia, Department of Commerce.

IC 8265. Bibliography of Investment and Operating Costs for Chemical and Petroleum Plants. January-December 1964, by Sidney Katell and William C. Morel. 1965. 132 pp. Contains abstracts of 767 articles or publica-tions dealing mainly wth construction and operating costs. Other subjects covered include cost-estimation methods and theory, reports on construction projects, nuclear developments, water desalination and purifi-cation, and increasing use of computers in the process and development industry. Discusses such sub-jects as the following: Studies of the feasibility and economics of combination nuclear energy-water desaeconomics of combination nuclear energy-water desa-lination plants, forecasts for the petroleum and chemical industries, developments in the beneficiation of low-grade iron ores, and cost comparisons between nuclear and coal-fired powerplants. Includes subject and author indexes. Work done in cooperation with American Association of Cost Engineers. (Out of print.)

.

1

1

1

IC 8266. Review and Evaluation of Silver-Production Tech-niques, by C. H. Schack and B. H. Clemmons. 1965. 41 pp. 14 figs. Extractive metallurgy techniques currently employed to recover silver from primary ores and secondary scrap are reviewed and evaluated to identify and delineate metallurgical problems whose resolution would increase the supply of silver from domestic materials. Practically all primary silver is recovered by froth flotation concentra-

tion of various types of ore, followed by smelting and refining of the separate lead, copper, and zinc concentrates. Any silver production gain from base metal ores, which contribute about two-thirds of the total primary silver, is directly dependent on improvement in the market for base metals. Statistical data on old and new silver scrap are inadequate to make reliable and new silver scrap are inadequate to make reliable conclusions about increasing the recovery of silver from secondary sources. Available information indi-cates that efficient reclamation practices are em-ployed by large users of silver and that recovery of additional secondary silver involves solutions of problems of collection rather than processing. Limited increases in silver production might be achieved by solving the problem of recovering silver from copper ores of the Copper range district, Michigan, and by devising economically feasible methods for recovery of silver from presently marginal or submarginal ores.

IC 8267. Economic Trends in the Pacific Northwest Aluminum

IC 8267. Economic Trends in the Pacific Northwest Aluminum Mill Products Industry, by Frank B. Fulker-son and Jerry J. Gray. 1965. 36 pp. Three of the five primary aluminum producers in the Pacific North-west have facilities in the region to make aluminum mill products. Only one of the three produces a variety of shapes and forms. Principal reason for the loss in development of an eluminum mill products. the lag in development of an aluminum mill products industry was found to be transportation cost. The long-range outlook is for expansion based mainly on growth of the western market for aluminum used in construction, containers and packaging, electrical applications, diesel trucks, mobile homes, and irriga-tion pipe. Consumption of western aluminum mill products in 1985 is projected at 1.1 million tons, compared with consumption of 250,000 tons in 1961.

1C 8268. Zircon: A Review, With Emphasis on West Coast Resources and Markets, by A. J. Kauffman, Jr., and Dean C. Holt. 1965. 69 pp. 9 figs. Compiles data on the zircon resources of the Pacific Northwest on the zircon resources of the rather forentwest States, Alaska, and California, to determine the productive capability of industrial concerns to make ductile zirconium and hafnium, and to investigate markets for the nonmetallic products of zircon. West coast zircon resources are large but mostly marginal coast zircon resources are large but mostly marginal to submarginal. Development of a stable and profit-able zircon mining industry on the west coast will depend upon recovery and utilization of the other associated heavy minerals needed by regional and national markets. The west coast has the only com-pletely integrated facility for processing zircon sand to reactive grated facility for processing zircon sand to reactor-grade zirconium and hafnium and for making fabricated products from these metals. The future of the zirconium metal industry appears to be good because of increased use of the metal for nuclear propulsion and power-generating plants.

IC 8269. Mining Methods and Practices at the Young Mine, American Zinc Co. of Tennessee, Jefferson County, Tonn., by James R. Boyle and Lloyd Williams, 1965. 27 pp. 18 figs. The mining methods and practices used at the Young zinc mine have resulted in a low-cost, high-yield operation. Zinc ore (sphalerite) cccurs in limestone dolomite beds of the Kingsport Formation and is mined by modified room and pillar method. Utilizing trackless mining equipment which incorporates a high degree of flexibility, this operation has had a steady increase in productivity. (Out of print.)

IC 8270. Water Utilization and Conservation by Petroleum Refineries in Colifornia, by Curt D. Edgerton, Jr. 1965. 24 pp. 1 fig. This study was made to determine trends in fresh water usage by California petroleum refineries, to forecast fresh water requirements to 1975, and to evaluate water conservation practices.

The 1963 fresh water intake by California petroleum refineries was 84 million gallons per day. This is expected to increase to 128 million gallons per day by 1975. The fresh-water to crude-oil ratio is increasing in all regions except the Southern San Joaquin Valley. At present, the supply of fresh water avail-able to almost all of the State's petroleum refineries, mostly from surface sources and company-owned wells, is adequate, although shortages may develop within the foreseeable future. Present conservation methods are centered around these four objectives: (1) Minimum intake of fresh water of the lowest possible quality commensurate with sound technologic practice; (2) optimum recirculation; (3)proper treatment before discharge; and (4) substitution of air cooling for water cooling.

IC 8271. Block-Caving Copper Mining Methods and Costs at the Miami Mine, Miami Copper Company, Gila County, Aris., by W. R. Hardwick. 1965. 96 pp. 50 figs. Describes the development of block-caving methods and practices by the Miami Copper Co. at the Miami mine. Gives a history of the district and outlines early prospecting and exploration including methods of sampling and estimation of ore tonnage and value at the Miami mine. Early mining methods are described, particularly those that influenced develop-ments in the caving method. Mine exploration, development, and operating methods for block caving are opment, and operating methods for block caving are described with particular attention to those factors, physical, economic, engineering, and managerial that have improved efficiency in the mining operations over a long productive period. Extraction, ventila-tion, wage system, safety, water supply, powerplant, and shop facilities are discussed. The last section ives a brief summary of such costs as are available for publication. (Out of print,)

IC 8272. Research and Technologic Work on Explosives, Explosions, and Flames: Fixed Year 1964, by the Staff, Explosives Research Center. 1965. 31 pp. 13 figs. Part 1 describes briefly the principal activities of the Bureau of Mines Explosives Research Center from July 1, 1963, to June 30, 1964. Part 2 gives short abstracts of publications that appeared during fiscal year 1964; in general, the research reported in these publications antedates the report period. Part 3 describes a short-term investigation into safety problems associated with shipping of molten sulfur; this investigation is not at present destined for publica-tion elsewhere. (Out of print.)

 IC 8273. Mining Method, Technique, and Cost of Splitting the Flood Control Gote Shaft, Littleville Dam, Huntington, Mass., by Rolf S. Paine and N. A. Eilertsen. 1965. 28 pp. 19 figs. The Bureau of Mines studied the pre- splitting technique used for controlling overbreakage in the walls of a vertical shaft at the U.S. Army C. He are an eventical shaft at the U.S. Army in the walls of a vertical shaft at the U.S. Army Corps of Engineers Littleville Dam project near Huntington, Mass. The periphery of the shaft, the dimensions of which were 16½ feet wide by 21 feet long and 52 feet deep, was presplit (cracked) in the solid to a depth of 48 feet prior to full-depth sinking. Presplitting prevented overbreak in a fairly soft schist and provided sound self-supporting walls which required very little scaling.

1C 8274. Microfilming Maps of Abandoned Anthracite Mines. Mines of the Eostern Middle Field, by Ralph H. Whaite, 1965. 18 pp. 6 figs. Describes the Bureau of Mines program for microfilming maps of abandoned mines in the Pennsylvania anthracite region. A cata-log of the maps that have been microfilmed in the Eastern Middle anthracite field—the first area to be covered in the programs—is presented. Additional catalogs will be published as significant mining areas are completed.

IC 8275. Index Numbers for the Mineral Industries, by Edward E. Johnson, 1965. 85 pp. 38 figs. The Bureau of Mines publishes in its Minerals Yearbook a series of indexes on the domestic minerals industry. Among these are the index of physical volume of mineral production, indexes of stocks, and indexes of average unit mine value and implicit unit value. This report describes the material coverage of these indexes and the methods used in their construction. Detailed descriptions are given for sev-eral other mineral-oriented indexes regularly pub-lished by other Government agencies. These descrip-tions give the index user a better understanding of what each index purports to measure and aids him in selecting the most appropriate index for his purpose.

1C 8276. Water Requirements and Uses in New Mexice Min-eral Industries, by M. M. Gilkey and Ronald B. Stotelmeyer. 1965. 118 pp. 59 figs. This report on water requirements for the New Mexico mineral in-dustry includes data on industrial operations closely related to mineral production. Background data are presented recording the geography. hydrography presented regarding the geography, hydrography, and water laws of New Mexico, as well as annual precipitation and evaporation problems in the State. Water systems at 46 operations are illustrated by schematic waterflow diagrams. Reported costs of the schematic waternow diagrams. Reported costs of the self-supplied new water range from 1 to 20 cents per 1,000 gallons and average 8 cents per 1,000 gallons for power and maintenance. Inadequacy of the supply of new water at many operations necessitates large-scale recirculation. Reported costs for recircu-lating water (power and maintenance) average 1.8 conto ace 1.000 gallons cents per 1,000 gallons.

IC 8277. Bureau of Mines Research and Technologic Work on Cool, 1964, by Bureau of Mines Staff. 1965.

118 pp. 50 figs. Twenty-ninth in a series, report describes research and related activity carried out by the Bureau during 1964 in the fields of coal mining; health and safety; explosives research and testing; coal storage, preparation, and transport through pipelines; electric power generation; coke, char, and chemicals from coal carbonization; fluid fuels and chemicals from coal by synthesis processes; new uses for coal and related products; composition and properties of coal and related products; chemistry of coal; analytical and test procedures; inspection, sampling, and analysis. (Out of print.)

Iron Resources of South Dakota, by C. M. Harrer. IC 8278. 1966. 160 pp. 35 figs. Iron occurrences in South Dakota and the associated resources—limestone and bentonite, coal-lignite, petroleum and nat-ural gas, power, and water-are evaluated. Results of beneficiation tests on South Dakota taconite are discussed. In addition, pertinent features of taconite development, cost factors, the Western and Central United States trade area and markets are reported. Production of iron ores until 1963 has been small and for purposes other than the manufacture of iron. This investigation disclosed the probability of large resources of taconite in Pennington and Lawrence Counties. The average iron content is 29 percent, and a 65-percent or better iron concentrate might be produced. Ample resources are available for mining and processing taconite. An investment of at least \$26 million would be required for a plant capable of turning out 1 million tons of agglomerated iron con-centrate per year. The feasibility of such an enter-prise is indicated, but intensive investigation and research must be completed to justify such an investment.

Ł

IC 8279. Coal Research Organizations: Worldwide Activities and Publications, by Mary S. Esfandiary and Harry Perry. 1966. 37 pp. This revision of a work

published in 1961 includes the names and activities of coal research organizations of various types-government, university, private, and industry. The areas of investigation that each organization is engaged in are indicated in bread terms: Analysis and constitution, mining and geology, preparation, briquetting, combustion, high- and low-temperature carboniza-tion, gasification, conversion to solid and liquid fuels, and health and safety. Publications issued by and describing the work of each organization are cited; almost all of the organizations also publish results of their investigations in the technical press. Selected technical and trade publications that publish information on the science and technology of coal and are not published directly by any of the organizations listed are cited in the pages following the list of organizations in each country. Work done in cooperation with Bituminous Coal Research, Inc.

t

1

1

3

ŧ

f

1

IC 8280. Mining Methods and Casts at Section 23 Uranium

Mine, Homestake-Sapin Parmers, McKinley County, N. Mex., by W. E. Young and D. T. Delicate. 1965. 48 pp. 30 figs. Presents the mining methods and costs of a uranium mine typical of mines in the highly productive Westwater Canyon member of the Morrison Formation in New Mexico. Four mining methods have been used: The retreat-room and pillar method, a sublevel-slicing method (also called top-slicing), the horizontal-cut-and-fill method, and a modification of the ring-drill method. The application of the methods at this mine should be of benefit to operators with similar problems. Ore bodies in the mine are irregularly shaped and vary in size, in rock strength, in moisture content, and in uranium concentrations; different mining methods are required and mining costs are not constant. A 6-month period of operation was analyzed and mining costs, not including amortization, depreciation, or Federal taxes, averaged about \$6.80 per ton.

IC 8281. Respiratory Protective Devices Approved by the Bureau of Mines as of October 1, 1965, by R. H. Schult, B. I. Ferber, and E. J. Kloss. 1966. 22 pp. Presents a list of all approved respiratory-protective devices. Devices that are currently manufactured and sold are listed with the manufacturer's current designation. Inactive devices, listed in appendix A, are no longer manufactured, but retain their Bureau of Mines approval status. The addresses of the manufacturers of approved active respirators are listed in appendix B. (Out of mint) listed in appendix B. (Out of print.)

IC 8282. Survey of Sulfur Reduction in Appelachian Region Cools by Stoge Crushing, by A. W. Deurbrouck and E. R. Palowitch, 1966, 37 pp. 1 fig. Reviews available data on the effect of crushing high-sulfur coals for the liberation of impurities in the light of increasingly stringent air pollution regulations. The survey, which provided information on Appalachian region coals only, indicates that such important coalbeds as the Upper and Lower Freeport and the Upper Kittanning show significant sulfur reductions when crushed to 14-mesh top size. For many other coalbeds amenability to sulfur liberation by crushing is indicated, although too few samples were available to draw firm conclusions. Work done under an agree-ment with the Public Health Service, U.S. Depart-ment of Health, Education, and Welfare.

1 IC 8283. Computing Reserves of Mineral Deposits: Principles and Conventional Methods, by Constantine C. Popoff. 1966. 113 pp. 51 figs. Reviews and analyzes, by a simple analytical and logical reasoning, the conventional methods of reserve computations of mineral deposits described in various domestic and foreign publications. It brings together, formulates, and evaluates the principles underlying interpretation of exploration data and ties such principles to the proposed classification of methods. The material is discussed in sufficient detail to allow general application.

IC 8284. Water Use in the Petroleum and Natural Gas Industries, by Paul M. Buttermore. 1966, 36 pp. 9 figs. Total new water use in the petroleum industry of the United States, excluding refining, was 5.3 bil-lion barrels in 1962. Secondary-recovery operations and natural gas processing plants required about 2.5 billion barrels of new water input; each of these requirements was about eight times greater than that for well drilling, Total use, including recircu-lated water, was 45.3 billion barrels, of which 3.4 billion barrels was consumed. The greatest use of recirculated water was for natural gas processing, amounting to 38.2 billion barrels. Projections of total water use show that by 1975, 75.4 billion barrels will be used by the petroleum industry, of which 10.2 billion barrels will be new water. By 1985, the total use requirement will be 92.8 billion barrels, of which 13.1 billion will be new water. (Out of print.)

IC 8285. Water Use in the Mineral Industry, by Alvin Kaufman and Mildred Nadler (With Appendix on the Projection of Crude Material to 1985, by Barbara S. Lloyd). 1966. 58 pp. 15 figs. Analysis of 1962 water use indicates the following conclu-

sions: 1. Total water use and new water intake is dependent on the quantity of material processed and the process water requirements of the particular industry or commodity.

2. Recirculation is dependent on the processing requirements of a particular commodity, the manner in which the water is used, cooling and condensing requirements in certain large industries, the quality of new water intake, and the need to treat new and discharged water.

3. Consumed water is dependent on the quantity of water recirculated, the temperature and humidity in the area, and the proportion of water used for cooling and condensing.

4. A threefold increase in water use by the mineral industry by 1985 is forecast. 40 cents.

IC 8286. Crude Oil: Qualitative and Quantitative Aspects. The Petroleum World, by Harold M. Smith, 1966, 41,

pp. 14 figs. Presents the complete qualitative knowledge of the composition of petroleum as of April 1965. The material is presented in detail on two imaginative maps—the Hydrocarbon Hemisphere de-picts the hydrocarbons that have been identified in petroleum, and the Heterogeneous Hemisphere shows the sulfur, nitrogen, and oxygen compounds that have been found. All compounds are placed on the maps according to boiling point. The accompanying text illustrates by structural formulas the several types of hydrocarbon and nonhydrocarbon compounds identified, presents some quantitative data, and points out the possible geochemical significance of a number of the compounds. The possibilities of the Petroleum World of the future are discussed as a function of needed research. 50 cents.

IC 8287. Injury Experience in Cool Mining, 1963. Analysis of Mine Safety Factors, Related Employment, and Produc-

tion Data, by Forrest T. Moyer, Nina L. Jones, Mary B. McNair, and Virginia C. Berté. 1966. 86 pp. 3 figs. Includes data for 1963 on injury experience, with related employment statistics, at coal mines in the United States. These data are presented in tabular form under the following headings: general injury experience, selected injury experience, injury experience by States, major disasters, and historical coal-mine injury and employment data.

IC 8288. Water Requirements and Uses in Nevada Mineral Industries, by George H. Holmes, Jr. 1966. 66 pp. 40 figs. Contains information on the sources and adequacy of supply, requirements and uses, quality and costs, geography, hydrography, precipitation and evaporation characteristics, and Nevada water laws. Information also is given on the water requirements of one public utility powerplant and the source and consumption of water in four major cities. Water distribution at 24 operations is shown on schematic waterflow diagrams. Costs of delivering new water range from 2 to 26 cents per 1,000 gallons, with an average of 10 cents per 1,000 gallons for power and maintenance. Water supplies are adequate at most operations. Projection of water requirements indi-cates that the demand for new water will increase from 8.3 billion gallons in 1962 to 11.9 billion gallons in 1980, a 43-percent increase. Water requirements in the year 2000 are estimated at 14.8 billion gallons, an increase of 78 percent over 1962 water demand.

IC 8289. Iron and Steel Scrap in Arkansas, Kansas, Louisana, Mississippi, Missouri, Oklahoma, and Texas, by Frank B. Fulkerson and Harry F. Robertson. 1966. 52 pp. 6 figs. Describes a study of the scrap iron and steel industry made to determine trends in processing, shipment, and consumption. Data were derived from statistical sources and through visits to scrap yards and steel mills. Dealers in 1963 supplied 1.8 million tons of iron and steel scrap to steel mills and foundries in the south-central area, compared with 2.1 million tons in 1955. Most of the scrap was processed and shipped within 200 to 300 miles of consuming centers. Exports provide a principal outlet for dealers along the gulf coast. The tonnage exported varies greatly from year to year. The largest scrap operations are in or near large cities, steel mill sites, or port cities for export of scrap. The short-run supply of prepared scrap seems to be ine-lastic to price changes; therefore, buyers probably are in a strong bargaining position at times of de-clining demand. One technological development is a press which can take complete automobiles with frames, wheels, springs, and other heavy parts still intact and reduce them to bundles. At Houston, Tex., and Kansas City, Mo., shredding plants reduce car bodies and other light scrap into flat pieces 4 to 6 inches in size.

IC 8290. Titonium Resources of the United States, by Edward C. Peterson. 1966. 65 pp. 17 figs. Recent studies indicate that the United States has substantial reserves of ilmenite, one of the major titanium minerals. However, the studies showed that sources of rutile, another important source of tita-nium, are limited. This paper summarizes and evaluates results and conclusions reached by the various investigations initiated by the Bureau of Mines and others pertaining to the titanium mineral resources of the Nation. Domestic occurrences of ilmenite that are economically exploitable by present-day benefi-ciation methods are found in Florida, New Jersey, New York, South Carolina, and Virginia. These deposits are estimated to contain 50.3 millions tons of titanium dioxide (TiO₂). Occurrences of ilmenite that cannot be processed economically under present tech-nological conditions are found in California, Colora-do, Minnesota, Montana, Oklahoma, Oregon, Rhode Island, and Wyoming. These reserves amount to 51.1 millions tons of TiO₂. Reserves of rutile found in the United States are estimated to be 1.8 to 2.1 million tons of TiO₂. Other than occurrences in Florida and South Carolina, rutile is found either in

small scattered bodies or in deposits where the min-eral cannot be recovered economically by present beneficiation methods. (*Out of print.*)

Gas Masks for Respiratory Protection Against Phos-IC 8291. phine, by E. J. Kloos, L. Spinetti, and L. D. Raymond. 1966. 7 pp. 2 figs. The Bureau of Mines Raymond. 1966. 7 pp. 2 ngs. The Bureau of Mines developed a test for evaluating gas masks designed to protect against phosphine gas; phosphonium iodide is used as a source of phosphine. Gas masks approved by the Bureau for respiratory protection against phosphine include the GMC-SS-1. Mine Safety Appliances Co.; the LG-10 and LG-10G, Willson Products Division, The Electric Storage Bat-tery Co.; and the 084-PHOV-R, Acme Protection Equipment Co. (Out of print.) Equipment Co. (Out of print.)

IC 8292. Partable Methane Detectors. Effects of Gases in Mine

Almospheres, by H. A. Watson, R. L. Beatty, Beckert, and D. E. Dufresne. 1966. 12 pp. 4 J figs. Laboratory tests on three commercial methane detectors, two combustion-type detectors and one interferometer-type detector, were made to deter-mine their response to certain single and mul-tiple flammable gases mixed with normal and abnormal air atmospheres. Although both types of detectors responded accurately to methane-normal air mixtures, they did not show correct concentra-tions for other single flammable gases in air. Uniquely, the response of the interferometer-type detector to hydrogen was in a negative direction. The effects of individual gases in multiple flammable gas mixtures were approximately additive. In oxygen-de-ficient atmospheres the methane response of the interferometer-type detector erred on the high side, but only in very low oxygen concentrations were the combustion-type detectors affected-showing low, erratic methane readings.

IC 8293. Analyses of 38 Crude Oils From Africa, by E. P. Ferrero and Dorothy T. Nichols. 1966. 47 pp. Analyses of 38 crude oil samples from 25 fields in Algeria, Libya, and Nigeria are presented in this report. The 38 crude oils are listed alphabetically by country and field. Also shown are the geographic and geologic sources of the samples analyzed, the companies that supplied the samples, the general characteristics and analytical and computed data, and the production for the fields from which the samples were obtained

Methods and Costs of Constructing the Underground IC 8294. Facility of North American Air Defense Command at Cheyenne Mountain, El Paso County, Colo., by Merwin H. Howes. 1966. 69 pp. 52 figs. In constructing the NORAD Combat Operations Center, controlled blasting techniques were employed to achieve smooth walls and to avoid shattering the rock beyond excavation lines. Extraordinary measures were taken to stabilize the rock to permanently preserve the openings. Rock stabilization was accomplished by means of reinforced concrete and guinte linings, rock boltings, in-stallation of chain-link fabric, and epoxy resin and cement grouting. A particular zone of weakness at a vital location was supported by exceptionally thick reinforced concrete lining, rock bolts, and cement grout.

)

£

) Í

)

(

)

IC 8295. Coal Resources of the Fabius-Flat Rock Area, Jackson County, Ala., by Reynold Q. Shotts and H. L. Riley. 1966. 36 pp. 10 figs. A study was made of the coal resources of an area in Jackson County, Ala., forming a part of the Flat Rock, Henegar, and Stevenson quadrangles. The area studied is a portion of the Plateau coalfield on Sand Mountain and is near the Tennessee Valley Authority's Widows Creek

steamplant. Since no detailed geological study of this area had been published, some reconnaisance work was done. The coalbeds and adjacent strata such as sandstones, conglomeratic sandstones, and conglomerates were studied. Available drill logs, together with the areal geology, provided sufficient information to permit correlations of the coalbeds and an estimation of coal reserves. For all categories of reserves, computed on a regional basis, a total of 72,920,000 tons of coal more than 14 inches thick is estimated for the areas studied in the Stevenson, Flat Rock, and Henegar quadrangles. Of this tonnage, 40,001,000 tons is estimated to have less than 60 feet of overburden. The total measured coal reserves for the above three quadrangles are 16,359,000 tons, with 12,471,000 tons under less than 60 feet of cover.

1

ł

1

1

l

i

:.,

IC 8296. Gos Mosks for Respiratory Protection Against Amines, by E. J. Kloos, L. Spinetti, and L. D. Raymond. 1963. 5 pp. 1 fig. The Bureau of Mines evaluated all previously approved gas masks to determine their ability to provide respiratory protection against each of the following six selected amines: ethylenediamine, diethylamine, n-butylamine, ethylamine, methylamine, and hydrazine. Minimum requirements were a 24-minute service life at a flow rate of 64 liters per minute (32 liters per minute for hydrazine) and an amine concentration of 1.0 volume-percent (0.5 volume-percent for hydrazine). The three masks meeting these requirements were the LG4, Willson Products Division, The Electric Storage Battery Co.; the GMD-SS, Mine Safety Appliances Co.; and the 084-PHOV-R, Acme Protection Equipment Co. (Out of print.)

IC 8297. Bibliography of Investment and Operating Costs for Chemical and Petroleum Plants, January-December 1965, by Sidney Katell and William C. Morel, January through December 1965, is a continuation of a series that began with the publication of Infor-mation Circular 7516 in October 1949. It is the seventh in a series of reports prepared in cooperation with the American Association of Cost Engineers. The abstracted articles are concerned with all phases of cost engineering in the field of chemical and petroleum plants and related subjects. They are from the following sources: 1. American Association of Cost Engineers Bulletin. 2. Bureau of Mines Information Circulars. 3. Bureau of Mines Reports of Investigations. 4. Chemical Engineering. 5. Chemical Engineering Progress. 6. Chemical Week. 7. Coal Age. 8. Coal. 9. Cost Engineering. 10. Hydrocarbon Proc-essing and Petroleum Refiner. 11. Industrial and Engineering Chemistry, 12. Nucleonics, 13. Oil and Gas Journal, 14. Petroleum Management, 15. World Oil. The bibliography contains abstracts dealing with cost-estimating methods and theory in addition to construction and operating costs. Other subjects abstracted include capital spending, developments in the nuclear field, and reports on construction projects here and abroad. Work done in cooperation with American Association of Cost Engineers. (Out of print.)

IC 8298. Reconnaissance of Beryllium-Bearing Pegmatite Deposits in Six Western States: Arizona, Colorado, New Mexico, South Dakota, Utah, and Wyoming, by Henry C. Meeves, Clarence M. Harrer, Melford H. Salsbury, Albert S. Konselman, and Spencer S. Shannon, Jr. 1966. 34 pp. 3 figs. The Bureau of Mines, between 1956 and 1968, examined 18 major pegmatite districts in Arizona, Colorado, New Mexico, South Dakota, Utah, and Wyoming to evaluate their con-

tent of beryllium, a material in short domestic supply that has become increasingly important to modern industry. This examination report includes the salient statistics on the production of pegmatite minerals, other than quartz and feldspar, and brief descriptions of 170 specific pegmatite deposits. .

IC 9299. Permissible Mine Equipment Approved by the Bureau of Mines During 1963-64. A Supplement to Bulletin 543 and Information Circular 8220, by F. R. Lee and R. L. Evans. 1966. 20 pp. Supplements Bulletin 543, Permissible Mine Equipment Approved to January 1, 1953, and Information Circular 8220, Permissible Mine Equipment Approved by the Bureau of Mines During 1953-62, and with these previous publications constitutes a complete list of permissible equipment through 1964. (Out of print.)

IC 8300. Use of Mineral Fillers, Granules, and Roofing Rock in California Asphelt-Consuming Industries, by Wallace W. Key. 1966. 56 pp. 6 figs. This report concerns types, quantities, specifications, and uses of nonmetallic minerals as a basis for improving their supply, conservation, and utilization. Supplydemand details concerning mineral fillers, roofing granules, and roofing rock used in asphalt are incorporated, along with highlights on production and sales of roofing, floor tile, and other related asphalt products of California. Comparable data for the United States are included. Although large quantities of commercially prepared mineral fillers are used in asphalt for paving and related applications in other States, addition of commercial fillers for these uses rarely is required in California because of the natural fines available. On the other hand, California manufacturers of asphalt products other than paving utilize about 300,000 tons of asbestos, diatomite, limestone, mica, soapstone, slate, and other nonmetallic minerals as fillers, mainly for roofing and flooring. Also, about 500,000 tons of roofing granules is produced in California, most of which goes into roofing manufacture in the State. In addition, a significantly large and growing tonnage of relatively coarse mineral aggregates is used on low-angle, built-up asphalt roofs to produce an attractive surface and offer protection against the elements. Nearly all minerals used in asphalt products manufactured in California come from local sources, except asbestos and mica, and there are indications that local deposits of these commodities could be utilized in some use categories.

1C 8301. Forms of Sulfur in U.S. Cools, by F. E. Walker and F. E. Hartner. 1966. 51 pp. The Bureau of Mines determined total sulfur and sulfur forms for coal from 283 countries in 29 States and 2 fields of the State of Alaska. Specifically, organic, pyritic, and sulfate sulfur were measured for approximately 2,900 samples, representing most of the coalbeds in the United States. 35 cents.

IC 8302. Analyses of Natural Gases of the United States, 1964, by B. J. Moore, R. D. Miller, and R. D. Shrewsbury. 1966. 144 pp. 1 fig. Publication contains routine analyses and related source data for 419 natural gas samples from 22 States collected during calendar year 1964 as part of a continuous survey of the United States for occurrences of helium in natural gas. This survey has been conducted by the Bureau of Mines since 1917. The analyses published herein were made by mass spectrometer and a special helium analysis apparatus, which are described in Bureau of Mines Bulletins 486 and 576. Six previous publications have been made to present the results of 6,293 gas analyses made by the Bureau of Mines Helium Activity, prior to 1964. The first three, Bulletins 486, 576, and 617, contain analyses and related source data on 5,214 gas samples collected from 1917 to 1961. The other three publications, issued as Information Circulars, supplement the three Bulletins and contain 1,079 analyses of samples collected in 1961, 1962, and 1963. This publication is the fourth annual publication which supplements the three Bulletins.

IC 8303. Manganese Occurrences in the Eureka-Animas Forks Areas of the San Juan Mountains, San Juan County, Colo., by William E. Young. 1966. 52 pp. 39 figs. There are many large rhodonite-bearing veins con-taining manganese in the Eureka-Animas Forks area of the San Juan Mountains in Colorado. The Sunnyside vein is the largest known vein in the area. As observed on the surface, the vein is mineralized over 8,000 feet and attains a maximum width of 200 feet. The average width of the vein and its branches and ramifications is 58 feet in the area that was mapped in detail. The weighted-average analysis of surface and underground samples from the northeastern extension of the Sunnyside vein is 8 percent manganese. Most other known veins in the area have a similar manganese content. The Hidden Treasure vein lies southeast of the Sunnyside-No Name-Mastadon vein. The weighted average of the analyses of surface and underground samples from this vein is 13 percent manganese. Exposures of the Scotia-Silver Chord vein are visible over a strike length of 4,000 feet on Treasure Mountain. Diamond-drill holes show that the vein contains 10 percent or more manganese to a depth of 400 feet. The vein has an average width of 28 feet. The Independence vein is exposed on the surface for a distance of 600 feet and has an average width of 6 feet. Three cut samples taken across the vein had an average content of 20.7 percent manganese. Sampling of the outcrops of eight veins in the Placer Gulch area also indicates manganese. Numerous other veins cropping out in the surrounding area are similar to the outcrop of the Sunnyside vein system mineralogically and are worth investigating.

IC 8304. Technology and Use of Lignite, Proceedings: Bureau of Mines-University of North Dakota Symposium, Bismarck, N. Dak., April 29-30, 1965, compiled by James L. Elder and Wayne R. Kube. 1966. 124 pp. 23 figs. The 1965 Lignite Symposium, the fourth in a series and the third sponsored by the University of North Dakota and the Bureau of Mines, was held at Bismarck, N. Dak., on April 29-30, 1965. These sysposia provide a forum for those interested in the technology and utilization of solid fuels, especially lignitic coals. As part of the meeting, a 200-mile field trip was taken including inspection of (1) the 200-megawatt, pulverized lignite-fired Leland Olds plant of Basin Electric Power Cooperative, under construction near Stanton, N. Dak.; (2) the site of the Glenharold mine of the Truax-Traer Coal Co., Division of Consolidation Coal Co., where a wheel excavator was being assembled; (2) the operating Beulah mine of Knife River Coal Mining Co., subsidiary of Montana-Dakota Utilities Co., near Beulah, N. Dak.; and (4) the 400-megawatt, hydroelectric Garrison Dam powerplant near Garrison, N. Dak. During the technical sessions, 13 papers were presented covering some of the recent trends, developments, and research in lignite technology. The text of these papers is compiled to provide a record of the symposium and to allow wider dissemination of the information. Proceedings of the previous symposia have been published.

IC 8305. Water Requirements and Uses in Montana Mineral Industries, by William N. Hale. 1966. 103 pp. 44 figs. This report gives a detailed study of water usage in the Montana mineral industries, along with projections for the future. The mineral industry of Montana in 1963 used 36.5 billion gallons of new water and reused or recirculated an additional 53.5 billion gallons, for a total water requirement or usage of 90 billion gallons. The petroleum industry was the major water user, followed by the copper and zinc industries. Many mineral industry operators provide their own water, and new water is withdrawn largely from surface sources. At present, sufficient water is available in rivers, streams, and reservoirs in Montana; however, shortages do exist locally near mineral industry operations using large quantities of water. Some is supplied from sources up to 44 miles distant. New water withdrawn by the State of Montana mineral industry is expected to increase from 36.5 billion gallons in 1963 to 51.5 billion gallons by the year 2000. The total-water requirement is expected to more than double or reach 182 billion gallons by the year 2000. 55 cents.

IC 8306. Research and Technologic Work at the Health and Safety Research and Testing Center: Fiscal Years 1960-65, by Staff, Bureau of Mines. 1966. 31 pp. 9 figs. This report describes the activities and publications of the Bureau of Mines Health and Safety Research and Testing Center, Pittsburgh, Pa., for the fiscal years 1960-65. It includes a discussion of work being conducted on roof control, dust explosions, ventilation, health, coal mine fire control, and electrical-mechanical testing and an abstract of each paper published during the report period.

IC 8307. Fluorspar Deposits of New Mexico, by Frank E. Williams. 1966. 143 pp. 46 figs. This report describes 147 known fluorspar deposits in New Mexico and briefly mentions 54 miscellaneous occurrences for which little or no information was obtained. Most miscellaneous occurrences are minor and too poorly exposed to be considered more than prospects. History and production of fluorspar in New Mexico, type of deposition, mineralogy, uses, and grade specifications are discussed. Total mine production of fluorspar in New Mexico is nearly 641,000 tons of various grades of crude ore and hand-sorted material. Fluorspar deposits occur in 13 of the State's 32 counties. Grant, Valencia, and Luna Counties account for 86.4 percent of the total production. During the investigation, 141 deposits were visited. A total of 72 character samples was collected for assay, and 3 larger samples were collected for bench-scale metallurgical tests. Results of these metallurgical tests indicate that an acid-grade product can be obtained with 95-percent recovery of the CaF₂ content of the crude ore. 70 cents.

IC 8308. Research and Technologic Work on Explosives, Explosions, and Flame: Fiscal Year 1965, by Staff, Explosives Research Center. 1966. 19 pp. 2 figs. Major activities of the Bureau of Mines Explosives Research Center during fiscal year 1965 (July 1, 1964, to June 30, 1965) are reviewed briefly. Part 1 summarizes significant accomplishments of the projects that were active during the report period. Part 2 presents short abstracts of the publications that appeared in the Bureau series and in other media during fiscal year 1965. Publications issued after June 30, 1965, are noted, where pertinent, in footnotes but are not abstracted.

ł

Ł

 IC 8309. Review of Bureau of Mines Coal Program, 1965, compiled by John D. Spencer. 1966. 96 pp.
 51 figs. Advances were made during 1965 in many phases of a broad program designed to increase efficiency in the mining, preparation, and utilization of coal. Also recorded were achievements in activities devoted to mine health and safety, coal resources, and mine explosives. Featured in this report is a review of progress in environmental studies relating to coal mining and utilization. Environmental projects comprise a comprehensive program to facilitate mine reclamation and reduce air and water pollution associated with extraction and use of coal. Publications cited throughout this report present results of the coal program in great detail. Organizations, institutions, and companies contributing to the program are listed in appendix A. Centers and laboratories conducting the coal research and related research appear in appendix B. (Out of print.)

IC 8310. Feldspar Resources and Marketing in Eastern United States, by Stanley A. Feitler. 1967. 41 pp. 13 figs. This Bureau of Mines report deals principally with the resources and economic aspects of feldspar in the United States east of the Mississippi River. Although in a strict sense, all phases of the feldspar industry affect its economic structure, emphasis in this study is on supply, demand, and marketing. Although feldspar was originally mined for use in the manufacture of pottery and other ceramics, the glass industry, which began to use feldspar in the mid-1920's, now consumes more than half of the annual output. Most mining is open cut, and the methods used are similar to those used in mining crushed stone. Excess plant capacity has been chronic, and production is usually about 50 percent of capacity for the industry as a whole. Since 1947, feldspar consumption has grown more slowly than the average for all U.S. industry. This has fostered intense competition, especially for the glass market. Prices have not kept pace with inflation, and profits are small. The trend of consumption through 1970 for glass feldspar is expected to be upward; less rapid growth in consumption of ceramic feldspar is anticipated. 30 cents.

.

.

ŧ

)

1

1

1

h

1

j

IC \$311. A Thermol-Recovery Project and Two Waterflood Projects in Carter, Garvin, and Stephens Counties, Okta., 1966, by Kenneth H. Johnston and Kenneth R. Baskett. 1966. 32 pp. 10 figs. This publication describes a thermal-recovery project and two waterflood projects in Carter, Garvin, and Stephens Counties, Okla., that will be visited during the 1966 annual tour by the Bureau of Mines in cooperation. Among the unique features of the projects are (1) the movement of heavy (15° to 28° API gravity) crude oil through the reservoir and into the well bore with energy furnished by burning a portion of the crude oil therein; (2) the use of an inverted ninespot pattern with dually completed injection wells, to produce oil from deep (8,200 to 10,200 feet) reservoirs; and (3) the flooding of five sand lenses separately by using controlled water injections through multizone completed injection wells. Discussion of the individual projects includes information on their early history, method of completing and operating wells, source and treatment of injection fluids, oil production decline curves, and the results obtained from the development. Work done in cooperation with the Oklahoma.

IC 8312. Suffur Content of United States Coals, by Joseph A. DeCarlo, Eugene T. Sheridan, and Zane E. Murphy. 1966. 44 pp. 8 figs. This report attempts to show the sulfur content of the coal presently produced in the United States and to assess the remaining reserves of the various ranks of coal in each State, according to sulfur content. In most instances, the analyses used were those of cleaned coals. Coals have been arbitrarily separated, according to sulfur content, as follows: Low sulfur—1.0 percent or less; medium sulfur—1.1 through 3.0 percent; and high sulfur—3.1 percent or more. 30 cents.

IC 8313. Solt Domes in Texas, Louisiana, Mississippi, Alabama, and Offshore Tidelands: A Survey, by M. E. Hawkins and C. J. Jirik. 1966. 78 pp. 22 figs. This report provides information on all of the 329 proved salt domes in the Gulf Coast States and offshore area of the United States. It includes specific data related to location, depth to the cap rock and to the salt, storage facilities for LPG, and production of salt, sulfur, petroleum, and rock related to or associated with the dome structure in the subject area. Also included is a brief history of the salt, sulfur, and petroleum industries as related to the salt domes. Gulf coast salt domes were the scene of the first discovery of a large deposit of rock salt in North America, the birthplace of the Frasch sulfur industry, and the location of the first large oil gushers that ushered in the modern liquid fuel age.

IC 8314. Pneumatic Transportation of Solids. Proceedings: Institute of Gas Technology-Bureau of Mines Symposium, Morgantown, W. Va., October 19-20, 1965, compiled by J. D. Spencer, T. J. Joyce, and J. H. Faber 1966. 184 pp. 137 figs. A symposium on pneumatic transportation of solids was held at Morgantown, W. Va., October 19-20, 1965, under the cosponsorship of the Institute of Gas Technology, Chicago, Ill., and the Bureau of Mines. Objective of the symposium was to present information on developments and projected programs in the technology of feeding, transporting, recompressing, and utilizing gas-solids mixtures. The 22 papers presented at the symposium covered the following fields: Solids feeding, gas-solids measurement, flow systems research, recompression of gas-solids mixtures, utilization of gas-solids mixtures, and research needed.

IC 8315. Wyoming Iron-Ore Deposits. Description, Beneficia-tion Processes, and Economics, by C. M. Harrer. 1966. 114 pp. 23 figs. The location, features, quality, and extent of iron ore deposits are evaluated in this report. The results of pioneer beneficiation on Wyoming taconites and their success are discussed along with developments in the iron ore mining industry, markets, and economics. Market potential, transportation, resource developments, taxation, cost of iron ore enterprises, and the future of Wyoming iron resources are evaluated. Although occurrences of iron ores in Wyoming were known prior to 1870, early production to 1900 was as a nonferrous metallurgical flux and as mineral pigment for paints. In 1901 the Hartville-Sunrise hematite deposits were available to the Western iron and steel industry, and available to the Western iron and steel industry, and in 1962 the first western taconite operation was placed in production at Atlantic City, Wyo. This investigation discloses the probability of other large iron deposits in Wyoming. Taconite in the Bradley Peak area of the Seminoe Mountains has a poten-tiality of 100 million tons; that in the Owl Creek Mountains may prove very large also. Pioneer beneficiation testing has been included, and results have been generally encouraging. Research continues on the large titaniferous magnetite deposits of Albany County, Wyo. At present high-density titaniferous magnetite is being mined and processed at Iron Mountain for heavy aggregate and as a sized coating for underwater pipelines. Ample mineral raw materials needed for mining and processing Wyoming iron ores are available. Investments for iron-ore processing plants will generally be large, particularly for taconite and titaniferous magnetite.

IC 8316. Analyses of Natural Gases of the United States, 1965, by B. J. Moore and R. D. Shrewsbury. 1967. 181 pp. 1 fig. This publication contains routine analyses and related source data for 528 natural gas samples from 21 States collected during calendar year 1965 as part of a continuous survey of the United States for occurrences of helium in natural gas. This survey has been conducted by the Bureau of Mines since 1917. The analyses published herein were made by mass spectrometer and a special helium analysis apparatus, which are described in Bulletins 486 and 576. (Out of print.)

IC 8317. Thermophysical Properties of Selected Gases Below 300° K, by R. A. Guereca, H. P. Richardson, J. L. Gordon, J. D. Walker, and J. L. Cooper. 1967. 210 pp. 83 figs. Preliminary to an experimental study of selected physical properties of helium and related gases, the Bureau of Mines Helium Research Center conducted a data-gathering literature survey. This report combines the results of the 1961-63 literature search into a usable format. The data accumulated on the physical properties are presented in tables and graphs. The data in the tables were chosen for exact representation and comparison of specific values. An attempt was made to select the most reliable and consistent value available for a given property without extensively analyzing each source reference. The methods of evaluation are discussed. The graphs show trends and anomalies which may be obscure in tabular form. The general physical properties primarily used to define or differentiate 15 gases that are of interest to the Bureau's Helium Activity are included in this compendium. Included as well are eight specific physical properties for the 15 gases and also for air.

IC 6318. Urbanization and the Mineral Aggregate Industry, Tucson, Ariz., Area, by Frank E. Williams. 1967. 23 pp. 4 figs. This Bureau of Mines report deals with the urbanization of Tucson, Ariz., a southwestern city with an arid environment. Zoning regulations concerning known aggregate sources are described, and information relating to projected needs for the urban area is furnished. History of growth is outlined not only for the local aggregate industry, but also for the entire urban area. Past conditions are pointed out and background material for future conditions is provided. (Out of print.)

3C 8319. Zero Pressure Thermodynamic Properties of Nitrogen Gos, by Robert E. Barieau and Philip C. Tully. 1967. 48 pp. The following zero pressure thermodynamic properties of nitrogen gas are tabulated:

$$C_{p^{\circ}}, H^{\circ} = H_{o^{\circ}}, S^{\circ}, \frac{H^{\circ} = H_{o^{\circ}}}{T}, \frac{G^{\circ} = H_{o^{\circ}}}{T}.$$

These properties are tabulated in units of joules, gram-mole, degrees Kelvin and in calories, grammole, degrees Kelvin for every degree Kelvin from 50° to 550° . The same functions are also tabulated in units of British thermal units, pound-mole, degrees Rankine for every degree Rankine from 100° to $1,000^{\circ}$.

IC 8320. Urbanization and its Impact on the Mineral Aggregate Industry In the Denver, Colo., Area, by Matthew J. Sheridan. 1967. 51 pp. 28 figs. The Bureau of Mines study described in this report was conducted in the Denver, Colo., area (1) to summarize existing conservation practices as related to the most beneficial utilization of deposits of sand and gravel; (2) to identify the conflicting positions of the aggregate producer, the mineral owner, nearby residents, and local government officials responsible for determining land status and for issuing operating permits; and (3) to show the need for planning in Denver and in other expanding communities toward obtaining the benefits of conservation of our rapidly dwindling mineral resources. In order to determine the effects of urbanization on the Denver aggregate industry, interviews were held with owners of sand and gravel operations, with producers of concrete and bituminous pavement, with city and county planning and zoning personnel, and with representatives of various interested organizations. The conservation and ultimate utilization of deposits of construction raw materials near expanding urban areas can best be accomplished by long-range landuse projection and the requisite cooperation of technically advised planning and zoning administrators, government officials, mineral producers, and land developers. 40 cents. ŧ

1

1

3

()

£.

D

ł

•

IC 8321. Longwall Mining in Bituminous Cool Mines With Planers, Shearer-Loaders, and Self-Advancing Hydraulic Roof Supports, by J. J. Shields. 1967. 35 pp. 26 figs. The Bureau of Mines observed two different types of longwall mining: the advancing longwall method and the retreating longwall method at seven bituminous coal mines located in five of the coal producing states. In two mines using the advancing face method, the coal faces were abandoned because of roof failures and poor production. In the other five mines using the retreating method, roof control was good as was production. The success of longwall mining depends on good roof control and good production. The use of self-advancing hydraulic roof suports, such as Westfalia Coal planers and the Anderton and Eickhoff shearer-loaders have been a factor in recent successes. (Out of print.)

IC 8322. Voper Pressure of Pure liquid Nitregen, by P. C. Tully, Will E. DeVaney, and J. C. Meeks, Jr. 1967. 45 pp. The vapor pressure-temperature relationships for saturated pure liquid nitrogen are calculated by the Strobridge equation using a digital computer. This information is presented in two tables: first, in pressure increments of 0.1 psi from 1.8 to 492.9 psia, and second, in temperature increments of 0.1° from 63.15° to 126.26° K. These tables should facilitate the calibration of temperaturemeasuring devices over this temperature range. 35 cents.

IC 8323. Modifications of the Pendant Drop Interfacial Tensiometer, by Erle C. Donaldson and Edwin Pavelka. 1967. 6 pp. 2 figs. The pendant drop interfacial tensiometer is being used to study interfacial phenomena that influence the production of crude oil. A description of the instrument showing the modification of the cell and cell holder is presented. The modified cell and cell holder allow formation of a precise and reproducible drop size, and the image of the drop is easily alined and focused. Interfacial tension measurements and observations of film formation can be conducted at various temperatures with the jacketed cell.

IC 8324. A Combination Statistical Design for Sensitivity Testing, by Roy L. Grant. 1967. 25 pp. 7 figs. The Bureau of Mines investigated the up-anddown method with factorial designs to determine if shorter and, therefore, less costly trial sequences could be used. Although sequences of 50 trials are usually recommended, sequences of 20 trials were arbitrarily chosen for the experiments with permissible coal mine explosives described in this report. These explosives were fired from a cannon pointed into a flammable natural gas-air atmosphere at the Bureau of Mines Explosives Research Center gallery to ascertain their safety properties. The investigation demonstrated that the shorter sequences led to useful conclusions with a reduction in cost of the experimental program.

IC 8325. Evaluation of Domestic Reserves and Potential Sources of Ores Containing Copper, Lead, Zinc, and Associated Metals, by F. D. Everett and H. J. Bennett. 1967. 78 pp. 18 figs. This report summarizes the results of a nationwide investigation completed in 1964 to determine the nonferrous base metal ore reserves and potential sources of ore and to evaluate criteria for their ultimate exploitation. Engineers of the Bureau of Mines contacted mining company officials, reviewed reports and Government records, and where necessary made personal appraisals in arriving at the results. The estimates are presented by metals in ores in geographic regions and include some of the problems affecting the reserves and potential sources. The recoverable metal in the measured ore category and in the total ore reserves was estimated as follows:

1

1

]

]

1

 Metal	Metal, thousand tons	
	Measured reserves	Total measured, indicated, and inferred reserves
Copper Lead Zinc	21,990 570 2,680	74,700 30.600 21,980

At the 1963 rate of domestic mine production these total reserves would be adequate to provide copper for 62 years, lead for 121 years, and zinc for 42 years. Data also are given for gold, silver, and other coproducts. Reserve estimates greatly exceed those of previous investigations; some prior estimates of copper reserves are included for comparison (table 23). Projections of requirements for base metals indicated the United States will need approximately 45 percent more copper in 1970 and 110 percent more by 1980 than was consumed in 1960; similar projections for lead indicate increases of 20 percent by 1970 and 45 percent by 1980; zinc projections are 40 percent more by 1970 and 90 percent by 1980. Much of the production of gold and silver is a coproduct of base metals recovery and the projected need for the precious metals exceeds all the United States can produce. Some problems of the industry are mentioned. A graphic evaluation of the economic availability of the reserve and potential sources is shown. 45 cents.

IC 8326. Coal Resources of Southwestern Utch. Potential for Utilization in Steam-Electric Power-Generation Plonts, by L. T. Grose, D. H. Hileman, and A. E. Ward. 1967. 78 pp. 22 figs. The Bureau of Mines conducted a comprehensive study of the Kanab, Kolob, Kaiparowits, and Harmony coalfields of southwestern Utah to obtain additional information and to determine the potentials of these coalfields as sources of energy for steam-electric power-generating plants. Field examinations were made to ascertain the geologic structure and the stratigraphy of the coalfields, the accessibility of the coal-bearing strata, and the general nature of the coal-bearing strata, and the terrain. Many mines, both active and abandoned, were examined, and key personnel in the coal industry in the area were consulted. Available analyses of southwestern Utah coals were compiled, and tentative conclusions regarding the rank and quality of the coals were drawn. Water resources related to the areas of the coal reserves also were investigated. Existing literature and maps pertaining to the geology of the areas were reviewed. Production potentials of the coalfields and economic conditions affecting the possible utilization of the coal reserves as sources of energy for steam-powered electricity-generating plants were investigated and analyzed. The total reserves of subbituminous A and high-volatile bituminous C coals in the fields of southwestern Utah are estimated to be at least 8 billion short tons at depths generally less than 2,000 feet. It appears likely that this estimate will be increased as additional data are made available through exploration and other investigations. Sufficient coal is available in four southwestern Utah counties to supply three or four large steam-electric plants. If the States involved grant water rights to companies planning to build steam-electric plants, the cost of producing power with coal might be attractive and might justify the construction of one or more of these plants. 45 cents. •

IC 8327. An Analysis of the Pacific Northwest Lead-Zinc Industry, by Richard W. Knostman. 1967. 53 pp. 15 figs. A study was made of the factors affecting lead and zinc production in the Pacific Northwest. Costs, ore reserves and potential resources, and domestic demand were analyzed. It was concluded that a projected 3.1-percent average annual increase in U.S. demand for zinc through 1975 and a corresponding 2.5-percent rise for lead will be supplied mainly from mines in the Eastern and Central States. Annual Pacific Northwest mine production of lead is estimated to fluctuate around 82,000 tons, while zinc output may average 135,000 tons through 1975. Measured, indicated, and inferred reserves in the Pacific Northwest, containing 1.56 million tons of lead and 2.59 million tons of zinc, are more than sufficient to maintain this level of production. Annual production from Pacific Northwest electrolytic zinc plants is expected to increase to over 300,000 tons of slab zinc by 1975. Lead smelters may experience difficulty in maintain-ing output at 1964 levels. (Out of print.)

IC 8328. Water Requirements and Uses in Wyoming Mineral industries, by Millard M. Gilkey and Ronald B. Stotelmeyer. 1967. 92 pp. 44 figs. This Bureau of Mines report presents results of a detailed study of water usage in the Wyoming mineral industry, along with projections for the future. In 1964 the mineral industries of Wyoming used 20 billion gallons of new water, nearly all self-supplied, and reused 72 billion gallons, a total usage of 92 billion gallons. Consumption amounted to 2.8 billion gallons. About one-half of the 20 billion gallons of new water was obtained from surface sources and the rest from ground water. Reported costs, covering power and maintenance, for the self-supplied new water at mineral industry operations ranged from less than 1 cent to 20 cents per thousand gallons and averaged 8 cents. At one mineral-related operation, water was hauled by truck to supplement a well supply. The cost was \$2.00 per thousand gallons delivered. However, the supplemental requirement was only 10 gpm. Cost figures for the recirculation of water, covering power and maintenance, averaged 2 cents. In terms of water usage, the value of product for the entire industry was \$25 per thousand gallons of new water intake and about \$180 per thousand gallons consumed. The study revealed that Wyoming has a water deficiency but that the shortage is less severe than in the arid Southwest. Projection of the water needs of the Wyoming mineral industries indicates that the demand for new water will increase from the 20 billion gallons used in 1964 to 25 billion gallons in 1980, a 25-percent increase. The projected new-water requirement for the year 2000 is 40 billion gallons, a 100-percent increase compared with the 1964 figure. 50 cents.

IC 8329. Iron and Steel Scrap in the Southeast, by V. A. Danielson, James F. O'Neill, and H. William Ahrenholz. 1967. 85 pp. 27 figs. The Bureau of Mines examined sources, consumption, and movement of iron and steel scrap in the southeastern States--Alabama, Florida, Georgia, Kentucky, North Carolina, South Carolina, and Tennessee. Officials of the scrap-processing and scrap-consuming industries were interviewed, data was obtained from the published literature, and a canvass was made by the Bureau of scrap consumers. The Southeast generated excess scrap which was shipped to domestic and foreign consumers in about equal proportion. Total 1963 demand in the Southeast was 3,336,000 net tons, of which purchased scrap was 75 percent, foreign exports 13 percent, and domestic exports 12 percent. Alabama, with 47 percent of the purchased scrap consumption in 1963, was the most important scrapconsuming State, and Kentucky, with 34 percent, was the second most important one. Southeast demand was 4.8 percent of the total U.S. demand. Projected 1980 consumption is 8,340,000 tons. Scrap prices showed a slight downward trend for the period 1953-63, although gross consumption increased slightly. A significant trend in processing scrap in the Southeast is the preparation of smaller bundles or "briquettes" weighing from 75 to 150 pounds, which are easier for consumers to handle and inspect. Another significant development is the "shredding" of automobile scrap which produces a dense, clean scrap especially desirable for use in electric furnaces. (Out of print.)

1C 8330. Densities and Porosities of Core Samples From Wells in Appelachien Oilfields, by Franklin D. Slagle and C. I. Pierce. May 1967. 75 pp. 1 fig. Porosity and bulk- and sand-grain-density values were determined for 2,040 core samples of 30 formations from 47 wells in New York, Ohio, Pennsylvania, and West Virginia, and are compiled for petroleum industry use in well-log evaluation and geologic studies.

1C 8331. Production Petential of Known Gold Deposits in the United Stores, by Field Staff, Bureau of Mines. 1967. 24 pp. 2 figs. As part of its regular program to provide timely information on domestic mineral commodities, the Bureau of Mines conducted an engineering appraisal of more than 1,300 lode and placer gold deposits in the United States to determine their gold production potential. While these deposits were estimated to contain over 400 million ounces of gold, only 9 million ounces, or slightly more than 2 percent, was found to be producible at \$35 per ounce under prevailing mining and metallurgical technologies. The study revealed that any significant increase in available gold in the United States is most likely to come from the discovery of new sources, intensive exploration and development of the more promising known mineralized areas, and development of new or improved mining and metallurgical techniques.

IC 8332. Basic Properties of Matrix Algebra, by Katherine Harding. 1967. 32 pp. Basic concepts of matrix algebra and manipulations of matrices are presented in such a way that little competence in mathematics is required. Examples are always included to illustrate concepts and techniques. The paper is divided into six sections. The first four sections are devoted to some of the more basic concepts of matrix algebra, whereas the last two sections are concerned with specific applications. 30 cents.

IC 8333. Ringelmann Smoke Chart (Revision of IC 7718),

by Staff, Bureau of Mines. May 1967. 4 pp. The Ringelmann Smoke Chart fulfills an important need in smoke abatement work and in certain problems in the combustion of fuels. A knowledge of its history and methods of preparation is, therefore, of interest to many. Since instructions on its use are not shown on the recent edition of the chart, those included in this revision of the previous Bureau of Mines publication now are a necessary complement to the chart. More detail regarding the use of the chart is included than was given in the earlier version.

IC 8334. Computer Usage for Evaluation of Design Paramelers and Cost of Heat Exchangers With No Change in Phase and Pumping Costs of Both Fluids as Prime Parameters, by P. R. Jones and S. Katell. August 1967. 45 pp. 1 fig. A computer program was written for the design of a shell and tube type heat exchanger on a price optimum basis. The program was designed to meet the following requirements: (1) Triangular pitch, (2) single or multiple pass, (3) heating or cooling, and (4) no change in phase. Price optimum design was obtained for four standard tube sizes and standard pitch. Pressure drop, both insids and outside, was computed and the nearest standard shells having at least the required area were listed. With this information, the estimator can select the heat exchanger best suited for the need. The program was made adaptable to various fluids and to various tube sizes and spacing by reading in much of the required data such as physical properties of the fluids, tube data, and standard shell data in tabular form.

IC 8335. Petential Sources of Aluminum, by Staff, Bureau of Mines. 1967. 148 pp. 37 figs. The Bureau of Mines studied available information on the nature and occurrence of potential sources of aluminum in the United States, its Pacific island posessions, and Puerto Rico to obtain data for use in evaluating the production capability and costs of extracting the aluminum from such materials. The quantity, type, and grade of the materials range from 4 billion tons of bauxite, bauxitic clay, and kaolin averaging 33 to 42 percent Al₂O₃ to nearly 600 billion tons of anorthosite containing only 27 percent Al₃O. Principal deposits of bauxite, bauxitic clay, and Oregon. Major anorthosite deposits are located in New York, Wyoming, California, Idaho, and Montana. About 11 billion tons of material in deposits of various types of clay, the kyanite group of minerals, laterites, and shales averaging 27 to 30 percent Al₂O₃ comprise additional resources from which aluminum some day may be extracted. Material meeting specifications of the study was found in only 28 States and the Pacific island possessions. Utilization of these large low-grade sources of aluminum awaits development of processes that are economically competitive with the Bayer process for extracting alumina from bauxite, which is at present the only commercial ore of aluminum. Changes in economic and political conditions also may play important roles in the eventual development of the potential sources of aluminum.

IC B336. Injury Experience in the Nonmetallic Mineral Indus-

tries (Except Stone and Coal), 1961-63, by Forrest T. Moyer, Donald E. Redmon, and Thomas C. Lukins. 1967. 172 pp. The overall disabling work injury experience, excluding officeworkers, at nonmetal mines and mills during the period 1961-63, as reported to the Bureau of Mines by operators, was 77 fatal and 7,201 nonfatal injuries during an aggregate worktime of 335,029,685 man-hours. These injurias, fatal and nonfatal combined, occurred at a requency rate of 21.72 per million man-hours, comprising 0.23 for the fatal and 21.49 for the nonfatal injuries. The combined severity rate of the disabilities was 2,312 days lost or charged per million manhours, consisting of 1,379 for the fatal and 933 of the nonfatal injuries. The average severity of all disabilities during 1961-63, was 106 days per injury. The number of days lost or charged, excluding officeworkers, at nonmetal mines and mills during 1961-63, was 462,000 days charged to fatal injuries and 312,461 days lost from nonfatal injuries. The outstanding causes for fatal injuries were explosions (18 fatalities occurred in a major mine-explosion disaster in a potash mine in Utah in 1963) and falls of rock or ore from back or side, while most nonfatal injuries were caused by handling materials, slips or falls of persons, haulage, and machinery. The parts of the body most frequently injured during the period 1961-63 were the trunk, hand and finger, and foot and toe. An average of 52,810 men were at work daily. There were 20 nonfatal disabiling injuries reported for officeworkers at nonmetal mines and mills during the period 1961-63 during an aggregate worktime of 23,088,496 man-hours. These injuries occurred at a frequency rate of 0.87 per million manhours. There were no fatal injuries reported.

t

12

Ì

1

ł

1

•

•

1C 6337. Injury Experience in the Metallic Mineral Industries, 1961-43, by Forrest T. Moyer, Donald E. Redmon, and Thomas C. Lukins. 1967. 156 pp. The overall injury experience, excluding office-workers, at metal mines and mills during the period 1961-63, reported by operators, was 174 fatal and 11,357 nonfatal disabiling work injuries during an aggregate worktime of 451 million man-hours. These injuries occurred at a frequency rate of 25.55 per million man-hours, comprising 0.39 for the fatal and 25.17 for the nonfatal injuries. The combined severity rate of the disabilities was 3,779 days lost or charged per million man-hours, consisting of 2,314 for the fatal and 1,465 for the nonfatal injuries. The average severity of all disabilities during 1961-63, was 148 days per injury. The number of days lost and/or charged, excluding officeworkers, at metal mines and mills during the period 1961-63, was 1,440,000 days charged to fatal injuries and 661,290 days lost from nonfatal injuries. An average of 70,966 men were at work daily. The outstanding cause for fatal injuries was the fall of rock or ore from the back, while most of the nonfatal injuries were caused by handling materials, slips or falls of persons, machinery, falls of rock or ore from back and side, and haulage. Injury experience at primary nonferrous smelters, refineries, and reduction plants during 1961-63 worktime of 277 million man-hours. The injuries of 1,085 days lost or charged per million man-hours for the fatalities and 11.61 for the nonfatal disabilities. The severity rate for all injuries of 1,085 days lost or charged per million man-hours, and 587 for nonfatal injuries, and reduction plants during 1961-63 was 138,000 from fatal injuries and 162,345 from nonfatal injuries of 1,085 days lost or charged per million man-hours, at primary nonferrous smelters, refineries, and reduction plants during 1961-63 was 138,000 from fatal injuries of 1,085 days lost or charged per million man-hours contise days lost or charged per million man-hours conth

disabling work injuries, (there were no fatal injuries reported), during an aggregate worktime of 28,694,-244 man-hours. These injuries occurred at a frequency rate of 0.70 per million man-hours. There were no fatal injuries reported for officeworkers at nonferrous smelters, refineries, and reduction plants during 1961-63, but seven nonfatal injuries were reported during an aggregate worktime of 30,814,772 man-hours. The frequency rate for these injuries was 0.23 per million man-hours for this period.

IC 8338. The Interindustry Structure of the U.S. Mining Industries-1958, by Kung-Lee Wang and Robert K. Kokat. 1967. 190 pp. This report describes the linkage of all mining sectors with all other manufacturing, services, and final demand sectors of the U.S. economy. Besides being a basic data source, it provides a framework for aggregate economic impact analysis with respect to the mining industries. The framework is an open-static input-output model specifying 48 mining industries as classified in the Standard Industrial Classification Manual for all mining activities and 76 nonmining industries. The 124-sector model used in this report is an expansion of the preliminary 82-industry aggregation estimates made by the Department of Commerce. In the expanded model, 48 mining industries are substituted for the original 6. The methodology used to ascertain the industry-by-industry procurement cost estimates and production flows necessary to the construction and expansion of the basic 82-sector model included personal interviews, case studies of specific mining activity analysis, and published and unpublished data from the Bureau of Mines and the Census of Mineral Industries. The end products of this study are two tables arranged to show the direct purchases necessary for each industry to support the level of economic activity and the total purchases gnerated in each industry throughout the economy by each \$1 of aggregate economic demand in 1958. The tables may be used for economic impact studies and market analysis by firms engaged in or closely associated with the mining industries. Some illustrations of their usages are presented. \$1.

IC 8339. fluorspar in the Eastern United States, by Ronald P. Hollenbeck. 1967. 35 pp. 11 figs. This study reviews and discusses the fluorspar industry in the Eastern United States, with emphasis on factors controlling the industry such as production. consumption, uses, and transportation. The greatest potential for increased consumption of fluorspar in the immediate future was found to be in the manufacture of fluorine chemicals and steel. Important factors affecting the future domestic industry include imports and the maintenance of adequate domestic fluorspar reserves. Exploration, commercial deposits, mining and milling, reserves, and new developments in the industry are covered. (Out of print.)

IC 3340. Selenium and Tellurium. A Materiale Survey, by <u>Arnold M. Lansche</u>, with chapter on resources by David F. Davidson. 1967. 56 pp. 13 figs. Selenium and tellurium are recovered as byproducts of the smelting and refining of lead and copper ores. This report is a worldwide study of properties, uses, substitutes, and toxicology; history; resources; technology and production; supply and distribution; industrial structure; research and development; tariff legislation and Government programs; and strategic factors. This survey was prepared for the Office of Emergency Planning. 60 cents. 1C 8341. Copper Leaching Practices in the Western United Stotes, by Herman W. Sheffer and LaMar G. Evans. 1968. 57 pp. 34 figs. This report describes and discusses present-day leaching technology employed to recover copper from low-grade mine and dump materials derived from the exploitation of copper ore deposits in the Western United States. Illustrations of the integral parts of the leaching, precipitation, and recovery operations at several copper-producing companies are presented. Schematic drawings are included to present typical flowsheets of leaching and precipitation operations. Operational problems common to most copper leaching and precipitation plants are discussed. Areas of present and future research to improve leaching techniques are cited. 75 cents.

IC 8342. Iron and Steel Scrap Survey in Illinois, Indiana, lowa, Michigan, Minnesota, and Wisconsin, by Walter Pajalich. 1967. 49 pp. 24 figs. This Bureau of Mines report is a study of the organizational framework of the ferrous scrap industry, of the products produced, and of the factors affecting the consumption of ferrous scrap by the steel industry. Consumption data from 27 major iron and steel firms in the States of Illinois, Indiana, Iowa, Michigan, Minnesota, and Wisconsin during the period between 1957 and 1962 were grouped by type of iron and steel furnace production facilities to determine consumption pattern for various grades of scrap in comparison to ingot production, hot metal consumption, and home scrap generation. Grades of scrap affected by changes in scrap consumption were determined, and the pattern that emerged was analyzed. Correlation of scrap demand and its effects on scrap prices based on price of scrap receipts of No. 1 heavy melting scrap and No. 2 bundles in the Chicago area for the years 1957 through 1962 indicated that demand trends do not always affect the price of scrap. Past and present technological advancements in steelmaking processes are discussed, and their effects on the scrap industry are analyzed. 35 cents.

IC 8343. A Numerical Method for Determining Heat-Transfer Characteristics for a Dilute Gas-Solids Mixture in an Externally Meated Tube, by M. J. Lempel. July 1967. 20 pp. 8 figs. A theoretical study of the heattransfer characteristics of a dilute gas-solids mixture in an externally heated tube is reported. Detailed equations are developed describing the system, and a numerical method is presented to solve the equations using a digital computer. The methods are applied to a system containing fine coal particles entrained in hydrogen, flowing through a hot tube. Heat-transfer coefficients and several other constants are evaluated in detail.

IC 8344. Iron and Steel Scrap in the Intermountain and Northwestern Plains States, by Harold J. Bennett. 1967. 71 pp. 14 figs. This report deals with the processing and marketing of iron and steel scrap in Arizona, Colorado, New Mexico, Utah, Wyoming, Nebraska, North Dakota, and South Dakota. The major individual consumers of iron and steel scrap were the steel mills in Arizona, Colorado, and Utah, foundries in Utah and Arizona, and copper leaching operations in Arizona, New Mexico, and Utah. About 2 million tons of iron and steel scrap was used by the iron and steel industry in 1964. Although there has been a decline in the amount of scrap used per ton of steel ingot produced because of changes in steelmaking methods, there has been a slight increase in the overall quantity of scrap used because of the increase in ingot production. It is estimated that the scrap consumption in the steel industry will

increase by 19 percent by 1980. In addition to the scrap consumed by the steel industry, 273,000 tons of ferrous scrap were used by copper-leaching operations. Thirty-one percent of the ferrous scrap used by the steel industry in 1964 was purchased from dealers and other sources.

The CF&I Steel Corp. (formerly The Colorado Fuel and Iron Corp.) at Pueblo, Colo., complemented its blast- and open-hearth-furnace operations with basic-oxygen converters in 1962. The basic-oxygen and open-hearth furnaces were charged with 30 and 90 percent scrap, respectively. Future use of the open-hearths would probably be used to supplement ingot production requirements. Because it was more economical to use less scrap and a high molten-metal charge the United States Steel Corp. at Geneva, Utah, which uses the open-hearth process to make steel, charges the furnaces with 25 to 35 percent scrap. The Allison Steel Manufacturing Co. at Tempe, Ariz., uses a 100-percent-scrap charge in its electric furnace.

Although it was estimated that there were 327,000 tons of various grades of motor vehicle scrap generated in 1963, no estimates were made concerning the total quantity and grade of scrap available in the area. Most of the scrap used in the steelmaking industry originated within the area. It was advantageous to sell scrap generated in eastern Nebraska, North Dakota, and South Dakota to markets in the Midwest because of freight costs. (Out of print.)

IC 8345. Thickness of Bituminous Coal and Lignite Seams Mined in 1965, by W. H. Young. August 1967. 18 pp. 1 fig. Gives number of mines, production, output per man per day, and average thickness of seams mined at bituminous coal and lignite mines in the United States for the years 1920, 1945, 1946, 1950, 1960, and 1965. The data for 1965 are presented in greater detail.

1C 8346. Bibliography of Investment and Operating Casts for

Chemical and Petroleum Plants, January-December 1966, by Sidney Katell and William C. Morel. 1967. 131 pp. Contains abstracts of 595 articles concerning all phases of cost engineering in chemical and petroleum plants, especially construction and operating costs. The related topics covered include cost estimating, foreign and domestic construction project reports, developments in petroleum production and refining, and developments in the nuclear field. Work done in cooperation with the American Association of Cost Engineers. (Out of print.)

1C 8347. An Analysis of 44 Recent Fatal Accidents With Front-End Leaders, by R. O. Pynnonen and Allen D. Look. September 1967. 10 pp. This publication is an analysis of reports to the Bureau of Mines of 44 fatal accidents that occurred during the operation of rubber-tired, front-end loaders in the mineral industry. The causes of the accidents, the nature of the work being performed, and recommendations for preventing similar accidents are included.

IC 8348. Fly Ash Utilization, Proceedings: Edison Electric Institute-National Coal Association-Bureau of Mines Symposium, Pittsburgh, Pennsylvania, March 14-16, 1967, compiled by John H. Faber, John P. Capp, and John D. Spencer. 1967. 345 pp. 111 figs. Contains the proceedings of the symposium and abstracts of all the papers. The symposium discussed the nature of the fly ash problem, including availability, specifications, limitations on its use, marketing, utilization in concrete and masonry products, specialized use, and recent developments in basic fly ash research \$1.75. b

t

)

IC 8349. Research and Technologic Work on Explosives, Explosives, and Flames: Fixel Year 1966, by Staff, Explosives Research Center. September 1967. 21 pp. 2 figs. Major activities of the Bureau of Mines Explosives Research Center during fiscal year 1966 (July 1, 1965, to June 30, 1966) are reviewed briefly. Part 1 summarizes significant accomplishments of the projects that were active during the report period. Part 2 presents short abstracts of the publications that appeared in the Bureau series and in other media during fiscal year 1966. Publications issued after June 30, 1966, are noted where pertinent in footnotes but are not abstracted.

IC 8350. Description of a High Fressure High Accuracy Burnett Compressibility Apparents, by John E. Miller. October 1967. 10 pp. 2 figs. A high accuracy Burnett apparatus for use at 12,000 psi and 0° to 65° C has been constructed at the Bureau of Mines Helium Research Center. The apparatus is patterned after Burnett's original apparatus, but the working pressure is much higher and elastic distortion can be essentially eliminated. An operating procedure to permit faster experimental measurements is suggested.

IC 8351. Magnetic Susceptibility of 19 Nickel- and Cobak-Bearing Minerals, by H. E. Powell. October 1967. 12 pp. 3 figs. Magnetic susceptibilities were determined by the Bureau of Mines for 19 cobaltand nickel-bearing minerals and for a suite of synthetic cobalt-nickel diarsenides analogous to the rammelsbergite and safforite series. Relations between susceptibility and composition were found to be nonlinear for both impure natural minerals and pure synthetics.

IC 3352. Heavy Crude Oil. Resource, Reserve, and Potential Production in the United States, by Petroleum Staff, Mineral Resources Offices. 1967. 76 pp. 8 figs. This report presents data pertaining to proved reserves, production, and total resource of heavy crude oil (API gravity of 25° or less) in the United States The information in provented for 90 heavy States. The information is presented for 22 heavyoil-productive States within the five Petroleum Administration for Defense (PAD) districts. Also included are brief discussions of the overall crude-oil supply-and-demand situations in each district and proration practices that could affect development of the heavy-oil resource. Statistical data pertaining to the resource, reserve, production, and thermal projects are presented in the discussions of the individual States. This special Bureau study was confined to subsurface reservoirs that contain heavy oils which are mobile at reservoir conditions. In general, the recovery of commercial amounts of oil by pri-mary method was considered evidence of reservoir oil mobility. Further, the resource evaluated is in reservoirs or parts of reservoirs significantly affected by drainage to oil-productive wells or defined by well bores. Heavy-crude-oil resource on January 1, 1966, was 106.8 billion stock tank barrels (stb), of which 45.9 billion stb was in reservoirs having characteristics considered to be most favorable for thermal-recovery operations. Estimated recoverable or proved reserve by operating methods in effect on this same date was 5.2 billion barrels. During the decade ending January 1, 1966, heavy-oil production was more than 3 billion barrels, about 5 percent of the total U.S. crude-oil output. In 1965 heavy-oil production was 372 million barrels, of which about 22 million barrels, or almost 6 percent, was produced from thermal-recovery operations. Heavy-oil fore-cast for the years 1966-80 is 5,816 million barrels. This forecast includes anticipated production resulting from finding additional reserve and from apply-

1

1

1

3

ing stimulative-recovery techniques to reservoirs from which oil is being recovered by primary recovery techniques. About 16 percent of the heavy-oil forecast is expected to be recovered from thermal operations. 45 cents.

IC 3353. New Concept of Electron Detachment for Air in Negative Corons at High Tamperature, by C. C. Shale. November 1967. 11 pp. 2 figs. Currentvoltage relationships for air at high temperature in negative corons are compared with relationships predicted by theory. Deviations are discussed. Based on the latest theoretical concept of electron detachment from negative ions and recent findings in basic research on free electron gases, results of applied research show the existence of free electrons in air at high temperature and high field strength-topressure ratios.

IC 8354. Mobile Diesel-Powered Transportation Equipment for Gausy Noncoel Mines and Tunnels Approved by the Bureau of Mines, 1961-66, by Rogers F. Davis, Joseph J. Seman, John R. Zelonka, and Frank E. Scott. November 1967. 6 pp. 2 figs. This publication has been prepared to supply manufacturers and industrial users with a listing of mobile diesel-powered transportation equipment approved or certified by the Bureau of Mines for use in gassy noncoal mines and tunnels. Listings are given, in chronological order, of approvals of diesel-powered shuttle cars and wheel-type loaders and certifications of diesel engines and safety components under Schedule 31, first published January 16, 1961.

IC 8355. Injury Experience in Coal Mining, 1964. Analysis of Mine Safety Factors, Related Employment, and Production Date, by Forrest T. Moyer, Nina L. Jones, Mary B. McNair, and Neil B. Bradley. December 1967. 92 pp. 3 figs. To keep the mineral and allied industries informed of trends in the causes of accidents and to point out the need for corrective measures, the Bureau of Mines collects, analyzes, and periodically publishes health and safety statistics. This report includes data for 1964 on injury experience, with related employment statistics, at coal mines in the United States, presented in tabular form.

IC 8356. Analyses of Netural Gases, 1966, by B. J. Moore and R. D. Shrewsbury. 1967. 130 pp. This publication contains routine analyses and related source data for 374 natural gas samples from 24 States and five foreign countries. These samples were collected during calendar year 1966 as a part of a continuous survey of the free world for occurrences of helium in natural gas. This survey has been conducted in the United States by the Bureau of Mines since 1917. In late 1965 the survey was expanded to include foreign gasfields. The analyses of foreign samples contained in this publication represent the first samples received as a result of this expanded program. The analyses published herein were made by mass spectrometer and a special helium analysis apparatus, which are described in Bureau of Mines Bulletins 486 and 576. Eight previous publications have presented the results of 7,244 gas analyses made by the Bureau of Mines Helium Activity prior to 1966. The first three, Bulletins 486, 576, and 617, contain analyses and related source data on 5,218 gas samples collected from 1917 to 1961. The other five publications, which were published as Information Circulars, supplement the three Bulletins and contain 2,026 analyses of samples collected in 1961, 1962, 1963, 1964, and 1965. This publication is the sixth publication supplementing the three Bulletins. 65 cents. IC 8357. Review of Bureau of Mines Coal Program, 1966, by Staff, Bureau of Mines—Coal Research. November 1967. 119 pp. 58 figs. This report briefly describes the broad program of research and technologic work conducted by the Bureau of Mines on coal and related subjects during 1966. In addition to a description of investigations on mining, preparation, and utilization of coal, an account is given of the Bureau's work in mine health and safety, coal resources, mine explosives, and environmental conditions relating to coal mining and utilization. Details of most of the projects are reported in publications cited throughout this report. The Bureau centers and laboratories that conduct the coal research and related investigations and the organizations, institutions, and companies that have contributed to the Bureau's coal research and technologic program are listed in appendixes.

1C 8358. Miniature Oxygen Deficiency Alorm, by Merle L. Bowser and Robert A. Bradburn. January 1968. 7 pp. 5 figs. The Bureau of Mines has constructed a miniature oxygen deficiency alarm system using an electrochemical cell as the sensor. Distinct audible signals are produced at either of two preselectable oxygen levels which can be varied from approximately 10 to 20.9 percent oxygen. The high or cautionary range produces a 500-cycle-per-second tone pulsed at about 1-cycle-per-second rate, whereas the lower or more dangerous oxygen level produces a continuous 500-cycle-per-second tone.

IC 8359. Magnetic Susceptibility of 34 Manganese-Bearing Minerals, by H. E. Powell and Lee N. Ballard. January 1968. 10 pp. 1 fig. The magnetic susceptibilities of 34 manganese-bearing minerals were determined. The source of each sample and petrographic, spectrographic, and chemical analyses are given. Included are values for isomorphous series showing wide ranges of composition and for a few high-purity synthetic minerals.

IC 8360. Magnetic Susceptibility of Group IVB, VB, and VIB Metal-Bearing Minsrals, by H. E. Powell and Lee N. Ballard. February 1968. 9 pp. 1 fig. The magnetic susceptibilities of 57 minerals containing titanium, zirconium, vanadium, columbium, tantalum, chromium, molybdenum, and tungsten were determined. The source and petrographic analysis of each sample are given. Included are values for isomorphous series of minerals showing wide ranges of composition and for a few high-purity synthetic minerals.

IC 2361. Firefighting Facilities at Coal Mines (Revision of RI 5363), by R. Ward Stahl and Robert T. Davis. February 1968, 40 pp. 11 figs. This publication is a revision of Report of Investigations 5363, updated to reflect the improvement in fire protection at selected coal mines. It contains suggestions on what may be considered good fire protective equipment, suggested methods of organizing the attack on fires at various locations underground, and helpful hints on testing and evaluating firefighting facilities.

IC 8362. Depth and Producing Rate Classification of Oil Reservoirs in the 14 Principal Oil-Producing States, by Petroleum Staff, Mineral Resource Offices. October 1967. 25 pp. 3 figs. This report presents depth and producing rate statistics pertaining to oil reservoirs (or fields) in each of the 14 States that produced more than 20 million bbl of oil during 1965. The combined oil production was about 2.6 billion bbl, or 96 pct of the U.S. total. Data are presented for each of the 14 States, each Texas Railroad Commission district, and four geographical areas of Louisiana. About 8 pct of the total oil produced in the 14 States was from depths of less than 2,000 ft, 24 pct from 2,000 to 4,000 ft, 22 pct from 4,000 to 6,000 ft, 16 percent from 6,000 to 8,000 ft, and 30 pct from 8,000 ft and deeper. The average production per well in the 14 States ranged from 4.4 bopd for wells less than 2,000 ft deep to 57.6 bopd for wells 8,000 ft and deeper. Data indicate that 9.5 pct of the 460,968 wells produced more than 1.2 billion bbl or 46.6 pct of the total oil. Oil production from reservoirs (or fields) not undergoing stimulative recovery operations, such as steam, air, gas, or water injection, was about 1.1 billion bbl or 42.1 pct of the total.

IC 8363. Mobile Diesel-Powered Equipment for Nongussy Noncool Mines and Tunnels Approved by the Bureau of Mines, 1951-66, by Rogers F. Davis. February 1968. 29 pp. 2 figs. This publication has been prepared to supply manufacturers and industrial users with a listing of mobile diesel-powered equipment and subassemblies approved and certified by the Bureau of Mines under Schedule 24, first published in March 1949, and amended April 23, 1955, for use in nongassy noncoal mines and tunnels. This revised and supplemented listing supersedes IC 8183, published in 1963. Listings are given in chronological order of mobile diesel-powered equipment approved under Schedule 24 and diesel engine subassemblies certified under Schedule 24.

t

IC 8364. Petroleum and Oil Shale Research of the Bureau of Mines, Fiscal Year 1966, by Staff, Bureau of Mines—Petroleum Research. January 1968. 52 pp. During fiscal year 1966 the Bureau of Mines published 99 scientific and technical papers and engaged in 67 research projects on petroleum, natural gas, and oil shale. A basic appropriation of \$3.4 million was supplemented by \$1 million in cooperative funds from other Governmental agencies and industry groups. Petroleum conservation was advanced by development of scientific knowledge and improvement of technologic methods in both the extraction and utilization of petroleum, natural gas, and oil shale. Experimental work was carried out at research centers in Bartlesville, Okla., and Laramie, Wyo., and in laboratories in Morgantown, W. Va., and San Francisco, Calif.

IC 8365. Recommended Sefety Standards for Shaft Sinking (Revision of IC 7810), compiled by Staff, Health and Safety Activity. March 1968. 23 pp. The recommended standards included in this publication have been carefully compiled by Bureau personnel in all areas where shaft sinking is practiced. Existing applicable State rules were considered and included. Representatives of the mineral industries, coal and noncoal, were given an opportunity to participate in preparing these suggested standards, and the Bureau hopes that their use will lead to greater safety and efficiency and prevent loss of life, injury, and property damage during shaft sinking. These recommended safety standards are detailed under 12 headings: (1) Fire prevention, (2) fire protection, (3) housekeeping and sanitation, (4) electricity, (5) explosives storage and transportation, (6) timbering and safeguarding personnel and equipment, (7) hoisting, hauling, and handling excavated material, (8) ventilation, (9) drilling, (10) blasting, (11) welding and burning, and (12) lighting. An appendix on firefighting equipment is included. This publication replaces IC 7810, published in 1957.

IC 8366. Het Carbonate Purification Computer Program, by Paul Wellman and Sidney Katell. March 1968. 25 pp. 2 figs. A computer program is presented that may be used to calculate the bare equipment cost of the major processing units for any hot potassium carbonate gas purification system. The program is designed so that, with minor modifications, it could be used with a variety of computer systems.

IC 8367. Computing Volume of Helium in Cylindical Steel Containers at 10 to 10,000 PSIA (Revision of IC a185), by H. S. Kalman. March 1968, 212 pp. 3 figs. A table of factors for rapid, accurate calculation of the volume of pure helium in cylindrical steel containers, at base conditions of 14.7 psia and 70° F, is presented. The table covers a pressure range from 10 to 10,000 psi in 10-psi increments and a temperature range of 0° to 120° F in 2° increments. The volume of helium is calculated from the observed pressure and temperature of the helium, expressed as a factor from the table, and the known internal volume of the container. The calculation requires a single multiplication. A discussion and evaluation of the accuracy obtainable and a derivation of the formula used (which takes into account compressibility of helium, thermal expansion of steel containers, and the strength of steel due to internal pressure) are presented. An example showing how the table can be used is given also.

l

1

1

IC 8368. Review of Major Proposed Processes for Recovering Manganese From United States Resources (in Three Parts). 3. Sulfur Oxide Processes, by John J. Henn, Ralph C. Kirby, and Lindsay D. Norman, Jr. March 1968. 36 pp. 11 figs. Ten proposed processes for the recovery of manganese from domestic resources as a high-grade oxide product are described. Nine of the processes employ sulfur dioxide, sulfuric acid, or a combination of both for leaching. The tenth process utilizes sulfur dioxide to sulfatize the ore at 600° to 850° C before water leaching. In addition to these ten complete processes, six processes from the patent literature are described. Methods for recovering MnSO, H₂O are also reviewed.

IC 8369. Limestone Resources in Western West Virginia, by David J. Kusler and H. A. Corre. March 1968. 76 pp. 15 figs. This study is an appraisal of the feasibility of recovery and the possible chemical and physical uses of the limestone from the Greenbrier Formation in western West Virginia. Data on minability, occurrence, quality, and markets were obtained from published and unpublished sources and by a limited mail survey combined with personal contacts. The estimated costs of recovery by deep mining techniques are considerably higher than competitive surface and shallow subsurface operations. Compositional information available for this study was limited but indicated the suitability of the limestone for most physical uses and some chemical process uses. An appraisal of the uses and demand reveals that immediate markets may be difficult to establish, but for some uses long-term prospects may be encouraging, especially if the quality of limestone would be suitable for lime manufacture or use as metallurgical fluxstone.

IC 8370. Study of the Silver Potential, Creede District, Mineral County, Colo., by Henry C. Meeves and Richard P. Darnell. April 1968. 58 pp. 20 figs. This report describes work done in the Creede mining district, Mineral County, Colo., in 1965-66 as a part of a Bureau of Mines study of the silver production potential of the United States. The mining history of the district is briefly covered, and representative former and current mining operations are described. Mining and milling costs of the Emperius Mining Co. operation are given in some detail as

being representative of the cost of mining typical Creede ore bodies under current technology. An estimate of the silver reserves and resources of the district is presented, subject to many uncertainties stemming from inaccessibility of old workings, lack of mining records, and low level exploration activity, all of which limit the opportunity to accurately evaluate ore potential. The report concludes with an analysis of future silver production trends in the Creede district. An increase of silver production to as much as 1 million ounces yearly is projected, possibly starting in 1969. As long as ore bodies in the zone of enrichment, in which silver is a major constituent, contribute a substantial part of Creede production, silver price will affect overall production rates appreciably. As the richer ore bodies become depleted, an increasing portion of production again will be coming from primary sulfide ores in which silver is a byproduct of lead and zinc. When this occurs, the level of silver production and prices and can be expected to decline to the 1960-66 level, which amounts to an average of 240,000 ounces per year.

 IC 8371. Active list of Permissible Explosives and Blasting Devices Approved Before December 1, 1967, by
 C. M. Mason and P. A. Richardson. April 1968.
 9 pp. The current Bureau of Mines active list of permissible explosives includes 95 brands. Twelve are gelatinous and the rest are the most commonly used granular ammonium nitrate type. The list of permissible blasting devices comprises five Cardox models.

IC 8372. Permissible Mine Equipment Approved by the Bureau of Mines During 1965-66. A Supplement to Bulletin 543 and Information Circulars 8220 and 8299, by F. R. Lee. April 1968. 25 pp. This publication lists permissible equipment approved by the Bureau of Mines during 1965 and 1966 (calendar years), except for breathing apparatus and explosives. The purpose of this publication is to inform the public about approved equipment safe for use in underground mines.

 IC 8373. Helium: Bibliography of Technical and Scientific Literature, January 1, 1947, to January 1, 1962.
 A Supplement to Bulletin 484, compiled by Harold W.
 Lipper and Carla W. Cherry. 1968. 525 pp. References in this bibliography are all those technical and scientific articles pertaining to helium that are known to have been published before January 1, 1962. This publication is a continuation of Bulletin 484. Articles of a general nature from trade journals and popular magazines are included to preserve comprehensive coverage of the subject. \$2.75.

IC 8374. An Engineering and Economic Study of a Gold Mining Operation, by Edward E. Johnson and Harold J. Bennett. 1968. 53 pp. 7 figs. The principal purpose of this study was the development of an engineering and economic model of a hypothetical large-scale open pit gold mining operation. The guiding concept in developing the model was the idea that, through study of a number of such models, it would be possible to evaluate a mineral property and to make reasonable estimates of the benefits to be derived from research in mining and metallurgy. The model by use of a computer is able to produce results easily and quickly when cost factors are varied. Cost factors may be varied as a result of assumptions of improved technology or of assumptions of assuming different approaches or methods to accomplish a particular segment of the mining or processing operation. The discounted cash flow rate of return was used to measure the effect of changes in costs or expected revenue. In this study, assumptions based on past processing practices were made in an effort to reduce costs of processing the ore. These assumptions were (1) eliminating the lowgrade cyanide circuit, (2) reducing the quality of material to be processed by screening after crushing, and (3) using a combination of assumptions (1) and (2). All three assumptions resulted in reduced capital investment and operating cost that caused substantial increases in the rate of return. (Out of print.)

IC 8375. Tunneling Technology—Its Past and Present, by Thomas M. Nasiatka. 1968. 12 pp. This report briefly describes the present state of the art and the technological highlights of tunneling from its inception to the present. The discussion is concerned primarily with tunnels driven through relatively competent rock for mine development and various civil purposes. In addition to pinpointing the major technological breakthroughs in tunneling, this report indicates their general effect on the speed of tunneling. The tunneling speeds are based upon data from approximately 80 tunnels listed in the appendix. These data include length; cross section shape and dimension; type of rock; tunneling method; method of breaking, loading, and transporting the rock; average linear progress rate; and cost in values during the period of construction. Most of the tunnels described have diameters of 15 to 30 feet. 45 cents.

1C 8376. Technology and Use of Lignite. Proceedings: Bureau of Mines-University of North Dakets Symposium, Grand Forks, N. Dak., April 27-28, 1967, by Wayne R. Kube and James L. Elder. May 1968. 201 pp. 8 figs. The 1967 Lignite Symposium was held at Grand Forks, N. Dak., on April 27-28, 1967. This was the fifth of these technical meetings and the fourth which was cosponsored by the University of North Dakota and the Bureau of Mines. These symposia have provided a meeting place where current developments concerning technology and utilization of solid fuels (lignite) are presented. There was a registration of 255 persons from 24 States, the District of Columbia, six Canadian Provinces, Germany, and India. Many segments of coal or energy oriented organizations at many levels were represented. During the meeting, 18 presentations were made covering developments in electrical power generation, mining, estimation of reserves, combustion, gasification, and chemical and specialty uses of low-rank coals; these are compiled in this Information Circular to provide a record of the symposium and to permit wider dissemination of the information. Proceedings of the other meetings have also been published.

IC 8377. Gamma irradiation of Coal, by Irving Wender, Charles Zahn, and Robert F. Stewart. May 1968. 39 pp. 2 figs. This report describes Bureau of Mines experiments and reviews the work of others on the exposure of coal and coal-derived products to gamma rays and some other types of radiation. Results are presented on tests of three bituminous coals and a lignite that had been pulverized to minus 200-mesh particles and exposed to 1,000 megaroentgens of gamma irradiation from spent-fuel elements of a nuclear reactor. Of about 20 chemical and physical tests in Bureau work, only mass spectrometry of gases evolved during vacuum pyrolysis of the coals to 450° C gave results indicating differences in the irradiated and unirradiated samples. Mass-spectral distribution curves for CO and CO, evolution showed fewer irregularities (reversals of curvature) for irradiated coals; thus, mass spectrometry appears to be the most sensitive method for determining radio-induced changes in coal. It is concluded that coal is not significantly altered by gamma irradiation owing to the resistivity of its highly condensed ring structure. High-level gamma irradiation, therefore, is unlikely to prove advantageous in coal processing and utilization. Specially treated coals, because of resistivity of coal to radiation damage, may be useful as an absorbent in processing radioactive wastes.

IC 8378. Injury Experience in the Metallic Minerel Industries, 1964, by Forrest T. Moyer, Donald E. Redmon, and Donald K. Walker. May 1968. 70 pp. Injury experience at metal mines and mills (excluding office workers) in 1964 was 60 fatal and 3,672 nonfatal disabling work injuries during an exposure time of 149 million man-hours worked. These injuries occurred at a frequency rate of 24.97 per million man-hours and had a severity rate of 3,687 days lost or charged per million man-hours. Employment at 2,363 metal mines and 291 mills, excluding office workers, was 68,140 men in 1964. The average number of days worked was 274. The principal cause of fatal injuries at all mines and mills was haulage accidents and in underground mines, only, was falls of ground. The principal cause of nonfatal injuries was handling material accidents. The frequency rate at metal mines and mills in 1964 was slightly below that of 1963, whereas the severity rate was higher. Injury experience at 94 primary nonferrous smelters, refineries, and reduction plants (excluding office workers) was 8 fatal and 999 nonfatal disabling work injuries during a worktime of 98 million man-hours worked. The combined injuryfrequency rate in 1964 was 10.29 and the injuryseverity rate was 1,005. The 36,956 employees worked an average of 329 days during 1964. The principal cause of injuries at these plants was handling material accidents. The injury experience for onsite office workers at metal mines and mills was 14 nonfatal disabling work injuries which occurred at a frequency rate of 1.57. Office workers at primary nonferrous smelters, refineries, and reduction plants had no disabling work injuries in 1964.

IC 8379. Microfilming Maps of Abandoned Anthracite Mines. Mines in the Wyoming Basin, Northern Anthracite Field, by W. L. Eaton and G. B. Gait. June 1968. 13 pp. 4 figs. This report is the second in a series concerning the Bureau of Mines program for microfilming maps of abandoned mines in the Pennsylvania anthracite region; a catalog of the microfilmed maps of mines in the Wyoming Basin of the Northern anthracite field is presented. The first report, IC 8274, published in 1965, was a catalog of microfilmed maps of mines in the Eastern Middle anthracite field. Additional catalogs will be published as the microfilming of significant mining areas is completed.

IC 8380. United States Coals in World Markets, by George Markon. 1968. 87 pp. 14 figs. The importance of U.S. coal exports as a component of the national economy, the potential for growth of these exports, and the international character of this sector of the coal industry are described in this report. The report summarizes some of the many background elements in the rise of U.S. coals to pre-eminence in highly competitive world markets. It presents some insight into this important sector of U.S. industry and the positive contribution of this sector to the Nation's balance of payments. It contains pertinent basic statistics on production, trade, and consumption of coal in most major markets for 1960-66. (Out of print.) The report examines the movement of U.S. coals from mines to export markets, tracing and describing origins, exit ports, prices, and trends as well as inland and ocean freight rates and other data vital to an understanding of some of the practices and complexities of the U.S. coal markets abroad. A brief sketch of coal production and consumption in principal importing countries is also presented with a short review of some of the more current practices and problems of these countries. 65 cents.

IC 8381. Minerel Transportation Costs in the Pacific Northwest, Methodology and Application of a Statistical Analysis, by Jerry J. Gray, N. S. Petersen, and G. A. Kingston. 1968. 30 pp. 3 figs. Transportation charges for mineral commodity movements in western Oregon and western Washington were determined mainly by a stratified random sample canvass of producers. Total 1965 mineral production value for this area was \$53.3 million; the cost or charge to move this production from the mine to the consumer or to the point of consumption was determined to be an additional \$38.7 million. Thirty-seven companies were contacted as a sample out of a total population of 349; the statistically expanded sample production value deviated 3.6 percent from that obtained by the Bureau's annual canvass. The agreement between the sample results and the canvass totals demonstrated the effectiveness of the sampling method for obtaining data with a predesigned level of accuracy.

For comparison, the north-central Idaho and western Montana area was studied. A random sample experiment was designed, but because of the dominance of a few major companies, a random sample technique would have required more visits to producers than if only the larger firms were contacted. Eighty-four percent of the 1966 mineral value (\$198.6 million) was accounted for by interviewing 27 firms out of a total population of 199. Total transportation costs or charges for the area were \$26.7 million. The significant difference observed between the relationship of minerals production value and transport charges between the two areas investigated can be attributed to the difference in the minerals produced. The western Oregon and western Washington region is a nonmetals-producing area as opposed to the predominance of metals production in the Idaho-Montana region. 30 cents.

IC 8382. Refractory Use Patterns in the Iron and Steel industry of the United States, by William S. Miska. 1968. 67 pp. 30 figs. The study is an economic evaluation of historical, current, and projected refractory uses in the iron and steel industry of the United States. The first part of the report presents a refractories classification and identifies principal trends in the refractories industry, such as value and volume of shipments, prices of finished refractory products, and the number of manufacturers and plants for refractories production and marketing. The main part of the report treats refractory use patterns and technologic developments affecting refractory, and installation costs and the future outlook for refractories in ironmaking and steelmaking are covered. The last part of the report identifies the principal raw materials used in refractory raw material consumption.

1

3

ŧ

1

3

An appendix to the report contains historical time series graphs of shipments of refractory types used primarily by the iron and steel industry and principal refractory raw materials sold or used by producers. An equation of the line of best fit was calculated from the earliest to the latest year in each time series, usually 1950 to 1965; these were extrapolated in order to derive volume estimates for the year 1975. 50 cents.

IC 8383. Magnetic Susceptibility of Copper., lead., and Zinc-Bearing Minerols, by H. E. Powell and Lee N. Ballard. June 1968. 11 pp. 1 fig. The magnetic susceptibility, the geographical source, and associated minerals are given for 44 copper., 26 lead., and 19 zinc-bearing minerals. Of the 44 copper minerals, all had a susceptibility of less than 15×10^{-6} cgs, and about 20 percent of them were diamagnetic. Of the 26 lead minerals, all had a susceptibility of less than 11×10^{-6} cgs, and almost half of them were diamagnetic. And, of the 19 zinc minerals, all except four had a susceptibility of less than 9×10^{-6} cgs, and about one-fourth of them were diamagnetic.

IC 8384. An Energy Model for the United States, Featuring Energy Balances for the Years 1947 to 1965 and Projections and Forecasts to the Years 1980 and 2000, by Warren E. Morrison and Charles L. Readling. July 1968. 127 pp. 16 figs. A simplified energy model for the United States is quantified for a recent historical period. The basic model and calculated quan-tified structures are used for a number of analytical case studies that estimate midterm and long-range shifts in patterns of energy resources demand and required supply. Historical data series are presented required supply. Historical data series are presented for the years 1947 to 1965 in the form of integrated energy balances by source, form, and consuming sector. In case studies I to XII, conditional projec-tions of historical trends of energy demand and required supply are made for the midterm period 1966 to 1980. The projections are carried out by correlation of major energy components with relevant independent variables such as major economic indicators. Simulations of the medium-range projecindicators. Simulations of the medium-range projec-tions to 1980 are carried out by varying the assump-tions for the determining variables to produce high-and low-range projections for the midterm period. Case studies XIII to XXII are long-term contingency or technological forecasts to the year 2000. These cases assume technological changes or innovations that produce major shifts in the long-term pattern of energy consumption and the mix of required re-sources. The domestic resource base is assessed in its ability to meet projected or forecast demand for energy resources under the midterm and longrun assumptions made in the various case studies. Various energy issues or problems identified from the analyses of the case studies are discussed, and possible alternative approaches to solutions to these issues or problems are suggested. 70 cents.

1C 8385. Review of Bureau of Mines Coel Program, 1967, by John D. Spencer. June 1968. 99 pp. 43 figs. Air and water pollution and land reclamation relating to coal mining and utilization continued to be featured in research and technologic work on coal by the Bureau of Mines in 1967. Details of the environmental studies are given in this report, along with accounts of other research relating to the mining and utilization of coal. Other studies that were continued during 1967 included health and safety, mine explosives, coal preparation and transportation, coal utilization processes, chemistry and properties of coal, inspection and analysis, and international activities. Publications issued in 1967 are cited throughout the report and in appendix C. Bureau research centers and laboratories are listed in appendix A, and organizations contributing to or cooperating in the work, in appendix B. IC 8386. Bibliography of Investment and Operating Casts for Chemical and Petroleum Plants, January-December 1967, by Sidney Katell and William C. Morel. 1968. 125 pp. This report, which covers the period January through December 1967, is the ninth in a series of reports prenered in concention with the series of reports prepared in cooperation with the American Association of Cost Engineers. The abstracted articles are concerned with all phases of cost engineering in the field of chemical and petroleum plants and related subjects. Although the bibliography deals mainly with construction and operating costs, other subjects are covered including cost-estimating methods and theory, reports on construc-tion projects in the United States and abroad, developments in petroleum production and refining, and developments in the nuclear field. \$1.00.

IC 8387. Research and Technologic Work on Explosives, Explosions, and Flames: Fiscal Year 1967, by Staff, Explosives Research Center. August 1968. 24 pp. 4 figs. The principal activities of the Bureau of Mines Explosives Research Center during fiscal year 1967 (July 1, 1966, to June 30, 1967) are reviewed in part 1. Part 2 presents short abstracts of the publications issued during this period in the Bureau series and in other media. Part 3 is a description of a short study on the shock initiation of hydrogen peroxide not destined for publication elsewhere.

4C 8388. Helium-4 Experimental PVT References: 1895 to 1968, by Robert E. Barieau. August 1968. 24 pp. A list of 163 references to original experi-mental PVT data on helium is presented for the period 1895 to 1968. The list is complete as of the start of the Helium Centennial Year, 1968, to the bast of the Augusta Centennial Year, 1968, to the best of the author's knowledge. Citations were keypunched for easy updating and are listed alphabetically by author.

IC 8389. Injury Experience in Coal Mining, 1965. Analysis of Mine Safaty Factors, Related Employment, and Production Date, by Forrest T. Moyer and Nina L. Jones. August 1968. 88 pp. 3 figs. Injury ex-perience in the coal-mining industry was worse in 1965 as both the frequency and severity rates of injuries increased 2 and 6 percent, respectively, over comparable data for 1964. The retrogression in the coal data for 1965 anoulted form the in the safety record during 1965 resulted from the less favorable record at bituminous-coal mines, which more than offset the improved injury experience at anthracite mines. The 259 fatal and 11,138 nonfatal injuries occurred at a rate of 45.77 per million manhours of exposure and resulted in a severity rate of 8,960 days lost per million man-hours. Although the number of fatalities was the second lowest annual total in the recorded history, it was 17 higher than in 1964. At anthracite operations the total of 8 fatalities in 1965 was the lowest annual figure in statistical history. The annual numbers of nonfatal injuries at all coal mines and the resulting rates of occurrence have varied little in the past 5 years.

IC 8390. Basic Coal Research in the United States, compiled by Staff, Bureau of Mines-Coal Research. 1968. 56 pp. Reports by researchers in government, industry and universities of the United States are given for various projects on basic coal research concerning the metamorphism, physical and chemical properties, and reactions of coal, and how many of these studies can lead to better utilization of coal. 45 cents.

IC 6391. Dimension Stone, by William R. Barton. 1968. 147 pp. 26 figs. The report was designed to bring into a single publication all the fundamental information on dimension stone by summarizing information on production, trade, use, substitute and alternate materials, and resources. The pertinent properties and principal specifications for stone are described along with exploration, mining, finishing, and use technology. A brief history and geologic background are also included. The geographic disdiscussed, along with future outlook, costs, prices, tariffs, and legislation affecting the industry. \$1.25

IC 8392. Horisontal Boring Technology: A State-of-the-Art Study, by James Paone, William E. Bruce, and Roger J. Morrell. 1968. 86 pp. 63 figs. This report was prepared by the Bureau of Mines at the properties of the Dependence of the Interior. request of the Department of the Interior. This paper describes the different machines and

methods used in augering, impacting, pushing, drill-ing, and machine tunneling horizontal holes through soil and rock. A review of the borehole survey and guidance tools and techniques applicable to these methods is also given. Nonboring methods used for emplacement of power distribution and transmission lines are briefly discussed. (Out of print.)

£.

E

Ľ

.

IC 8393. Computer Usage for Evaluation of Design Para-meters and Cast of Heat Exchangers With No Change in Phase and Shell Side Pumping Costs as Prime Para-meters, by P. R. Jones and S. Katell. October 1968. 67 pp. 1 fig. A computer program was written for the design of a shell and tube heat exchanger on a the design of a shell and tube heat exchanger on a price optimum basis for the following conditions: (1) triangular pitch; (2) single or multiple pass; (3) heating or cooling; (4) no change in phase; and (5) inside pumping costs immaterial. Price optimum design was obtained for four standard tube sizes and standard pitch. The inside pressure drop was fixed and outside pressure drop was computed for the optimum baffle spacing and when the baffle spacing equaled the shell diameter.

when the baffle spacing equaled the shell diameter. Standard shells whose areas equaled or exceeded the required area were also listed. The program was made adaptable to various fluids and to various tube data such as physical properties of the fluids, tube data, and standard shell data in tabular form.

IC 8394. Copper Hydrometallurgy. A Review and Outlook, by Franklin D. Cooper. September 1968. 18 pp. This Bureau of Mines study reviews cur-rent and proposed methods of extracting copper from sub-mill-grade ore by leaching. The amount of copper produced by hydrometallurgy has increased dramatically in recent years and will probably be about 200,000 tons per year by 1970.

IC 8395. Analyses of Natural Gases, 1967, by B. J. Moore and R. D. Shrewsbury. 1968. 187 pp. This publication contains routine analyses and related source data for 547 natural gas samples from 22 States and three foreign countries. Of this total, 340 samples were collected during calendar year 1967. The remaining 207 analyses are of samples collected during previous years, but releases grant-ing permission to publish the results were not re-ceived until 1967. All samples were collected as a part of a continuous survey of the free world for occurrences of helium in natural gas. The Bureau of Mines has conducted this survey in the United States since 1917, and in 1965 it was expanded to include foreign gasfields. \$1.75.

IC 8396. Prospecting and Exploring for Radioactive Minerals: Supplement to Facts Concerning Uranium Exploration and Production, by Staff, Bureau of Mines, Mineral Resource Evaluation. 1968. 36 pp. This report includes a short history of uranium and its uses,

INFORMATION CIRCULARS

mineralogy of common uranium minerals, and information on the use of electronic prospecting equipment and tests for detecting the presence of uranium. Details are given on geologically favorable areas and formations and practical methods of prospecting. Some information is given on the staking of claims, what lands are open to prospecting, and methods of securing mining rights. A forecast of the economic outlook for uranium is included. Approaches give sources of additional information and a list of libraries where unclassified Atomic Energy Commission reports may be consulted. Because the increasing use of uranium by industry has revived interest in prospecting and exploration for this element, the Bureau of Mines has issued this report, which brings up to date and exploration and production published in 1956. 45 cents.

IC 5397. Bureau of Minos Research on the Analysis of High-Purity Tungsten, by Staff, Bureau of Mines. October 1968. 10 pp. This report summarizes the work performed by the Bureau of Mines on the development of analytical procedures for determining metallic and interstitial impurities in high-purity tungsten. Fourteen published methods and seven unpublished methods are briefly described. Carbon, hydrogen, nitrogen, and oxygen, in microgram to higher quantity levels, can be determined by several methods. Trace levels of 29 metallic impurity elements can be determined by optical spectography, X-ray spectography, and other instrumental methods.

IC 8398. Helium: Bibliography of Technical and Scientific Literature, 1962, Including Papers on Alpha-Particles, by Philip C. Tully and Lowell Stroud. 1969. 367 pp. This bibliography contains 2,072 citations to technical and scientific literature about helium and alphaparticles abstracted by 12 abstract service publications during 1962. Citations are listed by 16 major subject classifications with several subclassifications to minimize areas of literature search. Automatic data processing was used to reduce the time and labor required to compile the bibliography. \$3.25.

IC 8399. Computer Usage for Evoluation of Design Parameters and Cost of Heat Exchangers, With No Change in Phase and Tube Side Pumping Costs as Prime Parameters, by P. R. Jones and S. Katell. January 1969. 67 pp. 1 fig. This report, the third of a series of four reports concerned with computer programs in which optimum economic design is used for the evaluation of the design parameters and cost of heat exchangers, contains a computer program written for design and cost of a shell and tube heat exchanger. The total cost, which includes annual fixed charges and annual operating costs, was minimized. The program was written for the type of heat exchanger in which only the tube side pumping costs were significant and for triangular pitch, single or multiple pass, heating or cooling, and no change in phase.

Tube diameter was not optimized since the tube dimensions do not affect the cost very much. However, the tube dimensions do affect the shell diameter, number of tubes, and length of tubes, and price optimum design was obtained for four standard tube diameters. Standard heat exchangers having at least the required area are also listed.

(

)

ŧ

J

1

(

j

The program was made adaptable to various fluids and to various tube dimensions by including many of the required data such as physical properties of the fluids, tube data, and standard shell data as input data. IC 8400. Angular Positions of X-Ray Emission Lines of the Elements for Common Analyzing Crystals, by Martin Berman and Sabri Ergun. 1969. 309 pp. 3 rigs. Tables of 20 positions for all the transitions for nine common analyzing crystals for first, second, and third order reflections were compiled by the Bureau of Mines to facilitate elemental X-ray fluorescence analysis on multi-element systems. The tables are based on a compatible set of wavelengths for 2,346 observed X-ray transitions of the elements lithium to americium. The results are tabulated in order of increasing wavelength as well as by increasing wavelength for each element. \$2.25.

IC 8401. Supply and Demand for Energy in the United States by States and Regions, 1960 and 1965 (in Four Ports). I. Cool, by Grace N. Broderick. 1969. 21 pp. 4 figs. U.S. supply and demand data for coal, by States and regions, were tabulated for the years 1960 and 1965. Estimates are provided of State-by-State quantitative data for the coal industry that can be integrated into State and regional energy balances by source, form, and consumer sectors, and used for estimates of interstate and interregional energy flows. The tables give an estimated total supply of coal available for consumption; they also report the distribution of the supply among the major consuming sectors (household and commercial, industrial, transportation, and electricity generation). To enable comparison of coal data with those for other energy forms, tonnages were converted to British thermal units (Btu). Future energy analysis studies could be facilitated by changes in the categorization of information collected on the coal industry. The data shown are primarily on Bureau of Mines source material. \$1.

IC 8402. Supply and Demand for Energy in the United States by States and Regions, 1960 and 1965 (in Four Parts). 2. Utility Electricity, by Franklin P. Hall and Grace N. Broderick. 1969. 11 pp. 2 figs. U.S. supply and demand data for utility electricity by States and regions were tabulated for the years 1960 and 1965. Estimates are provided of State-by-State quantitative data for the utility electricity industry that can be integrated into State and regional energy balances by source, form, and major consuming sectors, and used to determine basic flow patterns. The difficult problem of compiling interstate and interregional shipments of electricity in loss percentage used for determining interstate shipments. The data developed were able to show an estimated total supply of utility electricity available for consumption. The tables also report the distribution of the supply among the major consuming sectors (household and commercial, industrial, and transportation). To compare the various energy sources of utility electricity, quantities were converted to their British thermal unit (Btu) equivalents. The Federal Power Commission, Edison Electric Institute, and Bureau of Mines are the sources of the data used in this study. 75 cents.

1C 8403. Supply and Demand for Energy in the United States by States and Regions, 1960 and 1965 (in Four Parts). 3. Dry Natural Gas, by Lulie H. Crump. 1969. 8 pp. 2 figs. U.S. supply and demand data for dry natural gas by source, form, and major consuming sectors—within and between States and defined regions—were tabulated for the years 1960 and 1965. State-by-State quantitative data are provided for the natural gas industry that can be arranged into regional groupings and used to determine regional

flow patterns. The tables show the derivation of the total supply of gas available for consumption of the total marketed production. The tables also report the distribution of the supply among the major consuming sectors (household and commercial, industrial, transportation, and electricity generation, utilities). The summarized data show an increase in the absolute demand for natural gas in all regions for the period 1960-65, although the relative positions of the various subregions, with respect to na-tional consumption, remained about the same. To data on other energy sources, quantities in terms of million cubic feet were converted to British thermal unit (Btu) equivalents. \$1.

IC 8404. Waste Disposal Costs of a Florida Phosphate Opera-tion, by J. R. Boyle. 1969. 24 pp. 13 figs. The Bureau of Mines developed cost estimates for The Bureau of Jines developed cost estimates for the disposal of phosphate rock washer slimes by pond settling, from a study of the method used at the International Minerals & Chemical Corp., Noralyn Phosphate Operations, Polk County, Fia. Data were obtained by basing phosphate production and slime generation statistics on plant capacity rather than on actual company records. Cost estimates, which were prepared as a guide in evaluating alternative disposal methods and in identifying needed areas of research, could be applicable to any Florida plant using the same disposal method. To conserve mineral resources and to improve environ-mental conditions, the Bureau recommends further research directed toward developing alternative methods of disposal, including the recovery of water 35 cents. and P₂O₃ values from the slimes.

IC 8465. Factors in Selecting and Applying Commercial Explosives and Blasting Agents, by Richard A. 1968. 30 pp. 4 figs. In this report com-Dick. mercial blasting compounds are classified according to their nitroglycerin (or equivalent explosive oil) and ammonium nitrate content as dynamites, gela-tins, blasting agents, military explosives, and blast-ing accessories. The ingredients and more significant properties of each explosive are tabulated and briefly discussed. Data are summarized from various handbooks, textbooks, and manufacturers' technical data sheets, together with the author's personal experi-ence; however, this report is not intended to be a technical handbook, since it does not deal with blasting techniques. Instead, it seeks to acquaint the reader with the great variety of explosives available, their advantages and disadvantages, and their general areas of application.

Properties discussed are weight strength, cartridge strength, detonation velocity, density, detona-tion pressure, water resistance, and fume class. The weakness of the strength rating system and the importance of detonation pressure, density, and detonation velocity in rating explosives are discussed. The terms "blasting agent" and "slurry," which are often misused, are defined. 40 cents.

IC 8406. Waste Dispesal Corts at Two Coal Mines in Ken-tucky and Alabama, by V. A. Danielson and D. H. White, Jr. 1969. 28 pp. 6 figs. The Bu-reau of Mines studied waste disposal methods at a coal mine in Kentucky and another in Alabama to develop cost estimates, to provide better knowledge of current practices, and to guide consideration of alternate disposal methods. Costs of the existing waste disposal systems at each mine were estimated using present-day costs of equipment and labor. Costs of waste disposal systems using alternate equipment were also estimated. Although total disposal costs were essentially the same for both operations, reclamation costs will differ because of different reclamation practices. 40 cents.

8407. Dust Control in Mining, Tunneling, and Quarrying in the United States, 1961 Through 1967, by Floyd Anderson and Robert L. Beatty. March 1969. IC 8407. 50 pp. This report reviews and summarizes information on prevention and suppression of dust in mining, tunneling, and quarrying published in the United States from 1961 through 1967. Unpublished pertinent data developed or assembled by the Bureau of Mines during this period also are included.

 IC 8408. Impact of Petroleum Development in the Gulf of Mexico, by L. K. Weaver, C. J. Jirik, and H. F. Pierce. 1969. 58 pp. 19 figs. The Bureau of Mines investigated the progressive impact that petroleum (crude oil and condensate) operations in the Gulf of Mexico have had on onshore operations and the expected effect of increasing activities in this area on future petroleum supplies from domestic sources. The data analyzed include capital expenditures, number of wells drilled, success ratio for exploratory wells, daily production per completion, annual producing rates, and oil reserves. The report compares offshore and onshore data and ascertains trends in petroleum industry operations. Observed data and trends indicate that in the near future Gulf of Mexico development and production will continue to increase relative to total U.S. petroleum activity. By 1975 annual oil and condensate producof 750 million to 1,150 million barrels and to account for approximately 20 to 30 percent of the estimated total domestic production. 70 cents.

IC 8409. Pennsylvania Anthracite Refuse. A Survey of Solid Waste From Mining and Preparation, by John C. MacCartney and Ralph H. Whaite. 1969. 77 pp. 18 figs. In the Pennsylvania anthracite region, the Solid Construction of MacCartheration of MacCartheration. principal source of U.S. anthracite, refuse disposal problems are common since cities and towns are located over the anthracite measures. The Bureau of Mines surveyed refuse banks in the area, deter-mining that 863 banks containing over 910 million cubic yards of material occupy a total area of about 19 square miles. The vast bulk of the refuse is located within 2 miles of the traffic centers of in-corporated communities which have a total popula-tion of 625,000. Twenty-seven banks are burning, causing considerable distress in a number of communities. \$1.25.

IC 8410. Design of Dams for Mill Tailings, by C. D. Kealy and R. L. Soderberg. 1969. 43 pp. 25 figs. The Bureau of Mines studied tailings disposal problems at mines throughout the United States to identify design principles that can be applied to all types of dams for mill tailings. Computer programs for attailing the state of the states of the states and the states are stated and the states of the states and the states are stated and the states are stated and the states are stated as the states are stated as a state of the states are stated as a state of the states are stated as a state of the state of the states are stated as a state of the states are stated as a state of the state of the states are stated as a state of the state o for stability analysis and phreatic waterline estimation are also reviewed in this circular, which presents the Bureau's recommendations for constructing effective, long-lasting tailings dams. 55 cents

IC 8411. Supply and Demand for Energy in the United States by States and Regions, 1960 and 1965 (in Four Parts). 4. Petroleum and Natural Gas Liquids, by Lulie H. Crump and Philip N. Yasnowsky. 1969. 25 pp. 4 figs. U.S. supply and demand data for petroleum and natural gas liquids, by States and regions, were tabulated for the years 1960 and 1965. Estimates are provided of State-by-State quantitative data for the petroleum and natural gas liquids industry that can be integrated into State, regional, and national energy balances by source, form, and consumer sectors, and used for determination of interstate and

C

interregional energy flows. Tables show the esti-mated total supply of petroleum available for con-sumption and the supply's distribution among the major consumer demand sectors (household and commercial, industrial, transportation, and electricity generation). To obtain summary figures for the major proportion of refined products by States, individual tables were compiled for the six major products. To enable comparison of petroleum data with those for other energy forms, conventional volumetric data in barrels were converted to their British thermal unit equivalents. Interregional shipments of crude petroleum and theoretical flow patterns of petroleum products are shown. 55 cents.

Proparation of Anhydrous Aluminum Chloride, by Robert L. de Beauchamp. June 1969. 19 IC 8412

1 fig. The Bureau of Mines reviewed aluminum chloride technology to determine the problems associated with its preparation from minerals and to ascertain the best areas for research to solve these problems. Commercial AICL, production processes are described and the state of the art for the preparation of AlCl₃ from aluminous materials is evaluated. Areas for further research are indicated.

IC 8413. Radiation-Ventilation Relationships In Six Underground Uranium Mines, by R. L. Rock. 1969. 3 figs. The Bureau of Mines conducted 17 pp. radiation-ventilation studies in six large under-ground uranium mines to investigate the extent of radon-daughter exposure experienced by the miners and to analyze the ventilation systems to see what changes were required to achieve recommended radi-ation standards. The studies entailed tracing and measuring the mines' ventilating air, quantitatively and qualitatively, from its entrance into the mines, through production areas, and back to the surface.

The radiation-ventilation surveys showed that where basic principles of good ventilation were not followed, high alpha radiation levels invariably resulted. Some mines required more primary air for controlling radiation levels throughout active areas, but more efficient use of available air was generally possible. Premature contamination of intake air was prevalent where development openings intersected ore or passed by worked-out stopes. Several auxiliary systems were inefficient in secondary distribution, recirculating air already too highly contaminated for ventilation. Many of these common problems can be traced to the lack of mine planning with radiation control in mind. 30 cents.

IC 8414. A Method of Measuring the Corts and Benefits of Applied Research, by John W. Sprague. 1969. 43 pp. 1 fig. The Bureau of Mines studied the ap-plication of the concepts and methods of cost-benefit conclusion for the concepts and methods of cost-benefit plied research projects and methods of cost-benefit analysis to the problem of ranking alternative ap-plied research projects. Procedures for measuring the different classes of project costs and benefits, both private and public, are outlined, and cost-benefit calculations are presented, based on the criteria of probability of success and internal rate of return. Because of increasing concern about environmental effects the methodology and data requirements for effects, the methodology and data requirements for estimating project-related pollution costs are dis-cussed. Also, a case study of cost-benefit analysis for a heavy metals program is presented. 50 cents.

C

1

1

1

IC 8415. Bibliography of Investment and Operating Costs for Chemical and Petroleum Plants, January-December 1968, by Sidney Katell and William C. Morel. 1969. 132 pp. This report is the tenth in a series of reports prepared in cooperation with the American Association of Cost Engineers. The bibliography contains abstracts dealing with all phases of cost engineering in the field of chemical and petroleum plants with emphasis given to those concerning con-struction and operating costs. Related subjects covered include cost-estimating methods and theory, reports on construction projects in the United States and abroad, and developments in petroleum produc-tion and refining and in the nuclear field. \$1.25.

Review of Bureau of Mines Coal Program, 1968, by John D. Spencer. June 1969. 94 pp. Surveys to establish the quantity and qual-IC 8416. 37 figs. ity of coals available for metallurgical, industrial. and energy use, investigations to develop better mining methods, and studies aimed at improving the health and safety of those who mine the coal high-lighted Bureau of Mines research and technologic work on coal in 1968. Also being developed are more efficient methods of coal preparation, transportation, storage, and utilization. Supplementing this effort are projects designed to assure minimum disturb-ance of land, water, and air resources. Research centers and laboratories of the Bureau of Mines are listed. Publications released during 1968 are cited with the various projects and in an appendix. Organizations that cooperated in the work in various ways are cited in an appendix.

IC 8417. Helium Symposia Proceedings in 1968—A Hundred Years of Helium. Helium Applications Symposium, Washington, D.C., October 23-24, 1968; Helium Centennial Symposium, Atlantic City, N.J., September 11, 1968, compiled by Harold W. Lipper. 1968. 292 pp. 123 figs. Papers presented at the Helium Applications Symposium discuss the broad spectrum of uses to which helium is currently applied in aerostatics, cryogenics, space, and undersea work. Papers from the Helium Centennial Symposium at the national meeting of the American Chemical Society cover the discovery of helium, its development by the Bureau of Mines into an important item of commerce, its source, and the history of liquid helium and liquid helium-3. \$2.75.

IC 8418. A Statistical Analysis of U.S. Demand for Phosphate Rock, Potash, and Nitragen, by Olman Hee. 1969. 55 pp. 6 figs. This study investigates the identity and relative importance of factors affecting the future demand for phosphate rock, potash, and nitrogen. The main objective is to analyze demand relationships for these chemical raw materials for some specified past period, and to utilize this in-formation to make projections of consumption into some designated future period. The end-use approach is used, which divides total consumption of each chemical raw material into agricultural, industrial, and export use. Multiple regression analysis is employed to statistically measure the relative effects of the different factors on consumption in each end use. The general method centers on the construction of a consumer demand model, the fitting of the respective equations in the model, and the interpretation of the statistical results. Direct and cross price elasticities of demand are computed for each end use of the chemical raw materials. These give an insight into expected changes in consumption with respect to given changes in price. The results of this study indicate that price, consumer income, and level of technology are factors which measurably affect consumption of chemical raw materials. For phosphate rock and potash, the agricultural and industrial end uses showed an inelastic demand, whereas for nitrogen, all end uses (including export use) exhibited an elastic demand. Among the chemical raw materials, average annual growth of consumption of nitrogen for agricultural and export uses to 1980 is expected to be notably higher than that for phosphate rock and potash. 75 cents.

IC 8419. Injury Experience in Coal Mining, 1966. Analysis IC 8419. Injury Experience in Coel Mining, 1966. Analysis of Mine Safety Factors, Related Employment, and Production Date, by Forrest T. Moyer and Mary B. McNair. July 1969. 108 pp. 3 figs. The safety record of the coal-mining industry, both anthracite and bituminous, in 1966 was improved over that of 1965 in all general measures of injury experience. The improvement was more pronounced in the an-thracite industry. The total of 10,679 disabling work injuries comprised 233 fatal and 10,466 nonfatal injuries, 26 and 692 fewer, respectively, than in 1965. The number of fatalities in 1966 was the lowest annual total since complete records were started in 1910. Similarly, the number of nonfatal injuries in 1966 was lower than in any year since injuries in 1966 was lower than in any year since 1930 when such data were first collected.

IC 8420. Computer Usage for Evaluation of Design Param-

in Phase on Shell Side, by P. R. Jones, and S. Katell. July 1969. 62 pp. 1 fig. The Bureau of Mines has written a computer program for the design and cost of a shell and tube type heat exchanger, in which a change in phase occurs on the shell side. The total cost, which was minimized, includes the annual fixed charges and annual operating costs. The program was written to meet the following requirements: (1) triangular pitch, (2) single or multiple pass, and (3) heating or cooling.

Price optimum design was obtained for four standard tube diameters and pitch. Standard heat exchangers whose area equaled or exceeded the re-quired area are also listed. The program was made adaptable to various fluids and to various tube dimensions by including many of the required data such as physical properties of the fluids, tube data, and standard shell data as input data.

IC 8421. Pozzolanic Raw Materials Resources in the Central and Western United States, by Staff, Bureau of Mines. 1969. 117 pp. 24 figs. This evaluation of the economic and technical considerations of using pozzolanic materials was made in order to guide those interested in concrete construction work. Five hundred and thirty-eight samples of pozzolanic raw materials were taken from 27 central and western States. These samples were evaluated by petro-graphic procedures, and about 200 of the most promising ones were given a complete series of physical tests to evaluate further their suitability as pozzolans. This investigation showed that dedispersed in the central and western parts of the United States but that exploiting these deposits would depend on whether they could compete eco-nomically with an increasingly abundant industrial waste product—fly ash. \$1.25.

IC 8422. Mineral Resources Valuation for Public Policy, by Donald S. Colby and David B. Brooks. 1969. 34 pp. This Bureau of Mines report is essen-tially a handbook, or manual, for making the type of mineral resource valuation commonly required for such public policy problems as mineral leasing.

The principle of resource valuation through the capitalization of cash flow is well established. A mathematical procedure, based on a simplified accounting system, is detailed for calculating cash flow from revenue, plant costs, and operating expense. Variations of procedure cover cost depletion, percentage depletion, and depletion limited to 50 percent of net income. The influence of the depletion provisions of the tax regulations on the value of a

resource to an owner and to an operator is analyzed. The relationship of royalty, bonus payments, and sales price to resource value is also described, and methods for approximating resource values using these payments as input data are developed. 45 cents.

IC 8423. A General Computer Program for Solving Non-linear Regression Problems, by Jarrell C. Grout. 1969. 35 pp. 2 figs. The Bureau of Mines has developed a computer program for use in solving nonlinear regression problems. The program is written in a general form so that, regardless of the functional relationship, the unknown parameters may be evaluated by either the Gauss-Newton or the Newton-Raphson methods of iteration. Variances and covariances of the parameters. as derived from and covariances of the parameters, as derived from the law for the propagation of errors, are also determined. 45 cents.

2

۱

٢

ł

•

í

IC 8424. Specifications for Selected Hydraulic-Powered Roof Supports. With a Method to Estimate Support Re-quirements for Longwalls, by A. J. Barry, O. B. Nair, and J. S. Miller. September 1969. 15 pp. 4 figs. This report presents observations made by Bureau engineers regarding hydraulic-powered roof supused on nearly all operating longwalls in the United States. A comparative summary of specifications for various types of powered supports with a brief description of the mine conditions has been compiled to enable mining engineers and mine operators to readily evaluate the difference in design data. Some of the support data furnished in the field may vary from those listed in manufacturer's brochures because of the trend to customize various support components to meet specific mine conditions. method of estimating support requirements for different assumed operating conditions is presented. Similar computations for specific mine conditions may be used to make preliminary estimates of support requirements.

IC 8425. Potential Applications for Nuclear Explosives in a Shale-Oil Industry, by Frank E. Williams, Paul L. Russell, and M. J. Sheridan. 1969. 37 pp. IC 8425. Nuclear detonation data were accumulated, 16 figs. studied, and evaluated by the Bureau of Mines to visualize how nuclear explosives might be used in a shale-oil industry. The evaluation shows that the Green River Formation at the semi-isolated locale of Piceance Creek basin, in northwestern Colorado, is thick and widespread enough to warrant con-sideration of nuclear mining in lieu of conventional methods. Because cost data for nuclear explosions are limited, cost comparisons are made largely by assumptions. Also described are the history of the shale-oil industry, the geology and size of oil-shale resources, and conventional mining methods and processing technology. Work done under an agree-ment with the U.S. Atomic Energy Commission. 50 cents.

IC 8426. A Computer Program for Calculating Capital and Operating Costs, by Paul W. Johnson and Frank A. Peters, 1969. 110 pp. A computer pro-gram for calculating capital and operating costs from material and energy requirements and equipment costs for use in preparing cost estimates for metallurgical process evaluations has been written by the Bureau of Mines' College Park process evaluation group. The program permits rapid recalculation of processing costs when changes of data or equipment are desired, and produces tables of capital and operating costs suitable for publication. Equipment cost summary tables for each process

section and supplemental information for input-data

checking is included in the computer printout. The program is written in FORTRAN IV except for several subroutines which are written in machine assembly language for the IBM 7094. With a few modifications, the program can be used on other computers. \$1.

IC 8427. Silver in the United States, by D'Arcy Banister and Richard W. Knostman. 1969. 34 pp. 15 figs. The production potential of the principal activity. active and inactive silver mining districts in the United States has been evaluated, using 1964 economic conditions and assumed silver prices ranging up to \$3 per ounce. On this basis, the United States has an estimated 5 billion ounces of unmined silver, excluding minor byproduct silver in gold deposits. Approximately 3.5 billion ounces are contained in deposits requiring higher silver prices to be eco-nomically minable, and about 1.3 billion ounces are in currently operating mines. An analysis of silver consumption trends since 1954 has also been made which indicates that the free world industrial market will climb to nearly 800 million ounces annually by 1985. 45 cents.

ŧ

3 (

)

Ì

ì,

IC 8428. Heavy Oil Reservoirs in Arkansas, by W. G. Parks, S. O. Wood, Jr., and M. Carrales, Jr. 1969. 162 pp. 49 figs. Long-range projection of demand for domestic crude oil indicates a continued upward movement and accentuates the need for increasing the recovery from known crude-oil resources to supplement expected future discoveries. Consequently, industry and Government have given special atten-tion to the viscous or heavy-oil deposits, because they offer the distinct possibility of large order in-creases in ultimate recovery.

This report presents data pertaining to 150 heavyoil reservoirs in Arkansas including oil characteris-tics of samples from 38 of these reservoirs. To January 1, 1967, about 600 million bbl of heavy oil has been recovered from the 150 reservoirs in 83 oilfields; however, about 4.5 bilion bbl, or 88 percent, of the oil remained in the ground. Of prime impor-tance is that much of this heavy-oil resource is in reservoirs having characteristics considered favorable for thermal-recovery operations. Data for the thermal projects initiated thus far are presented in individual field discussions. Also discussed is the crude oil supply-demand situation in the State. Work done in cooperation with the Arkansas Oil and Gas Commission. \$1.75.

IC 8429. List of Bureau of Mines Publications on Oil Shale and Shale Oil, 1917-68, by Marianne P. Rogers. 1969. 61 pp. This list is part of the long-range conservation program of the Bureau of Mines and is intended for use by those interested in the Bureau's publications dealing with oil shale and shale oil. The items included represent 51 years of research by Bureau of Mines employees on oil shale and shale oil and are available at U.S. depository libraries. Work done in cooperation with the Univerlibraries. Work done in cooperation with the University of Wyoming. 65 cents.

1C 8430. Disposal of Solid Wastes From Coal Mining in Washington, Oregon, and Montana, by M. R. Geer. 1969. 39 pp. 14 figs. The Bureau of Mines surveyed the solid wastes that have accumulated from coal mining in Washington, Oregon, and Montana. Location, amount, character, and condition were determined, and both economic and environmental factors were considered. Areas covered by waste comprise 800 acres in Washington, 5 acres in Oregon, and 1,200 acres in Montana. In a few cases waste is being utilized, particularly cinder from burned refuse dumps, as fill in road construc-tion and as a ceramic raw material. It is estimated that wastes deriving from coal mined for electric power generation by 1974 may amount to 3 million tons of washery refuse, 2.7 million tons of fly ash, and 1,000 acres of spoil banks. 50 cents.

IC 8431. Transportation of Mineral Commedities on the In-land Waterways of the South-Central States, by Frank B. Fulkerson. 1969. 88 pp. 13 figs. Barge traffic on U.S. inland waterways over the past 15 years has been increasing at a rate much faster than intercity freight traffic by all modes. The Bureau of Mines, in a study to determine barge traffic projections for inland waterways in the South-Central States to the year 1980, gathered data on origin-destination patterns by commodity, quantity moved, equipment used, and rates charged; the trend of each of these factors over time: and the extent of each of these factors over time; and the extent of competition between water transport and other means of transportation. \$1.

IC 8432. Applying Mars and Langenheim Calculations to the Prediction of Oil Recovery by Steamflooding in Venango Sands, by Avis W. Effinger and James A. Wasson. November 1969. 34 pp. 3 figs. In con-junction with pilot steamflood tests in the Venango sands of Warren and Venango Counties, Pa., the Marx and Langenheim calculations were adapted and programed for digital computer solution to predict test performance. The Monte Carlo technique was incorporated in the calculations to provide values of several variables which could not be ade-quately defined from available information. The computation methods are explained and the FOR-TRAN IV program listing is presented. Data and results of the prediction calculations for Venango oil sands are also shown. oil sands are also shown.

IC 8433. Injury Experience in the Metallic Mineral Industries, 1965, by Forrest T. Moyer and Mary B. McNair. November 1969. 69 pp. The safety rec-ord of the metal mining and milling industries in 1965 is reviewed by the Bureau of Mines. The over-all injury-frequency rate of 23.77 per million man-hours was 5 percent lower than in 1964 and was the lowest annual rate in a statistical history beginthe lowest annual rate in a statistical history begin-ning with 1931. The injury-severity rate of 3,521 days lost per million man-hours in 1965 represented a 5-percent improvement over 1964. However, the total of 3,825 disabling work injuries comprised 61 fatal and 3,764 nonfatal injuries, one and 92 more, respectively, than in 1964. At primary nonferrous smelters, refineries, and reduction plants, the injury-frequency rate of 8.97 per million man-hours in 1965 was 13 percent lower, but the severity rate of 1,173 days lost per million man-hours was 17 percent higher than in 1964. There were 12 fatal and 971 nonfatal injuries at these plants in 1965, 4 more and 28 fewer, respectively, than in 1964.

IC 8435. Grace Mine Iron Ore Waste Disposal System and Estimated Costs, by William Cochran. 1969. 6 figs. The mineral waste disposal system 17 pp.

at the Grace mine, Morgantown, Pa., was designed to minimize environmental effects while allowing much of the waste from the iron mine, mill, and concentrator to be utilized. Standard cost estimating procedures were used by the Bureau of Mines to determine waste disposal costs. Mill tailings and rock waste disposal costs were estimated at \$0.151 and \$0.276 per ton, respectively, for the 1965-67 production period. Total waste disposal cost was reduced about 0.015 per ton by utilizing part of the waste as aggregate. The net average cost for

161

disposal of all mineral waste was \$0.189 per ton. 30 cents.

IC 8436. Respiratory Protective Devices Approved by the Bureau of Mines as of December 31, 1968. A Revision of Information Circular 8281, by R. H. Schutz and E. J. Kloos. 1969. 32 pp. This publication lists the respiratory protective devices approved by the Bureau of Mines as of December 31, 1968, and the names and addresses of their manufacturers. The purpose of this publication is to inform the public about approved equipment for safe use in mines and mineral and allied industries. 40 cents.

iC 6437. On Estimating Virial Coefficients From Experimental Data, by K. R. Van Doren. December 1969. 26 pp. The polynomial method for estimating virial coefficients from experimental data suffers from three serious defects: (1) There is no known relationship between the polynomial coefficients and the virial coefficients, (2) the values of the estimates depend upon the degree of the polynomial and the particular set of values used for the independent variable, as well as the random errors in the dependent variable, and (3) the variances calculated for the estimates do not represent the mean square errors of estimation. Attempts to overcome these defects have thus far been unsuccessful; these attempts have also failed to account for the fact that none of the virial coefficients is uniquely determined by the values of the dependent variable for a finite set of values of the independent variable. The conclusion is that virial coefficients cannot be reliably estimated from experimental data unless additional information about the virial expansion itself, such as its rate of convergence, is available.

1

1

Ł

IC 8438. Possible Applications of Plasma Technology in Minerels Processing, by Douglas A. Elkins and C. H. Schack. 1969. 13 pp. The unique characteristics of plasmas, their current applications, and ongoing research into new applications are described. Major technical and economic problems in application of plasma technology are discussed. Examples of potential applications of plasma in extractive metallurgy are described and evaluated. The report includes a selected bibliography of articles on plasma and related high-temperature technology. 25 cents.

Technical Progress Reports, a new Bureau of Mines series initiated in 1968, make known new or improved systems and techniques in mining and metallurgy developed by the Bureau.

TPR 1. Gold Resources in the Oxidized Ores and Carbonaceous Material in the Sedimetary Beds of North-eastern Nevada, by Roland W. Merwin. March 1968. 16 pp. 6 figs. Sedimentary beds of northeastern Nevada associated with the Roberts Mountain thrust fault system were investigated by the Bureau of Mines, under the Department of the Interior's Heavy Metals Program, to assess the commercial potential of gold-bearing deposits in the area. Available data on the extent and gold content of these deposits were evaluated economically in the light of present mining and milling technology. Special consideration was given to recovery of gold under economic conditions, by a method now under development, from refrac-tory carbonaceous materials known to constitute a major portion of the region's gold-bearing deposits.

TPR 2. Investigation of Oxidation Systems for Improving Gold Recovery From Carbonaceous Materials, by B. J. Scheiner, R. E. Lindstrom, and T. A. Henrie. July 1968. 8 pp. 1 fig. Carbonaceous gold-bear-ing materials which resist conventional treatment were investigated by the Bureau of Mines (1) to isolate and identify carbon compounds in the ores and to study the chemistry involved in prevention of gold recovery by the carbon compounds and (2) to develop a practical chemical treatment technique that would allow effective gold recovery from these materials by conventional cyanidation.

TPR 3. Gold Resources in the Tertiory Gravels of California, by Roland W. Merwin. 1968. 14 pp. 3 figs. Preliminary investigations of gold deposits in the United States indicated that the Tertiary gravels of California contain one of the largest known re-serves of gold in the United States and that they wanted the United States and that they are of such grade that a breakthrough in mining and/or metallurgy could stimulate industry to re-sume working these deposits. The exploitation of sume working these deposits. The exploitation of these gravels was virtually suspended in 1884 due to legal restrictions on hydraulic mining. The cessa-tion of production occurred at the height of hy-draulic mining activities that had resulted in the production of about \$500 million at present gold prices and left unworked more than half of the then known gravels. This report covers the total known potential of the Tertiary gravels.

TPR 4. Marine Heavy Metal Project Offshore Nome, Alaska, by Richard L. Jenkins and Alvin H. Lense. August 1968. 11 pp. 3 figs. A host of mining problems have been explored and defined, and the essential first step in the development of an ocean floor mining system has been taken. It can be stated with accurate that relatively model and the relatively and the stated of the state of the stat with assurance that relatively rapid penetrations of shallow ocean floor sediments can be accomplished from surface craft that will yield samples which can be processed and analyzed aboard ship.

.

TPR 5. Gold Resources of the Mother Lode Belt, El Dorado,

Amador, Calaveras, Tuolumne, and Mariposa Counties, Colifornia, by Lyman Moore. August 1968, 22 pp. 1 fig. The Bureau of Mines compiled all available information on the Mother Lode gold belt from the literature and from company reports, supplemented by interviews with company officials and various knowledgeable individuals. A reconnaissance was made of the area and of several major deposits. This situation report summarizes the information ob-tained concerning the belt and provides background information for subsequent supplemental reports on the production potential of the most promising deposits. Preliminary estimates for some deposits indicate that large quantities of gold possibly could be produced economically using large-scale mining operations and a central milling operation.

TPR 6. Detection Limit for Silver by Isotopic X-Ray Analysis, by Philip G. Burkhalter. August 1968. 11 pp. 1 fig. The combination of monoenergetic X-ray pp. I ng. I he combination of monoenergetic X-ray sources, electronic discrimination, and scintillation detectors was used to determine the detection limit of silver in a silica matrix. The detection limit was measured using Sb, Te, and Ba K X-ray sources and also two different Pm^{147} brenmstrahlung sources. A 2 σ detection limit of 15 ppm was meas-ured using an annular source of I^{125} for 100-second ured using an annular source of I^{125} for 100-second counting intervals and a 2σ -HM electronic discrimi-nation. The normalized detection limit for the vari-ous sources varied from 13 to 22 ppm. The in-ability of the scintillation detector to discriminate completely completely against Compton scatter was found to be the limiting factor for the sensitivity of silver using isotopic X-ray sources. A slightly lower detection limit can be obtained as the excita-tion energy is increased because the energy of the Compton scatter peak also increases. Further im-Compton scatter peak also increases. Further im-provement in the detection limit is possible by reducing the scatter angle and thereby increasing the energy of the Compton scatter. The matrix effect of heavy elements common to silver ores was in-vestigated. If strong X-ray interferences are avoided, a detection limit of 25 ppm or less can still be ob-tained with as much as 5 percent heavy metals present in the silver metals present in the silica matrix.

TPR 7. Analysis of Large Samples of Low Grade Gold Ores **IPR 7.** Analysis of large Samples of Low Grade Gold Ores by Methyl isobutyl Ketone Extraction and Atomic Absorption, by Stephen L. Law and Thomas E. Green. August 1968. 7 pp. A method for determining small quantities of gold in large splits (500 grams) from field samples of low-grade ores is described. It is based on the dissolution of the gold in aqua regia, extraction of the gold into methyl isobutyl ketone (MIBK) in the presence of the insoluble residue, and determination of the gold in the MIBK phase by atomic absorption. The method is espe-cially useful for samples from which representative small splits cannot be obtained.

t

6

1

e

TPR 8. Electrolytic Oxidation of Carbonaceous Ores for Improving Gold Recovery, by B. J. Scheiner, R. E. Lindstrom, and T. A. Henrie. January 1969. 12 pp. 8 figs. Carbonaceous gold-bearing ores of the pp. 6 ligs. Carbonaccous gold-bearing ores of the type that occur in northeastern Nevada were in-vestigated by the Bureau of Mines as part of its Heavy Metals Program. Specific objectives were to identify the carbon and organic compounds that prevent adequate gold recovery from this type of ore by cyanidation and to develop an economical process that would overcome the detrimental effect of the carbonaceous constituents. Activated-type carbon and long-chain organic compounds containing sulfur and nitrogen were found in the ore. Part of the material consisted of stable gold organic complexes.

TPR 9. Gold Recovery from Scrap Electronic Solders by Fused-Solt Electrolysis, by E. K. Kleespies, J. P. Ben-netts, and T. A. Henrie. March 1969. 8 pp. 3 figs. The Bureau of Mines developed a process for re-covering gold and refining tin-lead solders from scrap solder discarded by the electronics industry. During accomplue of cleatronic current gold and During assembly of electronic systems, gold and other contaminant metals are introduced into solder baths which are periodically discarded. Contami-nated solder can be refined by electrotransport in a molten-salt chloride electrolyte. Refined solder is recovered at the cathode, and the gold and other metal impurities are concentrated at the anode, increasing gold concentration from 60 to 15,000 ounces per ton without any significant loss. The gold is then reclaimed by conventional fire-refining methods.

TPR 10. Behavior of Coal-Gas Reservoirs, by Joseph Cervik. April 1969. 10 pp. 4 figs. Gas occurs in coalbeds in an adsorbed and a free gas state. Adsorbed gas is stored in the micropore structure and its transport is governed by Fick's law. The free gas occurs in the fracture system and flows accord-ing to Darcy's law. These two modes of mass trans-port are interdependent. Production decline curves of coal-gas wells are of the constant percentage decline type and thus show no indications of flow characteristics peculiar to coal-gas reservoirs. The effectiveness of surface boreholes as a degasification scheme depends upon both good fracture perme-ability and a high fracture density. Conventional methods of reservoir engineering analysis are not applicable to coalbeds.

TPR 11. Design and Development of Drill Equipment, by J. D. Hadden and Joseph Cervik. May 1969. 11 pp. 10 figs. Attempts to drill long holes in coalbeds horizontally (parallel to the bedding) often result in holes terminating prematurely in floor or result in holes terminating prematurely in noor or roof strata. Such holes are used to determine the physical properties of the coalbed and methane mi-gration characteristics. This report describes the methods used to overcome problems encountered when drilling long horizontal holes in coal. The drilling method and equipment, gas pressure meas-urements, and packer development are discussed. Also the equipment used in obtaining 7-inch-diameter coal cores is described. coal cores is described.

TPR 12. Gas Migration Characteristics of Coolbeds, by J. D.

IPR 12. Gas Migration Characteristics of Coolbeds, by J. D. Hadden and Albert Sainato. May 1969. 10 pp. 7 figs. The Bureau of Mines conducted drill-ing studies in the Pocahontas No. 3, the Pittsburgh, and a western coalbed to establish the gas migration characteristics for each. Gas pressures in the Pitts-burgh coalbed were about 260 psi and in excess of 550 psi in the Pocahontas No. 3. Caving in drill holes presented pressure measurements in the western holes prevented pressure measurements in the western coalbed. The Pittsburgh bed contained interesecting "clay veins" which formed gas pressure cells. Al-

though these geological features hamper mining, they can be used to control the flow of methane into a mine working. Methane control techniques are proposed for the Pittsburgh and Pocahontas No. 3 coalbeds.

TPR 13. Use of Vertical Bereholes for Assisting Ventilation of Longwall Gob Areas, by C. H. Elder. May 1969. 6 pp. 2 figs. An experimental degasifica-tion program using a vertical borehole and vacuum pump to drain gas from the gob area of a longwall panel was successful at Bethlehem Mines Corporation, Cambria Division, No. 33 coal mine. Sixty-one million cubic feet of methane has been exhausted during a 9-month period. Daily production time in the panel increased as a result of lower methane levels in the returns. Removal of large quantities of methane in this way and the exclusion of it from the ventilating system will provide reduced cost in mine ventilation and provide a safer environment for the miners.

TPR 14. Serption Investigations of Methane on Cool, by J. H. Perkins and Joseph Cervik. May 1969. 2 figs. The Bureau of Mines has conducted 6 pp. desorption work on fine coal particles at near atmospheric pressure. An apparatus has been devel-oped that uses a capacitance manometer to measure desorption of methane from coal particles up to 2 inches in diameter and pressures up to 1,000 psi. This will make it possible to duplicate the desorption process as it occurs in its natural underground environment.

TPR 15. Development of Recording Methanometers and Recording Anemometers for Use in Underground Cool Mines, by J. C. LaScola and Joseph Cervik. May 1969. 17 pp. 11 figs. Development of methanometers and anemometers for underground use in coal mines is reviewed. The first semicontinuous record-ing methanometer was developed in 1961 in West ing methanometer was developed in 1961 in West Germany. The Bureau of Mines developed an in-strument using pellesters that was a continuous recording methanometer. Expansion of Freon gas created a vacuum which pulled the methane-air mixture through a tube to an electrically heated, catalyst-impregnated pellester where the mixture was burned. The National Coal Board of England developed a continuous recording methanometer based on the principle of the Davy flame safety lamp. A thermopile was used to sense the heat out-put of the flame. Finally the Bureau of Mines improved its methanometer by eliminating the Freon gas and using a diffuser head to monitor methanegas and using a diffuser head to monitor methaneair mixtures. Development of recording anemometers proceeded from the use of a photocell and light source to sens; rotation of the Biram-type anemom-eter blades to the use of a Hall detector to sense rotation by measurement of electromagnetic pulses.

TPR 16. Experimental in Situ Retarting of Oil Shale at Rock **IPR 16.** Experimental in Situ Retorting of Oil Shale of Rock Springs, Wyo., by E. L. Burwell, H. C. Car-penter, and H. W. Sohns. June 1969. 8 pp. 1 fig. Preliminary results of an in situ oil shale retorting experiment conducted by the Bureaus of Mines in a shallow bed of Green River oil shale at Rock Springs, Sweetwater County, Wyo., are described. Eleven wells were drilled into a 20-ft-thick section of the shale lying between 68 and 88 ft deep, and sttempts were meda to connect the wells through attempts were made to connect the wells through the shale with a fracture system created by appli-cation of high-voltage electricity (electrolinking), hvdraulic fracturing, and explosive fracturing. Ig-nition of the shale through the central well was easily achieved with a bropane burner, and shale oil began to collect in three wells within 3 hours. Propane injection was discontinued after 7 days,

J

Į ì

į

)

i

-

and combustion continues, although attempts to control the direction of the combustion front have been unsuccessful. Production rates as high as 4½ barrels of oil per day have been recorded, but too little is known about underground conditions to permit an estimate of recovery efficiency at this time.

IPR 17. Personal Respirable Dust Sampler, by M. Jacobson and J. A. Lamonica. September 1969. 8 pp. 4 figs. Equipment for evaluating the respirable dust exposure of individual underground coal miners was designed, constructed, and tested by the Bureau of Mines. As a result, the guidelines for sampling and evaluating respirable dust concentrations in the breathing zone of individual miners were finalized, and the equipment was made commercially available. The equipment and techniques, which are described in this report, are consistent with the provisions of pending coal mine health legislation governing respirable gravimetric dust concentrations.

JPR 18. Effect of lowering the Tin Content of Secondary Red Brass, by L. W. Higley, J. L. Holman, E. R. Cole, and H. Kenworthy. October 1969. 11 pp. 5 figs. Laboratory melts of the secondary casting alloy, leaded red brass (85 percent Cu-5 Sn-5 Pb-5 Zn), were made in which the tin content was reduced from 5 percent to 3 and 1 percent, with increased coper or zinc to offset the reduction in tin. The work was done as part of a Bureau of Mines program to promote more economic use of secondary nonferrous alloys; tin, nearly all of which is imported, accounts for nearly 20 percent of the raw materials cost of the 85-5-5 alloy. The mechanical properties and machinability characteristics of the resultant alloys were compared with minimum properties for leaded red brass as specified by ASTM, and with typical properties for leaded red brass as published by the Brass and Bronze Ingot Institute. Results indicate that much of the primary tin added to achieve composition in leaded red brass could be eliminated without significantly affecting strength, ductility, or machinability.

TPR 19. Studies on the Control of Respirable Cool Mine Dust by Ventilation, by D. S. Kingery, H. N. Doyle, E. J. Harris, M. Jacobson, R. G. Peluso, J. B. Shutak, and D. P. Schlick. October 1969. 13 pp. 7 figs. Ventilation experiments conducted by the Bureau of Mines using high-pressure fans as auxiliary ventilation units showed that face-generated dust could be effectively controlled in five mines employing continuous mining machines. By maintaining an airflow approaching 100 fpm across the entry, the experimental system reduced the concentration of respirable dust by factors as great as 6.4. In all mines where the system was used the face-generated dust concentrations were reduced to less than 3 milligrams per cubic meter and in some mines to less than 2 milligrams per cubic meter. For each mine in which the system is to be used additional engineering studies should be made.

TPR 20. Recovering Gold From Stripping Waste and Ore by Percelation Cyanide Leaching, by George M. Potter. December 1969. 5 pp. Simple and lowcost heap and vat percolation cyanide leaching methods were applied on a laboratory scale for recovering gold from submarginal mine strip material and from ores representative of deposits with limited reserves not justifying construction of a conventional cyanide treatment plant. Gold-bearing material, as coarse as 4 inches in size and assaying from 0.06 to 0.6 troy ounces per ton, was leached successfully with dilute cyanide-lime solutions. From 66 to 95 percent of the gold in the samples was dissolved and recovered in activated carbon. The amenable ores and materials invariably contained micron-size gold distributed throughout a porous, relatively cyanide-free gangue.

SPECIAL PUBLICATIONS

SP 1-66. List of Bureau of Mines Publications and Articles. January 1, <u>1960</u>, to December 31, 1964, With Sub-

Jonuery 1, 1960, to December 31, 1964, With Subject and Author Index, by Rita D. Sylvester. 1966. 297 pp. Supplements the 50-year list of Bureau publications issued from July 1, 1910, to January 1, 1960, and the 50-year list of articles by Bureau authors published outside the Bureau during the same period. Lists more than 2,000 major reports by Bureau authors which were published during the 5 years in regular Bureau of Mines series, in scientific, technical, or trade journals, or in other media, and tells how these may be obtained by the public. Summarizes the vast majority of these reports. Lists the libraries which maintain files of Bureau publications. Summarizes unpublished reports that are available for consultation at certain Bureau offices and libraries, and lists these places. Describes cooperative publications which were issued by organizations with which the Bureau of Mines cooperated on research. Patents isued to Bureau personnel are also listed, as well as instructions on how to apply for permission to use them. One of the outstanding features of this Special Publication is an exhaustive subject and author index. (*Out of print.*) SP 2-66. List of Bureau of Mines Publications and Articles, January 1 to December 31, 1965, With Subject and Author Index. 1966. 89 pp. Describes publications by the Bureau and articles by its personnel in non-Bureau publications. Supplements the list of Bureau publications issued from July 1, 1910, to January 1, 1960, the list of articles published by Bureau authors outside of the Bureau from July 1, 1910, to January 1, 1960, and the list of publications and articles issued from January 1, 1960, to December 31, 1964. 50 cents.

SP 1-67. Automobile Disposal, a National Problem. Case Studies of the Factors That Influence the Accumulation of Automobile Scrop, by Staff, Bureau of Mines. 1967. 569 pp. 60 figs. The accumulation of junked automobiles is an eyesore detracting from the appearance of urban neighborhood and rural scenery, but the metal in these discarded vehicles is a major raw material resource. The Bureau of Mines, in cooperation with private and Government organizations, has completed a survey of the industries concerned with the disposal of scrap from junked automobiles in 34 selected districts, representing a

.

1

1

ţ

1

) 6

variety of urban, suburban, and rural conditions. \$4.50.

SP 2-67. Mining and Mineral Operations in the United States. A Visiter's Guide, by Staff, Bureau of Mines Area Mineral Resource Offices. 1967. 90 pp. 34 figs. This pamphlet, a guide to mines that may be observed or visited, is intended to aid tourists and

students who are interested in mining. 35 cents.

SP 3-67. List of Bureau of Mines Publications and Articles, Jonuary 1 to December 31, 1966, With Subject and Author Index. 1967, 94 pp. Describes publications by the Bureau and articles by its personnel in non-Bureau publications. Supplements the list of Bu-reau publications issued from July 1, 1910, to Jan-uary 1, 1960; the list of articles published by Bureau authors outside the Bureau from July 1, 1910, to January 1, 1960; the list of publications and articles issued from January 1, 1960, to December 31, 1964; and the list of publications and articles issued from January 1 to December 31, 1965. 50 cents.

SP 1-68. Clearing the Air. Bureau of Mines Programs in Atmospheric Pollution Abstement. 1968. 20 pp. This publication describes briefly the principal sources and causes of air pollution and outlines the Bureau of Mines programs on atmospheric pollution abatement.

SP 2-68. A Dictionary of Mining, Mineral, and Related Terms, compiled and edited by Paul W. Thrush and the Staff of the Bureau of Mines. 1968. 1268 pp. This dictionary contains 150,000 authoritative defini-tions of mineral methods. tions of mining, mineral, geologic, metallurgical, ceramic, and general scientific terms. The work began as a revision of Bureau of Mines Bulletin 95, "A Glossary of the Mining and Mineral Industry," by Albert H. Fay, first published in 1918. Expansion of the mineral industries and development of new mining and related technologies in the past 50 years have considerably enlarged the vocabulary

of mining and minerals. Hence, the need has grown for an up-to-date and comprehensive reference work. The new dictionary includes thousands of new terms supplied by the Bureau of Mines and cites numerous terms from major sources. \$8.50.

SP 3-68. Wealth Out of Waste. Bureau of Mines Programs in Solid Waste Utilization, by Bureau of Mines. 28 pp. This pamphlet discusses the problem of min-eral wastes, such as incinerator residues, mine and mill dumps, scrap autos, fuel associated wastes, and surface mining wastes, and research by the Bureau of Mines into the possibility of economically reclaiming the mineral values from these wastes.

SP 4-68. List of Bureau of Mines Publications and Articles, January 1 to December 31, 1967, With Subject and Author Index. 1968. 117 pp. Describes publications by the Bureau and articles by its personnel in non-Bureau publications. Supplements the list of Bureau publications issued from July 1, 1910, to Jan-uary 1, 1960; the list of articles published by Bureau January 1, 1960; the Bureau from July 1, 1910, to January 1, 1960; the list of publications and articles issued from January 1, 1960, to December 31, 1964; the list of publications and articles issued from January 1, to December 31, 1965; and the list of publications and articles issued from January 1, to December 31, 1966. 65 cents.

SP 1-69. List of Bureau of Mines Publications and Articles, January 1 to December 31, 1968, With Subject and Author Index, compiled by Rita D. Sylvester. 1969. 119 pp. Describes publications by the Bureau and articles by its personnel in non-Bureau publications. Supplements the list of Bureau publications issued from July 1, 1910, to January 1, 1960; the list of articles published by Bureau authors outside the Bureau from July 1, 1910, to January 1, 1960; the list of publications and articles issued from January 1, 1960, to December 31, 1964; and subsequent annual editions. \$1.25.

MISCELLANEOUS

MISC. For the Banefit of Mon, prepared by the Office of Mineral Reports of the Bureau of Mines for the White House Conference on Natural Beauty. 28 pp. 31 figs. Discusses the adverse effects of

surface mining, the restoration of strip-mined land, the control of coal fires in abandoned mines, the utilization of discarded cars, and the control of air and water pollution.

1 ş ł f b

E

HANDBOOK

CMS. Federal Coal Mine Safety Act, as Amended. 30 U.S.C. 451. Title I—Advisory Powers Re-CMS. Federal Coal Mine Safety Ari, as Amendea. 30 U.S.C. 451. The I-Avisory Power Ke-lating to Health and Safety Conditions in Mines. Title II-Prevention of Majer Disasters in Mines. Bureau of Mines, U.S. Department of the Interior. January 1967. 63 pp. This pub-lication contains the provisions of Title I and Title II of the Federal Coal Mine Safety Act, as amended (30 U.S.C. 451), and is issued as a service to all persons and agencies interested in health and safety in the coal mining industry of the United States.

SCHEDULES

Schedules and amendments to schedules are printed in the Federal Register. Copies of schedules or amendments to schedules may be obtained from the Branch of Publications Distribution, 4800 Forbes Avenue, Pittsburgh, Pa. 15213.

2G. Electric Motor-Driven Mine Equipment and Accessories. Federal Register, v. 33, No. 54, Mar. 19, 1968, pp. 4660-4671. (Supersedes S 2F.)

5 13E. Self-Contained Breathing Apparatus. Federal Register, v. 33, No. 140, July 19, 1968, pp. 10336-10342. (Supersedes S 13D.)

Amendments to S 198. Supplied-Air Respirators. Federal Register, v. 32, No. 163, Aug. 21, 1968, pp. 11817-11818.

Amendments to S 218. Filter-Type Dust, Fume, and Mist Res-pirators. Federal Register, v. 34, No. 117, June 19, 1969, pp. 9617-9619.

Amendments to 5 32A. Methane Manitoring Systems. Fed-eral Register, v. 31, No. 153,

Aug. 9, 1966, pp. 10607-10610.

Amendments to various Bureau of Mines Schedules. Fees for Services:

S 13D. S 19B. Self-Contained Breathing Apparatus. Supplied-Air Respirators.

1 1

- Gas Masks.
- S 14F. S 21B. Filter-Type Dust, Fume, and Mist Respirators.
- S 23B. Nonemergency Gas Respirators (Chemical Cartridge Respirators, Including Paint Spray Respirators). Electric Motor-Driven Mine Equipment,
- S 2F. Junction Boxes and Other Accessory Equipment.
- 6D. s
- Equipment. Electric Cap Lamps. Electric Mine Lamps Other Than Stand-ard Cap Lamps. Flame Safety Lamps. Portable Methane Detectors. Telephone and Signaling Devices. Single-Shot Blasting Units. Multiple-Shot Blasting Units S 10C.
- S 7C. S 8C. S 9B. S 12D. S 16E.
- Š 29A.
- S 32. S 22. S 24,
- S 25B.
- S 28.
- Š 30. S 31.
- Single-Shot Blasting Units. Multiple-Shot Blasting Units. Lighting Equipment for Illuminating Underground Workings. Methane-Monitoring Systems. Diesel Mine Locomotives. Mobile Diesel-Powered Equipment for Noncoal Mines. Dust Collectors for Use in Connection With Rock Drilling in Coal Mines. Fire-Resistant Conveyor Belts. Fire-Resistant Hydraulic Fluids. Mobile Diesel-Powered Transportation Equipment for Gassy Noncoal Mines and Tunnels. Register, v. 30, No. 55, Mar. 23, 1965,
- Federal Register, v. 30, No. 55, Mar. 23, 1965, pp. 3753-3757.

MINERAL INDUSTRY SURVEYS

Mineral Industry Surveys are processed reports that contain statistical and economic data on various mineral commodities, as well as information on employment and injuries in the mineral industries. These reports are issued at regular intervals so that information on mineral commodities may be made available quickly and in a convenient form. Most of the data contained in these reports appear in permanent form in the Minerals Yearbook. These reports may be obtained from the Publications Distribution Branch, Bureau of Mines, 4800 Forbes Avenue, Pittsburgh, Pa. 15213, except for District V Pe-troleum Demand Reports and District V Petroleum Statements, which may be ob-tained only from the San Francisco Office of Mineral Resources, 450 Golden Gate Avenue, Box 36012, San Francisco, Calif. 94102. The list of Mineral Industry Surveys being published in 1969 follows:

WEEKLY

Bituminous Coal and Lignite. Pennsylvania Anthracite.

MONTHLY

Aluminum Industry. Cement. Chromium. Coal-Mine Fatalities. Coal-Mine Injuries and Worktime. Cobalt. Coke and Coal Chemicals. Copper Industry. Copper Sulfate. District V Petroleum Demand. District V Petroleum Statement. Gold and Silver. Iron and Steel Scrap. Iron Ore. Lead Industry. Lime. Manganese. Molybdenum. Nickel. Petroleum Forecast. Petroleum Statement. Sulfur. Tin. Tungsten. Vanadium. Zine Industry. Zinc Oxide.

QUARTERLY

Antimony. Bauxite. Bismuth. Bituminous Coal and Lignite Distribution. Cadmium. Carbon Black. Cobalt Refiners. Ferrosilicon. Fluorspar. Gypsum. Health and Safety Summary. Magnesium, Primary Mercury. Natural Gas. Platinum-Group Metals. Selenium. Titanium.

ANNUALLY

Abrasive Materials. Aluminum and Bauxite. Antimony. Ashestos. Asphalt Shipments. Aviation Turbine Fuels (Petroleum Products Survey 59). Prepared in cooperation with the American Petroleum Institute. Barite. Beryllium. Bismuth. Boron Bromine. Burner Fuel Oils (Petroleum Products Survey 61). Prepared in cooperation with the American Petroleum Institute. Cadmium. Calcium Chloride and Calcium-Magnesium Chloride. Carbon Black. Cement. Cesium and Rubidium. Chromium. Clay. Cobalt. Coke and Coal Chemicals. Coke Producers. Columbium and Tantalum. Commodity Data Summaries. Preliminary data, in summary form, for most metals, nonmetals, and fuels Copper. Diatomite. Diesel Fuel Oils (Petroleum Products Survey 62). Prepared in cooperation with the American Petroleum Institute. Explosives. Feldspar. Fluorspar. Fuel Oil Shipments. Gold and Silver. Graphite. Gypsum. Injuries at Coke Plants. Injuries at Slag Plants. Injuries at Sand and Gravel Plants. Injuries, Oil and Gas. Iodine. Iron and Steel. Iron and Steel Scrap. Iron and Steel Slag. Iron Ore. Kyanite. Lead. Lime. Liquefied Petroleum Gas Shipments, Lithium, Cesium, and Rubidium. Magnesium and Magnesium Compounds.

MINERAL INDUSTRY SURVEYS

Safety Competition, National Limestone Institute. Safety Competition, National Sand and Gravel. Safety Competition, National Slag Association. Safety in Mineral Industries. ANNUALLY Manganese. Mercury. Mica. Salt. Molybdenum. Sand and Gravel. Motor Gasolines, Summer (Petroleum Products Sur-Selenium and Tellurium. vey 58). Prepared in cooperation with the American Petroleum Institute. Motor Gasolines, Winter (Petroleum Products Survey 60). Prepared in cooperation with the Amer-Sodium Compounds. Stone. Sulfur. Talc, Soapstone, and Pyrophyllite. ican Petroleum Institute. Tin. Natural Gas. Titanium. Nickel. Tungsten. Peat. Peat Producers. Uranium. Vanadium. Pennsylvania Anthracite Distribution. Vermiculite. Pennsylvania Anthracite Fatalities. World Mineral Production. Perlite. Zinc. Petroleum Refineries in the United States and Puerto Zirconium and Hafnium. Rico. Petroleum Statement. BIENNIALLY Phosphate Rock. Platinum-Group Metals. National First-Aid and Mine Rescue Contest. Potash. Natural Gas Processing Plants. Pumice. Rare-Earth Elements and Thorium. TRIENNIALLY Rhenium. Roof-Fall Fatalities. Crude Oil and Product Pipeline Mileage in the Safety Competition, National Lime Association. United States.

FOREIGN MINERAL REPORTS

Foreign mineral reports are issued to assist domestic producers and consumers of mineral commodities to keep abreast of developments in the mineral industries and markets abroad and provide a brief summary of significant information from U.S. Foreign Service offices and other sources, which may otherwise not be made available to the general public. These publications may be obtained from the Publications Distribution Branch, Bureau of Mines, 4800 Forbes Ave., Pittsburgh, Pa. 15213. International Coal Trade. Issued monthly. Summarizes the latest salient statistical and economic data on worldwide coal trade.

Mineral Trade Notes. Issued monthly. Provides selected news notes and brief economic information on a variety of mineral commodities (except fuels) throughout the world.

International Petroleum Annual. Provides data for nearly all countries outside the Soviet bloc on production; imports and exports, showing countries of origin and destination; refinery runs of crude oil; calculated demand for major refined products; and world retail prices and taxes for refined petroleum products.

169

OPEN-FILE REPORTS

Open-file reports comprise data that have not been published because the research may be of limited interest, may have been reported elsewhere, or may be in too voluminous a form to be conveniently published, However, the Bureau of Mines has made these reports available as reference material at certain libraries and Bureau offices during normal working hours. The locations where any report may be seen are given in the listing for each open-file report. When making inquiries, the author and title of each report MUST be given, NOT the open-file report number (OFR). Because these reports are for reference only, open-file reports may not be removed from the libraries or offices where they have been placed. Photostatic copies can sometimes be obtained for a nominal fee, depending upon the facilities available at the individual locations.

Copies of some open-file reports have been placed in the Clearinghouse for Federal Scientific and Technical Information. To find out if an open-file report is available from the Clearinghouse, consult the listing of Bureau publications given in the section on Bureau of Mines publications available from the Clearinghouse.

OFR 1-65. Beryllium Investigations at the Lost River Mine, Seward Peninsula, Alaska, by Robert V. Berryhill and John J. Mulligan with a section on petrography by Walter L. Gnagy. 1965. 71 pp. 5 figs. Beryllium minerals, principally chrysoberyl, occur associated with fluorite in an extensive zone of altered limestones adjacent to the Lost River tin mine. Samples averaged 0.12 to 0.13 percent BeO; a few samples of the Cassiterite Dike averaged 0.07 percent BeO. Available at the Bureau of Mines office, Juneau Alaska, and the Central Library, U.S. Department of the Interior, Washington, D.C.

OFR 2-65. Bureau of Mines Diamond-Drill Sampling Data, Lost River Tin Mine, Seward Peninsule, Alaska, by H. E. Heide and John J. Mulligan. 1965. 98 pp. 2 figs. Gives detailed description of diamonddrill data and drill logs of the investigation of the Lost River tin mine made in 1943-44. This information was published in a shorter form in 1946 as RI 3902, Investigation of the Lost River Tin Deposit, Seward Peninsula, Alaska. Available at the Bureau of Mines office, Juneau, Alaska, and the Central Library, U.S. Department of the Interior, Washington, D.C.

OFR 3-65. The Production of Synthetic Mica, by K. H. Ivey, E. F. Nichols, and H. R. Shell. 1965. 53 pp. 9 figs. Gives results of experiments on synthesis of fluormicas. Furnaces used were (1) a double-wall, double-bottom, water-cooled, internal resistance furnace with a 6,000-pound capacity and (2) four sizes of single-wall, water-cooled, arc resistance furnaces with capacities of from 2,000 to 10,000 pounds of melt. Technical or commercial grades of silica, alumina, magnesia, feldspar, magnesium fluoride, and potassium silicofluoride were used, compounded to or near $K_1Mg_*Al_sSio_{12}.mF_{1.5}$. Boron trioxide and potassium chloride were added in small amounts to some compositions. Fluorphlogite from both types of furnace and from different batch compositions was satisfactorily used to make glassbonded synthetic mica products. Available at College Park Metallurgy Research Center, College Park, Md., and the Central Library, U.S. Department of the Interior, Washington, D.C.

OFR 4-65. Thermal Decomposition of Organic Nitrogen and Sulfur Compounds. A Survey of Chemical Ab-

stracts, 1956 to 1962, by Irven A. Jacobson, Jr. Consists of a bibliography of gas-phase thermal reactions of organic nitrogen and sulfur compounds. Included in each listing is a brief summary of the data. Supplements IC 7947. Available at the San Francisco Petroleum Research Laboratory, San Francisco, Calif., Morgantown Petroleum Research Laboratory, Morgantown, W. Va., Laramie Petroleum Research Center, Laramie, Wyo., Bartlesville Petroleum Research Center, Bartlesville, Okla., and the Central Library, U.S. Department of the Interior, Washington, D.C.

OFR 5-65. Exploratory Tests on the Effects of Magnetic Fields

on the flow of Brine in Petroleum-Reservoir Rock Somples, by Richard A. Morris and C. I. Pierce. 1965. Gives laboratory data on the effects of magnetic fields on the flow of rock in petroleum reservoir samples. Several types of brine and different field strengths are tabulated. Available at the San Francisco Petroleum Research Laboratory, San Francisco, Calif., Morgantown Petroleum Research Labor ratory, Morgantown, W. Va., Laramie Petroleum Research Center, Laramie, Wyo., Bartlesville Petroleum Research Center, Bartlesville, Okla., and the Central Library, U.S. Department of the Interior, Washington, D.C.

OFR 6-65. Examination of Hannum Lead Prospect, Fairhaven District, Seward Peninsula, Alaska, by John J. Mulligan. 1965. 16 pp. 3 figs. Summarizes and brings up to date an open-file report of the same title released in 1957. Description and analyses of specimens taken in 1959 and 1963 are given. Available at the Bureau of Mines office, Juneau, Alaska, and the Central Library, U.S. Department of the Interior, Washington, D.C.

OR 7-65. Diamond-Drill Sampling Data Fluerite-Beryllium Deposits, Lost River Valley, Seward Peninsula, Alaska, 1964, by John J. Mulligan with a section on petrography by Walter L. Gnagy and a section on laboratory concentration tests by Richard Havens. 94 pp. 3 figs. Gives results of sampling from 16 diamond-core drill holes totaling 2,554 feet in typical fluorite-beryllium deposits of the Lost River valley, Seward Peninsula. Principal beryllium mineral associated with the fluorite is chrysoberyl. Analytical data have not been evaluated and work on these samples is continuing. Available at the Bureau of Mines office, Juneau, Alaska, and the Central Library, U.S. Department of the Interior, Washington, D.C.

OFR 8-65. Examination of the Sinuk Iron Deposits, Seward Peninsula, Alaska, by John J. Mulligan, with a section by Harold D. Hess. 1965. 34 pp. 3 figs. Quotes material from various Federal and Territorial publications now out-of-print, summarizes more recent Bureau studies and discusses the significance of recent chemical, spectrographic, and petrographic analyses of samples collected on the spot. Although the various deposits are relatively small, totaling only about 600,000 tons of 10 to 45 percent iron-content rock, each deposit may also be an "iron hat," capping sulfide ores of lead and zinc with some copper and silver. Available at the Bureau of Mines office, Juneau, Alaska, and the Central Library, U.S. Department of the Interior, Washington, D.C.

OFR 9-45. Preliminary Investigation of Limestone, Quartzite, and Dolomite Resources Near the Proposed Rampart Dam in Central Alaska, by Bruce I. Thomas. 1965. 11 pp. 2 figs. Presents results of preliminary laboratory analyses of "spot" samples taken by the Bureau from rock outcroppings about 15 miles southwest of the projected damsite. These raw material sources are outside the reservoir area, the report notes, and could be made readily accessible to the damsite by rail or by highway if proved suitable in all respects for construction uses. Available at the Bureau of Mines office, Juneau, Alaska, and the Central Library, U.S. Department of the Interior, Washington, D.C.

OFR 10-65. Reconnaissance of the Avnet Manganese Preppert, Tamana Quadrangle, Central Alaska, by Bruce I. Thomas. 1965. 8 pp. 3 figs. Covers a reexamination undertaken by the Bureau because of anticipated economic changes, including low-cost power expected to be generated at the proposed Rampart Dam and improvements in the arterial highway system of central Alaska. Manganiferous material or "float" was found about 20 miles southeast of the site of the proposed dam and 100 miles northwest of Fairbanks. Available at the Bureau of Mines office, Juneau, Alaska, and at the Central Library, U.S. Department of the Interior, Washington, D.C.

OFR 1-66. Aerosols in Air Pellutien Systems: A Non-Critical Review of the Literature, by David F. Dever. 1966. 27 pp. The literature of interest to air pollution investigators on the subject of generating, sampling, and analyzing aerosols is reviewed to December 1964. One hundred and fifty references are considered. Available for reference at the Central Library, U.S. Department of the Interior, Washington, D.C.; the San Francisco Petroleum Research Center, San Francisco, Calif.; the Morgantown Petroleum Research Laboratory, Morgantown, W. Va.; the Bureau of Mines library, Bartlesville, Okla.; and the Bureau of Mines library, Laramie, Wyo.

OFR 2-66. Well Logs of Bureau of Mines-AEC Colorado Corehole No. 1, Rio Blanco County, Colo., by Laramie Petroleum Research Center Staff. 1966. Five well logs, induction-electrical, gamma-ray neutron, sonic, compensated formation density, and laterolog, were run on the Bureau of Mines-Atomic Energy Commission corehole in two stages and were combined in their present form by Schlumberger Well Surveying Corp. Available at the Bureau of Mine Libraries at Denver, Colo., and Laramie, Wyo.

OfR 3-66. Investigation of the Bailey Copper Prospect, Willow Creek Mining District, South-Central Alaska, by Raymond P. Maloney. 1966. 7 pp. 4 figs. This prospect is about 45 airline miles northeast of Anchorage in the southwest corner of the Talus Mountains. Numerous gold mines and gold and molybdenum prospects in the area make it potentially important. Bornite, chalcopyrite, covellite, molybdenite, gold, and silver occur in a shear zone in quartz diorite. The shear zone appears to be about 200 feet wide and at least 1,500 feet long; glacial debris, rubble, and talus cover most of it; disseminated mineralization can be observed in bedrock exposed over an area about 50 feet wide, 500 feet long, and over a vertical distance of about 300 feet. A drilling program would be necessary to determine the size, grade, and character of the deposit. Available for reference at the Central Library, U.S. Department of the Interior, Washington, D.C., and the Bureau of Mines office, Juneau, Alaska.

OFR 4-66. Investigation of the Nixon Fork Area, Kuskakwim River Basin, Alaska, by Raymond P. Maloney. 1966. 24 pp. 8 figs. A reconnaissance examina-tion of the copper-gold-silver deposits of the Nixon Fork area was made to determine the feasibility of additional work to determine the mineral potential of the area. Copper, gold, and silver mineralization was found in limestone and granite in an area about 1 mile wide and 2 miles long. Mineralization occurred chiefly as copper silicate but minor amounts of cop-per sulfides were found. Gold and silver were associated with copper mineralizations; minor amounts of bismuth were found. Metallurgical work was done to develop a method suitable for extraction of gold and copper from the complex silicate ores. Results indicated that additional research is required. Caustic leaching is a potential method for recovery of copper from chrysocolla ores associated with basic minerals; ammonia leaching and flotation methods were ineffective. A high gold recovery is not possible without simultaneous recovery of copper. Gold recovery methods include tabling, corduroy matting, flotation, and barrel amalgamation. Work was done in Juneau with commercially available reagents and equipment. Available for reference at the Central Library, U.S. Department of the Interior, Washing-ton, D.C., and the Bureau of Mines office, Juneau, Alaska.

OFR 5-66. Investigation of the Purkeypile Prospects, Kuskokwim River Basin, Alaska, by R. P. Maloney and Bruce I. Thomas. 1966. 12 pp. 6 figs. The Purkeypile group of lode claims is in an isolated and extremely mountainous area near the western boundary of Mt. McKinley National Park. The group includes the Jiles-Knudson, Mespelt, and Hogback prospects which are located on sporadic mineral occurrences in or adjacent to altered sediments and granitic intrusives. Chip, grab, and a few channel samples, taken at various times by Bureau of Mines engineers, contained from trace to significant amounts of lead, zinc, silver, and gold; some samples also contained trace to minor amounts of copper. bismuth, antimony, tungsten, and uranium. This report presents the Bureau's sampling data and summarizes general information resulting from the several examinations by Federal and State mining engineers and geologists. Available for reference at the Central Library, U.S. Department of the Interior, Washington, D.C., and the Bureau of Mines offices, Juneau and Anchorage, Alaska.

OFR 5-55. Colcination of Raw and Agglomerated Anthracities in a Vertical-Shaft Retort, by W. S. Sanner. 1966. 50 pp. 17 figs. Experiments were conducted with a vertical-shaft calcining pilot plant to study the production of devolatilized lump anthracite for use testing in foundry cupolas and to study the cal-ination of acquirements anto atto a study the calcination of agglomerated anthracite briquets for use as fuel in blast-furnace tests. Anthracite egg size (314. by $2\%_{6}$ -inch) representative of the four anthracite-producing fields was calcined in an indirect-gas-fired retort, using both indirect and direct methods of preheating the charge to study the effects of each on decrepitation of the raw coal. Indirect preheating resulted in the most trouble-free operation but severely limited the plant throughput rate in order to avoid excessive decrepitation. Retort temperature could not exceed 1,600° F, product volatile matter ranged from 1 to 1.5 percent, recovery of sizes suitable for foundry use ranged from 60 to 82 percent, and the plant throughput rate ranged from 35 to 60 pounds per hour. Direct preheating of the coal charge prior to entering the indirect-fired retort made it possible to fire the retort at 1,800° to 2,000° F, increase the throughput rate to 235 pounds per hour, maintain similar product volatile matter, and recover about 80 percent of the plant feed for use testing in foundry cupolas. Agglomerated (anthra-cite, pitch binder, and bituminous coal) briquets for blast-furnace testing could not be successfully cal-cined in the vertical-shaft plant without major redesign of the discharger mechanism and the plant preheating system. A number of trials made after revisions to the preheater had to be terminated because the briquets could not be preheated rapidly at temperatures in excess of 700° F. As a result, the briquets softened and blocked the preheating system, making plant processing impossible. Available for reference at the Central Library, U.S. Department of the Interior, and the office of the Director of Coal Research, Bureau of Mines, Washington, D.C.; the Pittsburgh Coal Research Center, Bruceton, Pa.; and the Morgantown Coal Research Center, Morgan-town, W. Va.

OFR 7-66. Sampling and Coking Studies of Coal From Castle Mountain Mine, Matanuska Coalfield, Alaska, by R. S. Warfield, W. S. Landers, and Charles C. Boley. 1966. 14 pp. 1 fig. A sample of high-volatile A bituminous coal consisting of cuttings from multiple

bituminous coal consisting of cuttings from multiple auger holes was taken from a stripped segment of a 5.3-foot coalbed at the now idle Castle Mountain mine, Matanuska coalfield, Alaska. The sample was shipped to the Bureau of Mines Denver Coal Research Laboratory where studies of its coking properties were made. The ash content of the sample was reduced by float-and-sink methods from 16.5 percent to 10.4 percent. After bench-scale tests indicated good coking qualities for the "cleaned" coal, three 50-pound coking tests were conducted. Coke from the unblended coal was strong and seemed of foundry quality. Using 30 percent of the Castle Mountain coal as a blending coal with a Utah-base coal produced a coke with reasonably good characteristics. Available for reference at the Central Library, U.S. Department of the Interior, Washington, D.C., and the Bureau of Mines offices, Juneau and Anchorage, Alaska. OFR 8-66. Relationship of Part Geologic Structural Processes to the Rock Masses Associated With Mining Districts, by Jacques B. Wertz. 1966. 181 pp. 57 figs. Research was conducted to determine (1) the effect of structure-forming processes on the rock masses containing an ore deposit and (2) the influence of the stresses resulting from these processes on the design of ground control methods that must be used during extraction of the ore. The results of the initial phase of the relationship of these geologic processes to the rock masses associated with mining districts in southeast Arizona. Available for reference at the Central Library, U.S. Department of the Interior, Washington, D.C., and the Bureau of Mines library, Denver, Colo.

ŧ

Į

Ł

Ĺ

OFR 1-67. Cost Analysis of the U.S. Capper Industry in 1958, by Franklin D. Cooper and Kung Lee Wang. 1967. 217 pp. 7 figs. This detailed cost analysis shows actual and derived expenditures, for supplies and for those parts having less than 3 years service life, which were purchased and consumed in 1958 by the U.S. copper industry for all operations ranging from mining through refining. Expenditures for labor, fuels, and electricity are shown when necessary to clarify the presentation. Some information is presented on the state of the technology in 1958 and its effect on expenditures for supplies and parts. Available for reference during office hours at the Bureau of Mines library, Denver, Colo.; and the Central Library, U.S. Department of the Interior, and the Library of Congress, Washington, D.C.

OFR 2-67. Reservoir Oil Analyses, Clark's Fork North field, Montons, by C. Q. Cupps and J. Fry. 1967. This report contains analyses of subsurface oil samples and related samples of produced oil and gas and some data concerning reservoir characteristics. Although a complete reservoir analysis was not made, these data are valuable in characterizing reservoir fluids and properties. Available for reference during office hours at the Bureau of Mines libraries at the Laramie Petroleum Research Center, Laramie, Wyo., and the Bartlesville Petroleum Research Center, Bartlesville, Okla.; the Morgantown Petroleum Research Laboratory, Morgantown, W. Va.; the San Francisco Petroleum Research Office, San Francisco, Calif.; and the Central Library, U.S. Department of the Interior, Washington, D.C.

OFR 3-67. Reservoir Oil Analyses, Denver-Julesburg Basin, Colorado, by C. Q. Cupps and J. Fry. 1967. This report contains analyses of subsurface oil samples and related samples of produced oil and gas and some data concerning reservoir characteristics. Although a complete reservoir analysis was not made, these data are valuable in characterizing reservoir fluids and properties. Available for reference during office hours at the Bureau of Mines libraries at the Laramie Petroleum Research Center, Laramie, Wyo., and the Bartlesville Petroleum Research Center, Bartlesville, Okla.; the Morgantown Petroleum Research Laboratory, Morgantown, W. Va.; the San Francisco Petroleum Research Office, San Francisco, Calif.; and the Central Library, U.S. Department of the Interior, Washington, D.C.

OFR 4-67. Reservoir Oil Analyses, Gebo Field, Wyoming, by C. Q. Cupps and J. Fry. 1967. This

by C. Q. Cupps and J. Fry. 1967. This report contains analyses of subsurface oil samples and related samples of produced oil and gas and some data concerning reservoir characteristics. Although a complete reservoir analysis was not made, these data are valuable in characterizing reservoir fluids and properties. Available for reference during office hours at the Bureau of Mines libraries at the Laramie Petroleum Research Center, Laramie, Wyo, and the Bartlesville Petroleum Research Center, Bartlesville, Okla.; the Morgantown Petroleum Research Laboratory, Morgantown, W. Va.; the San Francisco Petroleum Research Office. San Francisco, Calif.; and the Central Library, U.S. Department of the Interior, Washington, D.C.

OFR 5-67. Bureau of Mines-Atomic Energy Commission Colorado Corehole No. 2, Rie Blanco County, Colorado, by George F. Dana. 1967. Colorado Corehole No. 2 was drilled and cored as part of the program to locate suitable sites for pilot studies on the in situ processing of oil shale. This report contains the drilling and coring history of the well and analyses of over 1,000 feet of the cored oil shale section. Available for reference during office hours at the libraries of the Laramie Petroleum Research Center, Laramie, Wyo., and the Denver Mining Research Center, Denver, Colo.

OFR 6-67. The Cubic field in CaO-ZrO₂ by Ronald C. Garvie. 1967. 9 pp. 5 figs. The cubic field in the CaO-ZrO₃ system was determined in the temperature range 1,300° C to 1,700° C using the X-ray lattice parameter method. The existence of a compound CaZr,O₂ was postulated. Available for reference during office hours at the College Park Metallurgy Research Center, College Park, Md., and at the Central Library, U.S. Department of the Interior, Washington, D.C.

OFR 7-67. Collection and Analysis of Marine Manganese Nodules, by H. H. Heady. 1967 30 pp. 11 figs. Manganese nodules were collected during January 1963 by the Division of Mineral Resources, Region II, Bureau of Mines, in cooperation with the University of California, from the ocean floor off the coast of Baja California, from the ocean floor off the coast of Baja California, Mexico, at depths of 2 to nearly 3 miles. The tonnage lot consisted of nine samples which subsequently were subjected to laboratory study at Bureau of Mines research centers. The sample-collection phase of the investigation testified to the widespread abundance of manganese nodules on the ocean floor, but it also pointed to the general inadequacies of current sampling techniques for recovering seafloor minerals in quantity. Chemical analyses showed wide compositional variations between different nodule locations, while electron probe X-ray spectrographic analysis showed significant variations within individual nodules. Available for reference during office hours at the Reno Metallurgy Research Center, Reno, Nev., the Tiburon Marine Minerals Technology Center, Tiburon, Calif., and the Central Library, U.S. Department of the Interior, Washington, D.C.

.

ł

1

t

à

ł

OFR 8-67. Maximizing Returns From Mine Production Through Use of Operations Research Techniques, by Thys B. Johnson. 1967. This report discusses the variability in smelter schedules and illustrates the techniques that can be used to evaluate returns from mine products with regard to various schedules. The influence of schedule premiums and penalties and the importance of methods of treatment and transportation costs and their effect on net returns is pointed out. The latter part of the report contains a discussion of mathematical techniques for analyzing and evaluating the effect of operational problems upon the design and development of mining operations that would be useful to mining engineering students as well as persons contemplating the development of small mining operations. Available for reference during office hours at the library of the Bureau of Mines, Denver, Colo., and the Central Library, U.S. Department of the Interior, Washington, D.C.

OFR 9-67. Sampling a Gold-Copper Deposit, Golden Zone Mine, South Central Alaska, by J. J. Mulligan, R. S. Warfield, and R. R. Wells. 1967. 59 pp. 11 figs. The Bureau of Mines channel sampled and diamond drilled the Golden Zone mine and nearby gold-copper deposits in 1950 and 1951. Difficult drilling conditions made sampling costs prohibitive; the work had to be stopped before enough data was obtained to estimate recoverable reserves. The Golden Zone mine, in 1941 and 1942, produced 869 tons of bulk flotation concentrate, containing 1,581 ounces of gold, 8,617 ounces of silver, and 21 tons of copper, but was forced to close in 1942 and has not reopened. Available for reference during office hours at the Bureau of Mines offices in Juneau, Anchorage, and Fairbanks, Alaska, and the Central Library, U.S. Department of the Interior, Washington, D.C.

OFR 10-67. Investigation of the Asbestor-Serpentine Depositis in the Spencer Lake Area, Maine, by Fred M. Murphy and K. M. Earl. 1967. The information in the report was obtained in an exploration project in the Spencer Lake area conducted in 1954. The report includes data on 3,756 feet of core recovered from 11 diamond drill holes. Also included are the results of chemical analyses, X-ray diffraction tests, spectrographic analyses, and magnetic separation tests of samples from the core. Tests were conducted to determine the asbestos, nickel, and chromium mineral contents of these samples. Available for reference during office hours at the Bureau of Mines Library, Pittsburgh, Pa., and the Central Library, U.S. Department of the Interior, Washington, D.C.

OFR 11-67. Résumé of Information on Alaskan Bituminous Coals With Particular Emphasis on Coking Char-

acteristics, by Robert S. Warfield. 1967. 20 pp. Alaska has several coalfields known to contain bituminous coal occurrences. This report summarizes the available information on these occurrences with particular emphasis on coking characteristics. Some of the coals are known to exhibit coking properties, others are known to be noncoking, and for some, it is known only that their rank is probably bituminous. By far the greatest amount of reserves is in the Arctic coalfield north of the Brooks Range. In parts of this field, structural geology appears simple enough that modern mechanized mining could be performed. Recent sampling and testing by the Bureau of Mines demonstrated that some of the Arctic coals have significant coking properties. Available for reference during office hours at the Bureau of Mines offices in Juneau, Anchorage, and Fairbanks, Alaska, and the Central Library, U.S. Department of the Interior, Washington, D.C.

OFR 12-67. Sampling the Moth Bay Zinc-Copper Deposit. Revillegigedo Island, Southeastern Alaska, by Robert S. Warfield and R. R. Wells. 1967. 19 pp. 6 figs. The Bureau of Mines sampled surface and underground exposures and core drilled for possible extensions of the Moth Bay zinc-copper deposit during the summer field season of 1950. The deposit is less than a mile inland from the head of Moth Bay on Revillagigedo Island. Diamond-drill holes penetrating the mineralized section below the main drift encountered mineralization through a greater width but at considerably lower grade than was found on the drift level and in the surface outcrops. Large samples taken from representative underground exposures of the ore were concentrated by standard selective flotation methods to produce marketable copper and zinc concentrates with reasonably good recoveries. Available for reference during office hours at the Bureau of Mines offices in Juneau, Anchorage, and Fairbanks, Alaska, and the Central Library, U.S. Department of the Interior, Washington, D.C.

OFR 13-67. Core Analysis Results of Appelachian Oil-Reservoir Rock, by C. E. Whieldon, Jr., and F. D. Slagle. 1967. This report should be of specific value to oil producers and prospectors in restricted areas. The material is too voluminous to be published as an Information Circular. Available for reference during office hours at the Morgantown Petroleum Research Laboratory, Morgantown, W. Va.

OFR 14-67. Relationship of Past Geological Structural Procenses to the Rock Masses Associated With Mining Districts, by Jacques B. Wertz. 1967. This research was conducted with the ultimate objective of determining (1) the effect of structure-forming processes

mining (1) the effect of structure-forming processes on the rock masses containing an ore deposit and (2) the influence of the stresses resulting from these processes on the design of ground-control methods that must be used during the extraction of the ore. The results of the initial phase of the research, which are presented in this report, ascertain the relationship of these processes to the rock masses associated with mining districts in southeast Arizona. Available for reference during office hours at the library of the Bureau of Mines, Denver, Colo., and the Central Library, U.S. Department of the Interior, Washington, D.C.

OFR 15-67. Thermal Decomposition of Organic Nitrogen and

Sulfur Compounds: A Survey of Chemical Abstracts, 1956-1962, by Irven A. Jacobson. 1967. This literature survey consists of references dealing with gaseous state thermal decomposition reactions of organic nitrogen and sulfur compounds. The reference source for the survey was Chemical Abstracts from 1956 to 1962. Original articles were not studied. The report is a continuation of IC 7947, published in 1960, which was based on Chemical Abstracts from 1930 to 1956. The report is in three parts: Part I lists nitrogen compounds; Part II, sulfur compounds; and Part III, compounds containing nitrogen and sulfur. Available for reference during office hours at the Central Library, U.S. Department of the Interior, Washington, D.C.

OFR 1-58. Pozzolanic Meterials Resources of California and Neveda, by Charles T. Weiler. 1968. The report contains information on the use of pozzolan and on the location, mineralogy, chemical analysis, and pozzolanic characteristics of 118 samples from 98 locations in California and of 36 samples from 29 locations in Nevada. Thirty-one of the samples from 29 locations in Nevada. Thirty-one of the samples were judged to have pozzolanic properties suitable for use in water storage and supply structures. Ten of these samples met all pertinent ASTM standards; the other 21 met all except one of these standards. Available for reference during office hours at the California Division of Mines and Geology, San Francisco, Los Angeles, and Sacramento, Calif.; and the Central Library, U.S. Department of the Interior, Washington, D.C.

OFR 2-68. Well Duta on Gavernment-Owned Wells in the Cliffside Gasfield. 1968. This report contains information on six recently drilled wells in the Government-owned Cliffside gasfield, Potter County, Tex. Well logs and other data are being made available for public inspection to add to the general fund of geological information for this area. The six wells are Bivins A-14 and A-15, Bivins B-1 and B-2, Bush A-11, and Fuqua A-3. The data include electrical and radiation well logs, core analysis reports, and other data obtained in drilling these wells. Available for reference during office hours at the office of the Assistant Director—Helium, Bureau of Mines, Washington, D.C., and at the Office of the General Manager, Helium Operations, Amarillo, Tex.

OFR 3-63. Rutile, Menazite, and Other Heavy Mineral Resources of the Edithe River in South Carolina, by Robert F. Griffith. 1968. Heavy mineral reserve data for the stream alluvium deposits of the North and South Edisto Rivers in South Carolina in 1955-57 as part of a plan to expand heavy mineral mining operations on nearby Horse Creek. The minerals of economic importance in these deposits are rutile, monazite, zircon, and ilmenite. Available for reference during office hours at the Bureau of Miness offices in Knoxville, Tenn., and Tuscaloosa, Ala.; the Division of Minerals office, Arlington, Va.; the Central Library, U.S. Department of the Interior, Washington, D.C.; and the Office of the State Geologist, Columbia, S.C.

OFR 4-68. Bureau of Mines Circular Rule for Interconverting Atomic and Weight Percent in Binary Compounds, by R. P. Adams and R. A. Beall: 1968. A new metallurgist's slide rule that quickly and accurately converts weight-percent to atomic percent, and vice versa, for many binary alloys and compounds has been devised by the Bureau of Mines. The rule should prove to be extremely useful to those investigating both new alloys and established binary systems. It should save much time and effort in conventional calculations to determine weight-percent or atomic percent. Weight-percent refers to the percentage of a compound's total weight represented by a given element in it. Atomic percent expresses the relative number of atoms of each element in a compound. Weight-percent is a measurement used in making an alloy, while atomic percent is used to predict its structure and some of its properties.

Circular in form, the slide rule bears inner and outer scales and two movable arms of unequal length that pivot from its center. In use, the arms are set to indicate, first, the two elements of an alloy or compound, then, the conversion from known weightpercent to atomic percent or vice versa. Seventythree elements in the periodic table appear on the rule. Available for reference during office hours at the library of the Albany Metallurgy Research Center, Albany, Oreg., and the Central Library, U.S. Department of the Interior, Washington, D.C.

ł

٤ ۲

E

E

ł

£

OFR 5-68. Design and Testing of Explosive-Anchored Tail-Block Anchor Pine, by Edward W. Parsons and Lars Osen. 1968. Following the successful earlier testing of the explosive-anchored rockbolt in some metal mines, some mine operators requested that the anchorage technique be further tested as tail-block anchors in soft ground and unconsolidated underground fill areas. A series of tests in five mines showed that several adaptations of the steel-tube explosive anchor provided improved anchorage even in relatively soft strata, but the aluminum-tube explosive anchor would not sustain continuous use by the underground scrapers. Although the steel-tube explosive-anchored tail-block assembly provided better anchorage than the conventional anchor devices, it may have very limited use and interest because of the fabrication and installation costs and the limited number of mines hampered by these operating conditions. Available for reference during office hours at the libraries of the Denver Mining Research Center, Denver, Colo., and the Twin Cities Mining Research Center, Minneapolis, Minn.; at the Spokane Mining Research Laboratory, Spokane, Wash.; and at the Central Library, U.S. Department of the Interior, Washington, D.C.

OFR 6-68. Explosive Forming of Small Hemispherical Shapes,

by Jack C. Croeni, John S. Howe, Jr., and Clo E. Armantrout. 1968. 20 pp. 3 figs. The forming of small hemispherical shapes using shaped charges of explosives was investigated. Twelve variables were considered and 10 dimensionless parameters were examined using dimensional-analysis techniques. The parameters required to produce a satisfactory form were determined on a trial basis, and statistical analysis of these parameters showed that a relation involving e/ot^s , W/D, and L/D where e=charge weight, $\sigma=$ yield strength, t=blank thickness, W=maximum deflection, L=stand off distance, and D=die diameter was significant at the 1-percent level. However, calculated explosive charge weight values compared with actual values showed poor agreement when applied to such materials as copper, low-carbon steel, and titanium products. Available for reference during office hours at the library of the Albany Metallurgy Research Center, Albany, Oreg., and the Central Library, U.S. Department of the Interior, Washington, D.C.

OFR 7-68. Projection of Applications and National Benefits of

a New Rapid Excavation Technology, by Armando Lago, Paul D. Williams, Harold Nisselson, and Harvey D. Kushner. Prepared for the Bureau of Mines by Operations Research, Inc., Silver Spring, Md., September 1967. The purpose of this report was to provide an estimate of potential need for underground excavation during the period 1968-90 and to provide as estimate of the potential benefits to be gained by improving existing underground excavation technology. It represents the first attempt to project tunnel requirements and to estimate the potential market for subsurface excavation technology. Available for reference during office hours at the libraries of the Denver Mining Research Center, Denver, Colo., the Twin Cities Mining Research Center, Minneapolis, Minn., and the Pittsburgh Mining Research Laboratory, Spokane, Wash.; and the Central Library, U.S. Department of the Interior, Washington, D.C.

OFR 8-68. Process Analysis of the U.S. Coal Industry in 1958, by Franklin D. Cooper and Kung-Lee Wang. 1967. 247 pp. Actual and derived expenditures in detail are shown for supplies, and for those parts having less than 3 years' service life, which were purchased and consumed in 1958 by the U.S. coal industry for all operations ranging from mining through cleaning and refuse disposal. The diversified technology in 1958 and its effects on expenditures are presented. Expenditures for some operations are clarified by including data for labor, fuels, and electricity when necessary. This report is a revision of OFR 18 (1964). Available for reference during office hours at the Bureau of Mines library at Pittsburgh, Pa., and the Central Library, U.S. Department of the Interior and the Library of Congress, Washington, D.C.

-

OFR 9-58. Refractory-Clay Deposits of Nebraska, North Dakote, and South Dakota, by R. W. Holmes and Joel Van Sant. 1968. 113 pp. This manuscript reports an inventory project intended to identify refractory clay-bearing areas; no clay of more than medium duty rating was found. Available for reference during office hours at the Bureau of Mines library, Denver, Colo., and the Central Library, U.S. Department of the Interior, Washington, D.C. .

OFR 10-68. Report on Tantalum Project, Raciada, New Mexico, by Herman W. Sheffer and Louis H. Goldsmith. 1968. 35 pp. The report presents the results of an investigation, completed in 1964, of pegmatite dikes in Mora and San Miguel Counties, N. Mex. The project was part of a program to encourage the development of a domestic supply of tantalum. The report indicated that, due to the limited extent of individual pegmatite outcroppings, significant reserves of pegmatitic minerals cannot be present and states that the analytical results did not indicate sufficient tantalum to justify further work. Available for reference during office hours at the Bureau of Mines library at Denver, Colo., and the Central Library, U.S. Department of the Interior, Washington, D.C.

OFR 11-48. Hafnium-Zirconium Separation by Selective Reduction, by James E. Mauser. 1968. 23 pp. This investigation concerned selective reduction methods to recover most of the hafnium from zircon as hafnium-enriched zirconium tetrachloride. Successive contacts of batches of mixed tetrachlorides were made with a reductant regenerated between contacts by reheating to 900° C to disproportionate the deposited lower chloride. Sintering of the reductant was prevented by conducting reduction in a rotating-retort ball-mill furnace.

Zirconium sponge, powder, and turnings were successfully used as selective reductants, and maximum reduction occurred at 375° C with a fourfold increase in hafnium content over that of the original starting material. Mechanical losses, rather than co-reduction, lowered halfnium recovery with both increasing hafnium enrichment and with reuse of the reductant. Available during office hours at the Albany Metallurgy Research Center, Albany, Oreg., and at the Central Library, U.S. Department of the Interior, Washington, D.C.

OfR 12-68. Rapid Excavation, A Report to the Bureau of Mines Covering Basic Information Developed by Panels of the Committee on Rapid Excavation, prepared by the Division of Engineering, National Research Council, National Academy of Sciences, National Academy of Engineering, September 1968. 92 pp. This report is essentially concerned with two questions: (1) What might be the market for underground excavation technology in the years 1970 to 1990, and (2) what might be the benefits from a research program whose objective is to significantly accelerate the development of such technology. Available for reference during office hours at the Central Library, U.S. Department of the Interior, Washington, D.C.

OFR 13-68. Bucker-Wheel Simulator, by Charles B. Manula and Rajaraman Venkataramani. Prepared for the Bureau of Mines by the Department of Mining, College of Earth and Mineral Sciences, the Pennsylvania State University. April 1968. 105 pp. The purpose of this report was to develop a technological forecasting method to evaluate the bucket-wheel excavator as a high-volume, low-unit-cost machine for mining marginal auriferous placer deposits. Much information can be gained from the model with proper manipulation of the input data which consist of the mining dimensions, the soil characteristics, and machine specifications. No historical data are necessary. This is a deviation from most simulators where enormous quantities of time study data must be supplied to the computer. Available for reference at the libraries of the Denver Mining Research Center, Denver, Colo., the Twin Cities Mining Research Center, Minneapolis, Minn., and the Pittsburgh Mining Research Cabratory, Spokane, Wash., and the Alaskan Mining Research Laboratory, Juneau, Alaska; the Marine Minerals Technology Center, Tiburon, Calif.; and the Central Library, U.S. Department of the Interior, Washington, D.C.

OFR 14-68. Data from Gasbuggy Experiment. A continuing open file is being established to which each of the principal participants in the experiment will contribute raw, uninterpreted data as they become available. The Bureau is contributing gas, water, and core analyses, at this time. Available for reference at the Bureau of Mines libaries, Denver, Colo., and Bartlesville Petroleum Research Center, Bartlesville, Okla.; Nevada Southern University Library, Las Vegas, Nev.; and Division of Technical Information Extension, Atomic Energy Commission, Oak Ridge, Tenn.

OFR 15-68. Bureau of Mines-Atomic Energy Commission Colorado Corehole No. 3, Rio Blanca County, Colorado, by George F. Dana. 1968. This is a preliminary report prepared for dissemination to the Atomic Energy Commission and Department of the Interior agencies concerned with the drilling, coring, sampling, and analyzing of oil-shale deposits in the Piceance Creek basin. Colorado Corehole No. 3 was drilled and cored as part of the program to locate suitable sites for pilot studies on in situ processing of oil shale. This report contains the drilling and coring history of the well and analyses of over 2,360 feet of the cored oil-shale section. Available for reference during office hours at the Bureau of Mines libraries at Denver, Colo., and Laramie, Wyo., and at the Geological Survey Public Inquiry Office, Denver, Colo.

OFR 16-68. Soil Sampling at the Egnaty Creek Mercury Propect, Kuskakwim River Basin, Alaska, by R. P. Maloney. 1968. The report gives the general nature of the Egnaty Creek mercury deposit; describes the augering, trenching, diamond drilling, and soil sampling done by the Bureau of Mines; and presents some of the results of this work. Methods of tracing mercury mineralization by drilling 2-inch auger holes through frozen overburden are described. Tracing disseminated low-grade mercury mineralization by panning the walls of bulldozer trenches is also mentioned. Analyses of core and sludge have not been completed, but the core mineralization is described. The complete results of a soil sampling test are given on a map of the area and the method of analysis is described. The deposit, though very low grade, is of interest because of the wide extent of the mercury showing, its proximity to the Kuskokwim River, and its position in line with a series of mercury showings west of the Red Devil Mine. Available for reference at the Bureau of Mines offices, Juneau and Anchorage, Alaska, and at the Central Library, U.S. Department of the Interior, Washington, D.C. OFR 17-68. Removal of Fly Ash by Fluidized Bed Techniques.

Final Report to Bureau of Mines, by J. P. Pilney and E. E. Erickson (North Star Research and Development Institute). Mar. 8, 1968. 55 pp. 11 figs. The objective of this program was to determine the feasibility of using fluidized bed techniques to remove fly ash from gas streams. A literature search confirmed the potential for use of fluidized beds for removal of particles, but relatively little work has been directed toward deliberate use of a fluidized bed as a filter. The current program has indicated that fly ash can be removed effectively by passing an ash-containing gas stream through a shallow bed of fluidized particles. All three mechanisms studied—self-agglomeration in humidified air, coating the surfaces of sticky particles, and buildup of fly ash on the surface of other particles—can be used to remove fly ash. Available at the Morgantown Coal Research Center, Morgantown, W. Va.; at the office of the Solid Waste Research Program, Washington, D.C.; and at the Central Library, U.S. Department of the Interior, Washington, D.C.

i

ì

.

٢

1010

E

)

OFR 18-68. Labor Productivity Analysis of a Selected Segment of the Send and Gravel Industry, by Paul H. Mutschler. 1968. 10 pp. 8 figs. The object of this investigation is twofold: (1) to serve as a beginning point for future economic efficiency studies in the sand and gravel industry and (2) to see if there is any statistical correlation between plant output and labor productivity on a tons per man-hour basis (TPMH). Production data were gathered by individual plans and divided by number of hours worked by production personnel to arrive at a labor productivity value (TPMH). The results of the study revealed that continued improvement in economics of productions made during this study after 500,000 tons of output has been reached. Diminishing labor productivity may be in evidence when single plant operations exceed this volume. Available at the Bureau of Mines library, Pittsburgh, Pa., and at the Central Library, U.S. Department of the Interior, Washington, D.C.

OFR 1-69. Reconneissance of Tatenduk River Beds, by A. L. Kimball. 1969. 11 pp. 4 figs. Reconnaissance was conducted briefly by Bureau of Mines engineers in June 1962 and September 1963. The red beds are dominantly hematitic tuffaceous shales and conglomerates having an estimated thickness of 1,800 feet and an exposure area of more than 6 square miles. Nearly 800 feet of stratigraphic thickness was chip sampled in a series of discontinuous sections that assayed 4.73 to 24.7 soluble iron. Assays of 20.10 percent soluble iron for a 133-foot thickness and 21.85 percent soluble iron for a 200-foot thickness. Analyses of five bulk samples show the iron occurs as extremely fine, earthy hematite with only a trace of magnetic material and is not amenable to simple magnetic or gravity concentration. Available for reference during office hours at the Bureau of Mines filors in Juneau, Anchorage, and Fairbanks, Alaska; the Geological Survey offices, Denver, Colo., and Menlo Park, Calif.; and the State Public Information Office in Anchorage and the Resident Geologist, the State Division of Mines and Minerals, and the State Historical Library in Fairbanks, Alaska.

OFR 2-69. Coal Reserves of Greenup County, Ky., by Robert C. Johnson, 1969. 33 pp. 4 figs. Estimates were made of coal reserves in the two significant coalbeds of Greenup County, Ky. At least 10 coalbeds are present in Greenup County, but only two (Princess Nos. 3 and 7) have sufficient thickness, continuity, and areal extent to be significant sources of coal. Estimated recoverable reserves in these two beds total about 65.2 million tons. Of this total, 53.7 million tons were in beds of 28 inches and greater thickness. Strippable reserves were reported in two categories; 41.0 million tons of remaining recoverable reserves were in beds at least 28 inches thick under 120 feet or less of overburden; 11.5 million tons were in beds 14 to 48 inches thick under 60 feet or less of overburden. Discounts totaling 10.6 million tons for factors which may limit the mining of reserves resulted in a net recovery of 55.6 million tons for Greenup County. The coal is probably best suited for generating electric power. The basic data from which tonnages were derived consisted of drill logs, records of coal outcrop observations at prospects and mines, and geologic and coal reserve maps. Available for reference during office hours at the Knoxville Office of Mineral Resources, Knoxville, Tenn., and the Central Library, U.S. Department of the Interior, Washington, D.C.

OFR 3-69. Retary Diamond Coring Appalachian Area Oilfields Using Mud and Air, by R. L. Rough. 1969. This report contains excellent data concerning drilling and formation characteristics of oilfields in the Eastern United States. It supplements data in RI 7238 by the same author. Available for reference during office hours at the Morgantown Petroleum Research Laboratory, Morgantown, W. Va.

OFR 4-69. Testing of Northern Michigan and Wisconsin Glacial Lake Clays for Utilization as Iron Ore Pellet
Binders, by William S. Miska. 1969. 31 pp. 5 figs.
Glacial lake clay deposits in northern Michigan and
Wisconsin were sampled, tested, and found to be
unsuited for use as a bonding agent in iron ore
pellet manufacturing. Although the project effort
gave negative results, this report has been prepared
to detail project rationale, sampling procedures and
locations, and results of testing and analysis in the
expectation that this information may be of use to
persons interested in glacial lake clays and could
serve to eliminate duplication of effort in future
studies of clays from that area. Available for reference during office hours at the Bureau of Mines
library, Minneapolis, Minn.; Michigan Technological
University Library, East Lansing, Mich.; University
of Wisconsin Libraries, Superior and Madison, Wis.;
university of Minnesota Library, Duluth, Minn.;
and the Central Library, U.S. Department of the

OFR 5-69. Combustion and Related Phenomens in a Constant Volume Bomb, by C. F. Ellis, J. O. Chase, and R. W. Hurn. 1969. 44 pp. 24 figs. A constant volume bomb was constructed in 1948. Continuing through 1956, starting again in 1959, and concluding in 1960, applications have been made to (1) a study of ignition characteristics of some diesel fuels and some pure hydrocarbons; (2) ignition susceptibility of some hydraulic fuels; (3) heat absorption rates from inert atmospheres by injected fuels and heat release rate by reaction with air atmospheres; (4) the effect of some ignition accelerators on ignition delay; (5) an exploratory study of the rate of thermal decomposition of *n*-hexane; and (6) an exploratory study relating ignition delay time to temperature variation for various hydrocarbons. Work done under an agreement with the Public

ſ

Health Service, U.S. Department of Health, Education, and Weliare. Available for reference during office hours at the Bureau of Mines libraries at Pittsburgh, Pa., Bartlesville, Okla., and Laramie, Wyo.; the Morgantown Petroleum Research Laboratory, Morgantown, W. Va.; the San Francisco Petroleum Research Office, San Francisco, Calif.; and the Central Library, U.S. Department of the Interior, Washington, D.C.

OFR 6-69. Reconneissance Sampling of Decomposed Monzonite for Gold Near Flet, Alasko, by A. L. Kimball. 1969. 39 pp. 4 figs. The Bureau of Mines started an experimental reconnaissance sampling program to find methods for delineating and evaluating lode-gold deposits known to be the sources of stream placer deposits near Flat in the Iditarod mining district, Alaska. The Iditarod district yielded 1,329,404 fine ounces of placer gold from 1910 to 1966, more than 6 percent of the total placer gold produced in Alaska. The source of almost all the placer gold produced in the Iditarod district is lodes associated with two small bodies of decomposed monzonite, probably Tertiary in age, that have intruded Upper Cretaceous sedimentary rocks. Initial work included surface mapping and sampling the monzonites and adjacent rocks. Four hundred and fifty samples, taken with a tractor-mounted 4-inch power auger, were supplemented by 149 channel and grab samples and 72 specimens selected for petrographic analyses. Results of the preliminary reconnaissance indicate that the gold is not generally disseminated through the monzonites, but occurs in limited zones. Therefore, current work is directed toward finding methods for delineating such zones and determining the approximate grade. Available for reference during office hours at the Bureau of Mines offices in Juneau, Anchorage, and Fairbanks, Alaska, and the Central Library, U.S. Department of the Interior, Washington, D.C.

Off 7-69. A Quantitative Analysis of Mining Industry Finence, by Armando M. Lago. Prepared for the Bureau of Mines by Operations Research, Inc. December 27, 1968. 100 pp. 5 figs. Effective policy planning for the development and expansion of a healthy national mineral industry requires consideration of the factors affecting the supply of funds to the nonfuel mineral sector and the impact of these funds on its investment and exploration behavior. This study develops a quantitative econometric model of mineral industry financing, exploration, and investment behavior which will eventually permit the simulation of the response of the mineral sector to selected policy alternatives. Available for reference during office hours at the Bureau of Mines library, Denver, Colo., and the Central Library, U.S. Department of the Interior, Washington, D.C.

OFR 8-69. Toward a Methodology of Studying Coal Miners' Attitudes, by Edward E. Knipe and Helen M. Lewis. March 1968. 84 pp. 1 fig. This study was designed to develop methods for studying the impact of technology in coal mining on the community relationships and family patterns of coal miners. In particular, methods were needed to investigate and compare the work organization and interaction patterns in coal mines with different technologies and to explore the relationships between work organization and the coal miner's relationship to his work group, the community, and his family. An appendix contains interview forms used for the miners and their wives. Available for reference at the Bureau of Mines library, Denver, Colo.; and the Central Library, U.S. Department of the Interior, Washington, D.C.

OFR 9-69. Attitudes of Selected Zinc Miners and Their Wives in East Tennessee, by Helen M. Lewis and Edward E. Knipe. October 1968. 34 pp. This report summarizes the findings of interviewers of selected zinc miners and their wives in East Tennessee from the middle of April 1968 to the end of July 1968. These interviews were carried out for two reasons: First, to apply a questionnaire designed from an earlier study of coal miners to a non-coal mining population, and second, to gather information useful in comparing the attitudes of non-coal miners with coal miners. Although short and nonanalytical this report helps to establish some of the basic social and psychological parameters associated with the zinc miner, his family, and the community in which he lives. Available for reference during office hours at the Bureau of Mines library, Denver, Colo.; and the Central Library, U.S. Department of the Interior, Washington, D.C.

OFR 10-69. Data On Copper Occurrences Associated With Permian Formations in Texas, Oklahoma, and Kansas. 1969. The following data are being placed on open file: A table showing location and other information related to copper occurrences that have been developed to some degree. A table showing location and other information concerning outcrop samples taken in the course of investigation. Copies of 38 core drill hole logs and attendant assay data of samples taken. A location map showing geographic location of areas studied in some detail in Texas. Property ownership of lands drilled by the Bureau of Mines. Property survey maps of the Medicine Mounds and Truscott study areas in Texas showing outcrop sample sites and drill hole sites. A topographic map of the Buzzard Peak study area in Texas showing outcrop sample sites and drill hole sites. A correlation chart of Permian "red beds" in Texas, Oklahoma, and Kansas. Available for reference during office hours at the Bureau of Mines library, Bartlesville, Okla.

OFR 11-69. Microfilming of Mining Records in the Kuskekwim and Yukon River Basins, Alaska, by Raymond P. Maloney. 26 pp. 2 figs. Records of mineral location notices and assessment work from 1900 to 1965 from most of the Kuskokwim River basin and much of the lower part of the Yukon River basin and the Bristol Bay area are on microfilm. This is an area of mercury, gold, platinum, and iron mineralization which has seen considerable mining activity and has a good potential for additional discoveries. The report gives an idea of the wide extent of early exploration, prospecting, and mineralization, and indexes the film for quick location of areas of interest. Available for reference during office hours at the Bureau of Mines offices in Juneau, Anchorage, and Fairbanks, Alaska, and the Central Library, U.S. Department of the Interior, Washington, D.C.

Off 12-69. Use of Cool to Enhance Metabolic Treatment of Sewage, Final Report, prepared for the Bureau of Mines by Biospherics Research Incorporated. May 22, 1969. 150 pp. 6 figs. Eighteen different types and sizes of coal particulates were suspended in mixed liquors of sludge and raw sewage and recirculated with activated sludge in this investigation. The premise that the suspended coal particles concentrate nutrients and organic matter by physical adsorption and provide surface area for microbial growth in this enriched micro-environment was sup-ported by the results. Efficiency of biodegradation by the sewage micro-organisms as measured by several parameters, appeared to have been increased. Considerable improvement in sewage treatment objectives was achieved with some of the coals. However, additional work is required to establish conclusively that coal does in fact stimulate metabolic activity. Microscopic photographs taken of coal particles introduced into aerated mixed liquors show that micro-organisms concentrate on the surfaces of the coal during the aeration process. These photo-graphs support the premise that the addition of coal to mixed liquors does serve to provide micro-organisms with surface area for attachment and that the environment supports the micro-organisms. The fact that the organisms apparently grew on the surface is an indication that nutrients were available at or near the surface. Improvide phosphate uptake and enhanced BOD reduction together with the photographs support the theoretical basis of the program for some of the coals tested. The effects achieved warrant continued research in this potenfor reference during office hours at the Bureau of Mines Library, Pittsburgh, Pa., and at the Central Library, U.S. Department of the Interior, Wash-ington, D.C.

OFR 13-69. Lithologic and Fischer Assay Data on the Core From Bureau of Mines Washakie Basin Corehole No. 1. 1969. The report contains complete assays by the Bureau of Mines modified Fischer assay method for a core taken in a program to evaluate the oil shales of the Green River Formation. A complete lithologic description of the core is also given. Available for reference during office hours at the Bureau of Mines libraries at Laramie, Wyo., and Denver, Colo.

OFR 14-69. Methane: Bibliography of the Thermodynamic and Transport Properties Abave 300 K, by R. T. Moore, R. H. Harrison, and D. R. Douslin. 1969. 133 pp. The thermodynamic and transport properties of methane are being critically reviewed and correlated by the Bureau of Mines in cooperation with the Working Panel on Aliphatic Hydrocarbons of the Commission on Thermodynamics and Thermochemistry of the International Union of Pure and Applied Chemistry (IUPAC). A necessary part of that work is the preparation of a complete bibliography. This bibliography of the properties of methane above 300 K published before December 1968 complements one, prepared by the U.S. Department of Commerce, National Bureau of Standards (Technical Note 367), for the thermophysical properties of methane at temperatures below 300 K. Available for reference during office hours at the Bartlesville Petroleum Research Center, Bartlesville, Okla.

OFR 15-69. Barcus Creek Cerebole No. 1 Deta, by Staff, Laramie Petroleum Research Center. 1968. Barcus Creek Corebole No. 1 was drilled to evaluate oil shale on proposed Test Lease Site Sa. Data on open file include oil yield by modified Fischer assay, oil yield histograms, borehole logs (resistivity, spontaneous potential, gamma-ray, caliper, and compensated formation density), and surveys of minerals and their distribution in the core E

Ľ

samples as determined by X-ray diffraction. Available for reference during office hours at the Bureau of Mines libraries at Denver, Colo., and Laramie, Wyo.; and the Geological Survey Public Inquiry Office, Denver, Colo.

OFR 16-69. Sampling for Gold in River Bors, Kuskekwim River Bosin, Alasko, by Raymond P. Maloney. 1969. 10 pp. 2 figs. River bars were sampled over a 50-mile interval of the Kuskokwim River to determine the possibility of their containing significant amounts of gold. One-quarter cubic yard samples were concentrated using a small sluice box; the concentrate was further reduced by hand panning and then assayed. Colors of very fine gold were seen in pan concentrates from all samples, but assay results varied from nothing to 2 cents per cubic yard. It is probable that 50 percent of the total amount of gold present in the samples was recovered in the concentrate. Additional investigation is necessary to determine the extent and importance of this potential gold source; however, large-scale channel dredging operations or recovery of the gold as a byproduct in harbor excavation might be of economic importance. Available for reference during working hours at the Bureau of Mines offices in Juneau, Anchorage, and Fairbanks, Alaska; and at the Central Library, U.S. Department of the Interior, Washington, D.C.

OFR 17-69. A Study and Model of the Exploration Process in the Non-Fuel Mineral Industry, prepared for the Bureau of Mines by the CONSAD Research Corp. Aug. 15, 1969. This report contains a model of the mining exploration process, an analysis of the structure of the mining exploration industry, methods for evaluating comparative costs and benefits of alternative exploration programs, and other useful data on non-fuel mineral industry exploration that is not easily available elsewhere. Available for inspection during office hours at the Bureau of Mines libraries at Denver, Colo., Minneapolis, Minn., and Pittsburgh, Pa.; at the Bureau of Mines offices at San Francisco, Calif., and Spokane, Wash.; and at the Central Library, U.S. Department of the Interior, Washington, D.C.

OFR 18-69. A FORTRAN IV Computer Program for Preparing a Regional Interindustry Transaction Table From Secondary Data Sources, by Mary Carasso. 1969. 26 pp. The purpose of this program is to prepare an interindustry flow table for a region that will show transactions that are "net" in terms of regionally produced products; i.e., the flows are of net of "imports." The program is designed to assist individuals working with input-output information and is particularly useful with regional information where "imports" into a state or group of states must be accounted for. Available for inspection during office hours at the Bureau of Mines libraries, in Denver, Colo., and Pittsburgh, Pa.; and the Central Library, U.S. Department of the Interior, Washington, D.C.

OFR 19-69. A FORTRAN IV Computer Program for Manipulating Leontief Type Models, by Mary Carasso and Meir Carasso. 1969. 34 pp. At the option of the user, this program transforms, aggregates, and/or performs a variety of matrix manipulations for routine work with Leontief type models. The program is designed to assist individuals working with input-output information and is particularly

{

useful with regional information where "imports" into a state or group of states must be accounted for. Available for inspection during office hours at the Bureau of Mines libraries in Denver, Colo., and Pittsburgh, Pa.; and the Central Library, U.S. Department of the Interior, Washington, D.C. .

Off 20-69. Coal Reserves of Bibb County, Alabama, by Reynold Q. Shotts. 1969. 62 pp. 15 figs. Bibb County, Ala., has remaining recoverable coal reserves of 446 million tons, of which 19 million tons are recoverable by stripping. Bibb County coals generally contain less than 1.5 percent sulfur, are low in inherent ash, and are of high-volatile A bituminous rank. This report is related to a series of 44 county reports published by the Bureau of Mines between 1948 and 1956; a listing of these reports is given in Bureau of Mines RI 5267. Available for reference during working hours at the Central Library, U.S. Department of the Interior, Washington, D.C.

OFR 21-69. The Social and Economic Effects of the Substitution of Low Sulfur Coal for High Sulfur Coal: A Pilot Study of Manongalia County, West Virginia. Final Report, prepared by Frederick A. Zeller, Wil J. Smith, Samuel M. Brock, and Douglas M. Brown. Appalachian Center, West Virginia Univ., Morgantown, W. Va. December 1968. 57 pp. This report is a pilot study designed to show what might happen immediately and in the long run to the economy of Monongalia County, W. Va., if strict (less than 2 percent sulfur) air pollution standards were enforced upon its coal customers who then substituted low-sulfur coal for the high-sulfur coal of Monongalia County. An econometric model was the basic tool of analysis. Employment and income multipliers were used to supplement the model. The construction and use of the model for estimating economic change is discussed. Available for reference during working hours at the Bureau of Mines library, Pittsburgh, Pa.; and at the Central Library, U.S. Department of the Interior, Washington, D.C.

OFR 22-69. Silver in the United States. Potential Resources, by Staff, Bureau of Mines. 1969. 300 pp. The rising demand for silver, deficit in produc-tion, and the depletion of U.S. Treasury reserves were instrumental in the Bureau of Mines undertaking an investigation of unmined silver resources in the United States. The production potential of the Nation's principal active and inactive silver mining districts is evaluated, using 1964 economic and technologic conditions and assumed silver prices up to \$3.00 per ounce. All districts were researched, but only those having a past production or a potential exceeding 5 million ounces of silver were included in this report. It is estimated that the United States has about 4.9 billion ounces of unmined silver, excluding metal contained in gold deposits. Approximately 3.58 billion ounces are contained in deposits requiring higher silver prices to be economically minable; about 1.35 billion ounces are in currently operating mines. Available for inspection during office hours at the State of Idaho Bureau of Mines and Geology, Moscow, Idaho; at the Montana Bureau of Mines and Geology, Butte, Mont.; at the State of Oregon Department of Geology and Mineral Industries, Portland, Oreg.; at the Bureau of Mines offices at Juneau, Alaska, San Francisco, Calif., Denver, Colo., Dallas, Tex., and Spokane, Wash.; at the Reno Metallurgy Research Center, Reno, Nev.; and the Central Library, U.S. Depart-ment of the Interior, Washington, D.C.

OFR 23-69. The Commercial Demand for Gold in the United OFR 23-69. The Commercial Demand for Gold in the United States, by Constantine Michalopoulos and Roger C. Van Tassel. Clark University, Worcester, Mass. July 1969. 85 pp. This study consists of an analysis and projection of commercial demand for gold in the United States. It indicates a slower rate of growth for commercial gold use than most fore-cents. Ausileble for reference during working bours at the Central Library, U.S. Department of the Interior, Washington, D.C.

OFR 24-69. Adaption of Automation in the Cement, Salt, and

Iron Industries in South-Central United States, by Andrew Kuklis and G. T. McIntyre. 1969. 74 pp. 30 figs. The application of automation principles and equipment was studied in the cement, salt, and iron-ore processing in South-Central United States to determine the general effects, possible ad-vantages, and potential trends. This study may be

useful to other segments of the mineral industry that inherently processes large quantities of mineral ma-terials. Available for reference during working hours at the Bureau of Mines library, Bartlesville, Okla.; and at the Central Library, U.S. Department of the Interior, Washington, D.C.

OFR 25-69. Planning for Non-Renewable Common Mineral Resevres in Urban-Suburban Environs, by Donald Bishko, James R. Dunn, and William A. Wallace. Urban-Environmental Studies, Rensselaer Poly-technic Institute, Troy, N.Y., Oct. 18, 1969. 181 pp. 15 figs. This research was undertaken to delineate in dollar terms the magnitude of the result of not planning for the consumption of common mineral resources, and to develop a computer simulation model which will provide planners with an indica-tion of the effects of decisions affecting these re-sources. Available for reference during working hours at the Bureau of Mines libraries in Minne-prolis Winn and Donver Cole, and at the Control apolis, Minn., and Denver, Colo.; and at the Central Library, U.S. Department of the Interior, Wash-ington, D.C.

COOPERATIVE PUBLICATIONS

The following reports, resulting from investigations conducted cooperatively by the Bureau of Mines and the agencies noted, have been written in part by members of the Bureau and published by the coperating agency.

WITH THE BONNEVILLE POWER AMINISTRATION, U.S. DEPARTMENT OF THE INTERIOR

SPA 1-65. Potential for the Coal Industry in the Pacific Northwest, by Harry Perry, Max R. Geer, Columbus R. Gentile, and Herschel F. Jones. Pacific Northwest Economic Base Study for Power Markets, v. 11, pt. 11A. 1965. 203 pp. 39 figs. Gives results of a study of the coal industry in the Pacific Northwest. Objectives were to assess the industry's present economic significance in the region, to appresses the use of coal for steam generation of sland. praise the use of coal for steam generation of electric energy, to forecast the future development of the coal industry in terms of production and con-sumption in 5-year intervals to 1985, with projection of trends to 2010, to determine the future impact of the coal industry on the Pacific Northwest economv.

BPA 2-65. Sulfur Consumption in the Pacific Northwest, by William N. Hale and Norman S. Petersen. Pacific Northwest Economic Base Study for Power Markets, v. 2, pt. 13F. 1965. 51 pp. 11 figs. Reviews presently utilized sulfur resources and estimates that apparent demand for sulfur in all forms will be 670,000 long tons by 1985. This includes about 464,000 long tons of equivalent sulfur in sulfuric acid and 206,000 long tons of sulfur for manufactur-ing sulfite pulp, compared with 126,000 and 164,000 long tons, respectively, for these uses in 1962.

BPA 3-65. Trends and Outlook for Manufacture of Artificial Abrasives in the Pacific Northwest, by N. S. Peterson and W. N. Hale. Pacific Northwest Economic Base Study for Power Markets, v. 2, pt. 7A. 1965. 37 pp. 3 figs. This study was undertaken to review the status and outlook for artificial abra-sives manufacture in the region. The period 1949-62 is used as the base period, and the outlook for silicon carbide and aluminum oxide production in the Pa-cific Northwest is projected to 1985.

WITH THE GEOLOGICAL SURVEY, U.S. DEPARTMENT OF THE INTERIOR

The Wilderness Act (Public Law 88-577, Sept. 3, 1964) and the Conference Report on Senate bill 4, 88th Congress, direct the Geological Survey and the Bureau of Mines to make mineral surveys of wilderness and primitive areas. Areas officially designated as "wilderness," "wild," or "canoe" when the act was passed were incorporated into the National Wilderness Preservation System. Areas classed as "primitive" were not included in the Wilderness System, but the act provided that each area should be studied for its suitability for incorporation into the Wilderness System. These mineral surveys constitute one aspect of the suitability studies.

٠

GS 1-66. Mineral Resources of the San Rafael Primitive Area, California, by H. D. Gower, J. G. Vedder,
H. E. Clifton, and E. V. Post. Geol. Survey Bull.
1230-A. 1966. 28 pp. 8 figs. 2 plates. 60 cents.

GS 2-66. Mineral Resources of the Spanish Peaks Primitive Ares, Montane, by George E. Becraft, James A. Calkins, Eldon C. Pattee, Robert D. Weldin, and Joseph M. Roche. Geol. Survey Bull. 1230-B. 1966.

45 pp. 4 figs. 2 plates. 65 cents.

GS 3-66. Mineral Resources of the Flat Tops Primitive Area, Coloredo, by W. W. Mallory, E. V. Post, P. J. Ruane, W. L. Lehmbeck, and R. B. Stotelmeyer. Geol. Survey Bull. 1230-C. 1966. 30 pp. 4 figs. 2 plates. 60 cents.

G5 4-66. Mineral Resources of the Mount Jefferson Primitive Area, Oregon, by George W. Walker, Robert C. Greene, and Eldon C. Pattee. Geol. Survey Bull. 1230-D. 1966. 32 pp. 8 figs. 1 plate. 55 cents.

GS 5-66. Mineral Resources of the Stratified Primitive Area, Wyoming, by K. B. Ketner, W. R. Keefer, F. S. Fisher, D. L. Smith, and R. G. Raabe. Geol. Survey Bull. 1230-E. 1966. 56 pp. 17 figs. 1 plate. 60 cents.

GS 1-67. Mineral Resources of the Devil Canyon-Bear Canyon Primitive Area, California, by Dwight F. Crowder. Geol. Survey Bull. 1230-G. 1969. 21 pp. 2 pl. 4 figs. 55 cents.

GS 2-67. Mineral Resources of the Mount Boldy Primitive Area, Arizona, by Tommy L. Finnell, C. Gil-bert Bowles, and John H. Soulé. Geol. Survey Bull. 1230-H. 1967. 14 pp. 4 figs. 15 cents.

GS 3-67. Mineral Resources of the High Uintas Primitive Area, Utch, by Max D. Crittenden, Jr., Ches-ter A. Wallace, and M. J. Sheridan. Geol. Survey Bull. 1230-I. 1967. 27 pp. 1 pl. 8 figs. 60 cents.

GS 4-67. Mineral Resources of the Pine Mountain Primitive Area, Arizona, by F. C. Canney, W. L. Lehm-beck, and Frank E. Williams. Geol. Survey Bull. 1230-J. 1967. 48 pp. 2 pl. 5 figs. 65 cents.

GS 5-67. Mineral Appraisal of the Salt Creek Area, Bitter Lake National Wildlife Refuge, Chaves County, New Mexice, by George O. Bachman. Geol. Survey Bull. 1260-A. 1967. 10 pp. 5 figs. 15 cents. (Publication includes GS 6-67.)

GS 6-67. Mineral Appraisal of the Bosque del Apache Natianal Wildlife Refuge, Socarro County, New Mexico, by George O. Bachman and Ronald B. Stotelmeyer. Geol. Survey Bull. 1260-B. 1967. 9 pp. 1 fig. 15 cents. (Publication includes GS 5-67.)

GS 7-67. Summary Report on the Geology and Mineral Resources of the Bear River Migratory Bird Refuge,
 Box Elder County, Utah, by Lowell S. Hilpert. Geol.
 Survey Bull. 1260-C. 1967. 10 pp. 1 fig. 15 cents.

GS 8-67. Summary Report on the Geology and Mineral Resources of Monomovy National Wildlife Refuge, Barnstable County, Massachusetts, by Carl Koteff. Geol. Survey Bull. 1260-D. 1967. 4 pp. 1 fig. 15 cents. (Publication includes GS 9-67.)

G5 9-67. Summary Report on the Geology and Mineral Resources of the Great Swamp National Wildlife Refuge, New Jersey, by James P. Minard. Geol. Survey Bull. 1260-E, 1967. 14 pp. 6 figs. 15 cents. (Publication includes GS 8-67.)

GS 10-67. Mineral Resources of the Desolution Valley rPimitive Area of the Sierra Nevada, California, by F. C. W. Dodge and P. V. Fillo. Geol. Survey Bull, 1261-A. 1967. 27 pp. 6 figs. 60 cents.

GS 11-67. Mineral Resources of the Ventana Primitive Area, Montersy County, California, by Robert C.
Pearson, Phillip T. Hayes, and Paul V. Fillo. Geol.
Survey Bull. 1261-B. 1967. 42 pp. 5 figs. 2 pl.
\$1.

GS 1-68. Summary Report on the Geology and Mineral Resources of Flattery Racks, Quillayute Needles, and Copalis National Wildlife Refuges, Washington, by A. E. Weissenborn and Parke D. Snavely, Jr. Geol. Survey Bull. 1260-F. 1968. 15 pp. 8 figs. 1 plate. 55 cents. (Publication includes GS 2-68 and 3-68.)

G5 2-68. Summary Report on the Geology and Mineral Resources of the Oregon Islands National Wildlife Refuge, Oregon, by A. E. Weissenborn and Parke D. Snavely, Jr. Geol. Survey Bull. 1260-G. 1968. 4 pp. 4 figs. 55 cents. (Publication includes GS 1-68 and 3-68.)

G5 3-68. Summary Report on the Geology and Mineral Resources of the Three Arch Rocks National Wildlife Refuge, Oregon, by A. E. Weissenborn and Parke D. Snavely, Jr. Geol. Survey Bull. 1260-H. 1968. 4 pp. 4 figs. 55 cents. (Publication includes GS 1-68 and GS 2-68.)

GS 4-68. Mineral Resources of the Appelachian Region, by the U.S. Geological Survey and the U.S. Bureau of Mines. Geol. Survey Prof. Paper 580. 1968. 492 pp. 118 figs. This report evaluates the mineral resources of Appalachia in terms of their geologic setting and distribution, availability, and use and discusses the past, present, and future roles of the mineral industry. It was prepared by 67 specialists of the Geological Survey and the Bureau of Mines. The introductory part of the report describes the geography and physiography of Appalachia, discusses causes and effects of the current lagging economy in much of the region, and evaluates the mineral industry. A discussion of geology follows to provide the background for understanding the distribution and relative abundance of mineral commodities. The main part of the report consists of 50 sections which deal with history, production geology, and resources of each mineral commodity that has been produced or that potentially may be produced in Appalachia. \$4.50.

GS 5-68. Summary Report on the Geology and Mineral Resources of the Huron, Seney, Michigan Islands, Green Bay, and Gravel Island National Wildlife Refuges of Michigan and Wisconsin, by Carl E. Dutton. Geol. Survey Bull. 1260-I. 1968. 14 pp. 6 figs. 20 cents. (Publications includes GS 6-68.)

OP 6-68. Summary Report on the Geology and Mineral Resources of the Charons Garden Unit, Wichita Moun-

tains National Wildlife Refuge, Comanche County, Oklahoma, by Edward L. Johnson. Geol. Survey Bull. 1260-J. 7 pp. 1 fig. 20 cents. (Publication includes GS 5-68.)

GS 7-68. Summary Report on the Geology and Mineral Resources of the Bering Sea, Bogodef, Simeonof, Semidi, Tuxedni, St. Lazaria, Hazy Islands, and Farrester Island National Wildlife Refuges, Alaska, by Edward H. Cobb, Alexander A. Wanek, Arthur Grantz, and Claire Carter. Geol. Survey Bull. 1260-K. 28 pp. 10 figs. 20 cents.

GS 8-68. Mineral Resources of the Uncompany Primitive Area, Colorado, by R. P. Fischer, R. G. Luedke, M. J. Sheridan, and R. G. Raabe. Geol. Survey Bull. 1261-C. 1968. 91 pp. 19 figs. 3 pl. \$1.75.

.

P

Ł

GS 9-68. Summary Report on the Geology and Mineral Resources of the Harney Lake and Molheur Lake Areas of the Malheur National Wildlife Refuge, North-Central Harney County, Oreg., by G. W. Walker and D. A. Swanson. Geol. Survey Bull. 1260-L. 1968. 17 pp. 3 figs. 20 cents. (Publication includes GS 10-68.)

G5 10-68. Summary Report on the Geology and Mineral Resources of the Poker Jim Ridge and Fort Warner
 Areas of the Hart Mountain National Antelope Refuge, Lake
 County, Oreg., by G. W. Walker and D. A. Swanson.
 Geol. Survey Bull, 1260-M. 1968. 16 pp. 3 figs.
 20 cents. (Publications includes GS 9-68.)

GS 11-68. Summary Report on the Geology and Minoral Resources of the Okefenokee National Wildlife Refuge,
Ga., by J. E. Smedley. Geol. Survey Bull. 1260-N.
1968. 1968. 10 pp. 1 fig. 20 cents. (Publication includes GS 12-68.)

G5 12-68. Summary Report on the Geology and Mineral Resources of the Passage Key, Island Bay, Ceder Keys, and Pelicna Island National Wildlife Refuges, Fla., by C. L. Perdue, Jr. Geol. Survey Bull. 1260-0. 1968. 13 pp. 5 figs. 20 cents. (Publication includes GS 11-68.)

GS 13-68. Summary Report on the Geology and Mineral Resources of the Edmunds Unit, Moosehorn National Wildlife Refuge, Washington County, Maine, by M. H. Pease, Jr. Geol. Survey Bull. 1260-P. 1968. 18 pp. 15 cents.

GS 1-49. Mineral Resources of the Mission Mountains Primitive Aree, Missoula and Lake Counties, Montena, by Jack E. Harrison, Mitchell W. Reynolds, M. Dean Kleinkopf, and Eldon C. Pattee. Geol. Survey Bull. 1261-D. 1969. 48 pp. 5 figs. \$1.25.

GS 2-69. Mineral Resources of the Blue Range Primitive Area, Greenles County, Arizona, and Catron County, New Mexico, by James C. Rattee, E. R. Landis, David L. Gaskill, and R. G. Raabe. With a section on Aeromagnetic Interpretation, by Gordon P. Eaton. Geol. Survey Bull. 1261-E. 1969. 91 pp. 21 figs. \$1.

GS 3-69. Mineral Resources of the San Juan Primitive Area, Colorado, by T. A. Steven, L. J. Schmitt, Jr., M. J. Sheridan, and F. E. Williams. With a section on Iron Resources in the Irving Formation, by Jacob E. Gair and Harry Klemic. Geol. Survey Bull. 1261-F. 1969. 187 pp. 20 figs. \$1.75.

WITH THE KENTUCY GEOLOGICAL SURVEY

KNR. Industrial Sond in Pike County, Kentucky, by R. P. Hollenbeck, J. S. Browning, and T. L. McVay. Kentucky Geol. Survey, ser. 10, RI 7. 1967. 30 pp. 5 figs.

WITH THE MARYLAND GEOLOGICAL SURVEY

MNR. Expandable Clay in St. Marys Formation of Southern Maryland, by Maxwell M. Knechtel, Howard P. Hamlin, and John W. Hosterman. Maryland Geological Survey, RI 4. 1967. 17 pp. 5 figs.

WITH THE NEW MEXICO BUREAU OF MINES AND MINERAL RESOURCES

NMNR. Borite Deposits of New Mexico, by Frank E. Williams, P. V. Fillo, and P. A. Bloom. New Mexico Bureau of Mines and Mineral Resources, Circ. 76. 1964. 46 pp.

WITH THE NORTH CAROLINA DIVISION OF MINERAL RESOURCES, DEPARTMENT OF CONSERVATION AND DEVELOPMENT

NCNR. Titanium Deposite in North Carolina, by Lloyd Williams. North Carolina Dept. of Conservation and Development, Div. of Min. Res. Inf. Circ. 19, 1965. 51 pp. 8 figs. Records of 110 mineral deposits were investigated for titanium and associated minerals in North Carolina. The low mineral tenor or lack of data on the deposits eliminated their classification as ore reserves. However, records of drill holes and laboratory tests on samples showed that seven deposits were sufficient magnitude to justify estimating their total content of ilmenite, rutile, zircon, and monazite. The most extensively mined titanium mineral deposit in North Carolina is the Yadkin River deposit in Caldwell County, operated as an open pit. During the period 1942-52, the operation produced 215,400 tons of concentrate containing 51 percent TiO₂

WITH THE BUREAU OF TOPOGRAPHIC AND GEOLOGIC SURVEY, COMMONWEALTH OF PENNSYLVANIA

PNR. Preparties and Uses of Pennsylvania Shales and Clays, by B. J. O'Neill, Jr., D. M. Lapham, M. G. Jaron, A. A. Socolow, R. D. Thomson, and H. P. Hamlin. 1965. 488 pp. 20 figs. Detailed sampling and extensive testing were carried out on 150 samples of Pennsylvania clays and shales to evaluate the potential for commercial use. Among the samples tested, 137 indicated properties suitable for common and decorative brick, floor tile, drain and chinney flue tile, refractories, lightweight aggregate, artware, pottery, filler, and pigments. Of particular importance are those clays and shales that can be made into lightweight aggregate. This report represents an evaluation of all major clay and shale formations in the State.

1

1

1

,

_

WITH THE SOUTH CAROLINA STATE DEVELOPMENT BOARD, DIVISION OF GEOLOGY

SCNR. Heavy Minerals in South Caroline, by Lloyd Williams. South Carolina State Development Board, Division of Geology, Bull. 35. 35 pp. 15 figs.

WITH THE STATE OF TENNESSEE, DEPARTMENT OF CONSERVATION, DIVISION OF GEOLOGY

TNR. Coromic Evaluation of Clays and Shales of East Tennessee, by R. P. Hollenbeck and M. E. Tyrrell. State of Tennessee, Department of Conservation, Division of Geology, RI 25. 1969. 22 pp.

WITH THE VIRGINIA DEPARTMENT OF CONSERVATION AND ECONOMIC DEVELOPMENT, DIVISION OF MINERAL RESOURCES

VNR 1-65. Analysis of Clay, Shales, and Related Materials-Southwestern Counties, by Stanley S. Johnson, Marion V. Denny, and D. C. Le Van. Virginia Division of Mineral Resources, Min. Res. Rept. 6, 1965. 210 pp. 11 figs. Contains results of tests and determinations of properties required to evaluate the potential ceramic and nonceramic uses of 120 samples of clay, shale, and coal refuse from Bland, Buchanan, Dickenson, Giles, Lee, Pulaski, Russell, Scott, Smyth, Tazewell, Washington, Wise, and Wythe Counties. Tests indicate that 46 samples are potentially suitable for brick, 13 for common or inside brick, 2 for glazed brick, 1 for flue brick, 7 for decorative brick, 17 for tile, 6 for decorative tile, 3 for quarry tile, 2 for drain tile, 1 for flue tile, 12 for pottery, 7 for artware pottery, 1 for earthenware, 1 for insulating material, 1 for use in glazing, 60 for lightweight aggregate, and 1 for

VNR 1-67. Analyses of Clay and Related Materials-Eastern Counties, by Stanley S. Johnson and Miles E. Tyrrell. Virginia Division of Mineral Resources, Min. Res. Rep. 8. November 1967. 232 pp.

MONOGRAPHS

A monograph is a detailed report of a cooperative investigation of a special subject in which the Bureau of Mines and another organization are mutually interested and usually relates to a study of problems encountered in production, distribution, or utlization of mineral fuels. The two monographs described here may be obtained from the Interstate Oil Compact Commission, Oklahoma City, Okla.

M 12. Surface and Shallow Oil-Impregnated Rocks and Shallow Oil Fields in the United States, compiled by Ball Associates, Ltd. 1965. 375 pp. 40 figs. Presents the results of a survey of occurrences of tar sands and oilfields to subsurface depths of 600 feet. Describes 546 occurrences of tar sands and 383 shallow oilfields in 27 States and includes 40 maps of shallow oilfields and tar-sand occurrences. Reserve figures are available for only a few deposits. Incomplete as these reserve figures are, they total 2.5 to 5.5 billion barrels of bitumen recoverable by known mining methods. This monograph should be of substantial interest and value, particularly in view of current interest and activity in thermal methods of stimulating petroleum production.

M 13. Oil Recovery From Gas-Cap Reservoirs: An Engineering Evaluation of Conservation Practices in Six Reservoirs, by Lewis K. Weaver and Kenneth F. Anderson.

COOPERATIVE PUBLICATIONS

1966. 106 pp. 70 figs. This report describes the performance of six gas-cap reservoirs (sometimes called combination reservoirs) that are examples of good engineering and good regulatory practices. The six reservoirs, each located in a different State, were selected to illustrate the multiplicity of problems to be coped with in efficient and scientifically sound production of oil and gas and to show the value of conservation. Since each reservoir has different geologic conditions, rock characteristics, and fluid properties, the methods of operation vary appreciably. Five of the methods are utilized operations; the sixth is not. In each reservoir the opera-

tors, in conjunction with the State regulatory bodies, improved the production practices to increase the ultimate hydrocarbon recoveries. Most data and comparisons of recoveries by unimproved and improved producing practices were furnished by the operators, unless otherwise noted. Whenever possible, data to January 1, 1966, are included. The anticipated increase in ultimate oil and condensate recovery due to the improved production practices in the six reservoirs is approximately 106.7 million barrels, or about 47.5 percent more than would have been recovered with unimproved production practices.

.

Ş

The following patents were granted to the Bureau of Mines during the period 1965 through 1969. These processes, which can be used by any U.S. citizen or organization without royalty payment upon authorization by the Department of the Interior, were developed by Bureau scientists. Applications for the use of any of these patents should be made to the Office of the Solicitor, Department of the Interior, Washington, D.C. 20240.

P 1-65. Removal of Oxygan and Aluminum Prepared by Alumino-Thermic and Similar Processes. C. J. Chindgren. U.S. Pat. 3,184,302, May 18, 1965.

P 2-65. Apparatus for Concentrating Trace Impurities in High-Purity Helium. W. M. Deaton and C. G. Kirkland. U.S. Pat. 3,194,054, July 13, 1965.

P 3-65. Inclined-Piston Deadweight Pressure Gauge. D. R. Douslin. U.S. Pat. 3,195,354, July 20, 1965.

P 4-65. Correction Inhibitor for Solutions of Alkaline Carbonates. J. H. Field and D. Bienstock. U.S. Pat. 3,181,929, May 4, 1965.

P 5-65. Upgrading Primary Manganese Matte. R. C. Kirby. U.S. Pat. 3,179,514, Apr. 20, 1965.

P 6-65. Sealing System for Blast Furnace Bells for High Pressure Top Operation. N. B. Melcher and W. W. Mahan. U.S. Pat. 3,221,906, Dec. 7, 1965.

P 7-65. Method of Agglomerating Iron Ore Fines. R. E. Perry. U.S. Pat. 3,185,564, May 25, 1965.

P 8-65. Process for Separating the Rare-Earth Elements by Means of Solvent Extraction. A. C. Rice. U.S. Pat. 3,192,012, June 19, 1965.

P 9-65. Synthesis of Large Crystals of Fluorophlogopite Mica. H. R. Shell, N. A. Pace, and E. F. Nichols. U.S. Pat. 3,222,142, Dec. 7, 1965.

P 1-66. Process for Preparation of Caustic-Resistant Containers for High-Temperature Use. W. A. Calhoun and Lee N. Ballard. U.S. Pat. 3,236,682, Feb. 22, 1966.

P 2-66. Process for the Recovery of Rhenium. Philip E. Churchward. U.S. Pat. 3,260,658, July 12, 1966.

1

1

1

1

i

- P 3-66. Solvent Extraction Process for Recovery of Rhenium. Philip E. Churchward. U.S. Pat. 3,244,475, Apr. 5, 1966.
- P 4-66. Inclined-Piston Dead-Weight Pressure Gauge. Donald R. Douslin. U.S. Pat. 3,260,118, July 12, 1966.

P 5-66. Elimination of Agglomeration by Freezing of Lignite or Other Moisture-Containing or Welted Aggregates During Shipment. Robert S. Ellman and John W. Belter. U.S. Pat. 3,243,889, Apr. 5, 1965.

- P 6-66. Flame Spraying of Catalytically Active Pulverized Metal Oxides on Supports. Albert J. Forney and Joseph J. Demeter. U.S. Pat. 3,271,326, Sept. 6, 1966.
- P 7-66. Process for Improved Flotation Treatment of Iron Ores by Selective Flocculation. Donald W. Frommer and Arthur F. Colombo. U.S. Pat. 3,292,780, Dec. 20, 1966.
- P 8-66. Synthesis of Fibrous Silicon Nitride. Robert C. Johnson, J. K. Alley, W. H. Warwick, and Haskiel Roy Shell. U.S. Pat. 3,244,480, Apr. 5, 1966.
- P 9-65. Process for Separating Rare-Earth Elements by Ion Exchange. Roald E. Lindstrom and J. Oscar Winget. U.S. Pat. 3,228,750, Jan. 11, 1966.
- P 10-66. Top Closure for High Temperature Electrostatic Precipitator. Lee Mafrica. U.S. Pat. 3,293,829, Dec. 27, 1966.
- P 11-66. Reduction Reasting With Iron. Norwood B. Melcher. U.S. Pat. 3,273,993, Sept. 20, 1966.

P 12-66. Smelting Reduced Iron Ore Pellets in the Blast Furnace. Norwood B. Melcher, Morris M. Fine, and Philip L. Woolf. U.S. Pat. 3,282,678, Nov. 1, 1966.

- P 13-66. Flotation of Mico. Frank W. Millsaps and James S. Browning. U.S. Pat. 3,278,028, Oct. 11, 1966.
- P 14-66. Device for Securing Plug in an Infusion Hole. Richard H. Oitto, Jr. U.S. Pat. 3,287,920, Nov. 29, 1966.
- P 15-66, Fraction Separation of Aqueous Rare Earths Using Amines. Andrew C. Rice. U.S. Pat. 3,259,472, July 5, 1966.
- P 16-66. Recovery of Zinc From Die-Cast Scrap. John A. Ruppert and Paul M. Sullivan. U.S. Pat. 3,273,995, Sept. 20, 1966.

P 17-66. Binder and Surface Coating Made From Coal and Asphalt. Martin D. Schlesinger and Raymond W. Hiteshue. U.S. Pat. 3,264,957, Aug. 9, 1966.

- P 18-66. Prerefining Blass Furnace Iron. Francis X. Tartaron. U.S. Pat. 3,271,128, Sept. 6, 1966.
- P 1-67. Method of Quantitatively Determining Trace Imputities in Inert Gas Systems. D. M. Bailey, W. T. Abel, and P. G. Salgado. U.S. Pat. 3,332,745, July 25, 1967.
- P 2-67. Flotation of Mice. J. S. Browning and R. B. Adair. U. S. Pat. 3,329,265, July 4, 1967.
- P 3-67. Process for Conveying Mineral Solids Through Conduits. R. L. Adams. U.S. Pat. 3,341,256, Sept. 12, 1967.

P 4-67. Synthesis of Aluminum Borate Whiskers. John K. Alley and Robert C. Johnson. U.S. Pat. 3,350,166, Oct. 31, 1967. P 5-67. Selective Extraction and Separation of Lanthanides With a Quaternary Ammonium Compound. D. J. Bauer and R. E. Lindstrom. U.S. Pat. 3,323,857, June 6, 1967.

9 6-67. Method of Producing a Nonagglomerating Char From a Strongly Caking Coal. S. J. Gasior and A. J. Forney. U.S. Pat. 3,355,363, Nov. 28, 1967.

7 7-67. Decaking of Caking Coals. S. J. Gasior, A. J. Forney, and J. H. Field. U.S. Pat. 3,357,896, Dec. 12, 1967.

P 8-67. Read Binder and Surface Coating from Coal. H. H. Ginsberg, M. D. Schlesinger, and R. W. Hiteshue. U.S. Pat. 3,341,344, Sept. 12, 1967.

P 9-67. Improved Method for Froducing Molybdenum from Molybdenite (MoS₁). H. J. Heinen, C. L. Barber, and D. H. Baker, Jr. U.S. Pat. 3,330,646, July 11, 1967.

P 10-67. Undulatory Conveyor. Thomas E. Howard. U.S. Pat. 3,343,655, Sept. 26, 1967.

P 11-67. Water-Swelling Fluorphlogopite Mica and Fluoramphiboles and Methods for Making Same. K. H. Ivey. U.S. Pat. 3,360,333, Dec. 26, 1967.

P 12-67. Cast iron or etal Product and Process Therefor. K. H. Ivey and H. R. Shell. U.S. Pat. 3,360,364, Dec. 26, 1967.

P 13-67. Preparation of Homogeneous Powders Composed of Ultrafine Particles. Arne Landsberg. U.S. Pat. 3,357,819, Dec. 12, 1967.

P 14-57. Process for Washing and Removing Organic Heavy liquids From Mineral Particles. C. Rampacek, J. S. Browning, and T. L. McVay. U.S. Pat. 3,347,370, Oct. 17, 1967.

P 15-67. Apparatus and Process for Continuous Measurement of Maisture in Moving Coal by Neutron Thermalization. Robert F. Stewart. U.S. Pat. 3,353,021, Nov. 14, 1967.

P 16-67. Biochemical Method for Producing Electricity. J. A. Sutton and J. D. Corrick. U.S. Pat. 3,336,161, Aug. 15, 1967.

17-67. Extensionerer. G. G. Waddell. U.S. Pat. 3,327,396, June 27, 1967.

P 18-67. Dynamic Pressure Gage. Richard W. Watson. U.S. Pat. 3,341,797, Sept. 12, 1967.

P 1-68. Pressure Measuring Device Employing a Disphragm and Strain Gages. R. C. Bates and E. L. Corp. U.S. Pat. 3,372,577, Mar. 12, 1968.

P 2-68. Method of Burning Cool. D. Bienstock, R. L. Amsler, and E. R. Bauer, Jr. U.S. Pat. 3,382,822, May 14, 1968.

P 3-68. Process for Manganese Recovery from Leach Solutions. F. E. Brantley and Carl Rampacek. U.S. Pat. 3,397,130, Aug. 13, 1968.

P 4-68. Device for Taking Gas or Liquid Samples From a Closed System Without Contaminating the System. R. E. Brown and R. A. Hickerson. U.S. Pat. 3,412,613, Nov. 26, 1968.

P 5-68. Method of Preparing Zirconium Carbide Fibers and the Product Thereof. R. A. Clifton, Jr. and R. C. Johnson. U.S. Pat. 3,385,669, May 28, 1968.

.

P 6-68. Pressure Measuring Device Employing a Diaphrogm-Type Pressure Responsive Unit. E. L. Corp and R. C. Bates. U.S. Pat. 3,374,677, Mar. 26, 1968.

P 7-68. Consolidation and Forming High Energy-Rate Extrusion Powder Material. J. G. Croeni and J. S. Howe, Jr. U.S. Pat. 3,390,985, July 2, 1968.

P 8-68. A Method of Producing Anhydraus Chromous Chloride From Chromium Metel. R. L. deBeauchamp and T. A. Sullivan. U.S. Pat. 3,397,946, Aug. 20,

- 1968.
- P 9-68. Oil Well Treatment and Operation to Overcome Water Coning. E. C. Donaldson and C. H. Riggs. U.S. Pat. 3,369,605, Feb. 20, 1968.

P 10-68. Process for Removing Phosphorous From Iron Ores. I. L. Feld, T. W. Franklin, and W. M. Lampkin. U.S. Pat. 3,402,041, Sept. 17, 1968.

.

ŗ

)

ŧ

) [

1

ľ

P 11-68. Ion Exchange Process for Desulfating Natural Brines. D. R. George and J. M. Riley. U.S. Pat. 3,378,336, Apr. 16, 1968.

P 12-68. Flowmeter for Gas-Solids Suspensions. H. G. Gibson, G. E. Fasching, and D. E. Bluman. U.S. Pat. 3,408,866, Nov. 5, 1968.

P 13-68. Method for Separating Metals From Gangue Constituents. J. M. Gomes, D. H. Baker, Jr., and K. Uchida. U.S. Pat. 3,373,097, Mar. 12, 1968.

P 14-68. Electrochemical Preparation of Metal Sulfides. H. J. Heinen, D. H. Baker, Jr., and J. M. Gomes. U.S. Pat. 3,375,180, Mar. 26, 1968.

P 15-68. Frequency Converter System. E. E. Maust, Jr., and G. R. Hyde. U.S. Pat. 3,369,168, Feb. 13, 1968.

- P 16-68. Controlled Thermal Environmental Apparatus. J. R. McVey. U.S. Pat. 3,409,757, Nov. 5, 1968.
- P 17-68. Method of Making Mica Paper. J. L. Miller, Jr., and K. H. Ivey. U.S. Pat. 3,390,045, June 25, 1968.
- P 18-68. Explosive-Centerhole Anchor. E. W. Parsons and L. Osen. U.S. Pat. 3,401,461, Sept. 17, 1968.
- P 19-68. Sampling Device. C. S. Smith. U.S. Pat. 3,416,374, Dec. 17, 1968.

P 20-68. Crystallization of Tungsten Disulfide From Molten Slags. Joseph W. Town. U.S. Pat. 3,399,033, Aug. 27, 1968.

P 21-68. Method for Antimony Precipitation of Mercury. Joseph W. Town. U.S. Pat. 3,361,559, Jan. 2, 1968.

P 22-68. Electrodeposition of Molybdenum. C. Wyche, F. X. McCawley, and D. Schlain. U.S. Pat. 3,369,978, Feb. 20, 1968.

P 1-69. Hydraulic Drive Drilling. Robert W. Ageton. U.S. Pat. 3,464,502, Sept. 2, 1969.

P 2-69. Process for Fractionating Lanthanide Mixtures Containing Corium. Donald J. Bauer and R. E. Lindstrom. U.S. Pat. 3,425,793, Feb. 4, 1969.

P 3-69. Preparation of High-Purity Nickel and Cobah. Parkman T. Brooks. U.S. Pat. 3,446,720, May 27, 1969.

P 4-69. A Method of Drawing Wire by Using a Novel Gripping Device. Donald K. Deardorff. U.S. Pat. 3,431,766, Mar. 11, 1969. P 5-69. Selective Dielectric Heating of Pyrite in Coal. Sabri Ergun and M. Berman. U.S. Pat. 3,463,623, Aug. 26, 1969.

P 6-69. Combined Process for Pertreating, Carbonizing and Gasifying Caking Coals. A. J. Forney, S. Gasior, and J. H. Field. U.S. Pat. 3,463,310, Aug. 26, 1969.

P 7-69. Process for Improving the Heating Values of Fuel Gases. S. Friedman and R. W. Hiteshue. U.S. Pat. 3,429,679, Feb. 25, 1969.

P 8-69. A Method of Recovering and Producing Potassium Salts. D. R. George, James M. Riley, and J. Richard Ross. U.S. Pat. 3,429,657, Feb. 25, 1969.

P 9-69. Extraction of Copper From Molton Metal Mehs. K. H. Ivey and S. J. Chastain. U.S. Pat. 3,441,404, Apr. 29, 1969.

P 10-69. The Production of Carbon Black From Coal. Glenn E. Johnson. U.S. Pat. 3,424,556, Jan. 28, 1969.

P 11-69. Process for Removing Organic Contaminants Using Coal Adsorbents. Glenn E. Johnson, A. J. Forney, and J. H. Field. U.S. Pat. 3,424,676, Jan. 28, 1969.

P 12-69. Method of Synthesizing Asbestos. Robert C. Johnson and Haskiel R. Shell. U.S. Pat. 3,463,607, Aug. 26, 1969.

- P 13-69. Process for Continuous Carbonization of Coal. William S. Landers. U.S. Pat. 3,455,789, July 15, 1969.
- P 14-69. Muhiple Orifice Fine Particle Feeder. Harry G. Lucas. U.S. Pat. 3,485,420, Dec. 23, 1969.

P 15-69. Process and Method for Quenching Incipient Ignitions of Methane. D. W. Mitchell, E. M. Murphy, E. M. Kawenski, J. Nagy, and R. P. Williams. U.S. Pat. 3,482,637, Dec. 9, 1969.

P 16-69. Apparatus for forming Spherical Pellets. Stanley Nazaruk, Carl Rosa, and Alvin F. Headrick. U.S. Pat. 3,427,683, Feb. 18, 1969.

P 17-69. Method and Apparatus for Growing Large Monocrystals of Nonmetallics. E. F. Nichols, K. H. Ivey, and H. R. Shell. U.S. Pat. 3,443,891, May 13, 1969.

P 18-69. Process for Polyacrylamide Removal From Porsus Media, Joseph Pasini III. U.S. Pat. 3,482,-635, Dec. 9, 1969.

P 19-69. A Method of Identifying and Studying Texture by Means of Indentations. Colin J. Sandwith. U.S. Pat. 3,435,668, Apr. 1, 1969.

P 20-69. Process for Electrostatic Precipitation. C. C. Shale. U.S. Pat. 3,482,374, Dec. 9, 1969.

REPRINTS AVAILABLE FROM THE CLEARINGHOUSE

Beginning in 1966 selected Bureau of Mines publications were made available in · reprint form from the Clearinghouse for Federal Scientific and Technical Information. Material from the Clearinghouse is available in two forms: hard cover copies and microfiche. Unless otherwise stated, single hard cover copies of a document cost \$3 and single microfiche copies cost 65 cents. Quotations on quantity purchases of a single title are available from the Clearinghouse upon request. For convenience in ordering, coupons are supplied by the Clearinghouse at \$3 each (book of 10 for \$30) for hard copies; coupons for microfiches copies cost \$32.50 for a book of 50. Purchases may also be made by check or money order payable to the Clearinghouse or may be charged to Clearinghouse deposit accounts.

Address requests to:

Clearinghouse for Federal Scientific and Technical Information

U.S. Department of Commerce

Springfield, Va. 22151

The following list of Bureau of Mines publications (by series and number) now available from the Clearinghouse for Federal Scientific and Technical Information may be used to find the Clearinghouse number of the publication.

B 442 PB 180 642 B 503 AD 700 574 B 601 PB 189 536 B 611 PB 184 960 B 627 AD 701 576 IC 7784 PB 184 990 IC 7781 AD 680 441 IC 7880 AD 680 442 IC 7881 AD 680 442 IC 7881 AD 680 442 IC 7941 AD 680 444 IC 7941 AD 680 444 IC 7941 AD 680 444 IC 8040 PB 184 993 IC 8040 PB 184 993 IC 8060 PB 184 993 IC 8060 PB 187 760 IC 8060 PB 187 7760	i C 8424 PB 187 737 IC 8433 PB 185 630 OFR 7-68 PB 127 784 OFR 1-68 PB 127 784 OFR 12-68 AD 674 604 OFR 12-68 AD 674 604 OFR 13-68 PB 177 184 OFR 13-68 PB 177 184 OFR 15-65 PB 180 356 OFR 1-69 PB 183 780 OFR 2-69 PB 183 780 OFR 5-69 PB 183 781 OFR 5-69 PB 183 781 OFR 7-69 PB 183 781 OFR 7-69 PB 183 781 OFR 7-69 PB 183 786 OFR <
IC 8125 PB 187 891	OFR 17-69 PB 188 526
IC 8271 PB 169 685 IC 8342 PB 188 628	OFR 19-69 PB 187 398 OFR 20-69 PB 187 948
IC 8374 PB 189 158	
IC 8387 AD 577 727 IC 8388 PB 180 205 IC 5389 PB 180 205	OP 10-65 PNE 3001 OP 164-65 AD 612 468
IC 8392 PB 180 355 IC 5369 PB 152 671	OP 96-66 AD 630 678 OP 9-67 AD 647 787
IC 8407 PB 183 371 IC 8412 PB 184 519 IC 8416 PB 184 805	
IC 8416 PB 184 805 IC 8419 PB 184 804	RI 6329 PB 173 818

23					ΡB											
					55	183 173	646 319	RI RI	7264 7265 7265	· · ·	•••	• • •	•	PB PB	184 184	812 813
65		11			PB PB	169	682	RI	7266 7267 7268				:	PB	184	814
	. 	• -	• •	••	PR	173	320		7268			• • •	·	PB		816
	•••	• •	• •	••	PB.					• • •	• • •	• • •	•	PB		816 817
27		::	1		PH		681	RÍ	7271					РН.		817 818
45					ΡĐ	184	662	RI	7272					PP	184	- \$19
68	•••	• •	• •	••	PB		322	RI	7273	• • •		• • •	·	PB	184	820
	•••	•••	- •	•••	PB	164	691	RI RI	7275	• • •	• • •	• • •	-	PR		54 548
83		1	1		ΡB	184	692	RI	7276				:	PR	155	649
17		۰.	• •		PB	183			7277		•••	• • •	•	PB	185	550
33	•••	• •	• •	• •	FB	189	903		7278	• • •	• • •	• • •	•	5H	185	551 552
*o 51		::			PH	180	070	RI	7280				1	PB	185	653
55				· •	ΡB	180	201	RI	7281					PB	185	554
56	•••	•••	••	••	PB		076		7282	•••	•••	•••	٠	PB PB	185	55
38 61	•••	::		11	PR		074	RI	7284					PB	185	141
62				.,	ΡB	180	202	RI	7285					ΡB	186	142
53		, .	• •	••	PB	180	072	RI	1286		• • •		-	PB		557
04 65	•••	•••	••	••	20	180	069	17	7286	• • •	•••	•••	•	PB	196	143
68		::	::		ΡB	180	203	- 71	7289					ΡB	196	140
69			• •	••	DD	180	204	RI		· · ·			-	PB		146
43 80	•••	• •	• •	••	PB	183	372	RI	7292	•••	•••	• • •	•	PB	186	147
97 .	•••				AD.	683	748	RI					:	PR	186	149
00					PB	183	319	Rl	7295				•	PR	187	149 742 743
04	· · •	• •	• •	••	PB	132	673		7295	•••	• • •	•••	•	DD	187	743
06	•••	•••	•		PR	182	675	RI	7298					PR		743
07		::		1	ΡĐ	182	6(6	RI	299					ΡB	187	668
08		• •	•••		PB	182	677	RI	7300	• • •	•••		•	ΫB	13	748
09 10	•••	•••	• •	•••	PB	152	678		7302	•••	•••	•••	•	PB	187	$741 \\ 734$
ĩĩ.					ΡB	182	680	RĬ	7303					ΡĐ	188	418
12			• •	• •	PΒ	182		RI	7304		· · •			PB	187	722
13	•••	• •	• •	••	PB	182	682		7305	• • •	· · ·	•••	•	PB	187	739
16		::			DB	183	375	RI	7307				1	ΡB	187	
17					ΡB	182	684	RI	7308					ΡB	188	558
18		• •	• •	••	PB	182	685	RI	7309	· · ·	•••	•••	-	84	188	592 557 556
		::			PB	182	687	ŘÎ	7311				1	PR	188	556
22			• •		PB	182	688		7312				-	PB		540
23	• • •	• •	• •	•••	28	182	689	RI	7914		111	• • •	•	28	188	591 590
25				::	PB	182	691	RI	7315					ÞΒ	197	721
26			•••		ΡB	183	376	RI	7316		• • •			PB	188	646
27 . 70	• • •	• •	••	••	PB	182	692		7317	•••			-	58	188	589
29		::			PB	183	378	RI	7319					PR.	188	586
30					PB	183	379	RI	7320					PB	188	686 558
31	• • •	••	• •	• •	PB	183	380	RI	7321	· · •	• • •	• • •	•	PB	185	453 587
33			::	::	58	183	381	RI	7323				:	פס	188	419
9.4					ΡB	182	693	RI	7324					PH	188	58. 742
35	• • •		• •	٠.	PB	183	382		7325	• • •	• • •	• •	·	AD	693	742
30 87				•••	PR	183	384 384	RI	7333		• • •	• •	÷	PR	189	559 541
38		•••			ΡB	184	810	RI	7334				÷	PR.	189	542
39	•••		• •	••	PB	183	385	RI	7335	· · •	• • •		·	PB	189	543
42	•••	• •	•	••	PB	183	387		7350	• • •	•••	•••	÷	PR	189	645 660
48		::	1	::	ΡB	183	649	TE	ואי				1	РÐ	180	064
44		• •	• •	۰.	ΡÐ	183	645	TF	R 2		• • •	•••	•	PR	180	063
45 46	•••	• •	• •	••	PB	183	643 651	TF TT	R 3	•••	• • •	• •	·	PB PB	180	062
47		: -			PB	183	648	Ťŕ	R 5				;	РВ	180	066
48			•••		PB	183		ŢP	R 6				÷	PB	180	067
49 EA	• • •	• •	• •	••	PB			TP	R 7	•••	• • •	• • •	·	PB		068
		••	• •	••				11	6 J.	•••	•••	•••	•			720
			1					ŤF	R 10			•••	:	PB		509
63					ΡĐ	164	312	TF	R 11				;	PB	184	510
54			•••	••	PB	184	813	ŤF	R 12				Ĩ	PB	184	511
55			• •	۰.	PB	184	314	TF	R 13					ΡВ	184	512
56	•••	•••	• •	۰.	PB	184	315	TF	R 14	•••			•		184	513
07 59	•••	• •	•••	••	PB			TP	R 15	•••	• • •	• •	·	PB		514
00 59	• • •	••	•••	•	Г В Р В		326 997	1.5	R 15	•••	• • •	•••	•	18	184	806
60					ΡB	184	324	TP					:	PB	188	629
				-								•••	•			
61 62				٠.	PB	134 184	515	TP TP						ΡB	138	626
	88667761388173385155566611228345556666666667360700000000000000000000000	BB BC Comparison Comparison	35 46 46 46 47 58 58 51 55 56 57 56 57 58 57 56 57 56 57 56 57 56 57 56 57 56 57 56 57 56 57 56 57 56 57 56 57 50 50 51 51 52 51 52 52	36 37 38 39 30 31 32 33 34 35 36 37 38 39 30 31 32 33 34 35 36 37 38 39 30 31 32 33 34 35 36 37 38 39 30 31 32 33 34 35 36 37 38 39 31 32 33 33 34 35 36 37 38 39 31	35 36 46 37 58 33 46 58 51 55 56 57 58 56 57 58 58 56 57 58 59 52 53 54 55 56 57 58 59 50 57 50 57 50 57 50 57 50 50 51 52 53 54 55 56 57 58 59 50 51 52 52 53 54 55 <tr< td=""><td>95 </td><td>25 PB 173 26 PB 169 27 PB 169 28 PB 184 27 PB 184 27 PB 184 27 PB 184 28 PB 184 27 PB 184 27 PB 181 28 PB 184 27 PB 180 28 PB 180 25 PB 180 26 PB 180 27 PB 180 28 PB 182 205 PB 182 206 PB 182 207 PB 182 208 PB 182 209 PB 182 210 PB 182 22 PB 182 23 PB 182 24 PB 182 25<</td><td>25 PB 173 320 26 PB 169 683 46 PB 169 684 47 PH 169 684 45 PB 184 662 27 PB 184 662 28 PB 184 662 27 PB 184 662 28 PB 184 662 29 PB 184 662 217 PB 184 692 23 PB 180 077 25 PB 180 071 26 PB 180 071 25 PB 180 072 26 PB 180 072 26 PB 180 073 27 PB 180 074 28 PB 180 072 29 PB 180 072 20 PB 180 072 21 PB 180 072 22 PB 180 072 23 PB 180 203 29 PB 180 203 29 PB 180 203 20 PB 180 203 21 PB 180 203 22 PB 180 267 23 PB 180 263 24 PB 182 673 25 PB 182 673 <t< td=""><td>25 </td><td>26 PB 169 683 RI 7270 27 PB 169 684 RI 7271 46 PB 169 684 RI 7271 45 PB 173 322 RI 7273 58 PB 173 822 RI 7275 68 PB 173 822 RI 7275 75 PB 184 662 RI 7275 75 PB 184 692 RI 7277 75 PB 184 692 RI 7277 76 PB 180 070 RI 7278 83 PB 180 071 RI 7278 84 PB 180 071 RI 7280 55 PB 180 076 RI 7281 56 PB 180 072 RI 7285 57 PB 180 074 RI 7284 58 PB 180 072 RI 7287 58 PB 180 074 RI 7287 58 PB 180 203 RI 7287 58 PB 180 203 RI 7287 58 PB 180 203 RI 7287 58 PB 183 372 RI 7293 73 PB 183 372 RI 7293 74 AD 683 748 RI 7294 75 PB 182 673</td><td>26 PB 169 683 RI 7269 27 PB 169 681 RI 7271 26 PB 173 822 RI 7272 26 PB 173 822 RI 7273 27 PB 184 662 RI 7274 51 PB 184 662 RI 7274 53 PB 184 662 RI 7274 51 PB 184 662 RI 7276 53 PB 180 070 RI 7279 54 PB 180 071 RI 7281 55 PB 180 071 RI 7281 56 PB 180 074 RI 7284 57 PB 180 074 RI 7284 58 PB 180 074 RI 7287 56 PB 180 074 RI 7287 56 PB 180</td><td>26 PB 168 683 RI 7269 27 PB 169 681 RI 7271 27 PB 169 681 RI 7271 27 PB 169 681 RI 7271 27 PB 187 322 RI 7273 27 PB 184 662 RI 7275 283 PB 184 662 RI 7275 33 PB 184 662 RI 7275 33 PB 180 070 RI 7280 56 PB 180 077 RI 7281 56 PB 180 072 RI 7286 57 PB 180 072 RI 7286 58 PB 180 072 RI 7287 56 PB 180 072 RI 7286 57 PB 180 072 RI 7286 58 PB 180</td><td>26 PB 169 683 RI 7269 27 PB 169 684 RI 7271 27 PB 169 681 RI 7271 27 PB 169 681 RI 7272 28 PB 173 322 RI 7272 58 PB 184 692 RI 7274 51 PB 184 692 RI 7276 33 PB 183 359 RI 7277 33 PB 180 077 RI 7280 55 PB 180 077 RI 7281 56 PB 180 074 RI 7283 51 PB 180 074 RI 7284 52 PB 180 072 RI 7287 53 PB 180 072 RI 7287 54 PB 180 072 RI 7287 55 PB 180</td><td>26 PB 169 683 RI 7269 27 PB 169 684 RI 7271 27 PB 169 684 RI 7271 265 PB 173 322 RI 7273 268 PB 173 322 RI 7273 263 PB 184 691 RI 7275 263 PB 184 692 RI 7277 273 PB 184 692 RI 7277 274 PB 183 359 RI 7277 275 PB 180 077 RI 7280 276 PB 180 077 RI 7290 277 PB 180 074 RI 7284 282 PB 180 072 RI 7285 283 PB 180 072 RI 7285 284 PB 180 073 RI 7293 285 PB 1</td><td>26 PB 169 683 RI 7269 PB 27 PB 169 684 RI 7271 PB 27 PB 169 681 RI 7271 PB 27 PB 169 681 RI 7271 PB 265 PB 173 322 RI 7273 PB 585 PB 184 691 RI 7275 PB 59 PB 184 692 RI 7275 PB 50 PB 183 359 RI 7275 PB 50 PB 180 077 RI 7280 PB 51 PB 180 077 RI 7283 PB 56 PB 180 072 RI 7284 PB 56 PB 180 072 RI 7284 PB 57 PB 180 072 RI 7284 PB 58 PB 180 072 RI</td><td>26 PB 168 633 RI 7269 PH 184 27 PB 169 681 RI 7271 PB 184 27 PB 164 662 RI 7272 PB 184 27 PB 184 662 RI 7273 PB 184 583 PB 183 369 RI 7276 PB 185 51 PB 183 369 RI 7277 PB 185 53 PB 183 369 RI 7276 PB 185 54 PB 183 369 RI 7276 PB 185 55 PB 180 077 RI 7280 PB 185 55 PB 180 071 RI 7285 PB 185 56 PB 180 072 RI 7285 PB 186 56 PB 180 072 RI 7285 PB 186 <t< td=""></t<></td></t<></td></tr<>	95	25 PB 173 26 PB 169 27 PB 169 28 PB 184 27 PB 184 27 PB 184 27 PB 184 28 PB 184 27 PB 184 27 PB 181 28 PB 184 27 PB 180 28 PB 180 25 PB 180 26 PB 180 27 PB 180 28 PB 182 205 PB 182 206 PB 182 207 PB 182 208 PB 182 209 PB 182 210 PB 182 22 PB 182 23 PB 182 24 PB 182 25<	25 PB 173 320 26 PB 169 683 46 PB 169 684 47 PH 169 684 45 PB 184 662 27 PB 184 662 28 PB 184 662 27 PB 184 662 28 PB 184 662 29 PB 184 662 217 PB 184 692 23 PB 180 077 25 PB 180 071 26 PB 180 071 25 PB 180 072 26 PB 180 072 26 PB 180 073 27 PB 180 074 28 PB 180 072 29 PB 180 072 20 PB 180 072 21 PB 180 072 22 PB 180 072 23 PB 180 203 29 PB 180 203 29 PB 180 203 20 PB 180 203 21 PB 180 203 22 PB 180 267 23 PB 180 263 24 PB 182 673 25 PB 182 673 <t< td=""><td>25 </td><td>26 PB 169 683 RI 7270 27 PB 169 684 RI 7271 46 PB 169 684 RI 7271 45 PB 173 322 RI 7273 58 PB 173 822 RI 7275 68 PB 173 822 RI 7275 75 PB 184 662 RI 7275 75 PB 184 692 RI 7277 75 PB 184 692 RI 7277 76 PB 180 070 RI 7278 83 PB 180 071 RI 7278 84 PB 180 071 RI 7280 55 PB 180 076 RI 7281 56 PB 180 072 RI 7285 57 PB 180 074 RI 7284 58 PB 180 072 RI 7287 58 PB 180 074 RI 7287 58 PB 180 203 RI 7287 58 PB 180 203 RI 7287 58 PB 180 203 RI 7287 58 PB 183 372 RI 7293 73 PB 183 372 RI 7293 74 AD 683 748 RI 7294 75 PB 182 673</td><td>26 PB 169 683 RI 7269 27 PB 169 681 RI 7271 26 PB 173 822 RI 7272 26 PB 173 822 RI 7273 27 PB 184 662 RI 7274 51 PB 184 662 RI 7274 53 PB 184 662 RI 7274 51 PB 184 662 RI 7276 53 PB 180 070 RI 7279 54 PB 180 071 RI 7281 55 PB 180 071 RI 7281 56 PB 180 074 RI 7284 57 PB 180 074 RI 7284 58 PB 180 074 RI 7287 56 PB 180 074 RI 7287 56 PB 180</td><td>26 PB 168 683 RI 7269 27 PB 169 681 RI 7271 27 PB 169 681 RI 7271 27 PB 169 681 RI 7271 27 PB 187 322 RI 7273 27 PB 184 662 RI 7275 283 PB 184 662 RI 7275 33 PB 184 662 RI 7275 33 PB 180 070 RI 7280 56 PB 180 077 RI 7281 56 PB 180 072 RI 7286 57 PB 180 072 RI 7286 58 PB 180 072 RI 7287 56 PB 180 072 RI 7286 57 PB 180 072 RI 7286 58 PB 180</td><td>26 PB 169 683 RI 7269 27 PB 169 684 RI 7271 27 PB 169 681 RI 7271 27 PB 169 681 RI 7272 28 PB 173 322 RI 7272 58 PB 184 692 RI 7274 51 PB 184 692 RI 7276 33 PB 183 359 RI 7277 33 PB 180 077 RI 7280 55 PB 180 077 RI 7281 56 PB 180 074 RI 7283 51 PB 180 074 RI 7284 52 PB 180 072 RI 7287 53 PB 180 072 RI 7287 54 PB 180 072 RI 7287 55 PB 180</td><td>26 PB 169 683 RI 7269 27 PB 169 684 RI 7271 27 PB 169 684 RI 7271 265 PB 173 322 RI 7273 268 PB 173 322 RI 7273 263 PB 184 691 RI 7275 263 PB 184 692 RI 7277 273 PB 184 692 RI 7277 274 PB 183 359 RI 7277 275 PB 180 077 RI 7280 276 PB 180 077 RI 7290 277 PB 180 074 RI 7284 282 PB 180 072 RI 7285 283 PB 180 072 RI 7285 284 PB 180 073 RI 7293 285 PB 1</td><td>26 PB 169 683 RI 7269 PB 27 PB 169 684 RI 7271 PB 27 PB 169 681 RI 7271 PB 27 PB 169 681 RI 7271 PB 265 PB 173 322 RI 7273 PB 585 PB 184 691 RI 7275 PB 59 PB 184 692 RI 7275 PB 50 PB 183 359 RI 7275 PB 50 PB 180 077 RI 7280 PB 51 PB 180 077 RI 7283 PB 56 PB 180 072 RI 7284 PB 56 PB 180 072 RI 7284 PB 57 PB 180 072 RI 7284 PB 58 PB 180 072 RI</td><td>26 PB 168 633 RI 7269 PH 184 27 PB 169 681 RI 7271 PB 184 27 PB 164 662 RI 7272 PB 184 27 PB 184 662 RI 7273 PB 184 583 PB 183 369 RI 7276 PB 185 51 PB 183 369 RI 7277 PB 185 53 PB 183 369 RI 7276 PB 185 54 PB 183 369 RI 7276 PB 185 55 PB 180 077 RI 7280 PB 185 55 PB 180 071 RI 7285 PB 185 56 PB 180 072 RI 7285 PB 186 56 PB 180 072 RI 7285 PB 186 <t< td=""></t<></td></t<>	25	26 PB 169 683 RI 7270 27 PB 169 684 RI 7271 46 PB 169 684 RI 7271 45 PB 173 322 RI 7273 58 PB 173 822 RI 7275 68 PB 173 822 RI 7275 75 PB 184 662 RI 7275 75 PB 184 692 RI 7277 75 PB 184 692 RI 7277 76 PB 180 070 RI 7278 83 PB 180 071 RI 7278 84 PB 180 071 RI 7280 55 PB 180 076 RI 7281 56 PB 180 072 RI 7285 57 PB 180 074 RI 7284 58 PB 180 072 RI 7287 58 PB 180 074 RI 7287 58 PB 180 203 RI 7287 58 PB 180 203 RI 7287 58 PB 180 203 RI 7287 58 PB 183 372 RI 7293 73 PB 183 372 RI 7293 74 AD 683 748 RI 7294 75 PB 182 673	26 PB 169 683 RI 7269 27 PB 169 681 RI 7271 26 PB 173 822 RI 7272 26 PB 173 822 RI 7273 27 PB 184 662 RI 7274 51 PB 184 662 RI 7274 53 PB 184 662 RI 7274 51 PB 184 662 RI 7276 53 PB 180 070 RI 7279 54 PB 180 071 RI 7281 55 PB 180 071 RI 7281 56 PB 180 074 RI 7284 57 PB 180 074 RI 7284 58 PB 180 074 RI 7287 56 PB 180 074 RI 7287 56 PB 180	26 PB 168 683 RI 7269 27 PB 169 681 RI 7271 27 PB 169 681 RI 7271 27 PB 169 681 RI 7271 27 PB 187 322 RI 7273 27 PB 184 662 RI 7275 283 PB 184 662 RI 7275 33 PB 184 662 RI 7275 33 PB 180 070 RI 7280 56 PB 180 077 RI 7281 56 PB 180 072 RI 7286 57 PB 180 072 RI 7286 58 PB 180 072 RI 7287 56 PB 180 072 RI 7286 57 PB 180 072 RI 7286 58 PB 180	26 PB 169 683 RI 7269 27 PB 169 684 RI 7271 27 PB 169 681 RI 7271 27 PB 169 681 RI 7272 28 PB 173 322 RI 7272 58 PB 184 692 RI 7274 51 PB 184 692 RI 7276 33 PB 183 359 RI 7277 33 PB 180 077 RI 7280 55 PB 180 077 RI 7281 56 PB 180 074 RI 7283 51 PB 180 074 RI 7284 52 PB 180 072 RI 7287 53 PB 180 072 RI 7287 54 PB 180 072 RI 7287 55 PB 180	26 PB 169 683 RI 7269 27 PB 169 684 RI 7271 27 PB 169 684 RI 7271 265 PB 173 322 RI 7273 268 PB 173 322 RI 7273 263 PB 184 691 RI 7275 263 PB 184 692 RI 7277 273 PB 184 692 RI 7277 274 PB 183 359 RI 7277 275 PB 180 077 RI 7280 276 PB 180 077 RI 7290 277 PB 180 074 RI 7284 282 PB 180 072 RI 7285 283 PB 180 072 RI 7285 284 PB 180 073 RI 7293 285 PB 1	26 PB 169 683 RI 7269 PB 27 PB 169 684 RI 7271 PB 27 PB 169 681 RI 7271 PB 27 PB 169 681 RI 7271 PB 265 PB 173 322 RI 7273 PB 585 PB 184 691 RI 7275 PB 59 PB 184 692 RI 7275 PB 50 PB 183 359 RI 7275 PB 50 PB 180 077 RI 7280 PB 51 PB 180 077 RI 7283 PB 56 PB 180 072 RI 7284 PB 56 PB 180 072 RI 7284 PB 57 PB 180 072 RI 7284 PB 58 PB 180 072 RI	26 PB 168 633 RI 7269 PH 184 27 PB 169 681 RI 7271 PB 184 27 PB 164 662 RI 7272 PB 184 27 PB 184 662 RI 7273 PB 184 583 PB 183 369 RI 7276 PB 185 51 PB 183 369 RI 7277 PB 185 53 PB 183 369 RI 7276 PB 185 54 PB 183 369 RI 7276 PB 185 55 PB 180 077 RI 7280 PB 185 55 PB 180 071 RI 7285 PB 185 56 PB 180 072 RI 7285 PB 186 56 PB 180 072 RI 7285 PB 186 <t< td=""></t<>

できるりそうとう

-

The following reprints are available from the Clearinghouse for Federal Scientific and Technical Information. Bureau of Mines publications placed in the Clearinghouse from 1966 through 1969 are listed by Clearinghouse number. The Bureau of Mines number is given in parentheses after each listing to facilitate finding the abstracts in the Bureau's list of publications.

AD 612 468. Storage Stability of High-Temperature Fuels, by Marvin L. Whisman and C. C. Ward. AFAPL-TR-65-13, pt. 1. February 1965. 80 pp. (Bureau of Mines OP 164-65.)

AD 630 678. Storage Stability of High Temperature Fuels, by Marvin L. Whisman and C. C. Ward, AFAPL-TR-65-13, pt. 2. February 1966. 183 pp. (Bureau of Mines UP 96-66.)

AD 647 787. Storage Stability of High-Temperature Fuels, by Marvin L. Whisman and C. C. Ward. AFAPL-TR-65-13, pt. 3. February 1967. 83 pp. (Bureau of Mines OP 9-67.)

AD 674 604. Panel Reports of the Committee on Rapid Excavation, by Division of Engineering, National Research Council, National Academy of Sciences, National Academy of Engineering. September 1968. 92 pp. (Bureau of Mines OFR 12-68.)

AD 677 727. Research and Technologic Work on Explosives, Explosions, and Flames: Fiscal Year 1967, by Staff, Explosives Research Center. August 1968. 24 pp. 4 figs. (Bureau of Mines IC 8387.)

AD 680 441. Titanium: A Materials Survey, by Jesse A. Miller. 1957. 202 pp. 40 figs. (Bureau of Mines IC 7791.)

AD 680 442. Asbestos: A Materials Survey, by Oliver Bowles. 1959. 94 pp. 8 figs. (Bureau of Mines IC 7880.)

AD 680 443. Cadmium: A Materials Survey, by Robert L. Mentch and Arnold M. Lansche. 1958. 43 pp. 4 figs. (Bureau of Mines IC 7881.)

AD 680 444. Strontium: A Materials Survey, by Albert E. Schreck and Joseph C. Arundale. 1959. 45 pp. 3 figs. (Bureau of Mines IC 7933.)

AD 680 445. Mercury: A Moterials Survey, by James W. Pennington. 1959. 92 pp. 19 figs. (Bureau of Mines IC 7941.)

t

1

1

ŧ

AD 683 748. Storage Stability of Gasoline. Oven Test for Prediction of Gasoline Storage Stability, by Frank G. Schwartz, Charles S. Allbright, and Cecil C. Ward. December 1968. 28 pp. 13 figs. (Bureau of Mines RI 7197.)

AD 698 742. Storage Stability of Aviation Turbine Fuels. A Radiotracer Technique for Estimating Component Contribution to Thermally Induced Deposits, by Marvin L. Whisman, John W. Goetzinger, and Cecil C. Ward. 1969. 23 pp. 13 figs. (Bureau of Mines RI 7325.)

AD 700 575. Limits of Flammability of Gases and Vapors, by H. F. Coward and G. W. Jones. 1952. 155 pp. 63 figs. (Bureau of Mines Bulletin 503.) AD 701 576. Flommability Characteristics of Combustible Gases and Vapors, by Michael G. Zabetakis. 1965. 121 pp. 131 figs. (Bureau of Mines Bulletin 627.)

PE 169 185. Noise from Pneumatic Rock Drills. Analogy Studies of Muffler Designs, by R. T. De-Woody, J. W. Chester, and W. C. Miller. 1964. 24 pp. 21 figs. (Bureau of Mines RI 6345.)

P8 169 681. Thermodynamic Properties of Vanadium and Its Compounds, by Alla D. Mah. 1966. 84 pp. (Bureau of Mines RI 6727.)

PB 169 682. Application of Statistical Analysis in Evaluating Bedded Deposits of Variable Thickness—Florida Phosphete Data, by R. D. Berkenkotter. 1964. 38 pp. 26 figs. (Bureau of Mines RI 6565.)

PB 169 683. Use of Polyester-Type Resin To Stabilize Fractured Rock: A Progress Report, by Richard H. Oitto, Jr. 1965. 16 pp. 13 figs. (Bureau of Mines RI 6626.)

PB 169 684. Evaluation of a Penetrometer for Estimating Roof-Bolt Anchorage, by Juel H. Steers. 1965. 23 pp. 10 figs. (Bureau of Mines RI 6646.)

PB 169 685. Block-Caving Copper Mining Methods and Cests at the Miami Mine, Miami Copper Company, Gila County, Ariz., by W. R. Hardwick. 1965. 98 pp. 50 figs. (Bureau of Mines IC 8271.)

PB 173 318. Some Generalized Probability Distributions With Special Reference to the Mineral Industries (in Five Parts). 1. Sampling to n Items per Sample, by Robert M. Becker. 1964. 53 pp. 1 fig. (Bureau of Mines RI 6329.)

PB 173 319. Some Generalized Probability Distributions With Special Reference to the Mineral Industries (in Five Parts). 2. Sampling to λ Amount of items per Sample, by Robert M. Becker. 1964. 101 pp. 2 figs. (Bureau of Mines RI 6552.)

PB 173 320. Some Generalized Probability Distributions With Special Reference to the Mineral Industries (in Five Parts). 3. Computer Programs of Distribution Moments, by Robert M. Becker, 1965. 79 pp. (Bureau of Mines RI 6598.)

PB 173 321. Some Generalized Probability Distributions With Special Reference to the Mineral Industries (in Five Parts). 4. Experimental Confirmation, by Robert M. Becker. 1965. 57 pp. 11 figs. (Bureau of Mines RI 6227.)

PB 173 322. Some Generalized Probability Distributions With Special Reference to the Mineral Industries (in Five Parts). 5. Theoretical Confirmation and Applications, by Robert M. Becker. 1966. 60 pp. 3 figs. (Bureau of Mines RI 6768.)

PB 177 760. Processes for Recovering Sulfur From Secondary Source Materials, by B. K. Shibler and M. W. Hovey. 1962. 62 pp. (Bureau of Mines IC 8076.)

PB 177 784. Projection of Applications and National Benefits of a New Rapid Excavation Technology, by Armando Lago, Paul D. Williams, Harold Nisselson, and Harvey D. Kushner. Prepared for the Bureau of Mines by Operations Research, Inc., Silver Spring, Md. September 1967. (Bureau of Mines OFR 7-68.) P8 179 194. Bucket-Wheel Simulator, by Charles B. Manula and Rajaraman Venkataramani.
 Prepared for the Bureau of Mines by the Department of Mining, College of Earth and Mineral Sciences, Pennsylvania State University. April 1968.
 105 pp. (Bureau of Mines OFR 13-68.)

PB 180 062. Gold Resources in the Territory Gravels of Cali-formic, by Roland W. Merwin. March 1968. 16 pp. 6 figs. (Bureau of Mines TPR 3.)

PB 180 063. Investigation of Oxidation Systems for Improving Gold Recovery From Carbonaceous Mate-ricle, by B. J. Scheiner, R. E. Lindstrom, and T. A. July 1968. 8 pp. 1 fig. (Bureau of Henrie. July Mines TPR 2.)

PB 180 064. Gold Resources in the Oxidized Ores and Carbonacesus Material in the Sedimentary Beds of Northeastern Nevada, by Roland W. Merwin. July 1968. 13 figs. (Bureau of Mines TPR 1.)

PB 180 065. Marine Heavy Metals Project Offshore Nome, Alaska, by Richard L. Jenkins and Alvin H. Lense. August 1968. 11 pp. 3 figs. (Bureau of Mines TPR 4.)

PB 180 066. Gold Resources of the Mather Lade Belt, El Dorado, Amador, Calaveras, Tuolumne, and Mariposa Counties, California, by Lyman Moore. August 1968. 22 pp. (Bureau of Mines TPR 5.)

PB 180 067. Detection Limit for Silver by Isotopic X-Ray Analysis, by Philip G. Burkhalter. Au-gust 1968. 11 pp. 1 fig. (Bureau of Mines TPR 6.)

PB 180 068. Analysis of Large Samples of Low Grade Gold Ores by Methyl Isobutyl Ketone Extraction and Atomic Absorption, by Stephen L. Law and Thomas E.

Green. August 1968. 7 pp. (Bureau of Mines TPR 7.)

PB 180 069. An Acoustical Bench for an Ultrasonic Pulse System, by R. E. Thill, R. J. McWilliams, and T. H. Bur. July 1968. 22 pp. 12 figs. (Bureau of Mines RI 7164.)

PB 180 070. A Model for Molten Pools in Arc Melting, by F. W. Wood. July 1968. 33 pp. 22 figs. (Bureau of Mines RI 7151.)

PB 180 072. Evaluation of the Explosive-Anchored Rock Bolt, by John B. Shutack and Norman E. Hanna. July 1968. 15 pp. 9 figs. (Bureau of Mines RI 7163.)

PB 180 073. Analysis of the Northern Great Plains Province Lignites and Their Ash: A Study of Variability, by Everett A. Sondreal, Wayne R. Kube, and James L. Elder. August of Mines RI 7158.) August 1968. 94 pp. 14 figs. (Bureau

P6 180 074. Performance of a low-Permeability Sandstone Oil Reservoir, West Avant Field, Osage County,
 Okla., by Kenneth H. Johnston. July 1968. 28
 pp. 9 figs. (Bureau of Mines RI 7161.)

PB 180 075. An Evaluation of an Ammonium Sulfate Leach-

ing Process for Recovering Manganese from Minnesota and Maine Resources, by John J. Henn, Frank A. Peters, Paul W. Johnson, and Ralph C. Kirby. July 1968. 68 pp. 21 figs. (Bureau of Mines RI 7156.)

PB 180 076. Miniature Bilavel Alarm for Oxygen-Deficient Atmospheres, by Robert A. Bradburn and Merle L. Bowser. August 1968. 15 pp. 15 figs. (Bureau of Mines RI 7165.)

PB 180 077. Beryllium Resources of Idaho, Washington, Mon-tana, and Oregon, by Eldon C. Pattee, Ronald M. Van Noy, and Robert D. Weldin. July 1968. 169 pp. 78 figs. (Bureau of Mines RI 7148.)

PB 180 201. Effects of Planes of Weakness on Uniaxial Compressive Strength of Model Mine Pillars, by Frank G. Horino. July 1968. 24 pp. 17 figs. (Bureau of Mines RI 7155.)

PB 180 202. Alumina Extraction by Autoclave Precipitation of Basic Sodium Aluminum Sulfate, by H. G. Iverson and H. Leitch. August 1968. 27 pp. 8 figs. (Bureau of Mines RI 7162.)

PB 180 203. Investigation of Operating Variables in the Attrition Grinding Process, by Martin H. Stanczyk and I. L. Feld. August 1968. 11 pp. 3 figs. (Bureau of Mines RI 7168.)

PB 180 204. Corrosion Properties of the TZM and Molybdenum-30 Tungsten Alleys, by W. L. Acherman, J. P. Carter, and David Schlain. August 1968. 23 pp. 4 figs. (Bureau of Mines RI 7169.)

PB 180 205. Helium-4 Experimental PVT References: 1895 to 1968, by Robert E. Barieau. August 1968. 24 pp. (Bureau of Mines IC 8388.)

PB 180 206. Injury Experience in Coal Mining, 1965. Analysis

of Mine Safety Factors, Related Employment, and Production Data, by Forrest T. Moyer and Nina L. Jones. August 1968. 88 pp. 3 figs. (Bureau of Mines IC 8389.)

PB 180 355. Horizontal Boring Technology: A State-of-the-Art Study, by James Paone, William E. Bruce, and Roger J. Morrell. September 1968. 86 pp. 63 figs. (Bureau of Mines IC 8392.)

PB 180 356. Labor Productivity Analysis of a Selected Segment of the Sand and Gravel industry, by Paul H. Mutschler. 1968. 10 pp. 2 figs. (Bureau of Mines OFR 15-68.)

PB 180 357. Hafnium-Zirconium Separation by Selective Re-duction, by James E. Mauser. 1968. 23 pp. (Bureau of Mines OFR 11-68.)

PB 180 642. Seismic Effects of Quarry Blasting, by J. R. Thoenen and S. L. Windes. 1942. 83 pp. 45 figs. (Bureau of Mines B 642.)

PB 182 670. Progress in Controlling Acid Mine Water: A Literature Review, by Walter C. Lorenz, 1962. 40 pp. 11 figs. (Bureau of Mines IC 8080.)

PB 182 671. Computer Usage for Evaluation of Design Parameters and Cost of Heat Exchangers With No Change in Phase and Tube Side Pumping Casts as Prime Parameters, by P. R. Jones and S. Katell. January 1969. 67 pp. 1 fig. (Bureau of Mines IC 8399.)

PB 182 673. Composition and Characteristics of Municipal Incinerator Residues, by C. B. Kenahan, P. M. Sullivan, and E. F. Spano. December 1968. 20 pp. 8 figs. (Bureau of Mines RI 7204.)

PB 182 674. Evaluation of Phosphate Fines From Southeast-ern Idaho, by J. W. Town and P. E. Sanker. December 1968. 9 pp. 5 figs. (Bureau of Mines RI 7205.)

PB 182 675. Field Investigation and Testing of a Minnesota Clay Resource for Iron Ore Peillet Banding, by James H. Aase and George E. Leonhard. December 1968. 17 pp. 8 figs. (Bureau of Mines RI 7206.) b Þ 6 D t,

ł

)

١

į

1

•

PB 182 676. Effect of Physical Parameters on the Reaction of Graphite With Silica in Vacuum, by L. A. Haas and S. E. Khalafalla. December 1968. 21 pp. 12 figs. (Bureau of Mines RI 7207.)

PB 182 677. Explosibility of Miscellaneous Dusts, by John Nagy, Austin R. Cooper, and Henry G. Dorsett, Jr. December 1968. 31 pp. 1 fig. (Bureau of Mines RI 7208.)

PB 182 678. Reaction of Cool With Steam at High Pressures, by Sam Friedman, Paul S. Lewis, Richard D. Graves, and Raymond W. Hiteshue. December 1968. 25 pp. 10 figs. (Bureau of Mines RI 7209.)

PB 182 679. Removal of Nonferrous Metals From Synthetic Automobile Scrap on Heating in a Retory Kin, by Gerald W. Elger, Willard L. Hunter, and C. E. Armantrout. December 1968. 17 pp. 7 figs. (Bureau of Mines RI 7210.)

P8 182 680. Columbium and Tantalum Alloy Development, by Herbert R. Babitzke, Laurence L. Oden, and Hal J. Kelly. December 1968. 12 pp. 2 figs. (Bureau of Mines RI 7211.)

PB 182 681. Electrowinning Aluminum From Aluminum Chloride. Operation of a Two-Compartment Cell, by E. L. Singleton, D. E. Kirby, and T. A. Sullivan. December 1968. 15 pp. 8 figs. (Bureau of Mines RI 7212.)

PB 182 682. Recovery of Hydrofluoric Acid From Waste Fluosilic Acid. Preliminary Studies, by Philip C. Good and Jack E. Tress. December 1968. 14 pp. 4 figs. (Bureau of Mines RI 7213.)

PB 182 683. Horizontal Zinc Retorts, by M. E. Tyrrell and K. J. Liles. January 1969. 88 pp. 41 figs. (Bureau of Mines RI 7215.)

PB 182 684. Heats of Formation of Chromium Carbides, by Alla D. Mah. January 1969. 9 pp. (Bureau of Mines RI 7217.)

PB 182 685. Copper Removal From Steel Scrap by Thermal Treatment. Feasibility Study, by R. R. Brown and F. E. Block. December 1968. 15 pp. 2 figs. (Bureau of Mines RI 7218.)

PB 182 686. Load Loss From Rock-Bolt Anchor Creep, by Edward W. Parsons and Lars Osen. January 1969. 26 pp. 15 figs. (Bureau of Mines RI 7220.)

PB 182 687. Beneficiation of Titanium Chlorination Residues. Preliminary Study, by C. C. Merrill, M. M. Wong, and D. D. Blue. February 1969. 7 pp. 1 fig. (Bureau of Mines RI 7221.)

.

t

ł

i t

ſ

PB 182 688. Some Strain-Aging Effects in Electrorefined Vonadium, by G. H. Keith and H. G. Iverson. February 1969. 26 pp. 15 figs. (Bureau of Mines RI 7222.)

PB 182 689. Face Ventilation in Underground Bituminous Coal Mines. Airflow and Methane Distribution Patterns in Immediate Face Area-Line Brattice, by James V. Luxner. February 1969. 16 pp. 10 figs. (Bureau of Mines RI 7223.)

 PB 182 690. Near-Surface Horizontal Stress Including the Effects of Rock Antisotropy, by Verne E...
 Hooker and Charles F. Johnson. February 1969.
 29 pp. 4 figs. (Bureau of Mines RI 7224.) PB 182 691. Joining Refractory Metal Compounds by Hot Pressing, by John E. Kelley, Donald H. Sumner, and Hal J. Kelly. February 1969. 26 pp. 11 figs. (Bureau of Mines RI 7225.)

PB 182 692. Improved Eluex Process for Eluting Uranium From Ion Exchange Resins, by D'Arcy R. George and J. Richard Ross. February 1969. 10 pp. 6 figs. (Bureau of Mines RI 7227.)

PB 182 693. Influence of Spherical Head Size and Specimen Diameters on the Uniaxial Compressive Strength of Rocks, by John R. Hoskins and Frank G. Horino. January 1969. 16 pp. 8 figs. (Bureau of Mines RI 7234.)

PB 183 095. Testing of Northern Michigan and Wisconsin Glacial Lake Clays for Utilization as Iron Ore Pellet Binder, by William S. Miska. 1969. 31 pp. 5 figs. (Bureau of Mines OFR 4-69.)

PB 183 359. Silver Recovery From Waste Photographic Solutions by Metallic Displacement, by R. O. Dannenberg and G. M. Potter. April 1968. 22 pp. 5 figs. (Bureau of Mines RI 7117.)

PB 183 371. Dust Control in Mining, Tunneling, and Quarrying in the United States, 1961 Through 1967, by Floyd G. Anderson and Robert L. Beatty. March 1969. 50 pp. (Bureau of Mines IC 8407.)

PB 183 372. A Petrafabric Study of Tectanic and Mining-Induced Deformations in a Deep Mine, by Elbridge W. Gresseth and Rolland R. Reid. September 1968. 64 pp. 35 figs. (Bureau of Mines RI 7173.)

PB 183 373. Gas Chromotographic Analyses of the Principal Constituents of Mine Atmospheres, by R. W. Freedman, H. W. Lang, and M. Jacobson. September 1968. 13 pp. 1 fig. (Bureau of Mines RI 7180.)

P8 183 374. Stresses and Displacements induced in Rock by Tunnel Boring Machine Props, by Wilbur I. Duvall and Wilson Blake. November 1968. 29 pp. 5 figs. (Bureau of Mines RI 7200.)

PB 183 375. Preparation Characteristics of Coal From Clay, Gilmer, and Lewis Counties, W. Va., by J. E. Zeilinger. January 1969. 40 pp. 3 figs. (Bureau of Mines RI 7216.)

PB 183 376. Beneficiation of Ferrochromium by Mohen Salt Electrolysis, by F. R. Cattoir and T. A. Sullivan. February 1969. 26 pp. 9 figs. (Bureau of Mines RI 7226.)

PB 183 377. Dispersion-Strengthened Copper. Its Preparation and Properties, by D. H. Desy. March 1969. 24 pp. 15 figs. (Bureau of Mines RI 7228.)

PB 183 378. Effect of Varied Extrusion Temperature on the Properties of a Zinc-Copper-Titanium Alley, by L. A. Neumeier and J. S. Risbeck. February 1969. 22 pp. 16 figs. (Bureau of Mines RI 7229.)

PB 183 379. Improving Returns From Mine Products Through Use of Operations Research Techniques, by Thys B. Johnson. March 1969. 78 pp. 9 figs. (Bureau of Mines RI 7230.)

 PB 183 380. Pyrite Size Distribution and Coal-Pyrite Particle Association in Steam Coals: Correlation With Pyrite Removal by Float-Sink Methods, by J. T. McCartney, H. J. O'Donnell, and Sabri Ergun. February 1969.
 18 pp. 5 figs. (Bureau of Mines RI 7231.) PB 183 381. Compressibility Factors for Helium and Carbon Dioxide Mixtures at 0°, 10°, 20°, 23°, and 35° C and to 900 PSIA, by G. W. Weems and N. L. Miller. March 1969. 41 pp. 8 figs. (Bureau of Mines RI 7233.)

i

PB 183 382. Use of Antifissurants in Making Better Coke From Sunnyside Coal From Utah, by M. J. Kovalik, D. E. Wolfson, F. Fischler, and L. Mafrica. February 1969. 15 pp. 3 figs. (Bureau of Mines RI 7235.)

PB 183 383. Carbonizing Properties of Coals From Nicholas, Randolph, and Webster Counties, W. Va., by D. E. Wolfson and C. Ortuglion. March 1969. 17 pp. 1 fig. (Bureau of Mines RI 7236.)

PB 183 384. Application of Statistical Response Surface Fitting in Predicting Lignite Properties, by Manuel Gomez and William L. Meyer. March 1969. 64 pp. 13 figs. (Bureau of Mines RI 7237.)

PB 183 385. Pulverized-Coal Flames. Flame Propagation in the Absence of Recirculation, by C. R. Mc-Cann and A. A. Orning. March 1969. 22 pp. 12 figs. (Bureau of Mines RI 7239.)

PB 183 386. Continuous Monitoring of Diesel Exhaust Gas for Carbon Diaxide, Carbon Monoxide, Oxygen, Methane, and Nitrogen Oxides, by Helen W. Lang, W. E. O'Neil, B. A. Coulehan, and R. W. Freedman. March 1969. 14 pp. 3 figs. (Bureau of Mines RI 7241.)

PB 183 387. Reduction Roasting of Steep Rock Iron-Bearing Materials, by Charles Prasky and Willard S. Swanson. March 1969. 21 pp. 7 figs. (Bureau of Mines RI 7242.)

PB 183 643. Separation of Feldspar, Quartz, and Mica From Granite, by T. E. Hill, Jr., H. Kenworthy,
R. A. Ritchey, and J. A. Gerard. March 1969. 25
pp. 2 figs. (Bureau of Mines RI 7245.)

PB 183 644. Recovering Gold From a Graphitic Schist Fram Tallapoosa County, Ala., by G. V. Sullivan, James S. Browning, and S. J. Saunders. April 1969. 11 pp. 3 figs. (Bureau of Mines RI 7251.)

PB 183 645. Raw Materials for Lightweight Aggregate in Appolachion Region, Alabama and Georgia, by Ronald P. Hollenbeck and M. E. Tyrrell. March 1969. 21 pp. 5 figs. (Bureau of Mines RI 7244.)

PB 183 646. Experimental Production and Smalling of Prereduced Iron Ore Pellets, by M. M. Fine, P. L. Woolf, and N. Bernstein. 1964. 28 pp. 8 figs. (Bureau of Mines RI 6523.)

PB 183 647. Experimental Leaching of Gold From Mine Waste, by H. J. Heinen and Bernard Porter. April 1969. 5 pp. (Bureau of Mines RI 7250.)

PB 183 648. Preparation of Tungsten Carbide by Electrodeposition, by John M. Gomes and M. M. Wong. April 1969. 14 pp. 2 figs. (Bureau of Mines RI 7247.)

PB 183 649. Transformations of the Elastic Constants for Anisotropic Media by Successive Simple Rotations, by Thomas R. Bur. March 1969. 15 pp. 1 fig. (Bureau of Mines RI 7243.)

PB 183 650, Theoretical Relationship Between Density and Oil Yield for Oil Shales, by John Ward Smith. April 1969. 14 pp. 2 figs. (Bureau of Mines RI 7248.) PB 183 651. Phase Diagram for the KF-YF₃ System, by Bernard Porter, R. E. Meaker, and P. R. Bremner. March 1969. 8 pp. 2 figs. (Bureau of Mines RI 7246.)

PB 183 652. Five-Piece Concrete Sets for Small Mine Openings: A Progress Report, by K. R. Dorman. April 1969. 45 pp. 26 figs. (Bureau of Mines RI 7249.)

 PB 183 720. Electrolytic Oxidation of Carbonaceous Ores for Improving Gold Recovery, by B. J. Scheiner, R. E. Lindstrom, and T. A. Henrie. January 1969.
 12 pp. 8 figs. (Bureau of Mines TPR 8.)

PB 183 780. Reconnaissance of Tatonduk River Red Beds, by A. L. Kimball. 1969. 11 pp. 4 figs. (Bureau of Mines OFR 1-69.)

PB 183 781. Reconnaissance Sampling of Decomposed Monzonite for Gold Near Flat, Alaska, by A. L. Kimball. 1969. 39 pp. 4 figs. (Bureau of Mines OFR 6-69.)

FB 183 B58. A Quantitative Analysis of Mining Industry Finance, by Armando M. Lago. December 1968. 100 pp. 5 figs. (Bureau of Mines OFR 7-69.)

PB 183 894. The Sociological Impact of Machanization on Coal Miners and Their Families, by Helen M. Lewis and Edward E. Knipe. Proc. Council of Economics, AIME. 1969. pp 268-307. (Bureau of Mines OP 50-69.)

PB 184 309. Gold Recovery from Scrap Electronic Solders by Fused-Solt Electrolysis, by E. K. Kleespies, J. P. Bennetts, and T. A. Henrie. March 1969. 8 pp. 3 figs. (Bureau of Mines TPR 9.)

PB 184 310. Rotary Coring of Appalachian Area Oil-Fraducing Formations With Mud or Air, by R. L. Rough. March 1969. 32 pp. 12 figs. (Bureau of Mines RI 7238.)

PB 184 311. Some Aspects of the Aerodynamics of Formation of Float Coal Dust Clouds, by J. M. Singer, N. B. Greninger, and J. Grumer. April 1969. 26 pp. 8 figs. (Bureau of Mines RI 7252.)

PB 184 312. Energetics of Percessive Drills, by William E. Bruce and James Paone. April 1969. 31 pp. 20 figs. (Bureau of Mines RI 7253.)

P8 184 313. Recovery of Rhenium From Tungsten-Rhenium Alloy, by M. J. Ferrante, F. E. Block, A. D. Fugate, and F. A. Skirvin. April 1969. 11 pp. 3 figs. (Bureau of Mines RI 7254.)

ł

PB 184 314. Turbine Blade Wear by Coal Ash in Working Fluid at 1,200° F, by J. P. McGee, Arthur J. Liberatore, Donald C. Strimbeck, and Gerald B. Goff. April 1969. 15 pp. 13 figs. (Bureau of Mines RI 7255.)

PB 184 315. A Microscope System Using Automated Reflectance Scanning to Study Coal Components. Application to Analysis of Pyrite Distribution, by J. T. McCartney and S. Ergun. May 1969. 15 pp. 3 figs. (Bureau of Mines RI 7256.)

PB 184 316. Calculating Equilibrium Compositions of Multiconstituent, Multiphase, Chemical Reacting Systems, by H. F. Feldmann, W. H. Simons, and D. Bienstock. May 1969. 22 pp. 2 figs. (Bureau of Mines RI 7257.) PB 184 324. Chlorine in Coal Combustian, by T. L. Iapalucci, R. J. Demski, and D. Bienstock. May 1969. 12 pp. 5 figs. (Bureau of Mines RI 7260.)

PB 184 326. Effect of Microstructure on Superconductivity in the Columbium-Hafnium System, by R. E. Siemens, L. L. Oden, and D. K. Deardorff. May 1969. 22 pp. 21 figs. (Bureau of Mines RI 7258.)

PB 184 327. Experiments on the Flow of Mercury in Porous Media in a Transverse Magnetic Field, by W. E. Wallace, C. I. Pierce, and W. K. Sawyer. May 1969. 13 pp. 3 figs. (Bureau of Mines RI 7259.)

1

Í

1

ł

1 1

1

J

PB 184 455. Use of Coal to Enhance Metabolic Treatment of Sewage, prepared by Biospherics Re-search, Inc. May 22, 1969. 150 pp. 6 figs. (Bureau of Mines OFR 12-69.)

PB 184 509. Behavior of Coal-Gas Reservoirs, by Joseph Cervik. April 1969. 10 pp. 4 figs. (Bureau of Mines TPR 10.)

P8 184 510. Design and Development of Drill Equipment, by J. D. Hadden and Joseph Cervik. May 1969. 11 pp. 10 figs. (Bureau of Mines TPR 11.)

PB 184 511. Gas Migration Characteristics of Coalbeds, by J. D. Hadden and Albert Sainato. May 1969. 10 pp. 7 figs. (Bureau of Mines TPR 12.)

PB 184 512. Use of Vertical Bareholes for Assisting Ventila-tion of Longwall Gob Areas, by C. H. Elder. May 1969. 6 pp. 2 figs. (Bureau of Mines TPR 13.)

PB 184 513. Sorption Investigations of Methane on Coal, by J. H. Perkins and Joseph Cervik. May 1969. 6 pp. 2 figs. (Bureau of Mines TPR 14.)

PB 184 514. Development of Recording Methanometers and Recording Anemometers for Use in Underground
 Coal Mines, by J. C. LaScola and Joseph Cervik. May 1969. 17 pp. 11 figs. (Bureau of Mines TPR 15.)

PB 184 515. Chemical and Vegetative Stabilization of Nevade Capper Perphyry Mill Tailing, by Karl C. Dean, Richard Havens, and Kimball T. Harper. May 1969. 14 pp. 3 figs. (Bureau of Mines RI 7261.)

PB 184 516. Interactions of Titanium and Malybdenum Additions With Interstitical Impurities in Vanadium, by G. H. Keith. May 1969. 22 pp. 10 figs. (Bureau of Mines RI 7262.)

PB 184 517. Flotation of Muscovite Fram Alabama Graphitic-Mice Schist Ore, by Ralph B. Adair and James S. Browning. May 1969. 7 pp. 1 fig. (Bu-reau of Mines RI 7263.)

PB 184 518. Extraction of Aluminum and Fluorine From Leached Pollining Residues, by P. C. Good and W. G. Gruzensky. June 1969. 9 pp. (Bureau of Mines RI 7264.)

PB 184 519. Preparation of Anhydrous Aluminum Chloride, by Robert L. de Beauchamp. June 1969. 19 pp. 1 fig. (Bureau of Mines IC 8412.)

eters and Cast of Heat Exchangers With Change in Phase on Shell Side, by P. R. Jones and S. Katell. July 1969. 62 pp. 1 fig. (Bureau of Mines IC 8420.)

PB 184 614. Attitudes of Selected Zinc Miners and Their Wives in East Tennessee, by Helen M. Lewis and Edward E. Knipe. October 1968. 34 pp. (Bureau of Mines OFR 9-69.)

PB 184 662. Sympathetic Detanation of Ammonium Nitrate and Ammonium Nitrate-Fuel Oil, by R. W. Van Dolah, F. C. Gibson, and J. N. Murphy. 1966. 34 pp. 19 figs. (Bureau of Mines RI 6746.)

PB 184 665. Toward a Methodology of Studying Coal Miners' Attitudes, by Edward E. Knipe and Helen M. Lewis. March 1968. 34 pp. 1 fig. (Bureau of Mines OFR 8-69.)

PB 184 691. Liquidus Temperatures of Titaniferous Slags (in Three Parts) 1. TiO₂-Al₂O₂-SiO₂-CaO-MgO, by Wesley T. Holmes II, Lloyd H. Banning, and Law-rence L. Brown. February 1968. 21 pp. 4 figs. (Bureau of Mines RI 7081.)

Three Parts) 2. TiQ_Al_O_FeO-SiO_CaO-MgO, by Wesley T. Holmes II, Lloyd H. Banning, Law-rence L. Brown, and Gerald G. Thompson. Febru-ary 1968. 17 pp. 23 figs. (Bureau of Mines RI 7083.)

PB 184 693. Liquidus Temperatures of Titaniferous Slags (in Three Parts) 3. Production of Nominal Slag Compositions, by Wesley T. Holmes II and William A. Stickney. February 1969. 21 pp. 3 figs. (Bu-reau of Mines RI 7232.)

PB 184 706. Combustion and Related Phenomena in a Con-stant Volume Bamb, by C. F. Ellis, J. O. Chase, and R. W. Hurn. 1969. 44 pp. 24 figs. (Bureau of Mines OFR 5-69.)

P8 184 707. Coal Reserves of Greenup County, Ky., by Robert C. Johnson. 1969. 33 pp. 4 figs. (Bureau of Mines OFR 2-69.)

PB 184 804. Injury Experience in Coal Mining, 1966. Anal-ysis of Mine Safety Factors, Related Employment, and Production Data, by Forrest T. Moyer and Mary B. McNair. July 1969. 108 pp. 3 figs. (Bureau of Mines IC 8419.)

FB 184 805. Review of Bureau of Mines Coal Program, 1968, by John D. Spencer. June 1969. 94 pp. 37 figs. (Bureau of Mines IC 8416.)

PB 184 806. Experimental in Situ Retorting of Oil Shale at Rock Springs, Wyo., by E. L. Burwell, H. C. Carpenter, and H. W. Sohns. June 1969. 8 pp. 1 fig. (Bureau of Mines TPR 16.)

PB 184 812. Preparation of Thorium Metal by Vacuum Distillation of Electrodeposited Thorium-Chromium and Thorium-Manganesse Alleys, by J. E. Murphy, E. Mor-rice, and M. M. Wong. June 1969. 9 pp. 1 fig. (Bureau of Mines RI 7265.)

P8 184 813. Dispersion-Strengthening in Copper-Alumina and Copper-Yttria, by R. L. Crosby and D. H. Desy. June 1969, 17 pp. 8 figs. (Bureau of Mines RI 7266.)

PB 184 814. Oxygen Consumption and Hydrogen Production by Shrink-Resistent Grouts in Confined Places, by Mary A. Barrett. June 1969. 8 pp. 5 figs. (Bureau of Mines RI 7267.)

PB 184 815. Inductoslag Molting of Titanium, by P. G. Clites and R. A. Beall. June 1969. 20 pp. 12 figs. (Bureau of Mines RI 7268.)

PB 184 816. Electric Moduli of Rock at Elevated Temperatures, by Carl F. Wingquist. June 1969. 8 pp. 8 figs. (Bureau of Mines RI 7269.)

PB 184 817. Bureau of Mines Portable Recording Methanometer, by Merle L. Bowser and William E. Thomas. July 1969. 6 pp. 3 figs. (Bureau of Mines RI 7270.)

PB 184 818. Vapor Pressures of Liquid Titanium (2,008° to 2,379° K) and Liquid Platinum (2,045° to 2,442° K), by R. K. Koch, E. D. Calvert, C. R. Thomas, and R. A. Beall. July 1969. 14 pp. 4 figs. (Bureau of Mines RI 7271.)

P8 184 819. Gasfload Performance Prediction for the Cooper Sand of the Fork Run Pool, Warren and McKean Counties, Pa., by K.-H. Frohne, L. A. Schrider, and M. K. Romeo. July 1969. 49 pp. 15 figs. (Bureau of Mines RI 7272.)

P8 184 820. Separation and Characterization of Metallo-Organic Materials in Petroleum, by C. W. Dwiggins, Jr., K. W. Willcox, D. A. Doughty, and R. J. Heemstra. July 1969. 41 pp. 16 figs. (Bureau of Mines RI 7273.)

PB 184 990. Oil-Shele Mining, Rifle, Colo., 1944-56, by J. H. East, Jr., and E. D. Gardner. 1964. 63 pp. 103 figs. (Bureau of Mines B 611.)

P8 184 991. Molybdenum. A Materials Survey, by Wilmer McInnis. 1957. 77 pp. 15 figs. (Bureau of Mines IC 7784.)

PB 184 992. Kyanite. A materials Survey, by T. A. Klinefelter and James D. Cooper. 1961. 55 pp. 5 figs. (Bureau of Mines IC 8040.)

PB 184 993. Lithium. A Materials Survey, by Albert E. Schreck. 1961. 81 pp. 6 figs. (Bureau of Mines IC 8053.)

PB 185 547. Eight-Piece Concrete Sets for Small Mine Openings: A Progress Report, by M. O. Serbousek and K. R. Dorman. July 1969. 35 pp. 17 figs. (Bureau of Mines RI 7274.)

P8 185 548. Alkalized-Alumina Attritioning and Sec Scrption Rates, by Joseph W. Town, Philip E. Sanker, and Hal J. Kelly. July 1969. 29 pp. 18 figs. (Bureau of Mines RI 7275.)

PB 185 549. Operating Characteristics of a High-Temperature Electrostatic Precipitator, by C. C. Shale and G. E. Fasching. July 1969. 19 pp. 7 figs. (Bureau of Mines RI 7276.)

PB 185 550. Factors Affecting Detonation Velocities of Desensitized Nitroglycerin in Simulated Underground Fractures, by J. S. Miller, W. D. Howell, J. L. Eakin, and E. R. Inman. July 1969. 19 pp. 9 figs. (Bureau of Mines RI 7277.)

PB 185 551. Effects of Pressure, Temperature, and Type of Oil on Vaporization of Oil During Gas Cycling, by Alton B. Cook, F. Sam Johnson, George B. Spencer, Abdo M. Bayazeed, and C. J. Walker. July 1969. 26 pp. 9 figs. (Bureau of Mines RI 7278.)

PB 185 552. Explosion Development in a Spherical Vessel, by John Nagy, John W. Conn, and Harry C. Verakis. August 1969. 22 pp. 12 figs. (Bureau of Mines RI 7279.)

.

PB 185 553. Thermodynamic Data for Ferric Sulfate and Indium Sulfate, by L. B. Pankratz and W. W. Weller. July 1969. 8 pp. 2 figs. (Bureau of Mines RI 7280.)

PB 185 554. Spectrochemical Analyses of Coal Ash for Trace Elements, by R. F. Abernethy, M. J. Peterson, and F. H. Gibson. July 1969. 20 pp. 2 figs. (Bureau of Mines RI 7281.)

PB 185 555. Entrainment Drying and Carbonization of Wood Waste, by Charles C. Boley and W. S. Landers. August 1969. 15 pp. 1 fig. (Bureau of Mines RI 7282.)

2

Ľ

2

.

) D

ŧ

1

PB 185 556. Influence of Residence Time, Temperature, and Steam Concentration on Coal-Steam Gasification Reactions, by J. L. Konchesky and R. F. Stewart. August 1969. 19 pp. 16 figs. (Bureau of Mines RI 7284.)

PB 185 557. Determination of Dawsonite and Nahcolite in Green River Formation Oil Shale, by John Ward Smith and Neil B. Young. August 1969. 20 pp. 3 figs. (Bureau of Mines RI 7286.)

PB 186 141. Materials Handling Research: Hydraulic Transportation of Coarse Solids, by R. S. Fowkes and G. A. Wanchek. August 1969. 36 pp. 16 figs. (Bureau of Mines RI 7283.)

PB 186 142. Tensile and Stress-Rupture Properties of Rolled Pb-Cd-Sb Alloys, by M. M. Tilman. August 1969. 11 pp. 8 figs. (Bureau of Mines RI 7285.)

PB 186 143. Compressibility Data for Helium at 0° C and Pressures to 800 Atmospheres, by Ted C. Briggs, B. J. Dalton, and Robert E. Barieau. August 1969. 54 pp. 5 figs. (Bureau of Mines RI 7287.)

PB 186 144. Chemical Stabilization of the Uranium Tailings at Tuba City, Ariz., by Richard Havens and Karl C. Dean. August 1969. 12 pp. 4 figs. (Bureau of Mines RI 7288.)

PB 186 145. Electrical Resistivity of Hyperstoichiometric Columbium and Zirconium Carbide Materials at Elevated Temperatures, by Danton L. Paulson and Gene Asai. August 1969. 30 pp. 21 figs. (Bureau of Mines RI 7289.)

PB 186 146. Metallization of Iron Ores With Solid Reductants, by M. M. Fine and R. B. Schluter. September 1969. 19 pp. 7 figs. (Bureau of Mines RI 7290.)

PB 186 147. Magnetic Separation of Minerals of Low Susceptibility and Small Particle Size, by Foster Fraas. September 1969. 14 pp. 7 figs. (Bureau of Mines RI 7292.)

PB 186 148. Mass Spectrometry. Residuel Gas Analysis During Vacuum Melling, by W. E. Anable and E. D. Calvert. September 1969. 11 pp. (Bureau of Mines RI 7293.)

PB 186 149. Preparing Alkalized Alumine, by Laurance L. Oden and Paul E. Francoeur. September 1969. 14 pp. 7 figs. (Bureau of Mines RI 7294.)

 PB 186 243. Methane: Bibliography of the Thermodynamic and Transport Properties Above 300 K, by
 R. T. Moore, R. H. Harrison, and D. R. Douslin.
 1969. 133 pp. (Bureau of Mines OFR 14-69.) PB 187 395. A FORTRAN IV Computer Program for Preparing a Regional Interindustry Transactions Table
 From Secondary Data Sources, by Mary Carasso. 1969.
 26 pp. (Bureau of Mines OFR 18-69.)

PB 187 396. A FORTRAN IV Computer Program for Manipulating Leantief Type Models, by Mary Catasso and Meir Carasso. 1969. 34 pp. (Bureau of Mines OFR 19-69.)

PB 187 668. Methods for Producing Alumina From Clay. An Evaluation of Two Lime Sinter Processes, by John J. Henn, Paul W. Johnson, Earle B. Amey III, and Frank A. Peters. September 1969. 43 pp. 17 figs. (Bureau of Mines RI 7299.)

PB 187 721. Refining Zinc-Base Die-Cast Scrap Using Low-Cest Fluxes, by D. Montagna and J. A. Ruppert. October 1969. 10 pp. 2 figs. (Bureau of Mines RI 7315.)

PB 187 722. Radiotracer Procedures for Mechanistic Studies in Air Pellution Research, by M. L. Whisman and Basil Dimitriades. October 1969. 36 pp. 3 figs. (Bureau of Mines RI 7304.)

PB 187 734. Destructive Distillation of Scrop Tires, by D. E. Wolfson, J. A. Beckman, J. G. Walters, and D. J. Bennett. September 1969. 19 pp. 4 figs. (Bureau of Mines RI 7302.)

P8 187 737. Specifications for Selected Hydraulic-Powered Reof Supports With a Method To Estimate Support Requirements for Longwalls, by A. J. Barry, O. B. Nair, and J. S. Miller. September 1969. 15 pp. 4 figs. (Bureau of Mines IC 8424.)

PB 187 738. Revegetation Studies at Three Strip-Mine Sites in North-Central Pennsylvania, by M. O. Magnuson and R. L. Kimball. February 1968. 8 pp. (Bureau of Mines RI 7075.)

PB 187 739. A Systems Approach to Recovering Gold Resources in Jefferson County, Mant. Introductory Review, by Robert W. Ageton, George T. Krempasky, and William L. Rice. October 1969. 16 pp. 5 figs. (Bureau of Mines RI 7305.)

PB 187 740. Vapor Pressures of Metal Halides. The CdCl-SnCl., CdCl-ZnCL, PbCl-SnCl., and PbCl-ZnCl. Binary Systems, by L. C. George, A. Visnapuu, Barbara C. Marek, and Robert M. Doerr. October 1969. 15 pp. 12 figs. (Bureau of Mines RI 7307.)

PB 187 741. Structural Design Data for Unreinforced Concrete Tunnel Linings, by J. D. Dixon. October 1969. 43 pp. 7 figs. (Bureau of Mines RI 7297.)

1

3

3

1

PB 187-742. Bureau of Mines Coal-Fired Gas Turbine Research Project. Test of Combustor and Ash Separators for Open-Cycle Plant, by Donald C. Strimbeck, Arthur J. Liberatore, Gerald B. Goff, and James P. McGee. September 1969. 12 pp. 9 figs. (Bureau of Mines RI 7295.)

PB 187 743. Laboratory Oil-Recovery Tests With Ultrasonically Formed Emulsions, by C. A. Komar and H. A. W. Moore. September 1969. 14 pp. 3 figs. (Bureau of Mines RI 7296.)

PB 187 744. Effect of Increasing End Constraint on the Compressive Strength of Model Rock Pillers, by Clarence O. Babcock, September 1969. 18 pp. 7 figs. (Bureau of Mines RI 7298.) PB 187 745. Extraction of Copper From Oxides Using Iron and Steel Scrap. Principles and Application to Pure Systems, by S. E. Khalafalla, H. W. Kilau, and L. A. Haas. October 1969. 13 pp. 5 figs. (Bureau of Mines RI 7301.)

PB 187 746. Drillability Studies-Laboratory Percussive Drilling, by James Paone, Dick Madson, and William F. Bruce. September 1969. 22 pp. 17 figs. (Bureau of Mines RI 7300.)

PB 187 773. Personal Respirable Dust Sampler, by M. Jacobson and J. A. Lamonica. September 1969. 8 pp. 4 figs. (Bureau of Mines TPR 17.)

PB 187 832. The Commercial Demand for Gold in the United States, by Constantine Michalopoulos and Roger C. Van Tassel. July 1969. 85 pp. (Bureau of Mines OFR 23-69.)

PB 187 878. Vanadium. A Materials Survey, by Philip M. Busch. 1961. 95 pp. 21 figs. (Bureau of Mines IC 8060.)

PB 187 891. Mica. A Materiale Survey, by Milford L. Skow. 1962. 241 pp. 27 figs. (Bureau of Mines IC 8125.)

PB 187 948. Coal Reserves of Bibb County, Alabama, by Reynold Q. Shotts. 1969. 62 pp. 15 figs. (Bureau of Mines OFR 20-69.)

PB 187 950. Adaptation of Automation in the Coment, Salt, and Iron Industries in South-Central United States, by Andrew Kuklis and G. T. McIntyre. 1969. 74 pp. 30 figs. (Bureau of Mines OFR 24-69.)

PB 188 418. Gas Combustion Retorting of Oil Shale Under Anvil Points Lease Agreement: Stage I, by J. R. Ruark, H. W. Sohns, and H. C. Carpenter. November 1969. 109 pp. 13 figs. (Bureau of Mines RI 7303.)

PB 188 419. Heats of Formation of Three Oxides of Rhenium, by E. G. King, D. W. Richardson, and R. V. Mrazek. November 1969. 13 pp. (Bureau of Mines RI 7323.)

PB 188 453. Sampling and Coking Studies of Several Coalbeds in the Kokalik River, Kukpowruk River, and Cape Beadfort Areas of Arctic Northwestern Alaska, by R. S. Warfield and Charles C. Boley. December 1969. 58 pp. 12 figs. (Bureau of Mines RI 7321.)

PB 188 457. Methods for Producing Secondary Copper, by Max J. Spendlove. 1961. 41 pp. 14 figs. (Bureau of Mines IC 8002.)

PB 188 458. Planning for Non-Renewable Common Mineral Resources in Urban-Suburban Environs, by Donald Bisko, James R. Dunn, and William A. Wallace. Oct. 18, 1969. 181 pp. 15 figs. (Bureau of Mines OFR 25-69.)

PB 188 526. A Study and Model of the Exploration Process in the Non-Fuels Minerals Industry. Prepared for the Bureau of Mines by the CONSAD Research Corp., Aug. 15, 1969. (Bureau of Mines OFR 17-69.)

PB 188 535. Infrared Evaluation of Starch Products Used in Iron Ore Flotation, by A. F. Colombo and A. R. Rule. October 1969. 16 pp. 7 figs. (Bureau of Mines RI 7306.) PB 188 555. Preparation of Rare-Earth and Yttrium Metals by Electrodeposition and Vacuum Distillation of Alloys, by E. Morrice, J. E. Murphy, and M. M. Wong. October 1969. 11 pp. 2 figs. (Bureau of Mines RI 7308.)

PB 188 556. Relative Effects of Grouped Physical Variables on the Revenue-Cost System of a Lead-Zinc Mining Operation, by Richard E. Dawes. November 1969. 26 pp. 5 figs. (Bureau of Mines RI 7311.)

PB 188 557. Effect of Cetane Improvers in the Fuel on Nitrogen Oxides Concentration in Diesel Exhaust Gas, by H. W. Lang, A. J. Sippel III, and R. W. Freedman. October 1969. 5 pp. 2 figs. (Bureau of Mines RI 7310.)

PB 188 558. The System Al,C3-AlN-Al,C3. Powder Forming and Sintering Behavior, Phase Identification, and Refractory Composition Properties, by Jack L. Henry, James H. Russell, and Hal J. Kelly. November 1969. 24 pp. 7 figs. (Bureau of Mines RI 7320.)

PB 188 559. Energetics of Percussive Drills-Longitudinal Strain Energy, by Robert G. Lundquist and Carl F. Anderson. December 1969. 23 pp. 11 figs. (Bureau of Mines RI 7329.)

PB 188 560. Dismontling a Typical Junk Automobile To Produce Quality Scrap, by Karl C. Dean and Joseph W. Sterner. November 1969. 17 pp. 1 fig. (Bureau of Mines RI 7350.)

PB 188 585. Preparation Characteristics of Coal From Beaver and Lawrence Counties, Pa., by J. E. Zeilinger. 1969. 23 pp. (Bureau of Mines RI 7324.)

PB 188 586. Selective Flotation of Minarals From North Caroling Mice Tailing, by W. H. Eddy, James
S. Browning, and James E. Hardemon. 1969. 10
pp. 1 fig. (Bureau of Mines RI 7319.)

PB 188 587. Fluidized-Bed Low-Temperature Carbanization of Bituminous Coal and Thermal Cracking of the

Bituminous Coal and Thermal Cracking of the Tor Vapors, by W. S. Sanner, B. W. Naugle, and D. E. Wolfson. 1969. 19 pp. (Bureau of Mines RI 7322.)

PB 188 588. Effect of Sodium Nitrate on the Incendivity of Explosives in Coal Dust-Gas-Air Mixtures, by C. M. Mason and P. A. Richardson. November 1969. 7 pp. 1 fig. (Bureau of Mines RI 7318.)

PB 188 589. The Electrohydraulic Effect: Potential Application in Rock Fragmentation, by H. K. Kutter. 1969. 35 pp. 21 figs. (Bureau of Mines RI 7317.)

PB 188 590. Freduction of Matallic Concentrates From High-Silica Iron Ores, by H. D. Jacobs and R. B. Schluter. 1969. 17 pp. 8 figs. (Bureau of Mines RI 7314.)

PB 188 591. High-Purity Zinc and Tin by Amalgam Electrorefining, by D. H. Chambers and A. W. Maynard. 1969. 10 pp. 3 figs. (Bureau of Mines RI 7313.)

PB 188 592. Gamma and Beta Distribution Functions Applied to Size Distribution of Mineral Products, by Hillary W. St. Clair. November 1969. 33 pp. 3 figs. (Bureau of Mines RI 7309.)

PB 188 626. Studies on the Control of Respirable Coal Mine Dust by Ventilation, by D. S. Kingery, H. N. Doyle, E. J. Harris, M. Jacobson, R. G. Peluso, J. B. Shutack, and D. P. Schlick. October 1969. 13 pp. 7 figs. (Bureau of Mines TPR 19.) PB 188 627. On Estimating Virial Coefficients From Experimental Data, by K. R. Van Doren, December 1969. 26 pp. (Bureau of Mines IC 8437.)

PB 188 628. Applying Marx and Lagenheim Calculations to the Prediction of Oil Recovery by Steamflooding in Venango Sands, by Avis W. Effinger and James A. Wasson. November 1969. 34 pp. 3 figs. (Bureau of Mines IC 8432.)

D

)

¢

•

ŧ

E

) E

)

Ł

PB 188 629. Effect of Lowering the Jin Content of Secondary Red Bross, by L. W. Higley, J. L. Holman,
E. R. Cole, and H. Kenworthy. October 1969. 11
pp. 5 figs. (Bureau of Mines TPR 18.)

PB 188 630. Injury Experience in the Metallic Mineral Indusries, 1965, by Forrest T. Moyer and Mary B. McNair. November 1969. 69 pp. (Bureau of Mines IC 8433.)

PB 188 645. Mine Water Research. Catalytic Oxidation of Ferrous Iron in Acid Mine Water by Activated Carbon, by Edward A. Mihok. December 1969. 7 pp. 1 fig. (Bureau of Mines RI 7337.)

P8 188 646. Chemical Reclaiming of Superalloy Scrap, by P. T. Brooks, G. M. Potter, and D. A. Martin. November 1969. 28 pp. 15 figs. (Bureau of Mines RI 7316.)

PB 188 653. Magnesium and Magnesium Compounds, by Hazel B. Comstock. 1963. 128 pp. 24 figs. (Bureau of Mines IC 8201.)

PB 188 656. Columbium and Tantalum. A Materials Survey, by William R. Barton. 1962. 110 pp. 24 figs. (Bureau of Mines IC 8120.)

PB 189 153. An Engineering and Economic Study of a Gold Mining Operation, by Edward E. Johnson. 1968. 53 pp. 7 figs. (Bureau of Mines IC 8374.)

PB 189 536. Contributions to the Data on Theoretical Metallurgy, XV. A Reprint of Bulletins 383, 384, 393, and 406, by K. K. Kelley. 1962. 154 pp. (Bureau of Mines B 601.)

PB 189 540. Thermodynamic Properties of a Redlich-Kweng Fluid in the Two-Phase Region, by B. J. Dalton and Robert E. Barieau. December 1969. 181 pp. 114 figs. (Bureau of Mines RI 7312.)

PB 189 541 An Ultrasonic Method for Determining the Elastic Symmetry of Materials, by Thomas R. Bur, Richard F. Thill, and Kenneth E. Hjelmstadt. December 1969. 23 pp. 10 figs. (Bureau of Mines RI 7333.)

PB 189 542. Suggested Orientation Conventions for Elasticolly Anisotropic Polycrystalline and Amorphous Materials, by Thomas R. Bur. December 1969. 9 pp. 1 fig. (Bureau of Mines RI 7334.)

PB 189 543. An Ultrasonic Method for Determining the Attenuation Symmetry of Materials, by Thomas R. Bur, Kenneth E. Hjelmstad, and Richard E. Thill. December 1969. 8 pp. 2 figs. (Bureau of Mines RI 7335.)

PB 189 544. Recovering Gold from Stripping Waste and Ore by Percolation Cyanide Leaching, by George M. Potter. December 1969. 5 pp. (Bureau of Mines TPR 20.) PB 189 903. Methods for Determining Nitrogen Oxides in Automotive Exhausts, by Basil Dimitriades. May 1968. 29 pp. 9 figs. (Bureau of Mines RI 7133.)

PNE 1000. Project Gasbuggy, by Harry Gevertz, R. F. Lemmon, W. T. Hollis, M. A. Lekas, Don C. Ward, Charles H. Atkinson, and Norman Bonner. May 14, 1965. 57 pp. (Bureau of Mines OP 49-67.)

1

1

1

PNE 3001. Subsurface fracturing from a Nuclear Detonction in Granite, by Charles H. Atkinson. U.S. Atomic Energy Commission, Plowshare Program Rept. 3001. 1965. 30 pp. 5 figs. (Bureau of Mines OP 10-65.)

197

• •

ARTICLES IN OUTSIDE PUBLICATIONS

OP 145. Gat-Solids Suppensions as Hect-Carrying Mediums, by W. T. Abel, D. E. Bluman, and J. P. O'Leary. Pyrodynamics, v. 2, 1965, pp. 15-23. Suspensions of micronized graphite in inert gases were studied as heat-transport mediums for high-temperature systems such as nuclear reactors. Suspensions were circulated continuously by a centrifugal compressor to determine if the solids eroded the equipment and to compare the heat-transfer characteristics and power required to circulate the medium with the corresponding values for the carrier gas. Suspensions were circulated satisfactorily without significant erosion. In laminar and transitional flow, heavy deposits of graphite formed on cool heatexchange surfaces, reducing the rate of heat transfer. In the turbulent regime, only thin films of graphite were observed, and heat-transfer coefficients were higher. The additional energy required to circulate solids at velocities necessary to prevent excessive deposition appeared to offset most of the advantage provided by the increase in heat-transfer coefficients.

OP 2-65. Hot Filament Motheds of Determining Oxidizing Gases in High-Purity Gas Streams, by W. T. Abel, J. D. Spencer, and D. M. Bailey. Anal. Chem., v. 37, No. 13, December 1965, pp. 1711-1715. Describes a technique based on the use of a tungsten filament for determining traces of oxygen, carbon dioxide, or water in inert gases to as low as 10 ppm. Streams of helium containing traces of each oxidizing gas were passed over a hot tungsten filament giving correlations between rate of filament weight loss and oxidizing gas concentration. The technique proved sensitive and reproducible enough for onsite monitoring of these trace impurities in high-temperature gas systems. Applications of the method and reactions of tungsten with nonoxidizing as well as oxidizing gases are discussed.

OP 3-65. Solid and Gaseous Fuels, by R. F. Abernethy, and J. G. Walters. Anal. Chem., Annual Review, v. 37, No. 5, April 1965, pp. 222R-232R. Surveys the technical literature on the improved and new methods of sampling and analyzing coal and coke, and methods used for testing blast-furnace top, carbureted water, coal, coke-oven, liquefied petroleum, sludge, manufactured, natural, producer, synthesis, and water gases. Eighth in a series, review covers the period October 1962 to September 1964.

OP 4-65. Developing a Program To Determine the Economic Value of Minoral Depaits With Respect to Time, by Paul T. Allsman. Proc. 5th Ann. Symp. on Computers and Computer Applications in Mining and Exploration, March 15-19, 1965. College of Mines, University of Arizona, Tucson, Ariz., v. 1, 1965, pp. H-1 to H-27. Discusses problems of developing a program to determine if and when a mineral deposit can be economically exploited. The program will develop mathematical models to describe the varied character of mineral deposits, permit measurement of the level and projected growth of technology unique to exploiting deposits, and permit a determination of the present and projected feasibility of economic production from mineral deposits investigated.

OP 5-65. Determining Surface Areas From CO: Isotherms, by R. B. Anderson, James Bayer, and L. J. E. Hofer. Fuel, v. 44, No. 6, November 1965, pp. 443452. Adsorption isotherms for CO, at -78° C have been determined on porous inorganic solids, charcoal, carbon blacks, and a representative group of coals. On coal, CO₂ adsorbs slowly but in large quantities at -78° C. Surface areas varying from 174 to 455 m²/g were obtained from CO₂ isotherms for a representative group of coals of different ranks compared with values of 1 to 10 m²/g from N, isotherms at -195° C. Areas from CO₂ isotherms are of the same magnitude as those determined from methanol adsorption.

OP 6-65. Linear Solutions of Fick's Law, by R. B. Anderson, James Bayer, and L. J. E. Hofer. I&EC Process Design and Development, v. 4, No. 2, April 1965, pp. 167-171. Linear forms of solutions of Fick's law are applied to the rate of adsorption of methane on coal.

OP 7-55. Activation Energy for Diffusion-Controlled Adsorption Processes (letter to the editor), by R. B. Anderson and L. J. E. Hofer. Fuel, v. 44, No. 4, July 1965, pp. 303-306. Activation energies calculated from the temperature dependence of the quantity D/a, where D is the diffusivity and a is the constant of an adsorption equation, are larger than the corresponding values for D.

OP 8-65. Factors in Sulfur Poisoning of Iron Catalysts in Fischer-Tropich Synthesis, by R. B. Anderson, F. S. Karn, and J. F. Shultz. J. Catalysis, v. 4, No. 1, February 1965, pp. 56-63. The poisoning of iron catalysts by sulfur compounds was found to be decreased by the potassium oxide present and by decrease in particle size from 6- to 8-mesh to 28- to 32-mesh.

OP 9-65. Radioactive Tracers in Miscible-Phase Petroleum Production Operations, by F. E. Armstrong, W. D. Howell, and Gordon E. Fletcher. U.S. Atomic Energy Commission, Division of Isotopes Development, TID-21199, 1964, 31 pp. An investigation was made to determine the utility of radioisotopes as tracers in the development of miscible-phase methods of petroleum recovery. Tritium was used in two field experiments to trace the flow of gasoline, of isopropanol, and of water. In both field experiments, which are still in progress as of this date, considerable useful data were obtained. No major problems were encountered, although the synthesis and handling of large quantities of tagged hydrocarbons required special precautions to avoid contamination. Use of radioactive tracers, in particular tritium compounds, affords an opportunity to obtain otherwise unavailable data concerning the performance and efficiency of miscible-phase petroleum recovery mechanisms.

OP 10-65. Subsurface fracturing from a Nuclear Detonation in Granite, by Charles H. Atkinson. U.S. Atomic Energy Commission, Plowshare Program Rept. PNE-3001. 30 pp. 5 figs. A fracture-evaluation experiment in conjunction with the Shoal nuclear detonation in granite was undertaken to determine the extent of subsurface shock-induced fractures. Preshot and postshot geophysical logs in a hole drilled from the surface through the zone of fractures indicated that fractures extended at least 5.3 concave radii laterally from the point of detonation. Quantitative measurements of permeability increases resulting from the detonation were planned, but were not completed because of adverse .

۱

)
[

)

Í

Þ

test-hole conditions. General descriptions of the Shoal project, geology of the test site, and other effects of the detonation are included.

OP 11-65. Crude Oil Analysis as a Guide to Asphalt Poten-OP 11-65. Crode Oil Analysis as a Guide to Asphalt Poten-ticl, by John S. Ball. Ch. 3 in Bituminous Materials. Asphalts, Tars, and Pitches, ed. by A. J. Hoiberg. Interscience Publishers, New York, v. 2, Part 1, 1965, pp. 59-79. The use of Bureau of Mines crude oil analyses in estimating the amount and quantity of asphalt which can be recovered from the crude oil in described. the crude oil is described.

OP 12-65. Analytical Expressions for the Zero Pressure Thermadynamic Properties of Nitrogen Gas Including Corrections for the Latest Values of the Atomic Constants and the New Carbon-12 Atomic Weight Scale, by Robert E. Barieau. J. Phys. Chem., v. 69, No. 2, February 1965, pp. 495-499. The values of the zero pressure thermodynamic properties of nitrogen calculated by Goff and Gratch may be represented from 100° to $1,000^{\circ}$ R (55° to 550° K) by relatively simple equations. These equations include corrections for the latest values of the atomic constants and also for the new carbon-12 atomic-weight scale. Equations are also given for these properties expressed in Btu/lb mole ° R as a function of degrees Rankine and in joules/g mole ° K as a function of degrees Kelvin.

OF 12A-65. Résumé of Roof Control, by Anthony J. Barry. Safety Newsletter, Coal Mining Sec., August 1965, pp. 2-3. Summarizes the activi-ties of the Roof Control Research Group and discusses current and future research projects.

OP 13-65. Roof Controls in Underground Querrying, by Anthony J. Barry. Trans. Nat. Safety Cong., v. 4, 1965, pp. 37-43. Describes current roof-control methods employed in representative under-ground quarries and suggests applications of meth-ada and techniques that may contribute to the preods and techniques that may contribute to the pre-vention of roof-fall accidents.

OP 14-65. Preparation of Bigdegradable Synthetic Detergents From Low-Temperature Lignite Ter, by John S. Berber, Robert V. Rahfuse, and Howard W. Wain-wright. I&EC Product Res. and Development, v. 4, No. 4, December 1965, pp. 242-247. Alkylbenzene sulfonate detergents were prepared from the olefins in low-temperature lignite tar. These tested for essentially 100 percent biodegradability.

OF 15-65. Evaluation of Dry Processes for Removing Sulfur Dioxide From Power Plant flue Gases, by D. Bienstock, J. H. Field, S. Katell, and K. D. Plants. J. Air Pollution Control Assoc., v. 15, No. 10, October 1965, pp. 459-464. Recent developments in SO, removal from combustion gases by dry techniques in this country and abroad are reviewed. Process flowsheets, operating conditions, byproduct yields, and relative costs of a purification system for an 800-megawatt powerplant are discussed.

f

3

3

OP 16-65. Iron Phyllosilicates of the Cuyung District in Minnesota, by Rolland L. Blake. Am. Min-eral., v. 50, January-February 1965, pp. 148-169. Petrographic examination of 96 thin sections of least 1 oxidized, silicate-rich samples of the thin-bedded facies of the Trommald iron formation in the Cuyuna district showed the following minerals in order of decreasing abundance: Mn-Mg-siderite, stilpnomelane, minnesotaite, magnetite, quartz, two unidentified iron silicates, goethite, hematite, pyrite, amphibole, and arsenopyrite. Three samples of stilpnomelane and one of minnesotaite were subjected to chemical, optical, spectrographic, X-ray diffraction, and differential thermal analysis.

OP 17-65. Use of Sodium To Remove Anthracene and Other impurities from Phenonthrene, by Bernard D. Blaustein and Sol J. Metlin. Anal. Chem., v. 37, No. 2, February 1965, pp. 295-296. As recovered from tar, phenanthrene contains anthracene, carbazole, fluorene, and dibenzothiophene. Treatment with molten sodium reduces all these impurities to extremely low levels. The phenanthrene is recovered by vacuum distillation.

OP 18-65. Pitfalls Determining 2V in Mices, by F. Donald Bloss. Am. Mineral., v. 50, Nos. 5-6, June 1965, pp. 789-792. Accurate determinations have shown that, at least for the synthetic fluormicas, the reported values for the optic axial angle 2V were seriously in error and low. A single crystal must be used—not one interlayered or twinned. The higher order isochromes in the interference figure should be examined for offsets. Single crystals are character-ized by the absence of offsets occurring as the iso-chromes pass across the isogyres at 45° off extinction. The postulation is made that some values of 2V for natural micas may also be erroneous.

OP 19-65. Elimination of Container Effects in Activation Analysis of Oxygen, by K. G. Broadhead and H. H. Heady. Anal. Chem., v. 37, No. 6, May 1965, pp. 759-760. Presents a technique for improving the fast neutron activation analysis of oxygen in metals. The activated sample is removed from its container just prior to counting to eliminate the problem of high background due to the container. Oxygen can thereby be determined at the 10 ppm level with an accuracy of \pm 50 percent.

OP 20-65. 14-MeV-Neutron Production of Isomeric States for Several Rare-Earth Elements, by K. G. Broadhead, D. E. Shanks, and H. H. Heady. Phys. Rev., v. 139, No. 6B, Sept. 20, 1965, pp. B1525-B1528.
Fast-neutron cross sections have been determined for the following reactions, using 14-MeV neutrons from the H³(d,n) He⁴ reaction: Y⁸⁸(n,n'\gamma) Y^{88m}, 400 mb; Nd¹⁴²(n,2n) Nd^{141m}, 545 mb; SM¹⁴⁴(n,2n) Sm^{143m}, 400 mb; Tb¹³⁹(n,2n) Tb^{138m}, 160mb; Er¹⁶⁸(n,2n) Er^{167m}, 190 mb. Possible sources of error affecting the cross-section measurements have been discussed and eval-uated numerically. The overall accuracy was deter-mined to be about ±12 percent. OP 20-65. 14-MeV-Neutron Production of Isomeric States for

OP 21-65. Electron-Probe Microanolysis of the Odessa Iron Meteorite, by James D. Brown and Michael E. Lipschutz. Icarus, v. 4, No. 4, September 1965, pp. 436-441. Recently, studies of phase transforma-tion and alteration during the reheating of iron meteorites were performed on samples of the Canyon Diablo and Odessa meteorites. This report describes results of quantitative analyses of major and minor phases of two specimens of the Odessa iron meteorite made with Bureau of Mines modified electron-probe microanalyzer, using as standards pure metals and previously analyzed schreibersite. These analyses provide additional data for the above studies.

OP 22-65. Flotation of Spodume-Beryl Ores, by James S. Browning. Min. Eng., v. 13, No. 7, July 1961, pp. 706-708. Describes methods for separating spodume and beryl ores by flotation.

National Report: United States of America, by OP 23-65. Bureau of Mines Staff. Proc. 4th Internat. Conf. on Strata Control and Rock Mechanics, Columbia University, New York, 1964, pp. 559-564. Presents a summary of Bureau of Mines efforts to overcome roof-control problems associated with the underground recovery of minerals.

OP 24-65. Krypton 85 Tracer Aids Evoluction of Underground Combustion Oil-Recovery Tests, by Edward L. Burwell and William D. Howell. Producers Monthly, v. 29, No. 1, January 1965, pp. 21-23. Gas tracer tests using radioactive krypton 85 were performed in undeground combustion oil-recovery field experiments in Venango County, Pa. The transit times of injected gas through the reservoir, permeability trends, and relative percent of gas production from pattern wells were determined. Information obtained from the radioactive tracer tests, supplemented by reservoir and production data, aided in the control and evaluation of the field experiments.

OP 25-65. Basic Minerals, by Gabriel F. Cazell. Chem. and Eng. News, v. 42, No. 46, Sept. 6, 1964, pp. 124-129. Presents forecast of refined min-

1964, pp. 124-129. Presents forecast of refined minerals production for year 1964, based on actual data for the first quarter of the year and on a general forecast of industrial and business activity for the year as a whole.

OP 26-65. Book review, by Theodore Christos. "Gas Analysis by Chromatography," by P. C. Jeffery and P. J. Kipping. Anal. Chem., v. 27, No. 3, March 1965, pp. 77A-78A.

OP 27-55. Identification of Some Naturally Occurring Alkylthisphanes in Wilmington, Calif., Cruda Oil by Use of a Series of Gas-Liquid Chromatography Stationary Phases, by H. J. Coleman, C. J. Thompson, R. L. Hopkins, and H. T. Rall. J. Chromatography, v. 20, No. 2, 1965, pp. 240-249. Describes in detail the systematic liquid-solid and gas-liquid chromatographic procedures used for the concentration and identification of eight alkylthiophenes in a Wilmington, Calif., crude oil distillate having a boiling range of 111° to 150° C; presents quantitative data for each of the identified thiophenes.

OP 28-55. Identification of Thiols in a Wasson, Texas, Crude Oil Distillate Boiling from 111° to 150° C, by H. J. Coleman, C. J. Thompson, R. L. Hopkins, and H. T. Rall. J. Chem. and Eng. Data, v. 10, No. 1, January 1965, pp. 80-84. Describes a systematic procedure for the concentration and identification of 35 individual thiols present in a Wasson, Texas, crude oil distillate boiling from 111° to 150° C. The procedures applied included distillation, alumina adsorption, chemical extraction, gas-liquid chromatography, microdesulfurization, and infrared spectroscopy. Many Cs and Cs thiols, not commercially available, were synthesized, and GLC retention times and infrared spectra of some of these are presented.

OF 29-65. Flome Spectrometric Determination of Lithium in Oilfield Worers, by A. Gene Collins. Internat. J. Air and Water Pollution, v. 9, No. 3, 1965, pp. 145-149. A flame spectrometric method was developed for the determination of trace quantities of lithium in oilfield waters. The intensity of the lithium emission increased when organic solvents were added to the sample. It is possible to determine less than 0.015 milligram per liter (mg/l) of lithium by this method, and after concentration of the sample by evaporation $10^{-2.1}$ mg/l can be determined. Application of this method aids in water pollution studies.

OP 30-65. Colcium ion Measurements Provide Insights to Anionic Flotation, by A. F. Colombo, R. T. Sorensen, and D. W. Frommer. Trans. SME, June 1965, pp. 100-109. An analytical method has been developed and used in batch and continuous tests to provide initial insights into the effect of soluble calcium ion in anionic flotation of silica from iron ores.

OP 31-65. Preventing Mine Subsidence in Pennsylvania, by Joseph A. Corgan. Coal, v. 19, No. 5, May 1965, pp. 7-11. Deals with a successful cooperative project in overcoming hazards from mine subsidence in an area in Wilkes-Barre, Pa., with a surficial area of 58 acres. Gives details of methods used and costs.

OP 32-65. Tetramethyllead: Far Infrared Spectra, Molecular Vibrations, and Chemical Thermodynamic Properties. Resolution of an Entropy Discrepancy, by G. A. Crowder, G. Gorin, F. H. Kruse, and D. W. Scott, J. Molecular Spectroscopy, v. 16, No. 1, May 1965, pp. 115-121. Far infrared spectroscopy and a normalcoordinate analysis for tetramethyllead yielded the first vibrational assignment consistent with the observed entropy of the vapor. A table of the chemical thermodynamic properties was prepared.

ſ

F

OP 33-65. Liquid-Vaper Frequency Shifts and Torsional Frequencies in Far Infrared Spectra, by G. A. Crowder and D. W. Scott. J. Molecular Spectroscopy, v. 16, No. 1, May 1965, pp. 122-129. Shifts of low frequencies between liquid and vapor states and frequencies for hindered internal rotation were observed far a variety of compounds.

OP 34-65. Blassing Agents: History, Hazards, and Protection, by Glenn H. Damon. Fire J., v. 59, No. 2, March 1965, pp. 52-57. Prevention of fire is the most important safety factor in handling ammonium nitrate-base blasting agents. In this article the most pertinent Bureau of Mines recommendations are discussed in detail.

OP 35-65. Effect of Retorting Temperature on the Composition of Shale Oil, by G. U. Dineen. Chem. Eng. Progress Symp. Ser., v. 61, No. 54, pp. 42-47. Shale oils were produced by entrained-solids retorting at 1,000°, 1,200°, and 1,600° F. The higher temperature oils contain more naphtha and are more aromatic than the 1,000 F° oil. Higher retorting temperatures favor the production of parent ring compounds to the extent that about a dozen compounds comprise over half the 1,600° F oil.

OP 36-65. Pressure Measurements in the 0.01-03 Torr Range With an Inclined-Piston Gauge, by D. R. Douslin and A. Osborn. J. Sci. Instr., v. 42, June 1965, pp. 369-378. An inclined-piston pressure gage is described that will supply a long-standing need in thermochemical research for accurate vaporpressure determinations in the low and intermediate pressure range.

OP 37-65. Field Performance of a Pilot Waterflood-A Progress Report, by J. R. Duda and Harry R. Johnson. Producers Monthly, v. 29, No. 12, December 1965, pp. 8-10. Reports on the results of a pilot waterflood begun in January 1963. An assumed gas saturation of 20 percent now appears to have been too high; field data indicate an initial average gas saturation of about 15 percent. Field performance indicates the pilot waterflood in the Kane sand should produce 37,000 to 42,000 barrels of oil with the injection of 300,000 barrels of water into the pattern. Ultimate oil recovery may be as much as 50,000 to 55,000 barrels.

OP 38-65. The Effect of Anisotropy on the Determination of Dynamic Elastic Constants of Rock, by W. L. Duvall. Trans. SME, December 1965, pp. 309-316. Equations commonly used to obtain elastic constants of rock samples can result in appreciable error if the rock is even slightly anisotropic. Consideration of the equations that relate bar velocities and free medium velocities to elastic constants for orthotropic, transversely isotropic, and isotropic solids shows that a combination of the two methods can be used to determine average elastic constants for a single sample of rock. Determination of elastic constants in different directions requires a large number of tests on oriented samples. Use of both resonant frequency and ultrasonic pulse methods is recommended so that determination of both Young's modulus and modulus of rigidity is independent of the determination of Poisson's ratio.

OP 39-65. Seismic Energy Available From Rockbursts and Underground Explosions, by W. I. Duvall and D. E. Stephenson. Trans. SME, September 1965, pp. 235-240. Gives a theoretical solution for the energy that is radiated outward when either a cylindrical or spherical cavity located underground in a uniform stress field is suddenly created or enlarged. The method of derivation shows that the stress field in the solid rock surrounding the opening does work on the rock because of elastic displacements that result when the size of the cavity is increased. The amount of this work is sufficient to account for both the increase in the strain energy in the rock surrounding the opening and the seismic energy that radiates outward. Thus, the source of the radiant seismic energy is mainly the gravitational potential energy and not the radiant seismic energy is directly proportional to the volume of rock removed from the opening or relieved of stress. Seismic energies.

OP 40-65. A Small Angle X-Ray Scattering Study of the Colloidal Nature of Petroleum, by C. W. Dwiggins, Jr. J. Phys. Chem., v. 69, No. 10, October 1965, pp. 3500-3506. Petroleum colloids were investigated using small angle X-ray scattering. Radii of gyration were obtained for several crude oils, for crude oils diluted with solvents, and for a crude oil at different temperatures. Additional parameters were obtained for two oils. In general, the colloids of petroleum can have different average radii of gyration and probably exhibit some polydispersity. No large temperature effect was detected. However, the colloid size can be changed greatly by some added solvents, while other solvents produce little or no change in colloid size.

OP 41-65. Estimation of Well Capacities and Gas Reserves, by J. L. Eakin, R. V. Smith, and J. S. Miller. Ch. 4 of sec. 4, Production, Gathering, and Conditioning of Natural Gas. Gas Engineers Handbook, Fuel Gas Engineering Practices. American Gas Association. The Industrial Press, New York, 1965, pp. 28-47. Describes methods of estimating well capacities using back-pressure testing of natural gas wells and gives examples of application of the methods; discusses methods of estimating nonassociated, associated, and dissolved gas reserves.

¢

٩

1

1

ţ

Į

1

1

OP 42-65. Integration of Partial Differential Equation for Transient Radial Flow of Gas-Condensate Fluids in Porous Structures, by C. K. Eilerts, E. F. Sumner, and N. L. Potts. Soc. Petrol. Eng. J., v. 5, No. 2, June 1965, pp. 141-152. The second-order, nonlinear, partial-differential equation representing the transient radial flow of gas-condensate fluids in reservoirs has been integrated by using finite-difference equations and electronic computers. Effect was given to pressure-dependent permeability, viscosity, and compressibility and to distance-dependent permeability. The influence of a second-degree velocity term in the Darcy equation was investigated. Implicit methods were used and practical, convergent solutions were obtained with material balance to less than 6 x 10^{-4} for recovery of one-half the reserve at constant flow rate. Integration results provide the productive period of a reservoir for a given constant rate and the fraction of the fluid initially in place that can be recovered in that period.

OP 43-65. Identification of Some Oxygenates in Automobile Exhausts by Combined Gas Liquid Chromatography and Infrared Techniques, by C. F. Ellis, R. F. Kendall, and B. H. Eccleston. Anal. Chem., v. 37, No. 4, April 1965, pp. 511-516. Sodium bisulfite scrubber solutions of oxygenates from automobile exhaust yield gas liquid chromatography (GLC) chromatograms at 90° C. The individual oxygenates were collected for infrared confirmation.

OP 44-65. Countercurrent Distribution of High-Boiling Neutral Oils From Low-Temperature Cool Tar, by Patricia A. Estep, Clarence Karr, Jr., William C. Warner, and Edward E. Childers. Anal. Chem., v. 37, No. 13, December 1965, pp. 1715-1720. Highboiling neutral oils from a low-temperature coal tar were analyzed by countercurrent distribution and spectroscopy. About 50 compounds were identified and their amounts determined.

OP 45-55. Two Unique Wall and Roof-Scaling Machines, by Arthur M. Evans. Min. Cong. J., v. 51, No. 3, March 1965, pp. 66-68. Describes two unique machines that scale loose rock from roofs and walls of rooms up to 75 feet high without exposing miners to hazards of falling rock.

OP 46-65. Ore-Scrap Magnetic Roosting: A New Basis for the Beneficiation of Iron Ore, by M. M. Fine and N. B. Melcher. J. Metals, v. 16, No. 9, September 1965, pp. 709-714. A completely new concept in magnetic roasting of iron ore—the use of scrap iron as a reductant—has been validated in batch and continuous laboratory experiments demonstrating iron recoveries of well over 90 percent.

OP 47-55. 1-Pentanethial: Heat of Vaporization and Heat Capacity of the Vapor, by Herman L. Finke, Isham A. Hossenlopp, and William T. Berg. J. Phys. Chem., v. 69, No. 9, September 1965, pp. 3030-3031. Reports results obtained from experimental determinations of the vapor heat capacity and heats of vaporization of 1-pentanethial. Derived values of the second virial coefficient are tabulated.

OP 48-65. Thermodynamic Properties of n-Propyl, n-Butyl, and n-Decyl Substituted Cyclohexane From 10° to 370° K, by H. L. Finke, J. F. Messerly, and S. S. Todd. J. Phys. Chem., v. 69, No. 6, June 1965, pp. 2094-2101. Experimental measurements of low-temperature thermodynamic properties were used to calculate the thermodynamic functions for these alkyl-substituted cyclohexanes. Literature data was used to extend entropies to the ideal gas state. Entropy increments per methylene group between n-butyl and n-decylcyclohexane were found to agree with previously studied homologous series.

OP 49-65. Procedures in Sampling and Handling Auto Exhaust, by D. R. Fleming, Basil Dimitriades, and R. W. Hurn. J. Air Pollution Control Assoc., v. 15, No. 8, August 1965, pp. 371-374. Sampling and handling techniques suitable for automotive ex-

haust produced both under steady state and cyclic engine operation are described and discussed. Advantages and limitations for each of the described techniques are discussed in detail.

OP 50-65. Catechols From the Carbonization of North Dakota Lignite, by Philip G. Freeman. Proc. North Dakota Acad. Science, 1964, v. 18, pp. 104-108. The low-temperature carbonization products of North Dakota lignite are shown to contain amounts of catechol, 2-methyl catechol, and 4-methyl catechol which are economically significant.

OP 51-65. Visible Spectra of Thin Sections and Polynuclear Condensed Arometicity of Pittsburgh Coal Vitrain, by R. A. Friedel. Nature, v. 201, No. 4921, Feb. 22, 1964, pp. 811-812. New data have been obtained for the visible spectra of ground thin sections of Pitts-burgh vitrain. The discrepancy between data for microtome ultrathin sections and ground thin sections is somewhat greater than before. Absorbance data from microtome sections at 6400 A are greater than those from ground thin sections by factors as high as 7.8. The data establish limiting concentrations of large polynuclear aromaticities that absorb in the visible region of the spectrum. The magnitude of the effect of holes in this ground section has been studied quantitatively. Obvious holes produce errors, but only in a small region of the spectrum.

 OP 52-65. Indenois in Cool Tars. The first Preparation of Indenoi, by S. Friedman, M. L. Kaufman,
 B. D. Blaustein, R. E. Dean, and I. Wender. Tetra-hedron, v. 21, pp. 485-490. Thermal (650° C) de-hydrogenation of 4- and 5-indanois over chromia-alumina yields first synthesis of corresponding indenois. Indenois exist as double bond isomers, separable by gas chromatography. separable by gas chromatography.

OP 53-65. The Occurrence of Metastable Tetragonal Zirconia as a Crystallite Size Effect, by Ronald C. Garvie. J. Phys. Chem., v. 69, No. 4, April 1965, pp. 1238-1243. Active powders of metastable tetragonal ZrO_2 were prepared by precipitation and calcination. The existence of the metastable phase was correlated with the intrinsic properties of active powders: small crystallite size, large specific surface, and appreciable excess energy.

OP 55-65. The Decoking of Bituminous Cool, by Stanley J. Gasior, Albert J. Forney, and Joseph H. Field. Min. Eng., v. 17, No. 3, March 1965, pp. 74-78. Methods for decaking coal in fixed-bed and free-fall systems are described. The decaked coals can then be created effectively. be gasified efficiently.

OF 56-65. Our Ocean Environment, by Wendell Gayman. Society of Aerospace Material and Proc-

ess Engineers, San Francisco, Calif., May 25-28, 1965, 19 pp. (preprints). Gives a brief description of the major environmental characteristics of the sea and enclosing ocean basins. Presents data on the more important physical and chemical properties of sea water and on the dynamics of surface layers. Concluding section briefly describes marine organisms and seafloor sediments. Stress is placed on the relation between physical and chemical parameters and the distribution of mineral and biological resources.

OP 57-65. Mineral Development in Mainland China During 1964, by Edgar J. Gealy and Anton W. T. Wei. Mining J., Ann. Review, 1965, pp. 248-250. Reports what is known of the mineral industry of mainland China in 1964.

.

OP 58-65. Air Pollutant Emissions from Coal-Fired Power Plants, Report No. 2, by R. W. Gerstle, S. T. Cuffe, A. A. Orning, and C. H. Schwartz. J. Air Pollution Control Assoc., v. 15, No. 2, February 1965, pp. 59-64. The Public Health Service and the Version of Minacore and uting a study to available Bureau of Mines are conducting a study to evaluate a number of flue-gas-stream components from coalburning powerplants. Emissions of fly ash, sulfur oxides, nitrogen oxides, polynuclear hydrocarbons, total gaseous hydrocarbons, formaldehyde, certain metals, and carbon dioxides are determined. Includes comparative evaluation of emissions from a tangential-fired and a turbo-fired powerplant boiler.

OP 59-65. Progress in the Application of Encapsulated Cells in a Coal Mine Subject to Coal Bursts, by James L. Gilley, Rudolph Sporcic, and Anthony Zona. Proc. 6th Symp. Rock Mechanics, University of Missouri at Rolla, October 1964, pp. 649-668. The Bureau of Mines has developed an encapsulated hydraulic cell for measuring pressure changes in coal in situ. Cooperative research and studies made in a coal mine in West Virginia have shown that the cell responds to pressure change. A brief description is given of the cell construction and operational technique. Data obtained during various stages of mining in an area of this mine subject to coal bursts are presented.

OP 60-65. Solvent Extraction and Spectrophotometric Deterministion of Nickel in High Purity Tungsten or Tungsten Trioxide, by Thomas E. Green. Anal. Chem., v. 37, No. 12, November 1965, pp. 1595-1596. A spectrophotometric method for determining nickel was developed in which tungsten metal samples were dissolved in hydrofluoric and nitric acids, the sample solutions are then evaporated to dryness, and the resulting tungsten trioxide is dissolved in sodium hydroxide. The method is therefore suitable for determining nickel in any physical form of tungsten metal and for determining nickel in tungsten trioxide.

OP 61-65. A Determination of the Maximum Principal Stress

Direction Trhough an Analsis of in Situ Failure of Anisatropic Heterogeneous Rock, by E. W. Gresseth. Proc. 6th Symp. Rock Mechanics, University of Missouri at Rolla, October 1964, pp. 1-22. In situ occurrences of planar discontinuities on the 5900, 6100. and 6300 levels of the Star mine, Burke, Idaho, were analyzed according to their orientations, type of rupture (tensional or shear), and relative displacements. Equal area projections were used to group and classify the joint and fracture systems, and the directions of the principal stress axes were determined.

OP 62-65. Suggested Mechanism for Initiating Pressure Oscillations in Rocket Motors (letter to the editor), by Joseph Grumer. Combustion and Flame, v. 9, No. 1, March 1965, pp. 105. Discusses occurrence of pressure oscillations observed while studying the burning velocities of gases at elevated pressures.

OP 63-65. Uncontrolled Fires-Specific Burning Rates and Induced Air Velocities, by Joseph Grumer and Alexander Strasser. Fire Technol., v. 1, No. 4, November 1965, pp. 256-268. Laboratory experiments were conducted to demonstrate that a large fire area will, by virtue of its size alone, induce winds which accelerate specific burning rates into those observed in fire storms. Although the presumed correlations were not borne out by the test results, several interesting observations were made.

)

9

Ð

9

OP 64-65. Oily Fibers May Increase Oxygen Tent Fire Hazard, by Paul G. Guest. Modern Hospital, May 1965, 2 pp. Tests were made on clean and greasecontaminated tufts of textile fibers, using deliberately generated sparks in oxygen or oxygen-enriched air.

CP 65-65. Oxygen and Oxygen Compounds, by W. E. Haines. Anal. Chem., v. 37, No. 5, April 1965, pp. 162R-164R. Reviews the literature on oxygen and oxygen compounds published during 1963-64.

OF 65-55. Detonability of Nitroglycerin Contained in Porous Rock, by J. Edmund Hay and Fred H. Scott. Nature, v. 208, No. 5016, p. 1197. Reports the discovery that nitroglycerin-ethylene glycol dinitrate can be detonated when absorbed in porous sandstone in concentrations as low as 8 weight-percent. The destination velocity is higher than that which would be expected from other experience.

OP 67-65. Variations in Permeability and Perosity of Synthetic Oil Reservoir Rock-Methods of Control, by Larman J. Heath. SPE J., v. 5, No. 4, December 1965, pp. 329-332. Synthetic oil-reservoir rock having predictable porosity and permeability has been prepared. Variations in porosity and permeability were caused by varying the amount of blending water. Drainage-cycle relative permeability characteristics of the synthetic rock were similar to those of natural reservoir rock.

4

.

ļ

l

1

ŧ

Ì

1

OP 68-65. Preparation and Properties of Ultrafine High-Purity Alumine, by Jack L. Henry and Hal J. Kelly. J. Am. Ceramic Soc., v. 48, No. 4, April 1965, pp. 217-218. Describes preparation of highpurity alumina of extremely small particle size by decomposition of ammonium alum.

OP 69-65. The Ocean: Mining's Newest Frontier, by H. D. Hess. Eng. and Min. J., v. 166, No. 8, August 1965, pp. 79-96. Fourth in a series of undersea mining, inventories ocean mineral resources and discusses plant and operating costs for offshore and undersea mining.

OP 70-65. Fluidized feeder Regulates Flow of Powders at Low Rates, by W. R. Huff. Chem. Eng., v. 72, No. 16, Aug. 2, 1965, pp. 132-133. Describes a small fluidized feeder that can continuously inject 10 pounds per hour of powdered peat, coal, or coke into an experimental unit.

OP 71-65. Density of Bulk Chrysotile and Massive Serpentine, by Charles W. Huggins and H. R. Shell. Am. Mineral., v. 50, Nos. 7-8, August 1965, pp. 1058-1067. Density measurements were made on 23 bulk specimens of chrysotile and 7 massive serpentine samples. Arizona chrysotile had densities of 2.19 to 2.22 grams per cubic centimeter, whereas the Canadian had values that varied from 2.34 to 2.39 g/cm³. Density of Arizona massive serpentine range from 2.40 to 2.44 g/cm³. The theoretical density of chrysotile was calculated to be 2.19 g/cm³, using published data for single-fiber measurements.

OF 72-65. Collecting Representative Exhaust Gas Samples, by R. W. Hurn, J. O. Chase, and R. D. Fleming. Instrument Society of America—Analysis Instrumentation—1964. Proc. 10th National Symp., June 1964. Plenum Press, New York, 1964, pp. 279-285. Automobiles operated in typical city traffic patterns discharge combustion products in erratic, highly variable fashion. Discharge rate, temperature, and composition may vary widely over time intervals less than 1 minute. The composite of such emissions is best described by information from a single sample, but collection of a representative sample from the highly variant stream requires specialized procedures. Two such procedures, one employing a servocontrol system and one employing dynamic dilution of the exhaust gas, have been used with success.

OP 73-65. Improved Dilatometer, by Garrett R. Hyde, Louis P. Domingues, and LeRoy R. Furlong. Rev. Sci. Instr., v. 36, No. 2, February 1965, pp. 204-205. Describes improvements in the differential-transformer-type of dilatometer.

OP 74-65. Magnesium Damping Capacity--Causes and Effects, by James W. Jensen. Metalscope, May 1965, pp. 7-10. A general discussion of vibration damping capacity is followed by data on the damping properties of commercial alloys. A method of assigning a useful "damping index" is described. The bulk of the data has been printed on a translucent insert for reproduction of extra copies.

OP 75-65. Use of Coal and Fly Ash as Adsorbents for Removing Organic Contaminants from Secondary Municipal Effluents, by Glenn E. Johnson, Louis M. Kunka, and Joseph H. Field. I&EC Process Design and Development, v. 4, No. 3, July 1965, pp. 323-327. Coals and fiy ashes were tested to determine their effectiveness in removing organic contaminants from the final effluent of secondary-treated waste waters. The adsorptive capacity of fly ashes, coals of various ranks, and pretreated coals was determined and compared with activated carbon. The coals, though less active than carbon, are relatively inexpensive and can still be burned as fuel after use in waste-water treatment. Illinois No. 2 seam coal (hvcb) adsorbed about 4 percent of its weight of materials that consume oxygen (COD) in repetitive contacts with fresh sewage; activated carbon adsorbed about 10 percent of its weight COD at the same test conditions. A fly ash removed 66 percent of the COD and 76 percent of the synthetic detergents (ABS) present in a single contact period. The effectiveness of fly ash as an adsorbent improves with increasing carbon content

OP 76-65. Relationships of Oil Composition and Stratigraphy in the Permian Basin of West Texas and New Mexice, by Theodore S. Jones and Harold M. Smith. Ch. in Fluids in Subsurface Environments—A Symposium, Memoir No. 4, American Association of Petroleum Geologists, 1965, pp. 101-224. The composition of crude oils, using especially the aromatic and naphthene content of the naphtha, was correlated with producing formations from Cambrian to Cretaceous.

OP 77-55. Hydrogenation of Carbon Monoxide and Carbon Dioxide on Supported Ruthenium Catalysts at Moderate Pressures, by F. S. Karn, J. F. Shultz, and R. B. Anderson. I&EC Product Research and Development, v. 4, No. 4, December 1965, pp. 265-269. Catalysts containing 0.5 percent ruthenium on high surface alumina are very active in hydrocarbon synthesis yielding 140 grams per cubic meter of synthesis gas.

OP 78-65. Measuring Thermal Effects in Catalytic Reactions, by F. S. Karn, J. F. Shultz, and R. B. Anderson. I&EC Process Design and Development, v. 4, No. 3, July 1965, pp. 266-270. A catalyst configuration has been devised for measuring catalyst temperatures in the hydrogenation of carbon monoxide on iron and nickel catalysts. The catalyst, promoted fused iron or Raney nickel, as a powder, was sprayed on the cylindrical surfaces of cylinders of copper or aluminum. Each cylinder contained a thermocouple well, and temperature differences between the central well and the Dowtherm bath were determined at corresponding positions along the length of the reactor. Data from several iron and nickel catalysts were plotted and could be represented by a single straight line, the slope of which corresponds to an overall heat-transfer coefficient of 4.79×10^{-3} cal sec⁻¹ cm⁻² ° C⁻¹. Activation energies for the synthesis on iron were determined using the observed temperature profiles and the first-order empirical rate equation that has been shown to represent the kinetics in tests where overheating is not important. An activation of 28 kcal per mole was obtained.

OP 79-65. The Analysis of Straight-Chain Aliphatics by Urea Partition Chromatagraphy and Gas-Solid Chroma-

tography, by Clarence Karr, Jr., and Joseph R. Comberiati. J. Chromatography, May 1965, v. 18, No. 2, pp. 394-397. C₁₅ through C₃₀ *n*-paraffins and α -olefins from a low-temperature coal tar have been analyzed by a combination of urea adduction in a highly efficient liquid-liquid partition chromatography process followed by gas-solid chromatography on aluminacoated capillary columns operated up to 400° C.

OP 80-65. Structure Determinations of Pitch Resins by Cata-

lytic Dehydrogenotion, by Clarence Karr, Jr., Kenneth B. McCaskill, and John J. Kovach. Fuel, v. 44, No. 6, November 1965, pp. 437-441. A structure determination of the benzene-soluble, ethyl etherinsoluble pitch resin from a low-temperature bituminous coal tar was made by catalytic dehydrogenation in four different pure solvents and by examination of the infrared and ultraviolet spectra of the dehydrogenates. Some of the structural features indicated for the original resin were alcoholic OH groups and naphthenic rings.

CP 81-65. Effects of Ultressnics on Brass Ploting, by Charles B. Kenahan and David Schlain. Electroplaters Soc., 51st Ann. Tech. Proc., 1964, pp. 3-10. Application of ultrasonics at a frequency of 18.5 kilocycles per second and an average acoustic intensity of 0.5 watts per square centimeter to the electrodeposition of brass from a cyanide bath resulted in changes in composition of copper-zinc alloys; produced brighter, more adherent, and finer grained deposits with a marked degree of preferred crystal orientation; and increased the corrosion protection afforded by the brass plate. In addition, highfrequency sound increased ande and cathode current efficiencies and decreased cell voltage. The relationship of these effects to current density is discussed. Electrode potential measurements showed significant depolarization effects at both electrodes as a result of ultrasonic radiation, but the decrease in cell voltage resulted chiefly from depolarization at the anode. Ultrasonics increased the limiting current density of the bath and reduced the tendency for the anode to become passive.

OP 82-65. Acoustic Velocities in Oil Reservoir Formations From Laboratory and field Measurements, by C. A. Komar and C. I. Pierce. Producers Monthly, v. 29, No. 2, February 1965, pp. 8-12. Compares formation matrix velocities derived from laboratory acoustic velocity measurements with those obtained from acoustic velocity logs. Resulting laboratory velocity logs compare favorably with field velocity logs considering the fact that no attempts were made to simulate reservoir stresses for the laboratory specimens of reservoir rock samples. OP 83-65. U.S. Bureau of Mines Acid Mine Drainage Central Program and Joint Interior-HEW Departments Acid Mine Drainage Central Program, by Stephen Krickovic. Proc. Symp. on Acid Mine Drainage Research, Mellon Institute, Pittsburgh, Pa., 1965, pp. 111-126. Discusses the acid mine water problem and the methods used to control or ameliorate it and describes the joint Interior-HEW demonstration program.

OP 84-65. Het Surface Ignition Temperatures of Hydrocarbon Fuel Vaper-Air Mixtures, by J. M. Kuchta, A. Bartkowiak, and M. G. Zabetakis. J. Chem. and Fng. Data, v. 10, No. 3, July 1965, pp. 282-288. Autoignition temperatures (AIT's) and "wire" ignition temperatures of various hydrocarbon combustibles were determined as a function of heat source dimensions using stagnant or near-stagnant combustible vaper-air mixtures. The combustibles included *n*-hexane, *n*-decane, *JP*-6 jet fuel, and an adipate ester aircraft engine oil MIL-L-7808).

OP 85-65. Effect of Montmovillenite on the Permeability to Gos of Water-Sensitive Reservoir Rocks, by Carlon S. Land and Oren C. Baptist. J. Petrol. Techol., v. 17, No. 10, October 1965, pp. 1213-1218. Describes laboratory research on the effect of clay hydration on the permeability to gas of water-sensitive reservoir sandstones.

OP 86-65. Freeze-Dry Technique for Making Ultra-Fine Metal Powder, by A. Landsberg and T. T. Campbell. J. Metals, v. 17, No. 8, August 1965, pp. 856-860. Ultrafine particles can be made from soluble materials by freeze-drying their solutions. Reduction of homogeneous compounds can be used to produce homogeneous alloy powders of controlled composition.

OP 67-65. Tungsten and Molybdenum Coated Nonmetallic Powders, by A. Landsberg, T. T. Campbell, and F. E. Block. J. Metals, v. 17, No. 8, August 1965, pp. 850-855. Uniform coatings of tungsten or molybdenum can be applied to several types of ceramic powders having irregular shapes. Of two processes tested, the oxide process seems more favorable.

OP 88-65. Nitrogen and Nitrogen Compaunds, by D. R. Latham and W. E. Haines. Anal. Chem., v. 37, No. 5, April 1965, pp. 161R-162R. Reviews the literature on nitrogen and nitrogen compounds published in 1963-64.

OP 89-55. Nonbasic Nitrogen Compounds in Petroleum, by D. R. Latham, I. Okuno, and W. E. Haines. Hydrocarbon Analysis. ASTM Spec. Tech. Pub. 389, 1965, pp. 385-398. Reviews the status of knowledge about the nonbasic nitrogen compounds in petroleum. Pyrroles, indoles, carbazoles, benzocarbazoles, phenazines, benzenitriles, and amides have been identified in petroleum or its fractions boiling above 400°F. Nonbasic nitrogen can be divided into four subtypes by titration of the crude oil with perchloric acid in acetic anhydride before and after reduction with lithium aluminum hydride. This method requires no prior separation or concentration of the nitrogen; it provides more detailed information than previous methods.

OP 90-55. Variation of X-Ray Spectral Line Position With Ambient-Temperature Change: A Source of Error in X-Ray Spectrography, by Frederick S. Lee and William J. Campbell. Advances in X-Ray Analysis. Plenum Press, New York, v. 8, August 1965, pp. 431-442. The effect of temperature change on lithium fluoride, ammonium dihydrogen phosphate, and E

1

E

)

E

1

E

1

ethylenediamine-d-tartrate analyzing crystals was studied by measuring the change in intensity of a selected X-ray spectral line while maintaining a constant 2θ position on the spectrometer. A change in interplanar spacing due to thermal expansion and contraction satisfactorily account for experimentally observed line shifts for LiF and ADP. EDDT showed a large unexplained decrease in reflectivity with increasing ambient temperature. Intensity changes due to peak shift were tabulated for LiF, ADP, NaCl, silicon, germanium, quartz, calcite, fluorite, and topaz.

OP 91-65. Fronturing Oil Shales With Nuclear Explosives for In-Situ Retorting, by M. A. Lekas and H. C. Capenter. Colorado Sch. Mines Quart., v. 60, No. 3, July 1965, pp. 7-30. Reexamination of the technical and economic feasibility of fracturing oil shales with nuclear explosives preparatory to an in situ combustion-extraction process in the light of current developments indicates that the technique appears more attractive today than when it was first investigated in 1960 by the U.S. Atomic Energy Commission and the Bureau of Mines. An underground nuclear explosion creates a cylinder of extremely permeable fragmented and displaced rock, surrounded by a much larger volume of fractured rock of lesser permeability. Costs of breaking oil shale with nuclear explosives on a large scale are estimated at a few cents per ton. Recovery is estimated at 50 percent of the in-place oil. A commercial-scale operation could produce shale oil at a rate of 100,000 barrels per day at a cost of less than \$1.50 per barrel. It is estimated that in the Piceance Creek basin those shales of a thickness and grade amenable to the nuclear technique contain a recoverable reserve of about 150 billion barrels.

OP 92-65. Coefficients of Thermal Linear Expansion of Fused Hefnium Carbide-Carbon Alloys, by R. Lincoln, M. Copeland, and H. Kato. U.S. Atomic Energy Commission, Topical Rept. USBM-RC-1119, 18 pp. 5 figs. Purpose of the study was to determine the thermal linear expansion coefficients of ingots of arcmelted and cast hafnium carbide and also of ingots of hafnium containing free graphite, and to compare the value with those given in the literature for the power-metallurgy product of hafnium carbide.

OP 93-65. Flome Arresters, by Elton L. Litchfield. In Electrical Safety Practices. Instrument Society of America, ISA Monograph 110, 1965, pp. 75-84. Discusses fundamentals of flame arresters. Two situations are considered, one in which the arrester has only to extinguish flame front and one where hot gases are expelled through the arrester, creating a reignition problem even though the arrester quenches the initial flame front. In the first case, Palmer's formulation of the physical picture and its agreement with experimental data are considered. In the second case, the hot gas reignition problem and the work of Wolfhard and Vanpée are discussed.

OP 94-65. Thermodynamics of lons: Consistent Standard States for Enthalpies and Free Enthalpies, by Philip B. Lorenz and Albert Sprague Coolidge. J. Flectrochem. Soc., v. 112, No. 10, October 1965, pp. 1041-1043. The requirements for accurate thermodynamic treatment of electrochemical processes are outlined and the several possible basic standards are discussed.

OP 95-65. Detonability of the System Nitrabenzene, Nitric Acid, and Water, by Charles M. Mason, Robert W. Van Dolah, and John Ribovich. J. Chem. Eng. Data, v. 10, No. 2, April 1965, pp. 173-175. The limits of detonability in 1-inch-diameter charges of the system nitrobenzene-nitric acid-water at 25° and 80° C were determined. Limited shock-sensitivity measurements were made using the card-gap technique. In general, the limit of detonability of the nitrobenzene system coincided with the region of complete miscibility in the ternary diagram.

OP 96-65. Electron Microscopy of Graphitic Crystollites in Meta-anthrocite, by J. T. McCartney and S. Ergun. Nature, v. 205, No. 4975, Mar. 6, 1965, pp. 962-964. Discusses electron microscopy observations of an apparent vitrain band in a meta-anthracite from Leoben, Austria, that showed evidence of the development of three-dimensional graphite crystallinity in meta-anthracite and the ordering of the crystallites in layer planes parallel to the bedding.

OP 97-65. Optical Constants of Coal by Reflectance Measurements in the Ultraviolet and Visible Spectrum, by J. T. McCartney, J. B. Yasinsky, and E. Ergun. Fuel, v. 44, September 1965, pp. 349-364. Reflectance measurements were made on vitrinites from American coals, ranging in rank from lignite to antracite, in the ultraviolet and visible spectrum, utilizing a reflecting microscope equipped with quartz optics. The reflectance of vertically incident monochromatic light in air and water was determined with reference to a sapphire crystal. Refractive indexes, extinction coefficients, dielectric constants, and electrical conductivities were calculated from the Fresnel and Lorentz equations. The rate of change in refractive index with wavelength is largest in the ultraviolet and greater for higher rank coal. The extinction coefficients have maximums in the ultraviolet which are generally more pronounced with higher rank. The maximum for anthracite is in the visible range. Spectral variations in dielectric constants generally correspond to those of refractive index, and variations in conductivity to those of

OP 98-65. A New Potential Scrap Market-Reduction Roasting of Iron Ore, by Norwood B. Melcher. Scrap Age. February 1965, pp. 41-42; Waste Trade J. Feb. 27, 1965, pp. 61-62, 67. Discusses reduction roasting tests made with a mixture of nonmagnetic taconite and iron scrap.

extinction coefficient.

OP 99-65. Degasification of Coal Mines, by William M. Merritts. Proc. 54th Convention of Mine Inspector's Inst. of America, Richmond, June 15-17, 1964, 1965, pp. 57-66. Degasification (methane drainage) tests were conducted in mines operating in the Pittsburgh and Pocahontas No. 4 coalbeds. Three basic techniques were used: (1) Drilling long horizontal holes and vertical boreholes into the coalbed in advance of mining to permit natural drainage of methane from the coal; (2) water infusion to force methane out of the coalbed; and (3) vacuum pumping of the holes drilled into the coalbed. Large quantities of methane could be drained from the coalbed through holes drilled into the coal. Infusing the holes with water further increased the amount of gas liberated from the coalbed. Water infusion had no adverse effects in the roof and floor conditions; the use of wetting agents with the infusion water appeared to reduce the amount of dust produced.

OP 100-65. Low-Temperature Thermodynamic Properties of n-Propyl, n-Butyl, and n-Decyl Substituted Cyclopentane, by J. F. Messerly, S. S. Todd, and H. L. Finke. J. Phys. Chem., v. 69, No. 2, February 1965,

4

pp. 353-358. The heat capacities in the range 12° to 370° K, heats of fusion, triple points, and purity of n-propylcyclopentane, n-butylcyclopentane, and n-decylclopentane were measured in an adiabatic calorimeter.

OP 101-65. Low-Temperature Thermodynamic Properties of n-Propyl and n-Butylbergen, by John F. Mes-serly, Samuel S. Todd, and Herman L. Finke. J. Phys. Chem., v. 69, No. 12, December 1965, pp. 4304-4311. Heat capacities from 12° to 370° K, heats of fusion, triple points, and purities of n-propylbenzene and n-butylbenzene were measured in an adiabatic calorimeter.

OP 102-65. Neutron Logs Prove Results of Water-Block Treat-ment, by J. S. Miller and J. L. Eakin. Oil and Gas J., v. 63, No. 5, Feb. 1, 1965, pp. 81-83. Identification of liquid-saturated gas zones and eval-uation of Destinationation uation of posttreatment changes in liquid saturation are possible through neutron logging. A field test showed a 52-percent increase in gas production after water-block treatment, and the neutron log indicated a 50-percent drop in the gas zone's water saturation.

OP 103-65. Sulfur and Sulfur Compounds, by J. C. Morris and W. E. Haines. Anal. Chem., Ann. Rev., v. 37, No. 5, April 1965, pp. 160R-161R. Re-views the literature on sulfur and sulfur compounds published during 1963-64.

OP 104-65. The Energy Dilemma-Which Fuel, What Market, When? by Warren E. Morrison. SME Fall Meeting, Rocky Mountains Mineral Conference, Phoenix, Ariz., Oct. 7-9, 1965, preprint 65K302, 26 pp. Attempts to forecast the future energy economy in terms of inputs of resources and their derivatives into the major energy markets. Separate fore-casts are presented for the years 1965, 1970, 1975, and 1980. The forecasts consist of energy balances derived from forward projections of the components of a series of historical balances. Predictions are made of the future demand for specific resources and levels of domestic supply and foreign trade required to meet this demand under the assumptions made for the study.

OP 105-65. Boiler Testing for Improved Economics, by Zane E. Murphy. Combustion, v. 37, No. 3, September 1965, pp. 33-40. Discusses the integral factors needed to evaluate boiler efficiency and shows what and where heat losses in boiler operation can occur.

OP 106-65. Bureau of Mines Progress in Developing the Coal-Burning Gas Turbine Power Plant, by W. M. Nabors, D. C. Strimbeck, R. W. Cargill, and Jack Smith. J. Eng. Power, v. 87, ser. A, No. 2, April 1965, pp. 215-222. Summarizes work done through mid-1964 in developing the coal-burning gas turbine. Progress has been made in developing blades resistant to coal ash erosion, and certain modifications were made in the coal-combustion, ash-separation, and coal-feeding systems prior to a 1,000-hour test to be made in the summer and fall of 1964.

OP 107-65. Deformational Behavior of Model Pillars Made From Salt, Trona, and Potash Ore, by Leonard Obert. Proc. 6th Symp. Rock Mechanics, University of Missouri at Rolla, October 1964, pp. 539-549. Objectives of investigation were to develop a model pillar that is realistically related to its prototype in the mine and to study the strength and deformational behavior of model pillars made from salt, potash, and trona. Although field data are meager, there is a general agreement between model pillar and in situ pillar measurements.

OP 108-65. Stress Conditions Under Which Core Discing Oc-curs, by Leonard Obert and D. E. Stephen-son. Trans. SME, September 1965, pp. 227-236. Ob-jectives of this investigation were to develop a laboratory procedure in which core disking could be produced under known (and variable) stress con-ditions and to study the disking characteristics of several types of rock.

)

٤) í

)

ŧ

1 É

2

ſ

£

E

į

OP 109-65. Type Analysis of Nitrogen in Petroleum Using Nonaqueous Potentiometric Titration and Lithium Aluminum Hydride Reduction, by I. Okuno, D. R. Latham, and W. E. Haines. Anal. Chem., v. 37, No. 1, Jan-uary 1965, pp. 65-67. A procedure is described for classifying nitrogen in petroleum into five different types—strongly basic nitrogen, three types of weakly basic nitrogen, and nontitratable nitrogen. The five types of nitrogen are determined by titrating oils potentiometrically in acetic anhydride with perchlo-ric acid before and after reduction with lithium aluminum hydride. This procedure has been applied to several crude oils and has shown wide variation in the types and distribution of nitrogen compounds in oils.

OP 110-65. Minor Products of Combustion in Large Coal-Fired Steam Generators, by A. A. Orning, Cecil H. Schwartz, and John F. Smith. Mech. Eng. (Tech. Digest), v. 87, No. 5, May 1965, p. 146. An analysis is given of the minor products of combustion from large coel for determine concentration in a statistication. large coal-fired steam generators in relation to thermodynamic equilibria, unit design, and operating conditions. Concentrations of nitrogen oxides and the ratios of sulfur trioxide to total sulfur oxides are near equilibrium values at the furnace outlet. Significant amounts of low-molecular-weight organic acids and comparatively small amounts of polynu-clear aromatic hydrocarbons are found under good combustion conditions.

OP 111-65. Appalachian Region Oilfield Reservoir Investiga-tions, Glade Sand, Youngsville Pool, Youngsville-Sugar Grove Oilfield, Brokenstraw Township, Warren County, Pa., by William K. Overbey, Jr., and Donald M. Evans. Producers Monthly, v. 29, No. 8, August 1965, pp. 14-16. A 3½-inch-diameter diamond air-rotary core of the shallow Upper Devonian Glade sand was taken from a well in the Youngsville pool of the Youngsville Sugar Corpus oilfield Brokonctary. of the Youngsville-Sugar Grove oilfield, Brokenstraw Township, Warren County, Pa. Geology, develop-ment history, coring, geophysical logging operations, and well completion are discussed. Core analysis and oil-production data are presented. Attempts to orient fractures in the core well with an offset well are also discussed.

OP 112-65. Appalachian Region Oilfield Reservoir Investigations, Basal Greenbrier Limestone and Dolomite tions, Basal Greenbrier Limestone and Dolomite and "Keener" and Big Injun Sands, Clover-Rush Run Field, Smithfield District, Roone County, W. Va., by William K. Overbey, Jr., and Donald M. Evans. Producers Monthly. v. 29, No. 5, May 1965, pp. 22-24. The basal Greenbrier limestone and dolomite, and "Keener" and Big Iniun sands were cored in a well in the Clover-Rush Run oilfield. Geology, develop-ment history of the field and lease, coring, geophys-ical logging operations, and well completion are discussed. Core and clay analyses and production discussed. Core and clay analyses and production data are presented.

OP 113-65. See Floor Minerals-Curies or Woolth? by John W. Padan. Preprints, 8th Nat. Symp. Soc. Aerospace Material and Process Eng., May 25-28, 1965, San Francisco, Calif., 12 pp. Discusses problems of exploiting minerals on the sea floor, including use of the hydraulic dredge, on-site mineral concentration, the new Bureau of Mines Marine Mineral Technology Center, Tiburon, Calif. (Available from the National Society of Aerospace Material and Process Engineers, P.O. Box 613, Azusa, Calif., 91702.)

OP 114-65. Methods of Reducing Emission of Oxides of Sulfur From Cool, by Harry Perry. In Symp. on the Air Pollution Problem. Proc. Am. Power Conf., v. 26, 1965, pp. 107-113. Removal of sulfur dioxide from stack gases has been accomplished by a number of processes. However, scrubbing processes which discharge a cool supersaturated gas are not acceptable at powerplants. There is much interest in processes that can be operated at higher temperatures; the more advanced of these are the Reinluft, Bureau of Mines alkalized alumina, and the Pennsylvania Electric processes. Not enough information is available to make accurate comparative cost estimates for the three methods at this time. Market studies are also needed so that proper values can be assigned to byproducts of these processes.

OP 115-55. Locolity 11, Copper Bullien Mine, by Tom L. Pittman. Alaska Dept. of Natural Resources, Division of Mines and Minerals, Rept. 16, 1965, pp. 26-29. Gives results of an investigation of the Copper Bullion (Rua Cove) mine on Knight Island, Alaska.

OP 116-65. Migh-Pressure Hydraulic System Hazards, by S. P. Polack. Safety Newsletter, Min. Sec., September 1965, pp. 1-2. Discusses the hazards associated with high-pressure hydraulic systems and gives a list of safety precautions to be used.

OP 117-55. Book Review, by Andrew S. Prokopovitsh. "Treatise on Analytical Chemistry, Part 2: Analytical Chemistry of the Elements," ed. by I. M. Keltoff and P. J. Elwing, v. 8, J. Metals, v. 16, No. 11, November 1964, p. 148.

OP 118-65. A Procedure for Analysis of Impurities in Grade-A Helium in the Parts-Per-Billion Range, by Al Purer. J. Gas Chromatography, v. 3, No. 5, May 1965, pp. 165-169. A new procedure has been developed which combines the advantages of two existing analytical methods. Preconcentration of the impurities followed by analysis with a high-sensitivity gas chromatograph resulted in an analytical procedure which has sensitivities in the parts-per-billion range for neon, hydrogen, argon, oxygen, krypton, nitrogen, methane, and xenon.

OP 119-55. Simple Technique for the Ultrapurification by Holium, by Al Purer, L. Stroud, and T. O. Meyer. Advances in Cryogenic Engineering, v. 10, 1965, pp. 398-401. Ultrapure helium, containing less than 2 parts per billion of neon and no detectable traces of other components, may be obtained at high pressures by charcoal adsorption of the impurities at 35° K. Helium containing less than 1 part per million total impurities can be obtained by passing Grade-A helium through charcoal at liquid nitrogen temperature.

1

1

I

1

OP 120-65. Calculation of Surface Area of Anthracite From Carbon Dioxide Adsorption Date, by J. W. Ramsey. Fuel, v. 44, No. 4, July 1965, pp. 277-284. Evaluates alternate and modified forms of the BET equation, simple empirical equations, and the Langmuir equation for obtaining surface areas from carbon dioxide adsorption on anthracites. Comparison was made of the absolute specific surface values calculated by the various equations, and the monolayer volumes from each equation, calculated as normal liquid, were compared with the specific pore volumes. The effect of oxidation of the coal on the adsorption of carbon dioxide was also investigated.

OP 121-45. Solving Mine Haulage Problems by System Stimulation, by Donald E. Redmon. Colorado Sch. Mines Quart., v. 59, No. 4, Part B, 1965, pp. 887-914. Demonstrates a method that is applicable for use in mine-system analysis. Monte Carlo techniques are used to obtain data from cumulative probability distributions. The data are then applied in analyzing the system operation. The results provide information which is the basis for making decisions.

OP 122-65. Changes in Green River Oil-Shale Paraffins With Depth, by W. E. Robinson, J. J. Cummins, and G. U. Dinneen. Geochim. et Cosmochim. Acta, v. 29, No. 4, pp. 249-258. Evidence was found for differences in the composition of the paraffins in Green River shale with depth. The ratio of odd- to even-numbered *n*-paraffins (C.P.I.) decreased with depth showing a trend toward equalization of carbon numbers similar to petroleum paraffins. The distribution of the isoprenoid compounds also changed with depth. In addition, the amount of soluble bitumen changed with depth. A significant increase in the paraffin content of the bitumens from 17 to 47 percent with depth was observed. Discusses the factors or combinations of factors that may have caused the observed changes.

OP 123-65. The Transformation Temperatures of Hafnium, by P. A. Romans, O. G. Paasche, and H. Kato. J. Less-Common Metals, v. 8, March 1965, pp. 213-215. Reports a transformation temperature for pure hafnium of 1,777° C, determined by the high-temperature X-ray technique.

OP 124-65. A Comparison of Explosives by Cratering and Other Methods, by L. D. Sadwin and W. I. Duvall. Trans. SME, June 1965, pp. 110-116. Three explosives with different detonation characteristics were tested by studying their cratering ability in a granite-gneiss. The strain wave generating characteristics of these explosives were also studied in the same rock medium. Correlations between the relative performance of three explosives as evaluated by crater studies and other methods of evaluation are indicated.

OP 125-65. The Physical Phenomena Underlying the Negative and Positive Coronas in Air at High Temperatures and Pressures, by C. C. Shale. 1965 IEEE International Convention Record, v. 13, pt. 7, 1965, pp. 77-87. Electrical characteristics of the negative and positive coronas are presented for air in a 2inch-diameter electrostatic precipitator operating under dust-free conditions at temperatures from 600° to 1,500° F and pressures from 0 to 80 psig. Experimental data show that negative corona is very erratic at high temperatures—when gas density is low, surges ocur in the flow of corona current at high field gradients and cause premature breakdown of the electrical field. These surges do not occur in the positive corona; thus, the positive corona is more stable than the negative under these conditions and thereby allows utilization of higher opearting voltages in a precipitator. The physics of each of the two corona processes is utilized to relate the electronic action in the electrode gap and to explain the causes for the relative effects of temperature and pressure on the current-voltage relationships. Existing theory, which was developed at atmospheric pressure and subatmospheric pressure, is extended and shown to apply for the corona processes over the span of temperatures and pressures investigated.

OP 126-65. Comparison of Mass Spectrometric and Gas Chramategraphic Analyses of High-Boiling Oils From Coal, by A. G. Sharkey, Jr., J. L. Schultz, and R. A. Friedel. Proc. ASTM Comm. E-14 Meeting, May 1963, pp. 277-281. Naphthalene and anthracene oils from coal were analyzed by high-temperature mass spectrometry. These samples had been analyzed previously by gas chromatography at 13 European laboratories as part of a cooperative program investigating analysis of high-boiling oils from coal. Carbon number distribution data were obtained by mass spectrometry for components containing up to 24 carbon atoms. For the majority of the structural types, good agreement was shown between gas chromatographic and mass spectrometric results.

OP 127-65. Mass Spectral Studies of Heavy Residues From Pyralysis of Several Aromatic Compaunds, by A. G. Sharkey, Jr., J. L. Shultz, and R. A. Friedel. Proc. ASTM Comm. E-14 Meeting, May 1965, pp. 481-485. Mass spectra of products from the liquidphase pyrolysis of 18 hydrocarbons having from one to four aromatic rings and molecular weights from 116 (indene) to 228 (chrysene) were investigated. By studying the pyrolyzates of several structural types found in the material extracted from Pittsburgh seam (hvab) coal with pyridine at room temperature, information related to the formation of heavy residue such as coal tar was obtained. The amount of original material remaining after pyrolysis at 450° C for 4 hours was used to estimate the

OP 128-65. Computer-Oriented Research at the Denver Mining Research Center, by John F. Shaw. Colorado Sch. Mines Quart., v. 59, No. 4, part A, 1965, pp. 377-383. Discusses the usefulness of the computer in research. Over 125 computer programs have been developed at the Denver Mining Research Center. Programs in the field of engineering research proceed from mathematical statistics to mine evaluation, quality control, and economic engineering. Other programs utilize pure mathematics and physics and are used in rock mechanics and the physics of rock structures.

extent of thermal reactivity.

OP 129-65. Dust Measurement and Standards, by Earle P. Shoub. Trans. Nat. Safety Cong., v. 7, 1965, pp. 18-26. Discusses methods of measuring dust in the atmosphere of coal mines and acceptable standards of dust exposure.

OF 130-65. Observations on Dust Control and Investigations in Coal Mines by the U.S. Bureau of Mines, by Farle P. Shoub. Proc. Pennsylvania Governor's Conf. on Pneumoconiosis (Anthraco-Silicosis), Harrisburg, Pa., Nov. 30-Dec. 2, 1964, pp. 191-194. Discusses Bureau of Mines activities in connection with coal dust with particular emphasis on chest diseases. Continuous mining produces more fine coal and dust than did conventional mining and there is need for a reasonably inexpensive, simple method of dust suppression that will allay dust at the source.

OP 131-65. Analyses of Coal-Tar Pitch by Mass Spectrometry, by J. L. Shultz, R. A. Friedel, and A. G. Sharkey, Jr. Fuel, v. 44, No. 1, January 1965, pp. 55-61. Mass spectrometric analyses were obtained for three fractions of pitch from the high-temperature carbonization of coal. High-temperature and low-ionizing-voltage techniques were applied to obtain semiquantitative data (\pm 10 percent of the amount present) for 34 structural types, as well as carbon distribution data for alkyl derivatives. Of the 34 structural types, 24 could be associated with compounds previously identified in coal tar. Approximately 70 percent of the 80° to 85° C softening point pitch was identified. Average molecular weight for the three fractions based on mass spectrometer data is approximately 250 and the number of aromatic rings per aromatic cluster (mean structural unit) is 4-5. The aromaticity value of 0.94 calculated from these data is in excellent agreement with measurements by nuclear magnetic resonance.

•

Į

ł

ł

í

1

ī

Į

i

.

OP 132-65. Proposed Paths to Products of Pyrrole Autoxidotion, by Edgar B. Smith and H. B. Jensen. ACS Petroleum Division, Symp. on Organic Sulfur, Nitrogen, and Oxygen Compounds, Spring Meeting, Detroit, Mich., 1965, preprints, v. 10, No. 2, pp. C-123 through C-129. Self-initiated autoxidation of 1-methylpyrrole, 1-isopropylpyrrole, and 1-butylpyrrole at 50° C gave peroxidic polymers and carbonyl compounds thought to arise from peroxide decomposition. These carbonyl compounds were isolated from 1-methylpyrrole oxidation products, and spectral examination detected their homologs in oxidation products of the other two pyrroles. It is suggested that 1-alkylpyrroles react with oxygen by a free-radical addition process typical of dienes.

OP 133-65. Oil Shales of the Green River Farmation in Wyoming, by John Ward Smith and Kenneth E. Stanfield. Wyoming Geol. Assoc. Guidebook, 1965, pp. 167-170. Summarizes what is known of oil-shale values in Wyoming. Areas where significant oil-shale deposits probably exist are pointed out.

OP 134-65. Carbon Disulfide Production by Reaction of Elemental Sulfur With Carbonized Lignite and Wood Chorcool, by Everett A. Sondreal. I&EC Process Design and Development, v. 4, No. 1, January 1965, pp. 111-117. Carbon disulfide was produced at about the same high rates, using either lignite chars or wood charcoal. Rates of production were studied relative to temperature, partial pressure of sulfur, rate of sulfur admission, and char characteristics.

OF 135-65. Some Factors in the Electrochemical Reduction of Tetralin in Ethylenediamine Solution, by Heinz W. Sternberg, Raymond E. Markby, Irving Wender, and David M. Mohilner. Symp. Ind. Electroorganic Chem., Electrochem. Soc. Meeting, San Francisco, Calif., May 6-13, 1965, pp. 16-19. Electrochemical reduction of tetralin in ethylenediamine in an undivided cell yields hexalin and octalin. The effect of certain operating variables on currency efficiency and product distribution was investigated. Cathode material, type of electrolyte, and temperature had a marked effect on current efficiency and product distribution. Product distribution also differed widely depending on whether a cell with or without a divider was used. A possible mechanism of the electrochemical reduction in ethylenediamine based on current-voltage curves is discussed.

OP 136-65. Cool-Burning Turbine With Water Injection Can Increase Peeking Power, by Donald C. Strimbeck, Jack Smith, and J. P. McGee. Power Eng., v. 69, No. 2, February 1965, pp. 43-44. Describes a proposed system for peak load generation in which water is injected into the combustor of the gas turbine to supply a large mass of working fluid for the turbine. The system would reduce capital costs, but would be useful only to carry peak loads for a total of about 1,000 hours yer year.

OP 137-65. Electrorefining Vanadium, by T. A. Sullivan. J. Metals, v. 17, No. 1, January 1965, pp. 45-48. Describes the application of molten-salt electrorefining techniques to the production of highpurity vanadium and also to the refining of lower purity vanadium to ductile-grade metal.

OP 132-65. Recent Calorimetric Studies of Beryllium Fluoride, by A. R. Taylor, Jr. Chem. Propulsion Information Agency, Interagency Chem. Rocket Propulsion Group, Working Group on Thermochem., Proc. 2d Meeting, June 3-4, 1964, CPIA Pub. 54 U, pp. 85-86. Describes additional calorimetric studies of an alpha quartz type BeF₂, using the ice calorimeter.

OP 139-65. Identification of Some Cyclic Sulfides in A Wasson, Texas, Crude Oil Distillate Boiling from 110°
to 50° C, by C. J. Thompson, H. J. Coleman, R. L. Hopkins, and H. T. Rall. J. Chem. and Eng. Data, v. 10, No. 3, July 1965, pp. 279-282. Discusses a procedure for isolation and identification of cyclic sulfides in petroleum and reports identification of 17 cyclic sulfides in a 110° to 150° C boiling range distillate.

ı

ŧ

1

í

]

Ì

1

3

OP 140-65. Structure Characterization by Microhydrogenation, by C. J. Thompson, H. J. Coleman, R. L. Hopkins, and H. T. Rall. Anal. Chem., v. 37, No. 8, July 1965, pp. 1042-1044. Structure characterization by vapor-phase catalytic hydrogenolysis has been amplified and extended. The basic technique, with improvements discussed, permits structure characterization that would be difficult or impossible by any other technique.

OP 141-65. Sulfur Compounds in Petroleum, by C. J. Thompson, H. J. Coleman, R. L. Hopkins, and H. T. Rall. In Hydrocarbon Analysis. ASTM Special Tech. Pub. 389, 1965, pp. 329-360. Paper presents methods used in the isolation and identification of sulfur compounds and lists, by class, the 141 individual compounds identified in petroleum by the Bureau of Mines-API Research Project 48.

OP 143-65. Physical Structure of Green River Oil Shale, by P. R. Tisot and W. I. R. Murphy. Chem. Eng. Progress, Symposium Series, A.I.Ch.E., v. 61, No. 54, 1965, pp. 25-32. Presents information concerning particle size and particle-size distribution of the inorganic constituents in oil shale; surface area, pore structure, and pore volume of both oil shale and its inorganic constituents; the manner in which the organic matter is distributed within oil shale; and an estimate of the amount of organic matter in direct contact with the surface of the mineral constituents. Photomicrographs show the geometric form of some of the inorganic particles.

OP 144-65. Mineral Potential of Eastern Montana-A Basis for Future Growth, by U.S. Geological Survey and U.S. Bureau of Mines. Prepared at the request of Senator Mike Mansfield of Montana. 89th Congr., 1st sess., S. Doc. 12, Feb. 2, 1965, 77 pp. Report indicates what mineral resources are present, where they occur and in what amounts, what use is now being made of them, and points out potential uses that might be developed. Mineral resources investigated are coal, petroleum and natural gas, bentonite, clay and shale, gem stones, gypsum and anhydrite, potash, salt, sand and gravel, sodium sulfate, stone, and uranium. OP 145-65. Evaluating ingredient Hazards, by Robert W. Van Dolah. Bull. 21st Interagency Solid Propulsion Meeting, June 9-11, 1965, San Francisco, Calif., v. 2, Chem. Prop. Inf. Agency Pub. 71A, 1965, pp. 457-459. Methods for evaluating the sensitivity of explosive material are reviewed briefly. These methods range from elementary heating and impact tests to highly instrumented versions of the card-gap test. The essentially thermal character of all these methods is indicated. The nature of the initiation reaction and the conditions of its growth to detonation are discussed.

OP 146-65. Book Review, by Robert W. Van Dolah. "Energetics of Propellant Chemistry," by B. Siegel and L. Scheiler. Science, v. 147, No. 3664, Mar. 19, 1965, pp. 1435-1436.

OP 147-45. Shock Sensitivity and Its Evaluation, by Robert W. Van Dolah. Safety and Accident Prevention in Chemical Operations, ed. by H. Fawcett and W. Wood. Interscience Publishers, Inc., New York, 1965, pp. 319-329. Describes the card-gap test as a means to determine the sensitivity of condensedphase materials to initiation of high-velocity detonation.

OP 148-65. Inelestic Deformation of Rock Under a Hemispherical Drill Bit, by James Paone and Sathit Tandanand. Proc. 7th Symp. Rock Mechanics, 1965, Pennsylvania State University, June 14-16, 1965, pp. 149-174 (preprint). Results of triaxial strength tests on rock samples and static and dynamic indentation of the rock surface by a hemispherical bit were used to study the inelastic behavior of rock. Theoretical analysis and experimental results together provide a better understanding of the relations among the triaxial stress conditions, permanent set, yield strength, and the energy per unit volume involved in crater formation under a drill bit.

OP 149-55. Heavy liquid Cyclone Concentration of New Mexice Potash Ores, by R. B. Tippin and James S. Browning. SME Fall Meeting, Rocky Mountains Mineral Conf., Phoenix, Ariz., Oct. 7-9, 1965, Preprint 65B312, 17 pp. Excellent specific gravity separations of three different types of potash ores were made with two-stage heavy liquid cyclones. The cyclone overflow contained over 93 percent float product while the amount of misplaced float material reporting with the cyclone underflow was less than 4 percent. However, an effective separation of sylvite from halite to produce a commercial-grade concentrate with a high potash recovery depended upon the mineralogical composition of the ore. With an ore containing only sylvite and halite, a 57.5-percent K₂O concentrate was made at a 93.3-percent recovery. The presence of carnallite in another ore downgraded the sylvite concentrate to 51.1 percent K₂O but the recovery was approximately 88.5 percent. In a third ore, the halite tailings contained kainite which, because of its potassium values, lowered the potash recovery to 65.4 percent although the concentrate grade was 58.7 percent k₂O. Results compare favorably with commercial brine flotation, which usually requires additional water leaching to meet specifications. Investigation into effect of feed pressure and heavy liquid viscosity on the grade and recovery showed that increasing pressures only slightly enhanced the grade, but a pronounced improvement in the separation was effected by lowering the liquid viscosity.

OP 150-65. Some Problem Areas in Hydrogen Safety, by Robin Van Meter. Supplement to Fifty-First and Fifty-Second Annual Reports 1963-1964, Nos. 51 and 52, Compressed Gas Association, New York, pp. 20-24. Discusses methods of achieving better levels of safety in operations involving the use of liquid hydrogen. The problem areas in hydrogen safety include hydrogen leak detection, hydrogen flame detection, explosion damage prevention, hydrogen disposal, lightning protection, and quantitydistance criteria.

OP 151-65. Pattern of Energy Consumption in the United States, by William A. Vogely. American Chemical Society Meeting, Detroit, Mich., April 1965, v. 9, No. 2, pp. 205-221 (preprints). Examines the patterns of energy consumption in the period 1947-62. Within this decade and a half there were factors that created a very different set of energy flows for 1962 from that of 1947. Changes are examined, hypotheses concerning them are presented, and projections to 1980 of the patterns are made. Energy resource consumption is tabulated by consuming sector by sources and by consuming sector by function. Concluding section presents a tentative hypothesis concerning competition among energy sources and energy trends.

OP 152-65. A Shift Analysis of Production, Employment and Income in the Mining Industries, by William A. Vogely. Min. Eng., v. 17, No. 4, April 1965, pp. 72-74. Presents a technique by which the various forces that have been acting on the market for a mineral commodity may be sorted out and by which the extent of the impact of technological change in use as well as the technological change in production can be measured.

OP 153-65. Basic Minerals, by William A. Vogely and Robert E. Johnson. Chem. and Eng. News, v. 43, No. 36, Sept. 6, 1965, pp. 82-87. Presents forecast of refined minerals production for the year 1965, based on actual data for the first quarter of the year and on a general forecast of industrial and business activity for the year as a whole.

OP 154-55. Instrumentation for Rock Mechanics as Used in a Mine, and Its Pessible Application to Other Engineering Problems, by Galen C. Waddell. Proc. 3d Ann. Eng. Geol. and Soils Eng. Symp., Apr. 6-7, 1965, Boise, Idaho, pp. 91-117. Expansion and contraction of the rock surrounding horizontal access openings of a deep mine (Star mine, Burke, Idaho) were analyzed during stope advance to determine what type of measurements, made with inexpensive instrumentation, would best reflect the rock behavior. Detailed descriptions are given of down-the-hole extensometers, floating rockbolt clusters, and other measuring techniques. Several useful relationships were found between the rock deformation rate and the stoping process. Information was produced on the elastic state of rock around an underground opening, effectiveness of stope support, rheology of rock, zone of influence around stopes, effectiveness of rockbolts, direction of maximum principal stress, and other phenomena.

OP 155-65. The U.S. Minerals Attaché Program, by K. P. Wang, and Virgil L. Barr. International Science Notes, U.S. Department of State, No. 11,

Science Notes, U.S. Department of State, No. 11, October 1965, pp. 14-17. Describes briefly the U.S. Minerals Attaché Program, which is directed jointly by the Department of State and of the Interior.

OP 156-65. Preshot and Potshot Safety Survey of Oil and Gas Facilities—Baxterville Field, Mississippi (Final

Report), by Don C. Ward. U.S. Atomic Energy Commission, Project Dribble, Salmon Event, VUF 1022, 1965, 73 pp. Oil and gas wells and related facilities of the Baxterville field were surveyed to document any physical changes resulting from the Salmon nuclear test event. All such structures within a 5-mile radius of ground zero were examined and photographed in detail. In addition, all wells and major facilities between the 5- and 6-mile radii, as well as other selected wells and facilities with a 10-mile radius of ground zero, were examined and photographed. No damage was observed at any of the oil or gas wells or related facilities.

4

1

١

l

£

ł

ſ

í

E

Ł

£

OP 157-65. Concentrations, by P. A. Wasson. Min. Eng., v. 17, No. 2, February 1965, pp. 106-108. Continued progress was noted in all fields of mineral concentration throughout 1964. Development and expansion continued at an advanced rate with the construction of several new plants and the enlargement of facilities in existing plants. Research on gravity, magnetic, and flotation concentration has shown considerable progress at both academic and industrial levels.

OP 158-65. Improving Effectiveness of Backfill, by William R. Wayment and David E. Nicholson. Min. Cong. J., v. 61, No. 8, August 1965, pp. 28-32. Hydraulic backfill research has centered around methods of improving the cohesive and frictional properties of these granular materials. The grainsize distributions of backfill classified by hydrocyclones, from typical mill tailings, is extremely important to both the frictional properties and water percolation properties of these materials. Most backfills are presently placed as loose granular structures and a significant increase in the bearing strength of hydraulic backfill can be obtained by compaction of these materials (increase the frictional properties) into more dense grain structures. Cohesive strengths can be improved by the modest addition of portland cement or other types of cementing agents.

OP 159-65. Floid Dynamics, by Murray Weintraub. Ind. and Eng. Chem., v. 57, No. 6, June 1965, pp. 41-46. Presents a review of the literature published during 1963 and early 1964 that describes recent developments in the manifold aspects of fluid flow.

OP 160-65. Progress in Preventing Cool Mine Disasters, by James Westfield. Proc. Rocky Mountain Coal Min. Inst., 61st Meeting, June 27-30, 1965, pp. 59-63. Discusses progress in preventing coal mine disasters and reports the three common factors that set the stage for coal mine disasters and how to eliminate them. The factors are inadequate face ventilation, inadequate testing of the face atmosphere for gas, and inadequate cleanup and rock dusting between the loading point and the working faces.

OP 161-65. West Virginia Mine Safety Association, by James Westfield. Coal, v. 19, No. 10, October 1965, pp. 31-33. Describes the organization, operation, and objectives of the West Virginia Mine Safety Association, founded in 1964 to improve the safety of coal mines in the State.

OP 162-65. Appalachian Region Oilfield Reservir Investigations, Gordon Stray, Gordon, and "Fourth" Sands, Smithfield Field, Grant District, Wetzel County, W. Va., by Charles E. Whieldon, Jr., and William K. Overbey, Jr. Producers Monthly, v. 29, No. 9, September 1965, pp. 16-19. The Bureau of Mines obtained oil-reservoir samples of the Gordon Stray, Gordon and "Fourth" formations by rotary, mud coring Wolf's Head Oil Refining Company's I. D. Morgan well W-1 in the Smithfield field, Grant district, Wetzel County, W. Va. Well logs were taken to supple-ment core information. Core analysis, well logs, geology, field development, and production history are presented are presented.

OP 163-65. Appalachian Region Oilfield Reservair Investigations, Mitchell and Berea Sands, Lower Newport field, Newport Township, Washington County, Ohio, by Charles E. Whieldon, Jr., and William K. Overbey, Jr. Producers Monthly, v. 29, No. 11, November 1965, pp. 8-11. The Mitchell and Berea sands were cored, and well logs were run in a well in the Lower Newport field. This work was done to evaluate the possibilities of increasing ultimate oil recovery by secondary-recovery methods. Geology, lease history, geophysical logs, coring and logging operations, and results of core analysis are presented.

t

1

Ì

Í)

ł

]

(

3

OP 164-65. Storage Stability of High Temperature Fuels, by Marvin L. Whisman and C. C. Ward. Air Force Aero Propulsion Laboratory, Research and Technology Division, Air Force Systems Command, Wright-Patterson Air Force Base, Ohio, AFAPL-TR-65-13, pt. 1, 1965, 80 pp. Modifications of a 5-milliliter bomb test equipment and method have shown promise of parmitting pracise measurement shown promise of permitting precise measurement of labeled fuel components that contribute to de-posits during thermal stressing. Three test methods were developed and evaluated for the separation and measurement of radioactivity contributed to deposits and gums by selected fuel constituents. One of these techniques used the principle of liquid-solid chromatography followed by liquid scintillation counting of the radioactive reaction products. The other two test methods employed gas-liquid chromatography for separation and both ionization chamber counters and liquid scintillation radioassay tech-niques. An evaluation of these latter procedures showed the chromatographic separation procedures were adequate but quantitative recoveries of gum from the apparatus were dependent upon the radio-isotope and fuel system. This incomplete recovery of material indicated other separation techniques might hold more promise. The migratory nature of tritium under conditions of severe thermal stress was investigated with the hope of broadening the selection of isotopes available to these investigations in the future.

OP 165-65. Mining and Milling of Possolan for Gien Canyon Dam, Arizona, by Frank E. Williams and Andrew J. Zinkl. Rock Products, v. 68, No. 3, March 1965, pp. 97-98. Describes the open-pit min-ing and dry-milling processing of rhyolitic sand used as possolanic material in the construction of the Glen Canyon Dam, Arizona. This is one of the major applications of natural pozzolans in the United States. Approximately 210,000 tons of material was supplied to the U.S. Bureau of Reclamation project.

OP 166-65. Blast Furnace Operations With Very Low Slag Rates, by P. L. Woolf. 26th Ann. Min. Symp., University of Minnesota, Duluth, Minn., Jan. 11-13, 1965, pp. 81-87. The Bureau of Mines experimental blast furnace was successfully operated with extremely low slag volumes. The minimum slag volume achieved was 245 pounds per ton of hot metal; this was 90 pounds less than the lowest recorded slag volume. The coke rate saving and increase in productivity resulting from lowered slag volumes are discussed as well as the factors limiting a low slag practice.

OP 167-65. Transmittance of Single Crystals of Graphite in the Infrared Spectrum, by J. B. Yazinsky and E. Ergun. Carbon, v. 2, 1965, pp. 355-358. Measure-E. Ergun. Carbon, V. 2, 1963, pp. 353-358. Measure-ments have been made of transmission of infrared radiation through ultrathin single crystal flakes of grapite. Transmission spectra for flakes of different thickness show peaks near 0.82 eV. This frequency values is interpreted as equivalent to twice Y, a band energy parameter which accounts for the main splitting of the singly degenerate bands along the splitting of the singly degenerate bands along the zone edge. The value of Y_1 obtained here lends support to McClure's overlap model for the band energies of graphite.

OP 168-65. Mining: Metals and Minerals, by Paul F. Yopes. Britannica Book of the Year, 1965. Reviews briefly developments in mining of metals and minerals in 1964.

OP 169-65. 1964 Sales: Cool-Mining and Cleaning Equip-ment, by W. H. Young and R. L. Anderson. Coal Age, v. 70, No. 2, February 1965, pp. 86-88; Coal Min. and Processing, v. 2, No. 2, February 1965, pp. 29-32. Shipments of mechanical loading equipment for underground use in all coal mines, in terms of capacity, increased 13 percent in 1964. The capacity of mechanical cleaning equipment sold for capacity of mechanical cleaning equipment sold for use at bituminous coal mines decreased 28 percent during the same period. Of the total capacity of mechanical equipment sold in 1964, 84 percent was placed in operation during that year; the remaining 16 percent will be installed later. Tabulates produc-tion of coal by methods of mining, cleaning, and location. loading.

OP 170-65. Need for an Intermediate A-C Voltage for Under-ground Mining, by L. H. Harrison. Min. Cong. J., v. 51, No. 4, April 1965, pp. 60-62. Discusses the need for a standard voltage of some intermediate value between 600 and 2,400 volts for mining equipment. It is suggested that this could best be accomplished by providing a standard trans-former winding suitable for wye connection on a 3-phase, 2,400-volt system. This would provide a neutral point for resistance grounding on 2,400-volt systems and a voltage of 1,388 phase-to-neutral.

OP 171-65. Thermal Fragmentation of Reck, by R. L. Marovelli, T. S. Chen, and K. F. Veith. Proc. 7th Symp. Rock Mechanics, 1965, Pennsyl-vania State University, June 14-16, 1965, v. 2, 1965, pp. 253-280 (preprint). Presents results of analytic analytic protocol and the state of the state o and experimental work on stress in rock undergoing a controlled thermal shock. The important physical parameters are discussed.

OP 1-66. Changing Conditions Compel New Concepts of Mineral Engineering, by Paul T. Allsman. Trans. SME, June 1966, pp. 217-224. Comments on the relationships between the mining industry, mineral engineering as a profession, and Government and the economic, technologic, political, and social changes that dictate their relationships. Suggests remedies for certain mineral engineering problems.

OP 2-66. The Shifting Pattern of Lime Usage, by Paul L. Allsman. Min. Eng., v. 18, No. 6, June 1966, pp. 65-66. Advancements in mineral technology and a significant growth in new applications have had a marked result in the shifting pattern of lime use. Summarizes lime uses in agriculture, construction, water and sewage, and metallurgy.

OP 3-66. Recent Advances in Radioisatope Applications for Exploitation of Petroleum and Natural-Gas Reservoirs, by F. E. Armstrong and W. D. Howell. Isotopes

and Radiation Tech., v. 3, No. 2, Winter 1965-1966, and Radiation Tech., V. 3, No. 2, Winter 1965-1966, pp. 102-114. This paper reports some of the more important recent advances in the application of radioisotopes to the exploitation of petroleum and natural-gas reservoirs. No attempt was made to summarize all work in the field. Most references were published during the past 5 years, although in a few isolated instances earlier work was in-cluded for the sake of continuity and clarity. The uses of radioisotopes in injection and production uses of radioisotopes in injection and production-profile work, well logging, and well-to-well tracers for reservoir evaluation and secondary recovery operations are discussed. Some applications of activation analysis are also reviewed

OP 4-66. Thermodynamic Properties of a van der Waals Fluid, Particularly Near the Critical Point, by Rob-ert E. Barieau. Phys. Rev. Letters, v. 16, No. 8, Feb. 21, 1966, pp. 297-800. Gives equations for the thermodynamic functions of a van der Waals fluid.

CP 5-66. Spotlight on Roof Control, by Anthony J. Barry and John A. McCormick. Coal Min. and Processing, v. 3, No. 2, February 1966, pp. 18-22. This article describes studies currently being con-ducted by the Roof Control Research Group in the field of roof control in underground coal mines. The roof control-related studies include roof bolting, sonic testing of mine roof, measurement of roof gas and/or water pressure in mine roof, and coal bursts.

OF 6-66. Instruments and Apparatus Supplement on Look Detection and Lookage Measurement, by A. A. Berk. Mech. Eng., v. 88, No. 4, April 1966, p. 110. Summarizes part 21 on Methods of Leak Detection and Leakage Measurement (PTC 19.21-1965) of the Supplements on Instruments and Apparatus to the ASME Power Test Codes Part 21 revises an earlier ASME Power Test Codes. Part 21 revises an earlier 1952 publication.

OP 7-66. Formation of Oxides of Nitrogen in Pulverized Coal Combustion, by Daniel Bienstock, R. L. Amsler, and E. R. Bauer, Jr. Air Pollution Control Assoc. J., v. 16, No. 8, August 1966, pp. 442-445. A reduction of 62 percent of the nitrogen oxides in pulverized-coal combustion can be effected by ad-mitting 105 percent of the stoichiometric air to the flame and 17 percent beyond the flame front.

OP 8-66. An Experimental Study of Convective Heat Transfer to a Solid-in-Gas Suspension, by Dean Edward Blauman. Ph.D. thesis, West Virginia University, Morgantown, W. Va., 1966, 77 pp., 19 figs. A re-circulating system for the study of convective heat transfer from solid-in-gas suspensions was designed and instrumented. A centrifugal compressor circu-lated a mixture of 30-micron glass beads through a heating section, a test-section cooler, and a meter which was developed for this application. The meter contained an orifice followed by a cantilevered target, and the pressure drop across the orifice and the drag force on the target were correlated to provide simultaneous measurement of gas flow rate and solids-togas mass ratio. Convective heat transfer coefficients of the gas were not increased when up to 0.7 pound of solids were added per pound of gas. This occurred when the suspension was being cooled with several hundred degrees temperature difference between the walls and the fluid. The direction of the temperature gradient has no effect for the range of variables tested, so the usual equations found in the literature for calculation of convective coefficients to or from gases may be used for suspensions up to approximately 1 pound of solids per pound of gas.

OP 9-66. Determination of the Particle Velocity in Detonating UP 9-66. Determination of the Particle Velocity in Detonating Genes by a Magnetohydrodynamic Principle, by
 M. L. Bowser, J. N. Murphy, J. E. Hay, and F. C. Gibson. J. Appl. Phys., v. 37, No. 6, May 1966, pp. 2273-2275. A technique using the magnetohydro-dynamic generator principle for experimentally de-termining the hydrodynamic particle velocity in gaseous detonations is described and application is made to hydrogen-oxygen mixtures.

OP 10-66. Fast-Neutron Activation Analysis in Molten Salt Electrometallurgical Research, by K. G. Broad-head, D. E. Shanks, and H. H. Heady. Proc. 1965 Internat. Conf., Modern Trends in Activation Analysis, College Station, Tex., May 1966, pp. 39-43. Fast-neutron activation-direct instrumental-analysis techniques have proven to be very successful in analyzing major and minor constituents in complex halide electrolytes used in electrowinning tungsten, molybdenum, and the rare-earth metals. Several trace elements have also been determined in the electrowon metals and related materials. Because of the inherent speed these techniques are being used to supplement or replace other analytical procedures.

OP 11-66. Comprehensive Computer Program for Electron Probe Microanalysis, by James D. Brown. Anal. Chem., v. 38, No. 7, June 1966, pp. 890-894. A computer program for calculating composition from X-ray data measured with an electron-probe micro-analyzer is described. This program can be used with several calculation procedures, including absorption corrections due to Philibert and as modified by Duncumb and Shields, fluorescence corrections of Cas-taing and Wittry, and Thomas' atomic number correction. The program facilitates the comparison of calculation procedures as well as the evaluation of errors associated with uncertainties in the parameters used.

OP 12-66. A Computer Program for Quantitative Electron Probe Microanolysis, by James D. Brown. Ch. in the Electron Microprobe, ed. by McKinley, Hein-rich, and Wittry. John Wiley & Sons, Inc., New York, 1966, pp. 189-198. A computer program has been written in FORTRAN for calculating compo-sition from measured X-ray intensities in electron-probe microanalysis. The measured intensities are corrected for instrumental drift, dead time, and probe microanalysis. The measured intensities are corrected for instrumental drift, dead time, and background. Philibert's absorption and Castaing's fluorescence functions are used to relate the cor-rected X-ray intensities to composition. The program should be adaptable for use with data from any electron-probe microanalyzer for a wide variety of complex. An example of the use of the program samples. An example of the use of the program is given.

OP 13-66. Selective Flatation of Mica From Pegmatites, by James S. Browning and Ralph B. Adair. Trans. SME, September 1966, pp. 277-280. The laboratory batch and continuous flotation pilot plant tests demonstrated the technical feasibility of recovmica pegmatite ores of Alabama and Georgia. The research indicated that combinations of anionic and cationic collectors may be used effectively for flotation of fine-size mica from weathered pegmatite ores. In continuous tests, concentrates containing 98.5 percent mica were obtained from the Georgia pegmatite ore; the Alabama pegmatite ore concentrates con-tained 98.4 percent mica. The recoveries were 91 and 89 percent, respectively.

Pulse Amplitude Shifts in Gas Propartianal X-Ray Detectors, by P. G. Burkhalter, J. D. Brown, OP 14-66.

and R. L. Myklebust. Rev. Sci. Inst., v. 37, No. 9,

F) ŧ

)

ŧ

)

ſ

)

September 1966, pp. 1266-1267. The pulse amplitude dependence on X-ray intensity (peak shift) has been measured in both sealed and flow gas proportional X-ray detectors. Larger peak shifts were found in gas flow detectors. The peak shifts, which increase with increasing anode potential, were independent of X-ray energy above 1,800 volts.

OP 15-64. Multiple Tracers Aid Evoluation of a Pilot Waterflood, by Edward L. Burwell. Proc. 25th Conf. on Petrol. Production, The Pennsylvania State University, University Park, Pa., Oct. 19-21, 1966, College of Earth and Min. Sci. Experiment Station Circ. 71, pp. 305-316. Many materials have been used to trace fluid flow in underground reservoirs. This report describes the use of five different tracers to help define the orientation and liquid flow capacity of a fracture system believed to be present in a reservoir during a pilot waterflood project on the Fords Brook Drilling Co. lease, Kane oilfield, Elk County, Pa. The presence and orientation of the fractures were established, the preferential flow direction was indicated from observation of the directional flow of tracers, and the approximate volume of injected water being produced through the fracture system was measured.

ı.

ı

3

f

l

Ę

OP 16-66. Multiple Tracers Establish Waterflood Flow Behavior, by Edward L. Burwell. Oil and Gas J., v. 64, No. 48, Nov. 28, 1966, pp. 76-79. Describes the use of five different tracers that were successfully used over a 2-year period to define the orientation and liquid flow of a reservoir fracture system.

OP 17-66. Metallothermic Reduction of Beryllium Oxide, by T. T. Campbell, R. E. Mussler, and F. E. Block. Trans. SME, October 1966, pp. 1456-1461. An exploratory study was made to determine the feasibility of preparing beryllium by the metallothermic reduction of beryllium oxide. The procedure involved heating a relatively nonvolatile metal reductant in contact with beryllium oxide in a vacuum. Beryllium vapors formed in the reaction were condensed as a coherent deposit on a heated surface. Reductants tested included lanthanum, yttrium, thorium, Th-Mg, and Zr-Ti alloys, and the hydrides of lanthanum, yttrium, and zirconium. Test temperatures ranged from 30 to 100 hours. In most cases metal recoveries were low, although yields close to 90 percent of theoretical were obtained with lanthanum, yttrium, and zirconium reductants. In most cases metal deposits were contaminated by beryllides, usually of the Be₁₂M or Be₁₃M type.

OP 18-66. Micro and Irace Analysis by a Combination of Ion Exchange Resin-Loaded Papers and X-Ray Spectrography, by W. J. Campbell, E. F. Spano, and T. E. Green. Anal. Chem., v. 38, No. 8, July 1966, pp. 987-996. Ion exchange resin-loaded papers were used to collect microgram quantities of cations and anions and present the collected ions to a fluorescent X-ray spectrograph. High sensitivities and low matrix effects make this a preferred procedure for trace analysis. Chemical and X-ray characteristics of cation and anion resin-loaded papers were investigated.

OP 19-66. Fly Ash Utilization, by J. P. Capp. Combustion, v. 37, No. 8, February 1966, pp. 36-40. Reviews the present situation with respect to fly ash utilization and discusses recent advances and current programs in utilization technology. Present uses for fly ash include lightweight aggregate, highway construction, and bituminous concrete and asphalt. Research is being conducted on using fly ash for bricks, soil conditioner, concrete block, and water treatment.

OP 20-66. Pipeline Gas by Hydrogosification, by H. C. Carpenter and P. L. Cottingham. Chem. Eng. Prog., v. 62, No. 8, August 1966, pp. 68-70. Study shows that high yields of pipeline gas may be produced from shale oil by several different hydrogasification processes. Yields of gas obtained by use of a catalyst were greater than those obtained in thermal hydrogasification. Further studying using a wider range of conditions would be needed to select the most desirable operating conditions.

OP 21-66. Hollow Chrysotile Fibers, by R. A. Clifton, Jr., C. W. Higgins, and H. R. Shell. Am. Mineral, v. 51, March-April, 1966, pp. 508-511. Electron microscopy shows that the ultimate microstructure of single fibers of chrysotile is a "hollow tube" or in some cases a partially filled "hollow tube." This offers the possibility of altering certain properties of the mineral.

OP 22-66. Here's How Producers Can Turn Brine Disposal Into Profit, by A. Gene Collins. Oil and Gas J., v. 64, No. 27, July 4, 1966, pp. 112-113. The mineral content of oilfield brine disposed of each year is worth more than \$3 billion. Recovery of these minerals would ease the burden of brine disposal.

OP 23-66. The Solubilities of Barium and Strontium Sulfates in Olifield Brines, by A. Gene Collins and William P. Zelinski. Division of Water, Air, and Waste Chemistry, 151st National American Chemical Society Meeting, Mar. 22-31, 1966, Pittsburgh, Pa., Preprints, v. 6, No. 1, March 1966, pp. 7-13. Information concerning the solubilities of barium and strontium sulfates in subsurface brines is necessary in petroleum engineering problems, geochemical exploration research, and ground water hydrology research. The solubilities of barium and strontium sulfates in synthetic and natural olifield brines were determined using the radioactive isotope sulfur 35. The results indicate excellent applicability of a radioactive isotope technique plus new basic solubility data.

OP 24-66. Measurement of Soluble Calcium in Iron Flotation Pulps, by Arthur F. Colombo. Proc. Technicon Symposium on Automation in Analytical Chemistry, New York, v. 2, November 1966, pp. 153-157. An analytical method was developed for determining calcium ion level in iron-ore pulps undergoing anionic flotation of activated silica. The problems associated with the application of the technique are discussed.

OP 25-66. The Role of Vaporization in High Percentage Oil Recovery by Pressure Maintenance, by Alton B. Cook, F. S. Johnson, G. B. Spencer, and Abdo F. Bayazeed. California Regional Meeting Soc. Petrol. Eng. AIME, Santa Barbara, Calif., Nov. 17-18, 1966, Preprint SPE 1646, 7 pp. A limited number of laboratory experiments have been performed with a rotating model oil reservoir that simulates gas cycling operations and allows a separation of the oil from the free gas flowing into the laboratory wellbore at reservoir conditions, thus revealing which is displaced oil and which is vaporized oil. In these experiments recovery by vaporization ranged from 15.3 to 73.6 percent of the immobile oil.

OP 26-66. flexible Linings for Ground Support, by Ernest L. Corp. Eng. and Min. J., v. 167, No. 4, April 1966, pp. 80-84. Flexible linings for underground mine supports offer certain advantages not inherent in other more common types of support. They can deform without rupture, they can shed or redistribute a portion of the load acting on an opening, and they have the ability to carry the remaining loads in a more efficient manner. Possible applications include drift supports and passageways in cut and fill stopes.

OP 27-66. Two Aids to Extrusion of High-Temperature Refractories, by J. G. Croeni and J. S. Howe, Jr. Tool and Manufacturing Eng., v. 56, No. 4, April 1966, p. 59. Describes the use of zirconia dies and molybdenum inserts in the extrusion of hightemperature refractories.

OP 28-66. Inverse Gas-Liquid Chromatography. A New Approach for Studying Petroleum Asphalts, by T. C. Davis, J. C. Petersen, and W. E. Haines. Anal. Chem., v. 38, No. 2, February 1966, pp. 241-243. A new approach to the characterization of asphalt is described in which the asphalt serves as the liquid substrate in an unusual application of gas-liquid chromatography (GLC). The term "inverse GLC" has been applied to differentiate this technique from conventional GLC. In this technique, the asphalt on the column is characterized by measuring the corrected retention volumes of a series of selected test compounds with different functional groups. The retention data are quantified by referencing to the behavior of *n*-paraffins on the asphalt column. The retention swith functionality in the asphalt and thus is related to the chemical composition of the asphalt. The new technique was found to be useful in showing differences among asphalts and holds promise as a method of studying asphalt composition and showing chemical changes which occur on oxidation and weathering.

OP 29-66. Automatic Analytical X-Ray Matheds, by C. W. Dwiggins, Jr. In Encyclopedia of Chemistry, ed. by G. L. Clark. Reinhold Pub. Corp., New York, 2d ed., 1966, pp. 115-116. The application of automated X-ray methods to research and development analyses is described. The emphasis is on the determination of trace elements, carbon, and hydrogen in petroleum-related materials.

OP 30-66. Fooms Purge Well Bore and Formation Waters, by J. L. Eakin and W. E. Eckard. Part 1, Petrol. Eng., v. 38, No. 7, July 1966, pp. 71-84; Part 2, No. 9, August 1966, pp. 81-93. Where the productivity of natural-gas and gas-storage wells is impaired by the accumulation of liquids in the wellbore, the condition can be corrected through the use of foaming agents. Similar productivity impairment resulting from waterblocks can be relieved by a recently developed alcohol-surfactant treatment.

OP 31-66. The isotopic Abundance of Neon Fram Helium-Bearing Natural Gases, by D. E. Emerson, L. Stroud, and T. O. Meyer. Geochim. Cosmochim. Acta, v. 30, No. 9, September 1966, pp. 847-854. This paper is the first presentation of data for the isotopic composition of neon from natural gas. The Ne²¹ isotopic content was found to be much greater than in the atmosphere. The concurrent generation of Ne²¹ and He⁴ from radioactive sources is postulated.

OP 32-66. Quantitative Ultraviolet Determination of C₁₀-C₁₅ Naphthelenes in Hydrocarbon Oils, by Patricia A. Estep, Edward E. Childers, John J. Kovach, and Clarence Karr, Jr. Anal. Chem., v. 38, No. 13, December 1966, pp. 1847-1851. Alkylnaphthalenes in coal-tar neutral oils where separated by liquid chromatography according to the number of alkyl groups and their amounts determined by ultraviolet spectrophotometry.

OP 33-66. Bureau of Mines Respirator Approval Schedules: New and Revised, by B. I. Ferber. Amer. Indus. Hygiene Assoc. J., v. 27, No. 2, March-April 1966, pp. 110-114. The Bureau of Mines tests and approves respiratory protective devices according to performance requirements set forth in pertinent approval schedules. Changes in industrial technology and respirator application require review and revision of these performance requirements. Revisions are accomplished through cooperative efforts of the Bureau of Mines, the manufacturers, and the users of respiratory protective devices. The requirements of recently revised Schedule 21B for dust, fume, and mist respirators are discussed, as well as requirements proposed for inclusion in revisions of approval schedules for other types of respiratory protective devices.

OP 34-66. Oxygen Functional Groups in Green River Oil-Shale Keregen and Trong Acids, by J. I. Fester and W. E. Robinson. In Coal Science. Advances in Chem. Ser. 55, 1966, pp. 22-31. Carboxyl, ester, amide, hydroxyl, aldehyde, and ketone groups were estimated for oil-shale kerogen and kerogen-derived trona acids from the Green River Formation. Ether groups were estimated by difference. Carboxyl, ester, and ether groups were found to account for the major portion of the oxygen in both the kerogen and trona acid samples. Minor amounts of amide, hydroxyl, aldehyde, and ketone groups were indicated. The reactive oxygen groups, carboxyl and ester, account for about one-half of the total oxygen in kerogen and two-thirds of the total oxygen in trona acids while the unreactive ether group accounts for the other half of the total oxygen in kerogen and onethird of the total oxygen in trona acids.

OP 35-66. Experimental Production of Prereduced Pellets From Natural and Synthetic Magnetites, by M. M. Fine and N. Bernstein. Proc. 23d Ironmaking Conf. AIME, Pittsburgh, Pa., Apr. 13-15, 1964. Gordon and Breach Science Publishers, Inc., New York, v. 23, 1966, pp. 229-245. Green (moist) pellets rolled from natural and synthetic magnetites containing 66 and 68 percent iron, respectively, were reduced and indurated simultaneously in a 36-foot rotary kiln at 1,130° C with lignite, and in other tests at 1,150° C with anthracite. All four procedures resulted in physically competent upgraded pellets containing 80 to 90 percent iron with as much as 90percent metallization. Lignite-produced pellets were capable of resisting from 200 to 300 pounds compression, and those produced with anthracite resisted 300 to 500 pounds. Both types were highly resistant to abrasion. Material balances of the product showed that from 91 to 96 percent of the iron units reported as plus ¼-inch pellets and much of the remainder was suitable for immediate blast furnace consumption or recycling.

OP 36-66. Preparation of Trimethylsilyl Ethers of Tertiary Alcohols, by Sidney Friedman and Marvin L. Kaufman. Anal. Chem., v. 38, No. 1, January 1966, pp. 144-145. Trimethylsilyl ethers of tertiary alcohols can be prepared by reacting the alcohol with hexamethyldisilazane in either dimethylformamide or dimethylsulfoxide. The method is applicable to other alcohols.

OP 37-56. Coking Coal Behavior in Gas-Producer Tests, by R. L. Gall and J. D. Spencer. Coal Age, v. 71, No. 2, February 1966, pp. 128-130. Describes the design and operation of a simple atmospheric pressure unit that was built to make comparative tests on two high-volatile highly caking coals. Both coals were from West Virginia, one from the Cedar Grove seam in the southern part of the State and one from the Pittsburgh seam in the northern fields. These tests were part of a program to develop a gas producer for the efficient production of industrial fuel gas from highly caking bituminous coal.

OP 38-66. Selective Plugging of Water Injection Wells, by Thomas M. Garland. J. Petrol. Technol., v. 18, No. 12, December 1966, pp. 1550-1560. A field study was made to determine the feasibility of changing the injection profile of water-input wells after water breakthrough at producing oil wells. Secondary objectives were to study the particle size and quantity of plugging materials required to change the input profile and methods of applying these materials. Fifty-three injection wells were treated with various amounts and types of commercial plugging materials; the injection profile was definitely changed in most of the wells treated. Increased efficiency of water injection after treatment was indicated by commercial tracer surveys and injection-well performance. There were some indications that the rate of water production was increased as a result of selective-plugging treatments, but it was found that an immediate change in the rate of oil and water production did not normally occur.

OP 39-66. Fiber Optic and Strain Probe Mass-Flux Meters for Got-Solids Suspensions, by Harry G. Gilson, H. A. Dwyer, R. L. Peskin, and John D. Spencer. ASME Paper 66-FE-22, 1966, 6 pp. Describes two instruments developed for measuring the mass flux and mean properties of solid particles in gas-solids suspensions. One is a fiber-optic probe that derives signals from the attenuation of light by particles crossing the gap between the optic fibers. These signals are relayed to an oscilloscope giving a trace that is proportional to the local mass flux. The other device consists of a circular target attached to a rod at the end of a cantilevered metal strip. Solid particles and gas strike the target, deflecting the strip, and strain gages attached to the strip detect this strain and relay it to a recorder. Both instruments are shown to respond to individual solid particles and measure local mass flux.

OP 40-66. The Entholpies of Combustion and Formation of the 1-Alkanethials. The Methylane Increment to the Entholpy of Formation, by W. D. Good and B. L. DePrater. J. Phys. Chem., v. 70, No. 11, November 1966, pp. 3606-3609. Enthalpies of formation of 1-hexanethiol, 1-heptanethiol, and 1-decanethiol were derived from rotating-bomb calorimetry. Earlier enthalphy of formation studies of short-chain 1-alkanethiols were revised to conform to present values of atomic weights and enthalpies of formation of combustion products. Methylene increments to the enthalpy of formation of 1-alkanethiols were computed.

4

ł

12

OP 41-66. The Thermochemistry of Boron and Some of its Compounds. The Enthalpies of Formation of Orthoboric Acid, Trimethylamineborane, and Diamoniumdecaberane, by W. D. Good and M. Mansson. J. Phys. Chem., v. 70, No. 1, January 1966, pp. 97-104. The enthalpies of combustion of crystalline boron, trimethylamineborane, and diammonium decaborane were determined. The enthalpies of formation of trimethylamineborane, diammonium decaborane, and orthoboric acid were derived. OP 42-66. Co-op Effort Pieneers Undersea Mining, by J. Leslie Goodier. Undersea Technol., v. 7, No. 1, January 1966, pp. 61-62. Outlines the program of the Marine Mineral Technology Center at Tiburon, Calif.

OP 43-66. Reactions of Coal in a Plasma Jet, by R. D. Graves, Walter Kawa, and R. W. Hiteshue. I&EC Process Design and Development, v. 5, No. 1, January 1966, pp. 59-62. Pulverized coal fed by entrainment into argon plasma jets was converted to a solid residue and gases. A maximum acetylene yield of 15 weight-percent of moisture- and ash-free coal was obtained.

OP 44-66. Gassa: Thermodynamic Properties, by Roland H. Harrison. Ch. in Encyclopedia of Physics, ed. by M. Besancon, Reinhold Publishing Corp., Dayton, Ohio, 1966, pp. 291-293. Some fundamental principles relating to the thermodynamic properties of gases are explained. Methods are outlined for evaluating the thermodynamic properties of both ideal and real gases and also gas mixtures.

OP 45-66. Tetrafluoromethane: The Thermodynamic Properties of the Real Gas, by R. H. Harrison and D. R. Douslin, J. Chem. and Eng. Data, v. 11, No. 3, July 1966, pp. 383-388. The thermodynamic properties, H—H°, S—S°, and C—C°, of tetrafluoromethane were determined as functions of temperature (0° to 350° C) and molal density (0.75 to 11.0 g-mole/liter) over a pressure range of 0 to 400 atm.

OP 46-66. Solvent Enhancement of Emissions lines for Plasma Arc Determination of Vanadium in Petroleum Fractions, by Raymond J. Heemstra and Norman G. Foster. Anal. Chem., v. 38, No. 3, March 1966, pp. 492-493. A method is presented for increasing the sensitivity for the plasma arc determination of vanadium in petroleum fractions through the use of highly chlorinated solvents.

OP 47-66. A High-Iemperature Electrowinning Cell for Rare Earths, by T. A. Henrie and E. Morrice. J. Metals, v. 18, No. 11, November 1966, pp. 1207-1208. An electrolytic cell for winning high-melting point rare-earth metals in the liquid state has been designed and operated. Gadolinium, dysprosium, and yttrium metals were prepared.

OP 48-66. An Optically Active Triterpane, Gammacerone in Green River, Colorado, Oil Shale Bitumen, by I. R. Hills, E. V. Whitehead, D. E. Anders, J. J. Cummins, and W. E. Robinson. Chem. Communications, v. 20, 1966, pp. 752-754. An optically active hydrocarbon separated from a Green River oil-shale bitumen was identified as gammacerane.

OP 49-66. Diffizone Extraction and X.Ray Spectrographic Determination of Trace Mercle in High-Purity Tungsten or Tungsten Trioxide, by Grant L. Hubbard and Thomas E. Green. Anal. Chem., v. 38, No. 3, March 1966, pp. 428-432. Trace quantities of copper, nickel, lead, and zinc are extracted into chloroform solution of diffizone from alkaline tartrate solution containing up to 5 grams of tungsten. Diffizone in the organic extract is then oxidized with benzoyl peroxide and the trace metals are back-extracted into dilute hydrochloric acid. The separated trace metals are collected on ion exchange resin-loaded paper disks and determined by fluorescent X-ray spectrography. Copper, nickel, and zinc from 0.3 to 20 ppm and lead from 1.0 to 20 ppm are determined to within 0.3 ppm or with a relative standard deviation of 8 percent, whichever is greater. Cobalt can be estimated in the 0.1 to 1.0-ppm range.

215

OP 50-66. Air Pollutant Inventory-Enter the Dissel, by R. W. Hurn and D. E. Seizinger. Proc. API, v. 45, No. 3, 1965, pp. 127-132. Exhaust gases from truck-type diesel engines tested on a dynamom-eter stand were shown to involve hydrocarbons, oxides of nitrogen, and formaldehyde in significant quantities.

OP 51-66. Evaluation of Low-Temperature Coal Tars by A Rapid, Detailed Assay Based on Chromatography, by Clarence A. Karr, Jr., Joseph R. Comberiati, Kenneth B. McCaskill, and Patricia A. Estep. J. Applied Chem., v. 16, No. 1, January 1966, pp. 22-27. An assay, based largely on both liquid and gas chromatography, was developed for the deter-mination of about 100 compounds of commercial interact in low termenture cold based. interest in low-temperature coal tars.

OP 52-66. Removing Sulfur Dioxide From Flue Gases, by Sidney Katell. Chem. Eng. Prog., v. 62, No. 10, October 1966, pp. 67-73. Estimated capital investment and operating costs for three dry proc-esses for removing sulfur dioxide from powerplant flue gas are projected for an 800-Mw plant burning 3-percent-sulfur coal.

OP 53-66. Bureau of Mines Research on Mine Safety, by D. S. Kingery. Proc. 55th Convention, Mine Inspectors' Institute of America, 1965, pp. 163-167. Summarizes the Bureau of Mines' work in research on mining safety; it covers work of roof-control research and reviews the recent developments in roof bonding and its application. Other discussions involve new developments in the field of rock me-chanics. Ventilation research is discussed, pointing out the common ventilating methods that are used in coal mines and how such methods could be improved to improve face ventilation. In the session on mine explosions, flame spread on conveyor belts, the possible dust hazards in coal storage silos, and float dust transport are discussed.

OP 54-66. Reduce Your Drilling Cost With Visual Training Aids, by G. M. Kintz and F. C. Hill. World Oil, v. 163, No. 4, September 1966, pp. 89-92. The article describes visual aids and their effectiveness in training employees in the oil industry to recognize job hazards and avoid accidents.

OP 55-66. Acid Mine Drainage Pollution Control-Approach to Solution, by Stephen Krickovic. Min. J., v. 52, No. 12, December 1966, pp. 64-68. Describes the type of mines involved in the acid mine drainage problem and methods of reducing or eliminating acid mine drainage.

OP 56-66. Cyclopentane: Molecular Vibrational Analysis, by F. H. Kruse and D. W. Scott. J. Molecular

Spectroscopy, v. 20. No. 3, July 1966, pp. 276-281. Normal coordinate calculations for cyclopentane were made with force constants transferred from n-paraffins. The vibrational assignment based thereon differs somewhat from any proposed previously but is consistent with calorimetric data.

OP 57-66. Ignition of Tank Atmospheres During Fuel Loading, by I. Liebman, I. Spolan, J. M. Kuchta,

and M. G. Zabetakis. Proc. API, v. 45, sec. 3, 1965, pp. 217-230. An investigation was made to determine the formation, persistence, and ignition energy requirements of flammable zones which occur in the vapor space of fuel tanks during fuel loading. These flammability studies were made using JP-4, gasoline, and kerosine fuels which were loaded into a 2.4-cu ft cylindrical tank or a 22.5-cu ft simulated aircraft

wing tank. The extent and duration of flammable zones was found to be dependent on fuel vapor pressure, temperature, flow rate, fuel inlet, and tank dimensions.

OF 58-66. The Stability of High Road Bank Slopes in Rock-Some Design Contepts and Tools, by A. E. Long, R. H. Merrill, and D. W. Wisecarver. High-way Res. Record, No. 135, 1966, pp. 10-26. The instruments and data analysis procedures used by instruments and data analysis procedures used by the Bureau of Mines in a continuing study of pre-dicting the steepness of the angle and height at which a rock slope will safely stand are described and discussed. The instruments and procedures rep-resent the beginning of a scientific effort to quantify experimentally the engineering and general signifi-cance of the attitude of rock joints, bedding planes, and faults; the character of gravity and tectonic induced stresses in rock slopes with and without berms; slope geometry; ground water; and over-blasting as they affect the stability of a rock slope. Also discussed is the use of the presplitting tech-Also discussed is the use of the presplitting tech-nique of blasting to form a smooth and tight slope face relatively free of rock falls.

OP 59-66. Thermal Fragmentation of Rock, by R. I. Maro-velli, T. S. Chen, and V. F. Keith. Trans. SME, March 1966, pp. 1-15. An analytical study is made of thermal stress distribution in a thin circular disk subjected to a peripheral thermal shock at vari-ous rates of heat transfer. The problem is of importance in predicting thermal shock response of a rock body of finite size. The theoretical analysis is based on radial heat flow by combustion in the disk and heat exchange by convection between the disk and surroundings. The case of constant properties and plane stress is treated. Solutions of the stress distributions are presented for both cooling and heating shocks and an average stress theory is formulated. Preliminary experimental verification was obtained from the results of shock tests on thin rock disks insulated on both flat end faces so that heat exchange took place through the exposed peripheral surface.

OP 60-66. Prereduced Iron-Ore Pellets, State of the Art, by N. B. Melcher and M. M. Fine. J. Metals, v. 18, July 1966, pp. 795-802; Skillings' Mining Re-view (pt. 1), v. 55, No. 28, July 9, 1966, pp. 3-6; (pt. 2) No. 29, July 16, 1966, pp. 8-9, 23. Discusses methods of producing prereduced iron-ore pellets, costs of production, and the future of the pelletizing induction. industry.

OP 61-66. A Study of Shale Oil for Pipe Line Gos Production, by H. C. Carpenter and P. L. Cottingham. Pipe Line Industry, v. 25, No. 1, July 1966, pp. 19-20. Shale oil could be a satisfactory raw material for production of pipeline gas should there be a need for supplementing the supply of natural gas.

ť

ł

t

L

OP 62-66. Strategic Minerals, by Charles W. Merrill. Min. Cong. J., v. 52, No. 2, February 1966, pp. 178-181. Discusses the eight most important strategic minerals—antimony, chromite, cobalt, co-lumbium, manganese, mercury, tin, and tungsten. These are excess stocks of strategic-grade material in every commodity except refractory-grade chromite.

OP 53-56. U.S. Self-Sufficiency in Selected Metals and Min-erals, by Charles W. Merrill. Eng. and Min. J., v. 167, No. 2, February 1966, pp. 77-79. The degree of U.S. self-sufficiency for 49 important minerals is graphically compared for six significant periods.

OP 64-66. Low-Temperature Thermodynamic Properties of *n*-Propyl and *n*-Butylbenzene, by John F. Messerly, Samuel S. Todd, and Herman L. Finke. J. Phys. Chem., v. 69, No. 12, December 1965, pp. 4304-4311. The heat capacities from 12° to 370° K, heats of fusion, triple points, and purities of *n*-propylbenzene and *n*-butylbenzene were measured in an adiabatic calorimeter. Both compounds exhibited monotropism with the metastable crystals melting 2.02° below the stable crystals in the case of *n*-propylbenzene and 0.16° below the stable crystals in the case of *n*-butylbenzene. From the calorimetrically measured data the thermodynamic functions (G. $-H^{\circ}$.)/T, $(H.-H^{\circ}$.)/T, $H_{--}H^{2}$., S., and C, were calculated at selected temperatures for each compound for both the metastable and stable crystals and the liquid phase. For each compound, the entropies at 298.15° K in the liquid state calculated by metastable and by stable paths agreed within experimental error, providing another check of the third law of thermodynamics. The entropy increment obtained between *n*-propylbenzene and *n*-butylbenzene is about 0.25 eu greater than the constant entropy increment for the normal paraffins from C, to C. in both the liquid and ideal gas states. This slightly larger increment from *n*-propyl to *n*-butyl substitution has been noticed earlier in monoalkylsubstituted cyclopentanes and cyclobexanes. From incomplete measurements on *n*-decylbenzene, values of the heat of melting and triple point temperature were obtained. Estimates of the entropies of *n*-decylbenzene at 298.15° K in the liquid and ideal gas states were made.

OP 65-65. Air Seeling as a Means of Abating Acid Mine Drainage Pollution, by Noel N. Moebs. 151st National Meeting, American Chemical Society, Pittsburgh, Pa., Mar. 22-31, 1966, Preprints, v. 10, No. 1, March 1966, pp. 93-100. Both field and laboratory tests indicate that if oxygen can be excluded from an abandoned coal mine, the oxidation of pyrite will be prevented and the acidity of the mine discharge reduced. A small abandoned mine with a highly acid discharge has been selected, and it is planned to seal it to prevent air from entering it. A study of the geologic and hydrologic environment of the mine is expected to serve as a basis for comparing the quality of the mine discharge before and after sealing.

OP 66-66. Comparison of Perphyrins From Shale Oil, Oil Shale, and Petroleum by Absorption and Mass Spectroscopy, by J. R. Morandi and H. B. Jensen. J. Chem. and Eng. Data, v. 11, No. 1, January 1966, pp. 81-88. Mass and absorption spectroscopy were used to characterize porphyrins extracted by a hydrogen bromide-acetic acid solution from an oil shale, a shale oil, and a petroleum. The porphyrins in oil shale and petroleum were shown to be similar and to consist of at least two homologous series. These porphyrins were alkylsubstituted and contain from 7 to 13 methylene substituents per molecule, and most of the molecules also contained a carboalkoxy group. Their average molecular weights were 508 for the shale porphyrins and 494 for the petroleum porphyrins; their visible spectra were of the phyllo type. The porphyrins in shale oil are a complex mixture of etio-type porphyrins. They have a molecular weight range of 366 to 522. There is evidence for the lack of an isocyclic ring and for the presence of both one and two carboalkoxy groups per molecule.

2

1

1

3

OP 67-66. A New Look of the Cause of Fuming, by J. P. Morris, J. P. Riott, and E. G. Illig. J. Metals, v. 18, No. 7, July 1966, pp. 803-810. The mechanics of fuming of iron-carbon melts during topblowing with oxygen was investigated. Melts weighing 45 lb were prepared in an induction furnace and blown with oxygen by means of water-cooled lances. The rate of fuming was measured and correlated with the operating variables. The data showed that the primary cause of fuming was a boil at the bath surface in the impingement zone of the jet. Nucleation of the carbon monoxide bubbles producing the boil was brought about by the precipitation of an oxide phase. The actual fuming mechanism apparently involved oxidation, vaporization, and mechanical disintegration of bubble films and fine metal spray generated by the bursting of the bubbles. The rate of fuming was found to be proportional to the carbon content of the metal, the concentration of oxygen in the jet, and the bath temperature, provided that a continuous boil occurred. In the absence of a boil, very little fume was produced.

OP 68-66. The Energy Dilemmo-Which Fuel, What Market, When? by Warren E. Morrison. SME Fall Meeting, Rocky Mountains Min. Conf., Oct. 7-9, 1965, Preprint 65 K 302, 26 pp. Reasonably accurate predictions of total energy consumption can be made for periods up to 15 years by relating energy to projections of economic indicators. However, forecasting by component parts of the energy economy results in the dilemma that the sum of the projected parts frequently exceeds the whole. Experience shows that unilateral forecasting of a single source of energy results in a high degree of expected variation since this does not reflect the multiple interrelationships among energy resources and their markets. This paper attempts to overcome some of these deficiencies by projecting the demand for energy resources within the context of total energy balances. The paper forecasts U.S. demand for coal, natural gas, petroleum products, hydropower, and nuclear power for the period 1963-80. Separate energy balances are presented for the years 1965, 1970, 1975, and 1980. Each balance is made up of interrelated projections of energy demand by source and consuming sector. The balances are based on Bureau of Mines data for a recent historical period, and have been subjected to assumptions and techniques of forecasting outlined in the paper. Estimates are also made of levels of domestic production that would be required to meet projected consumption of energy resources during the forecast years.

OP 69-66. Vapor Pressure Relations of 36 Sulfur Compounds Present in Petroleum, by Ann G. Osborn and Donald R. Douslin. J. Chem. Eng., v. 11, No. 4, October 1966, pp. 502-508. Compilations of vapor pressures measured by static and ebulliometric methods, covering more than five orders of magnitude in pressure, are given for "key" members of classes of alkane thiols, alkane sulfides, alkane disulfides, and cyclic sulfides which were selected for a comprehensive study of their thermodynamic properties.

OP 70-66. Inelastic Deformation of Rock Under a Hemispherical Drill Bit, by J. Paone and S. Tandanand. Trans. SME, June 1966, pp. 113-124. This paper studies the behavior of rock at the initial state of crater formation resulting from stresses created under a drill bit. The maximum yield strength or hardness of rock were considered from the Mohr-Coulomb criterion from which the surface of failure was constructed.

OP 71-66. Front-end Laader Accidents, by R. O. Pynnonen. Canadian Pit and Quarry, v. 7, No. 9, September 1966, pp. 38-39; Min. Cong. J., v. 52, No. 11, November 1966, pp. 60-62. Discusses the causes of 44 fatal accidents with front-end loaders.

OP 72-66. Electro-Osmotic and Electrophoretic Dewatering as Applied to Solid-Liquid Separation: A Review and a Bibliography, by J. B. Poole and D. Doyle. Ministry of Technology. H. M. Stationery Office, London, 1966, pp. 100-108. Reviews the literature on electrophoretic and electro-osmotic dewatering of clays and other fine mineral particles. Discusses present and potential uses of electrophoresis and electro-osmosis in the mineral industry, including methods for dewatering clays, soils, or silts in situ.

OP 73-66. Problems Facing the North American Iren Ore Industry, by Horace T. Reno and Francis E. Brantley. Skillings' Min. Rev., v. 55, No. 6, Feb. 5, 1966, pp. 6-7, 22-23. Discusses the problems of the North American iron ore industry—foreign competition, grade of ore, beneficiation, stocks, and markets.

OP 74-66. Composition and Crystallographic Data for the Highest Boride of Tungsten, by P. A. Romans and M. P. Krug. Acta Crystall., v. 20, pt. 2, February 1966, pp. 313-314. Gives results of a study of WB., the highest boride of tungsten, which found the unit cell to be hexagonal with $a_o = 5.200$ A and $c_a = 6.340$ A. Evidence was found that while the ideal formula is WB., the compound studied may contain more than stoichiometric amounts of boron.

OP 75-66. Mining en the Moon, by Clifford W. Schultz. New Scientist, v. 31, No. 503, July 7, 1966, p. 33. Research on using lunar resources, in particular theoretical and experimental studies of possible mining and mineral processing techniques applicable on the Moon, can prepare for the day when decisions have to be taken about the feasibility of manned lunar bases.

OP 76-66. Chromotographic Analysis of Gas Streams Associated With Helium Production, by C. A. Seitz, Al Purer, and C. L. Klingman. Gas, v. 42, No. 9, September 1966, pp. 56-65. Details are given for the chromatographic analysis of seven gas streams associated with helium production. Only one stream at a time may be monitored.

OP 77-66. Food From Coal-Derived Materials by Microbial Synthesis, by Melvin P. Silverman, Joan N. Gordon, and Irving Wender. Nature, v. 211, No. 5050, Aug. 13, 1966, pp. 735-736. Results of an evaluation of a variety of coal-derived materials as growth substrates for microorganisms are reported. Coal is a potential source of immense quantities of high-protein food.

OP 78-66. Estimation of Solubility of Bismuth Compounds in Liquid Ammonia, by Annie G. Smelley, Francis E. Brantley, and Arthur F. Findeis. Anal. Chem., v. 38, No. 3, March 1966, pp. 449-451. The solubilition of the Ariichloride tribburide tribunde

ties of the triiodide, trichloride, tribromide, nitrate, sulfate, and lactate of bismuth in liquid were determined polarographically.

CP 79-66. Conversion Constants for Mahogany-Zone Oil Shale, by John Ward Smith. Bull. Amer. Assoc. Petrol. Geol., v. 50, No. 1, January 1966, pp. 167-170. Describes the Bureau of Mines method for accurately determining the organic content of oilshale samples and the elemental composition of this organic matter. OF 80-66. Dawsonite in the Green River Formation of Colorado, by John Ward Smith and Charles Milton. Econ. Geol., v. 61, No. 6, 1966, pp. 1029-1042. Widespread occurrence of dawsonite, an unusual sodium aluminum carbonate potentially an economic source of aluminum, in oil shales of Colorado's Piceance Creek basin is described.

OP 81-66. Ankerite in the Green River Formation's Mohogeny Zone, by John Ward Smith and William A. Robb. J. Sedimentary Petrol., v. 36, No. 2, June 1966, pp. 486-490. Ankerite, a dolomite altered by isomorphous cation substitution, is the primary carbonate mineral in Mahogany zone oil shales of the Green River Formation in Colorado and Utah. X-ray diffraction spacings determined on 10 composite samples representing the zone over a broad geographic area are shifted from those of unsubstituted dolomite to spacings very similar to an ankerite. Substitution of Fe^{**} for Mg^{**} in these samples was insufficient to account for the large shifts detected. Isomorphous substitution of Sr^{**} for Ca^{**}, suggested as contributing to the shift in spacing, was strongly supported by correlation significant to more than 99 percent between dim spacing shift and the proportions of substitution of Fe^{**} for Mg^{**} and Sr^{**} for Ca^{**} in these samples.

OF 82-66. In Situ Oil Shele Retorting, by H. W. Sohns and H. C. Carpenter. Chem. Eng. Prog..
v. 62, No. 8, August 1966, pp. 75-78. In situ techniques that have been successfully employed in petroleum recovery can probably be used for recovery of oil from shale. Field tests should provide solutions to most of the problems.

OF 83-66. Determination of Metallic Impurities in Molybdenum by a Combined Ion Exchange-X.Ray Spectrographic Method, by Ernest F. Spano and Thomas E. Green. Anal. Chem., v. 38, No. 10, August 1966, pp. 1341-1345. Trace quantities of cobalt, copper, iron, lead, manganese, nickel, and zinc are separated from molybdenum by ion exchange. The separated trace metals are collected on ion-exchange resinloaded paper disks and determined by X-ray fluorescence with a precision of ±10 percent of the amount present.

OP 84-66. Instant Tips for Authors, by John D. Spencer. STWP Rev., v. 13, No. 3, July 1966, p. 18. Describes a series of technical writing aids. The "tip" is a single-page treatment of some aspect of technical writing, usually done in a humorous style.

OP 85-66. Electrachemical Reduction of Aromatic Hydrocarbons in Ethylenediamine, by Heinz W. Sternberg, Raymond E. Markby, Irving Wender, and David M. Mohilner. J. Electrochem. Soc., v. 113, No. 10, October 1966, pp. 1060-1062. In a solution of ethylenediamine containing lithium chloride, polycyclic aromatic hydrocarbons are reduced by direct electron transfer from cathode to substrate provided a platinum electrode free of surface oxides is used. Evidence is presented that in this system benzene is reduced with lithium cation acting as an electron transfer agent.

 OP 86-66. Clean Gas From Coal May Be Economical Fuel for Gas Turbines, by Donald C. Strimbeck and John H. Faber. Power Eng., v. 70, No. 7, July 1966, pp. 52-53. A gas producer can be integrated into combined cycle, to generate clean gas that will minimize compressor erosion and air pollution.

OP 87-66. High Pressure Mass Spectrometry for Analysis of Trace Impurities in Helium, by Elmer T. Suttle, David E. Emerson, and Diana W. Burfield. Anal. ŗ

Ē

Î

ŧ

Chem., v. 38, No. 1, January 1966, pp. 51-53. Trace impurities in helium in the parts per million range have been analyzed with a conventional mass spectrometer. To increase the sensitivity, the inlet sample pressure was increased from the micron to the millimeter range and the ionizing current to 100 microamperes.

OP 88-66. A flome Spectrophotometric Method for Sodium, Potessium, and Calcium in Fuel Oil, by Rex D. Thomas. Anal. Chem., v. 38, No. 6, May 1966, pp. 785-786. A flame spectrophotometric method using a standard-addition technique was developed for the determination of 0.1 to 10 milligrams per liter of sodium, potassium, and calcium in distillate fuel oils. The method is rapid, sensitive, and relatively unaffected by interferences.

OP 89-66. Identification of Naturally Occurring Cyclic Suffices in a Wilmington, Calif., Crude Oil Distillate Boiling From 111° to 150° by Use of a Series of Gas-Liquid Stationary Phases, by H. L. Coleman, C. J. Thompson, R. L. Hopkins, and H. T. Rall. J. Chromatography, v. 25, 1966, pp. 34-47. Describes the positive identification of 18 cyclic sulfides in a Wilmington, Calif., 111° to 150° C distillate and the systematic separation and identification procedures employed.

.

1

1

J

1

1

OP 90-66. Sulfur Compound Characterization Studies on High-Boiling Petroleum Fractions, by C. J. Thompson, H. J. Coleman, H. T. Rall, and N. G. Foster. Preprints, American Chemical Society, Division of Petroleum Chemistry, v. 11, No. 2, March 1966, pp. 85-93. Paper describes the preparation of sulfur compound concentrates boiling from 225° to 400° C and reports the sulfur types present as suggested by low-voltage mass spectrometry. The procedures described should be generally applicable.

OP 91-66. Heavy liquid Cyclone Concentration of New Mexico Potash Ores, by R. B. Tippin and J. S. Browning. Trans. SME, December 1966, pp. 360-366. The Bureau of Mines has conducted research to develop processes for heavy-liquid concentration of potash ores. This method of concentration is discussed, and results of tests made on potash ores from New Mexico are presented. The tests demonstrated the technical feasibility of producing near commercial-grade potash concentrates, with a high recovery of the contained sylvite.

OP 92-66. Project Gasbuggy-A Nuclear Fracturing Experiment, by Don C. Ward, Charles H. Atkinson, and J. Wade Watkins. J. Petrol. Technol., v. 18, No. 2, February 1966, pp. 139-145. Project Gasbuggy was instituted to design, conduct, and evaluate a nuclear fracturing experiment and it is a joint undertaking by the U.S. Atomic Energy Commission, the Bureau of Mines, the Lawrence Radiation Laboratory, and the El Paso Natural Gas Co. The experiment is designed for the detonation of a 10-kiloton fission explosive at a depth of 4,150 feet to evaluate th stimulative effect on gas production from the Pictured Cliffs Formation in the San Juan Basin of New Mexico.

OP 93-66. Appalachian Region Oilfield Reservair Investigations, Keener and Big Injun Sands, Wingett Run Field, Ludlow Township, Washington County, Ohio, by C. E. Whieldon, Jr., and D. M. Evans. Producers Monthly, v. 30, No. 8, August 1966, pp. 10-12. The Bureau of Mines obtained oil-reservoir samples of the Keener and Big Injun sands by coring the Oxford Oil Co. K. M. Day well 1 in the Wingett Run field, section 27, Ludlow township, Washington County, Ohio.

Geophysical well logs, core analysis, geology, and oilfield development are presented. This work is part of a broader effort to evaluate the potential oil recovery of this area by secondary-recovery operations.

OP 94-66. Appelachian Region Oilfield Reservoir Investigations, Venange Group, First, Lytle, and Second Sands, Walnut Bend Pool, Complanter Iwp., Venange County, Pe., by Charles E. Whieldon, Jr., and William K. Overbey, Jr. Producers Monthly, v. 30, No. 6, June 1966, pp. 2-5. The Bureau of Mines obtained oilreservoir samples of the Venango First, Lytle (Red Valley), and Venango Second sands by rotary air coring a well in the Walnut Bend pool, Cornplanter township, Venango County, Pa. Core analysis, well logs, and well-completion data are presented.

OP 95-66. Anodic Electropolishing of Stainless Steel Apparatue, by M. L. Whisman. Materials Res. and Standards, v. 6, No. 1, January 1966, pp. 24-25. Describes an anodic electropolishing method for removing deposits of varnish and lacquer or residual radioactivity from stainless steel containers used in small-scale thermal stability tests. A mixture of glycolic acid, phosphoric acid, and sulfuric acid was used for the electrolyte and a copper wire or rod as the cathode. A similar procedure can be used for electropolishing aluminum using fluoboric acid as the electrolyte.

OP 96-66. Storage Stability of High Temperature Fuels, Part 2, by Marvin L. Whisman and C. C. Ward. Air Force Aero Propulsion Laboratory, Research and Technology Division, Air Force Systems Command, Wright-Patterson Air Force Base, Ohio, AFAPL-TR-65-13, February 1966, 168 pp. This report covers the second year's work by the Bureau of Mines, working under a 3-year Air Force contract, on an investigation of the influence of fuel constituents on thermal stability during storage of Snec MILon thermal stability during storage of Spec MIL-J-25656B type (JP-6) and other high-temperature fuels. These investigations are contingent upon the successful development of several methods utilizing radiotracers to determine the causes of thermal in-stability as well as predicting thermal stability of high-temperature fuels during storage. Ninety-four test blends representing 12 fuels and 9 radioactive fuel components were prepared, tested, and stored at 130° F in the evaluation of a microscale thermal stability procedure developed for the purpose of determining the contribution of selected fuel com-ponents to thermally induced deposits. Sixty-four of these test blends reached 26 weeks storage interval and were retested to determine the effect of storage upon deposit-forming tendencies. A study of several variables associated with a dynamic microhydrogenation method using tritium as the index of reactivity was completed. Final investigation with a series of test fuels and pure hydrocarbons concluded the application of the technique. An alternate static system of hydrogenation utilizing active metal catalysts prepared by the in situ treatment of the metal salt with sodium borohydride and the in situ generation of hydrogen from sodium borohydride was completed. A revised procedure employing tritium-labeled borohydride was likewise developed and evaluated. The third modification of a proportional counting device designed to accept the preheater tube from either research or standard cokers was successfully tested and shown to represent an improvement over previous designs.

OP 97-66. Suppression of Selective Volatilization in a Method for the Spectrographic Analysis of Lanthanum, by

A. B. Whitehead, B. C. Piper, and H. H. Heady.

Appl. Spectroscopy, v. 20, No. 2, April 1966, pp. and the Stallwood Jet on selective distillation of impurities other than rare earths in La₂O₃ are evaluated. Selective volatilization is reduced by use of a 20-A dc arc with a ¹/₃-inch-diameter electrode. An analytical method incorporating these operating con-ditions is presented for 19 impurity elements in La₂O₃ prepared from the lanthanum metal sample. The overall precision is about ± 14 percent relative standard deviation over the concentration range of 30 to 1,000 ppm.

OP 98-66. Constant Low-Voltage Drop Rotating Electrode Assembly, by Charlie Wyche and Frank X.

McCawley. Electrochem. Technol., v. 4, No. 7-8, July-August 1966, p. 144. Describes an efficient low-voltage drop electrode rotating mechanism developed at the College Park Metallurgy Research Center.

OP 99-66. Synthesis of Ethylmethylphenols, by R. W. Youngs and W. W. Fowkes. Proc. North Dakota Acad. Science, v. 19, April 1966, pp. 100-103. The synthesis of 2-ethyl-3-methylphenol and a sim-pler route to the preparation of 3-ethyl-4-methyl-phenol are described. Physical constants and infrared spectra are reported.

OP 100-66. X-Ray Absorption and Emission, by William J. OP 100-66. X-Ray Absorption and Emission, by William J. Campbell, James D. Brown, and John W. Thatcher. Anal. Chem., Ann. Rev., v. 38, No. 4, April 1966, pp. 416R-439R. Surveys the literature on fundamental developments and gives tabular sum-maries of applications of X-ray spectrography and electron-probe microanalysis. Most of the references cited were published in 1964 and 1965.

OP 101-66. Equilibrium Scrption Studies of Methane on Pitts-OP 101-66. Equilibrium Sorption Studies of Methane on Pitts-burgh Seem and Pecchentas No. 3 Seem Coal, by R. B. Anderson, J. Bayer, and L. J. E. Hofer. Coal Science, Advances in Chem., Ser. 55, Paper 24, 1966, pp. 386-399. Methane is adsorbed at atmos-pheric pressure and 30° C, 2.89 cc (STP)/gram (lvb) and 1.97 cc (STP)/gram (hvab). Pore vol-umes are 0.136 cc/gram (lvb) and 0.020 cc/gram (hyab).

OP 102-66. How Nuclear Explosions Can Boost Gas-Storage Copacity, by Charles H. Atkinson and D. C. Ward. Oil and Gas J., v. 64, No. 34, Aug. 22, 1966, pp. 102-105. The need for gas-storage capacity near metropolitan areas opens new fields of study as part of the Plowshare program. Results show that cost of storing gas in cavities formed by nuclear explosives will be less than for liquefied natural gas or mined cavity storage. Under current study are problems which may arise from radioactivity and seismic shock and the feasibility of a field test.

OP 103-66. A Survey of the Sulfur Reduction in Northern Appelachian Region Coal by Stage Crushing, by A. F. Baker, A. W. Deurbrouck, and E. R. Palowitch. Annual Meeting, AIME, New York, Feb. 27-Mar. 3, 1966, Preprint 66F26, 17 pp. The effect of crushing on the release of sulfur impurities in the release of sulfur impurities in five of the most important northern Appalachian region coals has indicated that the Upper and Lower Freeport and Upper Kittanning beds show significan sulfur reduction when crushed to 14-mesh top size. Samples of the Pittsburgh and the Lower Kittanning beds did not show significant sulfur reduction when crushed to finer sizes.

OP 104-66. Centrifugal Casting of Tungsten, by E. D. Cal-vert and R. A. Beall. J. Metals, v. 18,

No. 1, January 1966, pp. 39-46. Describes the de-sign and operation of a skull-casting furnace speis sufficiently advanced that hollow and solid billets can be prepared. In general grain size is smaller than that normally obtained in arc-melted ingots, and the castings can be further worked by a variety of processes.

OP 105-55. Why a Fire Flood Project Failed, by G. G. Campbell, E. L. Burwell, T. E. Sterner, and L. L. Core. World Oil, v. 162, No. 2, Feb. 1, 1966, pp. 46-50. The Bureau of Mines has completed evaluation of a pilot underground combustion project conducted in a shallow, high-gravity, paraffin-base crude oil reservoir in northwestern Pennsylvania. Although the project failed to increase production, it provided valuable information on the applicability of the combustion process to similar reservoirs containing low-viscosity oil. The article describes performance of the combustion test, cites reasons for its failure, and recommends procedures which should solve the problems encountered.

OP 107-66. Analysis of Beryllium Metal and Its Compounds

by Optical Emission Spectrography, by L. Carpenter, R. W. Lewis, and K. A. Hazen. Appl. Spectroscopy, v. 20, No. 1, January/February, 1966, pp. 44-46. Eighteen elements were determined in beryllium from 5 to 1,000 ppm by a dc-arc method. Samples were dissolved in hydrochloric acid, converted thermally to beryllium oxide, then mixed with graphite and barium carbonate for determining calcium, mixed with cupric oxide for determining boron and molybdenum, and mixed with graphite and germanium oxide for determining the other 15 elements. Spectral transmittances of analytical and internal lines were converted to relative-intensity ratios which were plotted against concentrations of standards to form curves from which concentrations of impurities were read.

OP 108-66. High-Temperature, Low-Rate Hydrocarbons Compressor, by R. P. Csamer and James P. McGee. Chem. Eng., v. 73, No. 24, Nov. 21, 1966, pp. 154, 156. Describes a piston-type short-stroke compressor that is leakproof and satisfactorily recycles about 1 cubic foot per minute of hydrocarbon gas at 1,000° F and atmospheric pressure.

OP 109-66. Bureau of Mines Updates Respirator Criteria, by B. I. Ferber. Nat. Safety News, v. 94, No. 5, November 1966, pp. 54-55. Requirements recently included in revised respirator approval schedules are discussed. Provisions to be included with other revisions are also discussed.

OP 110-66. Effect of Additives on Phase Diagrams: Normal Butane Added to Condensate-Natural Gas System, by Byron A. Baker and C. Kenneth Eilerts. Proc. 25th Tech. Conf. Petrol. Production, Pennsylvania State University, October 19-21, 1966, College of Earth and Min. Sci. Experiment Station Circ. 71, pp. 317-352. The effect on phase-boundary pressures of a related series of condensate mixtures of additions of normal butane was determined with a windowed PVT cell. The investigation was conducted at pressures up to 5,000 psia and at tempera-tures in the range 70° to 310° F. Relationship of the critical state to changing compositions was į

i.

ł

evaluated. The fluids were a mixture of intermediate hydrocarbons and selected distillation cuts from a field condensate combined with mole fractions of natural gas in the range 0.800 to 0.933. The data were subjected to statistical analysis using a computing program that provided a polynomial for interpreting the results. The polynomial yields phase-boundary pressure, and independent variables are temperature, natural gas content, and mole fractions of normal butane additive. A method is described for approximating such a polynomial before measurements are complete, using a mathematical model that requires more measurements than are available.

OF 111-66. Separation by Ultrasonic Elutriation and Analysis of the Fine Particles in Sandstone, by Jerry B. F. Champlin and Rex D. Thomas. J. Sedimentary Petrol., v. 36, No. 4, December 1966, pp. 1152-1156. Apparatus and technique for quantitative removal of fine particles from crushed sandstones are described. Chemical and X-ray mineralogical analyses of the fine portion of natural sediments are enhanced.

OP 112-66. Removal of Water Blocks From Gas-Producing Formations, by J. L. Eakin, J. S. Miller, and W. E. Eckard. API Drilling and Production Prac-tices, 1965, pp. 26-39. A method was developed in the laboratory and in the field to relieve capillary waterblocks in gas wells. Impaired gas permeability was improved by this inexpensive chemical treatment which lowers the surface tension of the water held in the capillaries of the formation. Effectiveness of the alcohol-surfactant treatment was tested with a variety of chemicals and with standstone cores cut from rocks having relatively low permeability. Field tests on 20 gas-producing and storage wells demonstrated the effectiveness and limitations of the method. The productive capacity of some wells was doubled by the treatment. The final test was evaluated by the neutron logging technique for measuring changes in apparent liquid saturation. Maximum apparent liquid saturation was reduced by 52 percent; gas production rate increased from 2.3 to 3.5 million cubic feet per day.

OP 113-66. Sintering of Yttrium Oxide, by LeRoy R. Furlong and Louis P. Domingues. Am. Ceram. Soc. Bull., v. 45, No. 12, December 1966, pp. 1051-1054. Yttrium oxide compacts of density exceeding 97 percent of theoretical were obtained by sintering at the relatively low temperature and short soak time of 1,600° C and 1 hour. Distributions of particle size of powder and of pore size of green compact were found to affect the sinterability of yttrium oxide to a great degree. Variation in powder properties was obtained by decomposing six salts of yttrium.

.

3

1

à

1

7

ł

1

OP 114-66. A Study of Lattice Dilation in Finely Divided MgO, by Ronald C. Garvie. Materials Res. Bull., v. 1, No. 3, November 1966, pp. 161-171. The lattice parameter of MgO is an important parameter in its characterization and may usually be regarded as a constant of the material. However, the lattice parameter of this solid, in a finely divided state, is a variable, becoming larger as the crystallite size becomes smaller. In this paper, using published data for MgO, a theoretical interpretation of this phenomenon is given, based on the fundamental cohesive forces which hold the crystal together. OF 115-66. Pneumatic Coal Transport: Difficult But Premising, by L. J. Kane and J. D. Spencer. Power Eng., v. 70, No. 8, August 1966, pp. 58-69. Discusses the 22 technical papers presented at the symposium on the pneumatic transportation of solids sponsored by the Institute of Gas Technology and the Bureau of Mines.

OP 115-56. Subsolidus Equilibrie in the System MgO-GeO-MgF2, by George Robert McCormick. J. Am. Ceram. Soc., v. 49, No. 11, November 1966, pp. 618-620. Four MgO-GeO2-MgF2 compounds, analogous to the humite minerals, were synthesized by solid-state reaction by substituting germanium for silicon. The 43 selected compositions were sintered at 800° to 1,200° C. Solid-state compatibility relations were established from petrographic and X-ray diffraction analyses. The optical properties and characteristic X-ray diffraction data for the four MgO-GeO2-MgF2, compounds were determined and 2MgO $GeO_2 \cdot MgF_2$, and $GMgO \cdot 3GeO_3$ MgF2, were indexed by Ito's method.

OP 117-66. Pressurized Gas Producer, by James P. McGee, George M. Hamilton, and J. H. Faber. Gas Turbine Catalog, v. 7, No. 6, November-December 1966, pp. 30-31. Describes the design and operation of a fixed-bed producer to process highly caking coal into a pressurized gas.

OP 118-66. The Role of Microstructure in the Physical Properties of Rock, by J. R. McWilliams. In Testing Techniques for Rock Mechanics, ASTM Special Tech. Pub. 402, 1966, pp. 175-189. Presents an experimental technique relating rock microstructure to sonic and mechanical properties. Data are presented for three orthogonal directions to introduce the concept of anisotropy.

OP 119-66. Shope of the Coexistence Curve of an Analytical Fluid in the Critical Region, by Robert E. Barieau. J. Chem. Phys., v. 45, No. 9, November 1966, pp. 3175-3177. For an analytical fluid it is shown that the relationship between coexisting phases is given by $a_3 = -a_1(1+Ma_1)$, where $a_3 = (\rho_{11q}/\rho_c) - 1$, $a_1 = (\rho_{gas}/\rho_c) - 1$, $M = -4/15 - \frac{1}{3}$ $(p_{adi}/p_{al}) + (p_{acaa}/p_{aca})$, $p = P/P_c - 1$, and p with subscripts indicates partial derivatives of p evaluated at the critical point. Coexisting phase as a function of temperature are given by $a_1 = (3Mp_{atl}/p_{aca}) - (-6p_{atl}/p_{aca})^{1/2}$, $a_3 = (3Mp_{atl}/p_{aca}) + (-6p_{atl}/p_{aca})^{1/2}$, wtere $t = (T/T_c) - 1$. The reduced rectilinear diameter is given by $\frac{1}{2}[d(a_1 + a_3)/dt] = 3Mp_{at}/p_{aca}$.

OP 120-66. Improve Your Ventilation and Save, by John Nagy and Edward M. Kawenski. Coal Min. and Processing, v. 3, No. 9, September 1966, p. 28. Recent research at the Bureau of Mines Experimental Coal Mine demonstrates that proper construction and repair of stoppings and overcasts improve face ventilation without costly changes in fan installation.

OP 121-66. Latest Developments in the Bureau of Mines Research Related to Damage Criterion. Presplitting and Short Delay Blasting. by Leonard Obert. Pit and Quarry, v. 58, No. 7, January 1966, pp. 162-165, 192. Discusses the Bureau of Mines research on vibrations produced by quarry blasting. The recommended basis for a safe blasting vibration criterion for surface structures is particle velocity; the recommended limiting value is 2.0 inches per second; and a safety factor of 2 is recommended.

OP 122-66. Lithologies, Environments, and Reservoirs of the Middle Mississippian Greenbrier Group in West Virginia, by William K. Overby, Jr. Proc. Symp. Petrolum Geology of the Appalachian Basin, 25th Tech. Conf. on Petroleum Production, Pennsylvania State University, October 1966, pp. 39-74. Compari-son of lithologies observed in subsurface cores with outcrop samples of the basal members of the Greenbrier Group of the middle Mississippian in West Virginia indicate that oil and gas reservoirs found within this interval are the result of several slightly different but related depositional environments. These environments and the resulting lithologies are (1) moderate to high energy environment above or near wavebase producing an oolitic limestone or a slightly sandy, oolitic limestone; (2) moderate to high energy beach and near-shore environment producing a sandy limestone-limy sand facies; and (3) moderate to high energy environment at or near wavebase producing a skeletal, biohermal limestone. In the subsurface, all of the above lithologies were modified to some extent by subsequent dolomitization which produced reservoirs controlled primarily by the areal extent of dolomitization. Methods of in-vestigation to determine lithologies and environments are discussed and possible methods of exploration for these primarily stratigraphic-type reservoirs are presented.

OF 123-66. Appalachian Region Oilfield Reservoir Investigations, Basal Greenbrier Group, Dolamite Zone ("Big Injun"), Sycamore Field, Sherman District, Calhoun County, W. Va., by William K. Overbey, Jr., and Charles E. Whieldon, Jr. Producers Monthly, v. 30, No. 4, April 1966, pp. 16-19. The lower portion of the Mississippian Basal Greenbrier limestone, in-cluding the dolomite zone, was diamond-rotary cored in a well in the Sycamore field, Sherman district, Calhoun County, W. Va. Well logs were run to supplement core analysis data. Geology, lease de-velopment history, and well completion data are presented.

OP 124-66. Theoretical and Field Waterflood Performance, OF 124-66. Theoretical and Field Waterflood Performance, Kane Oilfield, Elk County, Pa., by Leo A. Schrider, John R. Duda, and Harry R. Johnson. 25th Tech. Conf. on Petroleum Production, Oct. 21-26, 1966, Pennsylvania State University, University Park, Pa., Experiment Station Circ. 71, 1966, pp. 287-304. A prediction for oil recovery from a pilot waterflood in the Kane oilfield was made and com-pared with actual field performance. The calculated behavior of the pilot waterflood was predicted using a modifield Craig Geffen and Morse calculation techa modified Craig, Geffen, and Morse calculation technique. Maximum recovery from this low-permeability, preferentially oil-wet formation was pre-dicted to be about 25,000 barrels of oil after 300,000 barrels of water had been injected into the pilot area. After additional field data were collected, it became necessary to reevaluate the pilot flood area. The gas saturation prior to the flood was estimated to have been 20 percent, based on an assumption regarding the required volume of water injected to initiate oil production. In view of the actual field performance, a gas saturation of 13 percent is indicated. When this gas saturation and the method originally proposed by Craig and coworkers are used, the predicted results are more representative. In December 1965 field performance was further analyzed using a hyperbolic decline curve as presented by Arps. Based upon this evaluation method, the pilot waterflood in the Kane sand should produce

6

37,000 to 42,000 barrels of oil with the injection of 300,000 barrels of water or 129 to 142 barrels per acre-foot from 36.5 acres.

OP 125-66. Review of Some of the Fundamentals of Hydro-

carbon Storage Stability, by F. G. Schwartz and C. C. Ward. Trans. SAE, v. 74, 1966, pp. 983-992. This paper summarizes the results of storage stability tests on distillate fuels and gasolines. A general equation for fuel deterioration curves is presented.

OP 126-66. Microbial Synthesis of Food From Coal-Derived Material, by Melvin P. Silverman, Joan N. Gordon, and Irving Wender. In World Protein Re-sources. Advances in Chem. Ser. 57, 1966, pp. 269sources. Advances in Chem. Ser. 57, 1906, pp. 209-279. Yeasts grown on certain coal-derived materials give protein in as high yield as can be obtained from the best petroleum substrates. Fischer-Tropsch syn-thetic fuel fractions are excellent substrates for food production; a low-temperature tar may also be used.

OP 127-66. Bureau of Mines Progress in Developing Open ond Closed-Cycle Cool-Burning Gos Turbine Power Plants, by J. Smith, D. C. Strimbeck, N. H. Coates, and J. P. McGee. Trans. ASME, v. 88A, No. 4, October 1966, pp. 313-322. Closed-cycle developments include tests of a turbocompressor with hydrodynamic gas bearings. The working fluid is inert gas, with turbine inlet temperatures to 1,600° F. A refractory-metal turbine for tests at 1.950° F is described. Open-cycle operations for 1,963 hours with turbine blades specially designed to resist erosion by coal ash particles are described. Estimated life of the rotor and stator blading was 20,000 and 5,000 hours, respectively. Efforts to increase blade life by reducing the amount of ash entering the turbine through improvements in combustion and ash separation systems are described.

OP 128-66. Electrochemical Reductions in Ethylenediamine, by H. W. Sternberg, C. L. Delle Donne, R. E. Markby, and I. Wender. Coal Science. Ad-vances in Chem. Ser. 55, 1966, pp. 516-520. The effect of operating variables on the electrochemical reduction of tetralin used as a model compound for the hydrogenation of coal is described.

OP 129-66. Appalachian Region Oilfield Reservoir Investigations, Clinton Sandstone, Carbon Hill West Pool, Grean Township, Hocking County, Ohio, by Charles E. Whieldon, Jr. Producers Monthly, v. 30, No. 12, December 1966, pp. 6, 7, 26. Clinton sandstone was cored and well logs were run in the R. L. Conner well 3, Carbon Hill West Pool, Hocking County. This work is part of a broader effort to evaluate the pos-sibilities of increasing the ultimate oil recovery from sibilities of increasing the ultimate oil recovery from Appalachian area reservoirs by secondary-recovery methods. Geologic data, lease development history, geophysical logs, coring information, and the results of core and log analyses are presented.

OP 130-66. Blast Furnace Operation with Prereduced Burdens,

by P. L. Woolf. J. Metals, v. 18, No. 2, February 1966, pp. 243-247. The Bureau of Mines smelted prereduced pellets in its experimental blast furnace in 1962. Very low coke rates were obtained and productivity increased as much as 55 percent. Considerable interest was generated throughout the industry and additional test work was warranted. Consequently, tests with prereduced materials were included as part of an extensive program of blast furnace research conducted under a cooperative agreement between the Bureau of Mines and Blast Furnace Research, Inc.

5

9

;)

ŧ) OP 131-66. The Electrochemical Reduction of a Low Volatile Bituminaus Coal-Nature of the Reducer Materiel, by H. W. Sternberg, C. L. Delle Donne, R. E. Markby, and I. Wender. Fuel, v. 45, No. 6, November 1966, pp. 469-482. A low-volatile bituminous coal was reduced electrochemically and the nature of the reduced material was investigated.

OP 132-66. Avoiding Damage to Residences from Blosting Vibrations, by James F. Devine. Highway Res. Record, No. 135, 1966, pp. 35-42. Presents some basic procedures for avoiding vibration damage to residences when blasting. Particle velocity of the ground near the residence is presented as the most suitable criterion for associating ground vibration with building damage. Two inches per second particle velocity is recommended as a safe vibration level.

OP 133-66. Research on Western Cocils: Present Program of the Federal Bureau of Mines, by Charles C. Boley and Wayne R. Kube. Proc. Rocky Mountain Coal Min. Inst., 62d Ann. Meeting, June 26-29, 1966, pp. 53-62. Bureau of Mines research on Western coals is centered at the Grand Forks Coal Research Laboratory and consists of seven major project areas: Ash characteristics and behavior in combustion, drying, carbonization, gasification, pulverization, storage, and nonfuel uses.

OP 134-66. Evaluation of the Martinsburg Shale and Twe Yaunger Formatians as Sources of Lightweight Aggregate in the Deleware River Area, Pennsylvania-New Jersey, by Avery Ala Drake, Jr., M. V. Denny, and Howard P. Hamlin. Geol. Survey Prof. Paper 525-D, pp. D-156 through D-162. Five samples of slate from different stratigraphic intervals within the Martinsburg Shale and one sample each from the New Scotland Limestone and the Esopus Shale were tested as potentials for production of bloated rotarykiln-fired lightweight aggregate. The expanded products that formed in the muffle-kiln and rotary-kiln firing tests of the Martinsburg material were found to compare favorably with selected commercial lightweight aggregates. Muffle-kiln firing of shale from the New Scotland Limestone and the Esopus Shale, however, failed to cause it to expand notably and consequently resulted in products too heavy to be usable as lightweight aggregate.

OP 135-66. Integration of Partial Differential Equation for Transient Linear Flow of Gas-Condenate Fluids in Porous Structures, by C. Kenneth Eilerts. Soc. Petrol. Eng. J., v. 4, No. 4, December 1964, pp. 291-305. Finite difference equations were programed and used to integrate the second-order, second-degree, partial differential equation with variable coefficients that represent the transient linear flow of gas-condensate fluids. Effect was given to the change with pressure of the compressibility factor, the viscosity, and the effective permeability and to change of the absolute permeability with distance. Integrations used as illustrations include recovery of fluid from a reservoir at a constant production rate followed by recovery at a declining rate calculated to maintain a constant pressure at the producing boundary. The time required to attain such limiting pressure and the fraction of the reserve recovered in that time vary markedly with properties of the fluid represented by the coefficients. Fluid also is returned to the reservoir at a constant rate, until initial formation pressure is attained at the input boundary, and then at a calculated rate that will maintain but not exceed the limiting pressure. The computing programs were used to calculate the results that would

1

i

]

be obtained in a series of back-pressure tests made at selected intervals of reservoir depletion. If effect is given to the variations in properties of the fluid that actually occur, then a series of back-pressure curves—one for each stage of the depletion—is required to indicate open-flow capacity and related flow characteristics dependably. The isochronal performance method for determining flow characteristics of a well was simulated by computation.

OP 136-66. Refinement of the Hemotile Structure, by R. L. Blake, R. E. Hessevick, Tibor Zoltai, and Larry W. Finger. Am. Mineral., v. 51, Nos. 1 and 2, pp. 123-129. Three-dimensional diffraction intensities were collected on a spherical single crystal of hematite with a Buerger single-crystal diffractometer. The structure has been refined with a leastsquares program and the final structure gave an R factor of 7.16 percent. The structure model of Pauling and Hendricks has been confirmed with essentially no change in the iron and approximately 4 percent change in the oxygen coordinates. The interatomic distances and the bond angles were also calculated.

OP 137-66. Identification of Thisindans in Crude Oil by Gas-Liquid Chromatography, Desulfurization, and Spectral Techniques, by C. J. Thompson, H. J. Coleman, R. L. Hopkins, and H. T. Rall. Anal. Chem., v. 38, No. 11, October 1966, pp. 1562-1566. Knowledge of the sulfur components in petroleum is of both theoretical interest and practical value to the petroleum industry. The apparent absence of thiaindins in petroleum has been of interest to sulfur and petroleum chemists for many years. Recently the authors have identified 1-thiaindan and 17 alkylthiaindans in Wasson, Texas, crude oil by a combination of gasliquid chromatography, desulfurization, and spectral techniques. This represents the first known identification of this class of sulfur compound in petroleum. These identifications and the techniques employed are described.

OF 138-66. Appalachian Region Oilfield Reservoir Investigations, Glade, Clarendon, and Garlland Sands, Morrison Run Field, Mead Tawnship, Warren Co., Pa., by Charles E. Whieldon, Jr. Producers Monthly, v. 30, No. 9, September 1966, pp. 9-11. The Glade, Clarendon, and Gartland Sands were cored and logged in Blain M. Mead well 26, lot 460, Morrison Run field. This work was done to evaluate the possibilities of increasing ultimate oil recovery from the Morrison Run field by secondary-recovery methods. Geology, oilfield history, geophysical well logs, and core analysis are presented.

OF 139-66. A Large Spherical Vessel for Combustion Research, by Alphone Bartkowiak and Joseph M. Kuchta. I&EC Process Design and Development, v. 5, No. 4, October 1966, pp. 436-439. Design and construction features are given for a 12-foot-diameter spherical steel vessel which has been added to the Bureau of Mines facility at Bruceton, Pa., for use in combustion research. The maximum design of the vessel is 300 psig. The relatively large size of the vessel makes its particularly suitable for ignition, flammability, and detonability studies with minimum wall effects. It can be used for experiments with solid explosives as well as vapors and gases.

OP 1-67. Explosives Research To Improve flow Through Low Permeability Rock, by J. L. Eakin and J. S. Miller. 3d Conf. on Drilling and Rock Mechanics, Soc. Petrol. Eng., AIME, Austin, Tex., January 1967, Preprint SPE 1715, 10 pp. Small-scale surface tests were conducted to determine the feasibility of using a nitroglycerin-base explosive for rock fracture creation. A 50-quart charge of nitroglycerin was displaced into a permeable zone at a depth of 42 feet in Green River oil shale. Fracture improvement ratios on eight test holes ranged from 2.3 to 19.1 and averaged 8.0.

OP 2-67. Permeability Alteration of Sondstone Using a High-Energy Liquid Compound, by Larman J. Heath and Ray V. Huff. 96th Ann. AIME Meeting, Los Angeles, Calif., Feb. 19-23, 1967, Preprint SPE 1719, 8 pp. A proprietary liquid monopropellant was burned in several sandstone cores to effect an increase in permeability. This report summarizes the results of preliminary tests.

OP 3-67. Quenching Face ignitions, by E. M. Murphy, D. W. Mitchell, and E. M. Kawenski. Coal Age, v. 72, No. 1, January 1967, pp. 80-82. A research report on quenching face ignitions. Splitsecond sensing of methane ignitions at the face initiates dispersal of flame-quencing chemicals from trays mounted on the mining machines.

OP 4-57. Electrolytic Generation of Solvated Electrons and Reduction of the Benzene Ring in Ethanol Containing Hexamethylphosphoramide, by Heinz W. Sternberg, Raymond E. Markby, Irving Wender, and David M. Mohilner. J. Am. Chem. Soc., v. 89, No. 1, Jan. 4, 1967, pp. 186-187. Reduction of the benzene ring was achieved by electrolytic generation of solvated electrons in ethanol containing hexamethylphosphoramide.

OP 5-67. Manganese Recovery as Chloride From Ores and Slogs, by A. A. Cochran and W. L. Falke. Min. Eng., v. 19, No. 3, March 1967, pp. 72-76; J. Metals, v. 19, No. 4, April 1967, pp. 28-32. Difficulties in treating low-grade domestic manganese ores are analyzed, and a one-step chlorination separation operation is proposed and tested. The operation is technically feasible for nine out of 10 domestic ores, and a complete, integrated process is proposed.

OP 6-67. A Performance Study of Dense-Medium Vessels in Cleaning Coarse Coal, by J. Hudy, Jr. SME Fall Meeting, AIME, Tampa, Fla., Oct. 13-15, 1966, Preprint 66F325, 13 pp. The performance of five dense-medium washers was evaluated in four preparation plants. Three of the plants were making a two-product separation that produced a clean coal and a refuse; one plant employed dense-medium vessels in series to effect a primary and a secondary separation.

OP 7-67. Guality Control of Coal: Issting of the Condrex X.Ray Ash Motor, by J. Hudy, Jr. 96th Ann. AIME Meeting, Los Angeles, Calif., Feb. 19-23, 1967, Preprint 67F79, 21 pp. An investigation has been made to determine the applicability of the Condrex X-ray instrument for the monitoring of the ash contents of washed bituminous coal products. The results obtained for selected products from five preparation plants in the northern Appalachian region are described.

OP 8-57. Bibliography on Incineration of Refuse and Waste, by Richard C. Corey, Herbert C. Johnson, and Hazel C. Anderson. Air Pollution Control Association, Pittsburgh, Pa., March 1967, 273 pp. Bibliography, with abstracts, on incineration research and practices, covering the period 1960 through 1966. Includes reference to incineration of residential, commercial, community, and salvage wastes; radioactively contaminated wastes; methods of testing incinerator performance; and incinerator design. Contains author and subject indexes.

OP 9-67. Storage Stability of High Temperature Fuels. Part 3, by Marvin L. Whisman and C. C. Ward. Air Force Aero Propulsion Laboratory, Research and Technology Division, Air Force Systems Command, Wright-Patterson Air Force Base, Ohio, AFAPL-TR-65-13, pt. 3, February 1967, 83 pp. Report covers work from February 1966 to February 1967 on the storage stability of high-temperature fuels. Ninety-four test blends of 12 fuels and nine radioactive fuel components were prepared and tested in the evaluation of a microscale thermal stability procedure developed for the purpose of determining the contribution of selected fuel components to thermally induced deposits. Eighty-eight of these test blends were retested after 26 weeks' storage at 130° F to determine the effect of storage upon deposit-forming tendencies. Analysis of the data obtained in this study resulted in a further study of thermal decomposition of a fuel antioxidant additive. An investigation of several variables associated with an in situ hydrogenation method using tritium as the index of reactivity was completed as an effort to develop a sensitive and accurate analytical technique for very low concentrations of olefins in hydrocarbon fuels. In addition initial steps were taken toward obtaining or synthesizing radioactive materials and reference standards essential to a continuation of this program along a similar line of approach.

OP 10-67. Conjugation of Soybean Oil by Decomposition of Its Iron Tricorbonyl Complex With Carbon Monoxide, by E. N. Frankel and S. Metlin. J. Am. Oil Chem. Soc., v. 44, No. 1, January 1967, pp. 37-39. Nonconjugated vegetable oils have been converted into the more valuable conjugated isomers by their reaction with CO and Fe(CO)_s and subsequent decomposition of the resulting complexes.

OP 11-67. Operating Practices Required To Optimize Blast Furnace Performance, by K. H. Gee, W. M. Mahan, and E. J. Ostrowski. J. Metals, v. 19, No. 2, February 1967, pp. 46-47; AIME Ironmaking Proc., v. 25, 1967, pp. 154-155. The balance between reducing gas and hearth temperature requirements in an experimental blast furnace is achieved by varying coke and blast moisture to find the minimum rates which would provide control of iron sulfur. The new practice for adjusting slag chemistry combines the use of iron temperature and optimum magnesia contents for minimizing liquidus temperatures.

OF 12-67. Method for Rapid Transfer of GLC Fractions Into Infrared Cavity Cells, by R. F. Kendall. Appl. Spectroscopy, v. 21, No. 1, January 1967, pp. 31-32. A rapid transfer procedure is described, which permits the qualitative infrared analysis of microliter samples collected from gas-liquid chromatographic instruments.

OP 13-67. Use of High Top Pressures and Wind Rate With Sinter and Pellet Burdens, by N. B. Melcher, W. E. Marshall, and P. L. Woolf. J. Metals, v. 19, No. 2, February 1967, pp. 41-45; AIME Ironmaking Proc., v. 25, 1967, pp. 83-87. High top pressures in an experimental blast furnace are beneficial to both productivity and coke rate at high wind rates. Closely sized sinter results in lower coke rates and in higher production than will acid pellets of bigher quality. 1

ł

t

) [

)

OP 14-67. Cyclohexanethiol and 2,4-Dimethyl-3-Thiopentane: OP 14-67. Cyclonexensthiel and 2,4-Dimethyl-3-Inlepentanes. Melecular Vibrations, Conformational Analyses, and Chemical Thermodynamic Properties, by D. W. Scott and G. A. Crowder. J. Chem. Phys., v. 46, No. 3, February 1967, pp. 1054-1062. Statistical thermo-dynamic treatments were made of the conforma-tional energetics of the cyclohexanethiol and 2,4-dimethyl-3-thiapentane molecules. Tables of the ehemial thermodynamic properties measuremiled chemical thermodynamic properties were compiled.

OP 15-67. Nuclear Measurement of Carbon in Bulk Materials, OP 15-67. Nuclear Measurement of Carbon in Bulk Materials, by Robert F. Stewart. Proc. 17th Nat. ISA Conf. on Instrumentation for the Iron and Steel Industry, Pittsburgh, Pa., Mar. 15-16, 1967, pp. 2-1 through 2-14. A method is described for continu-ous measurement of carbon in granular materials by counting the 4.43-mev gamma rays produced from carbon atoms by the inelastic scatter of neutrons. Carbon in iron-ore sinter mix and in fly ashes con-taining 2 to 16 percent carbon was determined within taining 2 to 16 percent carbon was determined within 0.5 percent, and repeated tests on one sample of sinter mix showed a precision of 0.2 percent carbon. Tests on coal samples as large as 4,000 pounds show the possibility of adapting the method to continuous process control of materials at high tonnage flow rates. Considerations of nuclear design, instrumentation, and material handling are discussed for commercial use of a continuous carbon meter for process control.

OP 16-67. Thermal Fragmentation of Rock. A Five-Year Study, by Robert L. Marovelli. Trans. 1966 Nat. Safety Cong., Mining, v. 16, October 1966, pp. 48-53. This report describes rock thermal fragmenta-tion work at the Twin Cities Mining Research Center of the Bureau of Mines. The safety problems associated with thermal methods are discussed.

OP 17-67. Emission Spectrometric Determination of Barium,

Boren, Iron, Manganese, and Strontium in Oilfield Waters Using a Plasma Arc, by A. Gene Collins. Appl. Spectroscopy, v. 21, No. 1, January/February 1967, pp. 16-19. Studies of the concentration and dis-tribution of the mineral content in subsurface oilfield waters aid in locating water-pollution sources, deter-mining water compatibilities, determining the origin and distribution of oilfield waters and petroleum, and exploring for petroleum and other minerals. An to determine B, Ba, Fe, Mn, and Sr in oilfield waters was developed. Variations in brine composition were reduced by use of a synthetic brine solution. Less than 1 mg/liter of each ion can be detected. Syn-thetic and natural oilfield waters containing the sub-ject ions were mixed with various organic solvents and the internal standard. Relative intensities of their emission lines were determined using each of 10 solvent systems.

OP 18-67. Bromide and lodide in Oilfield Brines in Some OP 18-67. Bromide and lodide in Outleid Brines in Some Tertiary and Cretaceous Fermations in Mississippi and Alabama, by A. Gene Collins, William P. Zelinski, and Cynthia A. Pearson. 153d Nat. Meeting Am. Chem. Soc., Division of Water, Air, and Waste Chem., v. 7, No. 1, April 1967, pp. 166-173. The iodide and bromide content of 280 oilfield brine sam-ples was determined. These data together with the addimension of such as the second sub-3 sodium, calcium, magnesium, bicarbonate, and sul-fate content of the samples were analyzed using a 1 digital-computer factor analysis program. A corre-lation of bromide to calcium was found for these waters.

ŧ

OP 19-67. Hydrocracking Prehydrogenated Shale Oil, by Philip L. Cottingham and Harry C. Car-penter. I&EC Process Design and Development, v. 6,

April 1967, pp. 212-217. Shale oils with lowered car-April 1967, pp. 212-217. Shale oils with lowered car-bon residue and metals contents were prepared by prehydrogenating crude gas-combustion shale oil at 1,000 pounds pressure and 600° to 660° F. The pre-hydrogenated oils were once-through hydrocracked at 1,000 or 1,500 pounds with temperatures from 800° to 900° F. At a given conversion, naphtha yields were about the same at both pressures, but wilfur and pittagen presentages were lower at 1500 yields were about the same at both pressures, but sulfur and nitrogen percentages were lower at 1,500 than at 1,000 pounds. At 900° F, naphthas obtained at 1,000 pounds averaged below 0.10 percent nitrogen and those obtained at 1,500 pounds averaged 0.02 percent. These percentages were reduced to below 0.01 percent when the tar bases were removed. A 66 hour percent when the tar bases were removed. 66-hour recycle hydrocracking run at 1,000 pounds and 907° F produced 80.6 and 106.4 volume-percent of conversion as, respectively, C.* and C.* naphthas.

OP 20-67. An Adaptation of Inverse Gas-Liquid Chroma

tegraphy to Asphalt Oxidation Studies, by T. C. Davis and J. C. Petersen. Anal. Chem., v. 38, No. 13, December 1966, pp. 1938-1940. Describes a study of the oxidation characteristics of asphalts by direct oxidation within the gas-liquid chromatography col-umn followed by inverse gas-liquid chromatographic analysis. This technique may be useful in predict-ing asphalt durability. ing asphalt durability.

OP 21-67. Determination of Nitrogen Oxides in Auto Exhaust, by Basil Dimitriades. J. Air Pollution Control Assoc., v. 17, No. 4, April 1967, pp. 238-243. A new procedure for determining nitrogen oxides in automobile exhaust gas has been developed. The new procedure was included in a Bureau of Mines comprocedure was included in a Bureau of Mines com-parative study that aimed at evaluating four widely used methods for determining NO, in auto exhaust. The principal objective of this study was to generate experimental evidence that would lead to defining an optimum procedure for converting NO, present in exhaust gas, into NO₂; this conversion was de-sired so that the total of NO + NO₂ can be deter-mined quantitatively in the form of NO₂. The results indicated that all four methods are subject to error, the extent of which depends on the conditions emthe extent of which depends on the conditions em-ployed. The Bureau's own method was superior from the standpoint of accuracy because it was less affected by interferences due to hydrocarbon-NO, reactions.

OP 22-67. Infrared in Coal Structure Research, by R. A. Friedel. Ch. in Applied Infrared Spec-troscopy, ed. by D. N. Kendall. Reinhold Publishing Corp., New York, 1966, pp. 312-343. Discusses studies of coal structure by infrared spectroscopy and the information on coal structure to be obtained from investigation of coal, coal derivatives, and similar carbonaceous materials. Special techniques that are required are discussed in detail.

OP 23-67. Infra-red Luminescence (Fluorescence) and Reflectance of Cools, Coal Derivatives, and Graphite, by R. A. Friedel and H. Lou Gibson. Nature, v. 211, No. 5,047, July 23, 1966, pp. 404-405. Gives results of an investigation of the infrared luminescence and reflectance of coal, coal derivatives, and graphite. In general the highest infrared reflectances are observed for the weakest luminescing samples, and the strongest infrared luminescence is found for the weakest reflectors.

OP 24-67. Quantitative Application of C13 Nuclear Magnetic Resonance: C13 N.M.R. Signals in Coal Derivatives d Petroleum, by R. A. Friedel and H. L. Retcofsky. Chem. and Ind., Mar. 12, 1966, pp. 455-456. A re-cent investigation of the quantitative aspects of carbon-13 nuclear magnetic resonance spectrometry suggests that the detection and quantitative determination of aromatic carbon atoms by this direct method is feasible.

OP 25-67. Similar Compositions of Alkanes From Coal, Petroleum, Natural Gas, and Fischer-Trepsch Product, by R. A. Friedel and A. G. Sharkey, Jr. Coal Science. Adv. in Chem. Ser. 55, 1966, pp. 32-42. Possible interrelationships of natural substances are important. Similarities of the low-molecular-weight alkane isomers from crude oil and Fischer-Tropsch synthesis product have been reported. A similar composition for high-temperature composition has been found. The C. to Cr alkane isomers from these sources can be calculated quantitatively with equations developed for Fischer-Tropsch products. A reversal of the concentrations of the monomethyl isomers from Ca (2 Me>3 Me) to Cr (3Me>2 Me) occurs in all three products; comparisons at higher carbon numbers indicate some dissimilarities. Naphthene isomers for crude oil and high-temperature coal carbonization also have similar composition. Aliphatic hydrocarbons from low-temperature coal processes are considerably different. The C¹³ isotopic composition of pure compounds from the various sources are being compared in order to provide information on their origin.

OF 26-67. Effect of Saturation on Mobility of Low Liquid-Vapor Ratio Fluids, by Jerry D. Ham and C. Kenneth Ellerts. Soc. Petrol. Eng. J., v. 7, No. 1, March 1967, pp. 11-19. The effects of pressure, apparent velocity, flowing liquid-vapor volume ratio, and other related parameters on the mobility-saturation relationships for condensate-type fluids are described in this paper.

OP 27-57. Distribution of Gaseous Products from Laser Pyrolysis of Cools of Various Ranks, by F. S. Karn, R. A. Friedel, and A. G. Sharkey, Jr. Carbon, v. 5, 1967, pp. 25-32. Gaseous products from the laser irradiation of coals of various ranks were analyzed by mass spectrometry. Total gas yield varied inversely with coal rank, showing a fourfold increase between anthracite and lignite. The atomic C-H ratio for the gases was lower than for the corresponding coal. Yields of acetylene, hydrogen, carbon monoxide, and carbon dioxide generally increased between anthracite and lignite. Changes were most pronounced between anthracite and low-volatile bituminous coal. Liquid products were not detected. The infrared spectrum of the solid residue showed few of the characteristic coal bands.

OP 28-67. Infrared Analysis of Minerals in Coel Using the 650 to 200 cm⁻¹ Region, by Clarence Karr, Jr., Patricia A. Estep, and John J. Kovach. Chem. and Ind., v. 9, Mar. 4, 1967, pp. 356-357. A new approach to the identification of minerals in coal samples, namely, infrared analysis in the 650 to 200 cm⁻¹ (15 to 20 micron) region, has been found to have considerable usefulness as a rapid method of analysis.

OP 29-57. Orientation Dependence of Dislocation Damping in Magnesium Single Crystels, by R. R. Nothdurft and A. E. Schwaneke. J. Applied Physics, v. 38, No. 2, February 1967, pp. 894-895. The dislocation damping was measured in six single crystals of magnesium having angular orientations ranging from 10° to 84°. The results are in agreement with the Granato-Lücke theory of dislocation damping. OP 30-67. Materials Handling and Environmental Control Research, by Eugene R. Palowitch. Min. Cong. J., v. 53, No. 4, April 1967, pp. 42-47. Discusses the Bureau of Mines research projects in materials handling and environmental control, including methane control, mine water control, and bulk materials transport.

OP 31-67. Carbon-13 Magnetic Resonance of Diene-Iron Tricarbonyl Complexes, by H. L. Retcofsky, E. N. Frankel, and H. S. Gutowsky. J. Am. Chem. Soc., v. 88, June 1966, pp. 2710-2712. The C¹³ nuclear magnetic resonance spectra of butadiene-iron tricarbonyl and methyl octadecadienate-iron tricarbonyl were obtained to elucidate the structure of these complexes. The C¹³ coupling constants indicate that all of the C-H bonds in the butadiene complex are essentially sp² hybrids. This observation, the C¹³ and proton chemical shifts, the H-H coupling constants, and other data are consistent with a structure in which the bonding of Fe at C_{2.8} in the diene complexes is very similar to that in ferrocene, but in which the terminal CH₂ and CHR groups are rotated about the C₁-C₂ and C₂-C₂ bonds of the ligand. This steric distortion of the ligand from planarity makes the bonding of the Fe at C_{1.4} differ somewhat from that at C_{2.5}, but both instances involve π orbitals on the carbons.

OP 32-67. Proton and Carbon-13 NMR of Cool Derivatives and Other Carbonaceous Materials, by H. L. Retcofsky and R. A. Friedel. Coal Science. Adv. in Chem. Ser. 55, 1966, pp. 503-515. Complementary use of proton and carbon-13 nuclear magnetic resonance technique has been applied to studying the mean structural units present in coal derivatives and other carbonaceous materials. The method requires using quantitative data from both proton and C¹³ spectra. Although PMR intensity measuresments are known to be reliable, corresponding C¹³ measurements have been explored very little. Intensity-concentration calibration curves for a series of alkyl aromatics and hydro aromatic compounds suggest that quantitative C¹³ data can be used with reasonable assurance of accuracy. The technique has been applied to several coal derivatives and chemically reduced coal derivatives.

OP 33-67. 4-Indenet and 7-Indenel Structure Determination, by H. L. Retcofsky, J. Queiser, and R. A. Friedel. Chem. and Ind., Feb. 19, 1966, p. 340. Gives mass spectrometric and nuclear magnetic resonance data for 4- and 7-indenol.

OP 34-67. Gases From Flash and Laser Irradiation of Coal, by A. G. Sharkey, Jr., J. L. Shultz, and R. A. Friedel. Coal Science. Adv. in Chem. Ser. 55, 1966, pp. 643-649. Gases from the flash and laser irradiation of Pittsburgh seam (hvab) coal were investigated to determine the action of high temperatures on coal. Temperatures in excess of 1,000° C were reached with both types of irradiation. Craters about 300 microns in diameter were produced in the coal with millisecond pulses from the laser unit rated at 1.7 joules output. Gaseous products from the laser and flash irradiations showed 21 and 8 percent acetylene, respectively. Diacetylene, vinylacetylene, and other products to molecular weight 130 were indicated in the mass spectrum of the gas from the laser study. The results indicated that the distributions of products obtained from the flash and laser irradiation of coal were different from that produced in high-temperature carbonization.

OP 35-67. Mass Spectra of Pyralyzates of Several Aramatic Structures identified in Cool Extracts, by A. G. Sharkey, Jr., J. L. Shultz, and R. A. Friedel. Carbon, v. 4, 1966, pp. 365-374. Mass spectra of products from the liquid phase pyrolysis of 20 hydrocarbons having from one to four aromatic rings and molecular weights from 116 to 228 were investigated. By studying the pyrolyzates of several structural types found in the material extracted from Pittsburgh seam (hvab) coal with pyridine at room temperature, information related to the formation of heavy resi-dues such as coal tar was obtained. The amount of original material remaining after pyrolysis at 450 C for 4 hours was used to estimate the extent of thermal reactivity. Many of the molecular weights appearing in the mass spectra of the residues could be correlated with structures resulting from the recombination of radicals. The highest mass peaks in the spectra of the pyrolyzates of naphthalene, phenanthrene, and pyrene were 254, 354, and 402, re-spectively, corresponding to dehydrogenation dimers of these compounds. Thermal treatment of binary mixtures indicated extensive interaction of species derived from the original structures. The residue from the liquid-phase pyrolysis of a 1:1 mixture, by weight, of 9,10-dihydroanthracene and acenaphby weight, of 9,10-onlydroanthracene and acenaph-thylene indicated extensive interaction of species having three aromatic rings to produce species having up to seven condensed rings. Mass spectro-metric and other data have indicated that the major components in the liquid and solid product from the low-temperature carbonization of coal have mo-lecular weights below about 400. This can be explained if, on pyrolysis, most of the major structural types in the room-temperature extract of coal produce components resulting from the recombination of radicals.

8

.

OP 36-67. Gases From Laser Irradiation of Coal: Effect of Argon, Nitrogen, and Other Atmospheres, by J. L. Shultz and A. G. Sharkey, Jr. Carbon, v. 5, 1967, pp. 57-59. The distribution of gaseous prod-ucts from the laser irradiation of Pittsburgh seam (hvab) coal in various atmospheres was studied by mass spectrometry. The acetylene content of the gas was increased by the presence of argon and nitrogen and reduced by the presence of helium. The acetylene content of the gas reached a maximum at argon pressures of 80 to 400 torr.

OP 37-67. Project Gasbuggy, by Sam Smith and C. H. Atkinson. Midwest Eng., v. 19, No. 8, April 1967, pp. 9-11. Gives a brief history and review of the technical aspects of a project involving the firing of a 20-kiloton nuclear explosive underground to shatter natural gas-bearing rock to increase recovery.

ł OP 38-67. Vapor Pressures of Liquid Titanium and Liquid Iron, by R. K. Koch, W. E. Anable, F. D. Calvert, and R. A. Beall. Trans. Vacuum Met. Conf., 1 Am. Vacuum Soc., Boston, Mass., June 27-29, 1966, pp. 1-14. The Bureau of Mines determined the vapor 1 pressures of liquid iron and liquid titanium by the Langmuir method of free evaporation. An electronbeam furnace with a water-cooled copper hearth 1 was used for melting, and a two-color ratio pyrometer was employed to measure melt temperatures. The vapor pressure of liquid titanium for the range 1,953° to 2,193° K can be approximated by the

equation 10 940 lo

$$g p (atm) = 5.131 - \frac{15,860}{T}$$

and the vapor pressure of liquid iron in the range of 1,813° to 1,973° K can be represented by

og
$$p$$
 (atm) = 4.878 $-\frac{16,780}{T}$.

Third law determinations of heats of sublimation at 298.15° K gave mean values of 111.85 ± 1.72 kcal/mole and 99.23 \pm 1.66 kcal/mole for titanium and iron, respectively. These values are in reasonable agreement with previous determinations at lower temperatures for both metals.

OP 39-67. Vacuum-Induction Mehing of Reactive Metals in Water-Cooled Crucibles, by P. G. Clites. Trans. Vacuum Met. Conf., Am. Vacuum Soc., Bos-ton, Mass., June 27-29, 1966, pp. 183-194. A tech-nique for induction melting of reactive metals in water-cooled copper crucibles is described. This tech-nique differs from other cold-mold induction-melting techniques in that the crucible is not segmented. Ingots are formed by drip melting of a feed rod or by vibrating loose material into a molten pool at the top surface of the ingot. This molten pool is main-tained by exposing the upper surface of the ingot to the intense field of a current concentrator. Titanium ingots 2 inches in diameter and zirconium ingots 11/2 inches in diameter have been successfully produced. In addition buttons of a variety of reactive metals have been melted. The most encouraging aspect of the work has been the improvement in ingot quality with increased ingot diameter up to the limit im-posed by the 30-kilowatt radio frequency power supply used.

OF 40-67. Solid and Gassous Fuels, by R. F. Abernethy and J. G. Walters. Anal. Chem., Ann. Rev., v. 39, No. 5, April 1967, pp. 248R-260B. This two-part report is a technical literature survey of the improved and new methods of sampling and analyzing coal and coke and methods used for testing blast-furnace top, carbureted water, coal, coke-oven, liquefied petroleum, sludge, manufactured, natural, producer, synthesis, and water gases.

OP 41-67. An X-Rey Study of Carbon Blacks Produced From Cools, by James Bayer and Sabri Ergun. Carbon, v. 5, 1966, pp. 107-111. X-ray diffraction patterns of eight carbon blacks produced from coals have been studied. Layer diameters L_s , obtained from the (100) and (110) reflections ranged from 6 to 17 A, and the stack heights, $L_{.}$ derived from the (002) reflections, ranged from 12 to 14 A. The above values compare with 20 A and 14 A, respec-tively, obtained from the diffraction patterns of a commercial black (Polletor). It appears that coal commercial black (Pelletex). It appears that coal blacks are structurally similar to well-known commercial blacks.

OP 42-67. Nomograph far the Density of Powder Compacts, by Robert Blickensderfer. Am Ceram. Soc. Bull., v. 46, No. 5, May 1967, p. 1. Presents a nomograph that gives relations among the cross sectional area, density, mass, length, and percent density of a powder compact. It is especially useful for relating the length of a compact to its percent for relating the length of a compact to its percent density during the progress of hot pressing.

OP 43-67. Water Use in the Mineral Industry, by Alvin Kaufman. Trans. SME, March 1967, pp. 83-90. More than 3 trillion gallons of water are used annually by the mineral industry. Of this, approximately 2.5 trillion gallons are recirculated, the rest constituting intake water. The major users are natural gas processing plants and phosphate rock, sand and gravel, and iron ore producers. Water was used by the mineral industry for mining (6 percent), processing (64 percent), cooling and condensing (27 percent), and miscellaneous uses such as boiler feed and sanitary purposes (3 percent). Whereas total water use is dependent on the quantity of material processed and on the particular requirements of an industry, recirculation is dependent on processing, as well as cooling and condensing requirements, quality of new water intake, and the necessity for treating new and discharged water. Consumed water, on the other hand, is dependent on the quantity of water recirculated, and temperature and humidity in the area. Based on this analysis, an increase in water use by the mineral industry of 2.5 times by 1985 is forecast. Water intake, however, will rise only 62 percent, because of a substantial increase in recirculation.

OP 44-67. Let's Not Overleck Scivage, by C. B. Kenahan and P. M. Sullivan. APWA Reporter, v. 34, No. 3, March 1967, pp. 5-8. Gives data on the compositions of the residues from five incinerators in metropolitan Washington, D.C.

OP 45-67. Hydrogenolysis—An Identification Tool, by C. J. Thompson, H. J. Coleman, R. L. Hopkins, and H. T. Rall. J. Gas Chromatography, v. 5, January 1967, pp. 1-10. The development of equipment and techniques that permit application of Sabatier's classical discoveries in vapor-phase hydrogenation to micro samples was accomplished 6 years ago in the Bureau of Mines laboratories. Since then many improvements in the procedure have been made, and identifications of sulfur compounds in petroleum, previously thought impossible with the quantities of materials available, are now being made routinely. This technique rapidly and quantitatively removes the sulfur atom from organic sulfur compounds to produce parafins or cycloparafins. Identification of the produced hydrocarbon identifies or contributes to the identification of the precursor. The technique is direct, applicable to extremely small samples (5 × 10^{-a} ml), and requires no costly apparatus. The method also has been applied successfully to halogen-, oxygen-, nitrogen-containing compounds. In addition it has been applied, with success, to the removal of other hetero atoms such as phosphorus, silicon, and metals. Only a few anomalies have been found, principally in the deoxygenation reaction. The basic technique, with recent improvements, permits structure characterization that would be difficult or impossible by any other procedure.

OF 46-67. The Role of Vaporization in High Percentage Oil Recovery by Pressure Maintenance, by Alton B. Cook, F. Sam Johnson, George B. Spencer, and Abdo F. Bayazeed. J. Petrol. Technol., v. 19, No. 2, February 1967, pp. 245-250. A limited number of laboratory experiments have been performed with a rotating model oil reservoir that simulates gas cycling operations and allows a separation of the oil from the free gas flowing into the laboratory well-bore at reservoir conditions, thus revealing which is displaced and which is vaporized oil. In these experiments recovery by vaporization ranged from 15.3 to 73.6 percent of the immobile oil. (Presented at California Regional Meeting Soc. Pet. Eng. AIME, Santa Barbara, Calif., Nov. 17-18, 1966, Preprint SPE 1646.)

OP 47-67. Chromium, Molybdenum, Nickel, and Tungsten as Automotive Metals, by Charles W. Merrill.

Auto Eng. Congr., Detroit, Mich., Jan. 9-13, 1967, SAE Preprint 670121, 4 pp. These four metals, so important to automotive manufacture, currently are in ample supply. Their availability is well supported by world resources and reserves. There are some hazards from hostilities denying access to remote sources or from political factors hindering efficient mining and transport from some producing countries. Future demand can be expected to grow with an increase in the number of motor vehicles produced, but this trend should be countered by their more efficient use. Chromium, molybdenum, nickel, and tungsten are among the more expensive raw materials consumed in automobile manufacture and as such will be a target for redesign by automotive engineers. On the other hand, greater quantities may be needed with refinement in vehicle design.

OP 48-67. Flyesh: Now Hope for Strip Speil, by Carl F. Engle and John P. Capp. Science, West Virginia University Agricultural Experiment Station Bull. 544, Winter 1967, pp. 1-4. Describes studies in the use of fly ash as a soil additive and conditioner for reclaiming acid surface mined areas. Only a small portion of the fly ash produced is utilized at present, so that reclamation of spoil areas with fly ash would provide a way for the landowner, surface mine operator, and coal-burning powerplant operator to cooperate in waste disposal and land beautification to the benefit of all.

OP 49-67. Project Gasbuggy, by Harry Gevertz, R. F. Lemon, W. T. Hollis, M. A. Lekas, Don C. Ward, Charles H. Atkinson, and Norman Bonner. El Paso Natural Gas Co., May 14, 1965, 57 pp. A report on the feasibility of using nuclear explosives for the stimulation of a natural gas reservoir by generating extensive fracturing within the producing formation. The report describes the beneficial effects of such a nuclear explosion as (1) a network of radiating fractures that will permit more effective drainage; (2) an expanded wellbore allowing higher rates of production; and (3) an effective storage volume for short-term high deliverability.

OP 50-67. Line Branice Ventilation, by R. W. Dalzell. Proc. 54th Convention, Mine Inspection Institute of America, June 15-17, 1964, pp. 78-84. This paper reviews the important factors in operation of line brattice constructed with common jute cloth. The line brattice system of ventilation, properly constructed and applied, is an efficient and economic method of delivering adequate air to the face area.

OP 51-67. Ultrafine Structures in Coal Components as Revealed by Electron Microscopy, by J. T. Mc-Cartney, H. J. O'Donnell, and S. Ergun. Coal Science. Adv. in Chem. Ser. 55, 1966, pp. 261-273. Electron microscopic studies have been made of several petrologic components of coals of different ranks. The ultrathin specimens utilized, from 500 to 2,000 A thick, have been cut on microtome with diamond knives. Structures in various size ranges have been observed. Some that have been resolved with optical microscopes have been more clearly and definitely characterized using the electron microscope. Ultrafine structures not resolvable optically have been revealed in electron micrographs. There appear to be two general ranges of these ultrafine structures in a numbers of components, one of the order of hundreds of angstroms, the other less than 100 angstroms. Particles having the general form of spheroids, curved cylinders, and round and polygonal platelets have been observed.

OF 52-67. Reactions of Carbon With Carbon Dioxide and Steam, by Sabri Ergun and Morris Mentser. Chemistry and Physics of Carbon, ed. by P. L.)

)

)

Walker, Jr. Marcel Dekker, Inc., New York, 1965, pp. 203-263. The studies reported here primarily concern the derivation of reaction sequences when carbons are gasified with steam or carbon dioxide. Based on the reaction sequences, rate equations were developed so that the postulated sequences could be more critically examined under a wide range of experimental conditions. The reacation sequence outlined accounts well for the reactions of carbon and coke with carbon dioxide and of coke with steam under diverse experimental conditions.

OP 53-67. Evaluation of a Demountable X-Ray Tube Vacuum Spectrograph for the Determination of Low-Atomic-Number Elements, by John W. Thatcher and William J. Campbell. Advances in X-Ray Analysis, v. 7, 1964, pp. 512-522. The fluorescent excitation of longwavelength X-ray spectra is reviewed with respect to X-ray tube target element, inherent filtration, and optimum kilovoltage. A demountable X-ray tube vacuum spectrograph designed for the determination of the light elements is described. Operation of this instrument with both secondary and combined primary-secondary excitation is evaluated. Examples from the literature are cited to show the feasibility of direct electron excitation of long-wavelength spectra.

.

1

1

1

OP 54-67. Fire and Explosion Hazards at Temperature and Pressure Extremes, by Michael G. Zabetakis. Proc. Symp. on Chemical Engineering Under Extreme Conditions. AIChH-Inst. Chem. Eng. Meeting, London, 1965, v. 2, pp. 2:99-2:104. A number of general trends are reviewed and specific data are given on the effects of temperature and pressure on the ignition energy requirements and on the limits of flammability of various flammable materials. Specific data are given on the effect of pressure on the minimum oxygen requirements for flame propagation through parafin hydrocarbons in nitrogen-air atmospheres and on the minimum autoignition temperature of various fuels and lubricants. These data and others are used to develop a number of empirical rules that have been found useful in predicting the behavior of flammable gases and vapors over a wide range of temperatures and pressures.

OP 55-67. A Cost Comparison: Production of Prereduced Versus Iron Ore Pellets, by N. Bernstein, J. L. Reuss, and P. L. Woolf. J. Metals, v. 18, No. 5, May 1966, pp. 652-656. Gives a projection of cost estimates of the production and smelting of prereduced pellets, regular iron ore pellets, and a mixture of the two. Full commercial-size prereduced pellet production and smelting facilities were extrapolated, in part, from experimental data, the pellet plant being designed to yield 2 million long tons of product annually. The blast furnaces are considered as existing facilities that yield approximately 1 million net tons of hot metal each from an oxide pellet burden. Estimates and assumptions are considered reasonable for the Mesabi range and lower Lake steel centers, but it must be emphasized that each situation in practice would differ as to raw materials, transportation, desired production capacities, and individual operational features.

 OP 56-67. Ignition of Tank Atmospheres During Fuel Loading, by Israel Liebman, Irving Spolan, J. M. Kuchta, and M. G. Zabetakis. Proc. API, v. 45 (III), 1965, pp. 217-230. An investigation was made to determine the formation, persistence, and ignition energy requirements of flammable zones which occur in the vapor space of fuel tanks during fuel loading. These flammability studies were made using JP-4, gasoline, and kerosine fuels which were loaded into a 2.4-cubic-foot cylindrical tank or a 22.5-cubic-foot simulated aircraft wing tank. The extent and duration of flammable zones was found to be dependent on fuel vapor pressure, temperature, flow rate, fuel inlet, and tank dimensions.

OP 57-67. Considerations of Solvent Extraction Processing of U.S. Berylium Ores, by J. B. Rosenbaum, R. O. Dannenberg, and D'Arcy R. George. In Solvent Extractions Chemistry of Metals, Proc. Internat. Conf., UKAEA, 1965, pp. 315-325. Report deals with laboratory studies on the selection and adjustment of parameters for organophosphate solvent extraction of beryllium from leach liquors of widely varying beryllium concentration. The liquors are prepared by sulfuric acid leaching of ore from Spor Mountain, Utah, or of a lime sinter of flotation concentrates from Mount Wheeler, Nev., ores. Feed solutions differ markedly in beryllium concentration with a consequent variation in the ratio of beryllium to other components such as chloride, fluoride, magnesium, aluminum, iron, zinc, and manganese. Operating parameters and peripheral procedures for rejecting various contaminating elements are described. Modifications required to attain high beryllium extraction from 1 M beryllium sulfate solutions as opposed to 0.1 M solutions are also described. Applications of the results of preliminary investigations to countercurrent extraction is shown to result in 98-percent extraction of the beryllium as a beryllium paduet which assays over 98 percent BeO.

OP 58-67. Space Age Metels, by J. B. Rosenbaum and J. H. Bilbrey, Jr. Mining Cong. J., v. 52, No. 2, February 1966, pp. 153-159. Discovery of new uses for familiar metals has been greatly accelerated by requirements of the space age. This has also brought about development of new metals and alloys, expanded our resource base, and resulted in better processing methods. Properties of some metals and alloys are reviewed, including maraging steel, aluminum, titanium, beryllium, and refractory metals.

OP 59-67. The Occurrence of Germanium in Willemite, by Herman W. Sheffer. Cheochim. et Cosmochim. Acta, v. 30, No. 8, August 1966, pp. 837-838. Appreciable quantities of germanium, ranging from 47 to 350 ppm, have been found in crystals of willemite from several localities in New Mexico and Utah.

OF 60-67. See OP 129-67,

OP 61-67. The Role of Urethane Foam in Mines, by Donald W. Mitchell and Edwin M. Murphy. Proc. Coal Min. Inst. of America, Pittsburgh, Pa., Dec. 10, 1965, pp. 126-130; Coal Age, v. 71, No. 3, March 1966, pp. 72-74. Experiences in operating mines with urethane foam are described. Precautions to be taken in the use of foam in underground mines are reviewed. These precautionary measures are based on full-scale tests conducted in the Bureau of Mines Experimental Coal Mine.

OP 62-67. Coking Practice in the United States Compared With Some Western European Practices, by J. D. Doherty and J. A. DeCarlo. Internat. Cong., Coke in Iron and Steel Ind., Charleroi, Belgium, v. 1, September 1966, pp. 185-200. The operations of coke plants in the United States are reviewed briefly and compared with coke-plant practice in certain countries of Western Europe.

OP 63-67. High-BTU Gas Via Fluid-Bed Gasification of Caking Coal and Catalytic Methanation, by J. H. Field and A. J. Forney. Proc. Synthetic Pipeline Gas Symp., November 1966, pp. 83-94. A combined freefall, fluid-bed gasifier is described which will operate with caking coals. The gases from this gasifier, after purification, are sent to either a hot-gas-recycle or a tube-wall methanator to produce high-Btu gas which is interchangeable with natural gas.

OF 64-67. Problems in Evaluating Marine Mineral Resources, by Thomas E. Howard and John W. Padan. Min. Eng., v. 18, No. 6, June 1966, pp. 57-61. Discusses the problems that would be encountered in determining mineral content and distribution of marine deposits, in designing equipment for marine mining systems, and in estimating operating costs of equipment. Research is still required on every aspect of undersea mining.

OP 65-67. Experience With Roof Bolts Anchored With a Resin Cartridge, by John A. McCormick. Proc. Coal Mining Inst. of Am., 79th Annual Rept., 1965, pp. 120-126. The Bureau of Mines is currently testing resin-type grouts for anchoring roof bolts. Although there is relatively little difference between the anchorages obtained with the resin cartridges and conventional expansion shells in firm shale roof, there was a marked difference when the roof was composed of soft shale and/or coal. The loads supported by the resin anchorages ranged from 24,600 pounds to at least 32,000 pounds with negligible bolt displacement, whereas the conventional anchorges were erratic and in many cases were not capable of supporting loads up to the 14,000-pound yield point of the %-inch-diameter bolts. Resin-anchored bolts probably would be of help in maintaining roof stability in many mines.

OF 66-67. Froblems facing the North American Iron Ore Industry, by Horace T. Reno and Francis E. Brantley. Proc. 27th Mining Symp. and 39th Ann. Meeting Minnesota Sec. AIME, Jan. 10-12, 1966, pp. 1-7; Skillings' Min. Rev., v. 55, No. 6, Feb. 5, 1966, pp. 6-7, 22-23; Northern Miner, No. 5, Apr. 28, 1966, pp. 20-28. The iron mining industry of North America is faced with three general types of problems. These involve operations, administration, and competition. Of these, competition is perhaps of greatest concern to most companies. Free trade in iron ore has resulted in intense exploration in all geographical areas and in increased activity by the iron ore producing countries to take their share of present and future world trade. In addition technological developments involving all phases of iron ore production and transportation have brought about sweeping changes during the past decade. Vast resources and proven reserves of high-grade iron deposits in South America, Australia, and Africa are expected to make an impact on the world iron market in the next few years. Problems of adjusting to these changes and the necessity of constantly seeing methods of increasing the quality of the lower grade ores at minimum cost must be met by the iron ore industry on this continent.

Operations, as such, are not discussed, but some of the administrative problems peculiar to management are outlined. In particular, problems relating to inventories, seasonal production, fluctuations in ore demand, tariff barriers, taxes, and labor problems are mentioned in relation to their individual effect on the industry.

OP 67-67. Nucleor Blassing and its Potential for Stripping Overburden, by Paul L. Russell. Proc. 27th Mining Symp. and 39th Ann. Meeting Minnesota Sec. AIME, Jan. 10-12, 1966, pp. 145-151. Nuclear cratering experiments have demonstrated the ability of nuclear explosives to move vast volumes of earth and rock. Their compact size for very high energy yields permits emplacement at less cost than equal energy yields of chemical explosives. Phenomenology of nuclear cratering and possible application to overburden removal for open-pit mining are discussed. Limitations and hazards are considered. All cratering explosions result in the release of radioactivity to the atmosphere; however, this release is generally small compared with that of above-ground explosions of similar yield. Most of this radioactivity falls out locally and, unlike above-ground detonations, only a very small quantity is believed to enter the worldwide fallout system. Extensive research on reduction in radioactive contamination indicates that current technology is such that cratering tests in selected areas should not significantly raise radiation levels beyond our borders and therefore should present no danger.

OP 68-67. Electrorefining Vanadium, by T. A. Sullivan. J. Metals, v. 17, January 1965, pp. 45-48. High-purity metal containing over 99.95 percent vanadium was prepared by electrorefining commercial calcium-reduced vanadium in both molten bromide and chloride electrolytes. The technical feasibility of refining vanadium products containing as low as 80 percent V to produce ductile metal was demonstrated. Laboratory production tests were successful in preparing ductile 99.6 percent V by refining 90percent-grade vanadium in molten-salt electrolytes. These tests indicate substantial advantages in the preparation of vanadium by (1) lowering the cost of ductile vanadium and (2) controlling the quality of the metal.

OP 69-67. Electrolytic Preparation of Metal Phosphides, by Don H. Baker, Jr. Trans. Met Soc. AIME, May 1967, pp. 755-756. Describes the moltensalt electrolytic preparation of manganese phosphide, titanium phosphide, and chromium phosphide. Some physical-chemical properties for these compounds, such as melting point, specific gravity, and resistivity, are reported.

OP 70-67. The Application of 2.8-MeV (D,d) Neutrons to Activation Analysis, by K. G. Broadhead and D. E. Shanks. Internat. J. Appl. Radiation and Isotopes, v. 18, 1967, pp. 279-283. The application of 2.8-MeV neutrons produced by the $H^2(d, n)$ He³ reaction in a neutron generator is presented. These neutrons, though not energetic enough to produce the usual fast neutron reactions, do induce usable $(n, n' \gamma)$ reactions. Cross sections are presented for thirteen elements most amenable to this reaction, Examples are given of the analysis of bromine, yttrium, and barium in complex matrices to illustrate potential uses in activation analysis.

OP 71-67. A Probability Model for the Random Component in Bulk Sampling, by Robert M. Becker. Seminar on Sampling of Bulk Materials, Tokyo, Japan, Nov. 15-18, 1965, pp. 53-95. The development of a probability model for the random component in bulk sampling is outlined and is shown to be acceptable experimentally. The model is based on the probabilities of equally likely items and is applicable to the sampling of a well-mixed aggregate. It is not valid when the probability of selection of items is a function of, say, position or time as well as random variables. Thus, it is applicable only to the random component in the bulk sampling of a segregated product. The probability functions for sampling to some number of equally likely items per sample (the ł

٤

١

٤

binomial, hypergeometric, multinomial, and generalized hypergeometric functions) are reviewed. Their distributions are generalized to include some attribute or measured characteristic of the items. Several moments and moment relationships are also reviewed. The development of probability functions for sampling to some amount (i.e., weight) of equally likely items per sample (those here called the compound binomial and compound multinomial functions) is outlined. Their distribution may also be generalized to include some measured characteristic of the items, and distribution moments and moment relationships have been developed. Particle mixtures were sampled in the laboratory to determine whether the probability functions developed for bulk sampling were in agreement with experimental results. The complete agreement between model and experiment seems to confirm the application of the compound multinomial function to bulk sampling.

OP 72-67. New Devices Subjuggte Evosive Methane Gas, by C. L. Brown. Coal Min. and Processing, v. 3, No. 11, November 1966, pp. 20-24. Mechanization of coal mining has created new problems in face ventilation and methane detection. The higher rates of coal extraction expose gas-liberating surfaces more rapidly, and continuous mining machines have increased in size, thereby reducing the available space for the flow of ventilating air to the working face. The article describes the progress of the Bureau of Mines methane-monitoring research

and development program.

•

1

1

1

ŧ

1

١

1

OP 73-67. Technology and Economics of Fly Ash Utilization, by John P. Capp and John H. Faber. Ann. Meeting AIME, Feb. 27-Mar. 3, 1966, New York, Preprint 66F81, 19 pp. Fly ash was converted into a lightweight aggregate suitable for concrete blocks and masonry products that meet ASTM standards. The Bureau of Mines also investigated the use of fiy ash as a soil conditioner and source of trace nutrients, such as boron, for plants. Sintered fly ash was being studied for this application because sintering eliminates certain objectionable characteristics of raw fly ash. Raw fly ash was tested as a soil neutralizer for highly acid spoils.

OP 74-67. Effect of Temperature on Upper Flammability Limits of Hydrocarbon Fuel Vapors in Air, by R. J. Cato, W. H. Gilbert, and J. M. Kuchta. Fire Technol., v. 3, No. 1, February 1967, pp. 14-19. Data are given on the effect of temperature on the upper flammability limits of fuel vapor-air mixtures of various members of the paraffin hydrocarbon series and for a hydrocarbon jet fuel, JP-6.

OP 75-67. lodide Abundonce in Oilfield Brines in Oklahema, by A. Gene Collins and G. C. Egleson. Science, v. 156, No. 3777, May 19, 1967, pp. 934-935. Samples of subsurface water, oil, and rock from strata of Mississippian and Pennsylvanian age in the Northern Oklahoma Platform area were analyzed. Several of the water samples contained iodide at more than 500 parts per million. Analyses of the brines and rock indicated that the iodide originated organically.

OP 76-67. Inverse GLC-An Extension of the Technique to the Study of the Oxidation of Asphalts, by T. C. Lavis and J. C. Peterson. Highway Res. Record, No. 134, 1966, pp. 1-7. An extension of the inverse gas liquid chromatography (GLC) technique to the study of the oxidation of asphalts is reported. An asphalt, serving as the liquid substrate in a gas

liquid chromatographic column, is oxidized directly within the chromatograph. The retention behavior of a group of selected test compounds possessing different functional groups is determined before and after oxidation. Because the retention behavior is dependent on interactions between the functional groups of the test compound and chemical functionalities in the asphalt, the changes occurring in the asphalt on oxidation are reflected as changes in retention behavior. Inverse GLC was found to be a sensitive means of detecting changes that take place on oxidation and holds promise as a method of predicting asphalt durability.

OP 77-67. Bureau of Mines Blassing Research, by Dennis V. D'Andrea. Proc. 27th Ann. Min. Symp., University of Minnesota, January 1966, p. 171. Bureau of Mines blasting research projects are summarized.

OP 78-67. Cesium Extractive Metallurgy-Ore to Metal, by K. C. Dean, I. L. Nichols, and B. H. Clemons. J. Metals, v. 19, No. 11, November 1966, pp. 1198-1202. A general synopsis of the Bureau of Mines cesium research is provided, including the development of a field test for cesium and rubidium, ore beneficiation, ore dissolution, purification of leach liquors to produce pure salts, and metallothermic reduction of ores and pure salts. Cost evaluations of selected methods were made.

OP 79-67. A Brief Résumé: The U.S. Helium Conservation Program, by William M. Deaton. Proc. Gas Conditioning Conf., University of Oklahoma, April 1966, pp. G-1 through G-6; Cryogenic Eng. News, v. 1, No. 9, July 1966, pp. 20-22. This article presents a brief history of the Helium Act, examines program facilities, and looks at the current status of the helium conservation program.

OP 80-67. A Modified Redlich-Kwong Equation for Hellum from 30° to 1,473° K, by J. M. Estes and P. C. Tully. AIChE J., v. 13, No. 1, January 1967, pp. 192-194. The original Redlich-Kwong equation is modified for helium by setting $B = 0.06372T_{*}/P_{*}T$ for $30^{\circ} \le T \le 1,173^{\circ}$ K. This modified equation represents the compressibility factors of each of 76 isotherms tested in this temperature range to less than 1-percent average deviation.

OP 81-57. Reservoir Investigations, Cooper Sand, Fork Run Area, Ludlow Field, Wetmore Township, McKean County, Pa., by Donald M. Evans. Producers Monthly, v. 31, No. 5, May 1967, pp. 18-20. A 3½-inchdiameter rotary core of the Cooper sand was obtained by the Bureau of Mines from the Pennsylvania Gas Co. well 16, located in Allegheny National Forest Tract 432, Ludlow oilfield, Wetmore Township, McKean County, Pa. Well logs were run to supplement the core information. Geology, lease history, geophysical logs, coring and logging data, and core analysis are presented.

OP 82-67. Phase Relations in the ZrOr-MgO System, by Clark F. Grain. J. Am. Ceram. Soc., v. 50, No. 6, June 1967, pp. 228-290. Phase relations were studied in the system ZrOr-MgO with emphasis on the range 1,350° to 1,600° C. A phase relation was determined from samples, using precision lattice parameters, X-ray diffraction line intensities, and petrographic observations of the phases present during high-temperature X-ray diffraction techniques. Limits were established for the solubility of MgO in tetragonal ZrO, and for the range of the cubic solid solution. The phase relations below 1,240° C were complicated by hysteresis in the monoclinic to tetragonal inversion of ZrO₂.

OP 83-67. Gas Chromatographic Separations of Benzenecarboxylic Acids Derived from Cool, by Marvin L. Kaufman, Sidney Friedman, and Irving Wender. Anal. Chem., v. 39, No. 8, July 1967, pp. 1011-1014. A procedure for analyzing benzene polycarboxylic acids by gas chromatography of their trimethsilyl ethers has been developed. It has been applied to mixtures obtained by partial decarboxylation of acids obtained by oxidation of coal.

OP 84-67. Iron Ore Flotation: Practice, Problems, and Prospects, by Donald W. Frommer. J. Am. Oil Chem. Soc., v. 44, No. 4, October 1966, pp. 270-274. Iron ore flotation is examined in context of present commercial practices and of factors tending to restrict application. Prospects for growth in flotation processing of iron ores is shown to be related to increasing demand for higher grade concentrates.

OP 85-67. Mainland Chine, by Edgar J. Gealy and Anton W. T. Wei. Min. J. Mining, Ann. Rev., 1967, pp. 270-273. Mainland China's mineral industry apparently made considerable progress in 1966 in spite of internal political problems. Increases in production were registered at least in such major mineral commodities as iron and steel, coal, petroleum, chemical fertilizers, and construction materials.

OP 84-67. Recovery of Uranium From Uranium Mine Weters and Copper Ore Leaching Solutions, by D. R. George and J. R. Ross. Proc. Panel on Processing of Low-Grade Uranium Ores, Vienna, June 27-July 1, 1966. International Atomic Energy Agency, Vienna, Austria, 1967, pp. 227-234. Waters pumped from uranium mines in New Mexico are processed by ion exchange to recover uranium. Production is approximately 200 pounds per day of UsOs from waters containing 5 to 15 parts per million of UsOs. Recoveries range from 80 to 90 percent. Processing plants are described. Uranium has been found in the solutions resulting from the leaching of copper-bearing waste rock at most of the major copper mines in the Western United States. These solutions, which are processed on a very large scale for the recovery of copper, contain 2 to 12 ppm UsOs. Currently, uranium is not being recovered, but a potential production of up to 6,000 pounds per day is indicated. Ion exchange and solvent extraction research studies are indicated.

OP 87-67. Comparison of Ash Fouling Tendencies of Highand Law-Sodium Lignite From a North Daketa Mine, by G. H. Gronhovd, R. J. Wagner, and A. J. Wittmaier. Proc. Am. Power Conf., v. 28, 1966, pp. 632-644. This report describes the results of a series of tests performed to study the effect of sodium content of the lignite on boiler fouling. The rate of fouling, as determined both by boiler performance and by probe tests, is much greater when burning lignite having 8 to 10 percent sodium oxide in the ash com-

pared with burning lignite having less than 2 percent sodium oxide in the ash. OP 88-67. [The Promise and Challenge for Mineral Industries

OP 88-67. [The Promise and Challenge for Mineral Industries in Urban America], by Walter R. Hibbard, Jr. Pit and Quarry, v. 59, No. 4, October 1966, pp. 274-275. Approximately two-thirds of the value of U.S. nonfuel mineral production are represented by nonmetallic minerals, and about two-thirds of that value, in turn, are represented by the three biggest nonmetallic commodities: cement, stone, and sand and gravel. The demand for these commodities will continue to rise and the Bureau of Mines has been doing research on the problems involved.

OP 89-67. The Hydrogasification of Raw Bitumineus Coal, Raymond W. Hiteshue. Proc. Synthetic Pipeline Gas Symp., Nov. 15, 1966, Pittsburgh, Pa., 1967, pp. 13-23. Highlights of laboratory results are presented together with a theoretical economic analysis of coal to high-Btu gas processes.

1

Ē

í

D

ŧ

D

1

D

Ľ

₽

OP 90-67. Carbon Black Produced From Coal, by G. E. Johnson, W. A. Decker, A. J. Forney, and J. H. Field. Rubber World, v. 156, No. 3, June 1967, pp. 63-68. Carbon black has been produced from the pyrolysis of bituminous coal at 1,250° C in various inert and reactive gaseous atmospheres. Testing of the carbon black in rubber formulations showed it to be similar to commercial products.

OP 91-67. Control of Coel Seem Fires, by Leslie Johnson. Coal, v. 11, May-June 1966, pp. 6-10, 17. The Bureau of Mines is responsible for control of fires in coal deposits. The methods of controlling such fires are described, as well as the procedure for letting contracts for coal seam fire control.

OF 92-67. The Bureau's Ferrous Research as it Affects the U.S. Iron Ore Mining Industry, by Norwood B. Melcher. Proc. Ann. Meeting, Am. Iron Ore Assoc., June 29-30, 1966, Cleveland, Ohio, V-1 through V-10, pp. 53-62. The research of the Bureau of Mines as it relates to iron ore dates back more than 40 years. The research programs have included work on sponge iron, experimental blast furnace smelting tests, iron ore flotation, magnetic roasting techniques, iron ore pelletizing, and fuel injection.

OP 93-67. Progress Report on the Production of Pipeline Gas From Coal, by Sidney Katell. AGA Production Conf., May 23.24, 1966, Baltimore, Md., pp. 328-331. A review is made of progress in producing pipeline gas from coal, the expenditure involved, and the companies participating.

OP 94-67. Some Comments on the Distribution of Gold in a Part of the City Deep Mine, Central Witwetererand, South Africe, by G. S. Koch, Jr., and R. F. Link. Proc. Symp. on Mathematical Statistics and Computer Applications in Ore Valuation, Johannesburg, March 1966. South African Institute of Mining and Metallurgy, Johannesburg, pp. 173-189. A statistical analysis of assay data from development and stope samples taken in a 1,000-foot-square block of ground in the City Deep mine, Central Witwatersrand, South Africa, is presented. The work was done by the use of statistical methods implemented by electronic computers that have proved effective in the analysis of assay data from North American ore deposits. The irregularity of the City Deep data is demonstrated, the sources of variation in the data are considered, and a mining strategy is suggested.

OP 95-67. Thermel Oxidation of n-Octane Vaper-Oxygen-Nitrogen Mixtures at Reduced Pressures, by J. M. Kuchta and G. H. Martindill. Combustion and Flame, v. 11, No. 3, June 1967, pp. 212-216. The slow oxidation of n-octane vapor-oxygen-nitrogen mixtures was investigated at reduced pressures and at temperatures up to where rapid reactions or "cool" flames may occur. At 250° C the rates of pressure rise were more dependent upon total pressure than upon the fuel and oxygen concentrations. The critical pressure for rapid reaction (abrupt pressure rise) decreased with increasing temperature, fuel concentration, and vessel radius. However, above approximately 290° C, abrupt pressure rises were not obtained and the reaction changed to a less temperature- and pressure-dependent process. The rate data were partly consistent with those predicted from thermal ignition considerations.

OP 96-67. Recovering Oil by Retorting a Nuclear Chimney in Oil Shale, by D. B. Lombard and H. C. Carpenter. J. Petrol. Technol., v. 19, No. 6, June 1967, pp. 727-734. A method is proposed for recover-ing oil by retorting oil shale shattered by deep under-ground nuclear explosions. Because most of the oil will be betained from churche oil shale with will be obtained from chunks of oil shale with maximum dimensions exceeding 1 foot, retorting times of up to several weeks are needed for complete recovery. A study of the heat economy of the retorting process in an undrground nuclear chimney suggests that the nuclear detonation itself and the subsequent con-trolled combustion of residual carbon in retorted oil shale will provide ample energy. The proposed method is shown to be thermally efficient. A 5-footdiameter, 12-foot-high aboveground batch retort has been constructed for the experimental retorting of mixtures of oil shale particle sizes. Low rates of air and recycle gas, low retorting temperatures, and slow combustion front advance have characterized its operation. In spite of imperfect mist-separating equipment, recoveries of about 60 percent of Fischer assay have been obtained. The particle size distri-bution of 30 gallons per ton of oil shale has not been appreciably altered by the retorting. The operating conditions of a nuclear chimney retort will be defined by the recycle gas-to-air ratio and the overall rate of gas injection. Determination of optimum oper-ating conditions will be complicated by the large number of factors involved. However, the proposed technique appears to be a promising one for recovering the oil from thick, deep oil-shale deposits.

OP 97-67. Trends in Froth Flotation-Reagent Use and Preduct Recovery, by Charles W. Merrill and James W. Pennington. Min. Cong. J., v. 52, No. 11, November 1966, pp. 24-26, 28, 30-31. The employment of froth flotation in the treatment of domestic minerals continued to expand rapidly in 1965. The number of plants reported to be operating in 1965, compared with plants operating in 1960, increased by over 30 percent; the tonnage of material treated increased more than 40 percent; the quantity of reagents consumed increased nearly 50 percent; and the quantity of concentrates recovered increased by 80 percent. Copper, copper-molybdenum, and molybdenum ores, phosphate rock, and potash were the leading materials treated. Spectacular percentage increases were recorded for iron ore and bituminous coal.

OP 98-67. Low-Temperature Thermel Data for n-Fentane, n-Heptadecane, and n-Octadecane. Revised Thermodynamic Functions for the n-Alkanes, Cr-C10, by J. F. Messerly, G. B. Guthrie, S. S. Todd, and H. L. Finke. J. Chem. and Eng. Data, v. 12, No. 3, July 1967, pp. 338-346. From experimental heat capacity data, thermodynamic functions for the n-alkanes, Cr-C10, in the liquid state were calculated for selected temperatures from 10° to 380° K.

ī

ł

3

I

.

OP 99-67. Cyclohexanethiol and 2,4-Dimethyl-3-Thiapentane: Low-Temperature Thermal Properties, by John F. Messerly, Samuel S. Todd, and George B. Guthrie, Jr. J. Chem. and Eng. Data, v. 12, No. 3, July 1967, pp. 426-430. From experimental heat capacity data, the thermodynamic functions of cyclohexanethiol and 2,4-dimethyl-3-thiapentane in the liquid state were calculated for selected temperatures from 10° to 370° K.

OP 100-67. Phase Equilibria in the System GeOrAlsO, by John L. Miller, George R. McCormick, and Sarkis G. Ampian. J. Am. Ceram. Soc., v. 50, No. 5, May 1967, pp. 268-269. This note presents the results of a study of the system GeOrAlsO, phase diagram.

OP 101-67. Evaluation of Materials for Ventilation Structures, by Edward W. Kawenski and Donald W. Mitchell. Min. Cong. J., v. 52, No. 3, March 1966, pp. 49-63. To assist in the design of effective ventilation systems, various materials and methods used in construction of stoppings were studied in the Bureau's Experimental Coal Mine. Air leakage tests were made on new and deformed stoppings, and the resistance of stoppings to pressure pulses, shock waves, and simulated ground movement was investigated.

CP 102-67. Sentinels of Safety Awards, by Forest T. Moyer. National Safety Council Newsletter, Min. Sec., October 1967. The annual National Safety Competition awards and honorable mentions in the underground metal, underground nonmetal, and open-pit mines are listed.

OP 103-67. Floot Cool Herord in Mines, by John Nagy and Donald W. Mitchell. Proc. 60th Regular Meeting, Rocky Mountain Coal Min. Inst., June 28-July 1, 1964, pp. 46-54. Results of initial research by the Bureau of Mines on the explosion hazard of float coal are presented, and methods for alleviating the hazard are discussed. Information is given from related studies on occurrence and rate of production of float coal, sampling techniques, and the transport and deposition of dust from the air current. Tentatively it is suggested that where float-coal deposits prevail, a minimum of 80 percent incombustible be maintained in the top one-eighth inch of dust on the ribs, floor, and roof.

OP 104-67. Design and Construction of a Thermal Radiation Probe, by A. A. Orning and C. H. Schwartz. Trans. ASME, J. Eng. for Power, v. 89, ser. A, No. 3, July 1967, pp. 395-397. A thermal radiation probe is described. A test in a pulverizedcoal-fired furnace showed radiant flux decreasing from 130,000 to 60,000 Btu per square foot per hour, as the viewing direction was shifted from flame emission to wall reflection.

OP 105-67. Lithologies, Environments and Reservoirs of the Middle Mississippian Greenbrier in West Virginia, by William K. Overbey, Jr. Producers Monthly, v. 31, No. 2, February 1967, pp. 25-32. Comparison of lithologies observed in subsurface cores with outcrop samples of the basal members of the Greenbrier Group of the middle Mississippian in West Virginia indicate that oil and gas reservoirs found within this interval are the result of several slightly different but related depositional environments. These environments and the resulting lithologies are as follows: (1) Moderate to high energy environment above or near wavebase producing an oölitic limestone or a slightly sandy, oölitic limestone; (2) moderate to high energy beach and near-shore environment producing a sandy limestone-limy sand facies; and (3) moderate to high energy environment at or near wavebase producing a skeletal, biohermal limestone. In the subsurface all of the above lithologies were modified to some extent by dolomitization which produced reservoirs controlled

primarily by the areal extent and degree of dolomitization. Methods of investigation to determine lithologies are discussed and possible methods of exploration for these primarily stratigraphic-type reservoirs are presented.

OP 106-67. Ground Control Rock Mechanics, by Louis A. Panek. Min. Cong. J., v. 23, No. 5. May 1967, pp. 60-62, 67-68. The ground control technology research program at the Denver Mining Research Center of the Bureau of Mines is reviewed.

OF 107-67. Calculation of the Average Ground-Stress Components from Massurements of the Diametral Deformation of a Drill Hole, by Louis A. Panek. In Testing Techniques for Rock Mechanics. ASTM Spec. Tech. Pub. 402, 1966, pp. 106-132. Determining the change of stress in rock based on measurements of the deformation of a drill hole is a procedure that is increasing in popularity. A closely related procedure involves the application of this principle to determine the existing stresses in a rock medium by cutting free (core drilling) an annulus containing the drill hole. In this report, expressions are derived from which one can calculate the stress ellipsoid—the three-dimensional stress field, as the case may be. Study of these equations shows that the stress components in three dimensions can be determined by measurements in only two drill holes and yields general principles that are useful in planning an efficient program of drilling and measurement. The need for some method of averaging the measurements and wishes to combine them into a single set of average stress components. Procedures, therefore, are given for calculating the least squares estimates of the stress components and their standard errors, and for evaluating or comparing calculated values by means of standard statistical inferences.

OF 103-67. The Search for Law-Sulfur Cool, by Harry Perry and Joseph A. DeCarlo. ASME 66-PWR-3, 1966, 27 pp. For special-purpose coals used in the production of coke, ceramics, and so forth, the sulfur content of the coal is a critical factor, and low-sulfur coals generally are used. Export markets, principally of special-purpose or metallurgical coal, also require coals of low sulfur content. In addition the increased attention to oxides of sulfur as a harmful air pollutant has resulted in great interest by coal-consuming industries in the availability of low-sulfur coals. The paper discusses the availability of low-sulfur coals and describes methods of reducing the emission of sulfur oxides from furnaces.

OP 109-67. Lessons from Some Recent Front-End Loader Accidents, by R. O. Pynnonen. Trans. Nat. Safety Council, v. 16, Mining, 1965, pp. 33-36. Information in this paper was obtained from written reports on 44 fatal accidents that occurred during the operation of rubber-tired front-end loaders powered by either diesel or gasoline engines at metal, nonmetal, and coal mines, stone quarries, gravel pits, and mills. The reports are analyzed and certain safety recommendations are proposed.

DP 110-67. Pyrrole: Chemical Thermodynamic Properties, by D. W. Scott, W. T. Berg, I. A. Hossenlopp, W. N. Hubbard, J. F. Messerly, S. S. Todd, D. R. Douslin, J. P. McCullough, and G. Waddington. J. Phys. Chem., v. 71, No. 7, June 1967, pp. 22632270. Experimental studies of pyrrole provided values of heat capacity for the solid, liquid, and vapor; temperature of a lambda-type transition of the solid; enthalpy of fusion; thermodynamic properties for the solid and liquid; enthalpy of vaporization; equation-of-state constants; vapor pressure; and standard enthalpies of combustion and formation. The chemical thermodynamic properties in the ideal gas state were calculated by methods of statistical mechanics.

OF 111-67. Economic Cansiderations of Exploration and Development, by E. Shekarchi. CENTO Symp. on Techniques for Mineral Investigation, Sept. 15, 1965, Isfahan, Iran, pp. 157-165. Close cooperation between the government and private sectors is necessary for the development of a strong mineral industry. Regional geological maps prepared by the government can outline target areas into which private companies can move for intensive mapping and investigation. Essential to both exploration and development is an atmosphere in which investors are assured a reasonable return on risk capital and ample time to develop a property to its full potential. To bring exploration and development to full scale, the private sector must have the marketing knowledge that will enable it to compete effectively in the world market and thereby increase the flow of foreign exchange into the country.

OP 112-67. Helium Storage in Cliffside Field, by Miles D. Tade. J. Petrol. Technol., v. 19, No. 7, July 1967, pp. 885-888. Since January 1963 the Bureau of Mines has been injecting crude helium into the Bush Dome structure of Cliffside field for storage in connection with the Government's helium conservation program. It is predicted that during the life of the injection program about 59 billion cubic feet of crude helium, containing 41.5 billion cubic feet of helium, will be injected. As of July 1, 1966, 15.3 billion cubic feet of helium, containing 10.7 billion cubic feet of conservation helium, was in storage.

OP 113-67. Western Cools: Some Trends in Utilization and Research, by Charles C. Boley and Wayne R. Kube. Western Resources Papers 1966, Natural Gas, Coal, Ground Water. Exploring New Methods and Techniques in Resources Research, University of Colorado Press, pp. 195-221. The purposes of this paper are to compare the present western coal industry to the coal industry of the nation and to other mineral wealth of the West, to present trends in utilization of coal for the nation and for the western area, to consder coal research trends and their coordination with utilization trends, and to present an outline of research being conducted on western coals by the Bureau of Mines.

OP 114-67. An Investigation of the Behavior and Control of Methane Gas, by Joseph Cervik. Min. Cong. J., v. 53, No. 7, July 1967, pp. 52-57. The flow of gas in U.S. coalbeds is governed predominantly by Darcy's law. Therefore, control measures and degasification techniques will be aimed primarily at reducing pressure, reducing permeability, or filling of the pore volume with a more viscous liquid.

OP 115-67. Methodology in Air Pollutian Studies Using irradiation Chambers, by Basil Dimitriades. J. Air Pollution Control Assoc., v. 17, No. 7, July 1967, pp. 460-466. This paper describes methods and techniques used at the Bartlesville Petroleum Research Center in conducting photochemical smog studies in its two irradiation chambers. 1

OP 116-67. Empirical Approach to Problems in Blassing Research, by W. I. Duvall, T. C. Atchison, and D. E. Fogelson. In Failure and Breakage of Rock. Proc. 8th Symp. on Rock Mechanics, 1966. American Institute of Mining, New York, 1967, pp. 500-523. This paper discusses how the Bureau of Mines has used the empirical approach to study problems related to vibrations from quarry blasting, comparison of explosives for rock breaking ability, and the generation and propagation of strain waves from cylindrical charges.

OF 117-67. Hexagonal Diamonds in Meteorites, by Sabri Ergun and Leroy E. Alexander. Science, v. 156, No. 3783, June 30, 1967, pp. 1770-1771. The existence of a possible hexagonal polymorph of diamond is experimentally confirmed by the recent synthesis of hexagonal diamond at high pressure and the discovery of hexagonal diamond in the Canyon Diablo and Goalpara meterorites.

1

OP 116-67. Use of Monopropellants Te Alter Petroleum Rock Properties, by Ray V. Huff and Larman J. Heath. Producers Monthly, v. 31, No. 6, June 1967, pp. 12-15. A study was conducted to determine the technical feasibility of burning a monopropellant in a porous matrix to improve its permeability. Physical and chemical characteristics of possibly useful compounds were investigated. A proprietary monopropellant compound was used in the tests. Thermal decomposition of the monopropellant occurred in situ, resulting in the propagation of a flame front through the entire length of three Torpedo sandstone cores. Three Prue sandstone samples experienced only partial burning. Sandstone samples which were burned showed an average permeability increase of 214 percent.

OP 119-67. Here's What SO, Removal Costs, by Sidney Katell and K. D. Plants. Hydrocarbon Processing, v. 46, No. 7, July 1967, pp. 161-164. Two previous papers have outlined three processes which are being considered for the removal of SO₂ from powerplant flue gas. Pilot plant operations are underway for the two most promising of the processes discussed. Several new concepts are being considered and conceptual designs have been made. Economic consideration is preliminary but estimates are being made to determine the potential of the new concepts. An evaluation of dry processes indicates a favorable economic potential when compared to wet processes. For two systems undergoing intensive investigation in this country, the operating cost for both the alkalized alumina and the catalytic oxidation systems are about equal if the byproduct is sulfuric acid. However, since sulfur can be produced in an alkalized alumina system it would be an advantage if market conditions are unfavorable for sulfuric acid.

1 OP 120-67. Catharanthus Lanceus VII. Isolation of Tetrahydroalstonine, Lochnerinine, and Periformyline, by Edward M. Maloney, Norman R. Farnsworth, 1 Ralph N. Blomster, Donald J. Abraham, and Andrew G. Sharkey, Jr. J. Pharmaceutical Sci., v. 54, No. 8, August 1965, pp. 1166-1168. A continuing study of] Catharanthus lanceus leaf alkaloids for antineoplastic compounds has led to the solution of tetrahydro-1 alstonine, lochnerinine, and a new alkaloid peri-3 formyline. Details concerning the isolation of these alkaloids and the structure elucidation of peri-formyline, the first example of an $N(\iota)$ -substituted formyl indole alkaloid to be found in nature, are presented.

OP 121-67. The Stress in Rock Around Surface Openings, by R. H. Merrill and D. W. Wisecarver. In Failure and Breakage of Rock. Proc. 8th Symp. on Rock Mechanics, 1966. American Institute of Mining, New York, 1967, pp. 337-350. This report describes the state of the art concerning the stresses around surface openings in rock. Also summarized are the results of in situ stress determinations near open pits.

OP 122-67. Explosive Fracturing Tested in Oli Shale, by J. S. Miller and W. D. Howell. Colorado Sch. Mines Quart., v. 62, No. 3, July 1967, pp. 63-73. An explosive-fracturing experiment was performed in Green River oil shale near Rock Springs, Wyo., as a prelude to research on in situ retorting oil from the shale. The objective of the test was to determine if a liquid explosive displaced in a sheet-like layer and detonated in the oil shale would explode with sufficient force to significantly crack the rock. Although the evaluation of results from this research is continuing, preshot surveys and comparable postshot tests indicate that a charge of 190 quarts of desensitized liquid nitroglycerin (NGI) was displaced a lateral distance of 22 feet at a depth of 147 to 149 feet and successfully detonated in the oil shale. Fracture-improvement ratios determined from before- and after-flow tests in six holes averaged 3.5.

OP 123-67. Extractive Processes, by C. H. Schack and B. H. Clemmons. Ch. 4 in Silver: Economics, Metallurgy, and Use, ed. by A. Butts. Handy and Harman, New York, 1967, pp. 57-77. Extractive metallurgy techniques currently employed to recover silver from primary ores and secondary scrap are reviewed and evaluated. Practically all primary silver is recovered by froth flotation concentration of various types of ore, followed by smelting and refining of the separate lead, cooper, and zinc concentrates. Any silver production gain from base-metal ores, which contribute about two-thirds of the total primary silver, is directly dependent on improvement in the market for base metals. Statistical data on old and new silver scrap are inadequate to make reliable conclusions about increasing the recovery of silver from secondary sources. Available information indicates that efficient reclamation practices are employed by large users of silver and that recovery of additional secondary silver involves solutions of problems of collection rather than processing.

OP 124-67. See OP 183-67.

OF 125-67. Mass Spectrometry, by A. G. Sharkey, Jr. Encyclopedia of Physics, ed. by Robert M. Besançon. Reinhold Pub. Corp., New York, 1966, pp. 404-406. The mass spectrometer is used primarily for the quantitative analysis of gases, liquids, and a limited number of solids. Mass spectrometry provides information concerning the mass-to-charge ratio and the abundance of positive ions produced from gaseous species. There are several techniques for the production and measurement of the ions, and the design of an instrument is determined by its proposed application.

CP 126-67. Book Review, by A. G. Sharkey, Jr. "Mass Spectrometry," ed. by C. A. McDowell. Materials Res. and Standards, v. 4, No. 8, August 1964, pp. 460-461.

OP 127-67. Secondary Oil Recovery by Steam Stimulation, by G. B. Shea. Independent Petrol. Monthly, v. 36, No. 10, February 1966, pp. 34-35. The steam soak is an individual well stimulation process which includes a steam injection cycle, a short "soaking" period during which the well is shut in, and a production cycle. The generally satisfactory and sometimes spectacular results recently achieved in many steam soak projects have greatly intensified interest in this secondary recovery technique.

OP 128-67. Progress Report on Bureau of Mines-Atomic Energy Commission Corshole, Rio Blanco County, Colorado, by Kenneth E. Stanfield. Colorado Sch. Mines Quart., v. 61, No. 3, July 1966, pp. 33-44. In 1965 the Bureau of Mines, with the assistance and cooperation of the U.S. Atomic Energy Commission, drilled an exploratory corehole in the Piceance Creek basin, Colorado, to evaluate buried oil shales that might be amenable to fracturing by a nuclear explosive and subsequent recovery of oil by underground retorting. Preliminary results indicate continuous oil shales occurred at depths of 985 feet to the bottom of the hole at 2,600 feet and may extend another 600 feet below the sampled interval. Present plans are to deepen the hole and take boroscopic photographs of an interval exhibiting poor recovery. A second hole will be drilled at another site in the basin to locate thinner oil-shale beds under less overburden that may be more suitable for the proposed underground tests.

OP 129-67. Gauge for Determining Shock Pressures, by Richard W. Watson. Rev. Sci. Instr., v. 38, No. 7, July 1967, pp. 978-980. A simple inexpensive pressure gage is described that is capable of determining pressures associated with blasts, shocks, and detonation waves. As described, it is capable of operation over the range extending from about 1 to 100 kilobars. Application has been filed by the author for a patent on this device and "Notice of Allowance" was received July 10, 1967 (Serial No. 453,530).

OP 130-67. Mining, by Paul F. Yopes. Britannica Book of the Year, 1967, pp. 545-546. A brief review is given of mining production, industrial development, and technological advances in the mineral industries.

OP 131-67. A Method for Mica Determination by Heavy Liquid Separation, by R. B. Adair and J. S. Browning. Trans. SME, September 1967, pp. 248-252. The Bureau of Mines conducted laboratory research to determine the applicability of heavy-liquid separation to the evaluation of certain mica ores and plant products. After careful standardization of the particular mica ores and associated gangue, accurate analysis of muscovite content could be obtained from results of heavy-liquid separation. Where applicable, the method should be particularly suited to the analysis of ores and control of plant operations wherein savings in time would be of considerable advantage. Specifically, there are many instances where a quick plant control method should enable the production of a more uniform grade of mica concentrate.

OP 132-67. Cell for Determining Compressibility Factors.

High Liquid-Gas Ratio Fluids, by Francis G. Archer and C. Kenneth Eilerts. Proc. 46th Ann. Conv. Nat. Gas Processors Assoc., Houston, Tex., March 1967, pp. 60-75. A piston-fitted cell has been developed by the Bureau of Mines to measure compressibility factors for fluids containing up to 16 gallons of liquid with 1,000 standard cubic feet of gas. The assembly of equipment can be used to mix a sample and measure its compressibility factors at pressures up to 6,000 psia and one temperature in an 8-hour period with an accuracy of 1 percent.

OP 133-67. Tests Yield Reliable Compressibility Factors, by Francis G. Archer and C. Kenneth Eilerts. Oil and Gas J., v. 65, No. 28, July 10, 1967, pp. 184-189. (For summary see OP 132-67.)

3

ť

í

D

ŧ

b

¢

)

OP 134-67. Comparison of Detectors for Isolepic X-Ray Anaiyzers, by Philip G. Burkhalter and William J. Campbell. Proc. 2d Symp. Low Energy Xand Gamma Sources and Applications, University of Texas, Austin, Tex., March 27-29, 1967, ORNL-IIC-10, pp. 393-423. Isotopic X-ray analyzers for use as drill-hole probes and process monitors are being developed and evaluated as part of the Bureau of Mines heavy metals program. Optimization of the X-ray detector is required to analyze low-grade gold and silver ores, using energy dispersion techniques coupled with isotopic X-ray excitation. The following properties of gas, scintillation, and semiconductor X-ray detectors are compared: detection efficiency, pulse resolution, intensity linearity, energy linearity, stability, size, ruggedness, and cost. Scintillation detectors have satisfactory overall detection capabilities except for poor pulse resolution. Gas proportional detectors are excellent low-energy X-ray detectors except space charge results in pulse shifts with intensity. Semiconductor detectors are attractive because their sharp pulse resolution (less than 1 kev) allows multi-element determination by electronic pulse analysis.

OP 135-67. The American Society for Testing and Materials. I. Its Operation and Products. II. Initiating Research in ASTM Committees, by J. W. Caum and H. M. Smith. Current Eng. Practice (Bombay, India), v. 9, No. 9, March 1967, pp. 20-25. Describes the operation and products of ASTM, including the origin, organization, publications, technical committee organization, evolution of ASTM standards, and initiation of research.

OP 136-67. Integration of Partial Differential Equations for Multicomponent, Two-Phase Transient Radial Flow, by C. Kenneth Eilerts and Eudora F. Summer. Soc. Petrol. Eng. J., v. 7, No. 2, June 1967, pp. 125-135. A partial differential equation was developed and programed to compute the cumulation and flow of the liquid phase of a gas-condensate fluid. The radius at which this saturation obtains advances toward the external reservoir boundary with comtinued recovery, although it may move only 2 to 5 percent of that distance during the productive life of the well. This relatively high saturation can cause a serious diminution in delivery capacity. The pressure differential required for flow of gas through a formation with such saturation may be as much as three times greater than the corresponding differential in a formation where saturation is less than 2 percent.

OP 137-67. Immobility of Connate Water in Permeable Sandstone, by G. Edward Manger and William T. Wertman. Geol. Survey Prof. Paper, 575-C, 1967, pp. C192-C194. Some natural-state cores of moderately permeable Eocene sandstone, obtained by drilling with oil-base mud in Karnes County, Tex., appear to be saturated and other cores appear to be partially unsaturated. The variation of interstitial water chlorinity is related to the depositional environment of the different sandstone strata. These results suggest that a small fraction of connate water has remained immobile in the sandstone since the Eocene. Such immobility agrees with that found experimentally by Wyckoff and Botset and discussed theoretically by Irmay for a small fraction of fluid in a saturated permeable porous medium. Absence of significant diffusion over geologic ages seems to be necessary to explain the present results; reasons for this are not yet evident.

OP 138-67. Ternery Pheses in the System MgO-GeO_LIF, by George Robert McCormick and Ernest G. Ehlers. J. Am. Ceram. Soc., v. 50, No. 8, August 1967, pp. 438-439. A study of the system MgO-GeO_ LiF was undertaken to investigate fluorogermanate compounds analogous to Li₂Mg.Li₂ · Si₂O₂F_{*}, Li₂Mg · Mg.Si₂O₂F_{*}, and Li_{0.00} · Li_{0.00}Mg_{1.00} · Mg_{3.00}Si_{7.00} O_{21.00}F_{21.00} found in the system MgO-SiO₂-LiF; in addition compounds might be revealed for which no silicate counterpart is known. This study was intended to throw new light on both the germanates and the silicates, in particular on the relation and compatibility of the various compounds of magnesia and lithium fluoride.

OP 139-67. Summary of Stress Determination Made in the Preximity of Underground Openings, by Leonard Obert. In Failure and Breakage of Rock. Proc.

ard Obert. In Failure and Breakage of Rock. Proc. 8th Symp. on Rock Mechanics. American Institute of Mining, New York, 1967, pp. 217-223. Summarizes the findings of 20 investigations of stress in rock in the proximity of underground openings using the borehole deformation procedure.

OP 140-67. Mineral Investigations Under the Wilderness Act, by M. H. Salsbury. Mines Mag., v. 56, No. 6, June 1966, pp. 4-8. Discusses the Wilderness Act (passed Sept. 3, 1964), its background and provisions, and the part that will be played by the Bureau of Mines and the Geological Survey in assessing the mineral resources of primitive areas that are proposed for inclusion in the Wilderness System.

OP 141-67. Proposed Mine Rescue and Safety Centers for CENTO Countries, by Donald P. Schlick. CENTO Symp. on Mine Health and Safety, Izmir, Turkey, Oct. 11-19, 1966, pp. 99-109. The author proposes that mine rescue and training stations be set up in close proximity to mining areas in each CENTO country—Iran, Pakistan, and Turkey. Suggestions are made for the housing, equipment, and staff requirements for mine rescue and training centers. An outline of a mine rescue training program is appended.

OP 142-67. High Resolution Ges Chromotographic Analysis of Auto Exhaust Ges, by D. E. Seizinger. Instrument News, v. 18, No. 1, October 1967, pp. 11-12. The design and operation of a high-resolution gas chromatograph for analyzing auto exhaust gas is described.

OF 143-67. Thermal Analysis of Natural Fuels, by John Ward Smith and Donald R. Johnson. Proc. 2d Toronto Symp. on Thermal Analysis, Toronto Sec., Chem. Inst. of Canada, Feb. 27, 1967, pp. 95-116. Problems and published experience with thermal analysis of natural fuels are reviewed, novel apparatus developed to solve these problems described, and applications to oil shale and a coal study presented.

1

a

OP 144-67. A Neutron Moisture Meter for Coal, by R. F. Stewart and A. W. Hall. Trans. SME, September 1967, pp. 269-272. A method has been developed for continuously measuring the moisture content of coal. The method is based on the thermalization of fast neutrons by hydrogen in the coal. Neutrons from a small radioisotope source penetrate the coal, are scattered by hydrogen, and measured by a thermal neutron detector. The number of thermal neutrons counted can be directly correlated with the moisture content of coal. In a pilot-scale system, moisture was measured continuously within 0.2 percent in coal moving at rates up to 20 tons per hour. The method is adaptable in industry for continuously measuring the moisture content of coal at high tonnage flow rates. Such an application would permit continuous recording of moisture in coal without sampling and would facilitate quality control.

OP 145-67. Multistage Cyclones for Heavy Uquid Concentration of Minercls, by R. B. Tippin and J. S. Browning. Trans. SME, September 1967, pp. 239-244. The feasibility of multistage heavy-liquid cyclone beneficiation of spodumene was successfully demonstrated in this investigation. The indicated recovery for the multistage circuits was mathematically estimated, as continuous test runs would be necessary to determine the true influence of a middlings recycle. In the three-stage circuit, both the concentrate analysis and spodumene recovery exceeded 90 percent. The two-stage circuits were unable to simultaneously yield an acceptable product with a satisfactory recovery.

OP 146-67. Minerels and Economic and Political Power: An Mistorical Survey, by William A. Vogely. Proc. Council of Economics, AIME, Feb. 28-Mar. 2, 1966, New York, 1966, pp. 268-275. The significance of mineral supplies and stocks during war or for a country's war potential is no longer great. The role of minerals in economic growth is a much more complex one. The process by which an economy changes its character from one based upon its mineral resource endowments to one which flourishes through accumulation of capital and technology is extremely complex and imperfectly understood. Much more research, both empirical and theoretical, of the relation between minerals and economic growth is clearly called for.

OF 147-67. Thermal Cracking of Low Temperature Lignite Pitch, by John S. Berber, Richard L. Rice, and Delmar R. Fortney. I&EC Product Research and Development, v. 6. No. 3, September 1967, pp. 196-200. Thermal cracking of low-temperature lignite pitch has proved to be an effective means of upgrading the pitch. Four products are obtained by the thermal cracking. About 15 to 20 percent of the pitch is converted to coke, about 20 to 30 percent is recovered as cracked pitch, about 20 to 30 percent is recovered as oil, and the balance is recovered as gas. The oil, upon distillation to 400° C, gives a distillate rich in aromatics which can be oxidized to phthalic and maleic anhydrides. The oil distillation residue has good binding qualities for carbon electrodes. The gas contains 10 to 15 percent ethylene as well as hydrogen and methane. The coke was calcined and used with the oil distillation residue pitch as a binder to produce a metallurgical electrode made totally from lignite tar products.

OP 148-67. A look Ahead at Synthetic Hydrocarbon Technology, by Walter R. Hibbard, Jr. J. Petrol. Technol., v. 19. October 1967, pp. 1329-1333. Fuels to produce energy are vital to all residents of the United States. Although there are no present apparent shortages of fossil fuels, consideration of the long-term energy needs of the nation leads to the conclusion that fuels from supplementary sources may soon begin to enter into the domestic energy mix. The present impetus of oil-shale research and development and recent announcements by Secretary of the Interior Stewart Udall pertaining to the management of oil-shale lands tend to support earlier predictions of the Bureau of Mines that there will be commercial production of shale oil within the next 10 years. It is probable that liquid and gaseous fuels from coal will begin to enter the market simultaneously with, or not much later than, shale oil. The limited knowledge of the total resources of domestic tar sands does not permit good predictions of when fuels from tar sands will become commercially significant.

OP 149-67. Combustion Characteristics of Condensed-Phase Hydrazine-Type Fuels With Nitrogen Tetrexide, by Theodore Christos, Yael Miron, Harry James, and Henry E. Perlee. J. Spacecraft and Rockets, v. 4, No. 9, September 1967, pp. 1224-1229. The Bureau of Mines Explosives Research Center investigated the combustion characteristics of hydrazine-type propellants and the resultant reactions occurring in lowthrust engines prior to ignition. Frozen hydrazine, monoethylhydrazine, unsymmetrical dimethylhydrazine and Aerozine-50 mixed with N₂O, at liquid nitrogen temperature exhibited a violent exothermic reaction upon warming between - 50° and -70° C, depending on the fuel used. The Aerozine and N₂O, mixtures always yielded a detonationlike reactions. Hydrazine exhibited an explosive reaction having a TNT equivalence of about 130 percent when explosively fired in atmospheres of air, O₂, or N₂O. Stoichiometric mixtures of the various liquid fuels and liquid N₂O, indicated TNT equivalences of about 160 percent in all cases. The structural and inertial response of simulated rocket engines to internal explosions was also studied.

OP 150-67. Rocket Fuels, by Glenn H. Damon. Fuels, by Staff, Bureau of Mines, under the direction of L. L. Newman, in sec 7, Fuels and Furnaces. Standard Handbook for Mechanical Engineers, ed. by T. Baumeister and L. S. Marks. McGraw-Hill Book Co., New York. 7th ed., 1967, pp. 7-45 through 7-51. This discussion is confined essentially to chemical rocket-propulsion systems. In general, propellant systems (fuel and oxidant) are discussed rather than the fuel alone because most rocket fuels require an exodizing agent and the overall performance of the rocket depends both upon the fuel and the oxidant. Rapid advances in propellant technology in the last few years make it difficult to give a meaningful comparison between the performance of solid- and liquid-fueled rocket engines. A comparison of the advantages and disadvantages of each system indicates that the choice of propellant largely depends on the mission to be accomplished.

OP 151-67. Dust Explosions in Buildings, by Henry G. Dorsett, Jr. Fuels, by Staff, Bureau of Mines, under the direction of L. L. Newman, in sec. 7, Fuels and Furnaces. Standard Handbook for Mechanical Engineers, ed. by T. Baumeister and L. S. Marks. McGraw-Hill Book Co., New York, 7th ed., 1967, pp. 7-38 through 7-45. Dust explosibility is affected by so many chemical and physical factors that a mathematical theory has yet to be developed. Empirical and experimental results are the chief guide in evaluating relative dust explosion hazards. The data evaluated are composition, fineness, and concentration of dust clouds; the effect and type of gases that may inhibit or prevent dust explosions; and the types of ignition sources. The explosive characteristics of selected dusts are tabulated.

OP 152-67. P.V-T Relations in the System Methane-Tetrafluoromethane: Part 1. Gas Densities and the Principle of Corresponding States, by D. R. Douslin, R. H. Harrison, and R. T. Moore. J. Phys. Chem., v. 71, No. 11, October 1967, pp. 3477-3488. The methanetetrafluoromethane system was examined for conformity with the principle of corresponding states in terms of the Boyle reference point, the critical reference point, and mixing rules as applied to the reference temperatures and volumes.

OF 153-67. Transverse and Longitudinal Optical Properties of Graphite, by E. Ergun, J. B. Yasinsky, and J. R. Townsend. Carbon, v. 5, September 1967, pp. 403-408. Optical anisotropy of single crystals of graphite has been studied in the visible and ultraviolet spectrum from measurements of reflectance of polarized light normally incident on the (1012) face employing two immersion media. The spectrum of the real part of the transverse dielectric constant suggests the presence of electronic absorption and the imaginary part exhibits a peak at 4.8 ev explained by "m resonance." The real longitudinal dielectric constant remains more or less invariant and the imaginary part is zero or too small to be measured in the wave energy range 2 to 5.5 ev, indicating a transparency to polarized light when the electric vector lies along the optic axis.

OP 154-67. Predicted Waterflood Performance of a Pilot Pattern in the Fork Run Area, Ludlaw Field, McKean County, Pa., by Karl-Heinz Frohne. Producers Monthly, v. 31, No. 8, August 1967, pp. 22-25. A series of waterflood performance predictions was made for the Cooper sand in the Fork Run area of the Ludlow fields, McKean County, Pa., to evaluate one of the possibilities of secondary recovery. The predictions were made using a digital computer and combined selected features of the Suder-Calhoun-Yuster waterflood calculations and the Craig, Geffen, and Morse waterflood prediction method. Predictions were made using four gas saturations (1.5, 10, 15, and 20 percent) and three different waterinjection rates. Original oil in place in the pilot pattern was calculated to be 527,000 reservoir barrels, and primary recovery is expected to be approximately 11 percent. By flooding the pilot area with 1,370,000 barrels of water, secondary-recovery volumes are predicted to be 168,000, 127,000, 104,000, and 82,000 barrels of oil, respectively, for the four gas saturations. This production represents recovery of 35, 30, 26, and 22 percent of oil in place at the beginning of the respective floods. The predictions show that substantial amounts of oil may be recovered if sufficient water is injected.

OP 155-67. Gaseous Fuels, by R. M. Gooding. Fuels, by Staff, Bureau of Mines, under the direction of L. L. Newman, in sec. 7, Fuels and Furnaces, Standard Handbook for Mechanical Engineers, ed. by T. Baumeister and L. S. Marks. McGraw-Hill Book Co., New York, 7th ed., 1967, pp. 7-30 through 7-35. Gives data on the properties of gaseous fuels, including natural gas, manufactured gas, and liquefied petroleum gas.

OP 156-67. Petroleum and Other Liquid Fuels, by R. M. Gooding. Fuels, by Staff, Bureau of Mines, under the direction of L. L. Newman, in sec. 7, Fuels and Furnaces. Standard Handbook for Mechanical Engineers, ed. by T. Baumeister and L. S. Marks. McGraw-Hill Book Co., New York, 7th ed., í

ł

ź

)

E

) { }

.

1967, pp. 7-20 through 7-30. Gives data on the properties of petroleum, petroleum products, and other liquid fuels such as coal carbonization products, ethyl and methyl alcohols, synthetic liquid fuels, and shale oil.

OP 157-67. Kinetics of Oxygen Exchange Between CO₂ and CO on Carbon, by M. Mentser and S. Ergun. Carbon, v. 5, September 1967, pp. 331-337. A study was made of the reversible exchange of oxygen between CO_2 and CO on a carbon surface,

 $CO_2 + C_1 \stackrel{k_1}{\rightleftharpoons} CO_2 + C_0$, at 750° to 850° C and at- k'_1

mospheric pressure with carbon-14 used as a tracer. At these temperatures the rates of exchange were a few orders of magnitude greater than the rates of gasification; i.e., transfer of carbon from solid to gas phase. Activation energies for the forward and backward reactions were 53 and 36 kcal/mole, respectively. Direct determination of the equilibrium constant of the oxygen exchange reaction made in this study agreed well with indirect determinations made earlier. Thus oxygen exchange was established as an authentic and important step in the reaction sequence for the carbon dioxide-carbon reaction. The results showed further that oxygen exchange is not likely to become the rate-controlling step at higher temperatures and that the retarding effect of CO on gasification rates should diminish with increasing temperature.

OF 158-67. Peat, Wood, and Miscellaneous Solid Fuels, by L. L. Newman and W. H. Ode. Fuels, by Staff, Bureau of Mines, under the direction of L. L. Newman, in sec. 7, Fuels and Furnaces. Standard Handbook for Engineers, ed. by T. Baumeister and L. S. Marks. McGraw-Hill Book Co., New York, 7th ed., 1967, pp. 7-17 through 7-20. Discusses the preparation, composition, and heat values of peat, wood, charcoal, and miscellaneous byproduct fuels.

OP 159-67. Cool, by W. H. Ode. Fuels, by Staff, Bureau of Mines, under the direction of L. L. Newman, in sec. 7, Fuels and Furnaces. Stand-L. L. Newman, in sec. 7, Fuels and Furnaces. Stand-ard Handbook for Mechanical Engineers, ed. by T. Baumeister and L. S. Marks. McGraw-Hill Book Co., New York, 7th ed., 1967, pp. 7-2 through 7-16. Dis-cusses coal classification methods, coal composition and characteristics, coal mining and preparation, storage problems, sampling methods, and specifica-tions for the purchase of coal.

OP 160-67. Tertiary Oil Recovery from a Consolidated Sand-stone Core by the Alcahal and Alcahal-Kerosine Slug Injection Methods, by G. F. Rennick and J. Pasini III. Producers Monthly, v. 31, No. 8, August 1967, pp. 14-18. The objective of this work was to compare results of alcohol and combination alcohol-Ì kerosine slug injection on tertiary oil recovery from a consolidated sandstone core. Experiments were conducted on a consolidated Berea Sandstone core, 168 cm long by 5 cm in diameter. The fluids used were isopropyl alcohol, kerosine, Soltrol C, and water containing 21,000 ppm calcium chloride. The solvent slug sizes were approximately 0.25, 0.375, and 0.50 ł pore volume. The rates of injection were about 27, 41, and 52 feet per day. The core was prepared ŧ 3 for the test by saturating with Soltrol C and then flooding with brine to residual oil saturation. The pure alcohol slug was then injected and was followed by brine to complete the test. In the other tests, combination slugs of alcohol, kerosine, and alcohol were substituted for the pure alcohol slug. At the

t

1

1

end of the slug injection, more residual oil was re-covered by the combination slug (alcohol-kerosine-alcohol) than by the pure alcohol slug. However, the ultimate residual oil recoveries with the single alcohol slug were equal to or greater than those obtained with the combination slug. The effectiveness of the combination slug was further reduced as a result of the low kerosine recoveries. The wateroil ratios indicate that the displacement mechanism of the pure alcohol slug was drag-type, while that of the combination slug was the loose-piston type.

OP 161-67. Alterations in Structure and Physical Properties of Green River Oil Shele by Thermal Treatment, by P. R. Tisot. J. Chem. and Eng. Data, v. 12, No. 3, July 1967, pp. 405-411. Experimental data are presented showing changes in physical structure and physical properties that occur when oil shales of widely different organic content from the Green River Formation are heated under controlled condi-tions to 950° and to 1,500° F in a stress-free environment. Seven oil shales were investigated yielding from 1 to about 60 gallons of oil per ton of oil shale. Physical properties evaluated, before and after heating, were compressive strength, structural alterations, permeability, porosity, weight loss, and bulk density. These data serve as engineering guidelines for in situ combustion or other retorting processes.

OP 162-67. Explosives, by Robert W. Van Dolah. Fuels, by Staff, Bureau of Mines, under the direction of L. L. Newman, in sec. 7, Fuels and Furnaces. Standard Handbook for Mechanical Engi-Graw-Hill Book Co., New York, 7th ed., 1967, pp. 7-35 through 7-38. Gives data on the composition and properties of commercial explosives, chiefly and properties of commercial explosives, energy ammonium nitrate blasting agents and dynamites, and includes data on military explosives that have been adapted for industrial explosive applications.

OP 163-67. High Temperature Viscosity of Gases Estimated

Quickly, by Murray Weintraub and Paul E. Corey. Chem. Eng., v. 74, No. 22, Oct. 23, 1967, p. 204. A nomograph was prepared from the equation

$$\mu_1/\mu_2/=f(T_{r1})/f(T_{r2})$$

where μ_1 and μ_2 are viscosities at corresponding reduced temperates T_{r1} and T_{r2} and $f(T_{r1})$ and $f(T_{r2})$ are complex logarithmic functions. Directions are given for its use in estimating the high-temperature viscosity of gases.

OP 164-67. Coke. by D. E. Wolfson. Fuels, by Staff, Bureau of Mines, under the direction of L. L. Newman, in sec. 7, Fuels and Furnaces. Stand-ard Handbook for Mechanical Engineers, ed. by T. Baumeister and L. S. Marks. McGraw-Hill Book Co., New York, 7th ed., 1967, pp. 7-16 through 7-17. Discusses the types and uses of coke produced in the United State United States.

OP 165-67. Vibrational Spectra and Conformational Analysis of 2,3-Dichloropropone, by G. A. Crowder. J. Molecular Spectroscopy, v. 20, No. 4, August 1966, pp. 430-437. Infrared spectra in the region 65 to 3,500 cm-1 are presented for 2,3-dichloropropene. The torsional band was observed at 89 cm-1 for the vapor state, accompanied by hot bands at 77 and 84 cm⁻¹.

OP 166-67. Actanitrile: Far-Infrared Spectra and Chemical Thermodynamic Properties. Discussion of an Entropy Discrepancy, by G. A. Crowder and Bobby Cook. J. Phys. Chem., v. 71, No. 4, March 1967, pp. 914916. Liquid- and vapor-state infrared spectra in the region 75 to 650 cm^{-1} were obtained for acetonitrile. A table of the chemical thermodynamic properties of acetonitrile at selected temperatures was prepared.

OP 167-67. Project Gosbuggy-Status Report, by C. H. Atkinson and Don C. Ward, J. Petrol. Technol., v. 19, No. 10, October 1967, pp. 1319-1324. Field work to test the nuclear fracturng concept commenced near Farmington, N. Mex., in early 1967. Data from two test wells have verified an earlier belief that the Pictured Cliffs gas sand at 4,000 feet would be suitable for the test. The 26-kiloton shot is planned for November 1967.

OP 168-67. Reaction of Coal and Graphite in a Microwave Discharge in M:O and D:O, by Yuan C. Fu and B. D. Blaustein. Chem. and Ind., No. 29, July 22, 1967, pp. 1257-1258. Coal, when reacted with water vapor in a microwave discharge, is readily gasified to produce H., CO, C:H., and small amounts of other hydrocarbons. C:H. accounts for as much as 95 percent of gaseous hydrocarbons produced.

OP 169-67. Mechanism of Bacterial Pyrite Oxidation, by Melvin P. Silverman. J. Bacteriology, v. 94, No. 4 October 1967, pp. 1046-1051. The oxidation by Ferrobacillus ferroxidans of untreated pyrite as well as HCl-pretreated pyrite was studied manometrically. It is probable that two mechanisms of bacterial pyrite oxidation operate concurrently: the direct contact mechanism which requires physical contact between bacteria and pyrite particles for biological pyrite oxidation and the indirect contact mechanism according to which the bacteria oxidize ferrous ions to the ferric state, thereby regenerating the ferric ions required for chemical oxidation of pyrite.

OP 170-67. Permeability and Capillarity in Petroleum Reser-voir Engineering, by O. C. Baptist. In Per-meability and Capillarity of Soils. American Society for Testing and Materials, Philadelphia, Pa., Spec. Tech. Pub. 417, 1967, pp. 84-87. The common meth-ods for determining permeability and capillarity are outlined, and the uses of these results in patrollaum outlined, and the uses of these results in petroleum engineering are summarized. Most of the changes noted when the single-phase permeability of a specinoted when the single-phase permeability of a speci-men is determined with gas and with water are attributable to such factors as gas slippage, inter-actions between the media and the fluid, bacterial growths, and incomplete saturations. Multiphase permeability, used in most reservoir calculations, is best determined by the unsteady-state displacement method. Analyses of data obtained from wall tests method. Analyses of data obtained from well tests are based either on the assumption of steady-state flow of incompressible fluids or the unsteady-state flow of slightly compressible fluids. Analyses of pressure buildup curves using the concept of unsteadystate flow are proving very useful in determining a variety of reservoir conditions such as permeability, well damage, reservoir volume, distance to faults, static reservoir pressure, and nterference between wells. Capillary pressure relations, used to predict connate water saturation in the reservoir, are best determined by displacement of fluids through a semipermeable barrier. The centrifuge method gives good results in homogeneous specimens, while the mercury injection method is useful for specimens not containing swelling clay minerals.

OP 171-67. Hydraulic Cells Measure Loads on Posts During Mining, by Anthony J. Barry, Richard H. Oitto, Jr., and Rudolph Sporcic. Coal Age, v. 72, No. 11, November 1967, pp. 66-68. Development of better roof-support patterns is seen as a major benefit of Bureau of Mines research. The cells make it possible to determine and record roof pressures and their variations in pillaring operations.

OP 172-67. Electroslog Melting of Titanium and Molybdenum, by R. A. Beall, E. D. Calvert, P. G. Clites, and J. T. Dunham. In Proc. 1st Internat. Symp. on Electroslag Consumable Electrode Remelting and Casting Technology, Mellon Institute, Pittsburgh, Pa., Aug. 9-10, 1967, Collection of Technical Papers, Part 1, 5th paper. The electroslag or Hopkins process is a potential technique for melting both titanium and molybdenum, and possibly other reactive and refractory metals. Advantages claimed for the process include (1) improved sidewall, (2) consistent grain orientation, and (3) removal of impurities. Titanium melting experience is reported for both laboratory- and production-scale ingots. Calcium fluoride was the only slag studied. Data on alloy homogeneity are given for small-scale ingots. Levels of impurity concentration are comparable to those in commercial double-vacuum-melted ingots. Based on physical and chemical properties, the slag selected for molybdenum melting was yttrium oxide. Ingots were prepared with unusually smooth sidewalls. The process appears to improve the ingot metal, particularly its workability. Melting parameters and upset forging tests are described.

OP 173-67. The DUA-Negative System, by Duane G. Blanks. Professional Photographer, September 1967, pp. 57-59. The Dua-Negative System is a method of making a second or duplicate negative from any original negative. This is accomplished directly, negative-to-negative, on ordinary photographic film.

OP 174-67. Geochemistry of Some Tertiary and Cretaceous Age Oil-Bearing Formation Waters, by A. Gene Collins. Environmental Sci. and Technol., v. 1, No. 9, September 1967, pp. 725-730. This research was done to interpret the relationships of ions dissolved in some oil-bearing Mississippi and Alabama formation waters, the relationships to their environment, and their origin. The waters were analyzed by published methods developed by the Bureau of Mines. Sodium, calcium, magnesium, chloride, bromide, iodide, bicarbonate, and sulfate ions were investigated. The age of water-bearing rock, the association of all samples with petroleum, and the depth of water-bearing rock were known environmental conditions. The data were analyzed using a digital computer factor analysis program. Correlations were found for several ions and for some ions and their environment. The bromide ion provided a means to distinguish the Tertiary age waters (low bromide concentration) from the Cretaceous age waters (relatively high bromide concentration).

OP 173-67. Normalization and Absorption Correction of Arbitrary X-Ray Scattering Intensities of Paracrystolline Substances, by Sabri Ergun, James Bayer, and Wayne Van Buren. J. Appl. Phys., v. 38, No. 9, August 1967, pp. 3540-3544. A method has been developed for normalization and absorption correction of X-ray scattering intensities of paracrystalline substances; i.e., matter in a state intermediate between crystalline and amorphous states. In the method the equation for the observed intensities is transformed into a linear form $\Phi(s, \mu T) = K [1 + g(s, \mu T)] + Ki (s)$, where i(s) is the oscillatory part of the interference function. If a proper value)
{

is assigned to μT , a plot of Φ versus g yields a straight line (having a slope K) modified only by the oscillations of *i*. When MoK, radation is used, the period of such oscillations becomes small compared to the range of g. The mean value of *i* is zero in the medium- to high-angle range; therefore, a straight-line correlation of Φ with g to yield a slope having a value equal to that of the intercept allows the determination of μT and K with an accuracy within the precision of measurement of the scattered intensities. The method is readily programed for a computer.

OP 176-67. An Analytical Framework for Potential Ores, by Alvin Kaufman. Eng. and Min. J., v. 168, No. 6, June 1967, pp. 214-216. This paper explores and discusses the question of mineral reserves from the economic viewpoint. Mineral resources are the sum total of reserves, marginal resources, submarginal resources, and latent resources. Material exploitable under current conditions is considered a reserve. Potential ores, on the other hand, would be mineral materials demanding economic and technologic conditions more favorable than those currently existing. A variety of complex, intertwined factors affect the shift between potential ores and reserves.

OP 177-67. Design Data for Coal-Burning Open-Cycle MHD Systems. 1. Effect of Slog Formation on Duct Operation and Seed Recovery, by H. F. Feldmann, W. H. Simons, and D. Bienstock. Proc. Intersoc. Energy Conversion Eng. Conf., Aug. 13-17, 1967, Miami Beach, Fla., 1967, pp. 423-429. A mathematical model is presented which allows the computer computation of both the plasma and liquid slag phases from the combustion of "seeded" coal. Electrical and thermodynamic data for the plasma-liquid slag mixtures from the combustion of a potassium-seeded high-voltage bituminous coal are calculated using the model and the boundary between the plasma region and plasma-liquid slag regions determined. The mechanisms of seed loss in the slag are discussed, and the amount of seed loss as a function of controllable system parameters is presented. Computer data showing the effect of seed level and type on combustor temperatures, plasma electrical conductivity, and air pollution are also presented.

OP 178-67. Kinetics of Hydrogenotion of Benzhydrol and Related Compounds Under Hydroformyletion Conditions, by Yuan C. Fu, Harold Greenfield, Sol J. Metlin, and Irving Wender. J. Organic Chem., v. 2, No. 9, September 1967, pp. 2837-2841. The hydrogenation of benzhydrol. nuclear-substituted benzhydrols, triphenylcarbinol, and phenylmethylcarbinol under hydroformylation conditions with dicobalt octacarbonyl catalyst appears to proceed via an acidbase reaction between cobalt hydrocarbonyl and aromatic carbinol to give an oxonium salt (I), followed by loss of water to form a complex (II); e.g., Ph.CHCo(CO). for benzhydrol. The formation of complex II is the rate-determining step. Complex II hydrogenates to give an aromatic hydrocarbon as the product. The rate of the overall reaction is dependent on the aromatic carbinol concentration, hydrogen pressure, and dicobalt octacarbonyl concentration and is also affected by the structure of the carbinol. Unlike the hydrogenation of aldehydes or the hydroformylation of olefins, the hydrogenation of these aromatic carbinols is not inhibited by excess carbon monoxide.

1

į

1

OP 179-67. Effect of Hydrocarbon Type on Reactivity of Exhaust Gases, by R. W. Hurn, Basil Dimitriades, and R. D. Fleming. SAE Progress in Technology, v. 12, 1967, pp. 1-9. Unburned hydrocarbons and other products of combustion are recognized as contributors to photochemical air pollution. The work reported here was a first approach to finding an expression of exhaust gas quality—or compositional characteristic—that would associate directly with the photochemical activity of the composite sample. Olefins, aromatics, and partial oxidation products have been cited as the principal smog precursors in exhaust gas. However, results of this study indicate that, for the general case, collective determination of these classes provides an unreliable indication of reactivity. The findings are expected to be useful in further development of methods to measure—or predict—the air pollution potential of exhaust gas with increased reliability. .

OP 180-67. Cool and Sulfur Diaxide Pollution, by Harry Perry and J. H. Field. ASME Preprint 67-WA/APC-2, November 1967, 9 pp. The scope of the air pollution problem is briefly reviewed. Sulfur oxides comprise less than 15 percent of total emissions but are of considerable present interest because most arise from combustion of relatively low-cost coal and residual oil. Emission limitations for sulfur oxides in several areas are cited. Ten general methods are enumerated to reduce urban levels of sulfur oxides, and their applicability is discussed. An up-to-date review is given of methods to remove sulfur from coal prior to combustion, of injection of limestone or dolomite into the boiler for in-process sulfur oxides from stack gases.

OP 181-67. Methods for Producing Alumina From Clay-An Evoluction, by F. A. Peters, R. C. Kirby, and K. B. Higbie. J. Metals, v. 19, No. 10, October 1967, pp. 26-34. This paper summarizes and compares Bureau of Mines cost estimates for seven selected processes for producing metallurgical-grade alumina from clay. Processes discussed include acidleaching, alum intermediate, and alkaline-sinter techniques. The effects of varying the principal operating-cost components—clay, reagents, electricity, fuel, and labor—are presented. Individual nomographs were prepared that permit easy assessment of several processes deemed most likely to be of commercial interest.

OP 182-67. Differential Pressure Measurement Problems and Techniques, by H. P. Richardson, John L. Gordon, David Cummins, and R. A. Guereca. Proc. 22d Annual ISA Conf. Part I. Measurement Standards Instrumentations, v. 22, pt. 1, September 1967, Preprint M3-3-PMA-67, 7 pp. Differential pressure transducer calibrations at 1 atmosphere are observed to shift as system pressures change. A technique and apparatus are described which are capable of providing 0.01 percent error calibrations above 2 psid for elevated system pressures. Transducer data below 2 psid, to 2,000 psia, are presented and related to sensitivity shifts and obtainable accuracy.

OP 183-67. Progress in High-Temperature Electrostatic Precipitation, by C. C. Shale. J. Air Pollution Control Assoc., v. 17, No. 3, March 1967, pp. 159-160. Current-voltage relationships for negative corona are given for a pilot-scale electrostatic precipitator with 3-inch electrode spacing at 80° to 1,500° F and 35 to 80 psig. Direct comparison is made with the electrical characteristics for a 1-inch spacing at 1,200° F over the same pressure range. Experimental results on both spacings agree well with electrostatic theory. Initial dust removal effi-

OUTSIDE PUBLICATIONS

ciencies for the pilot-scale precipitator ranged from 90 to 98 percent at 1,460° F and 80 psig, but continuous operation was not achieved owing to excessive thermal expansion of the internal parts of the unit.

OF 184-67. The Enthalpies of Combustion and Formation of Propylamine, Isopropylamine, and tert-Butylamine, by Norris K. Smith and William D. Good. J. Chem. and Eng. Data, v. 12, No. 4, October 1967, pp. 572-573. The enthalpies of combustion of propylamine, isopropylamine, and tert-butylamine were determined by oxygen-bomb calorimetry as part of a continuing systematic study of the thermodynamic properties of organic nitrogen compounds.

OP 185-67. The Enthalpy of Formation of Triethylamineborane, by Norris K. Smith and William D. Good. J. Chem. and Eng. Data, v. 12, No. 4, October 1967, pp. 570-571. The enthalpies of combustion and formation of trimethylamineborane were determined by rotating-bomb combustion calorimetry.

OP 186-67. Coal Injection in an Experimental Blast Furnace, by P. L. Woolf and H. H. Lowry. AIME Ironmaking Proc., v. 25, 1967, pp. 217-220. Injection of coal through the tuyeres of the Experimental Blast Furnace provided an effective means of reducing coke consumption. Replacement of coke at constant blast moisture was approximately pound for pound. Research was conducted cooperatively with Blast Furnace Research, Inc.

OP 187-67. Infrared Studies of Products of the Reaction Between Activated Zinc Sulfide and Potassium Ethyl Xonthote, by R. E. Coleman, H. E. Powell, and A. A. Cochran. Trans. AIME, v. 238, 1967, pp. 408-412. The article describes a detailed, fundamental study of one of the most important chemical reactions in industrial flotation processes, under various conditions found in industry.

OP 188-67. The Metal Carbonyl Cotalyzed Decarboxylation of Aromatic Anhydrides and Acids, by Sidney Friedman, Marvin L. Kaufman, and Irving Wender. Ann. N.Y. Acad. Sci., v. 145, No. 1, Oct. 18, 1967, pp. 141-149. Dicobalt octacarbonyl catalyzes the selective decarboxylation of benzenepolycarboxylic acids to yield benzoic, isophthalic, and terephthalic acids. This method can be used to convert acids obtained by oxidation of coal to a simple mixture rich in phthalic acids.

OP 189-67. Appalachian Region Oilfield Reservoir Investigation, Keener, Big Injun, and Squaw Sanda, Greenwood Oilfield, Central District, Doddridge County, W. Va., by Karl-Heinz Frohne. Producers Monthly, v. 31, No. 9, September 1967, pp. 14-16. The Keener, Big Injun, and Squaw sands were cored and logged in W. Leslie Rogers' E. H. Dotson well 1, Greenwood oilfield, Doddridge County, W. Va. The coring and logging operations are part of an extensive program by the Bureau of Mines to investigate the feasibility of secondary recovery in selected Appalachian oilfields. Geology of the field, lease development history, coring and logging operations, core and log analysis results, and lithology of the cored well are presented.

OP 190-67. Appelachian Region Oilfield Reservoir Investigations, Clinton Sand, S. S. Fry South Oilfield, Rose Township, Carroll County, Ohio, by C. David Locke. Producers Monthly, v. 31, No. 10, October 1967, pp. 11-13. Approximately 112 feet of core was taken from the Stray, Red, and White Clinton sands; and geophysical well logs were run in Belden & Blake Oil Production's Smith-Evans well 4, S. S. Fry South oilfield, Rose Township, Carroll County, Ohio. This well is producing from the White Clinton sand, while other wells in the area frequently produced from both the Red and White Clinton intervals. Both of these zones usually respond well to hydraulic fracturing. Core analysis showed that the average porosity for the productive zones in the cored well was about 5 percent and the average air permeability was less than 1 millidarcy. The work summarized in this report is part of an effort to evaluate secondary-recovery possibilities for the Clinton sand in this area of Ohio.

E

E

b

ſ

\$

f

)

Ł

OP 191-57. Evaluation of Crude Oils, by C. M. McKinney. In Petroleum Processing Handbook, ed. by W. F. Bland and R. L. Davidson. McGraw-Hill Book Co., New York, 1967, pp. 2-1 through 2-56. The Bureau of Mines routine analysis procedure is described and data interpretation methods are explained. Tables are included showing data on 401 domestic and 96 foreign crude oils.

OP 192-67. Fracturing Oil Shale With Electricity, by N. M. Melton and Theodore S. Cross. Colorado Sch. Mines Quart., v. 62, No. 3, July 1967, pp. 45-61. The article discusses the preliminary laboratory and field experiments that were made to evaluate the use of electricity for fracturing oil shale.

OP 193-67. Improved Method for Chromatographic Determination of Helium in "Conservation" Gas Streams, by C. A. Seitz and S. E. Churchwell, J. Gas Chromatography, v. 5, November 1967, pp. 566-569. A procedure was developed for precise analysis of helium in the 45- to 65-percent and 90- to 100-percent ranges ($\sigma = 0.04$ percent) using standards prepared by the weight method.

OP 194-67. X-Ray Diffraction Data of Aluminocopiapite, by James H. Jolly and Helen L. Foster. Am. Mineral., v. 52, July-August 1967, pp. 1220-1223. Aluminocopiapite, essentially (Mg.Fe²⁺)(Fe³⁺,Al), (SO₄)₄(OH)₂·20H.O, has been identified on the basis of chemical and optical analysis from material collected in Alaska. The X-ray diffraction data on this aluminocopiapite should be useful in identifying this varietal type of copiapite.

OP 195-67. Autoxidation of Three 1-Alkylpyrroles, by E. B. Smith and H. B. Jensen. J. Org. Chem., v. 32, December 1967, pp. 3330-3334. Self-initiated autoxidation of 1-methylpyrrole, 1-isopropylpyrrole, and 1-butylpyrrole formed peroxidic polymers and carbonyl compounds thought to arise from peroxide decomposition. Four of these carbonyl compounds were isolated from 1-methylpyrrole oxidation products, and spectral examination detected their homologs in oxidation products of the other two pyrroles. It is suggested that 1-alkpyrroles react with oxygen by a free-radical peroxy addition process typical of conjugated dienes.

OF 196-67. Characterization of Non-Hydrocarbon Constituents of Petroleum by Microhydrogenation, by C. J. Thompson, H. J. Coleman, R. L. Hopkins, and H. T. Rall. Proc. 7th World Petrol. Cong., Apr. 2-9, 1967, Mexico City, D.F., 1967, pp. 93-108. A microhydrogenation technique, developed specifically for use in sulfur-compound identification studies, has been successfully applied to oxygen, nitrogen, halogen, and metal-containing compounds. By means af vapor-phase catalytic hydrogenation, the hetero-atom is quantitatively removed from the molecule, leaving a paraffin or cycloparaffin whose carbon structure has not been altered. Identification of the produced hydrocarbon identifies or contributes to the identification of the precursor. Such identifications would otherwise be difficult or impossible in many instances because of the limited number of reference compounds available. The method is rapid and quantitative and will handle samples as small as 5×10^{-6} ml. Data are presented showing the application of this technique to pure compounds and mixtures of pure compounds.

OP 197-67. Extracting Alumina from Silicates by Melting, Guenching, and Sulfuric Acid Leaching, by H. G. Iverson and H. Leitch. J. Metals, v. 19, No. 12, December 1967, pp. 28-31. More than 95 percent of the alumina was extracted from various silicates, such as anorthosite, clay, and kyanite, containing 30 to 45 percent alumina, in the melting-quenchingsulfuric acid leaching experiments conducted by the Bureau of Mines. Requirements for optimum extraction consisted of quenching the melted materials to a completely amorphous state and adjusting the weight ratio of SiO₂ to CaO + Na₃O in the quenched product within the range of about 3.0 to 3.7. At higher ratios recovery of alumina decreased and at lower ratios gelation of the leach slurry ensued. The pregnant solution was readily separable from the leached residues, a basic sodium aluminum sulfate was precipitated from the solution at 200° C, by hydrolysis, and alumina was produced from the precipitate.

OP 198-67. A Survey of Other Selected Latin American Countries, by Sumner M. Anderson. Proc. Council of Economics, AIME, Annual Meeting, Feb. 28-Mar. 2, 1966, New York, 1966, pp. 376-388. This paper discusses the economic progress that is being made by Latin American countries, with emphasis on Argentina, Bolivia, Colombia, Chile, and Peru.

OP 199-67. The Interindustry Structure of the U.S. Mining industries, by Kung-Lee Wang and Robert G. Kokat. Proc. Council of Economics, AIME, Annual Meeting, Feb. 28-Mar. 2, 1966, New York 1966, pp. 241-267. This paper is a condensed version of IC 8338, which is a report of the findings of a technical economic research study to determine the inputoutput relationships of the U.S. mining industries for the year 1958.

OP 200-67. Water Sensitivity Tests on Cores From Illinois, Indiana, and Kentucky, by Eliot J. White and Oren C. Baptist. API Drilling and Production Practice, 1966, pp. 92-99. The Bureau of Mines tested cores from 35 wells from 14 producing zones in the tristate area of Illinois, Indiana, and Kentucky to determine why rates of water injection were apparently low in some zones. Since only minor amounts of clay minerals are present in these sandstones, it is concluded that permeability reduction results from the movement of dislodged silica particles and other material, including the clays. Both single-phase and two-phase permeability measurements, however, showed that most samples have only low to moderate sensitivity to water and that permeability reduction from particle movement is usually not large. The average effective permeability to water was considerably lower than that to oil during two-phase flow, which is typical of most reservoir rock systems. It can be expected, therefore, that high injection pressures will be required to waterflood thin zones of low permeability.

.

ł

ł

1

1

1

OP 201-67. Thermodynamic Properties of Compressed Gases, by Roland H. Harrison, Richard T. Moore, and Donald R. Douslin. Proj. AF-9713 Task 9713-02, May 1966, 31 pp.; AD 487 591. Thermodynamic properties for pure methane, pure tetrafluoromethane, a 50-percent methane-50-percent tetrafluoromethane mixture, and a 25-percent methane-75-percent tetrafluoromethane mixture were computed. The values of the thermodynamic properties were determined over the same range of variables (pressure-volume-temperature) as measured, namely, 0° to 350° C at intervals of 25°, 0.75 and 1.0 to 12.5 mole per liter density at intervals of 0.5 mole per liter and at pressures from 3 to 400 atmospheres. Values of heat content, entropy, Gibbs energy, heat content function, activity coefficient, and Gibbs energy functions are tabulated.

OP 202-67. Food From Cael-Derived Materials by Microbiel Synthesis, by Melvin P. Silverman, Joan N. Gordon, and Irving Wender. Nature, v. 211, No. 5050, Aug. 13, 1966, 735-736. Yeasts grown on certain coal-derived materials give protein in as high a yield as can be obtained from the best petroleum substrates. Fischer-Tropsch synthetic fuel fractions are excellent substrates for food production; a low-temperature coal tar fraction may also be used.

CP 203-67. World Demand for Mineral Products and the Shifting Supply of Mineral Raw Materials, by Alfred Petrick, Jr. Proc. Council of Economics, AIME, Los Angeles, Calif., Feb. 19-23, 1967, pp. 69-124. The objective of this paper is to examine trends in world demand, to analyze corresponding shifts in world supply of some major minerals, and then to interpret the implications of these changes for the future.

 OP 1-68. A Simple Method for Determining the Volume of Closed Containers, by C. A. Seitz and David
 E. Emerson. Anal. Chem., v. 40, No. 1, January 1968, pp. 260-262. A procedure including equations for determining volume is given. An accuracy of 0.02 cm³ for a 10-cm³ volume is obtained.

OP 2-68. Inverse Gas-Liquid Chromatographic Studies of Asphalt. Comparison With Analyses by Fractionation, by T. C. Davis and J. C. Petersen. Anal. Chem., v. 39, No. 14, December 1967, pp. 1852-1857. Results of analyses of asphalts by inverse gas-liquid chromatography (GLC) have been compared with results of analyses by the Kleinschmidt chromatographic fractionation and the Rostler and Sternberg sulfuric acid precipitation procedures. Relationships between the two fractionation techniques are indicated.

OP 3-68. A Preliminary Study of Vapor Deposition of Rhenium and Rhenium-Tungsten, by J. G. Donaldson, F. W. Hoertel, and A. A. Cochran. J. Less-Common Metals, v. 14, No. 1, January 1968, pp. 93-101. The conditions for the most efficient vapor deposition of rhenium and rhenium-tungsten alloys were determined and the physical properties and microstructures of the products were studied.

OF 4-68. Techniques for Separating and Identifying Nitrogen Compounds in Petroleum and Shale Oil, by W. E. Haines, G. L. Cook, and G. U. Dinneen. Proc. 7th World Petrol. Cong., v. 9, December 1967, pp. 83-92. Nitrogen compounds are a major constituent of oil produced from the Green River oil shale and an important, though minor, constituent of petroleum. This paper summarizes the techniques used to separate and identify the nitrogen compounds in petroleum and shale oil.

ł

OP 5-68. Promoters for Carbon Monexide Reduction of Wussite, by S. E. Khalafalla and P. L. Weston, Jr. Trans. Met. Soc. AIME, v. 239, October 1967, pp. 1494-1499. Small amounts of alkali and alkaline earth metal oxides exert a strong accelerating effect on the carbon monoxide reduction of wustite to iron. The extent of the reaction rate enhancement is found to be proportional to the ionic radius and electronic charge of the promoter additive. Increasing the promoter concentrations accelerates reaction up to a maximal point, beyond which further increaes in promoter content exerts a less beneficial and, eventually, a deleterious effect. This phenomenon occurs more readily with increasing oxide basicity and establishes a limit to the reaction rate acceleration by the various promoters. The results can be explained by Vol'kenshtein's theory of lattice disturbance.

OP 6-68. Fire Hazards of Ammonium Nitrate-Sulfur Systems, by Charles M. Mason, David R. Forshey, and Frank J. P. Perzak. Agricultural and Food Chem., v. 15, No. 6, November-December 1967, pp. 954-966. The addition of sulfur to ammonium nitrate-based fertilizers has raised questions regarding the hazard of these mixtures when exposed to fire. Several techniques were used to evaluate this hazard. Sulfur has the same effect on detonability as other fuels when added to ammonium nitrate or ammonium nitrate-sulfur mixtures was about the same as ammonium nitrate mixed with fuel oil or polyethylene.

OP 7-68. Nonmetal Elements and Compounds, by J. C. Morris, D. R. Latham, and W. E. Haines. Anal. Chem. Ann. Rev., v. 39, No. 5, April 1967, pp. 171R-175R. This is the eighth in a series of reviews of analytical chemistry in the petroleum industry. It reviews the progress of analytical chemistry for sulfur, nitrogen, and oxygen compounds in petroleum for 1964-65.

OP 8-68. Separation of Sulfoxides From Petroleum Fractions by Cation Exchange Resin Chromatography, by I. Okuno, D. R. Latham, and W. E. Haines. Anal. Chem., v. 39, No. 14, December 1967, pp. 1830-1833. Petroleum chemists have generally considered that the bases in petroleum are nitrogen compounds. Evidence is presented to show that a portion of the weak bases are sulfoxides.

OP 9-68. Relationship Between Gravimetric Respirable Dust Concentration and Midget Impinger Number Concentration, by Murray Jacobson and T. F. Tomb. Am. Ind. Hyg. Assoc. J., v. 28, November-December 1967, pp. 554-556. Comparison of data obtained using size-selective gravimetric and midget impinger samplers shows that 1 milligram of respirable dust per cubic meter is equivalent to a number of concentration of 5.6 million particles per cubic foot.

OP 10-63. Structural Study of Asphalts by Nuclear Magnetic Resonance Spectroscopy, by Jerry W. Ramsey, Francis R. McDonald, and J. Claine Petersen. I&EC Product Research and Development, v. 6, December 1967, pp. 231-236. The usefulness of a nuclear magnetic resonance method for the determination of average structural formulas and formula weights of asphalts is evaluated.

OP 11-68. Organic Composition of Kentucky's New Albany Shale: Determination and Uses, by John Ward Smith and Neil B. Young. Chem. Geol., v. 2, No. 2, 1967, pp. 157-170. Elemental compositions were determined for total organic matter in three Devonian New Albany Shale sections of Kentucky. Application to characterizing black shales illustrates the uses of these compositions.

OP 12-68. Hydrogen Cyanide Produced from Caol and Ammonie, by G. E. Johnson, W. A. Decker, A. J. Forney, and J. H. Field. I&EC Process Design and Development, v. 7, No. 1, January 1968, pp. 137-144. Hydrogen cyanide has been produced by reaction of powdered coal with ammonia at 1,250° C. Yields as high as 0.7 cu ft/cu ft of NH₃ consumed were obtained. The resulting ammonia conversion of about 75 volume-percent approximates conversions obtained commercially in processes utilizing natural gas with platinum catalysts. Coals of higher volatile matter contents gave the best yields of hydrogen cyanide. Coal gases of higher methane contents when reacting with ammonia gave the higher yields of hydrogen cyanide. Cost studies indicate that hydrogen cyanide can be profitably coproduced with carbon black from coal and ammonia in a 40,000,000-pound-per-year-capacity plant at the corrent market price of hydrogen cyanide, if credit is taken for carbon black and char byproducts. These figures are based on heating the reactor electrically. If a cheaper method were devised, the economics of the process would be more favorable.

OP 13-68. Low-frequency Infrared Region Aids Cool Minerals Research, by Clarence Karr, Jr., Patricia A. Estep, and John J. Kovach. Instr. News, v. 18, No. 2, 1967, pp. 1, 5-6. Infrared spectroscopy extended to 200 cm⁻¹ is shown to be a valuable tool for mineral identification in samples of coal, mine refuse, and boiler deposits.

OF 14-68. High B.t.u. Gas by the Direct Conversion of Coal, by Paul S. Lewis, Sam Friedman, and Raymond W. Hiteshue. Fuel Gasification. ACS Advances in Chem. Ser. 69, 1967, pp. 50-63. The direct conversion of untreated coal into high-Btu gas offers means for augmenting natural gas supplies. The Bureau of Mines reports data for the dilute-phase hydrogenation of high-volatile A bituminous coal and for the hydrogenation of partially devolatilized coal (char) in a moving bed. Conditions are 1,500 and 3,000 psig and 725° C for coal and 700° and 900° C for char. The concept of integrating these two operations into a continuous process is discussed. Stream flows and compositions are given for a conceptional plant producing 90 million std cu ft per day of 916 Btu gas. Results indicate that development of a process is feasible, and the work is continuing.

OP 15-68. An infra-red Study of Hydrogen Bonding in Asphalt, by J. C. Petersen. Fuel, v. 46, No. 4 and 5, July-September 1967, pp. 295-305. Hydrogen bonding in asphaltic residua was investigated by studying the OH and NH stretching bands of whole and diluted samples. Phenolic and/or alcoholic OH and pyrrole-type NH were found to exist largely as hydrogen-bonded complexes.

OP 16-68. The Hydrocarbon Constituents of Petreleum and Some Possible Lipid Precursors, by Harold M. Smith. J. Am. Oil Chem. Soc., v. 44, No. 12, December 1967, pp. 680-690. This report presents a complete qualitative picture of our knowledge of the hydrocarbon composition of petroleum as of April 1965. The material is presented in detail on an imaginative map called the Hydrocarbon Hemisphere which depicts the hydrocarbons identified in petroleum. All compounds are placed on the map ac1

í

I

cording to boiling point. The accompanying text illustrates by structural formulas the several types of hydrocarbons identified, presents some quantitative data, and points out the possible geochemical significance of a number of the compounds with particular reference to lipids as posible source material.

OP 17-68. Temperature Controller for Thermoluminescence Studies, by Robert A. Wolf and Merle L. Bowser, Rev. Sci. Instr., v. 38, No. 12, December 1967, pp. 1806-1807. An electronic circuit is described which controls the rate of heating of mineral specimens used in studies of chemiluminescence and thermoluminescence. The temperature of the specimens can be heated from 25° C to 600° C at rates from 9° C per minute to 9° C per second.

OP 18-68. Zeta Potential Control: Its Application in Coal Preparation, by A. F. Baker and K. J. Miller. Min. Cong. J., v. 54, No. 1, January 1968, pp. 43-44. Recognition of the diverse applications of zeta potential control in mineral dressing led Bureau of Mines investigators to take a closer look at the tool for possible uses in coal preparation. Among processes under study are thickening, clarification of effluent water, filtration, dense-medium separation, and froth flotation.

.

1

]

1

J

1

J

(

OF 19-68. Megnetic Susceptibilities of Cools, by Doris Bivins and Sabri Ergun. Science, v. 169, No. 3810, Jan. 5, 1968, p. 83. Magnetic susceptibilities are reported for seven American coals of different rank. The susceptibilities were measured in magnetic fields parallel and perpendicular to the bedding planes. The coals have diamagnetic susceptibilities approximating -0.5×10^{-6} centimetergram-second unit. Only anthracite shows significant magnetic anistropy.

OP 20-68. Corolytic Gasification of Shele Oil, by P. L. Cottingham and H. C. Carpenter. In Fuel Gasification. Adv. in Chem. Ser. 69, 1967, pp. 180-189. Crude shale oil was hydrogasified at 1,000 pounds pressure over depleted uranium and cobalt molybdate catalysts at temperatures in the range of 880° to 1,102° F with depleted uranium and of 974° to 1,196° F with cobalt molybdate. With both catalysts the higher reaction temperatures produced greater hydrocarbon gas yields, greater percentages of methane in the gas, and greater methane yields expressed as percentage of conversion of the feed stock. The largest yields (4,340 cubic feet per barrel) and largest hydrocarbon gas yield (5,725 cubic feet per barrel) were obtained at the highest temperature (1,196° F) and lowest space velocity (0.25 $V_{..}/V_{..}/n_{1}$ used. At these conditions methane yield was 75.8 volume-percent of the hydrocarbon gas and 49.7 percent of stoichiometric.

OP 21-68. Quantitative Infrared Multicomponent Determination of Minerals Occurring in Coal, by Patricia A. Estep, John J. Kovach, and Clarence Karr, Jr. Anal. Chem., v. 40, No. 2, February 1968, pp. 358-363. The quantitative multicomponent analysis of five commonly occurring mineral constituents of coal-quartz, calcite, gypsum, pyrite, and kaolinite —is described for the extended infrared region.

OF 22-68. An Improved Process for Making Prereduced Iron Ore Pellets, by M. M. Fine and R. B. Schluter. Ann. Meeting, AIME, New York, Feb. 25-29, 1968, Prepirnt 68-B-43, 22 pp. Commercial and experimental processes for manufacturing prereduced iron ore pellets ordinarily operate in the 2,100° F range. The authors have uncovered a group of simple chemical and mineral substances which accelerate liquid-phase sintering of metallic iron yet do not deter reduction of iron oxides to metal. Some of these compounds may be introduced as gases to the kiln atmosphere, others as solids are added to the reductants (e.g., lignite). The net result is that well metallized iron pellets with good crushing strength can now be produced at a little over 1,800° F. Both laboratory and continuous data are presented.

OP 24-68. High-Purity Venadium, by K. P. V. Lei and T. A. Sullivan. J. Less-Common Metals, v. 14, No. 1, January 1968, pp. 145-147. The preparation of high-purity vanadium by a two-cycle molten-salt electrorefining process is described. Vanadium of 99.99-percent purity was prepared from 99.47 percent vanadium by refining in a KCl-LiCl-VCl₂ electrolyte at 620° C.

OP 25-68. Comment on the Granato-Hikata-Lucke Equations for the Recovery of Damping Following Plastic Deformation, by R. R. Nothdurft and A. E. Schwaneke. Scripta Met., v. 1, No. 3, December 1967, pp. 143-144. The purpose of the comment is to point out some errors that crept into the Granata-Hikata-Lucke equations about 10 years ago and that have been propagated through writings by other researchers. Incidentally, a reply to this comment by one of the writers referred to in the comment and acknowledging the pertinence of thearticle is contained in the same isue of Scripta Metallurgica.

OP 26-68. Surface-Joint Patterns Predict Wellbore Fracture Orientation, by William K. Overbey, Jr., and Robert L. Rough. Oil and Gas J., v. 66, No. 9, Feb. 26, 1968, pp. 84-86. Based on the premise that fractures induced hydraulically in subsurface rock tend to seek or follow the natural flaws (joints) in the rock, the Bureau of Mines began a comprehensive study of surface-joint patterns and orientations and their relationship to the orientation of induced subsurface fractures. Preliminary studies in Bradford oifield are promising for this method of predicting fracture orientation.

OP 27-58. Air Pollution and the Coal Industry, by Harry Perry and J. H. Field. Trans. SME, December 1967, pp. 337-345. To alleviate pollution, more restrictive legislation is being enacted, either limiting emission of pollutants or the type of fuel that can be utilized. The nature and magnitude of air pollution problems affecting the mining, preparation, coking, and combustion of coal are described. Methods for combating particulate emissions by use of mechanical separators and electrostatic precipitators are discussed. Proposed methods of meeting the problem of gaseous emissions that are currently receiving considerable attention are described, with special emphasis on methods to decrease pollution by sulfur oxides.

OP 28-68. Conformational Analysis of Ethanethial and 2-Propenethial, by Don Smith, J. Paul Devlin, and Donald W. Scott. J. Molecular Spectroscopy, v. 25, No. 2, February 1968, pp. 174-184. Evidence for the existence of different molecular conformations of ethanethial and 2-propanethial was obtained by lowtemperature infrared spectroscopy. Conformations of C. symmetry occur exclusively in crystalline ethanethial and Crystals II of propanethial and show up more prominently in the spectra of liquids and gases. However, both C₁ and Cs forms occur in Crystals I of 2-propanethial. Energy differences between the forms were estimated from calorimetric data.

1

OP 29-68. Effect of Carbonization Conditions on the Composition of Low-Temperature Tar From Pittsburgh-Seam Bituminous Coal, by Clarence Karr, Jr., Joseph R. Comberiati, Patricia A. Estep, and Jesse O. Mapstone, Jr. J. Inst. Fuel, v. 40, December 1967, pp. 561-563. The influence of carbonization temperature, carrier gas, and carbonization method on the composition of five different low-temperature tars from a bituminous coal is shown.

OP 30-55. New Fra Beckens for North Dakota Lignite, by Robert C. Ellman. Morning Pioneer, 2d Ann. North Dakota Industrial Ed., 1968, p. 14. Greater utilization of North Dakota lignite should result in increased capital investment and better employment opportunities for the presently predominantly farming and ranching economy.

OF 31-68. Energy Dispersion X-Rey Analysis Using Radioactive Sources, by William J. Campbell. In X-Ray and Electron Methods of Analysis. Plenum Press, New York, March 1968, pp. 36-54. There are three types of radioisotope sources—a-, β -, and γ -emitters. Typical α - and β -emitters are Po²¹⁰ and H³/Zr, respectively. Generally β -emitters are used to generate primary X-rays which, in turn, excite secondary X-rays in the sample. Gamma sources may be either monochromatic, such as Fe⁵⁵ (Mn K) or high-energy γ -emitters used in conjunction with a secondary emitter Am²⁴¹-Cs.

In nondispersive analysis, energy discrimination is achieved by selective filtration, balanced filters, differential absorption in the detector, and electronic pulse amplitude discrimination. All of these methods may be used individually or in various combinations. Applications of these portable analyzers include prospecting and mining operations, monitoring of metallurgical processes, and automatic sorting of mail.

OP 32-68. Alcohols From a Neutral Fraction of Lignite Tar, by Sam Friedman, P. S. Lewis, and R. W. Hiteshue. High Pressure Technology, Chem. Eng. Prog. Symp. Ser., AIChE, v. 63, No. 76, pp. 1-6. Olefins in tar can be converted to high-molecularweight alcohols in one step. Neutral oil, obtained from tar produced by carbonizing Texas lignite, containing 36 volume-percent olefins, was reacted with synthesis gas (2 Hz: 1 CO) at 185° C in a continuous system with dicobalt octacarbonyl as catalyst. Studies of variables were made using catalyst concentrations of 0.5 to 2.0 weight-percent cobalt, based on neutral oil, with residence time between 1 and 8 hours and pressure between 3,000 and 6,000 psi. Alcohols having carbon numbers in the range C₁₀ to C₂₄ were obtained with a maximum yield of 24 weight-percent, based on neutral oil, at 4,500 psi, 4-hour residence time, and 2.0 weight-percent cobalt. An increase in either residence time, pressure, or catalyst concentration resulted in higher yields but had little or no effect on the relative distribution of the alcohols. About 60 volume-percent of the alcohol

OP 33-68. A Comparison of Five Spectrochemical Methods

for the Anolysis of High Purity Zinc, by Robert C. Gabler, Jr., and Maurice J. Peterson. Appl. Spectroscopy, v. 22, No. 1, January-February 1968, pp. 19-23. A comparison was made of five optical spectrographic methods for the analysis of highpurity zinc. Analytical capability was required for the determination of Ag, Al, Cd, Cu, Fe, Hg, Mg, Pb, and Sn in the range from 1 to 100 ppm. The factors considered were sensitivity of detection, handling ease, possible sources of contamination, analysis time, and precision and accuracy. The data show that a metal-direct arcing procedure is rapid, has high sensitivity of detection, and requires a minimum of sample handling. Solution-residue dc arc, point-to-plane ignited ac arc, and zinc oxide dc-arc procedures gave better reproducibility but lacked the required sensitivity of detection.

OP 34-68. The Production of Primary Titanium Metal, by Kenneth B. Higbie and John W. Stamper. Titanium for the Chemical Engineer. AIChE Materials Conf., Apr. 1, 1968, Philadelphia, Pa., DMIC Memo. 234, pp. 8-12. This report discusses titanium mineral resources, mining and mineral processing, and metal production technology. Production of titanium metal from its source compounds includes the following methods: magnesium reduction of titanium tetrachloride, sodium reduction of titanium tetrachloride, metallic reduction of titanium oxide, and electrolytic reduction of titanium tetrachloride. Titanium sponge can be consolidated to ingot form by powder-metallurgy techniques, but virtually all commercial ingots today are produced by the double consumable-electrode arc-melting process in an inert atmosphere or vacuum.

OF 35-68. Increasing Well Deliverability by Chemical Enlargement of Wellbores, by Ray V. Huff and Larman J. Heath. Spring Meeting, Division of Production, API, Amarillo, Tex., Apr. 3-5, 1968, API Preprint 851-42-B, 14 pp.; Producers Monthly, v. 32, No. 7, July 1968, pp. 2-6. Research was conducted by the Bureau of Mines in cooperation with the American Gas Association to investigate a phenomenon of chemical rock disaggregation. Laboratory and shallow field experiments were conducted using hydrazine hydrate (N₂H₄·H₂O) which was effective in disaggregating rock. Bandera, Bartlesville, Berea, Bigheart, Bradford 3d, Carrizo, Cottage Grove, Noxie, and Prue (Squirrel) sandstones were disaggregated. A theory has been developed which ascribes the phenomenon to the expansion of kaolinite by the absorption of aqueous solutions of hydrazine. X-ray diffraction analyses showed that the basal spacing of kaolinite was increased from 7.16 to 10.41 A. In a near-surface field experiment the diameter of a wellbore was enlarged from 4 to 12 inches. Clays were expanded by the hydrazine treatment, and this expansion resulted in a horizontal fracture and vertical tension fractures.

OP 36-68. High-Purity Titanium Electrowon From Titanium Tetrachloride, by O. Q. Leone, H. Knudson, and D. Couch. J. Metals, v. 19, No. 3, March 1967, pp. 18-23. Titanium with a Brinell hardness of 70 was electrowon from TiCL in a LiCl-KCl-TiCl, electrolyte operated at 520° C using a ceramic diaphragm-type cell.

OF 37-68. Fracturing Oil Shale With Electricity, by Noel M. Melton and Theodore S. Cross. J. Petrol. Technol., v. 20, No. 1, January 1968, pp. 37-41. Laboratory studies to evaluate the use of electricity for fracturing various grades of Colorado oil shale were started in 1964. Breakdown voltages varied greatly from one grade of shale to another, ranging from a minimum of 300 volts to a maximum of 15,000 volts. With few exceptions, the shale samples were readily fractured at relatively low current levels. On the basis of encouraging results obtained in the laboratory, experiments were expanded to field 1

i

tests to study electrical characteristics of oil shale when subjected to overburden pressure. These tests generally confirmed the laboratory experiments. Fracturing was accomplished at all electrode spacings used. The spacings varied from 3 to 129 feet. Based upon results obtained in these field experiments, additional fracturing tests were conducted in four shallow wells drilled in an oil formation. Some new permeable zones were created between wells. The induced permeability was improved by detonating two conventional nitroglycerin wellbore shots in one of the wells.

OP 38-68. Hydrogenation of Coal at Extreme Conditions, by Joseph A. Mima, Paul S. Lewis, Sam Friedman, and Raymond W. Hiteshue. Chem. Eng. Prog. Symp. Serv., v. 63, No. 76, 1967, pp. 55-61. An internally heated autoclave is described in which pressures up to 20,000 psi at temperatures up to 600° C were obtained. Product yields and distribution for the hydrogenation of high-volatile A bituminous coal were investigated. Coal conversions to liquids and gases of 90 percent at 480° C and 97 percent at 600° C were obtained at 20,000 psi without catalyst. Identical yields of organic liquids, 66 percent of the moisture- and ash-free coal, were produced at 480° C whether iron catalyst was present or not. With iron present in 1-percent concentration, based on moisture- and ash-free coal, the phenols content of the light oil was increased threefold by raising the pressure from 10,000 to 20,000 psi at 480° C, which also increased the yield of light oil by about 4 percent. The products at 600° were mainly methane and ethane, while the small yield of liquid was mainly benzene.

OF 39-68. Chromatographic Determinations of Column Dead Volume and Absolute Density of Adsorbents at Cryogenic Temperatures, by Al Purer, C. A. Hoffman, and D. A. Smith. J. Gas Chromatography, v. 6. March 1968, pp. 153-157. The determination of column dead volume and absolute density of column packing material for adsorption columns at cryogenic temperatures has been attained by a nondestructive method of column treatment.

OP 40-68. Constitutional Aspects of Oil-Shale Kerogen, by W. E. Robinson and G. U. Dinneen. Proc. 7th World Petroleum Congress, Mexico City, April 1967, Elsevier Publishing Co., Ltd., Essex, England, v. 3, 1967, pp. 669-680. The structure of the kerogen present in 12 domestic and foreign oil shales of different geologic age, environment, and source material was studied. Most of the observed differences appear to be related to the geologic age of the kerogen.

OP 41-68. Compression Waves Generated in Reck by Cylindrical Explosive Charges: A Comparison Between a Computer Model and Field Measurements, by A. M. Starfield and J. M. Pugliese. Internat. J. Rock Mechanics and Min. Sci., v. 5, No. 1, January 1968, pp. 65-77. A computer model is used to simulate the compressive strain waves generated in rock from the end detonation of long and short cylindrical explosive charges. The model synthesizes the strain wave by superposing the waves from detonation of a number of concentrated explosive charges. In situ strain data were recorded by strain gages mounted in a granite gneiss at various distances and positions with respect to 2½-foot and 27-foot charges of a high-pressure gelatin (HP) and a more slowly detonating mixture of prills and fuel oil (PFO). The good agreement between the strain data obtained in the field and the computer-generated data shows that the model can be used to predict the strain waves generated in rock by cylindrical explosives charges. For relatively short end-initiated HPG charges, the resulting strain is not spherically symmetric even at large distances in the rock. Furthermore the peak strains due to both long and short charges are shown to be greatly influenced by the detonation velocity of the explosive.

OP 42-68. Laser-Spork Excitation of Homogeneous Powdered Materials, by A. B. Whitehead and H. H. Heady. Appl. Spectroscopy, v. 22, No. 1, January-February 1968, pp. 7-12. The laser microprobe has been applied to the excitation of trace elements homogenously distributed in powdered materials. Precision of intensity ratios is about ±1 percent (coefficient of variation), and detection levels are comparable to those of the dc arc. Matrix effects were studied for four different materials and found to be significantly less than in the dc arc. Use of the probe as the source in a "universal" method is suggested.

OP 43-68. Development in Continuous Corbanization in the U.S., by D. E. Wolfson. Iron and Steel Eng., v. 45, No. 3, March 1968, pp. 69-75. Formcoke is being produced in two pilot plants and subsequently tested in experimental blast furnaces. One plant produces briquets from noncoking coal while the other operates on coking coal. The future of this process (along with other continuous methods) will depend on the economics of the processes as well as future furnace requirements and coking coal availability and cost.

OP 44-68. Improving Permeability in Underground Forma-tions-A Progress Report, by W. E. Eckard, J. L. Eakin, and Larman J. Heath. IOCC Bull., v. 9, No. 2, December 1967, pp. 54-70. Two new research projects have been initiated to achieve increased fluid flow capacity in oil and gas reservoirs, under-ground capacity in oil and gas reservoirs, underground gas-storage reservoirs, and in oil-shale for-mations using technology from the explosives and space industries. Bureau of Mines petroleum re-search engineers have injected and detonated a chemical explosive in an underground fracture system to alter formation permeability. To obtain some idea of the effectiveness of thermal methods in altering permeability, they have injected and burned a high-energy fuel-oxidant mixture in porous rock samples. Explosive fracture experiments have been conducted at depths to about 148 feet in an oil-shale formation using from 40 to 190 quarts of explosive. After detonation average air injection rate between wells, at essentially the preshot injection pressure, was improved from threefold to eightfold. Laboratory experiments have proved that combustion of a monopropellant within the rock interstices in two different types of sandstone specimens is technically feasible. Permeability increases have been achieved from 1.5- to 10.3-fold, although matrix temperature was raised only to approximately 450° C. Sandstone samples have been chemically altered and essentially complete disaggregation has been accomplished.

OP 45-68. Bureau of Mines Conducts Diamond Drilling Experiments, by W. E. Bruce. Mines Magazine, v. 58, No. 4, April 1968, pp. 17-21. Drillability experiments being conducted by the Bureau of Mines are described. These experiments, consisting principally of diamond drilling in the laboratory and field, are aimed at establishing indices for predicting rock drillability.

13474

OP 46-68. Chemistry of Waters From Some Louisiana Petroleum-Bearing Formations, by A. G. Collins, D. R. Thompson, and C. A. Pearson. Symp. on Developments in Petroleum Environmental Chem-Developments in Petroleum Environmental Chem-istry, Div. of Petroleum Chemistry and Div. of Water, Air, and Waste Chemistry, ACS Meeting, San Francisco, Calif., Apr. 2-5, 1968, Preprints, v. 13, No. 2, pp. E35-E41. To determine the relationship between subsurface brines and their environment and origin, 124 samples were taken from Louisiana petroleum-bearing formations and inter-pretations were made based on analysis of their dissolved constituents. Analyses were made for lithium, sodium, potassium, calcium, magnesium, strontium, barium, boron, chloride, bromide, iodine, bicarbonate, carbonate, and sulfate. The analytical methods used were developed by the Bureau of Mines. Samples obtained from the gulf coast area are Tertiary in age, whereas those obtained from northern Louisiana are Tertiary and Cretaceous in age. Analytical data were subjected to factor anal-ysis using a digital computer. Good correlations were found for the following: Total dissolved solids (TDS) and sodium, TDS and potassium, TDS and chlorine, lithium and calcium, lithium and strontium, sodium and chlorine, potassium and chlorine, cal-cium and bromide, and strontium and bromide. Loglog plots of a normal evaporite brine were made and compared with plots of the Louisiana waters. Bromide, calcium, and strontium can be used to distinguish the Tertiary waters from the older waters.

OP 47-68. Air Pollution Research in Relation to Coal's Future

in the Electric Energy Market, by Richard C. Corey. Combustion, v. 39, No. 10, April 1968, pp. 21-29. This article describes the problem of the emission of sulfur oxides to the atmosphere by coalburning electric power stations, the sulfur content of American coals, and research by the Bureau of Mines and others on removal of sulfur from coal and sulfur oxides from coal combustion products.

OP 48-68. Byproduct Uranium Recovered With New Ion Or 48-68. Byproduct Uranium Recovered With New Ion Exchange Techniques, by D. R. George, J. R. Ross, and J. D. Prater. Min. Eng., v. 20, No. 1, January 1968, pp. 1-5. A survey of the copper mining industry in Western United States revealed that uranium is almost universally present in the solutions resulting from leaching the waste ore dumps to recover copper. The U₃O₅ content ranges from about 2 to 15 npm and a potential production from about 2 to 15 ppm and a potential production of up to 1,000 tons of U_sO_s per year is indicated. A 6-week pilot plant test at the Bingham Canyon mine of the Kennecott Copper Corp. showed that the uranium is readily recoverable by ion-exchange techniques. The design of the new type of countercurrent ion-exchange columns and operation of the pilot plant are described.

Large Pawerplants Fired With Dakota Lignite, by Wayne R. Kube, Gordon H. Gronhovd, OP 49-68.

and James L. Elder. North Dakota Quart., v. 35, No. 3, Summer, 1967, pp. 87-93. This article gives a brief résumé of the development of lignite utilization and discusses the current and expected increase in lignite production resulting from the installation of large thermal-electric powerplants in North Dakota.

OP 50-68. Rock Mechanics and the Design of Structures in Rock, by Leonard Obert and Wilbur I. Duvall. John Wiley & Sons, Inc., New York, 1967, 650 pp. This ball. 650 pp. This book attempts to bring together and

present in one place the general fundamentals and pertinent information required for an understanding of rock mechanics and the design of structures in rock. More specifically this book contains (1) a brief mathematical treatment of stress, strain, elasticity, and inelastic effects to provide the reader with the necessary theoretical background for analyzing the stresses, strains, and deformations in structures; (2) a discussion of the methods and procedures for measuring the mechanical properties of rock and a measuring the mechanical properties of rock and a consideration of mechanisms of failure; (3) a de-scription of the instruments and procedures for measuring stress, strain, deformation, and other related quantities, together with results from both laboratory and field investigations; and (4) a dis-cussion of procedures based on both theoretical and empirical recults for designing applying and empirical results for designing, analyzing, and evaluating the stability of underground structures.

OF 51-68. Freignition Fhenomena in Small A-50/NTO Pulsed Rocket Engines, by H. E. Perlee, T. Christos, Y. Miron, and H. K. James. J. Spacecraft and Rockets, v. 5, No. 2, February 1968, pp. 233-235; discussion, No. 8, August 1968, p. 1008. The Bureau of Mines study of the hardstart phenomenon en-countered in the Aerozine-50/N₂O, pulsed rocket engine under simulated altitude conditions has con-centrated primarily on the preignition period, the time interval between the first appearance of pro-nellant in the combustion chamber and subsequent pellant in the combustion chamber and subsequent ignition. Results are given for propellant systems consisting of nitrogen tetroxide as the oxidant in combination with hydrazine, monomethylhydrazine, unsymmetrical dimethylhydrazine, or Aerozine-50.

OP 52-68. The Shock Sensitivity of Explosive Films, by Richard W. Watson, John Ribovich, and Frank C. Gibson. Pyrodynamics, v. 6, 1968, pp. 39-51. Using a highly instrumented two-dimensional analog of the card-gap test, studies have been carried out to determine characteristics of the initiation and propagation of detonations in thin films of liquid explogation of detonations in thin films of liquid explo-sives. Both the high-velocity and low-velocity deto-nation regimes are observed to occur, depending upon film thickness, explosive material, and the strength of the initiating stimulus. The high-velocity detonations are observed to travel at velocities nearly equal to the ideal hydrodynamic detonation velocity for the nextinuous current under investigation. At for the particular system under investigation. At lower stimulus levels, low-velocity reactions are ob-served to take place; these have velocities both above and below the velocity of sound in the unreacted material. The qualitative characteristics of the low-velocity detonations in films are found to closely resemble those established for low-velocity detonaresemble those established for low-velocity detona-tions in liquid columns. A simple physical model, based on fluid cavitation, has been developed to de-scribe this latter case. In addition, the effects of desensitizing additives on the threshold values of the initiation stimulus required to produce high-velocity detonations or low-velocity detonations are discussed. Comparisons are then made between the behavior of the thin film systems and previously established behavior of detonating columns for the same explosives.

ŧ

ŧ

ſ

₽

Ĩ

OP 53-68. Electrowinning of Niobium, by M. M. Wong and D. E. Kirby. Electrochem. Technol., v. 6, No. 3-4, March-April 1968, pp. 119-123. Operating parameters for electrowinning of columbium from the KCI-KF-K3NbF--Nb3Os electrolyte system were studied. Successive electrodepositions from the optimum electrolyte composition with a replenishment of Nb_sO_s and K_sNbF_s after each deposition maintain a steady level of performance and produce metal with an average oxygen content of approximately 400 ppm.

OP 54-68. Respirator Responsibility, by Robert H. Schutz. AASE J., v. 13, No. 5, May 1968, pp. 6-8. There are three parts to the responsibility involved in respiratory protection. 1. The Bureau of Mines must be certain that its respirator approval schedules include all necessary requirements to insure that devices are safe and reasonably comfortable to use. 2. Manufacturers should make devices that perform in accordance with schedule requirements, must use nontoxic materials, and maintain high quality in the product. 3. The user must select the correct respirator for his work, use it in the proper manner, and maintain it in an approved condition.

OF 55-68. A Laboratory Investigation of High-Temperature Corresion on Fireside Surfaces of Coal-Fired Steam Generators, by S. A. Goldberg, J. J. Gallagher, and A. A. Orning. Trans. ASME, Series A, J. Eng. Power, v. 90, No. 2, April 1968, pp. 193-198. Three experimental approaches gave significant information on high-temperature fireside corrosion: 1. Sodium and potassium chlorides, injected through a gas flame, were deposited as such and then converted to sulfates on an iron surface. 2. Samples of mixed alkali and iron sulfates first showed decomposition and then formed melts at temperatures as low as 1,070° F. This temperature is within the range that might be expected for fireside surface temperatures on superheater and reheater tubes of large steam generators. 3. Alkali metal chlorides and sulfates, in partial coverage of metal discs and in a flue gas atmosphere, formed fused deposits at temperatures as low as 900° F. Complex alkali iron sulfates may cause corrosion either by direct electrolytic corrosion or by altering the normally protective iron oxide scale so that the metal is exposed to direct oxidative corrosion.

OP 56-68. X-Ray Absorption and Emission, by William J. Campbell and James D. Brown. Anal. Chem., Ann. Rev., v. 40, No. 5, April 1968, pp. 346R-375R. This 1968 review consists of a critical evaluation of new developments and tabular summaries of X-ray spectrography and electron probe microanalysis. A 695-item bibliography is included.

OP 57-68. Phase Relations in the Niobium-Gallium System, by L. L. Oden and R. E. Siemens. J. Less-Common Metals, v. 14, 1968, pp. 33-40. Niobium-gallium alloys and diffusion couples were studied in the composition range 0 to 70 weight-percent Ga by metallography, thermal analysis, electron microprobe, and X-ray diffraction. Five intermetallic compounds were identified; their tentative formulae, modes of formation, and melting or decomposition temperatures are as folows: (1) Nb₃Ga, peritectic, 1,900° ± 20° C; (2) Nb₃Ga₂, congruent, about 1,800° C; (3) NbGa, peritectic, 1.490° ± 20° C; (4) Nb₃Ga₃, peritectic, 1,280° ± 10° C. A eutectic reaction occurs between the first two compounds at 1,750° ± 25° C and 25 weight-percent Ga. The solubility of Ga in Nb decreases from 12 weight-percent at 1,900° C.

1

1

l

1

OF 58-68. Crystal Data for Sodium Tetragermanate, by J. H. Jolly and R. L. Myklebust. Acta Cryst.,
 v. B24, pt. 3, March 1968, p. 460. Single-crystal X-ray studies on sodium tetragermanate, Na₂Ge₄O₆, gave a₀ = 11.335 c₀ = 9.697, space group P6₆/m,Z =
 6. This colorless transparent compounds with ω =

1.731 and $\epsilon=1.773$ has a measured density of 4.41 g/cm³ (27° C). Indexed powder data are listed.

OP 59-68. In-Place Recovery of Shale Oil "Promising," B of M Scientist Says, by Harold W. Sohns. Oil Daily, Mar. 29-31, 1968, p. 10. The article describes briefly the advantages and problems of inplace retorting of oil shale, summarizes past and present research by the Bureau of Mines, and discusses the nature of future research.

OP 60-68. Reclaiming and Recycling Metals and Minerals Found in Municipal Incinerator Residues, by Carl Rampacek. Proc. Symp. Mineral Waste Utilization, March 27-28, 1968, pp. 124-131. This article describes the Bureau of Mines program to reclaim and recycle the metal and mineral values currently lost in incinerator residues. Studies to develop reliable methods for sampling and analyzing residues from grate-type and rotary-kiln furnaces and to define the residues as raw material for the metallurgist are summarized. Composition and bulk data are tabulated. The most promising procedure developed to date for separating the metal and mineral values in the residues into products suitable for recycling is described. A method for homogenizing various metal fractions was used in sampling the individual products for chemical analyses. Chemical data for a few remelted and smelted metals are tabulated. Problems still to be overcome and the nature of future research are outlined.

OP 61-68. Offshore Mining Present and Future, by Michael J. Cruickshank, Charles M. Romanowitz, and Milton P. Overall. Fng. and Min. J., v. 169, No. I, January 1968, pp. 84-91. The paper describes where we stand in the art of ocean mining and how we will attack the problems of tomorrow as the mining industry probes the deeper and more hostile environment of the sea.

OP 62-68. Some Significant Facts Concerning the Composition of Petroleum (translated into Russian), by H. M. Smith. In Organicheskaya Geokhimiya. Izdatel, stvo Nedra, Moscow, v. 1, 1967, pp. 63-81; Proc. Oil Scientific Sessions, Budapest, Hungary, v. 2, Oct. 8-12, 1962, pp. 474-512. This article discusses crude oil variety in composition, gasoline variety in composition, variety in gasoline yield, paraffin-isoparaffin relationships, aromatic content of gasolines, hydrocarbon interrelationships, isoprenoids, naphthenes, high-boiling aromatics, nonhydrocarbons, porphyrins, and metal contents. The composition of crude oil, when fully known, should provide many keys to its origin and accumulation and many facts that would be significant test for the acceptability of theories of petroleum origin; this article is a part of a modern, in-depth discussion of

OP 63-68. Iurbidity Measurements as an Indicator of Solids Content of Neutralized Mine Waters, by Maurice Deul. Proc. 2d Symp. on Coal Mine Drainage Research, Mellon Institute, May 14-15, 1968, Pittsburgh, Pa., 1968, pp. 35-38. Turbidity measurements are accurate indicators of suspended solids content only for a narrow range of sizes and solids composition. For acid mine waters neutralized with lime or limestone, the suspended solids content, as estimated by a Jackson candle turbidity apparatus, diverges greatly from the actual solids content determined gravimetrically. The experimental results show that turbidity measurements do not given an accurate estimate of the concentration of suspended solids in neutralized mine water effluent. OP 64-68. Computer Program (FORTRAN II) far Use in Surface Area Determination by Gas Chromatographic Means, by Robert W. Friedman. Laboratory Practices, June 1968, v. 17, No. 6, pp. 710-711. A computer program in FORTRAN II language is presented for use in the determination of surface areas using the continuous flow gas chromatographic method.

OP 65-68. An Experimental Study of Ferrous Iron Oxidation in Acid Mine Waters, by Ann G. Kim. Proc. 2d Symp. on Coal Mine Drainage Research, Mellon Institute, May 14-15, 1968, Pittsburgh, Pa., 1968, pp. 40-45. The rate of oxidation of ferrous iron in an acid environment depends upon the concentrations of ferrous iron and dissolved oxygen and upon the temperature. Samples of natural mine water were studied to determine the effect of aeration upon the rate of oxidation. Eight 1-liter samples were used for each test. Four were aerated (at rates of 200 cubic centimeters per liter per minute and 2,000 cubic centimeters per liter per minute); two were in open containers to allow normal oxygen diffusion from the air into the water; and two were in closed containers with only the dissolved oxygen originally present in the water. Aeration was found to have no beneficial effect upon a low ferrous iron water (34 ppm), because the water had an adequate amount of dissolved oxygen. It did decrease the time necessary for complete oxidation in waters with 175 to 260 ppm ferrous iron, evidently by keeping the water saturated with dissolved oxygen.

OP 66-68. Mine Air Seeling: A Progress Report, by Noel N. Moebs. Proc. 2d Symp. on Coal Mine Drainage Research, Mellon Institute, May 14-15, 1968, Pittsburgh, Pa., 1968, pp. 255-264. A small, abandoned above-drainage coal mine in the Upper Freeport coalbed in western Pennsylvania, which discharges acid water, was air sealed in 1966 to determine if the acidity and iron of the discharge could be reduced. The geologic and hydrologic environment of the mine were investigated to aid in evaluating the effectiveness of air sealing and indicate the controlling factors. The mine effluent flow rate and quality have been monitored continuously since 1963. Ground water levels, quality, and composition of the overburden were obtained from drill holes. The atmosphere in the sealed mine was sampled periodically, and the differential air pressure across the seal was recorded. Since May 1966, when the mine was sealed, the average total acidity of the effluent has continued to decrease despite an oxygen level of 16 to 18 percent and lack of any differential air pressure across the seal, which indicate so-called "breathing" of the mine.

OP 67-68. Factors in Neutrelizing Acid Mine Waters With Limestone, by E. A. Mihok and C. E. Chamberlain. Proc. 2d Symp. on Coal Mine Drainage Research, Mellon Institute, May 14-15, 1968, Pittsburgh, Pa., 1968, pp. 265-273. A continuous limestone neutralization pilot plant capable of handling 100 gpm of acid-iron water was designed, constructed, and operated to study some of the factors controlling neutralization and oxidation processes. Rapid neutralization of acid water was achieved with the use of coarse crushed limestone in a rotary-kiln-type reactor. Subsequent aeration of neutralized water from the reactor removes soluble ferrous iron at the rate of 1 to 4 ppm per minute.

Ferrous iron removal during neutralization and aeration is pH and temperature dependent. In the limestone reactor, at normal mine water temperatures, soluble iron is removed at a rate of 30 to 35 ppm per minute. Although the pH of the neutralized waters ranged from 6.5 to 7.5, sufficient alkaline activity was not achieved to bring about mass precipitation of insoluble ferrous hydroxide, despite an excess of finely divided limestone remaining in suspension. The presence of an abnormally high concentration of CO_3 in the atmosphere (about 0.16 percent) at the reactor site may cause pH suppression.

)

) ĺ

)

E

ŧ

E

ſ

Į

ſ

E

OP 68-68. Direct Method for Unfolding Convolution Products —Its Application to X-Ray Scattering Intensities, by Sabri Ergun. J. Appl. Cryst., v. 1, Pt. 1, April 1968, pp. 19-23. A method is described for unfolding the convolution products based on substitution of successive foldings. It is illustrated by correcting the observed X-ray patterns of a carbon black for instrumental broadening. The applicability of the method is briefly discussed. It has been found that accurate solutions are quickly obtained if the function desired is integrable and everywhere differentiable. The method requires no analytical expressions and is ideally suited for computers.

OP 69-68. Charge-Iransfer Complexes and Electrochemical Cells-Coal Batteries, by R. A. Friedel, J. Electrochem. Soc., v. 115, No. 6, June 1968, pp. 614-615. Spectrometric work on various systems involving coal was begun 2 years ago for the purpose of determining whether or not coal would form charge-transfer complexes with donor and/or acceptor substances. Measurements by magnetic resonance, infrared, and ultraviolet-visible spectrometry have indicated that coal forms both donor and acceptor charge-transfer complexes. Recent reports of the discovery of a charge-transfer battery (perylene + L) promoted an attempt to try coal + L, With a magnesium anode a 1-inch-diameter disk cathode, prepared from ground Pittsburgh coal + L, produced an open-circuit voltage of 1.6 volts and a current density of 114 microamperes/cm². Jedo anthracite + L₂ produced 1.4 volts and 440 microamperes/cm². The time required to construct one of these batteries is about 15 minutes. The chargetransfer complex formed by pyridine and coal, with coal the acceptor in this case, is also a successful battery. Various coals have been found to be successful battery components; no unsucessful coals have been found. Also charge-transfer complexes with coal as the acceptor substances, e.g., pyridine + coal, are successful battery components.

OF 70-68. The infrored Spectra of Oxygen-18 labelled Chars, by R. A. Friedel, R. A. Durie, and Y. Schewchyk. Carbon, v. 5, 1967, pp. 559-564. As a contribution to the study of the origin of the 1600cm⁻¹ band in the infrared spectra of coals and chars the infrared spectra of the chars from oxygen-18 labeled linoleic acid, benzoic acid, sodium benzoate, and phenol have been investigated. The oxygen content of most of the chars is low (ranging from 0.5 to 3.9 percent), but all exhibit a strong absorption band near 1600 cm⁻¹ in the infrared spectrum. No frequency shift due to the isotope effect was apparent. These observations appear to suggest that oxygen-containing groups may not be contributing, either directly or indirectly, to the intensity of the 1600-cm⁻¹ band. However, final assessment of the implications of these observations must await data on the oxygen isotopic frequency shift in a relevant conjugatively chelated carbonyl system.

CP 71-68. Techniques for Diesel Emissions Measurement, by R. W. Hurn and W. F. Marshall. Soc. Automotive Eng., Midyear Meeting, Detroit, Mich., May 20-24, 1968, SAE Paper 680418, 10 pp. Methods used in diesel emissions measurement at the Bureau's Bartlesville Petroleum Research Center are described; limitations, adequacy, and needs for further development of each are discussed. Smoke measurements are reported from work with the Hartridge meter, as well as newly developed instruments that are used to view smoke plumes directly and which seem to offer advantage over smokemeters previously used. Experience in odor assessment by a human panel using reference odor materials is reported to be encouraging. Odor intensity is judged with much greater reliability than odor quality; capability to assess the latter remains wholly inadequate.

Results in application of the methods for measuring diesel emissions are intended to illustrate the use of experimental techniques to reveal engine and fuel factors as they influence the character, amount, and air-polluting effect of diesel emissions. Although the data do not permit reliable assessment of any of the factors, they are useful in showing orders of magnitude and possible relative significance of the respective emissions in the several categories.

OP 72-68. Distribution of Gaseous Products From Lassr Pyrolis of Coals of Various Ranks, by F. S. Karn, R. A. Friedel, and A. G. Sharkey, Jr. Carbon, v. 5, 1967, pp. 25-32. The irradiation of coal by laser energy is one of the more promising new methods of pyrolyzing coal rapidly at high temperatures. Gaseous products from the laser irradiation of coals of various ranks were analyzed by mass spectrometry. The total gas yield varied inversely with coal rank, showing a fourfold increase between anthracite and lignite. The atomic C-H ratio for the gases was lower than for the corresponding coal. Yields of acetylene, hydrogen, carbon monoxide, and carbon dioxide generally increased between anthracite and lignite. Changes were most pronounced between anthracite and low-volatile bituminous coal. Liquid products were not detected. The infrared spectrum of the solid residue showed few of the characteristic coal bands.

OP 73-68. Use of High-Resolution Mass Spectometry To Identify Products From Microwave Discharged in Coal-D₂O Mixtures, by T. Kessler and A. G. Sharkey, Jr. Spectroscopy Letters, v. 1, No. 4, 1968, pp. 177-180. Reactions of carbonaceous materials and H₃O in microwave discharges are known to produce H₃, HCN, CO, CO₃, and light hydrocarbon gases (primarily C, and C₃) in varying amounts. To determine if the solid or the H₂O is the source of hydrogen in formation of the above products, coal and graphite have been reacted with D₃O. Low-resolution mass spectra of the gaseous products from the D₄O experiments indicated the possibility of nondeuterated and corresponding deuterated compounds in the reaction mixture. Conventional separation and analytical techniques are not applicable to mixtures of this type. This communication describes the use of a high-resolution mass spectrometer, operated at a resolution 35 percent less than theoretically required for separation of the H₂-D doublet, to electrically measure precise masses for mixtures containing micromole amounts of deuterated and nondeuterated light gases.

(} |

.

ż

1

OP 74-68. Spark-Source Mass Spectra of Several Aromatic Hydrocarbons Using a Spinning Electrode, by T. Kessler, A. G. Sharkey, Jr., W. M. Hickam, and G. G. Sweeney. Appl. Spectroscopy, v. 21, No. 2, March/April, 1967, pp. 81-85. The purpose of this investigation was to evaluate the application of a spark-source mass spectrograph equipped with a spinning-electrode system for the study of various high-molecular-weight materials derived from coal. Eight structural types having molecular weights from 178 to 252 corresponding to those substances previously seen in an electron-impact mass spectrum of the coal-tar pitch were affirmed by this technique. Easily interpreted mass spectra of phenanthrene, anthracene, and chrysene were obtained by the spinning-electrode system. Mass spectra obtained from synthetic mixtures of anthracene and chrysene demonstrated that the technique is applicable for semiquantitative analysis.

OP 75-68. Mossbouer Spectroscopy of Iron in Coel, by John F. Lefelhoczk, Robert A. Friedel, and Truman P. Kohman. Geochim. et Cosmochim. Acta, v. 31, 1967, pp. 2261-2273. Fe⁵⁷ Mössbauer spectra of coal samples were measured in order to obtain information about the so-called "organically-bound" iron in coal. Nine vitrain or whole-coal samples of rank from lignite (72 percent C) to anthracite (93 percent C) have been investigated. Five coals which were known from chemical analysis to contain sulfide iron yielded the symmetric two-line spectrum of pyrite, with a room-temperature isomer shift relative to sodium nitroprusside of $\delta = +0.54$ mm/sec and a quadrupole splitting of $\Delta = 0.58$ mm/sec. Five coals which were believed from chemical analysis to contain "organic" iron yielded a symmetric two-line spectrum with $\delta = +1.38$ mm/ sec and $\Delta = 2.62$ mm/sec. These parameters, including the equality of line intensities, differ from those of any known Mössbauer spectrum; they indicate high-spin iron (II) in sixfold coordination.

OP 76-68. Carbon-13 Nuclear Magnetic Resonance Studies of 3-Substituted Pyridines, by H. L. Retcofsky and R. A. Friedel. J. Phys. Chem., v. 72, No. 1, January 1968, pp. 290-293. Carbon-13 magnetic shieldings for eight 3-substituted pyridines are reported and compared with those of the corresponding monosubstituted benzenes. Thirty of the 40 carbon shieldings measured in the spectra of the pyridines yield substituent effects that are within ±1.3 ppm of those found for the benzenes. Shieldings of the carbons in the 6-position in the pyridines are shown to reflect electron release or withdrawal by substituent groups.

OP 77-68. Experimental Test of the Theory of Carbon Chemical Shifts in Conjugated Molecules, by H. L. Retcofsky, J. M. Hoffman, Jr., and R. A. Friedel. J. Chem. Phys., v. 46, No. 11, June 1967, pp. 4545-4546. Carbon-13 NMR chemical shifts in naphthalene, biphenyl, phenanthrene, pyrene, and triphenylene are presented. Spectral assignments for the first two compounds were unambiguously determined by measurements on suitably deuterated derivatives; those for the second two compounds were based on chemical shift-structure correlations found for similar compounds. Theoretical shieldings were calculated using the Karplus-Pople equation.

OP 78-68. E.P.R. g-Values of Cools, by H. L. Retcofsky, J. M. Stark, and R. A. Friedel. Chem. and Ind., No. 31, Aug. 5, 1967, pp. 1327-1328. Although several papers dealing with EPR studies of coals have appeared in the literature, no systematic study of the g values for an extensive number of coals has been reported. g values of 19 coals, including a peat and meta-anthracite in addition to several bituminous, lignitic, and anthracitic coals have been determined and found to vary from values typical of semiquinones to values quite close to those of aromatic hydrocarbon radicals. OF 79-68. C¹³ and H¹ Nuclear Magnetic Shieldings and Electrical Effects of Ortho Substituents in Monosubsti-

suted Pyridines, by H. L. Retcofsky and F. R. McDonald. Tetrahedron Letters, No. 21, 1968, pp. 2575-2578. Carbon-13 and H¹ nuclear magnetic shieldings for atoms in the 5-position of ten 2-substituted pyridines are reported. A linear relationship was found between both the carbon and proton shieldings and Hammett's chemical reactivity parameters. Comparison with results for monosubstituted benzenes suggest that σ_p constants, as usually determined from kinetic or equilibrium studies of *para*-substituted benzene derivatives, are applicable to 2-substituted pyridines.

OP 80-68. Vehicle Emissions vs. Fuel Composition, by R. K. Stone and B. H. Eccleston. Proc. API, v.

Such a shuft S. H. Ecclesion. Froc. AFI, v. 48, sec. 3, 1968, pp. 705-742. Test results showed that at high ambient temperatures a large reduction in evaporation losses was realized when fuel volatility was lowered from 10 to 8 pounds RVP. However, the reduction in evaporative losses was paralleled by a small increase in exhaust emissions with lower volatility fuel. The amount of photochemically reactive hydrocarbon in evaporative losses was reduced substantially either by lowering fuel volatility or by substituting saturated for unsaturated C. and C₈ hydrocarbons. The reactivity of the exhaust hydrocarbon was also reduced by the substitution. Carbon monoxide emissions showed a small increase as fuel volatility was reduced; nitrogen oxides and aldehydes were not significantly affected by fuel changes made in this study.

OP 81-69. Are Resources Enough for Growth?, by David B. Brooks. Appalachia, v. 1, No. 10, June-July 1968, pp. 41-42. Natural resources may provide a basis for regional growth if the region can add to the value of the resource before shipping or if it can produce required inputs locally or if it can utilize the income locally. There are grounds for hope that the coal industry can provide such a basis in Appalachia.

OP 82-68. Explosives Research To Improve Flow Through Lew-Permechility Rock, by J. L. Eakin and J. S. Miller. J. Petrol. Technol., v. 19, No. 11, No-vember 1967, pp. 1431-1436. Small-scale surface tests were conducted to determine the feasibility of using a nitroglycerine-base explosive for creating rock fractures. Prior to underground testing, surface and near-surface tests with liquid explosives showed that explosions in sheetlike layers simulating underground fractures would propagate through the layers. Successful surface tests were conducted using layers of explosive placed between glass plates and explosive-saturated sand confined in small-diameter metal tubes. Tests also showed that explosions propagate through the pores of Berea sandstone saturated with a liquid explosive. Encouraging results were produced by a shallow test in which extensive fracturing was effected with 5% quarts of nitroglycerin (NGI) detonated in limestone, and with a 50-quart charge of NGI displaced into a permeable zone at a depth of 42 feet in Green River oil shale. Cores, caliper logs, down-hole camera surveys, elevation measurements, and air-flow tests showed the effects of the latter explosion. Fracture improvement ratios determined on eight test holes ranged from 2.3 to 19.1 and averaged 8.0. (SPE preprint 1715, presented at SPE 3d Conf. Drilling and Rock Mechanics, Austin, Tex., Jan. 25-26, 1967, 10 pp.)

OP 33-68. Structure of Carbon, by Sabri Ergun. Carbon, v. 6, 1968, pp. 141-159. Recent developments concerning the hexagonal polymorph of diamond and the orthorhombic, quinoid structure of carbon proposed by Pauling are reviewed. Advancements in the analysis of paracrystalline carbon are analyzed critically. Atomic radial distribution functions indicate that graphitelike layers in some carbons are much larger than the profiles of the (hk) reflections of a carbon black P33, indicate that a layer domain parallel to it and that the fraction of carbon in stacks having n layers decreases exponentially with n. From comparative studies of graphitizable carbons it is concluded that graphitizable carbons it is concluded that graphitizable carbons contain large layers and their stacking height with heat treatment are, to a great extent, the result of annealing of distortion and interstitials. Evidently linkages connecting small layer groups prevent their graphitization.

ī

Į

OP 84-68. The infrared Spectrum of Dawsonite, by Patricia A. Estep and Clarence Karr, Jr. Am. Miner., v. 53, No. 1-2, January-February 1968, pp. 305-309. The infrared spectrum to 200 cm⁻¹ is presented for pure natural dawsonite, compared with synthetic dawsonite (alkalized alumina), and is shown to be reliable for identification.

OP 85-68. Effect of Pressure and Oxidant Concentration on Autoignition Temperatures of Selected Combustibles in Various Oxygen and Nitrogen Tetroxide Atmospheres, by Aldo L. Furno, Agnus C. Imhof, and Joseph M. Kuchta. J. Chem. & Eng. Data, v. 13, No. 2, April 1968, pp. 243-249. Minimum autoignition temperatures were determined at various pressures from 25 to 740 mm of Hg for a number of combustibles in air, oxygen, and nitrogen tetroxide with either nitrogen or helium diluents. The combustibles included hydrogen, n-butane, n-hexane, n-heptane, 1-chlorobutane, 1,2-dichloroethane, 1,1,1-trichlorethane, trichloroethylene, methylene chloride, hydrazine, monomethylhydrazine, and unsymmetrical dimethylhydrazine.

OP 86-68. Potassium Recovery by Chemical Precipitation and Ian Exchange, by D. R. George, J. M. Riley, and J. R. Ross. Chem. Eng. Prog., v. 64, No. 5, May 1968, pp. 96-99. A process is described for recovering potassium from complex brines. Potassium is precipitated from a cold brine as the relatively insoluble perchlorate by addition of sodium perchlorate. The potassium perchlorate is recovered and converted to potassium chloride, sulfate, or carbonate by ion exchange metathesis whereby sodium perchlorate is simultaneously recovered for recycle.

OF 87-68. Refuse Mulch Boosts Tometo Yield, by C. O. Hawk, Sam Friedman, E. B. McCullough, and R. W. Hiteshue. Coal Age, v. 73, No. 6, June 1968, pp. 90-94. In a small field experiment involving 100 tomato plants, half of which were mulched with coal-washery refuse, the mulched plants grew faster and bore more and larger fruit than unmulched plants. The increase in yield was greatest up to about midseason. The yield ratio (yield of mulched plants divided by yield from unmulched plants) for ripe fruit during this period was 1.2 to 1.3. The ratio for the entire season was 1.13. The increased yield is believed to result in large measure from the dark-colored mulch capturing more solar radiation, consequently producing a warming effect in the soil. There was no evidence either of poisoning of the plants by the mulch or of a beneficial effect attributable to a nutrient property of the mulch.

OF 88-68. Wide-Line Nuclear Magnetic Resonance Spectrocopy of Sulfur-33 in Minerals, by Clarence Karr, Jr., and Harry D. Schultz. Spectroscopy Letters, v. 1, No. 5, May 1968, pp. 205-210. Nuclear magnetic resonance spectra of S³³ in solid samples were obtained for the first time. Although the natural abundance of S³³ is guite low (0.74 percent), good signals were obtained for sphalerite (ZnS) and pyrrhotite (Fe₁-₂S). In addition, separate signals were obtained for the first time for a binary mixture of sulfur compounds (sulfur dissolved in liquid CS₂).

OP 89-68. Dense Medium Separation, by E. R. Palowitch and A. W. Deurbrouck. Pt. 1 of ch. 9, Wet Concentration of Coarse Coal, in sec. 4, Coal Cleaning Methods. Coal Preparation. American Institute of Mining, Metallurgical, and Petroleum Engineers, New York, 3d ed., 1968, pp. 9-3 through 9-37. This section covers the following aspects of wet concentration of coarse coal: The history, the four types of separating media which are being or have been used commercially (organic liquids, dissolved salts in water, aerated solids, and suspensions of fine solids in water), separatory vessels, dense medium processes, and separator designs.

OP 90-68. Hydraulic Concentration, by A. W. Deurbrouck and E. R. Palowitch. Pt. 2 of ch. 10, Wet Concentration of Fine Coal, in sec. 4, Coal Cleaning Methods. Coal Preparation. American Institute of Mining, Metallurgical, and Petroleum Engineers, New York, 3d ed., 1968, pp. 10-32 through 10-65. This section discusses the principal fine-coal washers used in the United States today: wet concentrating tables, cyclones, launders, feldspar jigs, and hydrotators.

OP 91-68. Absolute Viscosity Determinations by Means of a Coiled-Capillary Viscosimeter. Data for Helium-Carbon Dioxide Mixtures, by H. P. Richardson, D. Cummins, and R. A. Guereca. Proc. ASME 4th Symp. on Thermophysical Properties, University of Maryland, Apr. 1-4, 1968, pp. 372-379. A unique highpressure gas viscosimeter incorporating a helical 200-foot stainless steel capillary and a constantvolumetric-rate pump is described. A Dean number of less than 10 is used as the experimental criterion for steady-state laminar flow. Techniques for evaluating parameters for absolute viscosity determinations are discussed. Absolute viscosity data for gaseous helium-carbon dioxide mixtures at 20° C and pressures to 1,000 psia are presented. The data are believed accurate to within 0.5 percent.

 OP 92-68. Calibration of Differential Pressure Indicators at High System Pressures, by H. P. Richardson, John L. Gordon, David Cummins, and R. A. Guereca. Rev. Sci. Instr., v. 39, No. 6, June 1966, pp. 841-842.
 A technique and apparatus are described for accurately (±0.01 percent) calibrating differential pressure indicators beyond the normal operating range of available high pressure manometers.

.

ŧ

OP 93-68. Influence of Amount of Ash on Ignitibility of Coal Dust-Methone-Air Mixtures, by J. M. Singer. Fuel, v. 47, No. 3, May 1968, pp. 223-234. This investigation represents one phase of the long-range program conducted by the Bureau of Mines to obtain a better understanding of the ignition hazard of coal dusts in mines and to improve the firing of low-grade pulverized fuels and the technology of coal-fired MHD generators. In the present study, the hot gas ignition method for determining lower ignition limits was applied to hybrid mixtures containing coals with approximately the same VM (34 to 36 percent) but with varying percentages of ash (2.6 to 12.7 percent). The ignitibility of a deashed coal with less than 0.2 percent ash content and a relatively high VM (59.7 percent) was compared with that of the ash-containing coals. As the ash content of the coals was increased, the ignitibility of the experimental hybrid mixture

As the ash content of the coals was increased, the ignitibility of the experimental hybrid mixture decreased for mixtures containing more than 30 to 35 mg/l coal dust; for hybrid mixtures containing less than 30 mg/l coal dust this effect was negligible. Chemical inhibition by the metal salts present in the coal is favored as an explanation for the decreased ignitibility of hybrid mixtures containing coals of relatively low ash. The elutriation process by which float coal dust suspensions form in mines may act to remove some of the ash matter from the suspended coal, thus increasing its ignitibility. Deashed coal mixtures appear to be more ignitible than mixtures of coals with a lower VM and some ash matter.

OF 94-68. Geologic Factors Affecting Density Logs In Oil Shale, by John Ward Smith, Harold E. Thomas, and Laurence G. Trudell. Trans. Soc. Prof. Well Log Anal. 9th Ann. Logging Symp., June 23, 1968, pp. 1-17. Oil-yield estimation from density logs in Colorado's Green River Formation oil shale is adversely affected by the major occurrence of crystalline nahcolite in cavities left after nahcolite solution. Their effects on accuracy of oil-yield estimation are examined.

OP 95-68. Similarity Between the Electrochemical Elimination of Sulphur From Coal and From Dibenzathiophene, by H. W. Sternberg, C. L. Delle Donne, and I. Wender. Fuel, v. 47, No. 3, May 1968, pp. 219-222. When dibenzothiophene was reduced electrochemically under the same conditions as coal, sulfur was eliminated only after four hydrogen atoms had been added to the dibenzothiophene ring. A similar pattern of sulfur removal had been observed previously during the electrochemical reduction of coal where sulfur was eliminated only after 25 hydrogen atoms per 100 carbon atoms had been added to the coal.

OP 96-68. Hydrogen Detectors, by Alexander Strasser, I. Liebman, and S. R. Harris. Cryogenic Eng. News, v. 2, No. 12, December 1967, pp. 16-20. As a part of a broad investigation on the safe use of hydrogen in space flight operations, the Bureau surveyed the performance of 13 hydrogen detectors. Characteristics investigated included: accuracy and reproducibility, effect of high hydrogen concentrations, effect of temperature and humidity, response and recovery times, response to gases other than hydrogen, ignition hazards, effect of wind, zero drift. The instruments were distinguished mainly by the sampling mechanism and the way in which hydrogen is sensed and displayed.

OP 97-68. Compositional Studies of an Asphalt and Its Molecular Distillation Fractions, by R. V. Helm and J. C. Petersen. Anal. Chem., v. 40, No. 7, June 1968, pp. 1100-1103. Molecular distillation of a Wilmington, Calif., asphalt that was prepared in the laboratory gave fractions whose sulfur, oxygen, nitrogen, and aromatic contents increased with molecular weight. Paraffinic content was nearly constant with molecular weight. The increase in aromatic content with molecular weight was offset by a decrease in the naphthenic content. Although the

total oxygen content increased with molecular weight, the acid oxygen decreased. A correlation between the naphthenic content and the acid oxygen was shown. Methylene chloride, as a solvent, per-mitted the resolution of the 1700 cm⁻¹ carbonyl band of the asphalt and its fractions into three discrete bands at 1740, 1700, and 1655 cm⁻¹. Carboxylic acids appear responsible for the 1740 cm⁻¹ band in the asphalt and its distillation fractions. These acids were found to be associated in the asphalt. A model naphthenic acid, cyclohexanecarboxylic acid, asso-ciated with functional groups in the asphalt.

OP 98-68. Characterization of Carbonaceous Material From

OP 98-68. Characterization of Carbonaceous Material From the Puerto Rico Trench of the Atlantic Ocean, by R. A. Friedel and A. J. Nalwalk. Nature, v. 217, No. 5126, Jan. 27, 1968, pp. 345-347. Oceanographic sampling in the 4-mile-deep Puerto Rico Trench in the Caribbean Sea unexpectedly recovered carbo-naceous rocks. Hard chert and soft clay samples have been evening of chert and soft clay samples have been examined spectroscopically in order to characterize the organic materials. The spectral results were compared with similar spectral data from coals, petroleum, and shale oil kerogen. The organic material from both the hard and soft rocks are most similar to kerogen.

OP 99-68. Iron Ore Waste-Occurrence, Beneficiation and Utilization, by M. M. Fine and L. F. Heising. Proc. Bureau of Mines-IIT Research Institute Symp. on Mineral Waste Utilization, Mar. 28, 1968, Chicago, Ill., May 1968, pp. 73-77. Wastes generated in iron mining include overburden and coarse tailings which are metallurgically unattractive. Fine tailings nad lean ores could be a new source of iron units. Taconite rejects constitute a huge waste containing much iron, but technology for its recovery is yet to be developed.

OP 100-68. Utilization of Ferrous Scrap, by Norwood B. Melcher. Proc. Bureau of Mines-IIT Research Institute Symp. on Mineral Waste Utiliza-tion, Mar. 28, 1968, Chicago, Ill., May 1968, pp. 132-137. This report reviews all of the metallurgical research of the Bureau of Mines relating to the re-bring and utilization of formus scrap. The sepafining and utilization of ferrous scrap. The sepa-ration of impurities from scrap by thermal and leaching processes is reviewed, and a process for using ferrous scrap as a reductant in magnetic roasting is described.

OP 101-68. Comments on Recent Bureau of Mines Prereduced Pellet Research, by Norwood B. Melcher. Congres International sur la Production et l'Utiliza-Congres International sur la Production et l'Utiliza-tion des Minerais Re ...cs (International Meeting on the Production and Utilization of Prereduced Minerals), May 29-31, 1967, Evian, France. June 1968, pp. 49-52. This paper reviews recent Bureau research on the use of promoters and inhibitors to the reduction of wustite at 1,000° C. Additives including the alkali metals and boron used as inhibi-tors are discussed. The economics of prereduction in a simulated commercial plant of 2 million long tons per year, and the effect of prereduction on blast furnace production costs are evaluated.

OP 102-68. A Minnesota Clay Resource and Its Utilization for Iron, Ore Pelletizing, by Jams H. Aase and George E. Leonhard. Proc. 29th Ann. Min. Symp. and 41st Ann. Meeting Minnesota Sec., AIME, Duluth, Minn., Jan. 15, 1968, pp. 1-7. Field and laboratory investigations of clays from the Cook, Minn., area established the presence of large reserves of this commodity. The clays, when chemically activated with sodium compounds, could serve

as a binder for magnetic taconite pellets. Use of the activated clays instead of bentonite could result in an appreciable savings to the industry.

OP 103-68. Rupture Mechanism of a Liquid Film, by Israel Liebman, John Corry, and Henry E. Perlee. Science, v. 161, July 26, 1968, pp. 373-375. The rupture mechanism of edge-supported liquid films appears to involve the viscous and drag energies as well as previously postulated kinetic and surface energies. Although details are obscure, the mechanism appears to involve a liquid-gathering process at the free edge, followed by fragmentation of this thickened edge into drops whose radii are approximately 50 times the film's original thickness.

2

Ł

E

Ł

ŧ

b £

)

.

OP 104-68. A Progress Report on Increasing Permeability by Explosives and Heat, by W. F. Eckard, Proc. Tech. Sessions Kentucky Oil and Gas Assoc. 30th and 31st Ann. Meetings, 1966 and 1967, Ken-tucky Geological Survey, Ser. 10, Special Pub. 15, 1997 Sector Science Scie pp. 70-80. Early field and laboratory experiments on rock fracturing using a chemical explosive and thermal alteration of rock using a monopropellant are described.

OP 105-68. The Separation of Neon Fram the High-Helium-Control Natural Gases and the Atmosphere for Isotopic Analyses, by David E. Emerson, Elmer T. Suttle, and C. A. Hoffman. Internat. J. Mass Spec-trometry and Ion Phys., v. 1, No. 2, June 1968, pp. 105-110. The purpose of this work was to improve the determination of the isotopic composition of neon from natural gases and the atmosphere. The ap-paratus and method described concentrates neon directly from high-helium-content natural gases or from the atmosphere by utilizing two adsorption traps of activated coconut charcoal at 30° and 77° K.

OP 106-68. factors influencing Diesel Emissions, by W. F. Marshall and R. W. Hurn. SAE West Coast Meeting, San Francisco, Calif., Aug. 12-15, 1968, SAE Paper 680528, 9 pp. The Bureau of Mines has done experimental work on a variety of truck and bus engines to determine the influence of en-gine and fuel factors on both quantitative and quali-tative expects of objections has combuted. ative aspects of objectionable combustion products. Results of this work are reported.

OP 107-68. Effects of Rolling Temperature on Creep and Other Properties of Certain Zn-Cu Alleys, by A. Neumeier and J. S. Risbeck. Pres. at Am. Soc. Metals 1968 Materials Eng. Exposition and Cong., Detroit, Mich., Oct. 14-17, 1968, Tech. Rept. D 8-24. 5, 17 pp. As part of a study of the effects of varied composition and processing conditions on the propcomposition and processing conditions on the prop-erties of wrought zinc alloys, Zn-Cu alloys contain-ing up to 2 percent Cu were rolled to 92 percent re-duction at from room temperature to as high as 720° F. Microstructure, hardness, tensile strength, thermal expansivity, and creep resistance were evaluated. The properties are very sensitive to com-position, rolling temperature, and percentage reduc-tion and also very with sheat orientation. Conditions tion and also vary with sheet orientation. Conditions producing highest hardness or tensile strength do not result in best creep resistance. Cold-rolled alloys undergo significant softening as rolling progresses, resulting from recrystallization to small grain sizes and rejection of e-phase from solid solution. Low tensile strength and poor creep resistance also result. The higher tensile strengths occur for rolling at 320° to 400° F, but the lower creep rates result for the structures produced by rolling at higher temperatures. Increased copper contents require progressively higher rolling temperatures to realize

best creep resistance. Substantially better creep resistance can be developed than had been reported previously. Limited evidence indicates that grainboundary sliding occurs during steady-state creep of the hot-rolled alloys.

OP 108-68. Induction Heating in Zone Melting of Organic Compounds, by Henry Plancher, J. C. Morris, and W. E. Haines. Anal. Chem., v. 40, No. 10, August 1968, pp. 1592-1594. A technique and an apparatus for using induction heating with an imbedded susceptor to produce and maintain lowvolume molten zones in the zone melting of organic materials have been devised and are described.

OP 109-48. Instrumented Card-Gap Test, by John Ribovich, Richard W. Watson, and Frank C. Gibson. Am. Inst. Aeronautics and Astronautics J., v. 6, No. 7, July 1968, pp. 1260-1263. A modification of the card-gap test for determining the sensitivity of explosives has been made that eliminates some of the anomalies encountered in the interpretation of results. The Bureau of Mines conceived and developed the continuous detonation velocity apparatus and peak pressure sensing gages which were employed to provide quantitative analyses.

1

.

3

1

)

(

) (

3

t

OP 110-48. High-Resolution Mass Spectrometry Investigation of Coal-Tar Pirch, by A. F. Sharkey, Jr., J. L. Shultz, T. Kessler, and R. A. Friedel. Proc. ASTM Comm. E-14 Meeting on Mass Spectrometry, Denver, Colo., May 14, 1967, pp. 448-446. Highresolution mass spectrometry was used to investigate an 80° to 85° C softening point coal-tar pitch. The purpose of this study was to obtain information for a subsequent investigation of altered fractions of coal tar, such as weathered road tar. Precise masses were obtained for 29 molecular ions (not including alkyl derivatives) containing the heteroatoms, N, O, and S. Thirteen of these masses, representing structural types not previously reported for coal tar, can be accounted for on the basis of recombination of radicals derived from lower molecular weight components.

OP 111-68. Effects of Bleeder Entries During Atmospheric Pressure Changes, by John W. Stevenson. Min. Eng., v. 20, No. 6, June 1968, pp. 61-64. During the study, three atmospheric pressure changes in excess of 0.60 in of mercury occurred. Data collected during these drops led to the following conclusions:

- During these drops led to the following conclusions.
 During the study, the bleeder system worked effectively. About 160 cfm of methane (230,000 cu ft per day) was continuously draining from the interior of the gob into the bleeder entries.
- 2. In the area investigated, the major factor causing an increase in methane was the rate of coal extraction.
- 3. The rate of atmospheric pressure drop and the total amount of drop are important because they influence the rate of methane outflow from the gob.

It was also observed that underground response in the ventilating current to surface atmospheric change was virtually instantaneous. During atmospheric pressure drops, methane drainage from the gob area into the bleeder returns increased, although the ventilating pressure differential between any two underground locations was not influenced by atmospheric pressure changes.

OP 112-68. Analysis of Sulphur in Cools by X-Ray Fluorescence, by M. Berman and E. Ergun. Fuel, v. 47, No. 4, July 1968, pp. 285-301. A study has been made of the analysis of sulfur in coals by X-ray fluorescence and the factors influencing the precision of the analysis. It has been found that, for accurate analysis of sulfur, coals must be pulverized to less than 2 microns and pressed into a slab with a smooth face. If a correction is made (using X-ray fluorescence) for the other inorganic elements that exist in coals in appreciable quantities, namely magnesium, aluminum, silicon, calcium, iron, the sulfur content can be determined more accurately than by the standard chemical methods. Variations in the relative amounts of hydrogen, carbon, nitrogen, and oxygen in coals have only a minor influence on the calculated results. The study has been applied to 38 American coals.

OP 113-68. Helium, by L. W. Brandt. Encyclopedia of the Chemical Elements, ed. by C. A. Hempel, Reinhold Pub. Corp. New York, 1968, pp. 256-268. This discussion of helium includes the following categories: Discovery, occurrence, origin on earth, production, production process, production data, isotopes, physical properties, chemical properties, liquid helium, helium-3, helium conservation program, shipments, uses, and current research.

OP 114-68. Behavior of Coal-Gos Reservoirs, by Joseph Cervik. Presented at Soc. Petrol. Eng., AIME, 4th Ann. Eastern Regional Meet., Pittsburgh, Pa., Nov. 2-3, 1967, SPE Preprint 1973. 4 pp. Gas occurs in coalbeds in an adsorbed and a free gas state. Adsorbed gas is stored in the micropore structure and its transport is governed by Fick's law. The free gas occurs in the fracture system and flows according to Darcy's law. These two modes of mass transport are interdependent. Production decline curves are of the constant percentage decline type and, thus, show no indications of flow characteristics peculiar to coal-gas reservoirs. The effectiveness of surface boreholes as a degasification scheme, depends upon both good fracture permeability and a high fracture density. Conventional methods of reservoir engineering analysis are not applicable to coalbeds.

OP 115-68. A Comparison Between log and Core Analyses From Appalachian Area Oil Wells, by J. R. Duda and C. I. Pierce. Producers Monthly, v. 32, No. 5, May 1968, pp. 2-3. Comparison between log and core analyses is made for six formations penetrated by three wells in the Appalachian area. Two wells in northwestern Pennsylvania and one in north central West Virginia were diamond rotary cored using water-base mud and then surveyed with a suite of geophysical logs. The cores were analyzed in the laboratory to determine their physical properties. Gamma-ray, neutron, density, and resistivity logs were used to determine the porosity and fluid saturations of the cored formations. This article shows some discrepancies that occurred between core and log analyses. Results of this comparison indicate that sampling frequency of one sample per foot of core does not provide good representation of heterogeneous rock and that adequate compensation of the logs for borehole effects can not always be made.

OP 116-68. The Effect of Mild Heating on the 1600 cm⁻¹ Region in the Infra-red Spectrum of Coals, by R. A. Durie, Y. Schewchyk, and R. A. Friedel. Fuel, v. 46, No. 1, pp. 53-58. It has been found that a part of the water associated with the vitrains of bituminous coals and most of that associated with a brown coal absorbs at the anomalously low frequency of about 1600 cm⁻¹. It could therefore contribute

to the observed integrated absorption intensity of this band with coal samples unless stringent precautions are taken to keep the coal, in the halide disks used, dry. In some conditions the water can account for 15 to 20 percent of the observed intensity.

OP 117-68. Gas Chromatographic Analysis of Low Molecu-

lar Weight Alkyl Thiols and Sulfides Separated en Open Tubular Columns, by Robert W. Freedman. J. Gas Chromatography, v. 6, No. 9, September 1968, pp. 495-496. A good separation of C.-C. saturated alkyl thiols and sulfides has been achieved by the use of an open tubular column. Saturated C_1 - C_3 alkanes are all eluted prior to methanethiol. Plots of relative hydrogen flame detector response per mole give two distinct families of curves for thiols and sulfides. Each is nearly linear with carbon number.

OP 118-68. Recovery and Production of Alumina From Waste Solutions by Solvent Extraction, by D. R. George, K. E. Tame, S. R. Crane, and K. B. Higbie. J. of Metals, September 1968, pp. 1-5. Significant tonnages of aluminum are discarded in waste solutions from mineral processing. Preliminary samples tions from mineral processing. Preliminary samples and information on flow rates at 14 copper mines suggest that more than 2,000 tons of alumina per day may be available and that several individual mines might have a production potential of 300 to 1,000 tpd from solutions containing 25 to 100 lb of alumina per 1,000 gal. These estimates should be regarded as provocative conjectures. The true potential cannot be determined until information is available on the rate of leaching of aluminum from available on the rate of leaching of aluminum from the waste rock and the extent to which the concentration of aluminum in the solutions is controlled by equilibrium conditions. On the basis of preliminary surveys, research was initiated in July 1966 that resulted in development of a solvent extraction procedure for recovering aluminum and producing alumina from copper waste dump leaching solu-tions. A preliminary appraisal, based on published cost estimates, for producing alumina from clays by acid leaching, suggested that on a scale of 300 to 1,000 tons of alumina per day, production costs might be competitive with alumina produced from bauxite by the Bayer process. Production of alumina from clays by acid leaching is not competitive with the Bayer process today, but production from waste solutions enables the elimination of capital equipment and operating costs for the head-end operations including mining, crushing, calcining, grinding, leaching, filtration, and evaporation. In addition, there are opportunities for further improvements in the economics through recovery of valuable byproducts, including uranium, yttrium, and a number of the rare-earth elements

OP 119-68. Repid Excevetion, by Thomas E. Howard. Scientific American, v. 217, No. 5, No-vember 1967, pp. 74-76, 81-85. The development of rapid excavation techniques, the evolution of exca-vating machines, the present state of the art, and the problems to be overcome in the development of the excavation and supplementary technology needed in the future are discussed.

OP 120-68. A Unique Approach to Oil-Production Decline Curve Analysis With Applications, by C. D. Locke, L. A. L. Schrider, and M. K. Romeo, Pres. at Soc. Petrol. Eng., AIME, 43d Ann. Fall Meeting, Houston, Tex., Sept. 29-Oct. 2, 1968, SPE Preprint 2224, 4 pp. A unique method of decline-curve analysis has been developed which greatly facilitates the

estimation of future performance of an individual well or field while maintaining a high degree of mathematical accuracy. A computer program has been written which allows the user to obtain the best approximation to hyperbolic or exponential decline curves with a minimum amount of effort. A unique part of the hyperbolic curve fit is that initial approximations to unknown constants are not necessary-the constants are generated internally. Thus, the program allows the user greater freedom of operation, a high degree of mathematical accu-racy, and the ability to update information with a minimum of effort. Field data studies are included to show the accuracy and versatility of the method. The technique is shown to be superior to two other methods investigated.

OF 121-65. Kinetics of the Thermal Decomposition of Tung-sten Hexacarbanyl, by R. V. Mrazek, S. B. Knapp, and F. E. Block. Trans. Met. Soc., AIME, v. 242, June 1968, pp. 995-1000. The mixed homogeneous and heterogeneous kinetics of the thermal decomposition of tungsten hexacarbonyl were studied by employing a batch reactor. The system was such that a sample of tungsten hexacarbonyl could be injected into the preheated reactor, and the progress of the reaction followed by a simple pressure meas-urement. Both the homogeneous and heterogeneous reactions were found to be first order, and approximate activation energies were determined for each reaction. It is shown that the disproportionation of carbon monoxide to give carbon and carbon dioxide cannot be the source of carbon in tungsten deposits prepared by this reaction.

OP 122-68. Surface Studies Predict Orientation of Induced Formation Fractures, by William K. Over-bey, Jr., and Robert L. Rough. Producers Monthly, v. 32, No. 6, June 1968, pp. 16-19. Natural and in-duced vertical fractures in oil-bearing reservoirs affect oil production from both primary- and secondery-resource operations. Brailing are investisecondary-recovery operations. Preliminary investi-gations have demonstrated the feasibility of corre-lating observed surface fracture trends with oilreservoir fractures induced by hydraulic fracturing.

Magnetic bearings of major vertical joints in outcropping formations were compared with compass bearings from bottom-hole packer-impression surveys of hydraulically induced wellbore fractures. The orientation of vertical fracture trends was established by plotting nearly 2,000 joint strike meas-urements from Salamanca Sandstone outcrops at 16 locations throughout the Bradford oilfield in McKean County, Pa., and the Allegany oilfield, Allegany County, N.Y. One dominant set of joints trending N 50° E to N 76° E correlated very well with wellbore fracture orientations in 19 to 21 packer-sur-veyed wells in the two oilfields. The formation outcrop survey bearings were augmented by similar data obtained from aerial photographs and topographic relief maps.

OP 123-68. Vapor Pressure Detector for Liquid Elution Chromatography. Its Potential Use in Shale-Oil Charocterization, by R. E. Poulson and H. B. Jensen. Anal. Chem., v. 40, No. 8, July 1968, pp. 1206-1212. A continuous, wet-wick, thermistor-type, differential vapor pressure detector was studied for use in liquid elution chromatography. When thermistors matched to 14-ppm resistance per degree were used, the observed detection limit was 0.8×10^{-6} mole kg⁻¹ with cyclohexane solvent. The effective sensing volume of the detector was 90 μ l at a flow rate of 2.0 ml/hour, decreasing at lower flow rates. An alkane-alkene

1

ŧ

)

type analysis on a shale-oil middle distillate is demonstrated on a small silica gel column. A postcolumn stream splitter to increase system throughput is described. Available resolution is presented for typical, 0.254-cm-id, adsorbent-packed columns of various lengths. The resolution was evaluated for columns operated with 0.2-cm HETP in the presence of a 90-µl detector-volume effect relative to the zero extra-column volume case. The observable resolution with detector broadening for a 4-m column is 90 percent of the available for bands eluting in 3 column-void volumes. The capability of this type of small-column system is compared with the capability of TLC. The small-column system can generate as much resolution as a TLC system in appreciably less time.

OP 124-68. Inexpensive Oil Vapor Trap for Use With Retary Vacuum Pumps, by Wallace W. Roepke and Kenneth G. Pung. Vacuum, v. 18, No. 8, August 1968, pp. 457-458. This note describes an inexpensive molecular sieve trap that can be fabricated easily in any laboratory.

ł

ſ

а

1

)

1

ì

f

۱ (

. ..

OP 125-68. Torsional Bands in Far-Infrared Spectra of Thiols and Amines, by D. W. Scott and G. A. Crowder. J. Molecular Spectroscopy, v. 26, No. 4, August 1963, pp. 477-484. In continuation of earlier work by the authors in which torsional bands were observed in the far-infrared spectra of 2-propanethiol and cyclohexanethiol, torsional bands also have been observed for ethanethiol, 2-methyl-2-propanethiol, n-propylamine, isopropropylamine, and t-butylamine. In the alkanethiols, force-constant calculations show that interactions between SH and CH, torsions are relatively unimportant; however, in contrast, interactions between NH, and CH, torsions are important in the alkylamines. Methanethiol vapor has a complex set of infrared bands between 60 and 500 cm⁻¹ that arises from coupling between internal and overall rotation.

OP 126-63. USBM Examines Exotic Ways of Breaking Rock, by Staff, U.S. Bureau of Mines, Twin Cities Mining Research Center. Eng. and Min. J., v. 169, No. 4, April 1968, pp. 85-92. Mining, a dynamic process, may also be defined as an economic system for separating a desired rock, a metallic or nonmetallic mineral from its natural environment. The system has four basic technological categories: Rock disintegration, materials handling, ground control, and environmental control. All mining operations today, whether large or small, face economic and technological problems in one or more of these classifications. The U.S. Bureau of Mines, using a total systems approach, has developed a framework of technological research in each category at four regional centers in the United States. The Twin Cities Mining Research Center near Minneapolis, Minn., is responsible for rock disintegration research. The Center is attacking the problem of rock disintegration by theoretical and experimental studies covering a wide range of mechanisms which accomplish disintegration by imparting energy to rock. The Center's long-range objective is to develop new and improved rock disintegration techniques as part of new and improved mining systems.

OP 127-68. Analysis of Termination Effects on Atomic Radial Density Curves, by John R. Townsend and Sabri Ergun. Carbon, v. 6, 1968, pp. 19-26. There is evidence to indicate that carbon blacks are made up of distorted large graphite-like layers rather than small turbostratic crystallites. Atomic radial density curve. offer a direct means of determining the true structure by revealing the extent of coherently scattering domains. Aside from experimental problems, the major difficulties with the radial density distribution method for determining atomic arrangements in matter have been the limited resolution and false structure usually found in the density curve. These defects are largely due to the fact that scattering data can only be obtained over a finite angular range instead of the infinite range required by theoretical considerations. False structure produced by this cut-off can be suppressed by use of an artificial convergence factor, but this further reduces the resolution of the density curve. A critical analysis is made of the termination effects and a method is described that provides a procedure for directly correcting the radial density curve for the cut-off effects with no sacrifice in resolution. .

OF 128-68. Threat of Sonic Booms to Explosives Facilities, by Robert W. Van Dolah. Am. Soc. Safety Eng. J., v. 13, No. 9, pp. 12-14. The potential consequences of sonic booms are direct initiation of explosives, unfavorable instrument reaction, window breakage, startle reaction in personnel, bric-a-brac movement. Of these the latter two fall within the range of the ordinary reaction to sonic booms; window breakage would occur with heavy to intense sonic booms.

OP 129-68. History and Measurement of Helium, by A. H. Tacquard. Gas Measurement (Nat. Gas Measurement Assoc.), v. 2, No. 5, pp. 2-7. The measurement of helium gas volumes, in the Bureau's helium conservation program, is done by conventional methods but, in some ways, is different from the measurement of natural gas.

OF 130-68. The Concept and Testing of Formation Fracturing With Nucleor Explosives and Thoughts on Future Applications, by Charles H. Atkinson. Proc. 4th Petroleum Economics and Evaluation Symp., Dallas Section SPE, AIME, 1968, SPE 2061, pp. 49-54. Development of the nuclear explosive fracturing concept and Project Gasbuggy and other proposed gas reservoir stimulation tests are reviewed. Economics of future application are considered. Areas suitable for the technique and estimates of potential gas recovery are shown. The paper points out the desirability of utilizing the results of Project Gasbuggy in planning additional gas-stimulation projects.

OP 131-68. Discontinuities in Some Thermodynamic Quantities at the Critical Point of an Analytical Fluid, by Robert E. Barieau. J. Chem. Phys., v. 49, No. 5, Sept. 1, 1968, pp. 2279-2282. For an analytical fluid it is shown that at the critical point the following discontinuities exist:

$$C_V \begin{pmatrix} 2 \text{ phases} \\ n/V_T = p_c \end{pmatrix} - C_V / RZ_c = \frac{3p_{al}^3}{p_{aaa}},$$

$$d^2p/dt^2 - (\partial^2p/\partial t^2_a)$$

$$= (p_{at}/5p_{aca})[16p_{at}-20p_{aca}+(3p_{at}\ p_{acad})/p_{aca}],$$

$$T_{c}[(d^{2}G/dT^{2})-(\partial^{2}G/\partial T^{2})\rho](RZ_{c})^{-1}$$

$$\frac{(a - b/a + b) - (b - b/a + b)}{(a - b/a + b)} \frac{(a - b/a +$$

where $a = (\rho/\rho_c) - 1$; $p = (P/P_c) - 1$; $t = (T/T_c) - 1$; G is the Gibbs free energy or chemical potential; C_r is the heat capacity at constant volume; n is the total number of moles in the calorimeter; V_T is the total inside volume of the calorimeter; ρ_c , P_c , T_c are the critical molal density, critical pressure, and critical temperature, respectively; $Z_c = P_c/\rho_c RT_c$; and p with subscripts indicates partial derivatives of p evaluated at the critical point.

OF 132-43. Developments in Oil-Shele Technology, by G. U. Dinneen, K. E. Stanfield, G. L. Cook, and H. W. Sohns. Chem. and Eng. Prog. Symp. Ser., v. 64, No. 85, 1968, pp. 15-21. Green River oil shale represents a huge potential source of energy. This paper discusses the technological aspects of the efforts to utilize this resource. Much information has been gained about the origin of the Green River Formation, the mineral present in it, the reactions of the kerogen, and the composition of the shale oil. Production of shale oil is discussed: (1) Mining, crushing, and aboveground retorting and (2) experimental in situ retorting.

OF 133-68. Transient Flow Characteristics of Low Permeability Gas Reservoirs and Improvement of Deliverability by Nuclear Explosion, by C. Kenneth Eilerts and and Eudora F. Sumner. SPE J., v. 8, No. 3, September 1968, pp. 209-223. The transient flow characteristics of gas reservoirs with permeabilities less than 0.1 millidarcy were computed using programs that give effect to variation in permeability and fluid density and viscosity. Improvement of permeability in the area of the well by nuclear explosion markedly increases the percentage of gas in place that can be recovered at a given flow rate and pipeline pressure. The factor by which delivery capacity is improved depends on the magnitude of effects due to non-Darcy flow prior to the shot.

OP 12448. Liquid Level Monitoring by Capacitance Measurement, by G. E. Fasching and Joseph Pasini III. Instruments and Control Systems, v. 41, No. 7, July 1968, pp. 111-112. An automatic control system was developed in connection with the recovery of crude oil from shallow, pressure-depleted, low-permeability reservoirs. An integral part of the controller is a liquid level measuring system which monitors 1,000-cc supply vessels, giving and recording precise measurements of the volumes of liquids injected into long sandstone cores. High permittivity-low resistivity and low permittivity-high resistivity fluids can be measured with essentially equal accuracy, sensitivity, linearity, and stability.

OP 135-68. Operating Coal-Fired, Open-Cycle MHD Systems at Low Air/Fuel Ratios, by H. F. Feldman, W. H. Simons, J. Sax, and D. Bienstock. ASME Winter Annual Meeting and Energy Systems Exposition, New York, Dec. 1-5, 1968, 68-WA/ENER-15, 9 pp. Operation of magnetohydrodynamic generators at below stoichiometric air-coal ratios results in a substantial increase in the electrical conductivity of the combustion products and with it the potential of lowering magnet and capital costs.

OP 136-58. Atomic Absorption Graph Paper, by Thomas E. Green. Atomic Absorption Newsletter, v. 7, No. 5, September-October 1968, p. 98. Describes a graph paper with spacing that permits direct plotting of percent absorption readings from an atomic absorption spectrophotometer.

OP 137-68. Graphs Quickly Predict Waterflood Performance, by R. V. Higgins, D. W. Boley, and A. J. Leighton. Part 1, World Oil, v. 167, No. 3, September 1968, pp. 89-96; Part 2, No. 4, October 1968, pp. 152, 158-163. A quick, graphical method is presented which uses continuously changing relative permeabilities to determine oil recovery for a 5-spot waterflood. Forecasts can be completed in about 30 minutes with accuracy of 2 percent.

OP 138-68. Computer Usage for Evaluation of Design Paramsters and Cost of Meat Exchangers, by P. R. Jones and S. Katell. Trans. Am. Assoc. Cost Eng., 12th Nat. Meeting, Houston, Tex., June 17-19, 1968, pp. 35-1 through 35-11. A computer program was written for the design of shell-and-tube heat exchangers on a price optimum basis to meet the following requirements: (1) Triangular pitch; (2) single or multiple pass; (3) heating or cooling; and (4) no change in phase. This program was the third in a series and was for a case in which outside pumping costs were immaterial. The program was made adaptable to various fluids and to various tube dimensions by reading in many of the required data in tabular form. Price optimum design was obtained for four tube diameters and standard pitch. Standard shells whose area equaled or exceeded the required area were listed also.

OP 139-68. Pyrolysis of Coal Macerals by Laser Irradiation, by F. S. Karn and A. G. Sharkey, Jr. Fuel, v. 47, No. 3, May 1968, pp. 193-195. The purpose of this investigation was to determine the gaseous products from concentrates of macerals of a high-volatile bituminous coal irradiated with 6joule pulses from a ruby laser. Total gas yield varied directly with volatile matter of the macerals. Major gases evolved were hydrogen, carbon monoxide, and acetylene. Relative concentrations of these gases and also several minor components in the pyrolysis product varied little among macerals.

OP 140-58. Photographic Study of Laser Irradiation of Coal and Graphite, by F. S. Karn and J. M. Singer. Fuel, v. 47, No. 3, May 1968, pp. 235-240. Irradiation of coal or graphite by a normal-laser pulse produces a luminous plume which has been recorded by high-speed photography. Photographs taken at the rate of 21,000 frames per second were used to measure the rate of plume growth. The effective measured laser pulse was 1.2 msec, of much longer duration than giant laser pulses. Plume growth rate was 1.1×10^4 cm/sec for bituminous coal and 0.9 $\times 10^4$ cm/sec for graphite plumes formed by giant pulse laser irradiation. Vaporization rate for graphite was $14 \text{ g/cm}^2 \text{ sec}^1$, approximately the rate expected at atmospheric pressure based on carbon boiling-point data.

OF 141-68. Composition of Pyridine Extracts From Reduced and Untreated Coals as Determined by High-Resolution Mass Spectrometry, by T. Kessler, R. Raymond, and A. G. Sharkey, Jr. Proc. ASTM Committee E-14 Meeting, Pittsburgh, Pa., May 1968, pp. 356-358. High-resolution mass spectrometric analyses of pyridine extracts obtained from reduced and untreated vitrain have shown (1) a greater concentration of oxygen-containing compounds in the reduced vitrain compared to the untreated vitrain; (2) an approximately eightfold decrease in organic sulfur compounds in the vitrain following reduction, which is consistent with the decrease in sulfur as shown by ultimate analyses; (3) a lower concentration of higher molecular weight hydrocarbons such as 3-ring aromatics in the reduced vitrain; and (4) a significant increase in the amount of hydroaromatic compounds in the reduced vitrain.

1

ı

Į

1

ł

L

E

1

OP 142-68. Colculation of Imbibition Relative Permeability for Two- and Three-Phase Flow From Rock Properties, by Carlon S. Land. SPE J., v. 8, No. 2,

June 1968, pp. 149-156. Relative permeability functions are developed for both two- and three-phase systems with the saturation changes in the imbibition direction. An empirical relation between residual nonwetting-phase saturation after wave imbibition and initial nonwetting-phase saturations is found from published data. From this empirical relation, expressions are obtained for trapped and mobile nonwetting-phase saturations which are used in connection with established theory relating permeability to pore-size distribution. The resulting equations yield relative permeability as a function of satura-tion having characteristics believed to be represent-ative of real systems. The relative permeability of water-wet rocks for both two- and three-phase systems, with the saturation change in the imbibi-tion direction, may be obtained by this method after properly selecting two rock properties: the residual nonwetting-phase saturation after the complete imbibition cycle and the capillary pressure curve.

OP 143-68. The Optimum Gas Saturation for Maximum Oil OF 143-68. The Optimum Get Saturation for Maximum Git Recovery from Displacement by Water, by Carlon S. Land. 43rd Ann. Fall Meeting of SPE, AIME, Houston, Tex., Sept. 29-Oct. 2, 1968, SPE Preprint 2216, 12 pp. The influence of a free gas saturation on recovery by water drive is investi-gated. A digital computer is used to calculate the combined oil recovery from solution-gas drive to various states of depletion and then oil recovery by water displacement at these states of depletion. Results of these calculations are compared, and optimum conditions for the maximum oil recovery are found for various fluid-rock systems. For most of the fluid-rock systems, the calculations show an optimum gas saturation other than zero. Using fluid and rock properties as parameters, graphs are plotted showing the optimum gas saturation and the in-crease in oil recovery brought about by the gas saturation. The effects of fluid properties and relative permeability on the optimum gas saturation are seen in these graphs. The graphs can be used as guides in connection with other considerations in determining the optimum time to start a water-flood. They should also be helpful in determining the MER of a water-drive reservoir.

OF 144-58. Comparison of Log and Core Analysis Results for an Extremely Heterogeneous Carbonale Reservoir, by L. C. Marchant and E. J. White. Trans. Soc. Professional Well Log Analysts, 9th Ann. Lorging Symp., June 23-26, 1968, pp. L1-L16. Log and core analysis results for the Ratcliffe interval of the Madison Formation in Montana's Flat Lake oilfield were compared. Data for 79 wells were included in the study. In contrast to most published log-core analyses comparisons, which force porosity log response to match the corresponding core porosi-ties, the log analyses in this study were relatively independent of the core analyses. The only core analysis data used in the log analyses were the matrix densities and modified residual oil saturations. Sonic and resistivity log porosities averaged 10 percent greater and 11 percent less, respectively, than the corresponding core porosities. Water saturations derived from both sonic and resistivity logs were consistently lower than the corresponding core residual water saturations.

3

4

1

1

OP 145-68. Mass Flowmeter Compensation, by J. R. McVey and R. D. Doebbling. Instruments and Control Systems, v. 41, No. 9, September 1968, p. 136. An automatic correction device that corrects for inaccuracies in mass flowmeters by determining percents of flow and that accumulates a predetermined error for these points is described.

OP 146-68. Optical Data Processing of Multispectral Phot

graphs of Sedimentary Structures, by Howard J. Pincus and Syed A. Ali. J. Sedimentary Petrology, v. 38, No. 2, June 1968, pp. 457-461. Two-dimen-sional Fourier transforms (diffraction patterns) of photographs of the same specimen illuminated in five different ways provide a means for comparing the information so obtained. Faint cross-lamination in a specimen of Fairview limestone is best revealed by transmitted infrared radiation.

OP 147-68. Electric Paramagnetic Resonance of Coals During Electron Irradiation, by H. L. Retcofsky, A. G. Sharkey, Jr., and R. A. Friedel. Fuel, v. 45, No. 2, March 1967, pp. 109-114. Four vitrains from coals of different ranks were irradiated with 6 Mev electrons produced by a linear accelerator. Electron paramagnetic resonance (EPR) spectra were ob-tained at several intervals during and after the irradiation. Changes in EPR absorption as a result of sample irradiation indicated the presence of newly formed radical species in a lignite and a low-volatile bituminous coal. These new radicals persisted after the irradiation had ceased but proved to be short-lived species. Irradiation of a high-volatile A and a high-volatile C bituminous coal produced no detectable amounts of new radicals.

OP 148-65. Electron Spin Besonance in American Coals, by H. L. Retcofsky, J. M. Stark, and R. A. Friedel. Anal. Chem., v. 40, No. 11, September 1968, pp. 1699-1704. An electron spin resonance study of a coalification series consisting of samples of peat and lignitic, subbituminous, bituminous, and of peat and lightlic, subortuminous, bituminous, and anthracitic coals was carried out as part of a con-tinuing investigation of the chemistry and struc-ture of coal. Concentrations of unpaired electrons, spectral linewidths, and g values were all found to vary smoothly with the rank of the coals with the exception of those for meta-anthracite which is because the meta-anthracite which is the other members of the series. The results are interpreted in terms of existing theories of coal metamorphosis and suggest that the unpaired electrons in coals are free radical electrons occurring in organic structures containing carbon, hydrogen, and oxygen.

OP 149-68. Carbon-13 Nuclear Magnetic Resonance Studies

of 2-Substituted Pyridines, by H. L. Retcofsky and R. A. Friedel. J. Phys. Chem., v. 72, No. 7, July 1968, pp. 2619-2622. Carbon-13 magnetic reson-ance spectra of ten 2-substituted pyridines have been obtained and analyzed. Substituents included both electron-releasing and electron-withdrawing groups. Only half of the 50 carbon shieldings measured yielded substituent effects that agree, within experi-mental error, with those found for the corresponding monosubstituted benzenes. Differences between substituent effects on the ring carbons for the two series of compounds ranged from -4.5 to 21.1 ppm, where a positive sign means that replacement of the hydrogen atom in the 2-position of pyridine by a substituent leads to smaller paramagnetic shifts (or larger diamagnetic ones) than replacing a hy-drogen atom in benzene with the same substituent. These differences were found to be most pronounced for the carbons in the 2-position and, for these carbons, to correlate well with the electronegativity of the first atom of the substituent group. Para-magnetic shifts for the C-2 carbons were found to be much smaller than expected in those cases where

considerable quantities of electronic charge had been removed by strongly electronegative groups. Shieldings of the carbon atoms in the 5-position, pura to the substituent, were found to reflect electron release or withdrawal by substituent groups. Substituent carbon atoms directly bonded to C-2 were all found to be less shielded than the corresponding ones in 3- and 4-substituted pyridines.

OP 150-68. A Chromatographic Procedure for Traces of Hydrogen in Pure Helium, by H. L. Rhodes. J. Gas Chromatography, v. 6, September 1968, pp. 488-490. An automatic process chromatograph pro-cedure is presented for fast qualitative and quantitative analyses for trace qualities $(1 \neq 100 \text{ ppm})$ of hydrogen in 99.995 percent (Grade A) helium. This unique method utilizes a single column twice, which alows effective addition of column length without loss of efficiency, and vents the major com-ponent. A conventional thermal conductivity detec-tor and 1-millivolt potentiometric recorder are used to produce analyses with laboratory precision and sensitivity, about 100 ppm full scale.

OP 151-68. Clinton Sand Reservoir Study-A Progress Report, by Leo A. Schrider. Producers Monthly, v. 32, No. 7, July 1968, pp. 10, 12-14. In the evalua-tion of the waterflood potential of the Clinton sand, Hocking County, Ohio, it has become vividly clear that a better understanding of reservoir factors is vital. The effects of two of these factors, fluid satu-ration and fracture direction, are presented. A data rotained and trand surface mapping technique was retrieval and trend surface mapping technique was used to compile the large quantity of reservoir in-formation. The usefulness and application of this data bank are discussed along with results of a trial test. Results of this research should be valuable to operators planning secondary-recovery oper-ations in the Clinton sand reservoir in Ohio.

OP 152-68. High-Resolution Mass Spectrometric Investigation of High-Resolution Mass spectrometric investigation of Heteroatom Species in Coal Carbonization Products, by J. L. Shultz, T. Kessler, R. A. Friedel, and A. G. Sharkey, Jr. Proc. ASTM Committee E-14 Meeting, Pittsburgh, Pa., May 1968, pp. 359-361. Studies of the high-resolution mass spectra of complex mixtures indicate the power of this technique to detect species containing heteroatoms in highly aromatic matrices and to provide data relating compositional changes to chemical or physical properties. Coal-tar pitch, original and weathered road tars, and coke-oven pitches were investigated by the high-resolution mass spectromatic technique.

OP 153-68. Rock Matrix Properties of the Ratcliffe Interval (Madison Limestone), Flat Lake Field, Montana, by E. J. White, L. C. Marchant, and D. K. Roberts. Rocky Mountain Regional Meeting, SPE, AIME, Billings, Mont., June 5-7, 1968, SPE Preprint 2127, 13 pp. Correlations between porosity, permeability, saturation characteristics, mineral constituency, and pore geometry inferred from mercury injection measurements for a heterogeneous carbonate reservoir are discussed. The fluid flow properties of the reservoir are considered.

OF 154-68. Are Natural Resources Enough? by David Brooks. Mountain Life & Work, v. 45, No. 11, November 1968, pp. 3-6, 8. Natural resources alone cannot be relied on for economic growth in Appalachia unless they are combined with forces leading to a higher value for the product or to the provision of more inputs or greater circulation of generated income within the region.

OP 155-68. Mining and Mineral Recovery, by Michael J. Cruikshank. Ch. 11 in Undersea Tech-nology Handbook Directory. Compass Publications, Inc., Arlington, Va., pp. A81-A90. This chapter pre-sents, in summary and tabular form, the current activities in mining and mineral recovery from the oceans.

OP 156-68. The Magnesium-Titanium Phase Diagram to 1.0 Pet Titanium, by L. C. Fincher and D. H. Desy. Trans. Met. Soc., AIME, v. 242, No. 10, October 1968, pp. 2069-2073. The magnesium-rich end of the magnesium-titanium phase diagram was investigated. The solubility of titanium in magne-sium ranged from 0.018 weight-percent Ti at 700° C (0.012 weight-percent at 650° C by extrapolation) to 1.035 weight-percent Ti at 1,500° C. The solidus for compositions ranging from 0.03 to 1.00 weight-percent Ti was determined to be $650° \pm 1°$ C by thermal analysis. The titanium solid solubility values ranged from 0.08 weight-percent at 350° C to 0.19 weight-percent by extrapolation to $650° \pm C$. to 0.19 weight-percent by extrapolation to 650° C. The freezing reaction is peritectic. No intermetallic compounds were found in the system; the phase in equilibrium with molten magnesium saturated with titanium was found to be titanium with magnesium in solid solution. Solid titanium will dissolve at least 1.32 weight-percent Mg.

.

E

E

¥.

Í

E

OP 157-68. The Alkalized Alumina System for SO₂ Removal: Design and Operation of a Continuous Pilot Plant, by D. H. McCrea, J. H. Field, and E. R. Bauer, Jr. by D. H. McCrea, J. H. Field, and E. R. Bauer, Jr. ASME Winter Ann. Meeting and Energy Systems Exposition, New York, December 1-5, 1968, Preprint 68-WA/FU-3, 9 pp. A process for removing sulfur oxides from hot flue gas by chemical sorption on a solid and recovery of the sulfur by reduction is described. Design and operation of a continuous pilot plant are discussed, and economic potential of the process is reviewed. Better than 90 percent of the sulfur oxides in the flue gas from the combustion of pulverized coal can be removed with less than 2-in H₂O pressure loss by sorbent entrained in the reactor. Prior removal of fly ash is not required. The solid is readily regenerated by reduction in a slowly moving packed bed.

OP 158-68. Shift Conversion of Synthesis Gas Containing Sulfur, Dust, and Carbon Dioxide, by M. W. Wilson and F. D. Plants. I&EC Process Design and Development, v. 7, No. 4, October 1968, pp. 526-529. Carbon monoxide in synthesis gas containing vari-ous sulfur compounds, dust, and carbon dioxide was converted over standard chromium-promoted iron catalyst at temperatures to 1,000° F, pressures to 300 psig, and space velocities (wet) to 5,000 v/v/ hour. In 30-day continuous tests, CO conversions were lower than with purified gas over nonsulfided catalyst but were comparable when the residence time was increased by raising the pressure. Dust in the gas did not appear to decrease catalyst activity, but dust concentrations of 400 grains per 100 scf increased the pressure drop and reduced the gas flow through the converter. Conversions of CO were generally independent of type of sulfur in the gas. Space velocities are given for specified conversions of sulfur-laden gas at 900° F and 0, 100, 200, and 300 psig.

OP 159-68. Electroslag Melting of Titanium Slabs, by S. L. Ausmus and R. A. Beall. Internat. Trans. Vacuum Metall. Conf., 1967, 1968, pp. 675-694. Calcium fluoride has been proved to be an effective nonreactive flux for the electroslag process as applied to titanium. This investigation established that

the production of slab-shaped titanium ingots by cold-mold electroslag melting requires more power and lower melting rates than conventional arc-melting techniques. Preliminary evaluation by chemical analysis indicated the electroslag melted titanium was equal to or slightly superior to conventional vacuum arc-melted materials. It may be possible to convert the electroslag melted titanium directly to sheet or plate and eliminate the necessity of the double melting now required for the conventional process.

OP 160-68. Analytical Uses of Energy Balances, by William A. Vogely. Proc. 7th World Power Conf., Moscow, Oct. 20-24, 1968, Sec. B, Paper 84, 15 pp. Energy balances call for energy requirements and sources expressed in commensurate units, usually heat. If these balances are complete, the flow of energy through the economy can be traced in such units, and the transformation functions of one form or source of energy to another can be specified. Thus, energy balances permit the analysis of the energy sector as a whole, rather than on a commodity by commodity basis, and, therefore, can be used analytically to answer a number of problems that would otherwise be beyond comprehensive analysis. In this paper, four such analytical uses are described, and examples are given.

OP 161-68. Retorting Ungreded Oil Shele as Related to In Situ Processing, by H. C. Carpenter, S. S. Tihen, and H. W. Sohns. Division of Petroleum, American Chemical Society, Preprints, v. 13, No. 2, April 1968, pp. F50-F57. In the study of retorting characteristics of large pieces of oil chale characteristics. characteristics of large pieces of oil shale, charges ranging in grade from 26 to 48 gallons per ton have been processed with yields as high as 80 percent of Fischer assay.

OP 162-68. Fluorescent Dye Penetrants Applied to Rock Fracturet, by R. D. Gardner and H. J. Pincus. Internat. J. Rock Mech. Min. Sci., v. 5, 1968, pp. 155-158. Under ultraviolet illumination, non-particulate fluorescent dye penetrants clearly mark the surface traces of fractures in minerals and rocks. The use of fluorescent penetrants has been effective in studying the development of fractures in rock specimens deformed in the laboratory. This paper outlines the fluorescent penetrant method as used in a series of experiments concerned

with studying the generation and propagation of extension fractures in flexed specimens of a porphyritic granite. Photographs taken before and after deformation are presented and from these the pat-tern of fracture development can be studied. Fracture traces down to 0.05 mm wide have been observed and photographed.

This technique is applicable to other rock types in a variety of laboratory situations, and its possible use in in situ studies is now being investigated.

OP 163-68. Effect of Pressure and Temperature on Flammability Limits of Chlorinated Hydrocarbons in Oxygen-Nitrogen and Nitrogen Tetroxide-Nitrogen Atmas-pheres, by J. M. Kuchta, A. L. Furno, A. Bartkowiak, and G. H. Martindill. J. Chem. and Eng. Data, v. 13, No. 3, July 1968, v. 421-428. Limit-of-flammability data were obtained in oxygen and nitrogen tetroxide atmospheres for several chlorinated hydrocarbons that are currently of interest as solvents in rocket and space flight applications. Flammability diagrams that define the complete range of flammable mixtures that can occur with the combustibles are presented for various mixture temperatures

(25° to 200° C) and pressures (760 to 50 mm of Hg). Generally, the range of flammable compositions does not vary greatly with temperature or pressure if the vapor pressure of the combustible is not a limiting factor. The range of flammable mix-tures for the combustibles is usually greater in oxygen-nitrogen than in nitrogen tetroxide-nitrogen atmospheres. The minimum oxidant concentrations required for flame propagation are much less in atmospheres containing oxygen and tend to increase with the number of substituted chlorine atoms in the combustible.

OP 164-68. Qualitative Applications of the NMR Spectra of Alkylpyridines: Part 1. Chemical Shifts of the Ring Protons. Part II. Chemical Shifts of the Protons of the Alkyl Substituents, by F. R. McDonald, A. W. Decora, and G. L. Cook. Appl. Spectroscopy, v. 22, No. 4, July-August 1968, pp. 325-336. Part I. Spectroscopic identification of pyridine compounds isolated from complex substances such as shale oil is greatly aided by NMR chemical-shift data on the pyridine-ring protons. Chemical shifts of the ring protons in CCL, and $C_{*}H_{*}$ solution and the differential shift of the protons in these two solvents are reported. A paramagnetic shift is observed in the directional character of the proton alpha to the nitrogen in the pyridine ring. These data are used to determine structural information from the spectrum of a mixture of pyridine homologs.

Part II. The NMR chemical shifts of protons on alkyl groups attached to pyridine rings are dis-cussed. Data on 31 alkylpyridines are included. The spectra and tabulated differential shifts of 15 monosubstituted pyridines in CCl, and hexadeuterobensense (B_r-d_r) are given; and the data on the chemical shifts and the differential shifts in the solvents CCL and C.H. or B_z -de for the di-, tri-, and tetra-substi-tuted pyridines are tabulated. A paramagnetic shift is noted for some protons on alkyl groups attached alpha to the pyridine nitrogen. The use of the data in a qualitative identification of two pyridine homo-logs is demonstrated on a fraction from shale oil.

OP 165-68. Vapor Pressure Relations of 13 Nitrogen Compounds Related to Petroleum, by Ann G. Osborn and Donald R. Douslin. J. Chem. and Eng. Data, v. 13, No. 4, October 1968, pp. 534-537. Compilations of vapor pressures measured by static and ebulliometric methods, covering four orders of mag-nitude in pressure, are given for key members of classes of pyrroles, pyridines, amines, piperidines, and pyrrolidine which were selected in a related project for a comprehensive study of their thermo-dynamic properties. Constants of the Antoine and Cox vapor pressure equations are provided to aid in interpolating or extrapolating the experimental results.

OP 166-68. Catalytic Dehydrogenation of Cool. III. Hydrogen Evolution as a Function of Rank, by L. Reggel, I. Wender, and R. Raymond. Fuel, v. 47, No. 5, September 1968, pp. 373-389. Catalytic dehydrogenation of vitrains from coals of various ranks is discussed in detail. Pure hydrogen gas is a valuable product.

OF 167-68. Predicting Gasoline-Storage Stability, by F. G. Schwartz, C. S. Allbright, and C. C. Ward. Oil and Gas J., v. 66, No. 46, Nov. 18, 1968, pp. 150-153. A test method is described for predicting the deterioration of gasoline during storage for either 32 weeks at 110° F or 5 years at ambient temperatures.

- (3 (

OP 168-68. Thermal Conductivity and Thermal Diffusivity of Green River Oil Shale, by S. S. Tihen, H. C. Carpenter, and H. W. Sohns. Proc. 7th Conf. on Thermal Conductivity. NBS Spec. Pub. 302, Sep-tember 1968, pp. 529-535. This paper contains data on the thermal conductivities and thermal diffusivities of raw, retorted, and burned Green River oil shales of various grades at normal and elevated temperatures. An equation correlating these factors is presented.

OP 169-68. Combination Method for Predicting Waterflood Ferformance for Five-Spot Patterns in Stratified Reservoirs, by James A. Wasson and Leo A. Schreider. J. Petrol. Technol., v. 20, No. 10, October 1968, pp. 1195-1203. A method of predicting waterflood performance has been developed that combines certain facets of several previously published prediction techniques. The manner of combination has required the development and use of some new and little known relationships and has eliminated several of the weaker assumptions inherent in the original in-dividual prediction methods. This approach, which was designed for computer solution, has removed the necessity of referring to plotted curves and per-mits the analytical prediction of waterflood performance for a five-spot well pattern in either homo-geneous or stratified reservoirs. The predicted values are expressed in common oilfield units rather than in abstract or dimensionless terms. The calculation procedure has been programed in FORTRAN IV and the entire program listing is available to potential users.

OF 170-68. Flammability Characteristics of Combustible Gases

and Vapors, by Michael G. Zabetakis. In Handbook of Laboratory Safety, ed. by N. V. Steere. Chemical Rubber Co., Cleveland, Ohio, 1967, pp. 140-163. This report gives a number of rules and graphs that can be used to predict the behavior of flammable mixtures at various temperatures and pressures.

OP 171-68. Differential Extraction of Rare-Earth Elements in

Quaternary Ammenium Salt-Chelating Agent Sys-tems, by D. J. Bauer and R. E. Lindstrom. Proc. 7th Rare-Earth Research Conf., v. 1, October 1968, pp. 413-423. Solvent extraction studies utilizing quaternary ammonium compound-chelating agent systems resulted in superior adjacent rare-earth element separation factors. Samarium oxide of 99-percent purity was produced in a 20-stage sequence

OP 172-68. Alkalized Alumina Process, by Sidney Katell. Air Pollution Control Conf., University of Missouri, Columbia, Mo., Nov. 19, 1968, Preprints, pp. F1-F2. The alkalized alumina system for the removal of sulfur dioxide from powerplant flue gases is currently in the pilot plant stage at the Bureau of Mines Coal Research Center at Bruceton, Pa. A description is made of this installation together with some of the data attained to date. The economics for applying this system to an intercommercial installation is briefly described.

OP 173-68. Infrared Spectral Observations for a Series of Mono- and Dialkylacetylenes, by R. F. Kendall. Spectrochim. Acta, v. 24A, No. 11, November 1968, pp. 1839-1845. Infrared spectra determined on a series of straight-chain alkylacetylenes revealed absorption bands previously unreported. The wave number positions observed for these bands answer some of the questions posed by earlier workers regarding the molecular spectra of actylenic hydrocarbons. Structural correlations of potential analytical application are discussed.

OP 174-68. Preparation of Rare-Earth and Yttrium Metals by Electrodeposition and Vacuum Distillation of Alieys, by E. Morrice, J. E. Murphy, and M. M. Wong. Proc. 7th Rare-Earth Research Conf., October 1968, v. 2, pp. 485-498. Gadolinium, dysprosium, and yttrium are difficult to electrowin as high-purity liquid metals because of their high melting points (>1,300° C). Samarium metal is difficult to prepare directly by electrolysis because the metal reacts with the electrolyte. In this study, the rare-earth metal was electrodeposited on a solid manganese, chromium, or iron cathode to form a low-melting alloy. The alloy was then vacuum distilled to yield the rare-earth metal. A typical samarium metal product, obtained as the distillate from vacuum distillation of a samarium-iron alloy, contained 150 ppm oxygen, 80 ppm carbon, and 50 ppm iron as impurities. Gadolinium metal, obtained as a residue from the distillation of a gadolinium-chromium alloy, contained in ppm, 300 oxygen, 200 carbon, and less than 100 chromium.

OP 175-68. A Rotatuble Microscope Slide Ring Holder for Petrographic Analysis, by R. J. Willard, Mineralogical Magazine, v. 36, No. 282, June 1968, pp. 888-890. A ring holder device is described for use as an accessory with a petrographic microscope. The device permits traversing of a thin section of uncommon dimensions in any charged direction. uncommon dimensions in any chosen direction.

OP 176-68. Fifty Years of Petroleum Chemistry at the Bartlesville Petroleum Research Center, by John S. Ball. Division of Petroleum Chemistry, American Chemical Society, Preprints, v. 13, No. 3, August 1968, pp. 210-215. The Bartlesville Petroleum Research Center, established 50 years ago, has made important contributions to petroleum chemistry in the fields of analysis, composition, thermodynamics, and geochemistry.

OP 177-68. Composition (1958-63) Producing Technologies and Expenses in U.S. Petroleum Industry, by Richard F. Zaffarano. Producers Monthly, v. 32, No. 5, May 1968, pp. 8-9. Analysis of estimates of direct operating expenses for materials, supplies, and re-pair parts consumed in the leased production of crude oil and natural gas in the United States (1958-63) indicated slight shifts have occurred with-ne selected categories of input requirements. This in selected categories of input requirements. This article identifies and briefly discusses the technology used to improve production efficiency. In addition a method is described which, although not new, was used to develop estimates of operating expenses needed for a national study.

OP 178-68. Electricislog Melting of Titonium Slobs, by S. L. Ausmus and R. A. Beall. Trans. Internat. Vacuum Metallurgy Conf., June 1967, New York, 1968, pp. 675-694. (For summary see OP 159-68.)

OF 179-68. High-Speed Solenoid Valve Control Circuit, by Merle L. Bowser. Instruments and Con-trol Systems, v. 41, July 1968, pp. 93-94. An elec-tronic circuit is described that is used to control rapid activation of solenoid valves by a deliberate overvoltage. A timing circuit is also described that controls the time sequence of operation of two valves.

OP 180-68. Application of Aboveground Retorting Variables

to in Situ Oil Shele Processing, by Harry C. Carpenter and Harold W. Sohns. Colorado Sch. Mines Quart., v. 63, No. 4, October 1968, pp. 71-82. In the study of retorting characteristics of large

ł

I

pieces of oil shale, charges ranging in grade from 26 to 48 gallons per ton have been processed with yields as high as 80.8 percent of Fischer assay. Linear models relating to retorting variables were developed.

OP 181-68. An Inverse GLC Study of Asphalts Used in the Zaca-Wigmore Experimental Road Test, by T. C. Davis and J. C. Petersen. Proc. Ann. Meeting Assoc. Asphalt Paving Technologists, Feb. 13-15, 1967, Denver, Colo., v. 36, 1968, pp. 1-14. Inverse gas-liquid chromatography (GLC) was used to study asphalts evaluated in the Zaca-Wigmore Experi-mental Road Test. The retention behavior of a mental Road lest. The recention behavior of a number of test compounds was determined on the asphalts both before and after oxidation within the GLC column. The retention behavior of the test compound phenol on the oxidized asphalts correlated with the performance of the asphalts in road service, and this was further supported by a similar correlation with accelerated weathering durabilities of coating-grade asphalts. The phenol test compound retention data on the oxidized road asphalts were also found to relate to changes in viscosity as meas-ured by the microfilm durability test. Because test compound retention behavior is related to chemical composition and molecular association forces of the asphalt, the correlation with performance affirms the importance of chemical composition to asphalt performance on the road.

OP 182-68. Mobile Combustion Sources, by R. W. Hurn. Ch. 33, pt. 7, in Sources of Air Pollution and Their Control. Air Pollution, ed. by A. C. Stern. Academic Press, Inc., New York, rev. 2d ed., v. 3, 1968, pp. 55-95. The automobile is identified as the principal source of pollutants in the mobile category. Emissions from this source are discussed with regard to origin within the vehicle, the nature of pollutants to origin within the vehicle, the nature of pollutants discharged, and technical measures being taken to d_{ccrease} and control the discharge of these pollutants at acceptable levels.

OP 183-68. An Improved Method for Separating Copper and Steel From Copper-Containing Ferrous Scrap, by Vance G. Leak and M. M. Fine. Secondary Raw Materials, v. 6, No. 7, July 1968, pp. 27-29. A method of separating copper from copper-containing ferrous scrap consists of immersing the scrap in a heated (1,200° C) bath of molten salt or slag. The copper melts and collects at the bottom of the vessel from which it may be periodically withdrawn. The function of the molten bath is to prevent oxidation of the metals and to improve heat transfer.

OP 184-68. Timing Mork Counter, by I. Liebman, J. Corry, and H. E. Perlee. Rev. Sci. Instr., v. 39, No. 10, October 1968, pp. 1591-1593. A simple optical device has been developed for automatically counting time marks on motion picture film at a maximum rate of 300 counts per minute. This device enables one to scan extensive film records quickly without having to manually count and record the timing marks.

1

1

OP 185-68. Limestone Neutrolization—A Law Cost and Effective Treatment for Acid Mine Waters, by E. A. Mihok and Maurice Deul. Coal Age, v. 73, No. 12, December 1968, pp. 65-70. A method was devised to use wet autogenous grinding of coarse limestone 1 to generate a slurry of limestone fines to treat any desired quantity of acid mine water. The process as finally developed consists of (1) producing a very fine (minus 400-mesh) limestone slurry; (2) mixing the slurry with mine water; (3) aerating the result-

ing mixture to remove carbon dioxide and precipitate iron; and (4) separating the solids from the liquid by sedimentation. The limestone process has in-herent advantages over the conventional lime process; namely, lower cost, widely available raw mate-rial, simplicity in design and operation, and much smaller volume of precipitated solids.

OP 186-68. The Effect of Time and Depth of Burial on the Naphtha and Gas Oil Content of Crude Oil, by Harold M. Smith. Proc. Oklahoma Acad. Sci., v. 47, 1968, pp. 195-205. The amounts of naphtha and gas oil fractions in more than 6,000 crude oils were correlated with depth and geologic age of the production producing formation.

OP 187-68. Direct Steelmaking With Prereduced Iron Ore in an Electric Arc Furnace, by H. A. Tucker, F. X. Tartaron, H. L. Goldstein, and J. J. Kociscin. Blast Furnace and Steel Plant, v. 56, December 1968, pp. 1070-1084. Experimental steelmaking heats were conducted to simulate commercial, single-slag, were conducted to simulate commercial, single-stag, basic electric furnace practice for carbon steel pro-duction. The furnace burdens were 75 percent pre-reduced materials and 25 percent scrap, or 25 per-cent pig iron. Several comparative all-scrap tests were made. The procedure and data are given in two sections, one dealing with the batch melting of prereduced iron ore briquets and the other with the continuous feeding and melting of prereduced iron ore powder, both using a 1-ton electric arc furnace. Prereduced iron ore, in either briquet or powder form, can be melted and refined to a high-quality steel in an electric arc furnace.

OP 183-68. Finite Element Model Study of Slope Modifica-tion of the Kimbley Pit, by Wilson Blake. Trans. Soc. Min. Eng., AIME, v. 241, December 1968, pp. 525-534. A mathematical model based on the finite element method of stress analysis has been used to describe the behavior of the western wall of the Kimbley pit as its slope was steepened from 45° to 57°. Theoretical stress changes because of slope modification are slight except at the toe of the modified slope. Magnitudes of stress created are small when compared with the strength of a competent rock. Resulting displacement patterns point out the need for determining the in situ state of stress at a site prior to excavation or modificaof stress at a site prior to excavation or modifica-tion. A comparison of model results with field measurements shows that, in general, the model has described the measured behavior of the west wall of the Kimbley pit remarkably well.

OP 189-68. Hy Ash Utilization-Froblems and Prospects, by John H. Faber. Proc. Symp. Mineral Waste Utilization, Mar. 27-28, 1968, Chicago, Ill., 1968, pp. 99-107. Fly ash has a future as a valuable raw material instead of a solid waste from power generating stations. The properties, availability, and present and future uses for this commodity are discussed, uses that include fly ash use in concrete, bituminous concrete filler, lightweight aggregate, soil stabilization, agricultural applications, and new building materials.

OP 190-68. Bureau Contribution to Slope Angle Research at the Kimbley Pit, Ely, Nevede, by Robert H. Merrill. Trans. Soc. Min. Eng., AIME, v. 241, De-cember 1968, pp. 513-525. In 1960 the Kennecott Copper Corp. and the Bureau of Mines began a joint research program to determine the changes in stress, strain, and displacement created by changes in slope angles. The field site was the Kimbley pit near Ely, Nev. A new slope angle and pit configuration was selected and instruments were installed to measure changes in stress, strain, displacement, microseismic noise rate, and sonic velocities in the west wall of the pit. Between February and November 1966 the west slope was changed from an average angle of 45° to a slope angle that started at 45° on the south wall and gradually increased to $57\frac{1}{2}^{\circ}$ at the center of the west wall and to 61° on the north wall. The pit was deepened from 500 feet to about 550 feet. Measurements made between November 1965 and September 1967 showed that the pit wall was stable before the excavation began, that changes in the measured quantities occurred in the pit wall during excavation, and that the wall returned to a condition of equilibrium after the mining was completed.

OP 191-68. The Interpretation of Heat Capacity Measurements Through Two-Component Liquid-Liquid Critical Regions, by Robert E. Barieau. J. Phys. Chem., v. 72, No. 12, November 1968, pp. 4079-4081. The heat capacity, per mole, at constant volume and constant number of moles of a two-component, threephase (two liquid phases and a vapor phase) system is given by $C_1(3 \text{ phases}) = -u_1T(d^2G_1/dT^2)$, where u_1 is the filling mole fraction of component 1, V_T is the total volume, and n is the total number of moles. G_1 and G_2 are partial molal Gibbs free energies or chemical potentials of components 1 and 2, respectively. The above equation is derived and it is shown how heat capacity measurements can be determined so that the three quantities d^2G_1/dT^2 , d^2G_2/dT^2 , and d^2P/dT^2 can be calculated from the measurements.

OP 192-68. Delayed Coking of Low-Temperature Lignite Fitch, by John S. Berber, Richard L. Rice, and Robert L. Lynch. I&EC Product Research and Development, v. 7, No. 4, December 1968, pp. 270-274. Delayed coking of a Texas lignite pitch was investigated over a temperature range of 800° to 1,200° F. An evaluation of the three products, coke, gas, and oil, is described. The effect of coking temperature was of major interest. As expected, an increase in coking temperature increased the yield of coke and gas and decreased the oil yield.

OP 193-68. Spectroscopic Identification of Basic Nitragen Compounds in Wilmington Petroleum, by C. F. Brandenburg and D. R. Latham. J. Chem. and Eng. Data, v. 13, No. 3, July 1968, pp. 391-394. A study of the basic nitrogen compounds in Wilmington (Calif.) petroleum fractions has produced considerable information on their composition. Characterization of the classes of basic nitrogen compounds in the 130° to 350° C distillate fractions was made by low-voltage mass spectral analyses. Two individual compounds—an alkyl-substituted cyclopentapyrindan and an alkylcycloalkyl-substituted pyridine—were separated and identified. Procedures used to separate the compounds from the oil included distillation, mineral acid extraction, and gas-liquid chromatography. The identifications were made by a combination of mass, infrared, ultraviolet, and nuclear magnetic resonance spectrometry.

CP 194-58. Mineral Economics and the Ocean, by David B. Brooks and Barbara S. Loyd. Proc. Symp. on Mineral Resources of the World Ocean, sponsored by Geological Survey, University of Rhode Island, and U.S. Navy, July 11-12, 1968, Newport, R.I., Occasional Pub. 4, 1968, pp. 23-30. Reviews the economic setting for possible development of ocean non-fuel mineral resources. OP 195-68. X-Ray Fluorescent Analysis of Beryllium for Vana-

dium Through Copper in the Periodic Table, by L. Carpenter, J. M. Nishi, and R. H. Fehler. Appl. Spectroscopy, v. 20, No. 6, November-December 1966, pp. 359-362. Elements in the periodic table from atomic number 23 through 29, vanadium through copper, were determined from 0.0025 to 10.00 percent in beryllium metal and compounds convertible to beryllium oxide. Metal samples were dissolved in hydrochloric acid, evaporated to dryness, and oxidized at 900° C. The beryllium oxide was combined in equal portions with boric acid and pelletized. A fixed time-variable count method was used to obtain values for establishing analytical curves from which concentrations of samples were read.

1

1

)

ŧ

÷

₽

Of 196-68. Petroleum Hydrocarbons formed by Irradiation of a Simulated Sediment, by James W. Davis and Robert T. Johansen. Preprints, Div. of Petrol. Chem., Am. Chem. Soc., Symp. on Hydrocarbons From Living Organisms and Recent Sediments, v. 13, No. 4, September 1968, pp. B26-B31. A geochemical investigation by the Bureau of Mines provided information and data that tend to support the hypothesis that petroleum is formed by irradiation of ancient organic detritus intermixed with radioactive mineral. Simulated sediments containing either siliceous, calcareous, or clay minerals and a probable petroleum precursor were exposed to external gamma radiation. The resulting gaseous products of the mixtures were analyzed and compared as to chemical entity and quantity of each with those from identical irradiation of the precursor alone. Irradiating a mixture of calcareous mineral, precursor (behenic acid), and water produced three times the quantity of gaseous hydrocarbon obtained when only the precursor was irradiated. An irradiated mixture containing bentonite, precursor, and water produced similar results but 70- to 100-mesh silica plus precursor and water similarly treated formed less hydrocarbon. However, an irradiated mixture of 3.9 m²g⁻¹ surface area silica, prepared with the fatty acid covering each silica particle to a theoretical thickness of 1 molecular layer, produced a tenfold increase in methane over the precursor treatment.

OP 197-68. Use of Corbonic Acid To Concentrate Kerogen in Oil Shele, by Rex D. Thomas. Preprints, 155th Nat. Meeting, Div. of Fuel Chem., Am. Chem. Soc., Symp. on Oil Shale, Tar Sands, and Related Material, Mar. 31-Apr. 5, 1968, v. 12, No. 1, March 1968, pp. F111-F116. A new method of concentration of the organic material using carbonic acid was investigated. Carbonic acid was selected because it dissolves the major mineral constituents (carbonates), yet should not attack the organic material. Centrifuging the treated oil shale gives a high yield of organic material.

OF 198-68. Abandoned and Scrap Automobiles, by William A. Vogely. Proc. Surgeon General's Conf. on Solid Waste Management for Metropolitan Washington. Public Health Service, U.S. Department of Health, Education, and Welfare, Washington, D.C., July 19-20, 1967, pp. 51-60. The Bureau of Mines made a survey of the auto wrecking industry and published the results in 1965. This report summarizse the findings of this survey and its application to the problems of solid waste disposal in the United States.

OP 199-68. Cost Evoluciton Techniques Applied to Mineral Resource Planning, by William A. Vogely. Proc. Am. Assoc. Cost Eng., Houston, Tex., June 17-19, 1968, pp. 8-1 through 8-14. Cost evaluation techniques have become an integral tool for mineral resource planning within the Bureau of Mines. This development has occurred within the past 18 months as a result of several factors. First, a strategic planning system has been designed and placed into operation by the Bureau. Implicit in such a system are forecasts of demand, resource supply, and technology, all of which involve cost evaluation. Second, the programing, planning, and budgeting system initiated within the Department of the Interior require quantification in the case of mineral resource projects requires cost evaluation techniques. Third, with respect to application of U.S. mining and mineral leasing laws, costs are becoming important from the point of view of legality of mining claims and with respect to determining the proper user charges under the mineral leasing acts. A commodity profile of aluminum, attached as an appendix to the paper, gives an example of the information that must be acquired about a mineral commodity in order to apply cost evaluation techniques.

í

÷

)

ŧ

ì

1

þ

•

OP 200-68. The Economic Factors of Mineral Waste Utilization, by William A. Vogely. Proc. Symp. Mineral Waste Utilization, Chicago, Ill., Mar. 27-28, 1968, pp. 7-19. The economic forces which lead to the generation of waste and the organization of markets and their impact upon waste are examined. Some areas where, without damage to our technologic and economic efficiency, greater utilization of minerals can be achieved in the interest of conservation are identified, and the problem of social cost of waste generation is explored. The first part of the report concerns the solid wastes which are generated as part of the process of mining the mineral and transforming it into finished goods of some character. The second part has to do with the minerals that can be recovered from scrap metal.

OP 201-68. Measuring the Benefits of Minerals Research, by William A. Vogely. Proc. Council of Economics, AIME, Los Angeles, Calif., Feb. 19-23, 1967, pp. 29-38. The planning, programing, and budgeting system being initiated within the Department of the Interior requires explicit analysis of alternatives in arriving at proposed programs. The planning system being established in the Bureau of Mines approaches this problem by the application of what might be called "framework criteria" to arrive at a schedule of acceptable research projects. A cost-benefit analysis to the degree possible must be conducted to aid in establishing proposed programs. The outline of a usable system of measuring the benefits of research is presented, with some discussion as to how the measurements are derived. An appendix outlines a successful research project on recovery of scrap mica which was accepted by industry.

OP 202-68. Models of All-Gas and All-Electric Economies, by William A. Vogely. Ch. in Energy: Proc. 7th Biennial Gas Dynamics Symp., Northwestern Univ., Aug. 23-27, 1967, Evanston, Ill., 1968, pp. 63-82. Ten contingency models of the energy economy were developed. A conventional model, reporting the actual 1966 situation and a probability forecast for 1980 and 2000, was the starting point of the analysis. Three all-gas models and six allclectric models were derived. The most efficient, in resource use sense, was the all-gas model utilizing small hydrocarbon air fuel cells for onsite generation of electrical power. The least efficient were oil-fired central generating plants with all energy used in the form of electricity. Of course, the actual energy mix in the future will be determined by economic factors, not absolute efficiency criteria.

OF 203-68. Technological Change in the Markets for Bituminous Coal, by William A. Vogely. Proc. Illinois Mining Institute Annual Meeting, Springfield, Ill., Nov. 15, 1965, pp. 99-101. Technological change in the markets for bituminous coal is the major contributor to the shifts in those consuming industries. Coal's share of the energy market has declined in all areas except electric utilities, and its hope of increasing its market will depend on major technological breakthroughs.

CP 204-68. Basic Minerals (Mineral Industry Faces & Critical Year), by William A. Vogely and Barbara Lloyd. Chem. and Eng. News, v. 44, No. 36, Sept. 5, 1966, pp. 44A-48A. In 1966 there will be heavy demand for minerals because of a high level of demand for consumer goods, the needs of the military, and the growing requirements for mineral products to make the machinery needed for the domestic capital expansion program. Government activities in the mineral industry have had mixed success in stabilizing prices, restricting product demand, and assuring adequate supplies. The mineral industry is in turmoil because of changing technology and the ever-present concern with pollution.

OP 205-68. Patterns of U.S. Energy Consumption to 1980, by William A. Vogely and Warren E. Morrison. IEEE Spectrum, v. 4, No. 9, September 1967, pp. 81-86. The total consumption of energy in the United States in the year 1980 is expected to be equivalent to 93 x 10¹⁵ joules or 63 percent greater than in 1965. Coal consumption in 1980 is projected at 612 to 677 million tons, natural gas at 696 billion cubic meters, and petroleum products demand at 899 million tons. Nuclear power generation will be 723 million Mwh; conventional fuelburning plants will provide up to 1,941 million Mwh

OP 206-68. Pattern of Energy Consumption in the United Stores, 1947 to 1965 and 1980 Projected, by William A. Vogely and Warren E. Morrison. World Power Conf., Tokyo Sectional Meeting, Oct. 16-20, 1966, Paper 83, 24 pp. Based on preliminary data for 1965, the total national consumption of energy was equivalent to 13,639 trillion kilogram calories, almost two-thirds greater than consumption in 1947. For the next 15 years it is anticipated that increasing quantities of energy will be needed for the expanding economy. In the forecast made for this paper, total consumption of energy in the United States in the year 1980 is expected to be equivalent to 22,196 trillion kilogram calories, or 63 percent greater than in 1965. Coal consumption in 1980 is projected at 677 million metric tons, natural gas at 696 billion cubic meters, and petroleum products demand, including natural gas liquids, at 809 million metric tons. Net generation of utility electricity in the forecast year is projected at 2,739 billion kilowatt-hours,

OP 1-69. The Hannay Diamonds, by E. P. Flint. Chem. and Ind., No. 47, Nov. 23, 1968, pp. 1618-1627. A review is given of the history of the diamond specimens presented to the British Museum, London, by James B. Hannay in 1880. Evidence is presented which indicates that the specimens may be of synthetic origin as claimed by Hannay. OP 2-69. Thermochemistry of Ethylenimine and Some Diamines, by W. D. Good, H. L. Finke, J. F. Messerly,
G. B. Guthrie, R. H. Harrison, and D. R. Douslin.
Proc. Thermochemistry Working Group Symp.,
Douglas Advanced Research Laboratory, Mar. 25-27, 1968, Huntington Beach, Calif., CPIA Pub 173,
August 1968, pp. 81-91. A comprehensive study of the chemical thermodynamic properties of ethylenimine and determination of the enthalpies of forms.

27, 1968, Huntington Beach, Calif., CPIA Pub 173, August 1968, pp. 81-91. A comprehensive study of the chemical thermodynamic properties of ethylenimine and determination of the enthalpies of formation of four diamines was carried out by means of oxygen-bomb calorimetry, low-temperature calorimetry, and vapor-pressure measurements.

OP 3-69. Quick Way To Find Reservoir Pressure Distribution, by R. V. Higgins and A. J. Leighton. Oil and Gas J., v. 67, No. 1, Jan. 6, 1969, pp. 67-70. A time-saving electronic computer method to find pressure distribution between wells for various well patterns has been developed by Bureau of Mines engineers.

OP 469. Cehesion index of Ceal for Gravity Flow Through Orifices, by W. R. Huff. Combustion, v. 40, No. 2, August 1968, pp. 28-30. Cohesion indices and packed bed densities are extremely important factors in predicting the behavior of solids flowing from storage to use through orifices. These factors were determined for lignite, high-volatile A bituminous coal, and anthracite of different sizes and total moisture concentrations. Indices for lignite and bituminous coal generally increased and packed bed densities decreased with increase in total moisture content; in the case of anthracite, neither factor changed significantly. Indices for lignite and bituminous coal increased with increase in particle size; for anthracite, the index decreased. Packed bed densities for bituminous coal and anthracite were higher for larger particles; for lignite they decreased.

OP 5-69. Preparation of Cobolt-Rore-Earth Alloys by Electrolysis, by E. Morrice, E. S. Shedd, M. M. Wong, and T. A. Henrie. J. Metals, v. 21, No. 1, January 1969, pp. 34-37. An electrolytic method for preparation of alloys of cobalt and various rareearth metals is described. The method consisted of electrowinning rare-earth metal from its oxide in a fluoride electrolyte using a consumable cobalt cathode. As the temperature of operation was above the melting point of the eutectic formed between the cobalt and rare earth, the alloy dripped off the cathode and was collected on a skull of frozen electrolyte in the bottom of the cell. The rare-earth content of the product was in the range of 64 to 89 weight-percent.

OP 6-69. Cycles for Generation of Electricity From Cool, by Harry Perry, James McGee, and Donald Strimbeck. Combustion, v. 40, No. 6, December 1968, pp. 25-36. Further economic increases in electric generating efficiency of the conventional coal-burning steam powerplant are presently impossible. This, plus competition from nuclear power and air and thermal water pollution, leads to new power schemes. Some methods for converting coal to electricity, in

Some methods for converting coal to electricity, in light of their promise for increased efficiency and reliability, reduced air and thermal water pollution, and solvable development problems, may be practical before 1980. These are (1) an improved Rankine cycle, either from metals permitting increased steam temperatures or from new working fluids replacing steam or permitting topping of the steam cycle; (2) cycles combining high-temperature gas turbines with the steam plant, fueled by gas made from coal and cleaned of fly ash and sulfur; and (3) the magnetohydrodynamic-steam combined cycle. Thermoelectric and thermionic generators are considered too inefficient and impractical for large-scale plants. Fuel cells may be efficient, but presently appear unsuited for large plants. Many questions about electrogas dynamics must be answered before it can be reasonably evaluated.

OP 7-69. Oil Shole Utilization-When and How? by J. Wade Watkins. Western Oil Reporter, v. 24, No. 7, July 1967, pp. 18-22. Technology is available to produce shale oil from Green River oil shale by conventional mining, crushing, and retorting methods. The economics of shale oil production, however, have not been demonstrated to be favorable. Research on in situ retorting is yielding promising results, but this method has not been demonstrated to be technically feasible on a large scale. The present level of effort by both Government and industry, the five-point oil-shale development program of the Department of the Interior, and other considerations lead to the conclusion that there will be some commercial production of shale oil by 1980 and that production may be appreciable by the end of the century.

I

ł

E

l

ŧ

١

E

E

OP 8-69. Summery of Oil Shale Activity, by J. Wade Watkins. Internat. Oil Scouts Assoc., v. 7, No. 9, September 1967, 5 pp. Oil shale technical activities can be divided into the following major areas: Surface retorting research, in situ retorting research, characterization studies, and mineral extraction. Past and present activities in each of these areas are briefly reviewed, and a discussion on oil shale's future emphasizes the technical problems.

OP 9-69. Scanning Electron Microscope, by Robert J. Willard. Geotimes, v. 13, No. 7, September 1968, pp. 16-18. The scanning electron microscope (SEM) is described briefly and compared with light and transmission electron microscopes. A portion of a thermally spalled surface of quartzite is shown in a series of micrographs at several levels of magnification to illustrate the microscope's role in rock disintegration research at the Twin Cities Mining Research Center.

0? 10-69. Electrowinning of Beryllium, by M. M. Wong, D. E. Couch, and D. A. O'Keefe. J. Metals, v. 21, No. 1, January 1969, pp. 43-45. Beryllium metal of approximately 99-percent purity was produced by electrolysis of BeO (beryllium oxide) in a fluoride mixture at 700° C with an applied voltage of 2.6 v. The deposited metal and salt were subsequently heated to 1,300° C in an induction furnace. Beryllium metal was coalesced and recovered as spheres from 1 to 10 mm in diameter.

OP 11-69. Reactions of Coal and Related Materials in Microwave Discharges in Hydrogen, Water Vapour, and Argon, by Yuan C. Fu and Bernard D. Blaustein. Fuel, v. 47, No. 6, November 1968, pp. 463-474. In a microwave discharge in hydrogen, water vapor, or argon, coal produces gaseous products such as acetylene, methane, and carbon oxides, in addition to tar and residual char.

OP 12-69. Electrostatic Distortion of Ion Beam Eliminated by Metal Cooting Fluerocarbon Valve Seats, by A. Visnapuu and J. W. Jensen. Rev. Sci. Instr., v. 39, No. 12, December 1968, p. 1963. This note reports the successful elimination of an ion beam instability in a mass spectrometer by depositing a conductive coating on a Teflon valve seat. OP 13-69. Silicate Reactions-A Review, by A. Gene Col-lins and L. R. Fisher. Office of Saline Water, R&D Progress Rept. 307, 1969, 99 pp. This review contains short discussions and annotated bibliographies of subjects relating to silicate reactions: Methods of analyzing silicates, buffering in aqueous solutions, diagenesis and weathering, hydrothermal reactions in nonsaline and saline aqueous media, and corrosion prevention. An author index is included.

OP 14-69. New Approaches to Solid Mineral Wastes, by K. C. Dean, H. Dolezal, and R. Havens. Min. Eng., v. 21, No. 3, March 1969, pp. 59-62. Use or stabilization of mineral wastes comprises the only viable means for minimizing pollution from them Utilization of the unstated only viable means for minimizing pollution from them. Utilization of the wastes is preferable to stabilization, because it both eliminates waste and broadens the mineral resource base, and some meth-ods of utilization are summarized. However, the bulk of the solid wastes comprises immense tonnages of discarded materials that rarely can be of any further use. Physical, chemical, vegetative, and combination methods are practical stabilization pro-cedures for existing wastes, and some of these methods are described.

ı

.

) 1

) ŧ

)

(

)

OP 15-69. Reactivity of AN-FO Mixtures With Pyrite-Bearing Ores, by D. R. Forshey, T. C. Ruhe, and C. M. Mason. Min. Cong. J., v. 55, No. 1, January 1969, pp. 34-35. To determine the extent of self-heating between AN-FO and sulfide ores, the Ex-plosives Research Center of the Bureau of Mines studied the reactivity of AN-FO with a number of samples of pyrite-bearing ores, using a differential thermal analysis and experimental simulation of thermal analysis and experimental simulation of borehole conditions that might be experienced in the AN-FO charge.

OP 16-69. Mechanisms Relevant to the Initiation of Low-Velocity Detonations, by J. E. Hay and Richard R. Watson. Ann. New York Acad. Sci., v. 152, Art. 1, Oct. 28, 1968, pp. 621-635. The fundamental mechanism pertaining to low-velocity deto-nations in liquid explosives is described; methods and means for elucidating the role of cavitational phenomena in the low-velocity detonation regime are presented.

OP 17-69. Evoluation of the Factors Affecting the Perform-ance of a Peripheral Waterflood, by Freddie J. Hensley. Thesis, Univ. Tulsa, 1968, 128 pp. Four waterflood tests were made on the heterogeneous flank model at the University of Tulsa to study factors affecting peripheral waterflood performance.

OP 18-69. Vapor-Flow Calorimetry, by John P. McCul-lough and Guy Waddington. Ch. 10 in Experimental Thermodynamics, v. I, Calorimetry of Non-Reacting Systems. Butterworths and Co., Ltd., London, 1968, pp. 369-394. Methods of semi-adiabatic vapor flow calorimetry are described for the accurate determination of vapor heat capacity in the temperature range from ambient to 250° C and pressure range from % to 2 atmospheres.

OP 19-69. Separation of the Neon Isotopes by Cryogenic Chromatography, by A. Purer, R. L. Kaplan, and D. R. Smith. Advances in Chromatography 1969, ed. by A. Zlatkis. Preston Technical Abstracts Co., v. 5, 1969, pp. 57-60. The separation of the neon isotopes was achieved by utilizing a soft-glass capillary column with an etched internal surface, operating at cryogenic temperatures, with a mixed carrier gas.

A Wedge Technique for Evaluation of Detonation OP 20-69.

.

Hexards of Liquid Explosives, by John Ribo-Ann. New York Acad. Sci., v. 152, Art. 1, Oct. 28, 1968, pp. 766-772. A technique is described that permits the evaluation of the detonation propagation characteristics of liquid explosives and liquid ex-plosive systems. The thicknesses, that are related to sensitivity of the materials, at which transition from high- to low-velocity and, in some cases, from low- to high-velocity detonations as well as pro-pagation failures are determined. This information, when correlated with card-gap and projectile impact sensitivity measurements, provides a stronger insight into the hazards involved in the manufacture, handling, and use of energetic liquid systems.

OP 21-69. A Case History of Two Steam-Injection Pilot Tests

in Pennsylvania, by T. E. Sterner and G. G. Campbell. Producers Monthly, v. 32, No. 10, October Campbell. Froducers Monthly, v. 32, No. 10, October 1968, pp. 10-14. Continuous steam-injection pilot tests were conducted in the Triumph field, Warren County, Pa., and the Shamburg field, Venango County, Pa., during 1965-66 by Miami Oil Producers, Inc., of Abilene, Tex. The object horizon in both tests was the Venango Third sand. Steam was in-jected in wells on the Dennis Run lease (Triumph field) from April 29 to November 15, 1965. The project was then converted to hot-water injection project was then converted to hot-water injection which was terminated on January 31, 1966. Steam was injected in wells on the Foggan lease (Shamburg field) from May 18, 1965, until March 3, 1966. Dur-ing the injection, the generator was off the line 14 percent of the time. In the last 72 days of operation the steam generated was seldom above 40 percent quality. The slight increase in oil production in these test sites could not be attributed to steam injection.

OP 22-69. Checks and Balances of a Helium Pipe Line System, by A. H. Taquard. Pipe Line Indus-try, v. 30, No. 2, February 1969, pp. 31-33. A pipeline system materials balance and control chart and statistical tests have been beneficial to the Helium Activity in noting the performance of the measure-ment of crude helium.

OP 23-69. Large-Scale Investigations of Sympathetic Detona-tion, by Robert W. Van Dolah. Ann. New York Acad. Sci., v. 152, Art. 1, Oct. 28, 1968, pp. 792-801. The widespread use of ammonium nitratefuel oil as a commercial blasting agent and its common association with very large stocks of raw am-monium nitrate stimulated an investigation into the problem of sympathetic detonation of these materials. problem of sympathetic detonation of these materials. Large charges (between 200 and 5,400 pounds AN-FO fired against AN, AN-FO, or dynamite acceptor charges of 1,600 to 5,000 pounds) were sympathet-ically initiated over air gaps as large as 4 to 8 charge diameters for AN and as large as about 30 charge diameters for AN-FO. The data developed in this program are used in tables of safe separation distances for AN and AN-FO.

OP 24-69. Adiabatic Low-Temperature Calorimetry, by Ed-gar F. Westrum, George T. Furukawa, and John P. McCullough. Experimental Thermodynamics, ch. 5, in v. I, Calorimetry of Non-Reacting Systems, ed. by J. P. McCullough and D. W. Scott. Butterworths and Co., Ltd., London, 1968, pp. 136-217. Methods of adiabatic low-temperature calorimetry are described for accurate determination of heat capacities, heats of transition, transition tem-peratures, and third law entropies.

OP 25-69. Microstructural Techniques in the Study of Phys-ical Properties of Rock, by R. J. Willard and J. R. McWilliams. Internat. J. Rock Mech. Min. Sci.,

v. 6, No. 1, 1969, pp. 1-12. Techniques have been developed to further understanding of rock behavior in terms of its microstructure. The techniques include (1) diametric mineralogical analysis, (2) defect analysis, (3) grain elongation analysis, (4) macrogrid analysis, and (5) transgranular-intergranular analysis. Physical properties of granite and limestone are compared with their fabric properties obtained through these techniques.

OP 26-69. A Lunar Drill Concept, by W. George Woo, J. Bensko, L. Lindelof, and J. Paone. Proc. Industrial Diamond Conf., 1967, pp. 257-274. This report describes one concept of a drill system which will be capable of taking core samples at depths of several hundred feet on the moon.

OP 27-69. Stress Required To Initiste Core Disking, by A. J. Durelli, Leonard Obert, and V. J. Parks. Trans. Soc. Min. Eng., AIME, v. 241, September 1968, pp. 269-276. The state of stress in the region where core disking initiates has been investigated through the use of three-dimensional photoelastic models, and the results of this study have been compared with those of a previous investigation of rock models. This comparison showed that disking initiates at a point of maximum shear stress, but that the magnitude of the shear stress, as determined photoelastically, is much larger than the shear strength of the rock as determined from conventional triaxial testing. Moreover the shear stress required to produce disking is not constant, but depends on the applied stress field. Possible explanations for these effects are included in this article.

OP 28-69. Bureau of Mines Research on Lunar Resource Utilization, by Thomas C. Atchison and Clifford W. Schultz. Proc. 6th Ann. Meeting of Working Group on Extraterrestrial Resources, Brooks Air Force Base, San Antonio, Tex., Feb. 19-21, 1968, NASA SP-177, pp. 65-74. The Bureau of Mines is cooperating with the National Aeronautics and Space Administration to provide, through a program of multidisciplinary research, the basic scientific and engineering knowledge that will be needed to utilize extraterrestrial mineral resources for support of future space missions. The concept, scope, and present status of the Bureau's program are described in this paper.

OP 29-69. Ore Deposits in Volcanic Rocks on Earth With Unar Extrapolation, by Rolland L. Blake, Proc. 6th Ann. Meeting of Working Group on Extra-terrestrial Resources, Brooks Air Force Base, San Antonio, Tex., Feb. 19-21, 1968, NASA SP-177, pp. 97-106. A literature search was made on the origin of ore deposits in volcanic rocks on Earth. The close association between mineralization of the rocks in a region and the later stages of volcanism is well established. Also recognized is the prominent role of magmatic solutions composed mostly of juvenile water, but frequently supplemented with ground water, in the formation of mineral deposits by such processes as hydrothermal deposition and sublimation. Ten ore-forming processes were recognized, and eight of these form ore deposits in Earth volcanic rocks. Effects of the inferred lunar environment on processes forming ore deposits were also studied. Mineral deposits thought to exist in volcanic rocks on the Moon, in order of decreasing amount and likelihood, are those formed by the following six processes: Hydrothermal deposition, sublimation, combined eruption and exhalation, volcanic eruption, and, rarely, metasomatism and evaporation. The Moon is viewed by the writer as a still dynamic body with some volcanism likely.

OP 30-69. A Nuclear Magnetic Resonance Study of the Association of Perphyrins in Chloreform Solution. Mesoperphyrin IX Dimethyl Efter and hs Nickel Chelare, by Daryl A. Doughty and C. W. Dwiggins, Jr. J. Phys. Chem., v. 73, No. 2, February 1969, pp. 423-426. The nuclear magnetic resonance spectra of the porphyrins studied are concentration dependent. The concentration dependence is caused by association between porphyrin molecules. Chemical shifts, association constants, and the spacings between porphyrin molecules in the dimer were determined.

OP 31-69. Development of Standard Procedures for Testing Fuel Briquets, by J. W. Eckerd. Proc. 10th Biennial Conf., Institute for Briquetting and Agglomeration, Aug. 15-17, 1967, Albuquerque, N. Mex., 1969, pp. 95-99. A test that will give a measure of the relative ease of igniting barbecue briquets has been developed and adopted as a tentative method. However, this test is not designed to provide information on burning rate, temperature attained, heat release, or length of burning; all of these are important characteristics of barbecue briquets from the viewpoint of the consumer. Tests for these characteristics would be desirable. Tests should also be devised and standardized for determining (1) the deterioration (breakage and abrasion) of briquets on handling and (2) the strength of the bags or packages in which briquets are sold. Degree of water absorption and shelf life probably should also be determined. Quality control tests such as the preceding are, for all practical purposes, more important to the consumer than to the producer. Tests of characteristics important to the producer can and probably should also be standardized. This decision rests with the barbecue briquet industry.

OP 32-69. Correction of X-Ray Diffraction Profiles for Instrumental Broadening in Transmission Geometry, by Sabri Ergun. J. Appl. Phys., v. 40, No. 1, January 1969, pp. 293-296. When polychromatic radiation is used in X-ray diffraction, the instrumental broadening changes with the scattering angle. It is shown that when transmission geometry is used, the instrumental broadening can be expressed in terms of the profile of the primary beam and its wavelength distribution. Consequently, it becomes possible to correct the entire intensity profile for instrumental broadening. The correction is made by successive foldings of the observed profile and is demonstrated using the intensity profiles of raw and heat-treated carbon black.

OP 33-69. Foctors Affecting the Optimum Speeding Level of Coal- or Char-Fired, Open-Cycle MHD Power Plants, by H. F. Feldmann, W. H. Simons, and D. Bienstock. In Electricity From MHD, 1968. International Atomic Energy Agency, Vienna, Austria, v. 4, 1968, pp. 2097-2117. Factors affecting the optimum seeding level of coal- or char-fired, open-cycle magneto-hydrodynamic power plants are (1) the air-fuel level, (2) the nature of the fuel, (3) the sulfur level of the fuel, (4) the silica content of the fuel, (5) the seeding level, (6) the type of seed, and (7) the separation temperature of the bulk of the liquid slag from the combustion products.

ţ

ŧ

l

f

€

)

OP 34-69. An improved Process for Making Prereduced Iron Ora Pellets, by M. M. Fine and R. B. Schluter. Trans. SME, v. 244, March 1969, pp. 71-77. Processes for manufacturing prereduced pellets have heretofore required temperatures of 2,100° F or higher. Sulfides will accelerate the liquid-phase sintering of metallic iron, yet do not deter the reduction of iron oxides. The sulfides may be introduced as gases to the kiln atmosphere or as solids in the reductants. The net result is that well metallized iron pellets with good crushing strength can now be produced at a little over 1,800° F.

OP 35-69. Simulated Lunar Rocks, by David E. Fogelson. Proc. 6th Ann. Meeting of Working Group on Extraterrestrial Resources, Brooks Air Force Base, San Antonio, Tex., Feb. 19-21, 1968, NASA SP-177, pp. 75-95. This paper describes the selection of rock materials for use by the Bureau of Mines in its extraterrestrial resource utilization studies which are designed to simulate the range of materials likely to be found on the Moon. It includes preliminary results of the measurement of the engineering properties of these materials.

1

.

1

k

1

1

٦

١.

OP 36-69. Reflectors Substitute for Trip Lights, by Richard Oitto and Alex O'Rourke. Coal Age, v. 73, No. 11, November 1968, pp. 96-98. To determine whether reflectors could substitute for trip lights, the Bureau of Mines compared reflectors to lights under simulated haulageway conditions. Reflectors were found suitable for use as a trip safety device.

OP 37-69. Lunar Drilling, by James Paone and R. L. Schmidt. Proc. 6th Ann. Meeting of Working Group on Extraterrestrial Resources, Brooks Air Force Base, San Antonio, Tex., Feb. 19-21, 1968, NASA SP-177, pp. 107-117. The association of the Bureau of Mines with lunar-drill programs since 1964 includes (1) advising and consulting with the National Aeronautics and Space Administration and with contractors making prototype drills and (2) conducting laboratory investigations of problems related to drilling in ultrahigh vacuum, at lunar extreme temperatures, and in reduced gravity. This paper reviews problems related to lunar drilling, data from Bureau drilling tests for lunar applications, and possible methods for predicting drillability of lunar materials from their engineering properties.

OP 38-69. Wyoming Corebole No. 1-A Potential Site for Production of Shale Oil in Place, by John Ward Smith and Laurence G. Trudell. Colorado Sch. Mines Quart., v. 63, No. 4, October 1968, pp. 55-69. Bureau of Mines Colorado Corehole No. 1 drilled near Eden in Wyoming's Green River basin sampled Green River Formation oil shales representing a potential of 200 million barrels of oil per square mile. In general properties and gross mineralogy the sampled oil shales strongly resemble Mahogany-zone oil shales of Colorado and Utah. Alternating thin beds of tough, rich oil shale and brittle, lean oil shale at depths less than 700 feet may offer advantages to in-place shale oil production techniques, providing possible access to at least 100,000 barrels of oil per acre in an area greater than 100,000 acres.

OP 39-69. Notural Gas, by Charles H. Atkinson. Mc-Graw-Hill Yearbook of Science and Technology, 1969. McGraw-Hill Book Co., New York, 1969, pp. 228-23. The article discusses the application of underground nuclear explosions for stimulating production from low-permeability natural gas reservoirs. Project Gasbuggy is described and the potential of the technique for increasing natural gas reserves in the United States is considered.

OP 40-69. Velocity Errors in Cemented Specimens, by T. R. Bur, J. R. McWilliams, and K. E. Hjelmstad. Internat. J. Rock Mech. Min. Sci., v. 6, No. 2, March 1969, pp. 203-209. The bar, torsional, and longitudinal pulse velocities were measured on rock specimens and aluminum standard specimens consisting of up to seven segments together. The maximum error was about 1 percent, which is larger than can be predicted from the expected traveltime in the cement. .

OP 41-69. Wettability Determination and its Effect on Recovery Efficiency, by Erle C. Donaldson, Rex D. Thomas, and Philip B. Lorenz. SPE J., v. 9, No. I, March 1969, pp. 13-20. A quantitative method for measuring the wettability of crude oil-brine-rock systems was developed, and some of the effects of wettability on oil production are shown.

OP 42-69. Reactions in the Cabalt-60 Irradiation of Pyridine and Methylpyridines, by J. J. Duvall and H. B. Jensen. J. Phys. Chem., v. 72, No. 13, December 1968, pp. 4528-4534. y irradiation of nitrogen bases found in shale oil has been studied as a possible means of enhancing their value. Pyridine, 2-methyl-pyridine, 3-methylpyridine, 4-methylpyridine, and 2,6-dimethylpyridine were subjected to cobalt-60 irradiation with total dosages of 2 x 10³ to 2 x 10³ rads. G values for hydrogen, methane, acetylene, methylacetylene, and polymer, as determined by gasliquid partition chromatography and mass spectroscopy, are reported. Products resulting from rupture of bonds external to the ring, rupture of ring bonds, aromatic substitution, and intramolecular rearrangement are reported. Respective examples of each of the above reactions on irradiation of 2-methylpyridine are the formation of methane, acetylene, 2,4 dimethylpyridine, and 3-methylpyridine. Possible reaction mechanisms are discussed. Dealkylation of methylpyridines occurred but not in significant amounts.

OP 43-69. Selective Separation of "Nonbasic" Nitragen Compounds From Petroleum by Anien Exchange of Ferric Chloride Complexes, by D. M. Jewell and R. E. Snyder. J. Chromatography, v. 38, December 1968, pp. 351-354. "Nonbasic" nitrogen compounds in petroleum products are quantitatively removed from hydrocarbons and other nonhydrocarbons by complex formation with ferric chloride supported on kaolin. The colored complexes remaining adsorbed on the kaolin are easily desorbed with 1,2-dichloroethane and other polar organic solvents. The free nitrogen compounds are quantitatively recovered by contacting a dichloroethane solution of the complexes with a strong anion exchange resin of the quaternary ammonium hydroxide type.

 OP 44-69. Designing an Alkelized Alumina Pilet Piant for Sulfor Dioxide Removal. by R. C. Kurtzrock,
 D. H. McCrea, and G. J. Cinquegrane. Proc. Extractive Met. Division Symp., AIME 1967 Operating Met. Conf., Dec. 11-13, 1967, Chicago, Ill., 1968, pp. 251-268. Design of a continuous pilot plant for the removal of sulfur oxides is discussed, including design parameters, description of equipment, some operating experiences, and a general conclusion.

OP 45-69. Cycles for Generation of Electricity From Cool, by Harry Perry, James McGee, and Donald Strimbeck. Proc. Am. Power Conf., v. 30, 1968, pp. 633-648; discussion, pp. 649-653. Methods of generating electricity from coal, including some still under development, are discussed. The relative performance characteristics and economics of the various methods are compared. OP 46-69. Stationary Phases for Separation of Basic and Nanbasic Nitregen Compounds or Hydrocarbons by Go-liquid Chromotography, by R. E. Poulson, J. Chromatographic Sci., v. 7, March 1969, pp. 152-157. Relative retention values were determined for some basic and nonbasic nitrogen compounds, and some hydrocarbons on polyethylene glycol (Carbowax 20M), polyethylene glycol terminated with terephthalic acid (Carbowax 20M-TPA), octylphenoxypolyethoxy ethanol (Triton X-305), and purified Apiezon L doped with Carbowax 20M-TPA. Retention data were obtained at 180° and 220° C on the polar liquid phases. Triton X-305 was found to show more alkyl character than Carbowax 20M. Column bleed rates were measured with 5 percent liquid phase at 220° C, the maximum temperature found appropriate for extended use of the polar columns. The Carbowax 20M bleed rate was 0.10 µg hydrocarbon-equivalent/min with very slightly less for the Carbowax 20M.TPA, while the Apiezon L rate was 0.01 µg/min, all at 73 ml/min (25° C, 1 atm) flow rate. An Apiezon L column doped wth 5 percent Carbowax 20M to reduce tailing exhibited a bleed rate characteristic of Carbowax 20M. Hydrogen flame response factors were determined for several heterocyclic nitrogen compounds. By the agreement of hydrogen flame response factors for samples put through polar and nonpolar columns it was concluded that the polar columns do not destroy the relatively unstable indole-type nitrogen compounds although they are strongly retained.

OP 47-69. Design of an Open-Cycle, Vortex MHD Generator, by J. R. Thalimer, R. C. Kurtzrock, W. H. Simons, D. Bienstock, and W. F. Hughes. In Electricity From MHD, 1968. International Atomic Energy Agency, Vienna, Austria, v. 4, 1968, pp. 2601-2612. The Bureau of Mines built a vortex magnetohydrodynamic generator which combines the combustornozzle-duct combination into one integral unit. The vortex MHD generator consists of a cyclone burner, 7½ inches in diameter and 21 inches long, with the inner wall used as one electrode together with a coaxial center electrode. Power is obtained by impressing an axial field of 3,000 G from an air solenoid magnet. Electrical output is expected to be 1 kilowatt. For the initial runs natural gas will be burned in oxygen-enriched preheated air with a subsequent change to coal as a fuel. A theoretical analysis has been completed which predicts the velocity profiles and the electrical output characteristics of the generator. The analysis assumes variations in the radial and axial directions for all variables, steady state inviscid flow, constant electrical number.

OP 48-69. An Automated Ultrasonic Pulse Measurement System, by Richard A. Thill and Thomas R. Bur. Geophysics, v. 34, No. 1, February 1969, pp. 101-105. The automated ultrasonic pulse measurement system can be used to obtain information simultaneously on velocity changes and rock noise while the rock is being loaded. The system is automated to the extent that, once set up, it can record independently of an operator for extended periods of time.

OP 49-69. Use of Carbonic Acid To Concentrate Kerogen in Oil Shale, by Rex D. Thomas. Fuel, v. 48, January 1969, pp. 75-80. A new method of concentration of the organic material in oil shale using carbonic acid was investigated. Carbonic acid was selected because it dissolves the major mineral constituents (carbonates), yet should not attack the organic material. Results show that the best separation is obtained with a carbon dioxide pressure of 200 psig and oil shale particles smaller than 150 mesh. All of the calcium and magnesium in the oil shales, along with some iron and aluminum, is removed and the organic carbon content of the shale is not affected by this treatment. Centrifuging the treated oil shale in aqueous calcium chloride solution gives a high yield of organic material which has a reduced amount of ash.

OP 50-69. The Sociological Impact of Mechanization on Coal Minors and Their Families, by Helen M. Lewis and Edward E. Knipe. Proc. Council of Economics, AIME, 1969, pp. 268-307. This paper is concerned with the effect of mechanization on the coal miner, his family, and the community in which he lives. The study was confined to the Virginia coalfields which are located in Buchanan, Dickenson, Wise, Lee, Tazewell, and Russell Counties.

OP 51-69. Quantitative Aspects of Nuclear Quadrupole Resonance Spectrometry of Inorganics and Minerals, by Harry D. Schultz and Clarence Karr, Jr. Anal. Chem., v. 41, No. 4, April 1969, pp. 661-664. NQR quantitative analyses performed on 18 samples from constructed calibration curves gave results that were comparable to other spectroscopic techniques in reproducibility and accuracy.

OP 52-69. Radioisotopic X-Ray Analytical Techniques for Gold and Silver Ores, by P. G. Burkhalter. Proc. Symp. on Use of Nuclear Techniques in the Prospecting and Development of Mineral Resources, Buenos Aires, Argentina, No. 5-9, 1968. Internat. Atomic Energy Agency, Vienna, Austria, v. 1, 1968, pp. 365-379. The purpose of this investigation was to determine the sensitivity of radioisotopic, energy dispersion X-ray techniques using semiconductor detectors for silver and gold ores. The excellent pulse resolution of the semiportable silicon and germanium (Li-drifted) semiconductor detectors offer a rapid and sensitive method for on-line X-ray analysis of drill hole cores, ocean sediments, and ore processing concentrates.

OP 53-69. Chemistry of Some Anadorko Basin Brines Containing High Concentrations of Iodide, by A. Gene Collins. Chem. Geol., v. 4, Special Issue, No. 1/2, March 1969, pp. 169-187. The chemistry of some petroleum-associated waters from Mississippian and Pennsylvanian age sediments was determined. The waters were a Na-Ca-Cl type which were altered by diagenesis and contained up to 1,400 mg/l of iodide. Collected evidence indicated that the iodide was solubilized from the sediments.

1

OP 54-69. Potentiometric Determination of Ammonium Nitregen in Oilfield Brines, by A. Gene Collins, Joe L. Castagno, and V. M. Marcy. Environmental Sci. and Tech., v. 3, No. 3, March 1969, pp. 274-275. A potentiometric method utilizing the reaction of formaldehyde with the ammonium ion was developed. The ammonium nitrogen in a saline water can be determined in less than 30 minutes with a single laboratory relative standard deviation of 1 percent and relative error of -2.8 percent with a 77.5 mg per liter concentration of NH.N in the presence of sodium chloride.

 OP 55-69. Evaluation of Diaphragm Materials for Electrowinning High-Purity Titanium, by D. E. Couch,
 O. Q. Leone, R. S. Lang, and D. D. Blue. Design of Metal Producing Processes, Proc. Extractive Metallurgy Division Symp., AIME, Chicago, Ill.,
 Dec. 11-13, 1967, 1969, pp. 309-323. Titanium with a Brinell hardness of 70 was electrowon from TiCL fed into a LiCl-KCl-TiCl, electrolyte maintained at 520° C. The cells were operated on a continuous basis using commercial ceramic diaphragms composed of alumina with a silica bond. Methods of supporting the anode diaphragm and materials of construction were studied.

OP 56-69. Hydreformylatian of Unsaturated Fatty Esters, by E. N. Frankel, S. Metlin, W. K. Rohwedder, and I. Wender. J. Am. Oil Chemists' Soc., v. 46, No. 3, March 1969, pp. 133-138. Unsaturated fatty esters and vegetable oils were hydroformylated with H₂ and CO(3500-4600 psi) and Co₂(CO), to give fatty aldehydes at 100°-110° C and fatty alcohols at 175°-190° C. Yields of distillable C₁₀ oxo products varied from 42 to 84 percent. Distilled products contained from 50 to 90 percent branched isomers and from 4 to 16 percent linear isomers.

OP 57-69. Merits of Decline Equations Based on Production History of 90 Reservoirs, by R. V. Higgins and J. H. Lechtenberg. Rocky Mountain Regional Meeting, SPE, AIME, Denver, Colo., May 25-27, 1969, Preprint SPE 2450, 12 pp. Four different equations were tested to determine which would fit the history and result in the best prediction of future performance of 90 California fields. Two equations proved to have the best merits.

OF 58-69. Identification of Alkyl Aryl Sulfides in Wasson, Texas, Crude Oil, by R. L. Hopkins, R. F. Kendall, C. J. Thompson, and H. J. Coleman. Anal. Chem., v. 41, No. 2, February 1969, pp. 362-365. This paper describes the isolation and the positive identification of (2-methyl-1-thiabutyl) benzene (phenyl zec-butyl sulfides), the tentative identification of three other alkyl aryl sulfides, and establishes for the first time the presence of this class of sulfur compounds in petroleum.

OP 59-69. Developing an In-House Writing Course for Engineers and Scientists, by Bill Linville. Proc. 16th Internat. Tech. Communications Conf., Soc. Tech. Writers and Publishers, Washington, D.C., May 14-17, 1969, v. 16, pp. B152-B161. An in-house training program in technical writing for engineers and scientists of the Bureau of Mines Petroleum Research Center in Bartlesville, Okla., is described. Simultaneous instruction in English composition and technical writing techniques provides a unique approach to short-course teaching methods. The course is effective in improving the quality of the internal and external written communications of the enrollees. Objectives and an outline of the course are given. Teaching methods are described.

OP 60-69. Spork Ignition-Ignition of Flammable Mixtures as a Consequence of Gaseous Electronic Discharge, by Elton L. Litchfield. Nat. Air Transportation Meeting, Soc. Automotive Eng., New York, Apr. 21-24, 1969, Preprint 690439, 5 pp. The concept of minimum energy for spark ignition is summarized and then applied to the question of ignition hazard from triboelectrified fluids. It is shown that if certain auxiliary conditions are satisfied, assurance of safety can be given if, and only if, the electric field strength is maintained below the dielectric breakdown strength of the flammable air-vapor mixture.

1

i

]

OP 61-69. Plassic Coatings Preserve Shale Samples, by R. H. Oitto and A. Zona. Coal Mining & Processing, v. 6, No. 5, May 1969, pp. 42-43. A new proprietary plastic coating can be melted in the field and used to coat rock samples to maintain them in field condition for off-location analyses and experiments. ٠

OP 62-69. Sensitivity of Optical Data Processing to Changes in Rock Fabric. Part III-Rock Fabrics, by H. J. Pincus. Internat. J. Rock Mech. Min. Sci., v. 6, pp. 259-268. Idealized geometric patterns have been used as input test data to determine the sensitivity of optical data processing to changes in fabric. Useful test results have been obtained for separating input components of different directions or different spatial frequencies, measuring elongation of simulated grains and determining their stacking geometry, and filtering for band-pass and high-cut outputs. All of the operations performed here and the results obtained are directly transferable to rock fabric inputs.

OP 63-69. Vehicle Emissions vs. Fuel Composition, API-Bureau of Minest-Part II, by R. K. Stone and B. H. Eccleston. API Division of Refining Midyear Meeting, Chicago, III., May 13, 1969, Preprint 41-69, 29 pp.; Proc. API, December 1969, v. 49, pp. 651-690. Results showed that volatility reduction reduced both the quantitative total of exhaust and evaporative losses and the photochemical effect from these emissions. Replacing the olefin in the front end of the fuel with no change in volatility did not change the quantity of total hydrocarbon emissions but did reduce the photochemical effect of these emissions.

OP 64-69. Research at the Pittsburgh Coal Research Center, United States Department of the Interior, Bureau of Mines, by D. E. Wolfson and M. D. Schlesinger. AIME Annual Meeting, Washington, D.C., Feb. 16-20, 1969, Preprint 69-F-40, 5 pp. Presents a brief discussion of basic and applied research work at the Pittsburgh Coal Research Center of the U.S. Bureau of Mines.

OP 65-69. Vapor Pressure of the Cadmium Chloride-lead Chloride System, by L. C. George, Robert M. Doerr, and Aarne Visnapuu. J. Chem. and Eng. Data, v. 14, No. 1, January 1969, pp. 23-26. Vapor pressures of mixtures in the binary system CdCl-PbCl. were measured by the static-pressure method. Vapor presure isotherms showed positive and negative deviations from additivity, with a pronounced discontinuity at the composition 9 CdCl. 2 PbCl. This suggests that a mixed-salt complex of this composition is present in the molten mixtures. Vapor pressure equations for all mixtures of CdCl. and PbCl. investigated, and derived values of heat of vaporization and free energy of vaporization for high-purity CdCl. and PbCl, are presented.

OP 66-69. Scanning Electron Microscope Gives Researchers a Closer Look at Rock Fractures, by Robert J. Willard. Min. Eng., v. 21, No. 6, June 1969, pp. 88-90. In rock mechanics research, the SEM should prove a useful basic tool in characterizing rock fracture on a very small scale and thus contribute to a better understanding of rock behavior at large scales. This article presents one example of how the SEM is being applied to such research by the Bureau of Mines.

OP 67-69. Analytical Uses of Energy Balances, by William A. Vogely. IEEE Spectrum, v. 6, No. 5, May 1969, pp. 57-63. Energy balances necessitate energy requirements and sources to be expressed in commensurate units—usually heat. If these balances are complete, the flow of energy through the economy can be traced in such units, and the transformation functions of one form or source of energy to another can be specified. Thus, energy balances permit analysis of the entire energy sector on a whole, rather than on a commodity by commodity, basis. As such, they are capable of being used analytically to solve a number of problems that would otherwise be beyond comprehensive analysis. In this article, four such analytical uses are described and applied.

OP 68-69. The Role of Wire Size in Negative Electrical Dichorge at High Temperature, by C. C. Shale and J. H. Holden. IEEE Trans. on Industry and General Applications, v. IGA-5, No. 1, January-February, 1969, pp. 34-39. Negative corona onset and sparkover voltages in air are shown to be affected by temperature, density, and the pipe-to-wire ratio of radii when using concentric cylindrical electrodes. Use of large wires at high temperatures demonstrates that onset of electrical discharge occurs at voltages significantly less than those predictable by earlier theory and that sparkover occurs at voltages considerably greater than those anticipated. Theory is presented to account for the results obtained.

OP 69-69. A Velance Force Field for Aliphotic Sulfur Compounds: Alkenethiols and Thiaelkanet, by Donald W. Scott and M. Zaki El-Sabban. J. Molecular Spectroscopy, v. 30, No. 2, May 1969, pp. 317-337. In a vibrational analysis of alkanethiols and thiaalkanes, a force field was derived from wavenumbers of 11 compounds and tested with wavenumbers of four additional compounds.

OP 70-69. Application of Electrometallurgy in Processing of Minerals, by Joe B. Rosenbaum. J. Metals, March 1969, pp. 18-20; Proc. Extractive Metallurgy Division Symp. Electrometallurgy, AIME, Cleveland, Ohio, Dec. 2-3, 1968, pp. 43-51. Paper explains why electrometallurgical procedures are used in the production of most metals; shows how electricity is used and the incremental cost of the electricity in electrometallurgy; and points out some targets for expanded use of electrometallurgical techniques.

OP 71-69. Electrowinning of Metals, by Joe B. Rosenbaum. Proc. Abundant Nuclear Energy Symp., Gatlinburg, Tenn., Aug. 26-29, 1968, pp. 197-201. The relation between cost of energy for electrowinning and the selling price of selected metals is presented to illustrate the incremental benefit of cheaper power. The outlook for uses of electricity in electrometallurgy is discussed.

OP 72-69. Enthalpies of Combustion of Toluene, Benzene, Cyclohexane, Cyclohexene, Methylcyclopentane, 1-Methylcyclopentene, and n-Hexane, by W. D. Good and N. K. Smith. J. Chem. and Eng. Data, January 1969, v. 14, No. 1, pp. 102-106. The enthalpies of combustion of toluene, benzene, cyclohexane, cyclohexene, methylcyclopentane, 1-methylcyclopentene, and n-hexane were measured in a bomb calorimeter. Values, in kilocalories per mole based on the mass of samples, for the enthalpies of combustion, △Hc^{*} methylcyclopentane, -936.87 ±0.12; benzene, -780.95 ±0.10; cyclohexane, -936.87 ±0.13; cyclohexene, -896.75 ±0.12; methylcyclopentane, -941.28 ±0.14;
1-methylcyclopentene, -897.17 ±0.13; and n-hexane, -995.03 ±0.13. Values of the enthalpy of formation of the liquids were derived. They were compared to existing hydrocarbon data and can be used to check the internal consistency of the existing selections of data for the several families of hydrocarbons. The best means of measuring the amount of reaction in combustion calorimetry were reconsidered. Both sample mass and carbon dioxide recovery were used as measures of the amount of reaction. A new carbon dioxide absorbent was used and was superior to older absorbents.

OP 73-69. Process Evaluation as a Guide for Magnesium Research, by Douglas A. Elkins and Paul L.

Research, by Douglas A. Elkins and Paul L. Placek. Proc. Extractive Metallurgy Division Symp., AIME, Chicago, Ill., Dec. 11-13, 1967, pp. 240-250. Process economic evaluation is commonly employed to determine probable costs for newly developed metallurgical processes. Examples drawn from experience in research on magnesium production methods by the Bureau of Mines demonstrate how evaluation can also be used to advantage in examining existing technology prior to research and for many purposes during research. Cost estimation required can be simplified by the use of a digital computer. Information provided can help to insure that planning decisions are made objectively and that the research produces proper, meaningful, and adequate data needed for eventual application of the processes.

OP 74-69. Special Situation Planning for the Mesabi Iron Pits, by David B. Brooks. Landscape Architecture, v. 59, No. 3, April 1969, pp. 194-197. Environmental problems created by open-pit iron mining in Minnesota are local not regional and, therefore, they are more susceptible to control by zoning and land-use planning rather than by broadbrush regulation.

OP 75-69. Titonium Electrorefining, by Don H. Baker, Jr. Ch. 15 in High Temperature Refractory Metals, Gordon and Breach Science Publishers, Ltd., London, v. 1, July 1969, pp. 223-233. The development of the molten-salt electrorefining of titanium is traced from the early laboratory stages to the operation of a 10,000-ampere cell. The influences of electrolyte composition, temperature, feed material, and current density on the quality of the product are discussed. The effects of cell design and materials of construction are also described. Electrorefining is extremely effective for separating interstitial impurities from titanium. The transfer and controlled codeposition of selected metallic elements for titanium alloy preparation is outlined.

OP 76-69. Detection limit for Silver by Energy-Dispersion X-Rey Analysis Using Radiaisatopes, by P. G. Burkhalter. Internat. J. of Applied Radiation and Isotopes, v. 20, May 1969, pp. 353-362. The purpose of this study was to determine the sensitivity for silver in silica using radioisotopic X-ray sources, electronic discrimination with a single-channel analyzer, and scintillation detectors. The sensitivity for silver was determined as a function of excitation energy. Using monoenergetic K-spectra X-ray sources Sb, Te, and Ba, a normalized detection limit ranging from 21 to 13 ppm was obtained for 100-sec counting intervals. With an annular ¹²⁵I source as a detection limit of 15 ppm silver was measured. The effect on the detection limit of heavy metals common to silver ores was also investigated. A detection limit of 25 ppm or less was still obtained when 5-percent concentrations were present in the silica matrix provided X-ray interferences with the Ag K a radiation did not exist. The need for accurate background measurements for analysis in the parts-per-million range was emphasized. The sensitivities found in this work indicate that a portable radioisotopic X-ray analyzer could be designed for low-grade silver ores.

OP 77-69. Separation of Crude Oil Fractions by Gel Permea-

tion Chromatography, by H. J. Coleman, D. E. Hirsch, and J. E. Dooley. Anal. Chem., v. 41, No. 6, May 1969, pp. 800-804. This study was undertaken by the Bureau of Mines to investigate, extend, and apply gel permeation chromatographic (GPC) techniques to the fractionation of high-boiling petroleum samples. The use of GPC with specially built col-umns and appropriate size polystyrene gel success-fully effected the separation of several diverse pefully effected the separation of several diverse pe-troleum samples. In general, these separations were made by molecular size. Analytical data such as molecular weight, nuclear magnetic resonance (NMR) spectra, mass spectra, and percent sulfur on the GPC subfractions provided a measure of the separations attainable. These data establish GPC as a useful supplementary method for sepa-tions bick boiling natural fractions without exrating high-boiling petroleum fractions without exposing the samples to the thermal hazards of distillation.

÷.

1

]

ŧ

٩

1)

ŧ

OP 78-69. Preparation and Evaluation of Rhenium and Rhenium-Base Alloys, by C. E. Armantrout and H. Kato. Trans. 1968 Internat. Met. Conf., Beverly Hills, Calif., June 10-13, 1968, pp. 439-462. To determine selected mechanical properties, pure rhenium and rhenium-base alloys consolidated by arc melting using nonconsumable electrodes were fabricated to sheet and rod. An optimum cold-work-ing procedure was developed that utilized cold-press forging with reductions of up to 40 percent, anneal-ing, and then cold rolling using multiple pass re-ductions to a total reduction of 20 to 30 percent between each anneal. The repeated cold working and annealing of cast rhenium ingots resulted in an appreciable increase in hardness from Rockwell A 42-43 to Rockwell A 58-62; however, no further hardening was noted with additional working and annealing steps.

annealing steps. Tensile strengths were 109,000 to 130,000 psi, yield strengths 16,100 to 17,700 psi, and modulus of elas-ticity 54 x 10^6 psi for pure rhenium. The alloys that were amenable to cold working and that were subsequently tested in tension were of the solid-solution type or were amenable to heat treating in a solid-solution range. The alloy additions that strengthened through solid-solution mechanisms had high tensile strengths up to 231,000 psi, yield high tensile strengths, up to 231,000 psi, yield strengths up to 119,000 psi with elongations near 20 percent, and modulus of elasticity near 60 x 10⁶ psi.

OP 79-69. The Impact of Surface Mine Regulation on the Coal Industry: The Case of Kentucky, by David B. Brooks. Proc. Council of Economics, AIME, 1969, pp. 65-92. The purpose of this study was to analyze pp. 05-32. The purpose of this study was to analyze certain effects of surface mine regulation on the coal industry of Kentucky where surface mining has been regulated since 1954. It was calculated that the short-run opportunity cost under the conditions found in Kentucky amounts to about 25 percent in terms of output and employment lost because of reclamation requirements. It was also found that firms increased the scale and concentration of production in order to become more efficient. Technologic advances in reclamation practices were also introduced so that productivity did not generally lag for more than a year or so following passage of stricter reclamation requirements. The impact of regulation has been most important in those areas, such as east Kentucky, where a combination of

physical conditions and industry structure limits the flexibility of response. On the other hand, as evi-denced by the post-1954 response in east Kentucky, reclamation costs are not so large as to deter in-creases in production when other forces, like a growing demand for low-sulfur coal, work in the opposite direction.

OP 80-69. Stacking Distribution on a Carbon Black, by Sabri Ergun and Theodore J. Gifford. J. Chim. Phys., 1969, pp. 99-103. The distribution of the number of layers in stacks formed by parallel from the profiles of the (002) reflections using the Warren-Bodenstein equations. The analysis revealed that the distribution follows the Maxwell-Boltzmann have the distribution follows the maxwell-boltzmann law. According to this distribution the probability of finding q parallel and equidistant layer domains decreases exponentially with q. The coefficient of the exponent completely defines the profiles of the (002) reflections.

OP 81-69. Potential Hazards of Propargyl Halides and Allene, by D. R. Forshey, J. C. Cooper, G. H. Martindill, and J. M. Kuchta. Fire Technology, v. 5, No. 2, May 1969, pp. 100-111. The combustion char-acteristics and detonability of propargyl bromide, propargyl chloride, and allene were investigated as a means to evaluate their hazard in storage, use, and the propargyl charter and the propargy in the storage of the storage. and transportation. All three will undergo mono-propellant burning, but their ignitibility and tendency toward monopropellant burning were reduced by dilution with toluene.

OP 82-69. USBM-CCI Cooperative Research on Flotation of Nonmegnetic Taconites of Marquette Range, by D. W. Frommer. 30th Ann. Mining Symp. and 42d Ann. Meeting Minnesota Sec., AIME, University of Minnesota, Duluth, Minn., Jan. 13-15, 1969, pp. 189-198; Blast Furnace and Steel Plant, v. 57, No. 50, 200 and 200 and 500 No. 5, May 1969, pp. 380-388. The hematitic-martitic-goethitic jaspers of the Marquette range can be beneficiated by flotation to yield concentrates of excellent quality with good recoveries. An essential part of the treatment is the selective flocculation and desliming that precedes the flotation step. Although excellent progress has been made through the 900pound-per-hour pilot plant, the future of the pro-posed methods depends on their effective adaptation to unit operations of commercial size.

OF 83-69. High-Iemperature Drop Calorimetry, by Thomas B. Douglas and Edward G. King. Ch. 8 in Calorimetry of Non-Reacting Systems, ed. by John P. McCullough and Donald W. Scott. Experi-mental Thermodynamics, v. 1, Butterworths, London, 1968, pp. 293-331. The general requirements for accurate drop calorimetry are considered in terms of the composition of the sample and the design and operation of the furnace and calorimeter. Methods of correcting the data to standard conditions, smoothing and representing enthalpy values, and derivation of other thermodynamic properties are discussed.

OP 84-69. Pyrolysis of Coals in a Microwave Discharge, by Yuan C. Fu and Bernard D. Blaustein. I&EC Process Design and Development, v. 8, No. 2, April 1969, pp. 257-262. Pyrolysis of coals of dif-ferent ranks in a microwave discharge yields gaseous products containing hydrogen, carbon oxides, and hydrocarbons, with acetylene as the main hydro-carbon. The discharge pyrolysis of coal, except for lignite, occurs in three stages: partial carbonization to produce tar, rapid gasification to produce gaseous products, and slow degasing of residual char. When the gas products are cooled with liquid nitrogen as they form during the discharge pyrolysis, the hydrocarbon yield increases markedly and the extent of volatilization in terms of carbon gasified rises. The initial presence of argon increases the rate of gas evolution and appears to yield greater amounts of smaller fragments as the primary gasification products.

OP 85-69. System Analysis for Truck and Shavel Selection, by L. W. Gibbs, J. R. Gross, and E. P. Pfleider. Trans. SME, December 1967, pp. 854-359. A method using computer techniques is described for the comparative evaluation of truck performance over any given haul road using readily obtainable manufacturers' data. An additional computer program is utilized to calculate individual cycle times for each truck and shovel combination, fleet requirements for any desired production rate, and to estimate comparative costs.

The introduction of a large number of variables into the program permits management to determine the critical system factors having the greatest bearing on costs. Thus, the method described can be used not only for analysis of needs for a new surface mine but for cost improvement in existing mines where changes in truck and shovel operations are contemplated.

OP 86-69. Enthelpies of Combustion and Formation of 11 Isomeric Nonanes, by William D. Good. J. Chem. and Eng. Data, v. 14, No. 2, April 1969, pp. 231-235. The enthalpies of combustion of 11 isormeric nonanes were determined by oxygen-bomb combustion calorimetry. Enthalpies of combustion were computed from measurements of mass of samples burned and mass of carbon dioxide produced. The following values, in kilocalories per mole based on the mass of sample, are reported for the standard enthalpy of combustion, $\triangle H \sigma^*$ sails, of these compounds in the liquid state: n-nonane, -1463.96 ± 0.13 ; 2,2-dimethylheptane, -1460.74 ± 0.20 ; 2,2,3-trimethylhexane, -1462.05 ± 0.18 ; 2,2,4-trimethylhexane, -1462.1 ± 0.20 ; 2,2,5trimethylhexane, -1462.14 ± 0.20 ; 2,2,5trimethylhexane, -1462.43 ± 0.20 ; 2,3,5-trimethylhexane, -1461.73 ± 0.20 ; 2,4,4-trimethylhexane, -1462.65 ± 0.18 ; 2,2-dimethyl-3-ethylpentane, -1465.15 ± 0.18 . The experimental results for these compounds were compared to values predicted by current correlative procedures.

OF 87-59. Estimation of Fluid-Bed Operation by a Graphical Method, by J. P. Hansen and I. L. Feld. The Design of Metal Producing Processes, Proc. Extractive Metallurgy Div. Symp., AIME, Chicago, Ill., Dec. 11-13, 1967, 1969, pp. 144-157. A graphical method is presented for predicting the degree of reduction and gas composition after each stage of a multiple fluid-bed reduction of iron ore. Using a pseudo equilibirium derived from equilibrium and operational characteristics of the fluid beds, and an operating line dependent on the desired reduction of the final product, the composition of the entering gas, and the ore-to-gas ratio, the percent reduction, and gas composition after each stage can be predicted.

Since a multistage fluid bed was not available at the Tuscaloosa Metallurgy Research Laboratory, the graphical method was modified to predict the results of multiple reduction passes through a single-stage fluid bed. The percent reduction predicted after each pass was within 3 percent of the experimental results, which is considered well within the experimental error.

OP 88-69. The farm Revolution and the Demand for Fertilizer, by Olman Hee. Proc. Council of Economics, AIME, 1969, pp. 189-218. The main objective of this paper is to estimate the contribution of user technology in explaining the consumption of fertilizer. Statistical relations are formulated which specify price of each fertilizer component, consumer income (proxy for farm output), and level of user technology as the explanatory variables. A set of equations is fitted to data for the specified variables to explain past patterns of consumption of each fertilizer component. The estimating equations also are used to project consumption of the respective fertilizer components into future years.

OP 89-69. Extractive Metallurgy of Titanium, by T. A. Henrie. Ch. 11 in High Temperature Refractory Metals. Gordon and Breach Science Publishers, Ltd., London, v. 1, July 1969, pp. 134-154. The technology involved in the reduction of titanium compounds is reviewed. Physical-chemical factors are discussed for separating titanium metal from the oxide minerals. Various chemical schemes are presented for processing impure oxides through intermediate compounds to high-purity metal. Technical evaluations are made of the energy potentials of selected reducing agents for effecting complete reduction. Product quality of titanium from commercial and potential processes is compared.

OP 90-69. Vapor-Phase Depaition of Tungsten From Tungsten Mexafluoride and Hydrogen, by F. W. Hoertel. Ch. in High Temperature Refractory Metals. Gordon and Breach Science Publishers, Inc., New York, v. 34, pt. 1, 1965, pp. 519-537. Highpurity tungsten having a columnar grain structure, with Knoop microhardness values with a 100-gram load ranging from 240 to 714 and an average density of 19,249, was vapor deposited on various substrates by reducing commercial WF, with hydrogen. Deposition temperatures ranged from 300° to 700° C. Bonding of the tungsten to the various substrates was mechanical. Exceptionally adherent bonding to copper was achieved. A table of average values of detectable impurities, a schematic diagram of the apparatus used, two photomicrographs of grain structure, and three photographs and one X-ray photograph of deposits are included.

OP 91-69. Oil Shels as a Potential Source of Liquid Fuels, by Sidney Katell. Proc. Council of Economics, AIME, 1969, pp. 147-155. Oil shale is a potential source of liquid fuels, and the vast known reserves in the West have served as an impetus for utilizing this reserve. The economics of a system using oil shale in the production of liquid products is examined in this paper. Included are mining, retorting, and refining to produce the salable product. Capital cost, operating costs, and a financial analysis are detailed.

OP 92-69. Effects of Interstitiol Impurities on Twinning and Low-Temperature Mechanical Properties of Electrorefined Vanadium, by G. H. Keith and D. R. Mathews. In Refractory Metals and Alloys IV. Gordon and Breach Science Publishers, Ltd., London, v. 1, 1969, pp. 247-264. Nitrogen and oxygen have substantially greater solubilities in vanadium than carbon and boron, and the amount of strengthening which can be achieved by addition of these elements appears to be primarily dependent upon the quantity of the elements in solid solution. Where low solubility exists, very little strengthening occurs. The occurrence of second-phase carbides and borides in the quantities and temperature range studied does not seriously affect ductility. The initial deformation mode changed from slip to twinning as temperature changed from 123° to 77° K. Oxygen or nitrogen in solution suppressed twinning in vanadium when in excess of a critical concentration; carbon or boron, precipitated as a second phase, had little effect. High ductility was associated with profuse twinning, and conversely, when twinning was suppressed or inhibited the material became embrittled.

OP 93-69. Rock Mechanics-IIs Role in Oil Recovery, by C. A. Komar. Producers Monthly, v. 32, No. 11, November 1968, pp. 2-7. A state-of-the-art report on the role of rock mechanics in oil recovery was prepared to formulate plans for experimentally determining if subsurface formation fractures may be oriented along a preferred azimuthal direction. This report combines the conclusions, experimental observations, and inferences from 43 references to show why oriented fractures are important in the recovery of oil; to summarize pertinent theory on causes of fractures; and to make available current knowledge on joint surfaces, fractured reservoirs, and rock mechanics. Conclusions evolving from this study suggest that oriented cores can be subjected to laboratory tensile tests, directional flow studies, sound velocity studies, and petrographic microscopic examinations to ascertain if particular rock properties or rock composition and structure are indicators of the preferred direction of fracture. Whenever impression-packer surveys, stress-field analyses, and surface-joint measurements are available for the formation tested, a comparison can be made of the conditions existing for fractures induced in the laboratory and those observed in the field. When establishing flooding patterns for maximum sweep efficiency, such information would determine which wells should be fractured.

н

)

t

ŧ

١,

G

G

OP 94-69. Physical Properties of Some Sulfur and Nitrogen Compounds, by W. J. Lanum and J. C. Morris. J. Chem. and Eng. Data, v. 14, No. 1, January 1969, pp. 93-98. Physical properties were determined on purified samples of 38 organic sulfur compounds and 18 organic nitrogen compounds. Most of the compounds were donated by interested laboratories for augmenting the spectral data on these types of compounds. Special handling techniques to prevent contamination or decomposition were employed during purification, storage, and property measurement. Boiling point, freezing point, density at 20° C, and refractive index (sodium D and mercury g lines) at 20° C were determined. Derived functions calculated are refractivity intercept, specific dispersion, and molecular refraction.

OP 95-69. Irmay's Saturation Factor as an indication of an Immobile Fraction of Pore Water in Saturated Permeable Sandstone, by G. E. Manger, R. A. Cadigan, and G. L. Gates. J. Sedimentary Petrology, v. 39, No. 1, March 1969, pp. 12-17. The permeability of moderately permeable Jurassic sandstone from the Colorado Plateau as calculated from grain size and other textural parameters agrees reasonably well with that determined experimentally, if calculated permeability is reduced by a factor that reflects fractional saturation with capillary water. This result tends to confirm a conclusion by Irmay that in saturated permeable media a fraction of pore water is shut off from flow of water. Applicability of a saturation factor to poorly permeable sandstone is obscured where acid-soluble contents are high; apparent inapplicability results at very fine grain size perhaps because calculated permeability is not valid where based on very fine grain diameter.

OP 96-69. Tatman Formation, by W. L. Rohrer and John Ward Smith. Wyoming Geol. Assoc. Guidebook, 1969, pp. 49-54. Stratigraphy and characteristics of organic matter in the lacustrine sediments of Wyoming's Eocene Tatman Formation are described.

OP 97-69. Vapor Pressure Relations for the Seven Pentadienes, by Ann G. Osborn and Donald R. Douslin. J. Chem. and Eng. Data, v. 14, No. 2, April 1969, pp. 208-209. Experimental values of vapor pressure for the seven isomeric pentadienes were measured in the range 2 to 25 mm of Hg by means of the included-piston deadweight gage.

OP 98-69. China's Mineral Industries in 1967: Victims of the Cultural Revolution, by Kung-Lee Wang. Asian Survey, v. 9, No. 6, June 1969, pp. 425-437. The Cultural Revolution took a heavy toll from China's economy in 1967. The mineral industries were hit the hardest. The estimated total 1967 China mineral output suffered a significant decline of 30 percent from that estimated for 1966.

OP 99-69. Effect of loading Rate on Transgranular-Intergranular Fracture in Charcoal Gray Granite, by R. J. Willard and J. R. McWilliams. Internat. J. Rock Mech. Min. Sci., v. 6, 1969, pp. 415-421. An inverse relation was found between rate of loading and transgranular-intergranular fracture in Charcoal gray granite disks loaded to failure at four different loading rates by the point load test. An empirical equation was developed to express the dependence of strain energy dissipation on the degree to which favorably oriented defects dilate under different loading rates.

OP 100-69. Solubilities of Some Silicate Minerals in Saline Waters, by A. Gene Collins. Office of Saline Water Research and Development Progress Report 427, August 1969, 27 pp. In the systems HsO, H.O-CaCl., H.O-MgCl., H.O-NaCl, and H.O-NaHCOs, the solubilities of illite, kaolinite, montmorillonite, nontronite, and a serpentine were determined as a function of time at ambient temperatures and pressures. The solubility of a serpentine was also determined in H.O-CaCl. and H.O-NaCl systems from 30° to 200° C and from 2,500 to 15,000 psi. The experimental data are illustrated with smoothed curves plotted from silicon molality versus hours. Empirical equations were derived from the smoothed data.

OP 101-69. Preparation of Carbon Metallurgical Electredes From Low-Temperature Lignite Coke and Lignite Pitch Binder, by John S. Berber and Richard L. Rice. I&EC Product Research and Development, v. 8, No. 2, June 1969, pp. 188-193. Carbon electrodes were prepared from materials produced by lowtemperature carbonization of lignite. Coke aggregate for the electrodes was produced by thermal cracking or by delayed coking of pitch obtained from distillation of low-temperature lignite tar; the pitch served as electrode binder. Electrodes prepared from these materials compared favorably with high-purity electrodes found in commerce.

OP 102-69. Far-Infrared Spectroscopy of Mineral and Inorganics, by Clarence Karr, Jr., and John J. Kovach. Appl. Spectroscopy, v. 23, No. 3, May-June 1969, pp. 219-223. Far-infrared spectroscopic analysis of minerals and inorganics was investigated.

Far-infrared spectra, 200 to 500 cm² (50 to 200 μ), were obtained for 18 different minerals and inorganics, including eight sulfides, three oxides, three carbonates, and four sulfates, many for the first time. Original analytical applications were made on samples of practical interest. These included the identification of cinnabar in a high-quartz ore, cuprite and tenorite in a mixture, calcite and dolomite in a coal refuse sample, dawsonite and dolomite in an oil shale, thenardite in a boiler deposit, and ferrous sulfate in the surface film on pyrite.

OP 103-69. Solid and Gassous Fuels, by R. F. Abernethy and J. G. Walters. Anal. Chem., Ann. Rev., v. 41, No. 5, April 1969, pp. 308R-322R. This two-part report is a technical literature survey on the improved and new methods of sampling and analyzing coal and coke, and the methods used for testing blast-furnace top, carbureted water, coal, coke-oven, liquefied petroleum, sludge, manufac-tured, natural, producer, synthesis, and water gases.

OP 104-69. Principles and Practices of Incineration, ed. by Richard C. Corey. John Wiley & Sons, Inc., New York, 1969, 297 pp. This book is a de-tailed treatment of incineration technology intended as a guide for air pollution and waste disposal officials and technologists, industry, consulting firms, and students in environmental control engineering. All of the important aspects of incineration are covered, from the theory of combustion and gas cleaning to testing their performance as regards specifications for discharge of particular matter to the atmosphere.

OP 105-69. Electrodeposition of Palladium and Platinum From Aqueous Electrolytes, by Stephen D. Cramer and David Schlain. Plating, v. 56, No. 5, May 1969, pp. 1-7. Techniques for plating thick, adherent, and coherent electrodeposits of palladium and platinum from aqueous electrolytes are described. Palladium and platinum were deposited on molybdenum, nickel, niobium (columbium), and tungsten; in addition, palladium was deposited on titanium. Successful deposition on the refractory metals was accom-plished using a cathodic pretreatment salt bath containing salts of a platinum-group metal. Depositsubstrate specimens were heat treated at tempera-tures up to 1,250° C. Microhardness measurements and electron probe analyses were conducted to de-termine the effect of heat treatment.

OP 106-69. Design of a Facility for Marine Mining Systems Research, by Michael J. Cruickshank and Ian J. Collins. Proc. Offshore Technol. Conf., OTC 1034, 1969, pp. 1305-1310. The paper describes existing and proposed facilities for marine mining systems research at the Marine Minerals Technology Center of the Bureau of Mines at Tiburon, Calif. Present facilities include a hydraulic laboratory and an environmental mechanics laboratory for study of the interrelationships between the mining process and marine mineral deposits. In the design stage is a simulator facility for the dynamic testing of marine mining systems components under controlled conditions in a real or simulated environment. The simulator will consist of a tank approximately 150 ft long by 15 ft wide by 10 ft deep, with viewing ports and a moving instrumented test carriage. De-posits will be simulated in removable containers, and other ancillary facilities will include a materials handling and analysis facility, a sea state generator, a directional current generator, and a simulated beach with adjustable slope. Proposed uses, and associated design problems are discussed.

OP 107-69. Reduction of the Benzene Ring and of the Olefinic

OP 107-69. Reduction of the Benzene Ring and of the Olefinic Double Bond by Electrolytically Generated Elec-trons, by Heinz W. Sternberg, Raymond E. Markby, Irving Wender, and David M. Mohilner. J. Am. Chem. Soc., v. 91, No. 15, July 16, 1969, pp. 4191-4194. Benzene and olefins can be reduced electro-chemically in ethanol containing hexamethylphos-phoramide (HMPA). The reduction of these sub-strates is believed to be due to electrochemically generated solvated electrons. The relative amounts of oxoloharadiene cyclohexame obof cyclohexadiene, cyclohexene, and cyclohexane obtained in the reduction of benzene depend on etha-nol concentration, current density, and temperature in a manner consistent with the proposed mechanism. Benzene can also be reduced electrochemically in pure ethanol. In the absence of HMPA, however, the current efficiency is only of the order of 1 pct as compared to a current efficiency of 95 pct in ethanol-HMPA.

OP 108-69. Pressure-Volume-Temperature Relations of Hexafluorobenzene, by D. R. Douslin, R. H. Harrison, and R. T. Moore. J. Chem. Thermo-dynamics, v. 1, 1969, pp. 305-319. A comprehensive investigation of PVT properties of hexafluoroben-zene provided definitive results which characterized its intermolecular behavior.

.

OP 109-69. Principles of Cleaning Combustion Products, by Joseph H. Field. Ch. 3 in Principles and Practices of Incineration, ed. by R. C. Corey. John Wiley & Sons, Inc., New York, 1969, pp. 34-73. In relation to particulate matter discharged from incinerators, the chapter describes particle dynamics, devices for separating particulate matter and their applications, and odor control. Examples are given to illustrate certain nuinciples. are given to illustrate certain principles.

OP 110-69. High-Temperature Evaluation of Iran Ore Pellets, by M. M. Fine. 30th Ann. Mining Symp. and 42d Ann. Meeting, Minnesota Sec., AIME, Uni-versity of Minnesota, Duluth, Minn., Jan. 13-15, 1969, pp. 133-141. A number of diagnostic proce-dures have been developed for evaluation of indurated iron ore pellets at elevated temperatures. In general these tests are designed to reveal the effects of blast furnace operation upon specific physical and chemical properties. This report reviews a number of high-temperature tests such as hot compression, reducibility, swelling and reduction degradation. Although these are only estimates derived under simulated blast furnace environments, they can play a role in improving iron ore pellet quality.

OP 111-69. Impressions Gained on a Visit to Lenin Mining and Metallurgical Complex at Almalyk, Uzbek-istan, U.S.S.R., by D. W. Frommer, 30th Ann. Mining Symp. and 42d Ann. Meeting, Minnesota Sec., AIME, University of Minnesota, Duluth, Minn., Jan. 13-15, 1969, pp. 39-44. One of the U.S.S.R.'s largest copper producing facilitites, having an estimated annual output in excess of 60,000 tons per year, was visited as part of a post-VIII International Minerals Processing Congress tour. The mine, mill, and smelter are located at Almalyk in Uzbekistan, Central Asia. Various technical aspects of the operation are discussed, as they appeared to the author, including size of equipment, and tonnages treated, along with apparent discrepancies between the author's observations and the limited published data. Reagent use is given and the author's conception of the flotation and grinding flowsheet is presented and discussed.

OP 112-69. A New Way to Hondle Nonmagnetic Taconite, by D. W. Frommer. Eng. and Min. J., v. 170, No. 8, August 1969, pp. 92-97. This article gives typical results of cooperative flotation research on nonmagnetic taconites of the Marquette range, including the development of approaches to filtration and water reclamation.

OP 113-69. Mergers in the Minerel Industry, by Annette Graham and David B. Brooks. Min. Eng., v. 21, No. 8, August 1969, p. 84. This article ex-plores the participation of nonfuel mineral com-panies in the merger movement of 1967-68. Total merger activity in 1967-68. resulted in record years for the industry. Nonfuel mineral companies also gained attention by the sizes of the companies ac-ouviring and being accuired quiring and being acquired.

OP 114-69. The Vibrational Spectrum of 2,2,5,5-Tetramethyl-3,4-Dithichexane, by J. H. S. Green, D. J. Harrison, W. Kynaston, and D. W. Scott. Spectro-chim. Acta, v. 25A, No. 7, July 1969, pp. 1313-1314. A vibrational assignment for 2,2,5,5-tetramethyl-3,4-dithiahexane was based on molecular spectral data obtained with a highly purified sample.

OP 115-69. Technologic Gaps in Exploration and Exploitation of Sub-Sen Mineral Resources, by Frank H. Wang and Michael J. Cruickshank. Proc. Offshore Technol. Conf., OTC 1031, 1969, pp. 1286-1298. Prog-ress in marine hard mineral exploration and exploitation has been severely restricted by technologic gaps and the lack of discovery of deposits that can be exploited at a competitive price in the world markets. Immediate needs include improved techniques of placer drilling to permit more reliable evaluation of in situ deposits and improved systems of dredging and processing in greater depths of water and in heavier seas. New exploration techniques for locating and characterizing the sub-surface deposits, and breakthroughs in low-cost methods for rapid detailed three-dimensional mapping of the seafloor relief, similar to the photo-grammetry breakthrough on land, would offer new incentives to industry. Advances in solution mining, in situ extraction techniques, and rapid excavation with the possibilities of sub-sea entry, could eventually shift the emphasis in ocean mining from near shore placers to large-scale exploitation of deeply buried consolidated deposits.

OP 116-69. Techniques for Diesel Emissions Measurement, by R. W. Hurn and W. F. Marshall. Trans. 1968 SAE, v. 77, No. 680418, 1969, pp. 1492-1500. Methods used in diesel emissions measure-ment at the Bartlesville Petroleum Research Center are described; limitations, adequacy, and needs for further development of each are discussed. Smoke measurements are reported from work with the Hartridge meter, as well as newly developed instru-Hartridge meter, as well as newly developed instru-ments that are used to view smoke plumes directly, and which seem to offer advantage over smoke-meters previously used. Experience in odor assess-ment by a human panel using reference odor mate-rials is reported as encouraging. Odor intensity is judged with much greater reliability than odor quality; capability to assess the latter remains wholly inadequate.

Results in application of the methods for measuring diesel emissions are intended to illustrate the use of experimental techniques to reveal engine and fuel factors as they influence the character, amount, and air-polluting effect of diesel emissions. Although the data do not permit reliable assessment of any of the factors, they are useful in showing orders of magnitude and possible relative significance of the respective emissions in the several categories.

OP 117-69. An independent's Struggle With Steam, by F. Sam Johnson, Abdo F. Bayazeed, and Harold Dutcher. Independent Petroleum Monthly, v. 40, No. 3, July 1969, pp. 2-8. For over three years Dubros, Inc., intermittently steamflooded a 280-foot-deep, 27-foot-thick Peru sand reservoir containing 29° API gravity oil. The project was stopped in February 1969 when the coil in the last steam gen-erator developed a leak. Insufficient data prevent a technical evaluation of the steamflood results, but operational problems were the main reason that operational problems were the main reason that steam injection failed. Some of the problems experienced and the solutions found are presented for the benefit of others attempting steamflooding.

OP 118-69. Ignition and Hammability Properties of Lubri-cents, by J. M. Kutchta and R. J. Cato. SAE Proc., No. 680323, 1968, pp. 1008-1020. The ignition temperature and flammability properties of combustible fluids are useful in determining safety guidelines and in assessing the fire or explosion hazard that may exist in the environment where the fluids are employed. This report is a compilation and review of such information for over 90 lubricants and hydraulic fluids. Particular empha-sis is given to those fluids used in aircraft applications. Data are presented for petroleum base fluids and purely synthetic fluids in air, oxygen, and oxygen-nitrogen atmospheres at pressures from $\frac{1}{2}$ to 1,000 atm.

OP 119-69. Solvent Extraction in the Presence of Emulsion-Forming Residues—Application to the Atomic Absorption Determination of Gold in Low Grade Ores, by Stephen L. Law and Thomas E. Green. Anal. Chem., v. 41, No. 8, July 1969, pp. 1008-1011. Extraction in the presence of insoluble residues caused a serious emulsion problem in the development of an aqua regia, methyl isobutyl ketone extraction, atomic abtities of gold in ore samples weighing up to 500 grams. A study of factors affecting the change in volume of ketone during the extraction showed that, under proper conditions, atomic absorption analysis of the small quantity of ketone which separated as The a clean phase provided quantitative results. use of solvent extraction in the presence of insolu-bule residues which cause the formation of large emulsions has not been previously reported. This technique should have general application in many other extraction methods of analysis.

Electrodeposition of Molybdenum Coatings, by OP 120-69. Frank X. McCawley, Charlie Wyche, and David Schlain. J. Electrochem. Soc., v. 116, No. 7, July 1969, pp. 1028-1033. The electrodeposition of coatings of molybdenum from a sodium and lithium metaborate-molybdate-molybdenum oxide fused-salt system was investigated. Coatings up to 16 mils thick were deposited on Inconel, Carpenter 20 staindensities of 3.1-6.2A dm⁻² (0.2-0.4A in⁻²) and 900° C under an argon atmosphere. The composition of the electrolyte is critical; deposits are obtained only when the electrolyte contains between 1.0 and 3.3 percent molybdenum.

OP 121-69. Homogeneous Catalytic Deuteration of Olefinic Double Bonds, by J. R. Morandi and H. B. Jensen. J. Org. Chem., v. 34, No. 6, June 1969, pp.

ŧ

l

1

ť

1889-1891. The specific deuteration of olefins using tris(triphenylphosphine)rhodium(I) chloride (A) as a homogeneous catalyst has been investigated. Seventeen n-monoolefins were deuterated and the distribution and the vicinal positions of the deuterium atoms were located by mass spectrometry. Deuterium adds specifically across the double bonds in n-monoolefins and the reaction proceeds to completion in a reasonable time. The mass spectral fragmentation patterns for the deuterioalkaness formed by this specific labeling technique can be used to locate the deuterium atoms and thus to determine the position of the double bond in the original olefin.

OP 122-69. Nonmetal Elements and Compounds, by J. C. Morris, D. R. Latham, and W. E. Haines.

Anal. Chem., v. 41, No. 5, April 1969, pp. 170R-176R. This is the ninth in a series of reviews of analytical chemistry as used in the petroleum industry. It reviews the progress of analytical chemistry for sulfur, nitrogen, oxygen, phosphorus, and halogens in petroleum. It covers essentially the period 1966-67.

OP 123-69. Separating Intermediate Phases From Zinc-Base Alloys, by L. A. Neumeier and J. S. Risbeck. Metallography, v. 2, No. 1, March 1969, pp. 107-108. A method is described for electrolytically extracting intermediate phase particles from zincbase alloys containing no more than 3 wt pct Cu and 1 wt pct Ti. The zinc solid-solution matrix is selectively dissolved in an electrolyte of CrO_s in water at about 40 volts dc, and the insoluble phase particles settle to the bottom of the cell, are washed, dried, and analyzed by X-ray diffraction.

OP 124-69. Rousting Nonmagnetic Taconites With Scrap Iron as a Reductont, by Charles Prasky and R. E. Peterson. 30th Ann. Mining Symp. and 42d Ann Meeting of the Minnesota Sec., AIME, University of Minnesota, Jan. 13-15, 1969, Duluth, Minn., pp. 183-188; Blast Furnace and Steel Plant, v. 57, No. 7, July 1969, pp. 570-576. Recent advancements are described in the pilot plant development of the Bureau of Mines' process for roasting iron ores with ferrous scrap as the primary reductant to obtain artificial magnetite. Quality magnetic concentrates containing about 68 percent Fe and 6 percent SiO, with iron recoveries of about 90 percent were obtained after roasting fine-grained nonmagnetic taconites (32 percent Fe) with sheared automobile hulks in a rotary kiln. The relatively more thorough destruction of the lighter gage metal in the automobile by oxidation during roasting resulted in a metallic coproduct of unconsumed scrap consisting somewhat selectively of the heavier gage metal. This tailored scrap is potentially useful as a heavy melting material which is more valuable than the original scrap.

OP 125-69. Electrodeposition of Rhodium From a Molton Sodium Cyanide Electrolyte, by G. R. Smith, C. B. Kenahan, R. L. Andrews, and David Schlain. Plating, v. 56, No. 7, July 1969, pp. 805-808. A method for electrodepositing thick, protective coatings of rhodium from a fused-salt electrolyte was developed. The electrolyte was made by dissolving rhodium in molten sodium cyanide. The cell was operated at 600° C under an atmosphere of argon with anodes of rhodium or graphite and a cathode made of one of several substrate materials. Deposits as thick as 7.8 mils were obtained. Evidently rhodium has a valence of +1 in the ion which is discharged at the cathode. When electrodeposition was carried out in the presence of air the bath deteriorated within a few hours. The rhodium coatings protected molybdenum from oxidation at temperatures up to 1,270° C, 700° C above the normal oxidation temperature of the metal; tungsten was protected up to 1,330° C, 600° C above its oxidation temperature.

OP 126-49. SMRI Soil Stress Cell, by Robert C. Bates. Proc. 7th Ann. Engineering Geology and Soils Engineering Symp., Apr. 9-11, 1969, University of Idaho, Moscow, Idaho, 1969, pp. 9-32. A soil stress cell developed at the Bureau of Mines Spokane Mining Research Laboratory is described. The construction techniques, calibration procedures, and inclusion effects are detailed.

OP 127-69. The Economics of Mined-Land Reclamation, by David B. Brooks. Proc. Mining Environmental Conf., Apr. 16-18, 1969, University of Missouri, Rolla, Mo., 1969, pp. 85-96. This paper discusses the use by government of benefit-cost analysis in evaluating and comparing various possible antipollution actions. Although it requires the estimation of damage functions (which relate the occurrence of pollutants to the damages they cause) and of cost functions (which relate the reduction of pollutants to control costs), benefit-cost analysis can often indicate, at least approximately, the net gains to be expected from proposed public actions.

OF 128-69. Explosive Detensition Tested in Hydraulically Fractured Ges Wels, by W. D. Howell and J. B. Hille. 44th Ann. Fall Meeting, Soc. Petrol. Eng., AIME, Denver, Colo., Sept. 29, 1969, SPE 2605, 8 pp. A procedure and technique for stimulating low-permeability gas reservoirs by chemical explosive fracturing was investigated by the Bureau of Mines.

OF 129-69. Air Pollution and the Compression-Ignition Engine, by R. W. Hurn. 12th Internat. Symp. on Combustion, University of Poitiers, France, July 14-20, 1968. Combustion Institute, Pittsburgh, Pa., 1969, pp. 677-687. Except for the problems of odor and of oxides of nitrogen, it would appear that the combustion processes of the diesel engine are inherently favorable toward engine design and operation for reduction in pollutants to meet environmental needs.

OF 130-69. BuMines Research Center Aids Efficient Use of Oil, by Bill Linville. Oil Daily, Suppl., No. 4,565, Aug. 25, 1969, pp. 4 and 24. For more than 50 years, the Bureau of Mines Bartlesville Petroleum Research Center in Bartlesville, Okla., has worked closely with the petroleum industry of Tulsa and other areas. This article describes some of the accomplishments of the research center and its current research program. The six research groups described include basic production research, petroleum engineering, petroleum chemistry and refining, thermodynamics, fuels combustion, and properties and flow of reservoir fluids. The physical plant of the research center is also briefly described.

OF 131-69. Design of Cylindrical Channel Flame Arrestors, by Elton L. Litchfield and Joseph M. Kuchta. Instrument Soc. of America, ISA Monograph 112, 1969, pp. 70-74. The various steps involved in designing a cylindrical channel flame arrestor for instrumentation application are considered. For conservative design, the principal uncertainties relate to the quantitative prediction of the cooling of the combustion products in the cylindrical channel.

.

OP 132-69. Conservation of Mineral Resources, by Charles W. Merrill. Min. Cong. J., v. 55, No. 8, August 1969, pp. 65-69. An examination of the complex problem of applying our best conservation efforts to assure that the United States experiences neither wanton waste of our mineral resources nor deprivation through hoarding.

OP 133-69. A Discounted Cash Flow Model for Evaluating

OP 133-69. A Discounted Cash Flow Model for Evaluating the Cast of Producing Iron Ore Pellets From Magnetic Toconite, by R. W. Michelson and H. J. Polta. In a Decade of Digital Computing in the Mineral Industry, ed. by Alfred Weiss. American Institute of Mining, Metallurgical, and Petroleum Engineers, New York, 1969, pp. 111-140. Discounted cash flow analysis is commonly used to evaluate the profit making potential of a business venture. The same method can be used to analyze the effects of varying physical and economic conditions upon the real cost physical and economic conditions upon the real cost of supplying a mineral commodity. If a fixed rate of return on a capital investment is specified, and the flow of cash, discounted at that rate, is just adequate to repay the investment over the life of the venture, the net present value of the venture is zero. At this condition it is possible to evaluate the unit cost of producing the mineral. It will be exactly equal to the selling price required to calculate a zero present value.

1

1

1

1

Increasing a particular cost factor will not always increase the cost of supply by the same amount. For example, in iron production from magnetic taconite, an increased cost per ton associated with beneficiation would be integrated into the discounted cash flow model along with local, State, and Federal taxes, depletion and depreciation allowances, re-sultant increased unit recoveries, and all of the other related component cost factors. Rather than adding to the cost, the factor may have a positive, instead of negative, effect on the discounted cash flow and cause a decreased cost of supply. This value can be determined by a computer model which iterates the necessary selling price until the net present value is essentially zero. The discounted cash flow evalu-ation model lends itself particularly well to an application of the Monte Carlo simulation method for calculating a probability distribution of iron unit cost resulting from the probability distributions of the component cost factors.

OP 134-69. Natural and Induced Systems and Their Application to Petroleum Production, by J. Pasini III and W. K. Overby, Jr. 44th Ann. Fall Meeting, Soc. Petrol. Eng., AIME, Denver, Colo., Sept. 28-Oct. 1, 1969, SPE 2565, 5 pp. The Bureau of Mines is investigating the orientation of hydraulically induced fractures in petroleum reservoirs. The results of analyses of surface and subsurface information show a definite correlation between surface linea-tions and azimuths of hydraulically induced fracimagery and/or surface surveys have been correlated with subsurface fracture orientations to depths of 3,000 feet and used to predict the bearing of hydraulically induced fractures in the Appalachian basin. Possible applications of fracture orientation prediction to petroleum production are also discussed.

OP 135-69. Separation of the Neon Isotopes by Cryogenic Chrometography, by A. Purer, R. L. Kaplan, and D. R. Smith. J. Chromatographic Sci., v. 7, August 1969, pp. 504-507. A gas chrometographic system for the separation of the neon isotopes is denoviated Science and the separation of the separation. 1 described. Separation was obtained by using a soft-

glass capillary column with an etched internal surglass capillary column with an etched internal sur-face operating at established critical working con-ditions. The desired α values for this type of separation exist only at cryogenic temperatures; therefore, a helium refrigerator was used to obtain column temperatures of 15° to 25° K. At these operating temperatures the column's adsorptive affinity for small neon samples became so great that neon would not pass through the column. Therefore, it was necessary to cover the more highly active adsorption areas with a material that had no inter-action with the neon sample. This was done by using hydrogen as a deactivating gas mixed with the helium carrier gas. The high resolution obtained for the separation of Ne²⁰ and Ne²² indicates that it should also be possible to separate Ne²¹. The value of these purified neon isotopes warrants additional development of this method on a preparative scale.

OF 136-69. Utilization and Stabilization of Solid Minerat Westes, by Joe B. Rosenbaum and Karl C. Dean. Proc. Engineering Foundation Research Conf., Solid Waste Research and Development, II, Wayland Acad., Beaver Dam, Wisc., July 22-26, 1968. Preprint C-13, 4 pp. This report reviews the work in progress at the Salt Lake City Metallurgy Research Center on selected mineral waste accumulations under both utilization and stabilization categories.

OP 137-69. Gold in See Water-Fact or Fancy, by Joe B. Rosenbaum, Joan T. May, and J. M. Riley. Mines Magazine, v. 5, No. 9, September 1969, pp. 14-17. This brief experiment by the Bureau of Mines to determine a threshold values for the gold in sea water employed solvent extraction for initial In sea water employed solvent extraction for initial concentration, evaporation of the gold loaded organic for further concentration, and atomic absorption analysis of the gold in the concentrated organic. Radioactive gold was used as a tracer for monitor-ing the gold through the concentration and analytical steps. Our method established that sea water con-tains shout 11 morts of cold post solver solver tains about 11 parts of gold per trillion parts sea water or 0.001 cent worth per ton. This agrees closely with results of recent studies by other investigators employing ion exchange resins and neutron activation techniques.

OP 138-69. The Effect of a Siemens Ozonizer Discharge on OP 132-69. The Effect of a Siemens Oronizer Discharge en the Reaction of Carbon Monoxide and Steam, by T. C. Ruppel, P. F. Mossbauer, and D. Bienstock. In Chemical Reactions in Electrical Discharges. Adv. in Chem. Ser. 80, 1969, pp. 214-231. The gas-phase reaction of carbon monoxide and steam to produce carbon disxide and hydrogen has been studied in the proceeder of a Siemens organizer disstudied in the presence of a Siemens ozonizer dis-charge. The effect of process variables on carbon monoxide conversion was investigated.

OP 139-69. Electrodeposition of Titanium Diboride Coatings, OP 139-69. Electrodeposition of Tranium Diboride Cocings, by David Schlain, Frank X. McCawley, and Charlie Wyche. J. Electrochem. Soc., v. 116, No. 9, September 1969, pp. 1227-1228. Adherent, emooth coatings of titanium diboride, metallic in appearance and 3 to 6 mils in thickness, were elec-trodeposited on Inconel from a molten-salt electro-lyte at 900° C. The electrolyte consisted chiefly of NaBO₂ and LiBO, with smaller amounts of Na₂TiO, Li₂TiO₃, and TiO₂. The electrolytic cell was operated under an argon atmosphere at cathode and anode under an argon atmosphere at cathode and anode current densities of approximately 0.4 A per in² (6.2 A per dm²). The coating was formed at the rate of about 1 mil per hr. The soluble titanium anode was stationary and the cathode was rotated

at 250 rpm. The cell voltage was approximately 0.3 volt.

OF 140-69. The Structure of Low-Velocity Detonation Waves, by Richard W. Watson. 12th Internat. Symp. on Combustion, University of Poitiers, France, July 14-20, 1968. Combustion Institute, Pittsburgh, Pa., 1969, pp. 723-729. High-speed pho-tographic and radiographic evidence is presented to prove the presented for the second sec in support of a previously developed model of low-velocity detonation showing the existence of a cavi-tation field between the shock front and the reaction zone.

OP 141-69. Incineration of Radioactively Contaminated Com-

bustible Wastes, by Richard C. Corey, Ch. 10 in Principles and Practices of Incineration, ed. by R. C. Corey. John Wiley & Sons, Inc., New York, 1969, pp. 239-253. This chapter on the safe, eco-nomical disposal of radioactively contaminated solid wastes, generated by institutional, commercial, and industrial users of radioisotopes discusses the selection of a suitable size and type of incinerator, the protection of personnel handling raw wastes and solid incinerator residues, the precention of con-tamination of the public domain by excessive radioactivity in the gaseous and particulate emissions from the incinerator stack, and the technology of each step in the system.

OP 142-69. A Valence Force Field for Aliphatic Sulfur Compounds: Dithicalkanes, by Donald W. Scott and M. Zaki El-Sabban. J. Molecular Spectroscopy, v. 31, No. 3, September 1969, pp. 362-367. To obtain reliable vibrational assignments for use in statistical thermodynamic calculations for dithiaalkanes, the valence force field reported earlier for alkane-thiols and thiaalkanes was extended to include the dithiaalkanes. The six additional force constants involved in the potential function of the dithiaalkanes were evaluated from observed wavenumbers of the were evaluated from observed wavenumbers of the following four molecules: 2,3-dithiabutane, 2,3-dithiapentane, 3,4-dithiahexane, and 2,2,5,5-tetra-methyl-3,4-dithiahexane. The mean deviation of the calculated wavenumbers from the observed ones is 12.3 cm⁻¹ or 1.1 percent, only slightly larger than for the alkanethiols and thiaalkanes. Previous as-signments for the four investigated molecules were critically examined in the course of the molecular vibrational analysis and revised as necessary and vibrational analysis and revised as necessary, and the probable conformations in which they can exist are presented and discussed.

OP 143-69. A Valence Force Field for Thiophene and Its Deuterium and Methyl Derivatives, by Donald W. Scott, J. Molecular Spectroscopy, v. 31, No. 3, September 1969, pp. 451-463. To obtain reliable vibrational assignments for use in statistical ther-modynamic calculations, a valence force field was derived from 300 observed vibrational wavenumbers of thisbars. derived from 300 observed vibrational wavenumbers of thiophene, 8 deuterium derivatives, and 6 methyl derivatives. Of the 45 force constants, 25 were ad-justed to fit the a_1 , b_1 , and a' fundamentals; 14 were adjusted to fit the a_2 , b_2 , and a'' fundamentals; and 6 pertaining to the methyl group were transferred from other molecules. The mean deviation of the coloniated wavenumbers from the charmed area calculated wavenumbers from the observed ones was 7.3 cm⁻¹ or 0.73 percent for the a_1 , b_1 , and a'species and 2.6 cm⁻¹ or 0.46 percent for the a_c , b_a , and a'' species. A vibrational assignment proposed in the literature for the parent compound was substantiated, and reliable vibrational assignments were obtained for the two monomethyl and four dimethyl derivatives.

OP 144-69. Simultaneous DIA-IG-MSA Apparatus for Thermal Study of Natural Fuels, by John Ward Smith and Donald R. Johnson. Proc. 2d Internat. Conf. on Thermal Analysis, Holy Cross College, Worcester, Mass., Aug. 18-23, 1968, v. 2, 1969, pp. 1251-1268. Quadrupole equipment added to apparatus designed expressly for thermal analysis of natural fuels like oil shale provides continuous mass spectrometric analysis (MSA) of evolving gases, differential ther-mal analysis (DTA), and thermogravimetry (TG) simultaneously on a single sample. Described is tested apparatus developed specifically to solve prob-lems inherent in thermal analysis of solid fuels. Key to this solution is the use of thin, flat pans as sample holders. Adaptation of the quadrupole euip-ment to sample and analyze evolving gases in a carrier stream is described. Because gases evolve rapidly from the thin sample layer, the resulting gas analysis corresponds closely with DTA and TG results. Tests run on Green River Formation oil-shale minerals demonstrate the value of the MSA data generated by the quadrupole gas analyzer. expressly for thermal analysis of natural fuels like

ł

2

١

ŧ

1 ŧ

)

f 1 E

OP 145-69. Controlled Low-Temperature Pyralysis of Benzene-Extracted Green River Oil Shale, by J. J. Cummins and W. E. Robinson. Div. Petrol. Chem., ACS, Preprints, v. 12, No. 4, September 1968, pp. 41-47. Green River oil-shale kerogen was pyrolyzed at 300° and 350° C and the order, rate, and activation energy of the thermal reaction were deter-mined. The composition of the pyrolytic products was determined.

OP 146-69. Thermal Properties of Barium Chloride From 300° to 1350° K, by T. Estelle Gardner and Arthur R. Taylor, Jr. J. of Chem. and Eng. Data, v. 14, No. 3, July 1969, pp. 281-283. The heat contents of BaCl, have been determined from 300° to 1,350° K using an ice calorimeter. The results of this investigation were correlated with here toresed this investigation were correlated with low-temperature heat-capacity data on a sample from the same batch of material. A transition at 1,198° K with $\triangle H_T = 4.05$ kcal per mole and a melting point of 1,235° K with $\triangle H_I = 3.82$ kcal per mole were found for the sample.

OP 147-69. Rock Mechanics Can Help Underground Blassing Practice, by James J. Olson and David E. Fogelson. Min. Eng., v. 21, No. 9, September 1969, pp. 89-92. The Bureau of Mines undertook a research program in cooperation with White Pine Copper Co., Mich., to determine how rock adjacent to a newly opened underground working could be left as undisturbed as possible, leaving a competent structure which would tend to limit rock falls. Geophysical techniques were used to study rock prop-erties (resistivity and seismic velocities) in a tunnel excavated with a pilot bore driven with explosives. The differences in vibration levels due to size of charge, type of explosive (AN-FO or 60 percent ammonia dynamite), and structural flaws in the mine roof were investigated. It was found that remine roof were investigated. It was found that re-ducing the zero delay charge would effectively limit vibrations transmitted to already weakened roof rock. Differences due to explosive type were found to be larger than the differences due to structure of the roof. Scaling by the square root of the V-cut charge weight did the best job of grouping the data. The ampirical propagation couption A UV. 50.000 The empirical propagation equation AWE 50,000 $(R/W_2)^{-2/2}$ where A is the peak-to-peak accelera-tion in gravities, W is the zero delay charge weight in pounds, and R is the distance from the blast in feet, may be used to estimate the maximum accelerations from underground mine blasts.

OP 148-69. Some Surface Variations Resulting from Additives in the Electrowinning of Zinc, by H. Fukubayashi, T. J. O'Keefe, H. Kenworthy, and L. W. Higley. Proc. 2d Ann. Symp. on Scanning Electron Microscopy, IIT Research Institute, Apr. 29-May 1, 1969, Chicago, Ill., 1969, pp. 285-294. An examination by the Bureau of Mines of the surface structure of zinc electrodeposited from an acid sulfate solution was made by scanning electron microscopy techniques. The starting solutions were in a range of acid and zinc concentrations commonly used in commercial practice. Changes in morphology resulting from additives such as animal glue, gum arabic, and sodium silicate are compared.

OP 149-69. Reclaiming Refractory Carbides and Cobalt From Cemented-Carbide Scrap, by P. G. Barnard, A. G. Starliper, and H. Kenworthy. Secondary Raw Materials, v. 7, No. 9, September 1969, pp. 19-21. The Rolla Metallurgy Research Center of the Bureau of Mines has developed a new method for reclaiming refractory carbides and cobalt from cementedcarbide scrap involving the use of molten zinc which tends to disintegrate the carbide mass by forming an alloy with the cobalt binder. Subsequently, the zinc is recovered by distillation. Refractory carbides and the cobalt remain in a mass which can be ground to desired particle size and be totally reused. This method can be used to recover costly materials that are now being discarded. The patent on this method is pending.

OP 150-69. Discrete Averaging of X-Ray Diffraction Data Using a Multichannel Analyzer, by Martin. Berman and Sabri Ergun. Rev. Sci. Instr., v. 40, No. 9, pp. 1144-1145. A system is described in which a multichannel analyzer is used to repeatedly scan a powder X-ray diffraction spectrum in discrete intervals. Counts are recorded at a given angle for the required dwell time. A preset indexer actuated by the multichannel analyzer drives a stepping motor the required increment in angle. The channel memory is advanced by one and the above process is repeated until the end of a scan. The indexer then drives the diffractometer back to the starting angle. Scans are repeated until sufficient data are accumulated. All the scans are made in the same direction to avoid backlash errors. The system prints out the contents of the memory at definite intervals (usually every 12 hours) so that in the event of a malfunction only the data taken since the last printout are lost. Other advantages and some disadvantages of the system are described.

OP 151-69. Flotation of Southeastern Kyanite Ore, by James S. Browning. Trans. SME, AIME, v. 244, September 1969, pp. 283-287. The Bureau of Mines conducted laboratory and small scale continuous tests of kyanite ore from Georgia and South Carolina to determine the technical feasibility of recovering commercial-grade kyanite concentrates by flotation. The research indicated that combinations of sulfuric acid and petroleum sulfonate may be used effectively for flotation of kyanite from quartzite-kyanite ore. This report summarizes the results of these tests and demonstrates the feasibility of producing commercial-grade concentrates with a high recovery of the contained kyanite.

.

)

)

1

4

1

OP 152-69. Principles of Rock Cutting Applied to Mechanical Boring Machines, by William E. Bruce and Roger J. Morrell. Proc. 2d Symp. Rapid Excavation, "Progress Toward Goals," ed. by H. L. Hartmann. Sponsored by School of Engineering, Sacramento State College, Sacramento, Calif., Oct. 16-17, 1969, pp. 3-1 through 3-43. The Mechanical Fragmentation Laboratory at the Twin Cities Mining Research Center of the Bureau of Mines is conducting research directed toward more efficient tunneling to be achieved through more precise application of boring machines to rocks as well as through better understanding of the parameters influencing design of suitable boring machines. Research equipment includes a multipurpose boring unit equipped with tunneling machine cutters to simulate the action of a shaft-drilling or tunnel-boring operation. Another device being used to study the operation of cutters is called a linear-cutter apparatus. Results obtained with the linear-cutter apparatus are presented here with suggestions as to possible applications by those industry personnel skilled in boring machine design.

OP 153-69. The Activity of Zinc In Liquid Zn-Al Alleys from Isopiestic Measurements, by Pedro Bolsaitis and Paul M. Sullivan. Trans. Met. Soc., AIME, v. 245, July 1969, pp. 1435-1438. The activities of zinc in liquid Zn-Al alloys in the temperature range of 1,000° to 1,160° K were determined by means of the isopiestic technique. The results are in reasonable agreement with the previous values determined by the radioactive tracer dewpoint method. Slightly negative excess entropies of mixing were found. The measured activities suggest that the α function for these alloys is not a constant, as has frequently been assumed, but is better represented by two straight line segments of different slopes.

OF 154-69. Mining and Mineral Recovery, by Michael J. Cruickshank. Ch. 6 in UnderSea Technology Handbook Directory 1969. Compass Publications, Inc., Arlington, Va., pp. A45-A55. This literature survey presents, in summary and tabular form, the current activities in mining and mineral recovery from the oceans and comments on some of the more salient happenings for 1968. For more detailed information on specific points the reader is referred to appropriate publications in the bibliography.

OF 155-69. Ihermodynamic Anomalies of a van der Waals Helium-Nitrogen Solution at the Critical Point ef Pure Nitrogen, by B. J. Dalton and Robert E. Barieu. J. Chem. Physics, v. 51, No. 7, Oct. 1, 1969, pp. 2920-2924. For a van der Waals He-N. solution, it is shown that in the limit of the infinitely dilute solution of He in N, (with the exception of the heat capacity at constant volume which is zero everywhere for a van der Waals fluid) all relative partial molal thermodynamic properties of He are infinite at the critical point of pure N₃; all relative partial molal thermodynamic properties of N, with the exception of the chemical potential and the heat capacity at constant pressure, exhibit a finite, nonzero singularity at the critical point of pure N, and the limiting value of the singularity, as a function of the concentration of He, depends on the path by which this critical point is approached. It is also shown that these same general conclusions are valid for any van der Waals binary mixture and are expressible in terms of the constants appearing in the equation of state itself.

 OP 156-69. Evaluating Blasting Techniques in Frozen Gravel, by Richard A. Dick. Min. Cong., J., v.
 55, No. 9, September 1969, pp. 30-36. Effects of blast design, delay type, and explosive type were studied in a factorial experiment performed in a 7- by 12-foot tunnel in frozen gravel. Results of a statistical analysis are presented. OP 157-69. Silylation of Asphalts Within Gas-tiquid Chromatographic Columns, by S. M. Dorrence and J. C. Petersen. Anal. Chem., v. 41, No. 10, August 1969, pp. 1240-1243. Silylation of asphalts within inverse gas-liquid chromatographic (IGLC) columns offers a convenient means to study asphalt functionality. This technique was demonstrated to be effective in blocking phenolic and carboxylic acid OH functional groups in asphalts. This was confirmed by infrared spectra of silylated asphalts. It is suggested that these OH groups interact strongly with both phenol and propionic acid in inverse interaction coefficients for both test compounds. IGLC data on silylated asphalts indicated that formamide interacts strongly with carbonyl groups in asphalts.

OP 158-69. Detenability of the Nitromethane-Hydrazine-Methanel System, by D. R. Forshey, J. C. Cooper, and W. J. Doyak. Explosives offe, v. 6, June 1969, pp. 125-129. A study of the detonability of binary and ternary mixtures of nitromethane, hydrazine, and methanol revealed that hydrazine strongly sensitizes nitromethane and nitromethanemethanol mixtures to detonation.

OP 159-69. Separation of Asphaltic Materials by Reversed Phase Parition and Adsorption Chromatography, by R. V. Helm. Anal. Chem., v. 41, No. 10, August 1969, pp. 1342-1344. This preliminary report describes the use of a nonaqueous reversed-phase partition chromatography system followed by silica gel chromatography to separate a molecular distillation fraction from a Wilmington (California) asphalt. In addition, the separation of the same fraction on silica gel only is reported, and a comparison of the separated materials is made by infrared spectrometry.

OP 160-59. Fuel: A Factor in Internal Combustion Engine Emissions, by R. W. Hurn. ASME Winter Annual Meeting, Los Angeles, Calif., Nov. 16-20, 1969, Preprint 69-WA/APC-8, 5 pp. Characteristics of fuel used in an internal combustion engine influence both the amount and the nature of air pollutants associated with engine use. Fuel composition directly governs the amount and character of pollutants from the fuel system and exerts varying influence upon the products of combustion. Fuels could be changed (from typical current practice) to reduce the pollution that results from their use; however, comparable or greater reduction could also be realized through mechanical or engine design changes. The fuel factor is, therefore, only one of several factors that should be considered. But it is important that fuel characteristics be considered in any concept of emission control.

OF 161-69. New Requirements for Self-Contained Breathing Apparatus, by E. J. Kloos. Environmental Control Management, v. 138, No. 4, October 1969, pp. 51-54. This article describes the major changes in the Bureau of Mines revised schedule for selfcontained breathing apparatus. Schedule 13E, and explains their significance.

OP 162-69. Induced Oxidation-Precipitation of Iron From Aqueous Solutions of Mn50,-Fe50, by Vance G. Leak and M. M. Fine. I&EC Fundamentals, v. 8, No. 3, August 1969, pp. 411-414. The oxidationprecipitation reaction rate of iron(II) in sulfate solutions was measured over the range 110° to 200° C and 90 to 365 psia oxygen to determine its dependence on the temperature and oxygen pressure. Both the intrinsic rate of oxidation-precipitation of iron from iron(II) sulfate and the induced reaction rate in binary manganese(II) and iron(II) sulfate solutions were examined. The reaction in either case is second-order with respect to the iron(II) concentration and first-order with respect to the oxygen partial pressure. However, the rate is greatly enhanced by the presence of the manganese(II) ion. The activation energies are 16.5 kcal per mole for the intrinsic case and 39.4 kcal per mole for the binary case.

OF 163-69. Removal of Sulfur and Nitrogen Oxides from Stack Gases by Ammonia, by C. C. Shale, D. G. Simpson and P. S. Lewis. Proc. Symp. on Important Chemical Reactions in Air Pollution Control. Pt. II, AIChE, Washington, D.C., Nov. 16-20, 1969, Preprint 13b, 17 pp. Complete removal of SO, and partial removal of NO, impurities from a simulated stack gas mixture was effected in laboratory experiments by vapor phase reaction with ammonia. A cyclic process utilizing ammonia involves recovery of the chemical reaction products by condensation and regeneration of the feeds by thermal decomposition and reaction of acidic constituents with ZnO. Ammonia is separated for recycle, and essentially pure SO, is recovered as a byproduct. Ash particles not removed by mechanical separation are trapped in the condensate. A flow diagram for commercial application of this conceptual process is discussed.

.

OP 144-69. Respirator Testing and Approval, by Robert H. Schutz. Safety Standards, v. 18, No. 6, November-December 1969, pp. 6-8. This article describes operation to the Bureau of Mines Respirator Approval program and its proposed expansion.

OP 165-69. Use of Sodium Sulfate for Copper Removal From Mohen Iran, by Harry V. Makar and Beverly W. Dunning, Jr. J. Metals, v. 21, No. 7, July 1969, pp. 19-22. Use of sodium sulfate (Na₂SO₄) for removing copper and other residual elements from molten iron has been studied at the Bureau of Mines as a possible approach to upgrading low-quality ferrous scrap, such as auto bodies. Earlier studies have shown that a substantial amount of copper can be removed by this process and the amount removed is essentially a function of the amount of Na₂SO, added. Final copper concentrations down to <0.002 percent can be achieved, but excessive amounts of Na₂SO, are required. Additional studies were undertaken to evaluate possible approaches towards increasing the efficiency of the Na₂SO, process. This work included making additions of Na₂SO, in different physical forms, adding mixtures of sulfates, recycling used slag, and lance injection and stirring. Efficiency of removal of copper was improved and the data indicate that additional improvement may be possible. Evaluation of these results suggest research areas where more intensive studies would be worthwhile.

OP 166-69. Electrowinning of Hafnium From Hafnium Tetrachloride, by G. M. Martinez, M. M. Wong, and D. E. Couch. Trans. Met. Soc., AIME, v. 245, October 1969, pp. 2237-2242. The Bureau cf Mines electrowon hafnium metal with an average oxygen content of 150 ppm at 700° C from an electrolyte containing 27 wt pct LiCl, 62 wt pct RbCl, and 11 wt pct HfCl.. The average anode and cathode current efficiencies were 90 pct at anode and initial cathode current densities of 86 amp per sq ft. Hafnium metal with an average oxygen content of 440 ppm was electrowon at 800° C from an electrolyte containing 90 wt pct KCl and 10 wt pct HfCl.. The average anode and cathode current efficiences were similar to those obtained in the LiCl-RbCl-HfCl, electrolyte. The chlorine was given off at the graphite anode was vented through either a silica or a graphite tube to prevent cell corrosion.

OP 167-69. Sintered Fly Ash as a Soil Medifler, by J. C. Patterson, Jr., P. R. Henderlong, and L. M. Adams. Proc. West Virginia Academy of Science, v. 40, April 1968, pp. 151-159. Field and laboratory studies are being conducted to evaluate the feasibility of utilizing sintered fly ash as a soil modifier or amendment. Sintered fly ash was applied in 13 different particle size and rate combinations to a poorly drained turf grass area. Incorporation of sintered fly ash with the upper 6 inches of soil generally increased water infiltration and overall soil drainage. As a result of the improved soil drainage, aeration should also be improved and soil compaction reduced. Root penetration and growth should be improved. This should lead to the development of a more vigorous and dense turf or sod cover. Addition of sintered fly ash did not alter the textural classification of the soil, but increased the pH from 6.8 to 7.4. The sintered fly ash apparently acts much like a sponge and tends to absorb large quantities of water. Also, the sorbed water appeared to be retained less vigorously by the sintered fly ash than by the unmodified soil during periods of moisture stress. In general, the soil moisture and moisture tension data supported this hypothesis.

t

{

OP 168-69. The Preparation of Low-Ath-Content Anthractte, by W. S. Sanner. Trans. SME, AIME, v. 244, September 1969, pp. 268-276. Experiments were conducted to determine the quantity and purity of ultraclean anthracite that could be prepared in the laboratory, using conventional separating techniques. A low-, a medium-, and a high-volatile anthracite were studied. Specific gravity separation followed by grinding, screening, and refloating at lighter specific gravities yielded small quantities of material purified to 1.0 percent ash, as follows: from low-volatile coal, 1.0 percent; and from highvolatile coal, 2.3 percent. The reduction in ash had no appreciable effect on the volatile matter or sulfur content of the coal. The limited quantities of material containing 1.0 percent or less ash obtainable indicate that if ultraclean coal is desired, a practical approach should include the processing units as an integral part of a conventional dense-media washing plant.

CP 169-69. Geochemistry of Oil-Shale Genesis, Green River Formation, Wyeming, by John Ward Smith. Wyoming Geol. Assoc. Guidebook, 1969, pp. 185-190. The chemical conditions of deposition and the mechanics of deposition postulated for Wyoming's Green River Formation oil shales explain development of oil shale containing relatively large amounts of hydrogen-rich organic matter; uniform, minute, and angular mineral particles; and the existence of the minute annual markings called varves. Lateral persistence of lamina is a natural consequence of the manner of development.

 OP 170-69. The Effect of Time and Depth of Burial on the Naphthe and Gas Oil Content of Crude Oil, by Harold M. Smith and John S. Ball. Div. Petrol. Chem., ACS, Preprints, v. 14, No. 4, September 1969, pp. E5-E15. The amounts of the naphtha and gas oil fractions of more than 6,000 crude oils were correlated with depth and geologic age of the producing formation. OP 171-49. Physical and Chemical Beneficiation of Metal and Mineral Values Contained in Incinerator Residue, by Martin H. Stanczyk and Paul M. Sullivan. Soc. Min. Eng., AIME, Ann. Meeting, Washington, D.C., Feb. 16-20, 1969, Preprint 69-B-54, 12 pp. The Bureau of Mines initiated research on reclaiming and recycling metal and mineral values contained in incinerator residues on a continuous basis, using existing mineral engineering technology.

OP 172-69. Correlation of Langitudinal Velocity Variation With Rock Fabric, by R. E. Thill, R. J. Willard, and T. R. Bur. J. Geophys. Res., v. 74, No. 20, Sept. 15, 1969, pp. 4897-4909. In the petrophysical method described, longitudinal wave velocities are measured omnidirectionally in rock spheres, plotted and contoured on Schmidt equal area nets, and compared with structural subfabrics of the rocks. Velocity anisotropy is correlated with the structural preferred orientation of (1) calcite c-axes in Yule Marble, (2) elongate vesicles in Newberry Crater pumice, and (3) microfractures in quartz in the Salisbury Granite.

OP 173-69. A New Technique for Preparing Rock Spheres, by B. L. Vickers and R. E. Thill. J. Sci. Instr., v. 2, No. 2, October 1969, pp. 901-902. A new sphere preparation technique which reduces sphere preparation time to about half that required by conventional techniques was developed at the Bureau of Mines Twin Cities Mining Research Center. In the new technique, the rock specimen is core drilled in three mutually orthogonal directions and its remaining edges and corners ground on a grinding wheel, before being placed in a sphere grinding machine for final grinding and polishing. The new technique permits closer control of specimen diameter than was possible by former sawing procedures.

OP 174-69. An Improved Torsion Pendulum for Measuring Internal Demping, by A. E. Schwaneke and R. W. Nash. Rev. Sci. Instr., v. 40, No. 11, November 1969, pp. 1450-1453. A new torsion pendulum for measuring internal damping of metals and alloys is described. Improvements over earlier apparatus of this type include (1) a more convenient specimen shape, (2) an electromechanical transducer to measure angular deflections, (3) automatic compensation for eccentric vibrations when operated in the bearing-free mode, and (4) a continuous range of over 500:1 in strain amplitudes with a signal-to-noise ratio of better than 2:1 at a strain of less than 6×10^{-6} . Specific damping capacities ranging from 80 percent (log decrement, 0.81) to 0.01 percent (log decrement, 5×10^{-3}) have been measured, and

OF 175-69. Low-Resolution Mass Spectrometric Determination of Aromatic Fractions From Petroleum, by C. J. Robinson and Glenn L. Cook. Anal. Chem., v. 41, No. 12, October 1969, pp. 1548-1554. A mass spectrometric procedure for determining up to 21 compound types in petroleum aromatic fractions is described. The entire composition of any sample is accounted for in terms of 12 hydrocarbon types, three thiophenol types, and six unidentified groups. Inclusion of the unidentified components avoids the difficulties encountered in earlier methods which described composition in terms of a fixed number of named types.

OP 176-69. The isolation of Steranes from Green River Oll Shole, by P. C. Anderson, P. M. Gardner, E. V. Whitehead, D. E. Anders, and W. E. Robinson. Geochim. et Cosmochim. Acta, 1969, v. 33, pp. 13041307. The C_{∞} sterane was identified and the presence of the $C_{\alpha \tau}$ steranes in Green River oil shale was confirmed. This was accomplished by comparison of the spectra of the isolated components with authentic standards.

ł

OP 177-69. Some Fundamental Properties of Rock Noises, by Wilson Blake and Wilbur I. Duvall. Trans. SME, AIME, v. 244, September 1969, pp. 288-290. A study of self-generated rock noises by a broad-band microseismic system has revealed two important fundamental properties which can be utilized to make the microseismic method of detecting and delineating unstable rock much more useful than it is in its present form: (1) the frequency spectrum of rock noises is very broad and (2) both P and S waves are readily identifiable on high-speed rock noise accelerograms.

To take advantage of these properties microseismic equipment should be broad-band with the combination of high sensitivity and high resonant frequency in the geophone so that it will respond to signals of all frequencies, thus permitting recognition of both P and S waves on microseismic recordings. Such equipment makes possible the source location of rock noises by the S-P method.

OP 178-69. 3-Methyl-1,2-butadiene: Enthalpies of Combustion

and Eng. Data, v. 14, No. 4, October 1969, pp. 480-481. The enthalpy of combustion of liquid 3-methyl-1,2-butadiene was measured in an oxygen-bomb calorimeter. The enthalpy of formation was derived. The following values, in kcal per mole at 298.15° K, are reported for liquid 3-methyl-1,2-butadiene: $\triangle Hc^{\circ} = -767.70 \pm 0.10$, $\triangle Hj^{\circ} = 24.18 \pm 0.12$.

OP 179-69. Gas Chromatographic Analysis of Vehicular Exhaust Emissions, by Basil Dimitriades, C. F. Ellis, and D. E. Seizinger. Ch. in Advances in Chromatography, ed. by J. C. Giddings and R. A. Keller. Marcel Dekker, Inc., New York, 1969, v. 8, pp. 327-362. Procedures are described for sampling and analysis of automotive exhaust emissions. Emphasis is on hydrocarbons and oxygenated hydrocarbon derivatives. Procedures include sampling, chromatographic separation, and generation and treatment of quantitative data.

OP 180-69. Surface Conductance and Electrokinetic Properties of Kaolinite Beds, by Philip B. Lorenz. Clays and Minerals, v. 17, No. 4, October 1969, pp. 223-231. Electrokinetic measurements were made on kaolinite in the sodium, calcium, and acid forms. The results shed light on the structure of the mineral surface.

OP 181-69. Conversion of Coal to Gasoline, by G. Alex Mills. Ind. and Eng. Chem., v. 61, No. 7, July 1969, pp. 6-17. This paper describes certain new concepts in catalytic chemistry which have potential for a major contribution to coal-to-gasoline technology. Most of these have been investigated by the Bureau of Mines in its exploratory basic research program and have not yet been developed into practical utility, although work on this phase is actively in progress.

OF 182-69. Prediction of Gasoline Storage Stability, by F. G. Schwartz, C. S. Allbright, and C. C. Ward. National Combined Fuels and Lubricants and Transportation Meetings, SAE, Houston, Tex., Nov. 4-7, 1969, SAE paper 690760, 9 pp. A 16-hour accelerated aging test is described which provides data for predicting the amounts of gum and lead precipitate that will form in a gasoline during storage.

OP 183-69. How to Effect a Cost Reduction in Diamond Drilling, by K. C. Strebig, C. W. Schultz, and A. A. Selim. Min. Eng., v. 21, No. 10, October 1969, pp. 73-75. An investigation of the diamond drilling of quartzite with impregnated bits showed that organic additives can reduce total drilling costs 30 percent. I

a

4 1

OF 184-69. Equations of State: A Review for Engineering Applications, by C. Tsonopoulos and J. M. Prausnitz. Cyrogenics, v. 9, No. 5, October 1969, pp. 315-327. No one equation of state can hope to satisfy all the conditions required of it for a variety of fluids. Equations of state are therefore numerous. This article discusses those equations which are useful for engineering applications, particularly cryogenic engineering. Special reference is made in each case to the practical use of the equations discussed.

OP 185-49. Approximate Correction for Unstandy Pressure Differential in a Copillary-Tube Gas Vizcosimeter, by K. R. Van Doren, R. A. Guereca, H. P. Richardson, and D. Cummins. J. Appl. Mech., v. 36, No. 2, June 1969, pp. 171-180. Equations are developed which satisfactorily describe the change in the pressure differential with time for a closed, constantvolume system which utilizes a coiled-capillary tube and a constant-rate pump to determine gas viscosities. Viscosities are computed at transient, unsteady, and apparent-steady-state conditions. As long as the flow rates are not too high and the pressure level is not too low, the computed viscosities appear to be reliable.

OP 186-69. Amine Acids as Retaining Agents in Displacement Chromategraphy of the Rare-Earth Elements, by J. O. Winget and R. E. Lindstrom. Separation Science, v. 4, No. 3, June 1969, pp. 209-216. The feasibility of using amine acids as retaining agents with ethylenediaminetetraacetic acid (EDTA) eluents in displacement chromategraphy of the rareearth elements was studied at 85° to 90° C. Hydroxyethylenediaminetraacetic acid (HEDTA) and diethylenetriaminepentaacetic acid (DTPA) were the most effective retaining agents investigated.

INDEX OF BUREAU OF MINES PUBLICATIONS

ABBREVIATIONS

В	Bulletin.	OFR	Open-File Report.
CMS	Handbook.	ŎP	Outside Publication.
BPA	Bonneville Power Administration, U.S. De-	Ρ̈́	Patent.
	partment of the Interior.	PNR	Bureau of Topographic and Geologic Sur-
GS	Geological Survey, U.S. Department of the		vey, Commonwealth of Pennsylvania.
	Interior.	PPS	Petroleum Products Survey.
IC	Information Circular.	RI	Report of Investigations.
KNR	Kentucky Geological Survey,	S	Schedule.
М	Monograph.	SCNR	South Carolina State Development Board,
MISC	Miscellaneous Publication.		Division of Geology.
MNR	Maryland Geological Survey.	SP	Special Publication.
MY*	Minerals Yearbook.	TNR	State of Tennessee, Department of Conser-
NCNR	North Carolina Division of Mineral Re-		vation, Division of Geology.
	sources, Department of Conservation	TPR	Technical Progress Report.
	and Development.	VNR	Virginia Department of Conservation and
NMNR	New Mexico Bureau of Mines and Mineral		Economic Development, Division of Min-
	Resources.		eral Resources.

.

• MY 1968 (v. I-II)—Minerals Yearbook Metals, Minerals, and Fuels, Volume I-II, 1968; MY 1968 (v. III)—Minerals Yearbook, Area Reports: Domestic, Volume III, 1968; MY 1968 (v. IV)— Minerals Yearbook, Area Reports: International Volume IV, 1968.

.

.

5 6 10

285

\$

SUBJECT INDEX

A .

A-C & H No. 2-D mine, W. Va., coal, preparation characteristics Abrasives, artificial, annual data MY 1968 (v. I–II) in Pacific Northwest, manufacture, in Facine Northwest, manufacture, outlook ______ BPA 3-65 fly ash in, use ______ OP 19-66 natural, annual data _____ MY 1968 (v. I-II) Abrasives industry, problems ______ B 630 Accident-prevention courses, visual aids in affectiveness OP 54-66 in, effectiveness _____ OP 54-66 Acetals, mass spectra ______ B 634 Acetic acid, stainless-steel corrosion rate in, effect of cobalt content _____ RI 6591 Acetonitrile, chemical thermodynamic properties _____ OP 166-67 infrared spectra _____ OP 166-67 Acetylene, from coal, reacted in argon and sonic irradiation method _____ __ RI 7027 from high-volatile A bituminous coal, OP 43-66 in plasma jet Acetylene-air mixtures, detonation of, studies _____ **RI 7196** Acetylene-oxygen mixtures, spherical deto-nation initiation _____ R Acetylenic hydrocarbons, flammability char-**RI** 7061 ._ B 627 acteristics _____ Acid, fatty, on flotation products, flotation waters, and tailings, determination RI 7094 Acid mine drainage, control methods ____ OP 55-66 control program, joint Interior-HEW Departments _____ OP 83-65 Acid mine drainage research, discussion OP 55-56 Acid mine water, reducing acidity of, methods ______ OP 65-66 reducing flow of, methods ______ OP 65-66 Acoustic energy, effect on fluid flow in porous media RI 6978 Activated carbon, use, in catalytic oxidation of ferrous iron, in acid mine water RI 7337 Activation analysis, intermediate-neutron, application OP 70-67 Adamite, magnetic susceptibility _____ IC 8383 Adsorption, charcoals, laboratory compari-..... RI 6847 son Adsorption column, column dead volume, at cryogenic temperatures, de-OP 39-68 termination, method _____ density of column-packing material, at cryogenic temperatures, determination, method OP 39-68 Adscrption energy values, calculation of __ RI 6639 Adsorption errors, fluorescence interference_ B 640 Adsorption phenomena, in iron oxide reduction _____ RI 6699, 6832 Adsorption spectrometry, coal _____ B 640 Aerosols, in air-pollution systems, litera-

ture survey _____ OFR 1-66 Aerozine-50, combustion characteristics OP 149-67

Afghanistan, mineral industry, annual review _____ MY 1968 (v. IV) Africa, crude oil, sulfur content _____ RI 7059 IC 8293 crude-oil samples, analyses _____ Agglomerating, iron-ore fines, method, patent P 7-65 Agglomerating, index, coal, determination___ B 638 Agglomeration, of lignite, elimination, dur-ing shipment, freezing method, P 5-66 patent . of moisture-containing or other welted agare a set of the set o P 5-66 B 638 Aggregate, lightweight, expansion properties of clays for, tests ______ RI 6614 expansion property of shales for, tests RI 6574, 6614; OP 134-66 fly ash use in ______ OP 19-66, 189-68 manufacture, from shales, rotary-kiln method method ______ RI 7129 Pennsylvania clays for, evaluation _____ PTG Pennsylvania clays for, evaluation _____ PIG Pennsylvania shales for, evaluation ____ PTG production, from shale, rotary-kiln method, tests _____ RI 7055 raw materials for, tests _____ RI 7244 shales for, evaluation _____ RI 7129 mineral, mining and processing methods UC 8318 8320 IC 8318, 8320 IC 8318, 8320 moisture-containing, agglomeration elim-ination, during shipment, freezing method, patent ______ P 5-66 Air, thermophysical properties ______ IC 8317 Air compressors, in tunnel construction, rec-ommended safety rules ______ B 644 Air pollutants, source ______ OP 180-67 Air pollution, see also Pollution, air Air pollution, abatement Bureau of Mines Air pollution, abatement, Bureau of Mines program _____ SP 1-68 coal-fired power plants, emissions ____ OP 58-65 diesel-exhaust components, sampling and analysis _____ AP 50-66 flue gases, reducing, methods _____ OP 47-68 from diesel-engine exhaust, discussion OP 129-69 photochemical smog formation, irradiation-chamber experiments, methodology _____ OP 115-67 problems of coal industry, description__ OP 27-68 sources ... SP 1-68 sulfur oxide levels, reducing, methods OP 180-67 Air pollution legislation, effect on coal industry _____ OP 27-68 effect on lignite industry _____ IC 8376 Air pollution research, radiotracer procedures, mechanistic studies _____ RI 7304 Air pollution systems, aerosols in, literature survey _____ OFR 1-66 Air sampling instruments, dust, literature survey _____ IC 8407 Airflow characteristics, flexible ventilation tubing, for mine faces _____ RI 7085 Airflow patterns, at mine face, study ____ RI 7223

Ajoite, magnetic susceptibility _____ IC 8383

١

)

£

Alabama Amalashian and Mills (1)
Alabama, Appalachian area, lightweight- aggregate raw materials, evalua-
tion RI 7244
mineral resources GS 4-68
mineral resources potential GS 4-68 asbestos deposits, geological investigation RI 7045 Barbour County, brown iron-ore deposits IC 8261
Barbour County, brown iron-ore deposits IC 8261
Birmingham area, auto wrecking and scrap processing industries SP 1-67
Bluehill schist, gold-bearing, beneficiation
studies RI 7251 bromide, in oilfield brines, determination
Bromide, in olineid brines, determination RI 6959: OP 18-67
RI 6959; OP 18-67 brown iron-ore resources IC 8261
Butler County, brown iron-ore deposits IC 8261
Chattanooga Shale, uranium content, in- vestigation RI 6932
vestigation RI 6932 clay, for lightweight aggregate, evalua-
tion RI 7244 coal, analyses B 643; RI 6622, 6792,
chlorine content RI 6579 major ash constituents RI 7240 phosphorus content RI 6579
chlorine content RI 6579
phosphorus content RI 6579
potassium content RI 6579 sodium content RI 6579
sodium content
sulfur content, forms IC 8301 coal ash, analyses RI 7240 fusibility data RI 7240
fusibility data RI 7240
coal carbonization, light oil from, analysis B 643
light oil yield B 643
tar yield
tar from, analysis B 643 tar yield B 643 Crenshaw County, brown iron-ore de- posits IC 8261
crude oil, production RI 7059
sulfur content PI 7050
Fabius-Flat Rock area, coal resources IC 8295
heavy crude oil, production forecast IC 8352
Fabius-Flat Rock area, coal resources IC 8295 heavy crude oil, production forecast IC 8352 resource IC 8352 heavy crude-oil reservoirs, survey IC 8263 iodide, in oilfield brines OP 18-67 ion and etcol production
iodide, in oilfield brines OP 18-67
non and steer production 10 8329
iron and steel scrap industry, study IC 8329 kaolin, as potential aluminum source IC 8335
mica, recovery, from graphitic-mica schist ore, flotation method RI 7263 mines, visitors' guide SP 2-67
schist ore, flotation method RI 7263
minerals, production, annual data
MY 1968 (v. I–II, III) mineral industry, annual review
MY 1968 (v. III)
occupational diseases, workmen's compen- sation law on B 623
oilfield brines, iodide content, determina-
tion RI 6959 pegmatite ores, mica flotation from OP 13-66
mice recovery from, aniomic-cationic
flotation RI 7159
petroleum - impregnated rocks,
surface and shallow M 12
Pike County, brown iron-ore deposits IC 8261
salt domes, survey IC 8313 shale, for lightweight aggregate, evalua-
tion RI 7244
slate, for lightweight aggregate, evalua-
tion RI 7244
talc, beneficiation tests RI 7045 talc deposits, geologic investigation RI 7045
titanium mineral deposits, survey IC 8290
waste disposal methods, underground
coal mine, cost estimate IC 8406
Alabandite, magnetic susceptibility IC 8359
Alaska, Avnet manganese prospect, re- connaissance OFR 10-65
Bailey copper prospect, Willow Creek
district, reconnaissance OFR 8-66

{

-

.

8

Alaska, Bering Sea National Wildlife Ref-
mineral appraisal GS 7-68 bituminous coal, coking characteris-
tics, summary OFR 11-67
tics, summary OFR 11-67 occurrences OFR 11-67 Bogoslof National Wildlife Refuge, min-
uge, mineral appraisal GS 7-68 Cape Beaufort area, coalbeds, coking studies RI 7321 Cape Mountain area, Seward Peninsula
studies RI 7321 Cape Mountain area, Seward Peninsula
lode-tin deposits, investigation RI 6737
Castle Mountain mine, coal, carboni- zation characteristics OFR 7-66 coal, analyses B 643; RI 6622, 6792,
coal, analyses B 643; RI 6622, 6792, 6904, 7104, 7219
sulfur content, forms IC 8301 coal carbonization, light oil from, analysis B 643 light oil yield
light oil yield B 643 tar from, analyses B 643 tar yield B 643 coalbeds, sampling and coking studies RI 7321 Copper Bullion mine, investigation OP 115-65
tar from, analyses B 643 tar yield B 643
coalbeds, sampling and coking studies RI 7321
copper-gold-silver deposits, re- connaissance OFR 3-66, 4-66 copper-gold-silver ores, metallurgical studies OFR 4-66
connaissance OFR 3-66, 4-66 copper-gold-silver ores. metallurgical
studies OFR 4-66
crude oil, production RI 7059 sulfur content RI 7059
dolomite resources OFR 9-65 Egnaty Creek mercury deposit, Kus-
dolomite resources OFR 9-65 Egnaty Creek mercury deposit, Kus- kokwin River basin, soil sam-
pling OFR 16-68 Forrester Island National Wildlife Ref- uge, mineral appraisal GS 7-68 gold, in monzonite, reconnaissance OFR 6-69 gold, campling in pipe here
gold, in monzonite, reconnaissance OFR 6-69
gold sampling in river bars OFR 16-69 Golden Zone mine, sampling data OFR 9-67
sula, examination OFR 6-65 Hazy Islands National Wildlife Refuge, mineral appraisal GS 7-68 heavy crude oil, resource IC 8352 helium-bearing natural gases, analyses IC 8302 Hogback prospect, investigation OFR 5-66 iron ore deposits, reconnaissance OFR 1-69 Jiles-Knudson prospect, investigation OFR 5-66 Kokolik River area coeling
mineral appraisal GS 7-68 heavy crude oil, resource IC 8352
helium-bearing natural gases, analyses IC 8302
iron ore deposits, reconnaissance OFR 1-69
Jiles-Knudson prospect, investigationOFR 5-66
Kokolik River area, coalbeds, coking studies RI 7321 Kukpowruk River area, coal, analyses RI 6767
Kukpowruk River area, coal, analyses RI 6767 coking studies RI 6767
coaldeds, coking studies RI 7321 Kuskokwim River basin, Nixon Fork area, copper-gold-silver deposits, reconnaissance OFR 4-66 gold sampling in river bars OFR 16-69 mining records, microfilms of OFR 11-69 White Mountain mercury deposit, in- vestigations RI 6892 netrography RI 6892
reconnaissance OFR 4-66
mining records, microfilms of OFR 11-69
white Mountain mercury deposit, in- vestigations RI 6892
limestone resources OFR 9-65 lode gold, occurrence, reconnaissance OFR 6-69
Lost River area, fluorite-beryllium de- posits, sampling data OF 7-65 petrography OFR 1-65, 7-65
petrographyOFR 1-65, 7-65
Lost River tin mine, diamond-drill data OFR 2-65 fluorite-beryllium deposits, investiga-
tion OFR 1_65
marine heavy metals mining program, off- shore Nome, development TPR 4
mercury, production IC 8252 mercury mines, description IC 8252 mercury occurrences IC 8252
mercury occurrences IC 8252
mercury prospects IC 8252 Mespelt prospect, investigation OFR 5-66
minerals, production, annual data MY 1968 (v. I-II, III)
MI 1306 (V. 1-11, 111)

.

.

-

-

Alaska, mineral industry, annual review MY 1968 (v. III) mining records, microfilms of _____ OFR 11-69 mining records, microhims of _____ OFR 11-69 Moth Bay zinc-copper deposit, Revilla-gigedo Island, sampling ____ OFR 12-67 natural gas, analyses ____ IC 8313, 8356, 8395 occupational diseases, workmen's compen-sation law on _____ B 623 offshore oil and gas production _____ IC 8408 netroleum-impregnated works curface and petroleum-impregnated rocks, surface and shallow Potato Mountain, Seward Peninsula, lode-.... M 12 fin deposits, investigation _____ RI 6587 Petrography ______ RI 6587 Purkeypille prospects, investigation ___ OFR 5-66 quartzite resources ______ OFR 9-65 Rampart damsite area, mineral _____ OFR 9-65, 10-65 Rampart Gamsice area, _____ OFR 9-65, 10-60 resources _____ OFR 9-65, 10-60 St. Lazaria National Wildlife Refuge, mineral appraisal _____ GS 7-68 Semidi Islands National Wildlife Refuge, GS 7-68 mineral appraisal _____ GS 7-68 silver, potential resources _____ OFR 22-69 Simenof National Wildlife Refuge, mineral appraisal _____ GS 7-68 Sinuk iron deposits, Seward Peninsula, examination _____ OFR 8-65 petrography OFR 8-65 south-central, gold-copper deposits, sampling data OFR 9-67 Tatonduk River, red beds, reconnaissance OFR 1-69 titanium mineral deposits, survey _____ IC 8290 Tuxnedi National Wildlife Refuge, min-eral appraisal eral appraisal ______ GS 7-68 Yukon River basin, mining records, microfilms of ______ OFR 11-69 zircon resources ______ IC 8268 Albania, mineral industry, annual review ______ MY 1968 (v. IV) Albite, quenched, alumina from, sulfuric acid leaching ______ RI 6744 Alcohols, conversions of olefins to, from neutral fraction of lignite tar, method OP 32-68 fatty, from unsaturated fatty esters, by hydroformylation _____ OP 56-69 from vegetable oils, by hydroformylation _____ OP 56-69 flammability characteristics _____ B 627 mass spectra _____ B 634 tertiary, trimethylsilyl ethers of, prep-aration, method _____ OP 36-66 trimethylsilyl ether derivatives of, mass spectra _____ B 634 Alcohol-surfactant treatment, for gas-well water blocks RI 6688; OP 102-65 waterblock removal by OP 30-66, 112-66 Aldehydes, fatty, from unsaturated fatty esters, by hydroformylation ___ OP 56-69 from vegetable oils, by hydroformylation _____ OP 56-69 flammability characteristics _____ B 627 in diesel exhaust, determination method OP 116-69 Algeria, crude oil, production _____ RI 7059 crude petroleum, analyses _____ IC 8293 sulfur content _____ RI 7059 mineral industry, annual review _____ MY 1968 (v. IV) phosphate deposits _____ RI 6935 Algodonite, magnetic susceptibility _____ IC 8383 Alicyclic hydrocarbons, flammability characteristics _____ B 627 Aliphatics, from low-temperature coal-tar neutral oil, identification _____ B 637 Alkali metals, effect, in wustite reduction in carbon monoxide _____ OP 5-68

Alkaline carbonate solutions, corrosion in-P 4-65 hibitor for, patent _____ P 4-65 Alkaline earth metals, effect, in wustite re-duction in carbon monoxide ____ OP 5-68 Alkalized alumina, preparation methods ___ RI 7294 sulfur dioxide removal by, pilot plant for, design and operation _____ ____ OP 44-69 Alkalized alumina process, sulfur oxide removal from flue gases by ____ OP 172-68 Alkaloids, isolation of, from Catharan-Alkanes, coal derivatives and Fischer-Tropsch product, similarities... OP 25-67 crude oil and Fischer-Tropsch product, OP 25 67 similarities OP 25-67 in petroleum, literature survey _____ IC 8286 n-Alkanes, thermodynamic functions, revised _____ OP 98-67 Alkane disulfides, vapor pressures _____ OP 69-66 Alkane isomers, distribution, in natural _ RI 7122 substances, calculation _____ Alkane-oxygen mixtures, detonation initia-vapor pressures Alkyl aryl sulfides, identification, in Was-. OP 69-66 son crude oil _____ OP 58-69 Alkyl cycloalkyl sulfides, synthesis, methods RI 6796 Alkyl sulfides, open tubular column separation of _____ __ OP 117-68 Alkyl thiols, open tubular column sepa-Alkylacetylenes, infrared spectra _____ OP 117-68 Alkylacetylenes, infrared spectra _____ OP 173-68 Alkylbenzenes, from low-temperature coal-tar neutral oil, identification _____ B 637 Alkylbenzene sulfonates, biodegradable, from lignite tar, preparation, method Alkylnaphthalenes, in hydrocarbon oils, OP 14-65 quantitative ultraviolet determination _____ OP 32-66 Alkylpyrroles, autoxidation _____ OP 195-67 in Colorado shale oil, thermal reactions__ RI 6720 Alkylthiophenes, correlations with structure _____ RI 6671 in petroleum, identification _____ OP 27-65 Almalyk Mining and Metallurgical Com-RI 6615, 6899 plex, Uzbekistan, U.S.S.R., visit to, impressions of _____ OP 111-69 Alpha particles, bibliography _____ IC 8398 Alumina, additions to copper, elevated temperature effect _____ ___ RI 7228 alkalized, as absorbent, for sulfur dioxide removal, in flue gases ______ RI 7021 preparation methods ______ RI 7294 sorbent pellets, attrition rate ___ RI 7021, 7275 spent, regenerating, method _____ RI 7275 sulfur dioxide sorption rates _____ RI 7275 use, in sulfur dioxide removal, pilot plant tests _____ OP 157-68 as dispersoid in copper, effect _____ RI 7266 barge transportation of _____ IC 8431 chemical-industry use, in California ____ IC 8244 consumption, world _____ B 630 extractable, losses in, lime-soda sinter process, causes, investigation ____ RI 6933 extraction, from sodium calcium aluminate _____ RI 6593

B

Alumina, from anorthosite, lime-soda sinter process, correlating reaction products to alumina extractibility ____ RI 6933 evaluation _____ RI 7068 sinter phases, investigation _____ RI 6933 from bauxite, Bayer process for producing, cost estimate _____ RI 6730 description from clay, acid-leaching techniques, _____ RI 6730 cost estimates _____ OP 181-67 alkaline-sinter techniques, cost estimates OP 181-67 alum intermediate technique, cost estimates OP 181-67 ammonium alum processes for producing, evaluation ______ RI 6573 lime sinter process, evaluation _____ RI 7299 lime sinter process, evaluation ______ RI 7299 lime-soda sinter process, evaluation _____ RI 6927 processes for producing, nomo-graphs ______ OP 181-67 from ferruginous bauxite, feasibility tests RI 6939 Pedersen process, feasibility _____ RI 7079 processing methods, modifications ____ RI 6944 from Florida phosphate rock slime, chem-ical processing methods = PI 6844 ical processing methods ______ from mineral processing waste solu----- RI 6844 tion, solvent extraction method OP 118-68 from quenched albite and anorthite, sulfuric acid leaching ______ from quenched anorthosite, sulfuric acid RI 6744 from silicates, melting-quenching-sul-furic acid leaching method _____ OP 197-67 from synthetic aluminum sulfate solu-tions, autoclave precipitation _____ RI 7162 in coal ash, determination ______ RI 7240 spectrochemical method ______ RI 6985 nondawsonitic, in Green River oil shale, yield ______ RI 7286 production, world ______ B 630 recovery, from high-iron bauxite, laboraultrafine high-purity, preparation, by decomposition of ammonium alum _ RI 6914 OP 68-65 Alumina abrasives, annual data MY 1968 (v. I-II) Alumina-feldspar compositions, hot-rolled, properties ______ RI 6967 forming at high temperatures, method ______ RI 6967 roll Alumina industry, problems ______ B 630 Aluminate ion, properties ______ RI 6582 Aluminocopiapite, X-ray diffraction data OP 194-67 Aluminothermic process, metals, aluminum and oxygen removal from, patent__ P 1-65 Aluminous materials, anhydrous aluminum production from, methods _____ IC 8412 Aluminum, additions to columbium-base alloys, effect ______ RI 6988 annual data ______ MYB 1968 (v. I-II) B 630 consumption . Pacific Northwest ________ electrodeposition, from fused chloride electrolytes, investigation IC 8267 **RI 6785** electrowinning, from aluminum chloride, **RI 7212** two-compartment cell method _ extraction, from leached carbon potlining residue, sinter-leach method _____ RI 7264 grades B 630 imports and exports B 630 in coal, determination RI 7124 in refinement of iron-contaminated zinc, use ______ RI 6889 new uses ______ OP 58-67 organic derivatives, spectral data _____ RI 6633 potential sources, study _____ IC 8335 **RI 6889** prices _____ B 630 primary, technology _____ B 630

ł

Aluminum, production ______ B 630 Pacific Northwest ______ IC 8267 world ______ B 630 projected demand ______ DF 199-68 reinforcement, with fine tungsten wire, laboratory investigation ______ RI 7130 removal, from molten zinc-base scrap, with ferric chloride-sodium chlor-ide flux ______ RI 7315 a the form of the solution of the sol fibers Aluminum carbide-aluminum nitride-aluminum oxide compositions, phase _____ RI 7320 identification powder forming and sintering behavior RI 7320 properties ___ _ RI 7320 properties Aluminum carbide-aluminum nitride-alu-Aluminum oxide system, survey _____ KI 1020 Aluminum chloride, aluminum recovery from, two-compartment electro-lytic cell method _____ RI 7212 anhydrous, preparation methods _____ IC 8412 Aluminum industry, organization _____ B 630 problems ______ B 630 survey _____ OP 199-68 Aluminum mill-products industry, Pacific Northwest, economic trends _____ IC 8267 Aluminum nitride-aluminum carbide-aluminum oxide system, survey _____ RI 7320 Aluminum oxide, manufacture, trends and outlook Aluminum oxide-germanium oxide sys-.....BPA 3-65 Aluminum oxide-germanium oxide sys-tem, phase relations _____ OP 100-67 Aluminum silicate, fly ash removal with, fluidized-bed method ___ OFR 17-68 Aluminum-silicon alloy, hypereutectic, com-mercial-purity, improving mechanical properties of, methods Aluminum sulfate solutions, synthetic, alumina precipitation from, auto-__ RI 6765 _ RI 7162 claving Aluminum-zinc alloys, activity of zinc in, determination, isopiestic technique _____ OP 153-69 Amalgam electrorefining, tin, laboratory tests _____ RI 7313 zinc, laboratory tests _____ RI 7313 American Society for Testing and Materials, operations ______ OP 135-67 American Zinc Co., Tenn., Young mine, sphalerite, mining methods and practices _____ IC 8269 Amines, far-infrared spectra, torsional bands in _____ OP 125-68 use, in fraction separation of aqueous P 15-66 rare earths, patent _____ P 15-66 vapor pressure relations _____ OP 165-68 Amine extraction system, for fractionating cerium-group lanthanide sulfate mixture, investigation _____ _ RI 7100 Amine vapors, respiratory protection against, gas masks for, list _____ IC 8296

Amino acids, as retaining agents, in dis-

placement chromatography of rare-earth elements _____ O rare-earth element separation, on ion OP 186-69 **RI 7175**

exchange resin Ammonia, addition to cyanide leaching solu-tion, effect on copper extraction__ RI 7138 and related compounds, flammability char-

- _ B 627 acteristics ____
- use, in hydrogen cyanide production from RI 6994 coal _____
- vapor phase reaction with, for sulfur and nitrogen oxide removal,
- from stack gases _____ with coal, hydrogen cyanide production OP 163-69
- from OP 12-68 Ammonium alum, high-purity alumina
- from _____ (Ammonium alum process, for producing alumina from clay, economic evalfrom OP 68-65
 - uation __ **RI 6573**
- technical evaluation ______ Ammonium-manganese sulfate, precipita-tion, leach liquor autoclaving, ki-RI 6573
- _ RI 7166
- netics Ammonium metavanadate, production, from calcium vanadate precipitate,
- methods _____ F Ammonium molybdate, catalyst, coal hydro-RI 7058
- genation Ammonium nitrate, detonability, from fire **B** 622
- exposure, investigation __ RI 6773 pneumatic loading of, static electricity
- problems RI 7139 reactivity with pyritic ores, study _____ RI 7187 sympathetic detonation hazard, study _____ RI 6746, 6903
- sympathetic detonation of, large-scale
- investigation _____ OP 23-69 separation distances _____ RI 6746, 6903 Ammonium nitrate-based slurries, compo-
- sition _____ RI 7195 incendivity _____ RI 7195
- sensitivity

- formance, effect of charge diam-eter on ______ RI 6806 explosive properties ______ RI 6806 sympathetic detonation hazard, study ______ RI 6746, 6903 large-scale investigation _____ OP 23-69 separation distances _____ RI 6746, 6903 Ammonium nitrate-fuel oil blasting agents, field mixing, precau-tions _____ OP 34-65 history _____ OP 34-65 pupeumatic loading of, static electricity

- transportation, safety recommendations OP 34-65
- use, safety measures for _____ OP 34-65 Ammonium nitrate-fuel oil mixtures, re-
- activity with pyrite-bearing ores RI 7187; OP 15-69 Ammonium nitrate-sulfur systems, fire
- hazards Ammonium nitrogen, in oilfield brines, OP 54-69
- Ammonium perrhenate, rhenium powder
- from, by hydrogen reduction ___ RI 7254 Ammonium sulfate leaching process, man-
- ganese recovery by, evaluation ____ RI 7156 Ammonium vanadate, thermodynamic prop-RI 6727
- erties ____ Amyl nitrate, as fuel additive, effect on
- nitrogen oxides in diesel exhaust __ RI 7310 Analcite, dehydrated, entropy _____ RI 7073

- Analcite, dehydrated, high-temperature heat content ______ RI 7073 Analyses, crude petroleum, Bu-reau of Mines routine method ______ B 642; RI 6846
- Analytical fluid, at critical point, thermo-dynamic quantities, discontinu-
- OP 131-68 ities _____ Analytical instruments, calibration, stand-Analytical instruments, calibration, stand-ard gas mixtures for, preparation RI 6674 Analyzer, multichannel, X-ray diffrac-tion data averaging by _____ IC 8360 Anatase, magnetic susceptibility _____ IC 8360 Anatase, magnetic susceptionity _____ To solo Anchor, center-hole, explosive-expansion, description _____ RI 6704 field installation _____ RI 6704 explosive-centerhole, patent ____ P 18-68 Anchor pins, explosive-anchored tail-block, design and testing ____ OFR 5-68 Anchor tubes, explosive-anchored rock
- ____ RI 7163 bolt, evaluation Anchorage, roof-bolt, with resin car-
- OP 65-67 tridge, tests _____ Andarko basin, iodide-containing brines,
- OP 53-69
- strata ____ OP 53-69 Anemometers, recording, for use in under-
- ground coal mines, development__ TPR 15 Anglesite, magnetic susceptibility _____ IC 8383 Angola, mineral industry, annual
- MY 1968 (v. IV) review Anhydrides, production from low-tempera-
- .__ RI 6916 ture lignite tar, methods ____ Anisotropic media, elastic constants, trans-formation equations for, succes-
- sive rotation method RI 7243
- Anisotropy, in rock, effect on interpretation of state of stress ______ RI 6965 effect on determination of elastic con-
- ----- OP 38-65 stants _. in deep mine, petrofabric study ______ in Salisbury granite, experimental .__ RI 7173
- OP 118-66
- study Ol polycrystalline and amorphous materials, orientation conventions for rock, attenuation symmetry, determina-RI 7334
- rock, attenuation symmetry, determina-tion, ultrasonic method ______ RI 7335 elastic symmetry system, determina-tion, ultrasonic method ______ RI 7333 Ankerite. in Mahogany zone, Green River Formation, study ______ OP 81-66 Annabergite, magnetic susceptibility _____ IC 8351 Anorthite, quenched, alumina from, sul-furic acid leaching ______ RI 6744 Anorthosite, alumina from, lime-soda sinter process ______ RI 6933

- RI 6933 process process melting - quenching - sulfuric acid
- leaching method _____ OP 197-67 production methods _____ RI 7068 stential aluminum source, study _____ IC 8335
- potential aluminum source, study ____ quenched, alumina from, sulfuric acid leaching RI 6744
- Anthophyllite deposits, investigation R Anthracene, from low-temperature coal-tar RI 7045
 - ene, from 10w-temperature neutral oil, identification _____ B 637 RI 6951 OP 74-68
- removal from phenanthrene, molten sodium treatment _____ OP 17-65 Anthracene oil, from high-temperature coal
- carbonization, mass spectrometric analysis _____ RI 7000
- Anthracite, adsorbent, for organic-contaminant removal, from waste water use _ RI 6884
- agglomerated, calcination, in verticalshaft retort _____ OFR 6-66

Anthracite, analyses RI 6622, 6904, 7104, 7219 calcination, in vertical-shaft retort OFR_6-66
P 620
consumption B 630
density
electrical resistivity, determination, meta-
od
electron spin resonance OP 148-68
exports and imports OP 78-68 g values OP 78-68 gamma irradiation, effect IC 8377 hydraulic mining of, analysis of oper-
g values OP 78-68
gamma irradiation, effect IC 8377
hydraulic mining of, analysis of oper-
ating variables RI 7120
engineering development studies RI 6610
irradiated, density RI 6657 pore volumes RI 6657
pore volumes RI 6657
porosity RI 6657
porosity RI 6657 specific gravity RI 6657
laser irradiation, product gases from, distribution OP 27–67
distribution OP 97_67
tory tests OP 169 60
mining methods P 620
naming methods include formation from
bow-ash-content, preparation, labora- tory tests OP 168-69 mining methods B 630 particles, dust-cloud formation from aerodynamic aspects, study RI 7252 Pennsylvania, properties RI 7086 pore volume RI 6657 pore situ
Bennauluonia properties DI 5000
rennsylvania, properties RI 7086
pore volume RI 6657
porosity RI 6657 preparation characteristics RI 6989
preparation characteristics RI 6989
prices B 630
production B 630
pyrolysis, in microwave discharge, prod-
ucts from, composition OP 11-69
reaction, in argon and argon-hydrogen
plasmas RI 6829
plasmas RI 6829 reaction with chlorine, gamma radiation
effect RI 6881
reaction with fluorine, gamma radiation
effect RI 6881
reserves B 630
specific gravity DI 6657
specific gravity RI 6657 structural features, relation of density and porosity data to RI 6657
structural features, relation of density
and porosity data to KI that
surface and determination so has di
surface area, determination, carbon di-
surface area, determination, carbon di- oxide absorption method RI 6864; OP 120-65 technology B 630 tipple and delivered samples, analyses RI 6792 ultrafine, particle-size analysis, methods RI 7170 ultrafine grinding of, in ball mill RI 7170
surface area, determination, carbon di- oxide absorption method RI 6864; OP 120-65 technology B 630 tipple and delivered samples, analyses RI 6792 ultrafine, particle-size analysis, methods RI 7170 ultrafine grinding of, in ball mill RI 7170 uses B 630
surface area, determination, carbon di- oxide absorption method RI 6864; OP 120-65 technology B 630 tipple and delivered samples, analyses RI 6792 ultrafine, particle-size analysis, methods RI 7170 ultrafine grinding of, in ball mill RI 7170 uses B 630
surface area, determination, carbon di- oxide absorption method RI 6864; OP 120-65 technology B 630 tipple and delivered samples, analyses RI 6792 ultrafine, particle-size analysis, methods RI 7170 ultrafine grinding of, in ball mill RI 7170 uses B 630
surface area, determination, carbon di- oxide absorption method RI 6864; OF 120-65 technology B 630 tipple and delivered samples, analyses RI 6792 ultrafine, particle-size analysis, methods RI 7170 ultrafine grinding of, in ball mill RI 7170 uses B 630 vitrinites from, optical properties OP 97-65 X-ray scattering intensities B 648 Anthracite ash, sulfur retention in RI 7160
surface area, determination, carbon di- oxide absorption method RI 6864; OP 120-65 technology B 630 tipple and delivered samples, analyses RI 6792 ultrafine, particle-size analysis, methods RI 7170 ultrafine grinding of, in ball mill RI 7170 uses B 630 vitrinites from, optical properties OP 97-65 X-ray scattering intensities B 648 Anthracite ash, sulfur retention in RI 7160 Anthracite bed, pitching, continuous borer
surface area, determination, carbon di- oxide absorption method RI 6864; OP 120-65 technology B 630 tipple and delivered samples, analyses RI 6792 ultrafine, particle-size analysis, methods RI 7170 ultrafine grinding of, in ball mill RI 7170 uses B 630 vitrinites from, optical properties B 648 Anthracite ash, sulfur retention in RI 7160 Anthracite bed, pitching, continuous borer tests RI 6759
surface area, determination, carbon di- oxide absorption method RI 6864; OP 120-65 technology
surface area, determination, carbon di- oxide absorption method RI 6864; OP 120-65 technology
surface area, determination, carbon di- oxide absorption method RI 6864; OP 120-65 technology
surface area, determination, carbon di- oxide absorption method RI 6864; OP 120-65 technology
surface area, determination, carbon di- oxide absorption method RI 6864; OF 120-65 technology
surface area, determination, carbon di- oxide absorption method RI 6864; OP 120-65 technology
surface area, determination, carbon di- oxide absorption method RI 6864; OP 120-65 technology
surface area, determination, carbon di- oxide absorption method RI 6864; OP 120-65 technology
surface area, determination, carbon di- oxide absorption method RI 6864; OF 120-65 technology
surface area, determination, carbon di- oxide absorption method RI 6864; OF 120-65 technology
surface area, determination, carbon di- oxide absorption method RI 6864; OF 120-65 technology
surface area, determination, carbon di- oxide absorption method RI 6864; OF 120-65 technology
surface area, determination, carbon di- oxide absorption method RI 6864; OP 120-65 technology
surface area, determination, carbon di- oxide absorption method RI 6864; OP 120-65 technology
surface area, determination, carbon di- oxide absorption method RI 6864; OF 120-65 technology
surface area, determination, carbon di- oxide absorption method RI 6864; OF 120-65 technology
surface area, determination, carbon di- oxide absorption method RI 6864; OP 120-65 technology
surface area, determination, carbon di- oxide absorption method RI 6864; OP 120-65 technology
surface area, determination, carbon di- oxide absorption method RI 6864; OP 120-65 technology
surface area, determination, carbon di- oxide absorption method RI 6864; OP 120-65 technology
surface area, determination, carbon di- oxide absorption method RI 6864; OP 120-65 technology
surface area, determination, carbon di- oxide absorption method RI 6864; OP 120-65 technology
surface area, determination, carbon di- oxide absorption method RI 6864; OP 120-65 technology
surface area, determination, carbon di- oxide absorption method RI 6864; OP 120-65 technology

;

1

1

())

Antimony, precipitation of mercury by, method, patent P 21-68
B 630
production B 630
reserves B 630
production B 630 reserves B 630 secondary, sources B 630 stockpile accumulation, amount OP 62-66 technology
stockpile accumulation, amount OF 62-66
LIS colf sufficiency in B 630
technology B 630 U.S. self-sufficiency in B 630 uses B 630 Antimony-cadmium-lead alloys, properties RI7285
Antimony-cadmium-lead alloys, properties RI, 7285
Antimony industry, organization B 630
problems B 630
Antimony-cadmum-lead alloys, properties RI 7285 Antimony industry, organization B 630 problems B 630 Antimony-yttrium-tellurium compounds, thermoelectric properties RI 7025 Antlerite, magnetic susceptibility IC 8383 Anvil Points oil shale facilities, retorting runs, results MYB 1968 (v. I-II) Anpalachia, economic prospects OP 81-68
Antlerite, magnetic susceptibility
Anvil Points oil shale facilities, retorting
runs, results RI 7303
Aplite, annual dataMYB 1968 (v. I-II)
Appalachia, economic prospects OP 81-68 Appalachian area, lightweight-aggregate
raw materials, evaluation RI 7244
oil-producing formation, rotary coring_ OFR 3-69
FOLATY COTING ODERATIONS, MUG-BIT COM-
parison RI 7238
Appalachian area oilfield reservoirs,
steam injection pilot tests, Ven-
Annelschien conte sulfur reduction in by
ango Third sand OP 21-69 Appalachian coals, sulfur reduction in, by low-density washing, predicted re-
sults RI 7098 Appalachian region, crude oil, productio RI 7059
Appalachian region, crude oil, productio RI 7059
sulfur content RI 7059 economic outlook OP 154-68
economic outlook
mineral industry investigation GS 4 68
mineral resources investigation GS 4-68
mineral resources potential GS 4-68
geology GS 4-68 mineral industry, investigation GS 4-68 mineral resources, investigation GS 4-68 mineral resource potential GS 4-68 natural resource development, discus-
sion OP 152-68
Obio oil reservoirs investigation
Obio oil reservoirs investigation
Obio oil reservoirs investigation
Ohio, oil reservoirs, investigation OP 163-65, 93-66, 129-66, 190-67 production data IC 8250 secondary-recovery prospects RI 7007
Ohio, oil reservoirs, investigation OP 163-65, 93-66, 129-66, 190-67 production data IC 8250 secondary-recovery prospects RI 7007 waterflooding, predicted recovery RI 6683
Ohio, oil reservoirs, investigation OP 163-65, 93-66, 129-66, 190-67 production data IC 8250 secondary-recovery prospects RI 7007 waterflooding, predicted recovery RI 6683
Ohio, oil reservoirs, investigation OP 163-65, 93-66, 129-66, 190-67 production data IC 8250 secondary-recovery prospects RI 7007 waterflooding, predicted recovery RI 6683 oil reservoirs, sandstone cores from, tertiary recovery, study OP 160-67
Ohio, oil reservoirs, investigation OP 163-65, 93-66, 129-66, 190-67 production data IC 8250 secondary-recovery prospects RI 7007 waterflooding, predicted recovery RI 6683 oil reservoirs, sandstone cores from, tertiary recovery, study OP 160-67
Ohio, oil reservoirs, investigation OP 163-65, 93-66, 129-66, 190-67 production data IC 8250 secondary-recovery prospects RI 7007 waterflooding, predicted recovery RI 6683 oil reservoirs, sandstone cores from, tertiary recovery, study OP 160-67 oil-reservoir analysis RI 6683 oil-reservoir rock, core analyses OFR 13-67
Ohio, oil reservoirs, investigation OP 163-65, 93-66, 129-66, 190-67 production data IC 8250 secondary-recovery prospects IC 8250 waterflooding, predicted recovery RI 6683 oil reservoirs, sandstone cores from, tertiary recovery, study OP 160-67 oil-reservoir analysis IC 8683 oil-reservoir rock, core analyses OFR 13-67 oil-well core samples, density and poros- ity data IC 8330
Ohio, oil reservoirs, investigation OP 163-65, 93-66, 129-66, 190-67 production data IC 8250 secondary-recovery prospects IC 8250 waterflooding, predicted recovery RI 6683 oil reservoirs, sandstone cores from, tertiary recovery, study OP 160-67 oil-reservoir analysis IC 8683 oil-reservoir rock, core analyses OFR 13-67 oil-well core samples, density and poros- ity data IC 8330
Ohio, oil reservoirs, investigation OP 163-65, 93-66, 129-66, 190-67 production data IC 8250 secondary-recovery prospects IC 800 waterflooding, predicted recovery RI 6683 oil reservoirs, sandstone cores from, tertiary recovery, study OP 160-67 oil-reservoir analysis RI 6683 oil-reservoir rock, core analyses OFR 13-67 oil-well core samples, density and poros- ity data IC 8330 Pa., oil recovery by underground com- bustion, experiment RI 6942 oil reservoirs, investigations RI 6942
Ohio, oil reservoirs, investigation OP 163-65, 93-66, 129-66, 190-67 production data production data IC 8250 secondary-recovery prospects RI 7007 waterflooding, predicted recovery RI 6683 oil reservoirs, sandstone cores from, tertiary recovery, study OP 160-67 oil-reservoir analysis RI 6683 oil-reservoir rock, core analyses OFR 13-67 oil-well core samples, density and poros- ity data IC 8330 Pa., oil recovery by underground com- bustion, experiment RI 6942 oil reservoirs, investigations
Ohio, oil reservoirs, investigation OP 163-65, 93-66, 129-66, 190-67 production data production data IC 8250 secondary-recovery prospects RI 7007 waterflooding, predicted recovery
Ohio, oil reservoirs, investigation OP 163-65, 93-66, 129-66, 190-67 production data IC 8250 secondary-recovery prospects RI 7007 waterflooding, predicted recovery RI 6683 oil reservoirs, sandstone cores from, tertiary recovery, study OP 160-67 oil-reservoir rock, core analyses OF R 13-67 oil-reservoir rock, core analyses OF R 13-67 oil-well core samples, density and poros- ity data IC 8330 Pa., oil recovery by underground com- bustion, experiment RI 6942 oil reservoirs, investigations OP 111-65, 74-66, 138-66, 81-67 pilot waterflood, field perform- ance top 37-65
Ohio, oil reservoirs, investigation OP 163-65, 93-66, 129-66, 190-67 production data IC 8250 secondary-recovery prospects RI 7007 waterflooding, predicted recovery RI 6683 oil reservoirs, sandstone cores from, tertiary recovery, study OP 160-67 oil-reservoir rock, core analyses OF R 13-67 oil-reservoir rock, core analyses OF R 13-67 oil-well core samples, density and poros- ity data IC 8330 Pa., oil recovery by underground com- bustion, experiment RI 6942 oil reservoirs, investigations OP 111-65, 74-66, 138-66, 81-67 pilot waterflood, field perform- ance top 37-65
Ohio, oil reservoirs, investigation OP 163-65, 93-66, 129-66, 190-67 production data IC 8250 secondary-recovery prospects RI 7007 waterflooding, predicted recovery RI 6683 oil reservoirs, sandstone cores from, tertiary recovery, study OP 160-67 oil-reservoir rock, core analyses OF R 13-67 oil-reservoir rock, core analyses OF R 13-67 oil-well core samples, density and poros- ity data IC 8330 Pa., oil recovery by underground com- bustion, experiment RI 6942 oil reservoirs, investigations OP 111-65, 74-66, 138-66, 81-67 pilot waterflood, field perform- ance top 37-65
Ohio, oil reservoirs, investigation OP 163-65, 93-66, 129-66, 190-67 production data production data secondary-recovery prospects RI 7007 waterflooding, predicted recovery RI 6683 oil reservoirs, sandstone cores from, tertiary recovery, study tertiary recovery, study OP 160-67 oil-reservoir analysis Oil-reservoir rock, core analyses oil-reservoir rock, core analyses oil-well core samples, density and poros- ity data bustion, experiment Dr 111-65, 74-66, 138-66, 81-67 pilot waterflood, field perform- ance OP 111-65, 74-66, 138-66, 81-67 pilot waterflood, field perform- ance OP 37-65 radiotracer tests, underground combustion oil-recovery experi- ment OP 24-65 secondary recovery oil predicting
Ohio, oil reservoirs, investigation OP 163-65, 93-66, 129-66, 190-67 production data production data secondary-recovery prospects RI 7007 waterflooding, predicted recovery RI 6683 oil reservoirs, sandstone cores from, tertiary recovery, study tertiary recovery, study OP 160-67 oil-reservoir analysis Oil-reservoir rock, core analyses oil-reservoir rock, core analyses oil-well core samples, density and poros- ity data bustion, experiment Dr 111-65, 74-66, 138-66, 81-67 pilot waterflood, field perform- ance OP 111-65, 74-66, 138-66, 81-67 pilot waterflood, field perform- ance OP 37-65 radiotracer tests, underground combustion oil-recovery experi- ment OP 24-65 secondary recovery oil predicting
Ohio, oil reservoirs, investigation OP 163-65, 93-66, 129-66, 190-67 production data IC 8250 secondary-recovery prospects RI 7007 waterflooding, predicted recovery RI 6683 oil reservoirs, sandstone cores from, tertiary recovery, study tertiary recovery, study OP 160-67 oil-reservoir analysis RI 6683 oil-reservoir rock, core analyses OF R 13-67 oil-well core samples, density and poros- ity data ity data IC 8330 Pa., oil recovery by underground com- bustion, experiment bustion, experiment RI 6942 oil reservoirs, investigations OP 311-65, 74-66, 138-66, 81-67 pilot waterflood, field perform- ance ance OP 37-65 radiotracer tests, underground combustion oil-recovery experiment ment OP 24-65 secondary recovery, gasflood per- formance prediction formance prediction RI 7272 underground combustion project. RI 7272
Ohio, oil reservoirs, investigation OP 163-65, 93-66, 129-66, 190-67 production data IC 8250 secondary-recovery prospects RI 7007 waterflooding, predicted recovery RI 6683 oil reservoirs, sandstone cores from, tertiary recovery, study tertiary recovery, study OP 160-67 oil-reservoir analysis RI 6683 oil-reservoir rock, core analyses OF R 13-67 oil-well core samples, density and poros- ity data ity data IC 8330 Pa., oil recovery by underground com- bustion, experiment bustion, experiment RI 6942 oil reservoirs, investigations OP 311-65, 74-66, 138-66, 81-67 pilot waterflood, field perform- ance ance OP 37-65 radiotracer tests, underground combustion oil-recovery experiment ment OP 24-65 secondary recovery, gasflood per- formance prediction formance prediction RI 7272 underground combustion project. RI 7272
Ohio, oil reservoirs, investigation OP 163-65, 93-66, 129-66, 190-67 production data production data secondary-recovery prospects RI 7007 waterflooding, predicted recovery oil reservoirs, sandstone cores from, tertiary recovery, study tertiary recovery, study OP 160-67 oil-reservoir analysis RI 6683 oil-reservoir rock, core analyses O'l-well core samples, density and poros- ity data pa., oil recovery by underground com- bustion, experiment DP 111-65, 74-66, 138-66, 81-67 pilot waterflood, field perform- ance orditracer tests, underground combustion oil-recovery experi- ment ment OP 24-65 secondary recovery, casflood per- formance prediction romance prediction RI 7272 underground combustion project, failure, reasons OP 106-66 waterflood performance, theoret-
Ohio, oil reservoirs, investigation OP 163-65, 93-66, 129-66, 190-67 production data IC 8250 secondary-recovery prospects RI 7007 waterflooding, predicted recovery RI 6683 oil reservoirs, sandstone cores from, tertiary recovery, study OP 160-67 oil-reservoir analysis RI 6683 oil-reservoir analysis RI 6683 oil-reservoir rock, core analyses OF R 13-67 oil-well core samples, density and poros- ity data IC 8330 Pa., oil recovery by underground com- bustion, experiment RI 6942 oil reservoirs, investigations OP 111-65, 74-66, 138-66, 81-67 pilot waterflood, field perform- ance OP 37-65 radiotracer tests, underground combustion oil-recovery experi- ment OP 24-65 secondary recovery, gasflood per- formance prediction RI 6943 secondary recovery, gasflood per- formance prediction RI 7272 underground combustion project, failure, reasons OP 106-66 waterflood performance, theoret- ical and field OP 124-66
Ohio, oil reservoirs, investigation OP 163-65, 93-66, 129-66, 190-67 production data production, predicted recovery
Ohio, oil reservoirs, investigation OP 163-65, 93-66, 129-66, 190-67 production data IC 8250 secondary-recovery prospects RI 7007 waterflooding, predicted recovery RI 6683 oil reservoirs, sandstone cores from, tertiary recovery, study OP 160-67 oil-reservoir analysis RI 6683 oil-reservoir analysis RI 6683 oil-reservoir analysis RI 6683 oil-reservoir rock, core analyses OF R 13-67 oil-well core samples, density and poros- ity data IC 8330 Pa., oil recovery by underground com- bustion, experiment IC 8330 Pa., oil recovery by underground com- bustion, experiment RI 6942 oil reservoirs, investigations OP 111-65, 74-66, 138-66, 81-67 pilot waterflood, field perform- ance OP 37-65 radiotracer tests, underground combustion oil-recovery experi- ment OP 24-65 secondary recovery, gasflood per- formance prediction RI 7272 underground combustion project, failure, reasons OP 106-66 waterflood performance, theoret- ical and field OP 124-66 waterflood performance prediction OP 154-67 shales, for lightweight aggregate, evalu- ation RI 7128
Ohio, oil reservoirs, investigation OP 163-65, 93-66, 129-66, 190-67 production data IC 8250 secondary-recovery prospects RI 7007 waterflooding, predicted recovery RI 6683 oil reservoirs, sandstone cores from, tertiary recovery, study OP 160-67 oil-reservoir analysis RI 6683 oil-reservoir analysis RI 6683 oil-reservoir analysis RI 6683 oil-reservoir rock, core analyses OF R 13-67 oil-well core samples, density and poros- ity data IC 8330 Pa., oil recovery by underground com- bustion, experiment IC 8330 Pa., oil recovery by underground com- bustion, experiment RI 6942 oil reservoirs, investigations OP 111-65, 74-66, 138-66, 81-67 pilot waterflood, field perform- ance OP 37-65 radiotracer tests, underground combustion oil-recovery experi- ment OP 24-65 secondary recovery, gasflood per- formance prediction RI 7272 underground combustion project, failure, reasons OP 106-66 waterflood performance, theoret- ical and field OP 124-66 waterflood performance prediction OP 154-67 shales, for lightweight aggregate, evalu- ation RI 7128
Ohio, oil reservoirs, investigation OP 163-65, 93-66, 129-66, 190-67 production data IC 8250 secondary-recovery prospects RI 7007 waterflooding, predicted recovery
Ohio, oil reservoirs, investigation OP 163-65, 93-66, 129-66, 190-67 production data IC 8250 secondary-recovery prospects RI 7007 waterflooding, predicted recovery RI 6683 oil reservoirs, sandstone cores from, tertiary recovery, study OP 160-67 oil-reservoir analysis RI 6683 oil-reservoir analysis RI 6683 oil-reservoir analysis RI 6683 oil-reservoir rock, core analyses OF R 13-67 oil-well core samples, density and poros- ity data IC 8330 Pa., oil recovery by underground com- bustion, experiment RI 6942 oil reservoirs, investigations OP 311-65, 74-66, 138-66, 81-67 pilot waterflood, field perform- ance OP 37-65 radiotracer tests, underground combustion oil-recovery experi- ment OP 24-65 secondary recovery, gasflood per- formance prediction RI 7272 underground combustion project, failure, reasons OP 106-66 waterflood performance, theoret- ical and field OP 124-66 waterflood performance prediction OP 154-67 Shales, for lightweight aggregate, evalu- ation ation RI 7129 Va., iron ore resources RI 6992
Ohio, oil reservoirs, investigation OP 163-65, 93-66, 129-66, 190-67 production data production data secondary-recovery prospects RI 7007 waterflooding, predicted recovery cil reservoirs, sandstone cores from, tertiary recovery, study cil-reservoir analysis cil-reservoir analysis cil-reservoir rock, core analyses coll-recovery by underground com- bustion, experiment coll recovery by underground com- bustion oil-recovery experi- ment ordictracer tests, underground combustion oil-recovery experi- ment opp 24-65 secondary recovery, gasflood per- formance prediction radiotracer tests, underground combustion oil-recovery experi- ment failure, reasons opp 106-66
Ohio, oil reservoirs, investigation OP 163-65, 93-66, 129-66, 190-67 production data production data Secondary-recovery prospects RI 7007 waterflooding, predicted recovery RI 7007 waterflooding, predicted recovery RI 6683 oil reservoirs, sandstone cores from, tertiary recovery, study oil-reservoir analysis oil-reservoir rock, core analyses oil recovery by underground com- bustion, experiment Barce OP 111-65, 74-66, 138-66, 81-67 pilot waterflood, field perform- ance OP 111-65, 74-66, 138-66, 81-67 pilot waterflood, field perform- ance OP 111-65, 74-66, 138-66, 81-67 pilot waterflood, field perform- ance order tests, underground combustion oil-recovery experi- ment formance predict
Ohio, oil reservoirs, investigation OP 163-65, 93-66, 129-66, 190-67 production data production data secondary-recovery prospects RI 7007 waterflooding, predicted recovery cil reservoirs, sandstone cores from, tertiary recovery, study cil-reservoir analysis cil-reservoir analysis cil-reservoir rock, core analyses coll-recovery by underground com- bustion, experiment coll recovery by underground com- bustion oil-recovery experi- ment ordictracer tests, underground combustion oil-recovery experi- ment opp 24-65 secondary recovery, gasflood per- formance prediction radiotracer tests, underground combustion oil-recovery experi- ment failure, reasons opp 106-66

Appalachian region, W. Va., oil reservoirs,
reservoir evaluation RI 7032
secondary-recovery methods RI 6798
Apparational region, w. va., on reservoirs, RI 7032 secondary-recovery methods RI 6798 secondary-recovery potential RI 7049 waterflooding feasibility study RI 7032
waternooding feasibility study KI (032
oil-reservoir formation, acoustic-ve-
locity logs OP 82-65 Appalachian region coals, impurities, re-
leased by stage crushing, tabula-
tion IC 9292
tion IC 8282 sulfur reduction in, by stage crushing,
survey IC 8282
survey IC 8282 effect of stage crushing OP 103-66
washability data IC 8282
washability data IC 8282 Appalachian region oil reservoirs, log
analysis-core analysis compari-
son OP 115-68
OP 115-68 Ohio, Clinton sand, reservoir study, progress report OP 151-68
progress report
Arcs, consumable electrode, high-speed pho-
high-current metallic, current densities B 625
electric potentials and current B 625 electrode-consumption rates B 625
electrode-consumption rates B 625
temperatures B 625
Arc behavior, discussion B 625
Arc melting, cold-mold, chromium B 646
copper B 646
furnaces for B 646
laboratory techniques B 646
outlook B 646
thorium B 646
tungsten B 646 zirconium B 646
zirconium B 646
consumable-electrode, operating variables
consumable-electrode, operating variables in B 646 molten pools in, mathematical model RI 7151
molten pools in, mathematical model RI 7151
vacuum, heat transfer during, to water-
cooled copper crucibles RI 7035 heat transfer in, experimental studies B 646
heat transfer in, experimental studies_ B 646
Arc research, literature review B 625 Arc theory, applications, problems B 625
Arc theory, applications, problems B 625
Arching, in underground excavations, dis-
Argentina, economic progress, review OP 198-67
Argentina, economic progress, review OF 190-07
mineral industry, annual re- view MY 1968 (v. IV) Argon, isotopic abundance in natural gas,
Argon isotonia abundance in netural gas
atuda DI 6030
study RI 6936 thermophysical properties IC 8317 Argon-hydrogen plasma, coal reaction in RI 6829
Argon-hydrogen plasma coal reaction in RI 6829
Argon plasma coal reactions in RI 6829
Argon plasma, coal reactions in RI 6829 high-volatile A bituminous coal in, re-
actions OP 43-66
actions OP 43-66 Arizona, beryllium-bearing pegmatites, re-
connaissance IC 8298 beryllium deposits, investigation RI 6828
beryllium deposits, investigation RI 6828
Blue Range primitive area, mineral ap-
praisal GS 2-69 coal, sulfur content, forms IC 8301
coal, sulfur content, forms IC 8301
ferrous scrap industry, survey IC 8344
ferrous scrap industry, survey IC 8344 mercury, production IC 8252 mercury mines, description IC 8252
mercury mines, description IC 8252
mercury occurrences
mercury prospects IC 8252 Miami Copper Co., Miami mine, block-
Miami Copper Co., Miami mine, block-
caving mining methods and costs IC 8271
mines, visitors' guide SP 2-67 minerals, production, annual data
minerais, production, annual data
MY 1968 (v. I-II, III)
mineral aggregate industry, effect of
urbanization IC 8318
mineral aggregate industry, effect of urbanization IC 8318 mineral industry, annual review WY 1969 (7 III)
DAX 1968 (V. 111)
My 1968 (v. 111) Mount Baldy primitive area, mineral ap-
My 1968 (v. 111) Mount Baldy primitive area, mineral ap-
My 1968 (v. 111) Mount Baldy primitive area, mineral ap-
MY 1968 (V. 111) Mount Baldy primitive area, mineral ap- praisal GS 2-67 natural gas, analyses IC 8241, 8356, 8395 occupational diseases, workmen's compen-
My 1968 (v. 111) Mount Baldy primitive area, mineral ap-

.

.

.

Arizona, petroleum-impregnated rocks, sur- face and shallow M 12 Pine Mountain primitive area, mineral CS 4.67
face and shallow M 12
Pine Mountain primitive area, mineral
appraisal GS 4-67 silver, potential resources OFR 22-69
silver, potential resources OFR 22-69
southeast, mining districts, rock
masses in, relationship of past
ore deposits, geologic structural process relationships OFR 8-66
ore deposits, geologic structure. OFR 8-66
process relationships or n b-ou
Sveemore Lenvon primilive area, juiu-
eral appraisal GS 6-66
titanium mineral deposits, survey IC 8290
Askanses bauvite as notential aluminum
source IC 8335 high-iron, alumina recovery from RI 6914
high-iron, alumina recovery from RI 6914
iron concentrate recovery from RI 6914
iron concentrate recovery from RI 6914 bauxitic clay, as potential aluminum source IC 8335 coal, analyses RI 6904
Source IC 8335
RI 6904
major ash constituents RI 7240
sulfus content forms IC 8301
coal, analyses RI 7240 major ash constituents RI 7240 sulfur content, forms IC 8301 coal ash, analyses RI 7240 fusibility data RI 7240 subject to RI 7240
COBI ESH, analyses RI 7240
iusionity data PI 7059
crude oil, production RI 7059
sulfur content
economic trends
electric power, sources and distribution B 640
sulfur content RI 7059 economic trends B 645 electric power, sources and distribution B 645 ferrous scrap industry, survey IC 8289
gas-cap reservoir, conservation practices,
engineering evaluation M 13
geography B 645
geology B 645
geography B 645 geology B 645 heavy crude oil, production forecast IC 8352
resource IC 8352
thermal projects IC 8352
heavy-oil reservoirs, evaluation IC 8428
SULVEY IC 8263
helium-bearing natural gases, analyses _ IC 8302
helium-bearing natural gases, analyses - IC 8302 kaolin as potential aluminum source IC 8335
helium-bearing natural gases, analyses – IC 8302 kaolin, as potential aluminum source – IC 8335 Magnolia field, gas-cap reservoir study – M 13
helium-bearing natural gases, analyses _ IC 8302 kaolin, as potential aluminum source IC 8335 Magnolia field, gas-cap reservoir study M 13 mines, visitors' guide SP 2-67
helium-bearing natural gases, analyses _ IC 8302 kaolin, as potential aluminum source IC 8335 Magnolia field, gas-cap reservoir study M 13 mines, visitors' guide SP 2-67 minerals, production, annual data
helium-bearing natural gases, analyses _ IC 8302 kaolin, as potential aluminum source IC 8335 Magnolia field, gas-cap reservoir study M 13 mines, visitors' guide SP 2-67 minerals, production, annual data MY 1968 (v. I-II, III)
heavy crude oil, production forecast IC 8352 resource IC 8352 thermal projects IC 8352 heavy-oil reservoirs, evaluation IC 8428 survey IC 8263 helium-bearing natural gases, analyses _ IC 8302 kaolin, as potential aluminum source IC 8335 Magnolia field, gas-cap reservoir study M 13 mines, visitors' guide M 13 minerals, production, annual data MY 1968 (v. I-II, III) minarals and ones taxation B 645
helium-bearing natural gases, analyses _ IC 8302 kaolin, as potential aluminum source IC 8335 Magnolia field, gas-cap reservoir study M 13 mines, visitors' guide SP 2-67 minerals, production, annual data MY 1968 (v. I-II, III) minerals and ores, taxation B 645
helium-bearing natural gases, analyses _ IC 8302 kaolin, as potential aluminum source IC 8335 Magnolia field, gas-cap reservoir study M 13 mines, visitors' guide SP 2-67 minerals, production, annual data MY 1968 (v. I-II, III) minerals and ores, taxation B 645 mineral commodities, transportation B 645
helium-bearing natural gases, analyses _ IC 8302 kaolin, as potential aluminum source IC 8335 Magnolia field, gas-cap reservoir study M 13 mines, visitors' guide SP 2-67 minerals, production, annual data MY 1968 (v. I-II, III) minerals and ores, taxation B 645 mineral commodities, transportation B 645 mineral commodity reviews B 645
helium-bearing natural gases, analyses _ IC 8302 kaolin, as potential aluminum source IC 8335 Magnolia field, gas-cap reservoir study M 13 mines, visitors' guide SP 2-67 minerals, production, annual data MY 1968 (v. I-II, III) minerals and ores, taxation B 645 mineral commodities, transportation B 645 mineral industries B 645 mineral industries B 645
helium-bearing natural gases, analyses _ IC 8302 kaolin, as potential aluminum source IC 8335 Magnolia field, gas-cap reservoir study M 13 mines, visitors' guide SP 2-67 minerals, production, annual data MY 1968 (v. I-II, III) minerals and ores, taxation B 645 mineral commodities, transportation B 645 mineral industries B 645 annual review MY 1968 (v. III)
helium-bearing natural gases, analyses _ IC 8302 kaolin, as potential aluminum source IC 8335 Magnolia field, gas-cap reservoir study M 13 mines, visitors' guide SP 2-67 minerals, production, annual data MY 1968 (v. I-II, III) minerals and ores, taxation B 645 mineral commodities, transportation B 645 mineral industries B 645 annual review MY 1968 (v. III) mineral industry organization B 645
helium-bearing natural gases, analyses _ IC 8302 kaolin, as potential aluminum source IC 8335 Magnolia field, gas_cap reservoir study M 13 mines, visitors' guide SP 2-67 minerals, production, annual data MY 1968 (v. I-II, III) minerals and ores, taxation B 645 mineral commodities, transportation B 645 mineral industries B 645 annual review MY 1968 (v. III) mineral industry organization B 645 mineral products, markets for B 645
helium-bearing natural gases, analyses _ IC 8302 kaolin, as potential aluminum source IC 8335 Magnolia field, gas-cap reservoir study M 13 mines, visitors' guide SP 2-67 minerals, production, annual data MY 1968 (v. I-II, III) minerals and ores, taxation B 645 mineral commodities, transportation B 645 mineral industries B 645 mineral industries B 645 annual review MY 1968 (v. III) mineral industry organization B 645 mineral products, markets for B 645 mineral resources B 645
helium-bearing natural gases, analyses _ IC 8302 kaolin, as potential aluminum source IC 8335 Magnolia field, gas-cap reservoir study M 13 mines, visitors' guide SP 2-67 minerals, production, annual data MY 1968 (v. I-II, III) minerals and ores, taxation B 645 mineral commodities, transportation B 645 mineral industries B 645 annual review MY 1968 (v. III) mineral industries B 645 mineral industry organization B 645 mineral products, markets for B 645 mineral resources B 645 mineral resources B 645
helium-bearing natural gases, analyses _ IC 8302 kaolin, as potential aluminum source IC 8335 Magnolia field, gas-cap reservoir study M 13 mines, visitors' guide SP 2-67 minerals, production, annual data MY 1968 (v. I-II, III) minerals and ores, taxation B 645 mineral commodities, transportation B 645 mineral commodity reviews B 645 mineral industries B 645 mineral industries B 645 mineral industry organization B 645 mineral products, markets for B 645 mineral products, markets for B 645 mineral products, markets for B 645 mineral gas, analyses IC 8241, 8316, 8356
helium-bearing natural gases, analyses _ IC 8302 kaolin, as potential aluminum source IC 8335 Magnolia field, gas_cap reservoir study M 13 mines, visitors' guide SP 2-67 minerals, production, annual data MY 1968 (v. I-II, III) minerals and ores, taxation B 645 mineral commodities, transportation B 645 mineral industries B 645 mineral industries B 645 mineral industries B 645 mineral industry organization B 645 mineral products, markets for B 645 mineral resources B 645 mining laws and regulations B 645 natural gas, analyses IC 8241, 8316, 8356 production B 645
helium-bearing natural gases, analyses _ IC 8302 kaolin, as potential aluminum source IC 8335 Magnolia field, gas-cap reservoir study M 13 mines, visitors' guide SP 2-67 minerals, production, annual data MY 1968 (v. I-II, III) minerals and ores, taxation B 645 mineral commodities, transportation B 645 mineral industries B 645 mineral industries B 645 mineral industries MY 1968 (v. III) mineral industries B 645 mineral products, markets for B 645 mineral resources B 645 mineral resources B 645 mineral gas, analyses B 645 sources and distribution B 645
minerals and ores, taxation B 645 mineral commodities, transportation B 645 mineral commodity reviews B 645 mineral industries B 645 annual review MY 1968 (v. III) mineral industry organization B 645 mineral products, markets for B 645 mineral resources B 645 mining laws and regulations B 645 matural gas, analyses I C 8241, 8316, 8356 production B 645 sources and distribution B 645
minerals and ores, taxation B 645 mineral commodities, transportation B 645 mineral commodity reviews B 645 mineral industries B 645 annual review MY 1968 (v. III) mineral industry organization B 645 mineral products, markets for B 645 mineral resources B 645 mining laws and regulations B 645 matural gas, analyses I C 8241, 8316, 8356 production B 645 sources and distribution B 645
minerals and ores, taxation B 645 mineral commodities, transportation B 645 mineral commodity reviews B 645 mineral industries B 645 annual review MY 1968 (v. III) mineral industry organization B 645 mineral products, markets for B 645 mineral resources B 645 mining laws and regulations B 645 matural gas, analyses I C 8241, 8316, 8356 production B 645 sources and distribution B 645
minerals and ores, taxation B 645 mineral commodities, transportation B 645 mineral commodity reviews B 645 mineral industries B 645 annual review MY 1968 (v. III) mineral industry organization B 645 mineral products, markets for B 645 mineral resources B 645 mining laws and regulations B 645 matural gas, analyses I C 8241, 8316, 8356 production B 645 sources and distribution B 645
minerals and ores, taxation B 645 mineral commodities, transportation B 645 mineral commodity reviews B 645 mineral industries B 645 annual review MY 1968 (v. III) mineral industry organization B 645 mineral products, markets for B 645 mineral resources B 645 mining laws and regulations B 645 matural gas, analyses I C 8241, 8316, 8356 production B 645 sources and distribution B 645
minerals and ores, taxation B 645 mineral commodities, transportation B 645 mineral commodity reviews B 645 mineral industries B 645 annual review B 645 mineral industries B 645 mineral industries B 645 mineral industry organization B 645 mineral products, markets for B 645 mineral resources B 645 mining laws and regulations B 645 production B 645 sources and distribution B 645 occupational diseases, workmen's compensation law on B 623 oil reservoirs, production-rate data IC 8362 well-depth data IC 8362 petroleum-impregnated rocks, surface and S 842
minerals and ores, taxation B 645 mineral commodities, transportation B 645 mineral commodity reviews B 645 mineral industries B 645 annual review B 645 mineral industries B 645 mineral industries B 645 mineral industry organization B 645 mineral products, markets for B 645 mineral resources B 645 mining laws and regulations B 645 production B 645 sources and distribution B 645 occupational diseases, workmen's compensation law on B 623 oil reservoirs, production-rate data IC 8362 well-depth data IC 8362 petroleum-impregnated rocks, surface and S 842
minerals and ores, taxation B 645 mineral commodities, transportation B 645 mineral commodity reviews B 645 mineral industries B 645 annual review B 645 mineral industries B 645 mineral industries B 645 mineral industry organization B 645 mineral products, markets for B 645 mineral resources B 645 mining laws and regulations B 645 production B 645 sources and distribution B 645 occupational diseases, workmen's compensation law on B 623 oil reservoirs, production-rate data IC 8362 well-depth data IC 8362 petroleum-impregnated rocks, surface and S 842
minerals and ores, taxation B 645 mineral commodities, transportation B 645 mineral commodity reviews B 645 mineral industries B 645 annual review MY 1968 (v. III) mineral industry organization B 645 mineral products, markets for B 645 mineral products, markets for B 645 mineral resources B 645 mining laws and regulations B 645 production B 645 sources and distribution B 645 occupational diseases, workmen's compensation law on B 623 oil reservoirs, production-rate data IC 8362 well-depth data IC 8362 petroleum-impregnated rocks, surface and shallow M 12 petroleum production B 645 titanium mineral deposits, survey IC 8290
minerals and ores, taxation B 645 mineral commodities, transportation B 645 mineral commodity reviews B 645 mineral industries B 645 annual review MY 1968 (v. III) mineral industry organization B 645 mineral products, markets for B 645 mineral resources B 645 mining laws and regulations B 645 production B 645 sources and distribution B 645 occupational diseases, workmen's compensation law on B 623 oil reservoirs, production-rate data IC 8362 well-depth data IC 8362 well-depth data IC 8362 well-depth data M 12 petroleum impregnated rocks, surface and shallow M 12 petroleum production B 645 titanium mineral deposits, survey IC 8290 Aromatics, in petroleum, literature survey IC 8286
minerals and ores, taxation B 645 mineral commodities, transportation B 645 mineral commodity reviews B 645 mineral industries B 645 annual review MY 1968 (v. III) mineral industry organization B 645 mineral products, markets for B 645 mineral products, markets for B 645 mineral resources B 645 mining laws and regulations B 645 sources and distribution B 645 sources and distribution B 645 occupational diseases, workmen's compensation law on B 623 oil reservoirs, production-rate data IC 8362 well-depth data IC 8362 petroleum impregnated rocks, surface and shallow M 12 petroleum production B 645 titanium mineral deposits, survey IC 8290 Aromatics, in petroleum, literature survey IC 8286
minerals and ores, taxation B 645 mineral commodities, transportation B 645 mineral industries B 645 annual review MY 1968 (v. III) mineral industry organization B 645 mineral products, markets for B 645 mineral resources B 645 mining laws and regulations B 645 moduction B 645 natural gas, analyses IC 8241, 8316, 8356 production B 645 sources and distribution B 645 occupational diseases, workmen's compen- sation law on B 645 well-depth data IC 8362 petroleum-impregnated rocks, surface and shallow B 645 titanium mineral deposits, survey IC 8290 Aromatics, in petroleum, literature survey IC 8286 Aromatic fractions, from petroleum, de- termination. mass spectromet-
minerals and ores, taxation B 645 mineral commodities, transportation B 645 mineral industries B 645 annual review MY 1968 (v. III) mineral industry organization B 645 mineral products, markets for B 645 mineral resources B 645 mining laws and regulations B 645 moduction B 645 natural gas, analyses IC 8241, 8316, 8356 production B 645 sources and distribution B 645 occupational diseases, workmen's compen- sation law on B 645 well-depth data IC 8362 petroleum-impregnated rocks, surface and shallow B 645 titanium mineral deposits, survey IC 8290 Aromatics, in petroleum, literature survey IC 8286 Aromatic fractions, from petroleum, de- termination. mass spectromet-
minerals and ores, taxation B 645 mineral commodities, transportation B 645 mineral industries B 645 annual review MY 1968 (v. III) mineral industry organization B 645 mineral products, markets for B 645 mineral resources B 645 mining laws and regulations B 645 natural gas, analyses IC 8241, 8316, 8356 production B 645 sources and distribution B 645 occupational diseases, workmen's compen- sation law on B 645 well-depth data IC 8362 well-depth data IC 8362 petroleum-impregnated rocks, surface and shallow M 12 petroleum production B 645 titanium mineral deposits, survey IC 8286 Aromatics, in petroleum, literature survey IC 8286 Aromatic fractions, from petroleum, de- termination, mass spectromet- ric method OP 175-69 Aromatic hydrocarbons, flammability char-
minerals and ores, taxation B 645 mineral commodities, transportation B 645 mineral commodity reviews B 645 mineral industries B 645 annual review MY 1968 (v. III) mineral industry organization B 645 mineral products, markets for B 645 mineral products, markets for B 645 mining laws and regulations B 645 natural gas, analyses I C 8241, 8316, 8356 production B 645 sources and distribution B 645 occupational diseases, workmen's compen- sation law on B 643 oil reservoirs, production-rate data I C 8362 well-depth data I C 8362 petroleum impregnated rocks, surface and shallow M 12 petroleum production B 645 titanium mineral deposits, survey I C 8286 Aromatic, in petroleum, literature survey. I C 8286 Aromatic fractions, from petroleum, de- termination, mass spectromet- ric method OP 175-69 Aromatic hydrocarbons, flammability char- acteristics B 627
minerals and ores, taxation B 645 mineral commodities, transportation B 645 mineral commodity reviews B 645 mineral industries B 645 annual review MY 1968 (v. III) mineral industry organization B 645 mineral products, markets for B 645 mineral products, markets for B 645 mineral resources B 645 mining laws and regulations B 645 production B 645 occupational diseases, workmen's compension B 645 ool reservoirs, production-rate data IC 8362 well-depth data IC 8362 petroleum-impregnated rocks, surface and B 645 titanium mineral deposits, survey IC 8290 Aromatics, in petroleum, literature survey_ IC 8286 Aromatic fractions, from petroleum, determination, mass spectrometric method OP 175-69 Aromatic hydrocarbons, flammability characteristics B 627 from low-temperature coal-tar neutral ol, B 627
minerals and ores, taxation B 645 mineral commodities, transportation B 645 mineral commodity reviews B 645 mineral industries B 645 annual review MY 1968 (v. III) mineral industry organization B 645 mineral products, markets for B 645 mineral resources B 645 mining laws and regulations B 645 natural gas, analyses IC 8241, 8316, 8356 production B 645 sources and distribution B 645 occupational diseases, workmen's compen- sation law on B 645 well-depth data IC 8362 well-depth data IC 8362 petroleum-impregnated rocks, surface and shallow B 645 titanium mineral deposits, survey IC 8280 Aromatics, in petroleum, literature survey_ IC 8280 Aromatic fractions, from petroleum, de- termination, mass spectromet- ric method OP 175-69 Aromatic hydrocarbons, flammability char- acteristics B 637
minerals and ores, taxation B 645 mineral commodities, transportation B 645 mineral commodity reviews B 645 mineral industries B 645 annual review MY 1968 (v. III) mineral industry organization B 645 mineral products, markets for B 645 mineral resources B 645 mining laws and regulations B 645 natural gas, analyses IC 8241, 8316, 8356 production B 645 sources and distribution B 645 occupational diseases, workmen's compen- sation law on B 645 well-depth data IC 8362 well-depth data IC 8362 petroleum-impregnated rocks, surface and shallow B 645 titanium mineral deposits, survey IC 8280 Aromatics, in petroleum, literature survey_ IC 8280 Aromatic fractions, from petroleum, de- termination, mass spectromet- ric method OP 175-69 Aromatic hydrocarbons, flammability char- acteristics B 637
minerals and ores, taxation B 645 mineral commodities, transportation B 645 mineral industries B 645 annual review B 645 mineral industries B 645 mineral industry organization B 645 mineral products, markets for B 645 mineral resources B 645 mining laws and regulations B 645 natural gas, analyses B 645 notural gas, analyses B 645 sources and distribution B 645 occupational diseases, workmen's compen- sation law on B 623 oil reservoirs, production-rate data IC 8362 well-depth data IC 8362 well-depth data IC 8362 well-depth data IC 8362 well-depth data IC 8362 metroleum impregnated rocks, surface and shallow M 12 petroleum production B 645 titanium mineral deposits, survey IC 8286 Aromatic fractions, from petroleum, de- termination, mass spectromet- ric method OP 175-69 Aromatic hydrocarbons, flammability char- acteristics B 637 polynuclear, pyrozylates, mass spectra. OP 35-67 Aromatic molecules, X-ray diffraction data B 620
minerals and ores, taxation B 645 mineral commodities, transportation B 645 mineral industries B 645 annual review B 645 mineral industries B 645 mineral industry organization B 645 mineral products, markets for B 645 mineral resources B 645 mining laws and regulations B 645 natural gas, analyses B 645 notural gas, analyses B 645 sources and distribution B 645 occupational diseases, workmen's compen- sation law on B 623 oil reservoirs, production-rate data IC 8362 well-depth data IC 8362 well-depth data IC 8362 well-depth data IC 8362 well-depth data IC 8362 metroleum impregnated rocks, surface and shallow M 12 petroleum production B 645 titanium mineral deposits, survey IC 8286 Aromatic fractions, from petroleum, de- termination, mass spectromet- ric method OP 175-69 Aromatic hydrocarbons, flammability char- acteristics B 637 polynuclear, pyrozylates, mass spectra. OP 35-67 Aromatic molecules, X-ray diffraction data B 620
minerals and ores, taxation B 645 mineral commodities, transportation B 645 mineral commodity reviews B 645 mineral industries B 645 annual review MY 1968 (v. III) mineral industry organization B 645 mineral products, markets for B 645 mineral resources B 645 mining laws and regulations B 645 natural gas, analyses IC 8241, 8316, 8356 production B 645 sources and distribution B 645 occupational diseases, workmen's compen- sation law on B 645 well-depth data IC 8362 well-depth data IC 8362 petroleum-impregnated rocks, surface and shallow B 645 titanium mineral deposits, survey IC 8280 Aromatics, in petroleum, literature survey IC 8280 Aromatic fractions, from petroleum, de- termination, mass spectromet- ric method OP 175-69 Aromatic hydrocarbons, flammability char- acteristics B 637

.

1

;;

-) E

) E)

£

determination, carbon-13 nuclear magnetic resonance spectrometry __ OP 24-67 polynuclear condensed, coal vitrain __ OP 51-65

Arnostook district mangapiferous are
Aroostook district, manganiferous ore,
manganese recovery from, am-
monium sulfate leaching process,
evaluation RI 7156 Arsenic, annual data MY 1968 (v. I-II) chemical-industry use, Calif IC 8244 consumption B 630 determination, in coal, colorimetric method RI 7184 in coal ash, spectrochemical method RI 7281
Arsenic, annual data MI 1968 (V. 1-11)
chemical-industry use, Oalit.
determination in cool colorimetric
method DI 7194
in coal ash spectrophamical method BI 7981
grades B 630
imports and exports B 630
prices B 630
production B 630
reserves B 630
transportation regulations B 630
uses B 630
Arsenic industry, organization B 630
problems B 630
Arsenic-yttrium-tellurium compounds, ther-
moelectric properties RI 7025
moelectric properties RI 7025 Asbestiform materials, synthetic, aluminum
borate whiskers, properties RI 6575 Asbestos, annual data MY 1968 (v. I-II) asphalt-product use IC 8300 chemical-industry use, Calif IC 8244
Asbestos, annual data MY 1968 (v. I-II)
asphalt-product use IC 8300
chemical-industry use, Calif IC 8244
consumption B 630
grades B 630
imports and exports B 630 occurrences, Ala RI 7045
occurrences, Ala RI 7045
prices B 630
production B 630
reserves B 630
substitutes B 630
synthesizing, method, patent P 12–69 technology B 630
technology B 630
uses B 630
Asbestos industry, organization B 630
problems B 630
Ashestos-serpentine deposits, Maine,
Ashestos-serpentine deposits, Maine, investigation OFR 10-67
Ashestos-serpentine deposits, Maine, investigation OFR 10-67 Ash, analysis, methods, description B 638
coal, analyses RI 7240
fusibility data RI 7240
fusibility data RI 7240
coal, analyses RI 7240 fusibility data RI 7240 heat content RI 6607 major constituents RI 7240
coal, analyses RI 7240 fusibility data RI 7240 heat content RI 6607 major constituents RI 7240
coal, analyses RI 7240 fusibility data RI 7240 heat content RI 6667 major constituents RI 7240 trace elements in, spectrochemical analyses RI 7281
coal, analyses RI 7240 fusibility data RI 7240 heat content RI 6607 major constituents RI 7240 trace elements in, spectrochemical analyses RI 7281 in coal, determination RI 7124
coal, analyses RI 7240 fusibility data RI 7240 heat content RI 6607 major constituents RI 7240 trace elements in, spectrochemical analyses RI 7281 in coal, determination RI 7124 lignite, fusion characteristics RI 7158
coal, analyses RI 7240 fusibility data RI 7240 heat content RI 6607 major constituents RI 7240 trace elements in, spectrochemical analyses RI 7281 in coal, determination RI 7124 lignite, fusion characteristics RI 7158 heat content RI 6607
coal, analyses RI 7240 fusibility data RI 7240 heat content RI 6607 major constituents RI 7240 trace elements in, spectrochemical analyses RI 7281 in coal, determination RI 7281 lignite, fusion characteristics RI 7158 heat content RI 6607
coal, analyses RI 7240 fusibility data RI 7240 heat content RI 6607 major constituents RI 7240 trace elements in, spectrochemical analyses RI 7281 in coal, determination RI 7124 lignite, fusion characteristics RI 7124 lignite, fusion characteristics RI 7158 heat content RI 6607 lignite char, heat content RI 6607 spent shale, heat content RI 6607
coal, analyses RI 7240 fusibility data RI 7240 heat content RI 6607 major constituents RI 7240 trace elements in, spectrochemical analyses RI 7281 in coal, determination RI 7124 lignite, fusion characteristics RI 7124 lignite, fusion characteristics RI 7158 heat content RI 6607 lignite char, heat content RI 6607 spent shale, heat content RI 6607
coal, analyses RI 7240 fusibility data RI 7240 heat content RI 6607 major constituents RI 7240 trace elements in, spectrochemical analyses analyses RI 7281 in coal, determination RI 7124 lignite, fusion characteristics RI 7124 lignite, fusion characteristics RI 7158 heat content RI 6607 lignite char, heat content RI 6607 spent shale, heat content RI 6607 testing, methods, description B 638 Ash content, bituminous coal, dettermina- tion, continuous-recording X-ray
coal, analyses RI 7240 fusibility data RI 7240 heat content RI 6607 major constituents RI 7240 trace elements in, spectrochemical analyses analyses RI 7281 in coal, determination RI 7124 lignite, fusion characteristics RI 7124 lignite, fusion characteristics RI 7158 heat content RI 6607 lignite char, heat content RI 6607 spent shale, heat content RI 6607 testing, methods, description B 638 Ash content, bituminous coal, dettermina- tion, continuous-recording X-ray
coal, analyses RI 7240 fusibility data RI 7240 heat content RI 6607 major constituents RI 7240 trace elements in, spectrochemical analyses analyses RI 7281 in coal, determination RI 7124 lignite, fusion characteristics RI 7124 lignite, fusion characteristics RI 7158 heat content RI 6607 lignite char, heat content RI 6607 spent shale, heat content RI 6607 testing, methods, description B 638 Ash content, bituminous coal, dettermination, continuous-recording X-ray RI 7101 washed coal determining, Cendrex X- RI 7101
coal, analyses RI 7240 fusibility data RI 7240 heat content RI 6607 major constituents RI 7240 trace elements in, spectrochemical analyses analyses RI 7281 in coal, determination RI 7124 lignite, fusion characteristics RI 7124 lignite, fusion characteristics RI 7158 heat content RI 6607 lignite char, heat content RI 6607 spent shale, heat content RI 6607 testing, methods, description B 638 Ash content, bituminous coal, dettermination, continuous-recording X-ray RI 7101 washed coal determining, Cendrex X- RI 7101
coal, analyses RI 7240 fusibility data RI 7240 heat content RI 6607 major constituents RI 7240 trace elements in, spectrochemical analyses analyses RI 7281 in coal, determination RI 7124 lignite, fusion characteristics RI 7124 lignite, fusion characteristics RI 7128 heat content RI 6607 lignite char, heat content RI 6607 spent shale, heat content RI 6607 testing, methods, description B 638 Ash content, bituminous coal, dertermination, continuous-recording X-ray RI 7101 washed coal, determining, Cendrex X-ray ash meter, evaluation OP 7-67
coal, analyses RI 7240 fusibility data RI 7240 heat content RI 6607 major constituents RI 7240 trace elements in, spectrochemical analyses RI 7281 in coal, determination RI 7124 lignite, fusion characteristics RI 7124 lignite, fusion characteristics RI 7124 lignite char, heat content RI 6607 spent shale, heat content RI 6607 testing, methods, description RI 6607 testing, methods, description RI 6607 testing, methods, description RI 6607 testing, methods, description RI 6607 washed coal, determining, Cendrex X- ray ash meter OP 7-67 Ash research, trends OP 113-67
coal, analyses RI 7240 fusibility data RI 7240 heat content RI 6607 major constituents RI 7240 trace elements in, spectrochemical analyses RI 7281 in coal, determination RI 7124 lignite, fusion characteristics RI 7124 lignite, fusion characteristics RI 7124 lignite, fusion characteristics RI 6607 spent shale, heat content RI 6607 testing, methods, description RI 6607 testing, methods, description B 638 Ash content, bituminous coal, dertermina- tion, continuous-recording X-ray ash meter, evaluation RI 7101 washed coal, determining, Cendrex X- ray ash meter OP 7-67 Ash research, trends OP 113-67 Ash separator, centrifugal-type for open- cycle gas turbine, tests RI 7295
coal, analyses RI 7240 fusibility data RI 7240 heat content RI 6607 major constituents RI 7240 trace elements in, spectrochemical analyses analyses RI 7281 in coal, determination RI 7124 lignite, fusion characteristics RI 7124 lignite, fusion characteristics RI 7124 lignite char, heat content RI 6607 lignite char, heat content RI 6607 spent shale, heat content RI 6607 testing, methods, description B 638 Ash content, bituminous coal, dettermination, continuous-recording X-ray ash meter, evaluation ash meter, evaluation OP 7-67 Ash research, trends OP 113-67 Ash separator, centrifugal-type for open- cycle gas turbine, tests cycle gas turbine, tests RI 7295 Asphalt, binder and surface coating from. RI 7295
coal, analyses RI 7240 fusibility data RI 7240 heat content RI 6607 major constituents RI 7240 trace elements in, spectrochemical analyses analyses RI 7281 in coal, determination RI 7124 lignite, fusion characteristics RI 7124 lignite, fusion characteristics RI 7124 lignite char, heat content RI 6607 lignite char, heat content RI 6607 spent shale, heat content RI 6607 testing, methods, description B 638 Ash content, bituminous coal, dettermination, continuous-recording X-ray ash meter, evaluation ash meter, evaluation OP 7-67 Ash research, trends OP 113-67 Ash separator, centrifugal-type for open- cycle gas turbine, tests cycle gas turbine, tests RI 7295 Asphalt, binder and surface coating from. RI 7295
coal, analyses RI 7240 fusibility data RI 7240 heat content RI 6607 major constituents RI 7240 trace elements in, spectrochemical analyses RI 7281 in coal, determination RI 7124 lignite, fusion characteristics RI 7124 lignite, fusion characteristics RI 7124 lignite char, heat content RI 6607 lignite char, heat content RI 6607 testing, methods, description RI 6607 testing, methods, description RI 6607 testing, methods, description RI 6607 testing, methods, description RI 7101 washed coal, determining, Cendrex X- ray ash meter OP 7-67 Ash separator, centrifugal-type for open- cycle gas turbine, tests RI 7295 Asphalt, binder and surface coating from, method, patent P 17-66 composition, infrared spectrometry OP 97-68
coal, analyses RI 7240 fusibility data RI 7240 heat content RI 6607 major constituents RI 7240 trace elements in, spectrochemical analyses RI 7281 in coal, determination RI 7124 lignite, fusion characteristics RI 7124 lignite, fusion characteristics RI 7158 heat content RI 6607 spent shale, heat content RI 6607 testing, methods, description RI 6607 testing, methods, description RI 6607 washed coal, determining, Cendrex X- ray ash meter OP 7-67 Ash research, trends OP 71-67 Ash separator, centrifugal-type for open- cycle gas turbine, tests RI 7295 Asphalt, binder and surface coating from, method, patent P 17-66 composition, infrared spectrometry OP 97-68 nuclear magnetic resonance spec-
coal, analyses RI 7240 fusibility data RI 7240 heat content RI 6607 major constituents RI 7240 trace elements in, spectrochemical analyses RI 7281 in coal, determination RI 7281 lignite, fusion characteristics RI 7124 lignite, fusion characteristics RI 7158 heat content RI 6607 lignite char, heat content RI 6607 testing, methods, description RI 6607 testing, methods, description B 638 Ash content, bituminous coal, dertermina- tion, continuous-recording X-ray ash meter, evaluation RI 7101 washed coal, determining, Cendrex X- ray ash meter OP 7-67 Ash research, trends OP 113-67 Ash separator, centrifugal-type for open- cycle gas turbine, tests RI 7295 Asphalt, binder and surface coating from, method, patent OP 97-68 nuclear magnetic resonance spec- trometry OP 97-68
coal, analyses RI 7240 fusibility data RI 7240 heat content RI 6607 major constituents RI 7240 trace elements in, spectrochemical analyses RI 7281 in coal, determination RI 7281 lignite, fusion characteristics RI 7124 lignite, fusion characteristics RI 7158 heat content RI 6607 lignite char, heat content RI 6607 testing, methods, description RI 6607 testing, methods, description B 638 Ash content, bituminous coal, dertermina- tion, continuous-recording X-ray ash meter, evaluation RI 7101 washed coal, determining, Cendrex X- ray ash meter OP 7-67 Ash research, trends OP 113-67 Ash separator, centrifugal-type for open- cycle gas turbine, tests RI 7295 Asphalt, binder and surface coating from, method, patent OP 97-68 nuclear magnetic resonance spec- trometry OP 97-68
coal, analyses RI 7240 fusibility data RI 7240 heat content RI 6607 major constituents RI 7240 trace elements in, spectrochemical analyses RI 7281 in coal, determination RI 7124 lignite, fusion characteristics RI 7124 lignite, fusion characteristics RI 7124 lignite char, heat content RI 6607 lignite char, heat content RI 6607 testing, methods, description RI 6607 testing, methods, description RI 6607 testing, methods, description RI 6607 testing, methods, description RI 7101 washed coal, determining, Cendrex X- ray ash meter OP 7-67 Ash research, trends OP 713-67 Ash separator, centrifugal-type for open- cycle gas turbine, tests RI 7295 Asphalt, binder and surface coating from, method, patent OP 97-68 nuclear magnetic resonance spec- trometry OP 113-66 fly ash in use OP 113-67
<pre>coal, analyses RI 7240 fusibility data RI 7240 heat content RI 6607 major constituents RI 7240 trace elements in, spectrochemical analyses RI 7281 in coal, determination RI 7281 in coal, determination RI 7124 lignite, fusion characteristics RI 7124 lignite, fusion characteristics RI 6607 lignite char, heat content RI 6607 testing, methods, description RI 7101 washed coal, determining, Cendrex X- ray ash meter OP 7-67 Ash research, trends OP 7-67 Ash research, trends OP 77-67 Ash separator, centrifugal-type for open- cycle gas turbine, tests RI 7295 Asphalt, binder and surface coating from,</pre>
coal, analyses RI 7240 fusibility data RI 7240 heat content RI 6607 major constituents RI 7240 trace elements in, spectrochemical analyses analyses RI 7281 in coal, determination RI 7124 lignite, fusion characteristics RI 7124 lignite, fusion characteristics RI 7124 lignite char, heat content RI 6607 lignite char, heat content RI 6607 spent shale, heat content RI 6607 testing, methods, description B 638 Ash content, bituminous coal, dettermination, continuous-recording X-ray ash meter, evaluation ash meter, evaluation OP 7-67 Ash research, trends OP 7113-67 Ash separator, centrifugal-type for open- cycle gas turbine, tests cycle gas turbine, tests P 17-66 composition, infrared spectrometry OP 97-68 nuclear magnetic resonance apec- trometry trometry OP 97-68 nuclear magnetic resonance apec- trometry trometry OP 11-65 fly ash in, use OP 11-65 <
<pre>coal, analyses RI 7240 fusibility data RI 7240 heat content RI 6607 major constituents RI 7240 trace elements in, spectrochemical analyses RI 7281 in coal, determination RI 7281 in coal, determination RI 7281 lignite, fusion characteristics RI 7124 lignite, fusion characteristics RI 7124 lignite, fusion characteristics RI 7124 lignite, fusion characteristics RI 7158 heat content RI 6607 lignite char, heat content RI 6607 lignite char, heat content RI 6607 testing, methods, description RI 7101 washed coal, determining, Cendrex X- ray ash meter OP 7-67 Ash research, trends OP 113-67 Ash separator, centrifugal-type for open- cycle gas turbine, tests RI 7295 Asphalt, binder and surface coating from, method, patent OP 97-68 nuclear magnetic resonance spec- trometry OP 97-68 crude oils for, geographic origin OP 97-68 in crude oil, estimating method OP 11-65 hydrogen bonding in, infrared study _ OP 15-68 in crude oil, estimating method OP 11-65 inverse gas-liquid chromatography, com- </pre>
<pre>coal, analyses RI 7240 fusibility data RI 7240 heat content RI 6607 major constituents RI 7240 trace elements in, spectrochemical analyses RI 7281 in coal, determination RI 7281 in coal, determination RI 7124 lignite, fusion characteristics RI 7124 lignite, fusion characteristics RI 7124 lignite, fusion characteristics RI 7124 lignite char, heat content RI 6607 spent shale, heat content RI 6607 testing, methods, description B 638 Ash content, bituminous coal, dertermina- tion, continuous-recording X-ray ash meter, evaluation RI 7101 washed coal, determining, Cendrex X- ray ash meter OP 7-67 Ash research, trends OP 113-67 Ash separator, centrifugal-type for open- cycle gas turbine, tests RI 7295 Asphalt, binder and surface coating from, method, patent OP 97-68 nuclear magnetic resonance spec- trometry OP 11-65 fly ash in, use OP 11-65 fly ash in, use OP 11-65 inverse gas-liquid chromatography, com- parison with fractionation analy-</pre>
<pre>coal, analyses</pre>

.

A 1 16 - August in the second liquid
Asphalt, petroleum, inverse gas-liquid chromatography OP 28-66 refineries producing, list OP 11-65 road, inverse gas-liquid chromatog-
refineries producing, list OP 11-65
road, inverse gas-liquid chromatog- raphy OP 181-68
raphy OP 181-68 silylation, in gas-liquid chromato-
graphic columns, effect on in-
frared spectra OP 157-69 effect on inverse gas-liquid chro-
matographic data OP 157-69 structural parameters, nuclear mag-
netic resonance studies OP 10-68
Asphalt fractions, molecular distillation,
composition, nuclear magnetic resonance spectrometry OP 97-68
resonance spectrometry OP 97-68 infrared spectrometry OP 97-68, 159-69 Asphalt paving, fly ash use in OP 189-68 Asphaltere observious spectra
Asphalt paving, fly ash use in OP 189-68 Asphaltene absorption spectra B 640
Asphaltene, absorption spectra B 640 magnetic resonance spectra B 640 Assays, ore-deposit, area of influence, de-
Assays, ore-deposit, area of influence, de-
termining, method RI 6955 Assay apparatus, automated modified
Fischer retorts, description and
operation RI 6676 Assay data drill-hole use, in designing
Assay data, drill-hole, use, in designing grid spacings RI 6634 mine and mineral-deposit, statistical anal-
mine and mineral-deposit, statistical anal-
ysis B 621 multivariate, linear discriminant analy
sis RI 6898 statistical analysis of, theoretical con-
firmation and applications RI 6768
firmation and applications RI 6768 Atacamite, magnetic susceptibility IC 8383
Atlas mine, Pa., coal, carbonizing prop- erties RI 7131
Atmospheric pollutants, spectrometric inves-
tigations B 632 Atmospheric pressure, changes in, effect
on mine-ventilation system R1 6786
Atomic Energy Commission-Bureau of
Mines corehole, progress report OP 128-67 Atomic Energy Commission-Bureau of
Mines Colorado corehole No. 3,
drilling and coring data OFR 15-68 Atomic percent to weight-percent con-
version, slide rule for OFR 4-68
Atomic radial density curves, analysis of termination effects OP 127-68
Attenuation symmetry, rock, determination.
ultrasonic method RI 7335 Auger mining, coal, surface mine regula-
tion, effect OP 79-69
tion, effect OP 79-69 Aurichalcite, magnetic susceptibility IC 8383
Australia, bituminous coal, entrained-bed carbonization, study RI 6608
coal, low-temperature carbonization as- say RI 6608
plastic properties RI 6608
plastic properties RI 6608 crude oil, production RI 7059
Lidell seam coal entrained-bed carbon-
sulfur content
mineral industry, annual review MY 1968 (v. IV)
natural gas, analyses IC 8356, 8395 Austria, mineral industry, annual review
Austria, mineral industry, annual review
MY 1968 (v. IV) Auto wrecking industry, operating
methods SP 1-67 Autoignition, hydrocarbon jet fuel RI 6654
Autoignition, hydrocarbon jet fuel RI 6654 Autoignition temperatures, combustibles,
at various pressures, in air OP 85-68
in nitrogen tetroxide OP 85-68
in oxygen OP 85-68 effect of temperature and pressure OP 54-67
halogenated hydrocarbons, in oxident
atmospheres RI 6748
hydrocarbon jet fuel RI 6654

Automation, cement industry, applica-
tions OFR 24-69
cations OFR 24-69
Automation, cement industry, applica- tions OFR 24-69 iron-ore pelletizing industry, appli- cations OFR 24-69 Automobile, junk, dismantling, cost esti-
Automobile disposal, laws and regulations, study Automobile exhaust, emissions, study Automobile exhaust,
ferrous scrap from OP 198-68
scrap from dismantling, components RI 7350
Automobile disposal, laws and regulations SP 1-67
problem of, study SP 1-67
Automobile exhaust, emissions, study
OP 80-68, 63-69 oxygenates in, identification OP 43-65 sample-handling methods OP 49-65, 72-65 Automobile scrap, copper removal from, thermal treatment methods for
oxygenates in, identification OP 43-65
sample-nanonny methods OP 40 65 50 65
Automobile scrap copper remove) from
thermal treatment methods, fea-
sibility study RI 7218
in magnetic roasting of low-grade iron
ores, use, study RI 6764
use, in cement copper production, rotat-
ing-drum precipitator method RI 7182 Automobile scrap mixtures, synthetic, re-
movel of popferrous metal im-
moval of nonferrous metal im- purities from RI 7210
Automotive emissions, crankcase blow-
by control \sim OP 182–68
evanorative control OP 182_68
exhaust, control OP 182-68
measuring, tests for OP 182-68
exhaust, control OP 182-68 measuring, tests for OP 182-68 Automotive exhaust, effect of fuel com-
position on OP 63-69
nitrogen oxides in, determination, meth-
ods, evaluating accuracy of RI 7133 pollution from, reducing, effect of fuel
composition OP 160-69
methods
Automotive suboust environments
Automotive exhaust emissions, sam-
nling and analysis methods OP 179-69
pling and analysis methods OP 179-69 Automotive exhaust gas, nitrogen oxides
pling and analysis methods OP 179-69 Automotive exhaust gas, nitrogen oxides
pling and analysis methods OP 179-69 Automotive exhaust gas, nitrogen oxides
pling and analysis methods OP 179-69 Automotive exhaust gas, nitrogen oxides
pling and analysis methods OP 179-69 Automotive exhaust gas, nitrogen oxides in, determination OP 21-67 reactivity, effect of hydrocarbon type on, study OP 179-67 Automotive exhaust gas analysis high
pling and analysis methods OP 179-69 Automotive exhaust gas, nitrogen oxides in, determination OP 21-67 reactivity, effect of hydrocarbon type on, study OP 179-67 Automotive exhaust gas analysis high
pling and analysis methods OP 179-69 Automotive exhaust gas, nitrogen oxides in, determination OP 21-67 reactivity, effect of hydrocarbon type on, study OP 179-67 Automotive exhaust gas analysis high
pling and analysis methods OP 179-69 Automotive exhaust gas, nitrogen oxides in, determination OP 21-67 reactivity, effect of hydrocarbon type on, study OP 179-67 Automotive exhaust gas analysis high
pling and analysis methods OP 179-69 Automotive exhaust gas, nitrogen oxides in, determination OP 21-67 reactivity, effect of hydrocarbon type on, study OP 179-67 Automotive exhaust gas analysis, high- resolution gas chromatograph for OP 142-67 Autoxidation, 1-alkylpyrroles OP 142-67 Aviation turbine fuels, annual data PPS 59 storage stability, determination, radio-
pling and analysis methods OP 179-69 Automotive exhaust gas, nitrogen oxides in, determination OP 21-67 reactivity, effect of hydrocarbon type on, study OP 179-67 Automotive exhaust gas analysis, high- resolution gas chromatograph for OP 142-67 Autoxidation, 1-alkylpyrroles OP 142-67 Aviation turbine fuels, annual data PPS 59 storage stability, determination, radio- tracer technique RI 7325
pling and analysis methods OP 179-69 Automotive exhaust gas, nitrogen oxides in, determination OP 21-67 reactivity, effect of hydrœarbon type on, study OP 179-67 Automotive exhaust gas analysis, high- resolution gas chromatograph for OP 142-67 Autoxidation, 1-alkylpyrroles OP 142-67 Aviation turbine fuels, annual data OP 195-67 Aviation turbine fuels, annual data PPS 59 storage stability, determination, radio- tracer technique RI 7325 thermally induced deposits in, contribu-
pling and analysis methods OP 179-69 Automotive exhaust gas, nitrogen oxides in, determination OP 21-67 reactivity, effect of hydrocarbon type on, study OP 179-67 Automotive exhaust gas analysis, high- resolution gas chromatograph for OP 142-67 Autoxidation, 1-alkylpyrroles OP 142-67 Aviation turbine fuels, annual data OP 195-67 Aviation turbine fuels, annual data PPS 59 storage stability, determination, radio- tracer technique RI 7325 thermally induced deposits in, contribu- tions to, radioactive tracer tech-
pling and analysis methods OP 179-69 Automotive exhaust gas, nitrogen oxides in, determination OP 21-67 reactivity, effect of hydrocarbon type on, study OP 179-67 Automotive exhaust gas analysis, high- resolution gas chromatograph for OP 142-67 Autoxidation, 1-alkylpyrroles OP 195-67 Aviation turbine fuels, annual data PPS 59 storage stability, determination, radio- tracer technique RI 7325 thermally induced deposits in, contribu- tions to, radioactive tracer tech- nique for estimating RI 7325
pling and analysis methods OP 179-69 Automotive exhaust gas, nitrogen oxides in, determination OP 21-67 reactivity, effect of hydrocarbon type on, study OP 179-67 Automotive exhaust gas analysis, high- resolution gas chromatograph for OP 142-67 Autoxidation, 1-alkylpyrroles OP 142-67 Aviation turbine fuels, annual data PPS 59 storage stability, determination, radio- tracer technique RI 7325 thermally induced deposits in, contribu- tions to, radioactive tracer tech- nique for estimating RI 7325
pling and analysis methods OP 179-69 Automotive exhaust gas, nitrogen oxides in, determination OP 21-67 reactivity, effect of hydrocarbon type on, study OP 179-67 Automotive exhaust gas analysis, high- resolution gas chromatograph for OP 142-67 Autoxidation, 1-alkylpyrroles OP 195-67 Aviation turbine fuels, annual data PPS 59 storage stability, determination, radio- tracer technique RI 7325 thermally induced deposits in, contribu- tions to, radioactive tracer tech- nique for estimating RI 7325

B

	inación, using plasma arc Or 11-01
Bachaquero petroleum, electrophoresis, in	Barium carbonate, heat of formation RI 6822
organic electrolyte RI 6912	Barium chemicals, uses B 630
Backfill, hydraulic, cement and dispersant	Barium chloride, thermal properties OP 146-69
additives, effect, study RI 6831	Barium compounds, uses B 630
compaction of, internal probe vibra-	Barium sulfate, oil-well scales, analysis RI 6602
tors, tests RI 6922	composition RI 6658
plate-type vibrators, tests RI 6922	formation, causes RI 6658
for mine-subsidence prevention OP 31-65	solubility, in oilfield brines OP 23-66
mill tailings as, waterflow in, labora-	Barium sulfate scale, deposition, in oil-well
tory study RI 7034	
support properties, improving OP 158-65	rotary pumps, physical factors in RI 6960
vibratory compaction of OP 158-65	Bartlesville Petroleum Research Center,
in deep-vein mine stope, load-displace-	history OP 176-68
ment measurement, field tests and	research program
laboratory data RI 7038	Barysilite, magnetic susceptibility IC 8383
instrumentation RI 7038	Basalt, dielectric constant and dissipation
mine, compression tests, chamber for, de-	factor, determination RI 6913
sign and operation tests RI 7198	dimension stone uses IC 8391
sign and operation tests for (190	undension stone uses IC 8391

Backfill, mine, potential support capability,
laboratory tests RI 7198 Backfilling, secondary, strip-mine areas, Di 0270
cost data RI 6772 methods RI 6772
Bacteria, autotrophic, copper extraction
from lead blast furnace matte by_ RI 7126 in leaching copper sulfide minerals,
in leaching copper sulfide minerals, environmental and nutritional factors, effect RI 6714 lead extraction from lead blast fur-
lead extraction from lead blast fur-
race matte by RI 7126 growth, on coal-derived substrates OP 77-66, 126-66, 202-67
oxidizing, effect on solubility of copper
minerals RI 6996 reaction to radioactivity RI 6996 Baddeleyite, magnetic susceptibility IC 8360 Bahamas, mineral industry, annual review
MY 1968 (v. IV) Bahrain, crude oil, production RI 7059
Bahamas, mineral industry, annual review MY 1968 (v. IV) Bahrain, crude oil, production RI 7059 sulfur content RI 7059 mineral industry, annual review MYB 1968 (v. IV)
MYB 1968 (v. IV)
Baja California, manganese nodules, ma- rine, collecting, method OFR 7-67
Bakerstown bed, W. Va., coal washing characterists BI 6707
Bakerstown bed, W. Va., coal washing characterists RI 6707 Ball mill, dry, ultrafine grinding of anthra-
lignite nulverization in study RI 7010
Banning mine, Pa., coal, carbonizing prop- erties
Barbour County, W. Va., coal, preparation characteristics RI 6707 Barcus Creek Corehole No. 1, Colo., well logs OFR 15-69
Barcus Creek Corehole No. 1, Colo., well
Barge transportation, mineral commodities,
costs IC 8431
costs IC 8431
Barge transportation, mineral commonities, costs IC 8431 outlook IC 8431 Barite, annual data MY 1968 (v. I-II) chemical-industry use, Calif IC 8244 consumption B 630
Barge transportation, mineral commodities, costs IC 8431 outlook IC 8431 Barite, annual data IC 8431 Barite, annual data IC 8244 consumption B 630 grades B 630
Barge transportation, mineral commodities, costs IC 8431 outlook IC 8431 Barite, annual data IC 8431 barite, annual data MY 1968 (v. I–II) chemical-industry use, Calif. IC 8244 consumption B 630 grades B 630 imports B 630 prices B 630
Barge transportation, mineral commodities, costs IC 8431 outlook IC 8431 Barite, annual data MY 1968 (v. I-II) chemical-industry use, Calif. IC 8244 consumption B 630 grades B 630 prices B 630 production B 630
Barge transportation, mineral commodities, costs IC 8431 outlook IC 8431 Barite, annual data IC 8431 Barite, annual data MY 1968 (v. I–II) chemical-industry use, Calif. IC 8244 consumption B 630 grades B 630 prices B 630 production B 630 reserves B 630 technology B 630
Barge transportation, mineral commodities, costs IC 8431 outlook IC 8431 Barite, annual data IC 8431 Barite, annual data MY 1968 (v. I–II) chemical-industry use, Calif. IC 8244 consumption B 630 grades B 630 prices B 630 production B 630 reserves B 630 technology B 630
Barge transportation, mineral commodities, costs IC 8431 outlook IC 8431 Barite, annual data MY 1968 (v. I-II) chemical-industry use, Calif. IC 8244 consumption B 630 grades B 630 production B 630 production B 630 reserves B 630 uses B 630 barite deposits, N, Mex., investigation MNR
Barge transportation, mineral commodities, costs IC 8431 outlook IC 8431 Barite, annual data IC 8431 Barite, annual data MY 1968 (v. I-II) chemical-industry use, Calif. IC 8244 consumption B 630 grades B 630 production B 630 production B 630 reserves B 630 technology B 630 uses B 630 Barite deposits, N. Mex., investigation MMNR Barite industry, organization B 630 problems B 630
Barge transportation, mineral commodities, costs IC 8431 outlook IC 8431 Barite, annual data IC 8431 Barite, annual data MY 1968 (v. I-II) chemical-industry use, Calif. IC 8244 consumption B 630 grades B 630 production B 630 production B 630 reserves B 630 technology B 630 uses B 630 Barite deposits, N. Mex., investigation MMNR Barite industry, organization B 630 problems B 630
Barge transportation, mineral commodities, costs IC 8431 outlook IC 8431 Barite, annual data MY 1968 (v. I-II) chemical-industry use, Calif. IC 8244 consumption B 630 grades B 630 prices B 630 production B 630 technology B 630 uses B 630 problems B 630 Barite deposits, N. Mex., investigation NMNR Barite industry, organization B 630 problems B 630 prolems B 630 prolems B 630 problems B 630 problems B 630 prolems D 70-67 in barite, activation analysis OP 70-67 in coal ash. spectrochemical determina-
Barge transportation, mineral commodities, costs IC 8431 outlook IC 8431 Barite, annual data MY 1968 (v. I-II) chemical-industry use, Calif. IC 8243 grades B 630 grades B 630 procluction B 630 production B 630 technology B 630 uses B 630 Barite deposits, N. Mex., investigation NMNR Barite industry, organization B 630 Barite, activation analysis OP 70-67 in coal ash, spectrochemical determina- tion RI 7281 in olifield waters, spectrometric determi- RI 7281
Barge transportation, mineral commodities, costs IC 8431 outlook IC 8431 Barite, annual data MY 1968 (v. I-II) chemical-industry use, Calif. IC 8243 grades B 630 grades B 630 procluction B 630 production B 630 technology B 630 uses B 630 Barite deposits, N. Mex., investigation NMNR Barite industry, organization B 630 Barite, activation analysis OP 70-67 in coal ash, spectrochemical determina- tion RI 7281 in olifield waters, spectrometric determi- RI 7281
Barge transportation, mineral commodities, costs IC 8431 outlook IC 8431 Barite, annual data MY 1968 (v. I-II) chemical-industry use, Calif. IC 8244 consumption B 630 grades B 630 prices B 630 production B 630 technology B 630 uses B 630 problems B 630 barite deposits, N. Mex., investigation NMNR Barite industry, organization B 630 problems B 630 barite, activation analysis OP 70-67 in oilfield waters, spectrochemical determina- tion RI 7281 in oilfield waters, spectrometric determi- nation, using plasma arc OP 17-67 Barium carbonate, heat of formation RI 6822
Barge transportation, mineral commodities, costs IC 8431 outlook IC 8431 Barite, annual data MY 1968 (v. I-II) chemical-industry use, Calif. IC 8244 consumption B 630 grades B 630 proclution B 630 production B 630 reserves B 630 uses B 630 barite deposits, N. Mex., investigation MNNR Barite industry, organization B 630 problems B 630 barite, activation analysis OP 70-67 in oarite, activation analysis OP 17-67 Barium carbonate, heat of formation RI 6822 Barium chloride, thermal prometties OP 146-69
Barge transportation, mineral commodities, costs IC 8431 outlook IC 8431 Barite, annual data MY 1968 (v. I-II) chemical-industry use, Calif. IC 8244 consumption B 630 grades B 630 proclution B 630 production B 630 reserves B 630 uses B 630 barite deposits, N. Mex., investigation MNNR Barite industry, organization B 630 problems B 630 barite, activation analysis OP 70-67 in oarite, activation analysis OP 17-67 Barium carbonate, heat of formation RI 6822 Barium chloride, thermal prometties OP 146-69
Barge transportation, mineral commodities, costs IC 8431 outlook IC 8431 Barite, annual data MY 1968 (v. I-II) chemical-industry use, Calif. IC 8244 consumption B 630 grades B 630 prices B 630 production B 630 reserves B 630 uses B 630 uses B 630 problems B 630 barite deposits, N. Mex., investigation NMNR Barite industry, organization B 630 problems D 70-67 in oilfield waters, spectrochemical determina- tion RI 7281 in oilfield waters, spectrochemical determina- tion RI 6822 Barium chemicals, uses D 717-67 Barium chemicals, uses B 630 Barium chemicals, uses B 630 Barium chemic
Barge transportation, mineral commodities, costs IC 8431 outlook IC 8431 Barite, annual data MY 1968 (v. I-II) chemical-industry use, Calif. IC 82431 grades B 630 grades B 630 prices B 630 production B 630 reserves B 630 technology B 630 uses B 630 barite deposits, N. Mex., investigation MNNR Barite industry, organization B 630 problems B 630 barite, activation analysis OP 70-67 in oaite, activation analysis OP 17-67 Barium carbonate, heat of formation RI 6822 Barium chemicals, uses B 630 Barium chemicals, uses B 630 Barium compounds, uses B 630 Barium compounds, uses B 630 Barium sulfate, oil-well scales, analysis RI 6658
Barge transportation, mineral commodities, costs IC 8431 outlook IC 8431 Barite, annual data MY 1968 (v. I-II) chemical-industry use, Calif. IC 8244 consumption B 630 grades B 630 production B 630 production B 630 reserves B 630 uses B 630 barite deposits, N. Mex., investigation NMNR Barite industry, organization B 630 problems B 630 problems B 630 problems B 630 in barite, activation analysis OP 70-67 in coal ash, spectrochemical determina- tion RI 7281 in oilfield waters, spectrometric determi- nation, using plasma arc OP 17-67 Barium carbonate, heat of formation RI 6822 Rarium chemicals, uses B 630 Barium compounds, uses B 630 Barium sulfate, oil-well scales, analysis RI 6602 composition RI 6658 formation, causes RI 6658
Barge transportation, mineral commodities, costs IC 8431 outlook IC 8431 Barite, annual data MY 1968 (v. I-II) chemical-industry use, Calif. IC 8244 consumption B 630 grades B 630 imports B 630 prices B 630 production B 630 reserves B 630 uses B 630 uses B 630 production B 630 uses B 630 uses B 630 barite deposits, N. Mex., investigation NMNR Barite industry, organization B 630 problems B 630 in barite, activation analysis OP 70-67 in coal ash, spectrochemical determina- tion B 630 mation, using plasma arc OP 17-67 Barium carbonate, heat of formation RI 6822 Barium chloride, thermal properties D 91 46-69 Barium compounds, uses B 630 Barium sulfate, oil-well scales, analysis RI 6602 composition RI 6658 formation, causes <
Barge transportation, mineral commodities, costs IC 8431 outlook IC 8431 Barite, annual data MY 1968 (v. I-II) chemical-industry use, Calif. IC 8244 consumption B 630 grades B 630 prices B 630 production B 630 reserves B 630 uses B 630 uses B 630 problems B 630 barite deposits, N. Mex., investigation NMNR Barite industry, organization B 630 problems B 630 problems B 630 problems B 630 barite, activation analysis OP 70-67 in olifield waters, spectrochemical determina- tion in olifield waters, spectrochemical determina- RI 7281 in olifield waters, spectrochemical determina- B 630 Barium cabonate, heat of formation RI 6822 Barium chemicals, uses B 630 Barium chemicals, uses B 630 Barium sulfate, oil-well scales, analysis RI 6602 composition RI 6658
Barge transportation, mineral commodities, costs IC 8431 outlook IC 8431 Barite, annual data MY 1968 (v. I-II) chemical-industry use, Calif. IC 8244 consumption B 630 grades B 630 procluction B 630 production B 630 reserves B 630 technology B 630 uses B 630 barite deposits, N. Mex., investigation NMNR Barite industry, organization B 630 problems B 630 Barite, activation analysis OP 70-67 in coal ash, spectrochemical determination RI 7281 in oilfield waters, spectrometric determination, using plasma arc OP 17-67 Barium chemicals, uses B 630 Barium chemicals, uses B 630 Barium compounds, uses B 630 Barium sulfate, oil-well scales, analysis RI 6602 composition RI 6658 solubility, in oilfield brines OP 23-66 Barium sulfate scale, deposition, in oil-well rotary pumps, physical factors in RI 6960 Barium sulfate scale, deposition, in
Barge transportation, mineral commodities, costs IC 8431 outlook IC 8431 Barite, annual data MY 1968 (v. I-II) chemical-industry use, Calif. IC 8244 consumption B 630 grades B 630 imports B 630 production B 630 production B 630 reserves B 630 uses B 630 uses B 630 uses B 630 production B 630 uses B 630 uses B 630 problems B 630 in barite, activation analysis OP 70-67 in coal ash, spectrochemical determina- tion uses in oilfield waters, spectrometric determia- nation, using plasma arc OP 17-67 Barium carbonate, heat of formation RI 6822 Barium chloride, thermal properties D 146-69 Barium compounds, uses
Barge transportation, mineral commodities, costs IC 8431 outlook IC 8431 Barite, annual data MY 1968 (v. I-II) chemical-industry use, Calif. IC 8244 consumption B 630 grades B 630 procluction B 630 production B 630 reserves B 630 technology B 630 uses B 630 barite deposits, N. Mex., investigation NMNR Barite industry, organization B 630 problems B 630 Barite, activation analysis OP 70-67 in coal ash, spectrochemical determination RI 7281 in oilfield waters, spectrometric determination, using plasma arc OP 17-67 Barium chemicals, uses B 630 Barium chemicals, uses B 630 Barium compounds, uses B 630 Barium sulfate, oil-well scales, analysis RI 6602 composition RI 6658 solubility, in oilfield brines OP 23-66 Barium sulfate scale, deposition, in oil-well rotary pumps, physical factors in RI 6960 Barium sulfate scale, deposition, in

•

ł

ł .

E

£

Ł

E

В	asalt, elastic moduli, at elevated tempera-	Berea
	tures RI 7269	
_	thermal shock response RI 6823	5
B	ase-metal industry, problems IC 8325	W.
В	ase-metal ore potential, nonferrous, eval-	_
-	uation IC 8325	Berea
B	ase-metal ore reserves, nonferrous, domes-	Berea
	tic, evaluation IC 8325	_
Ë	astnaesite, reserves B 630	Berea
В	astnaesite, reserves B 630 aukol-Noonan mine, N. Dak., lignite and	-
-	lignite ash analyses RI 7158	Berge
	aumhauerite, magnetic susceptibility IC 8383	n
E	auxite, annual data MYB 1968 (v. 1-11)	Berg
	lignite ash analyses RI 7158 Baumhauerite, magnetic susceptibility IC 8383 Bauxite, annual data MYB 1968 (v. I-II) as refractory raw material IC 8382 chemical-industry use, Calif IC 8244	
	chemical-industry use, Calif IC 8244	Berir
	consumption B 630	D
	ferruginous, alumina recovery from, Pedersen process	Berm
	from, redersen process Ki 6939, 7079	D
	processing methods, modifications RI 6944	Bery.
	iron recovery irom, redersen process RI 1019	flot
	grades P 000	hea
	high-iron, alumina recovery from, labo-	Dent
	ratory tests RI 6913	Bery
	imports B 630	Do mut
	Jamaican, Bayer-process alumina recov-	Bery
	ery from, cost estimate RI 6/30	con
	ery from, cost estimate RI 6730 description RI 6730 red mud residue from, centrifugal de- watering RI 7140	ele
	red mud residue from, centrifugal de-	
	watering RI /140	gra
	prices B 630	hig
	production B 630 reserves, U.S B 630	
	reserves, U.S B 630	hig
	world B 630	
	world B 630 U.S. self-sufficiency B 630	
	uses B 630	im
E	uses B 630 Bauxite industry, organization B 630	in
E	Saver process, aluming production by, cost	
	estimate RI 6730	in
E	lear River Migratory Bird Refuge, N.	me
	Mex., mineral appraisal GS 7-67	nor
E	estimate RI 6730 Bear River Migratory Bird Refuge, N. Mex., mineral appraisal GS 7-67 Beatrice Pocahontas Co. mine, Va., coal,	pri
	washing characteristics RI 6740 Beaver County, Pa., coal, preparation char-	pro
E	Beaver County, Pa., coal, preparation char-	1
	acteristics RI 7324 Beckley bed, W. Va., coal, carbonizing prop-	
E	Beckley bed, W. Va., coal, carbonizing prop-	rec
	erties R1 6615	
	float-and-sink data RI 6652 froth-flotation washability data RI 6652	res
	froth-flotation washability data RI 6652	tec
E	Schenic acid, irradiation of, effect OP 196-68	use
E	Behenic acid, irradiation of, effect OP 196-68 Belgium, coal, production and consumption IC 8380	Bery
	mineral industry, annual review	
	MY 1968 (v. IV)	Bery
F	Bell Mt. Tunnel mine, Pa., anthracite,	Bery
-	washing characteristics RI 6989	Derg
F	Bentonite, drilling fluid, leonardite addi-	Bery
_	tions to, effect. RI 7043	ent
	tions to, effect RI 7043 leonardite-product additions to, effect RI 7043 pesticide diluent, use as IC 8260	hea
	nesticide diluent, use as	Bery
F	Sentonite-clay binder, iron ore	D
-	pelletizing tests with RI 7206; OP 102-68	Bery
F	Benzene, electrochemical reduction of RI 7017	Port
-	in ethanol and hexamethylphos-	Bery
	phoramide OP 107-69	
	enthalow of combustion OP 72-69	-
F	enthalpy of combustion OP 72-69 Benzene carboxylic acids, from coal, anal-	
-	vees method OP 82 67	Bery
Б	yses, method OP 83-67 Benzene rings, in condensed thiophenes,	
	infrored withoutions DI 6011	_ 1
	infrared vibrations RI 6911	Bery
	electrochemical reduction, in ethanol con- taining hexamethylphosphoramide OP 4-67	_
Т		sol
E	Senzenepolycarboxylic acids, selective de-	
-	carboxylation method OP 188-67	Bery
E	Senzhydrol, hydrogenation under hydro-	-
-	formylation conditions, kinetics OP 178-67	im
E	Benzofurans, from low-temperature coal-tar	••••
-	neutral oil, identification B 637	
E	Benzothiophenes, in high-boiling petroleum	me
	fractions, mass spectrometric anal-	Bery
	yses RI 6879	

ŧ

.

•) (

ł

Berea sand, Ohio, core samples, density and
berea samples, only and prospects IC 8330 secondary-recovery prospects RI 7007 W. Va., core samples, density and por-
W. Va., core samples, density and por- osity data
osity data IC 8330 Berea sandstone, Ohio, oil-production data IC 8250
Berea sandstone core, mobility-saturation relationship, laboratory study OP 26-67
Berea Stray sand, W. Va., core samples, density and porosity data IC 8330
Berea Stray sand, W. Va., core samples, density and porosity data IC 8330 Bergoo No. 1 mine, W. Va., coal, washing characteristics RI 6825 Bergoo No. 3 mine, W. Va., coal, washing characteristics RI 6825 Bering Sea National Wildlife Befuge, Alaska, mineral appraisal GS 7-68
Bergoo No. 3 mine, W. Va., coal, washing characteristics RI 6825
Bering Sea National Wildlife Befuge,
Bermuda, mineral industry, an- nual review MY 1968 (v. IV)
Bervl. flotation, from spodumene tailing UP 22-65
flotation characteristics RI 7188 heavy-liquid cyclone concentration of,
semicontinuous tests RI 7134
heavy-liquid cyclone concentration of, semicontinuous tests RI 7134 Beryllia, recovery, from red mud, process, description RI 6841 Beryllium, annual data MY 1968 (v. I-II) consumption B 630 electrowinning of, from beryllium oxide B 630 high-energy-rate extrusion, effect on structure and properties RI 6757
Beryllium, annual data MY 1968 (v. I-II)
consumption B 630
oxide OP 10-69
grades B 630
high-energy-rate extrusion, effect on
structure and properties RI 6757 high-purity, impurities in, optical
high-purity, impurities in, optical emission spectrographic deter-
mination OP 107-66 imports and exports B 630 in coal ash, spectrochemical determina- tion RI 7281 in permatite deposits, reconnaissance IC 8298
in coal ash, spectrochemical determina-
tion RI 7281
metallurgy B 630
metallurgyB 630 nonpegmatitic occurrences, investigation_ RI 6828
D 690
prices D 000
production B 630 metallothermic reduction of beryllium
prices B 630 production B 630 metallothermic reduction of beryllium oxide OP 17-66
oxide
oxide OP 17-66 recovery, from fluoferrate leach resi- due, process RI 6841 reserves B 630
oxide OP 17-66 recovery, from fluoferrate leach resi- due, process RI 6841 reserves B 630 technology B 630
oxide OP 17-66 recovery, from fluoferrate leach resi- due, process RI 6841 reserves B 630 technology B 630 uses OP 58-67 Bervilium concentrate, solvent extraction
oxide OP 17-66 recovery, from fluoferrate leach resi- due, process RI 6841 reserves B 630 technology B 630 uses OP 58-67 Bervilium concentrate, solvent extraction
oxideOP 17-66 recovery, from fluoferrate leach resi- due, process RI 6841 reserves B 630 technology B 630 uses OP 58-67 Beryllium concentrate, solvent extraction processing, laboratory studies OP 57-67 Beryllium deposits, investigation RI 7070 Beryllium detector nuclear operating pro-
oxideOP 17-66 recovery, from fluoferrate leach resi- due, process RI 6841 reserves B 630 technology B 630 uses OP 58-67 Beryllium concentrate, solvent extraction processing, laboratory studies OP 57-67 Beryllium deposits, investigation RI 7070 Beryllium detector nuclear operating pro-
oxide OP 17-66 recovery, from fluoferrate leach resi- due, process RI 6841 reserves B 630 technology B 630 uses OP 58-67 Beryllium concentrate, solvent extraction processing, laboratory studies OP 57-67 Beryllium deposits, investigation RI 7070 Beryllium detector, nuclear, operating pro- cedures RI 6828 Beryllium fluoride, calorimetric study OP 138-65
oxide OP 17-66 recovery, from fluoferrate leach resi- due, process RI 6841 reserves B 630 technology B 630 uses OP 58-67 Beryllium concentrate, solvent extraction processing, laboratory studies OP 57-67 Beryllium deposits, investigation RI 7070 Beryllium detector, nuclear, operating pro- cedures RI 6828 Beryllium fluoride, calorimetric study OP 138-65
oxideOP 17-66 recovery, from fluoferrate leach resi- due, process RI 6841 reserves B 630 technology B 630 uses OP 58-67 Beryllium concentrate, solvent extraction processing, laboratory studies OP 57-67 Beryllium deposits, investigation RI 7070 Beryllium detector, nuclear, operating pro- cedures RI 6828 Beryllium fluoride, calorimetric study OP 138-65 enthalpy RI 6664 heat capacity RI 6664 Beryllium-fluorite deposits Alaska OFR 1-65 7-65
oxideOP 17-66 recovery, from fluoferrate leach resi- due, process RI 6841 reserves B 630 technology B 630 uses OP 58-67 Beryllium concentrate, solvent extraction processing, laboratory studies OP 57-67 Beryllium deposits, investigation RI 7070 Beryllium detector, nuclear, operating pro- cedures RI 6828 Beryllium fluoride, calorimetric study OP 138-65 enthalpy RI 6664 heat capacity RI 6664 Beryllium-fluorite deposits Alaska OFR 1-65 7-65
oxide OP 17-66 recovery, from fluoferrate leach resi- due, process RI 6841 reserves B 630 technology B 630 uses OP 58-67 Beryllium concentrate, solvent extraction processing, laboratory studies OP 57-67 Beryllium deposits, investigation RI 7070 Beryllium detector, nuclear, operating pro- cedures RI 6828 Beryllium fluoride, calorimetric study OP 138-65 enthalpy RI 6664 heat capacity RI 6664 Beryllium-fluorite deposits, Alaska OFR 1-65, 7-65 Beryllium industry, organization B 630 problems RI 6630
oxideOP 17-66 recovery, from fluoferrate leach resi- due, process B 630 technology B 630 uses OP 58-67 Beryllium concentrate, solvent extraction processing, laboratory studies OP 57-67 Beryllium deposits, investigation RI 7070 Beryllium detector, nuclear, operating pro- cedures RI 6828 Beryllium fluoride, calorimetric study OP 138-65 enthalpy RI 6664 heat capacity RI 6664 beryllium-fluorite deposits, Alaska OFR 1-65, 7-65 Beryllium industry, organization B 630 problems B 630 Beryllium metal, impurities in, optical emission spectrographic deter-
oxideOP 17-66 recovery, from fluoferrate leach resi- due, process B 630 technology B 630 uses OP 58-67 Beryllium concentrate, solvent extraction processing, laboratory studies OP 57-67 Beryllium deposits, investigation RI 7070 Beryllium detector, nuclear, operating pro- cedures RI 6828 Beryllium fluoride, calorimetric study OP 138-65 enthalpy RI 6664 heat capacity RI 6664 beryllium-fluorite deposits, Alaska OFR 1-65, 7-65 Beryllium industry, organization B 630 problems B 630 Beryllium metal, impurities in, optical emission spectrographic deter-
oxideOP 17-66 recovery, from fluoferrate leach resi- due, process B 630 technology B 630 uses OP 58-67 Beryllium concentrate, solvent extraction processing, laboratory studies OP 57-67 Beryllium deposits, investigation RI 6828 Beryllium fluoride, calorimetric study OP 138-65 enthalpy RI 6664 beat capacity RI 6664 Beryllium-fluorite deposits, Alaska OFR 1-65, 7-65 Beryllium industry, organization B 630 problems B 630 Beryllium metal, impurities in, optical emission spectrographic deter- mination OP 107-66 X-ray fluorescent analysis OP 195-68 Beryllium minerals, flotation characteris-
oxideOP 17-66 recovery, from fluoferrate leach resi- due, process B 630 technology B 630 uses OP 58-67 Beryllium concentrate, solvent extraction processing, laboratory studies OP 57-67 Beryllium deposits, investigation RI 7070 Beryllium detector, nuclear, operating pro- cedures RI 6828 Beryllium fluoride, calorimetric study OP 138-65 enthalpy RI 6664 heat capacity RI 6664 heat capacity RI 6664 beryllium-fluorite deposits, Alaska OFR 1-65, 7-65 Beryllium industry, organization B 630 problems B 630 Beryllium metal, impurities in, optical emission spectrographic deter- mination OP 107-66 X-ray fluorescent analysis OP 195-68 Beryllium minerals, flotation characteris- tics, contact-angle method RI 7188
oxide OP 17-66 recovery, from fluoferrate leach residue, process RI 6841 reserves B 630 technology B 630 uses OP 58-67 Beryllium concentrate, solvent extraction processing, laboratory studies OP 57-67 Beryllium concentrate, solvent extraction processing, laboratory studies OP 57-67 Beryllium deposits, investigation RI 6828 Beryllium detector, nuclear, operating procedures RI 6828 Beryllium fluoride, calorimetric study OP 138-65 enthalpy RI 6664 beat capacity RI 6664 Beryllium industry, organization B 630 problems B 630 Beryllium metal, impurities in, optical emission spectrographic deter mination OP 107-66 X-ray fluorescent analysis OP 195-68 Beryllium minerals, flotation characteris- tics, contact-angle method microflotation method RI 7188 microflotation method RI 7188 Beryllium ore, low-grade, nonpermatitic.
oxide OP 17-66 recovery, from fluoferrate leach residue, process RI 6841 reserves B 630 technology B 630 uses OP 58-67 Beryllium concentrate, solvent extraction processing, laboratory studies OP 57-67 Beryllium concentrate, solvent extraction processing, laboratory studies OP 57-67 Beryllium deposits, investigation RI 6828 Beryllium detector, nuclear, operating procedures RI 6828 Beryllium fluoride, calorimetric study OP 138-65 enthalpy RI 6664 beat capacity RI 6664 Beryllium industry, organization B 630 problems B 630 Beryllium metal, impurities in, optical emission spectrographic deter mination OP 107-66 X-ray fluorescent analysis OP 195-68 Beryllium minerals, flotation characteris- tics, contact-angle method microflotation method RI 7188 microflotation method RI 7188 Beryllium ore, low-grade, nonpermatitic.
oxideOP 17-66 recovery, from fluoferrate leach resi- due, process B 630 technology B 630 uses OP 58-67 Beryllium concentrate, solvent extraction processing, laboratory studies OP 57-67 Beryllium deposits, investigation RI 7070 Beryllium detector, nuclear, operating pro- cedures RI 6828 Beryllium fluoride, calorimetric study OP 138-65 enthalpy RI 6664 heat capacity RI 6664 beryllium-fluorite deposits, Alaska OFR 1-65, 7-65 Beryllium industry, organization B 630 problems B 630 Beryllium metal, impurities in, optical emission spectrographic deter- mination OP 107-66 X-ray fluorescent analysis OP 195-68 Beryllium minerals, flotation characteris- tics, contact-angle method RI 7188 microflotation method RI 7188 Beryllium ore, low-grade, nonpegmatitic, investigation RI 6828
oxide OP 17-66 recovery, from fluoferrate leach residue, process RI 6841 reserves B 630 technology B 630 uses OP 58-67 Beryllium concentrate, solvent extraction processing, laboratory studies OP 57-67 Beryllium deposits, investigation RI 6828 Beryllium fluoride, calorimetric study OP 138-65 enthalpy RI 6664 heat capacity RI 6664 Beryllium industry, organization B 630 problems B 630 problems B 630 problems B 630 Beryllium industry, organization B 630 Beryllium metal, impurities in, optical emission spectrographic deter- mination OP 107-66 X-ray fluorescent analysis OP 195-68 Beryllium minerals, flotation characteris- tics, contact-angle method microflotation method RI 7188 Beryllium ore, low-grade, nonpegmatitic, investigation solvent extraction processing, labora- OP 57-67 Beryllium ore, low-grade, nonpegmatitic, investigation nory studies OP 57-
oxide OP 17-66 recovery, from fluoferrate leach residue, process RI 6841 reserves B 630 technology B 630 uses OP 58-67 Beryllium concentrate, solvent extraction processing, laboratory studies OP 57-67 Beryllium deposits, investigation RI 7070 Beryllium detector, nuclear, operating procedures RI 6828 Beryllium fluoride, calorimetric study. OP 138-65 enthalpy RI 6664 heat capacity RI 6664 Beryllium industry, organization B 630 problems B 630 problems B 630 Beryllium metal, impurities in, optical emission spectrographic deter- mination OP 107-66 X-ray fluorescent analysis OP 107-66 X-ray fluorescent analysis OP 107-66 Solvent extraction method RI 7188 microflotation method RI 7188 Beryllium ore, low-grade, nonpegmatitic, investigation RI 6828 solvent extraction processing, labora- tory studies tory studies OP 57-67 Beryllium oxide, electrowinning of beryl-
oxideOP 17-66 recovery, from fluoferrate leach resi- due, process B 630 technology B 630 uses OP 58-67 Beryllium concentrate, solvent extraction processing, laboratory studies OP 57-67 Beryllium deposits, investigation RI 7070 Beryllium detector, nuclear, operating pro- cedures RI 6828 Beryllium fluoride, calorimetric study OP 138-65 enthalpy RI 6664 heat capacity RI 6664 Beryllium-fluorite deposits, Alaska OFR 1-65, 7-65 Beryllium industry, organization B 630 problems RI 6664 emission spectrographic deter- mination DP 107-66 X-ray fluorescent analysis OP 107-66 X-ray fluorescent analysis OP 195-68 Beryllium minerals, flotation characteris- tics, contact-angle method RI 7188 microflotation method RI 7188 Beryllium ore. low-grade, nonpegmatitic, investigation RI 6828 solvent extraction processing, labora- tory studies OP 10-69 impurity elements in, X-ray fluorescent
oxide OP 17-66 recovery, from fluoferrate leach residue, process RI 6841 reserves B 630 technology B 630 uses OP 58-67 Beryllium concentrate, solvent extraction processing, laboratory studies OP 57-67 Beryllium deposits, investigation RI 7070 Beryllium detector, nuclear, operating procedures RI 6828 Beryllium fluoride, calorimetric study. OP 138-65 enthalpy RI 6664 heat capacity RI 6664 Beryllium industry, organization B 630 problems B 630 problems B 630 Beryllium metal, impurities in, optical emission spectrographic deter- mination OP 107-66 X-ray fluorescent analysis OP 107-66 X-ray fluorescent analysis OP 107-66 Solvent extraction method RI 7188 microflotation method RI 7188 Beryllium ore, low-grade, nonpegmatitic, investigation RI 6828 solvent extraction processing, labora- tory studies tory studies OP 57-67 Beryllium oxide, electrowinning of beryl-

.

Beryllium resources, in Northwest, investigation _____ RI 7148

Beryllium sulfate, heat of formation RI 6724
Beryllium sulfate dihydrate, low-tempera-
ture thermodynamic properties RI 6925
Bervllium sulfate hydrates, heats of for-
mation RI 6724 Beryllium sulfate tetrahydrate, low-tem-
persture thermodynamic proper-
ties RI 6925
ties RI 6925 Betafite, magnetic susceptibility IC 8360
Biaxial stress field, circular opening in,
Photoelastic study RI 6812
Biaxial stress field, circular opening in, photoelastic study RI 6812 Big bed, Wash., coal, float-and-sink testa RI 6623 Big Eagle bed, W. Va., coal, carbonizing
characteristics RI 6872
characteristics RI 6872 Big Injun horizon, W. Va., lithology OP 122-66
petrography OP 122-66
petrography OP 122-66 reservoirs OP 122-66
Big Injun sand. Ohio, core samples, density
and porosity data IC 8330 W. Va., core samples, density and poros-
W. Va., core samples, density and poros-
ity data IC 8330 Big Lime sand, W. Va., core samples, den-
Big Lime sand, W. Va., core samples, den-
Binder from coal and apphalt method
Binder, from coal and asphalt, method, patent P 17-66 Biochemical oxygen demand, lowering,
Biochemical ovvgen demand lowering
in sewage, use of coal for OFR 12-69
Biphenyl, carbon shieldings, calculated
and observed OP 77-68
and observed OP 77-68 from low-temperature coal-tar neutral oil,
identification B 637
Bisbenzene chromium, chromium metal
from, by thermal decomposition RI 7112
Bismuth, annual data
consumption B 630 grades B 630
grades B 630
imports and exports B 630 in coal ash, spectrochemical determina-
tion RI 7281
prices B 630 production B 630
production B 630
production B 630 reserves B 630 technology B 630
production B 630 reserves
production B 630 reserves B 630 technology B 630 uses B 630 Bismuth industry, organization B 630
production B 630 reserves B 630 technology B 630 uses B 630 Bismuth industry, organization B 630 problems B 630
production B 630 reserves B 630 technology B 630 uses B 630 Bismuth industry, organization B 630 problems B 630
production B 630 reserves B 630 technology B 630 uses B 630 Bismuth industry, organization B 630 problems B 630
production B 630 reserves B 630 technology B 630 uses B 630 Bismuth industry, organization B 630 problems B 630 Bismuth salts, solubility, in liquid am- Monia OP 78-66 Bitter Lake National Wildlife Refuge,
production B 630 reserves B 630 technology B 630 uses B 630 problems B 630 Bismuth industry, organization B 630 problems B 630 Bismuth salts, solubility, in liquid am- monia OP 78-66 Bitter Lake National Wildlife Refuge, N. Mex., mineral appraisal GS 5-67 Bituminous coal. Alaska, coking char-
production B 630 reserves B 630 technology B 630 uses B 630 problems B 630 Bismuth industry, organization B 630 problems B 630 Bismuth salts, solubility, in liquid am- monia OP 78-66 Bitter Lake National Wildlife Refuge, N. Mex., mineral appraisal GS 5-67 Bituminous coal. Alaska, coking char-
production B 630 reserves B 630 technology B 630 uses B 630 problems B 630 Bismuth industry, organization B 630 problems B 630 Bismuth salts, solubility, in liquid am- monia OP 78-66 Bitter Lake National Wildlife Refuge, N. Mex., mineral appraisal GS 5-67 Bituminous coal. Alaska, coking char-
production B 630 reserves B 630 technology B 630 uses B 630 problems B 630 Bismuth industry, organization B 630 problems B 630 Bismuth salts, solubility, in liquid am- B 630 Bismuth salts, solubility, in liquid am- D 78-66 Bitter Lake National Wildlife Refuge, N. Mex., mineral appraisal GS 5-67 Bituminous coal, Alaska, coking char- acteristics, summary OFR 11-67 occurrences OFR 11-67 Bituminous coal annual data MY 1968 (r LIL)
production B 630 reserves B 630 technology B 630 uses B 630 problems B 630 Bismuth industry, organization B 630 problems B 630 Bismuth salts, solubility, in liquid am- B 630 Bismuth salts, solubility, in liquid am- D 78-66 Bitter Lake National Wildlife Refuge, N. Mex., mineral appraisal GS 5-67 Bituminous coal, Alaska, coking char- acteristics, summary OFR 11-67 occurrences OFR 11-67 Bituminous coal annual data MY 1968 (r LIL)
production B 630 reserves B 630 technology B 630 uses B 630 problems B 630 Bismuth industry, organization B 630 problems B 630 Bismuth salts, solubility, in liquid am- B 630 Bismuth salts, solubility, in liquid am- D 78-66 Bitter Lake National Wildlife Refuge, N. Mex., mineral appraisal GS 5-67 Bituminous coal, Alaska, coking char- acteristics, summary OFR 11-67 occurrences OFR 11-67 Bituminous coal annual data MY 1968 (r LIL)
production B 630 reserves B 630 technology B 630 uses B 630 Bismuth industry, organization B 630 problems B 630 Bismuth salts, solubility, in liquid am- monia OP 78-66 Bitter Lake National Wildlife Refuge, N. Mex., mineral appraisal OP 78-66 Bitter Lake National Wildlife Refuge, N. Mex., mineral appraisal OF 78-66 Bitter Lake National Wildlife Refuge, N. Mex., mineral appraisal OF 78-66 Bitter Lake National Wildlife Refuge, N. Mex., mineral appraisal OF 78-66 Bittuminous coal, Alaska, coking char- acteristics, summary OFR 11-67 occurrences OFR 11-67 Bituminous coal, annual data _ MY 1968 (v. I-II) analyses RI 6622, 6792, 6904, 7104, 7219 Australian, entrained-bed carbonization, study RI 6608
production B 630 reserves B 630 technology B 630 uses B 630 bismuth industry, organization B 630 problems B 630 Bismuth industry, organization B 630 problems B 630 Bismuth industry, organization B 630 Bismuth salts, solubility, in liquid am- B 630 Bituminous coal, Alaska, coking char- CP 78-66 Bituminous coal, Alaska, coking char- acteristics, summary occurrences OFR 11-67 Bituminous coal, annual data MY 1968 (v. I-II) analyses RI 6622, 6792, 6904, 7104, 7219 Australian, entrained-bed carbonization, study study RI 6608 byproducts B 630
production B 630 reserves B 630 technology B 630 uses B 630 Bismuth industry, organization B 630 problems B 630 problems B 630 Bismuth industry, organization B 630 problems B 630 Bismuth salts, solubility, in liquid am- monia D 78-66 Bitter Lake National Wildlife Refuge, N. Mex., mineral appraisal OF 78-66 Dituminous coal, Alaska, coking char- acteristics, summary OFR 11-67 Bituminous coal, annual data MY 1968 (v. I-II) Australian, entrained-bed carbonization, study RI 6622, 6792, 6904, 7104, 7219 Australian, entrained-bed carbonization, study RI 6608 Byproducts B 630 byproducts B 630 Caking properties, destroying, by thermal B 630
production B 630 reserves B 630 technology B 630 uses B 630 Bismuth industry, organization B 630 problems B 630 problems B 630 Bismuth industry, organization B 630 problems B 630 Bismuth salts, solubility, in liquid am- monia B 630 Bitter Lake National Wildlife Refuge, N. Mex., mineral appraisal N. Mex., mineral appraisal OP 78-66 Bituminous coal, Alaska, coking char- acteristics, summary OFR 11-67 occurrences OFR 11-67 Bituminous coal, annual data MY 1968 (v. I-II) analyses RI 6622, 6792, 6904, 7104, 7219 Australian, entrained-bed carbonization, study study B 630 caking properties, destroying, by thermal and oxidative treatment and oxidative treatment RI 6605 carbonization B 630
production B 630 reserves B 630 technology B 630 uses B 630 Bismuth industry, organization B 630 problems B 630 problems B 630 Bismuth industry, organization B 630 problems B 630 Bismuth salts, solubility, in liquid am- monia M 630 Bitter Lake National Wildlife Refuge, 0P 78-66 Bitter Lake National Wildlife Refuge, 0P 78-67 Bituminous coal, Alaska, coking char- acteristics, summary OFR 11-67 occurrences OFR 11-67 occurrences OFR 11-67 bituminous coal, annual data MY 1968 (v. I-II) analyses RI 6622, 6792, 6904, 7104, 7219 Australian, entrained-bed carbonization, study study B 630 caking properties. destroying, by thermal and oxidative treatment and oxidative treatment RI 6603 fuidized-bed, low-temperature RI 7322
production B 630 reserves B 630 technology B 630 uses B 630 Bismuth industry, organization B 630 problems B 630 problems B 630 Bismuth industry, organization B 630 problems B 630 Bismuth salts, solubility, in liquid am- monia M 630 Bitter Lake National Wildlife Refuge, N. Mex., mineral appraisal OP 78-66 Bituminous coal, Alaska, coking char- acteristics, summary OFR 11-67 Bituminous coal, annual data MY 1968 (v. I-II) analyses RI 6622, 6792, 6904, 7104, 7219 Australian, entrained-bed carbonization, study RI 6608 byproducts B 630 caking properties. destroying, by thermal and oxidative treatment RI 6605 carbonization B 630 fluidized-bed, low-temperature RI 7322 consumption B 630
production B 630 reserves B 630 technology B 630 uses B 630 Bismuth industry, organization B 630 problems B 630 problems B 630 Bismuth industry, organization B 630 problems B 630 Bismuth industry, organization B 630 problems B 630 Bismuth salts, solubility, in liquid am- monia M 630 Monia OP 78-66 Bitter Lake National Wildlife Refuge, N. Mex., mineral appraisal GS 5-67 Bituminous coal, Alaska, coking char- acteristics, summary OFR 11-67 occurrences OFR 11-67 Bituminous coal, annual data MY 1968 (v. I-II) analyses RI 6622, 6792, 6904, 7104, 7219 Australian, entrained-bed carbonization, study B 630 caking properties. destroying, by thermal and oxidative treatment RI 6605 carbonization B 630 fluidized-bed, low-temperature RI 7322 consumption B 630 decaking, methods OP 55-65
production B 630 reserves B 630 technology B 630 uses B 630 Bismuth industry, organization B 630 problems B 630 problems B 630 Bismuth industry, organization B 630 problems B 630 Bismuth industry, organization B 630 problems B 630 Bismuth salts, solubility, in liquid am- monia M 630 Monia OP 78-66 Bitter Lake National Wildlife Refuge, N. Mex., mineral appraisal GS 5-67 Bituminous coal, Alaska, coking char- acteristics, summary OFR 11-67 occurrences OFR 11-67 Bituminous coal, annual data MY 1968 (v. I-II) analyses RI 6622, 6792, 6904, 7104, 7219 Australian, entrained-bed carbonization, study B 630 caking properties. destroying, by thermal and oxidative treatment RI 6605 carbonization B 630 fluidized-bed, low-temperature RI 7322 consumption B 630 decaking, methods OP 55-65
production B 630 reserves B 630 technology B 630 uses B 630 Bismuth industry, organization B 630 problems B 630 problems B 630 Bismuth industry, organization B 630 problems B 630 Bismuth industry, organization B 630 Bismuth salts, solubility, in liquid am- monia M 630 Bitter Lake National Wildlife Refuge, N. Mex., mineral appraisal OP 78-66 Bittuminous coal, Alaska, coking char- acteristics, summary OFR 11-67 Bituminous coal, annual data MY 1968 (v. I-II) analyses RI 6622, 6792, 6904, 7104, 7219 Australian, entrained-bed carbonization, study RI 6608 byproducts B 630 caking properties. destroying, by thermal and oxidative treatment and oxidative treatment RI 6605 carbonization B 630 fluidized-bed, low-temperature RI 7322 consumption B 630 decaking, methods OP 55-65 electron spin resonance OP 148-68 gasification B
production B 630 reserves B 630 technology B 630 uses B 630 Bismuth industry, organization B 630 problems B 630 problems B 630 Bismuth industry, organization B 630 problems B 630 Bismuth industry, organization B 630 Bismuth salts, solubility, in liquid am- monia M 630 Bitter Lake National Wildlife Refuge, N. Mex., mineral appraisal OP 78-66 Bittuminous coal, Alaska, coking char- acteristics, summary OFR 11-67 Bituminous coal, annual data MY 1968 (v. I-II) analyses RI 6622, 6792, 6904, 7104, 7219 Australian, entrained-bed carbonization, study RI 6608 byproducts B 630 caking properties. destroying, by thermal and oxidative treatment and oxidative treatment RI 6605 carbonization B 630 fluidized-bed, low-temperature RI 7322 consumption B 630 decaking, methods OP 55-65 electron spin resonance OP 148-68 gasification B
production B 630 reserves B 630 technology B 630 uses B 630 Bismuth industry, organization B 630 problems B 630 problems B 630 Bismuth industry, organization B 630 problems B 630 Bismuth salts, solubility, in liquid am- monia B 630 Bitter Lake National Wildlife Refuge, N. Mex., mineral appraisal OP 78-66 Bittuminous coal, Alaska, coking char- acteristics, summary OFR 11-67 occurrences OFR 11-67 Bituminous coal, annual data MY 1968 (v. I-II) analyses RI 6622, 6792, 6904, 7104, 7219 Australian, entrained-bed carbonization, study RI 6608 byproducts B 630 caking properties, destroying, by thermal and oxidative treatment and oxidative treatment RI 6605 carbonization B 630 decaking, methods OP 55-65 electron spin resonance OP 148-68 gasification B 630 grades B 630 highly fluid. entrained-bed carbonization RI 7141 <
production B 630 reserves B 630 technology B 630 uses B 630 Bismuth industry, organization B 630 problems B 630 problems B 630 Bismuth industry, organization B 630 problems B 630 Bismuth industry, organization B 630 Bismuth salts, solubility, in liquid am- monia M 630 Bitter Lake National Wildlife Refuge, N. Mex., mineral appraisal OP 78-66 Bittuminous coal, Alaska, coking char- acteristics, summary OFR 11-67 Bituminous coal, annual data MY 1968 (v. I-II) analyses RI 6622, 6792, 6904, 7104, 7219 Australian, entrained-bed carbonization, study RI 6608 byproducts B 630 caking properties. destroying, by thermal and oxidative treatment and oxidative treatment RI 6605 carbonization B 630 fluidized-bed, low-temperature RI 7322 consumption B 630 decaking, methods OP 55-65 electron spin resonance OP 148-68 gasification B
production B 630 reserves B 630 technology B 630 uses B 630 Bismuth industry, organization B 630 problems B 630 problems B 630 Bismuth industry, organization B 630 problems B 630 Bismuth salts, solubility, in liquid am- monia M 630 Bitter Lake National Wildlife Refuge, N. Mex., mineral appraisal Stuminous coal, Alaska, coking char- acteristics, summary GS 5-67 Bituminous coal, annual data MY 1968 (v. I-II) analyses RI 6622, 6792, 6904, 7104, 7219 Australian, entrained-bed carbonization, study RI 6608 byproducts B 630 caking properties, destroying, by thermal and oxidative treatment RI 6605 carbonization B 630 fluidized-bed, low-temperature RI 7322 consumption B 630 decaking, methods OP 55-65 electron spin resonance D 75-65 electron spin resonance B 630 gasification B 630 mighly fluid. entrained-bed carbonization RI 7141
production B 630 reserves B 630 technology B 630 uses B 630 Bismuth industry, organization B 630 problems B 630 problems B 630 Bismuth industry, organization B 630 problems B 630 Bismuth salts, solubility, in liquid am- monia M 630 Bitter Lake National Wildlife Refuge, N. Mex., mineral appraisal GS 5-67 Bituminous coal, Alaska, coking char- acteristics, summary OFR 11-67 acturistics, summary OFR 11-67 Bituminous coal, annual data MY 1968 (v. I-II) analyses RI 6622, 6792, 6904, 7104, 7219 Australian, entrained-bed carbonization, study RI 6608 byproducts B 630 caking properties. destroying, by thermal and oxidative treatment RI 6605 carbonization B 630 fluidized-bed, low-temperature RI 7322 consumption B 630 decaking, methods OP 55-65 electron spin resonance D 55-65 electron spin resonance B 630 nightly fluid. entrained-bed carbo
production B 630 reserves B 630 technology B 630 uses B 630 Bismuth industry, organization B 630 problems B 630 Bismuth industry, organization B 630 problems B 630 Bismuth industry, organization B 630 problems B 630 Bismuth salts, solubility, in liquid am- monia M 630 monia OP 78-66 Bitter Lake National Wildlife Refuge, N. Mex., mineral appraisal GS 5-67 Bituminous coal, Alaska, coking char- acteristics, summary OFR 11-67 bituminous coal, annual data MY 1968 (v. I-II) analyses RI 6622, 6792, 6904, 7104, 7219 Australian, entrained-bed carbonization, study RI 6608 byproducts B 630 carbonization B 630 fluidized-bed, low-temperature RI 7322 consumption B 630 decaking, methods OP 55-65 electron spin resonance OP 148-68 gasification B 630 grades B 630 highly fluid. entrained-bed carbon
production B 630 reserves B 630 technology B 630 uses B 630 Bismuth industry, organization B 630 problems B 630 Bismuth industry, organization B 630 problems B 630 Bismuth industry, organization B 630 problems B 630 Bismuth salts, solubility, in liquid am- monia M 630 monia OP 78-66 Bitter Lake National Wildlife Refuge, N. Mex., mineral appraisal GS 5-67 Bituminous coal, Alaska, coking char- acteristics, summary OFR 11-67 bituminous coal, annual data MY 1968 (v. I-II) analyses RI 6622, 6792, 6904, 7104, 7219 Australian, entrained-bed carbonization, study B 630 caking properties. destroying, by thermal and oxidative treatment B 630 carbonization B 630 fluidized-bed, low-temperature RI 7322 consumption B 630 grades B 630 highly fluid. entrained-bed carbonization RI 7141 imports and exports B 630 grades B 630 <t< td=""></t<>
production B 630 reserves B 630 technology B 630 uses B 630 Bismuth industry, organization B 630 problems B 630 problems B 630 Bismuth industry, organization B 630 problems B 630 Bismuth salts, solubility, in liquid am- monia OP 78-66 Bitter Lake National Wildlife Refuge, N. Mex., mineral appraisal GS 5-67 Bituminous coal, Alaska, coking char- acteristics, summary OFR 11-67 occurrences OFR 11-67 Bituminous coal, annual data MY 1968 (v. I-II) analyses RI 6602 hyproducts B 630 caking properties, destroying, by thermal and oxidative treatment RI 6605 carbonization B 630 fluidized-bed, low-temperature RI 7322 consumption B 630 decaking, methods OP 55-65 electron spin resonance OP 148-68 gasification B 630 mining trends B 630 mining trends B 630 production B 630
production B 630 reserves B 630 technology B 630 uses B 630 Bismuth industry, organization B 630 problems B 630 Bismuth industry, organization B 630 Bismuth salts, solubility, in liquid am- monia DP 78-66 Bitter Lake National Wildlife Refuge, N. Mex., mineral appraisal GS 5-67 Bituminous coal, Alaska, coking char- acteristics, summary OFR 11-67 occurrences OFR 11-67 Bituminous coal, annual data MY 1968 (v. I-II) analyses RI 6622, 6792, 6904, 7104, 7219 Australian, entrained-bed carbonization, study B 630 caking properties, destroying, by thermal and oxidative treatment RI 6605 carbonization B 630 fluidized-bed, low-temperature RI 7322 consumption B 630 decaking, methods OP 55-65 electron spin resonance OP 54-65 gasification B 630 mining trends B 630 mining trends B 630 production B 630 protees B 630
production B 630 reserves B 630 technology B 630 uses B 630 Bismuth industry, organization B 630 problems B 630 problems B 630 Bismuth industry, organization B 630 problems B 630 Bismuth salts, solubility, in liquid am- monia OP 78-66 Bitter Lake National Wildlife Refuge, N. Mex., mineral appraisal GS 5-67 Bituminous coal, Alaska, coking char- acteristics, summary OFR 11-67 occurrences OFR 11-67 Bituminous coal, annual data MY 1968 (v. I-II) analyses RI 6602 hyproducts B 630 caking properties, destroying, by thermal and oxidative treatment RI 6605 carbonization B 630 fluidized-bed, low-temperature RI 7322 consumption B 630 decaking, methods OP 55-65 electron spin resonance OP 148-68 gasification B 630 mining trends B 630 mining trends B 630 production B 630

Dia 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Bituminous coal, technology B 630 tipple and delivered, analyses
BI 6622, 6792, 6904, 7104, 7219
transportation B 630 U.S., sulfur content IC 8312
U.S., sulfur content IC 8312
uses B 630 washed, ash content, determining, X-ray
washed, ash content, determining, X-ray
Ash meter
washed, ash content, determining, X-ray ash meter OP 7-67 X-ray scattering intensities B 648 Bituminous coal deposits, U.S. recovery percentage RI 7109 Bituminous-coal industry, organization B 630 probleme B 630
percentage RI 7109
Bituminous-coal industry, organization B 630
problems B 630 Bituminius coal mines, undeground, jute
Bituminius coal mines, undeground, jute
line-brattice system, performance tests RI 6725
tests RI 6725 Bituminous-coal seams, thickness, effect on
production IC 8345 Bituminous-coal tar, low-temperature, neu-
tral-oil components, identification B 637
Bituminous materials, assaying, automated
modified Fischer retorts RI 6676
Bixbyite, magnetic susceptibility IC 8360 Black Diamond Coal Co. mine, Va., coal, washing characteristics RI 6740 Blade erosion, coal-fired gas turbine, tests RI 6920 Blaid erosion, coal-fired gas turbine, tests RI 6920
washing characteristics RI 6740
Blade erosion, coal-fired gas turbine, tests RI 6920
Blasts, underground, pressure pulses from.
investigation RI 7147 Blast furnace, experimental, coal-injec-
formcoke use in $OP 43-68$
high-pressure, design and operation OP 13-67
elevated top pressure, effect OP 13-67
high wind rate, effect OP 13-67
formcoke use in OP 43-68 high-pressure, design and operation OP 13-67 elevated top pressure, effect OP 13-67 high wind rate, effect OP 13-67 operation, with very low slag volu-
ume, studyOP 166-65 formcoke as total fuel for, evaluation RI 6717 iron, thermochemical model, development RI 7031 low slag-volume operation of, tests RI 6678
formcoke as total fuel for, evaluationR1 6717
low slag-volume operation of tests RI 6678
mathematical model, reaction rate co-
mathematical model, reaction rate co- efficient determination RI 7128
operation, with natural gas injection and
oxygen-enriched blast, tests RI 6977 reduction zone, mathematical model RI 6975
Blast-furnace bells, sealing system, for high-
pressure top operation, patent P 6-65
pressure top operation, patent P 6-65 Blast-furnace burdens, prereduced, ef-
fect on coke rate OP 130-66 Blast-furnace fuel, anthracite briquets, hollow-core, tests RI 7157
hollow-core, tests RI 7157
Blast-furnace iron, prerefining, patent P 18-66 Blast-furnace matte, copper recovery from,
method
lead recovery from, method RI 7042
method RI 7402 lead recovery from, method RI 7042 Blast-furnace performance, optimizing,
operating practices OP 11-67 Blast-furnace productivity, effect of high
ton processes and mind sets OD 10 27
pellets. patent P 12-66
Blast-furnace smelting, reduced iron-ore pellets, patent P 12-66 Blast pressure, in underground explosions,
investigation RI 7147
investigation RI 7147 Blast vibrations, reducing, tests OP 147-69 Blasting, in shaft-sinking operatons, safe-
ty recommendations IC 8365
quarry, vibration levels from, effect of explosive charge weight RI 6774
rock presplitting by, held tests RI 6843
undeground, in frozen gravel, fac-
torial experiment design for OP 156-69
field tests OP 156-69
vibration amplitudes in, empirical
propagation equation for OP 147-69
vibration levels, transmission, across pre-
split fracture plane RI 6695 Blasting agents, commercial, composition IC 8405
properties IC 8405

ı

E

Ē

I

L •

Blasting agents, commercial, selection fac-tors for ______ IC 8405 Blasting caps, properties ______ IC 8405 Blasting devices, permissible, list _____ IC 8249, 8371 Blasting effects, control, suggested code Blasting effects, control, suggested code amendment OP 121-66 Blasting research, summary OP 77-67 Blasting techniques, controlled, large un-derground openings IC 8294 Blasting units, multiple-shot, fees for test-ing, amendments S 16E single-shot, fees for testing, amendments S 12D Blasting vibrations, problems, study_OP 116-67 quarries, damage criteria, recommenquarries, damage criteria, recommendations dations safe level, determining, method ____ OP 132-66 Blaw-Knox Co.-Bureau of Mines coal-gasi-fication tests, Lurgi pressure gasifier --- RI 6721 Bleeder entries, in coal-mine ventilating systems, effect of barometric changes on _____ RI 6786; 0P 111-68 Block-caving mining methods and costs, Miami Copper Co., Ariz., Miami mine, copper Blue Range primitive area, Ariz, mineral IC 8271 Bluehill graphitic schist, gold-bearing, beneficiation studies ______ RI 7251 Bogoslof National Wildlife Refuge, Alaska, mineral appreciation Alaska, mineral appraisal _____ GS 7-68 Boilers, lignite-fired, ash fouling tendercies, study _____ OP 87-57 fireside deposits, controlling and re-_____ IC 8304 fireside deposits, controlling and re-moving IC 8304 thermal efficiency, testing for OP 105-65 Bolivia, economic progress, review OP 198-67 mineral industry, annual review MY 1968 (v. IV) natural gas, analyses MY 1968 (v. IV) natural gas, analyses IC 8356 Bomb, constant-volume, combustion and related phenomena in, study OFR 5-69 Bonds Creek oildfield, W. Va., oil recovery from, low-pressure gas drive method RI 6789 Borehole deformation, rock stress deter-mination by, method RI 6887 Borehole gage, three-component, for bore-hole-deformation measurements, design ----- RI 7015 _____ RI 7015 design ____ laboratory and field tests _____ RI 7015 Borehole photography, goniometer for, de-velopment and application Borer, continuous, use, in pitching anthra-____ RI 7097 cite bed Boric oxide-potassium fluoborate electro-RI 6759 lyte, boron from ______ RI 7028 Boring equipment, manufacturers of, list__ IC 8392 Boring machines, rock, linear cutter ap-paratus laboratory tests _____ OP 152-69 paratus laboratory tests _____ OP 152-69 Boring technology, horizontal, rock pene-trating methods ______ IC 8392 soil penetrating methods ______ IC 8392 state-of-the-art study ______ IC 8392 Borneo, crude oil, low-sulfur composition____ B 642 Bornite, magnetic susceptibility ______ IC 8383 Boron, annual data _____ MY 1968 (v. I-II) chemical-industry use, Calif. _____ IC 8244 fused-salt electrolysis, boric oxide-potas-sium fluoborate electrolyte _____ RI 7028 factors in, statistical eveluation _____ RI 7028 factors in, statistical eveluation _____ RI_7028 grades _ _____ **B** 630 ----in coal ash, spectrochemical determination RI 7281 in electrorefined vanadium, effect _____ OP 92-69 in oilfield waters, spectrometric determination, using plasma arc ____ OP 17-67 organic derivatives, spectral data _____ RI 6633

ŧ

f

¥

Ł

Boron, prices B 630 thermochemistry _____ OP 41-66 ____ B 630 uses _____ ------------vapor deposition of, by hydrogen reduction of boron trichloride _____ Boron additions, electrorefined vanadium, _ RI 7150 effect on mechanical properties ____ RI 7113 effect on response to heat treatment __ RI 7113 Boron carbide, vapor deposition of, by hy-drogen reduction of boron trichlor-PI 7150 _ **RI 7150** ide Boron-carbon additions, eelctrorefined va-nadium, effect on mechanical prop-RI 7113 erties . effect on response to heat treatment__ RI 7113 Boron compounds, imports and exports ____ B 630 thermochemistry ____ OP 41-66 thermochemistry uses B 630 Boron hydrides, flammability characteristics B 627 Boron minerals, consumption B 630 grades B 630 imports and exports B 630 proces B 630 production B 630 technology B 630 uses B 630 B 630 Boron-mineral industry, organization _____ B 630 problems - B 630 Boron-vanadium alloys, strain-aging effects in ______ RI 7222 Boscan petroleum, electrophoresis, in organic electrolyte ______ metallo-organic materials in, separation _ RI 6912 and characterization ______ RI 7273 Bosque del Apache National Wildlife Ref-uge, N. Mex., mineral appraisal __ GS 6-67 Botswana, mineral industry, annual Bottom Red Ash bed, Pa., anthracite, ex-perimental longwall mining, with shearer loader ______ RI 6745 washing characteristics _____ RI 6989 Bottom Ross bed, Pa., anthracite, properties _____ RI 7086 Boulangerite, magnetic susceptibility ____ IC 8383 Bournonite, magnetic susceptibility _____ IC 8383 Boulder County, Colo., coal industry in, ____ analysis Boulder sand, Pa., core samples, density **RI 6726** and porosity data Boulder-Weld coalfield, Colo., coal industry IC 8330

 Boulder-Weld coalfield, Colo., coal industry in, analysis
 RI 6726

 economic forecast
 RI 6726

 coal reserves
 RI 6726

 mining methods
 RI 6726

 Bowman County, N. Dak., lignite and lignite ash analyses
 RI 7158

 Bradford Third sand, Pa., core samples, density and porosity data
 IC 8330

 Brannerite, magnetic susceptibility
 IC 8360

 Brass, electrodeposition, effects of ultrasonics in
 RI 6938

 sonics in ______ leaded red, tin content reduction, effect **RI 6938** Jeaged red, tin content reduction, effect on properties ______ TPR 18 Brass plating, ultrasonics in, effect _____ OP 81-65 Braunite, magnetic susceptibility ______ IC 8359 Brazil, mineral industry, annual review MY 1968 (v. IV) Breathing apparatus, permissible, list ____ IC 8436 self-contained, approved by Bureau of Mines _____ IC 8281 Mines __ IC 8281 carbon dioxide determination, in in-spired air, machine-test method _____ RI 6865 closed-circuit compressed-oxygen, lowtemperature tests ______ RI 7192 fees for testing, amendments ______ S 13D low-temperature performance ______ RI 7077 new requirements for _____ OP 161-69

Breathing apparatus, self-contained, performance requirements discus, sion ______ OP 33-66, 109-66 rules for testing ______ S 13E Breithauptite, magnetic susceptibility ____ IC 8351 Brines, desulfating preliminary process development _____ RI 6928 flow in petroleum-reservoir rock samples, effect of magnetic fields _____ OF 5-65 flow rate in porous rocks, effect of ultra-oilfield, bromide in, determination RI 6959; OP 18-67 iodide in, determination _____ OP 18-67, 75-67 mineral content, salvaging, discussion OP 22-66 trace elements in, determination ____ OP 17-67 petroleum-bearing formation, chemistry OP 46-68 potassium recovery from, chemical precipitation-ion exchange method __ OP 86-68 Briquets, agglomerated anthracite, calcination, in vertical-shaft retort OFR 6-66 anthracite, hollow-core, as blast furnace fuel, furnace tests ______ RI 7157 production methods _____ RI 7157 prereduced, blast-furnace operation with, results _____ OP 130-66 tests for, development, discussion ____ OP 31-69 Briquetting, oak charcoal, experimental._ RI 7282 redwood charcoal, experimental _____ RI 7282 British Honduras, mineral industry annual review MY 1968 (v. IV) British Solomon Island, mineral industry, annual review__ MY 1968 (v. IV) Brochantite, magnetic susceptibility ____ IC 8383 Bromide, in oilfield brines, determination _____ RI 6959; OP 18-67 in oilfield waters, determination _____ OP 174-67 Bromination, separation of manganese metal from slag by, process ______ RI 6905 Bromine, annual data ______ MY 1968 (v. I-II) chemical-industry use, Calif. _____ IC 8244 consumption _____ B 630 grades _____ B 630 imports and exports _____ B 630 in chlorides, activation analysis _____ OP 70-67 in chlorides, activation analysis _____ OP 70-67 prices ______ B 630 production ______ B 630 reserves ______ B 630 transportation regulations ______ B 630 uses ______ B 630 Bromine compounds, grades ______ B 630 Bromine industry, organization ______ B 630 problems ______ B 630 Brockite, magnetic susceptibility _____ IC 8360 Brunckite, magnetic susceptibility _____ IC 8383 Brunei, mineral industry, annual Brunei, mineral industry, annual Brunel, mineral industry, annual review ______ MY 1968 (v. IV) Buchanan County, Va., coal, preparation characteristics ______ RI 6740 Buchanan County Coal Corp. mine, Va., coal, washing characteristics _____ R1 6740 Bucket-wheel simulator, mining mar-ginal deposits with, evaluation OFR 13-68 Buffalo Creek bed, W. Va., coal, carbonizing properties _____ RI 6899 Bulgaria, mineral industry, an-nual review _____ MY 1968 (v. IV) Bulk material transport, research pro-

gram _____ OP 30-67

Bureau of Mines, acid mine drainage, con- trol program OP 83-65
trol program OP 83-65
coal research, review IC 8277 coal technology, review IC 8277
coal technology review IC 8277
Durany of Minor our combustion oil-shald re-
torting process, development B 635 international activities, review IC 8277
internal antivitian antion IC 8277
international activities, review
SP 1-66, 2-66, 3-67, 4-68, 1-69 publications on oil shale, list IC 8429
publications on oil shale, list IC 8429
Bureau of Mines-American Gas Association
carbonization test, relation of retort
diameter to yields and products RI 6871 Bureau of Mines-Atomic Energy Com- mission, Colorado corehole No. 1,
Bureau of Mines-Atomic Energy Com-
mission Colorado corehole No. 1.
well logs OFR 2-66 Colorado corehole No. 3, drilling and
Colorado compole No 3 drilling and
coring data OFR 15-68
Bureau of Mines Experimental Blast Fur-
Bureau of Mines Experimental Diast Fur-
nace, oxygen-natural gas injection
tests RI 6977
Bureau of Mines low-temperature carboniza-
tion assay for coal, procedure B 638
Bureau of Mines publications, 1960-64 list SP 1-66
Bureau of Mines publications, 1960-64 list SP 1-66 1965 list SP 2-66
1966 list SP 4-68
1966 list SP 4-68 Bureau of Mines-Steinkohlengas A. G. coal-
gasification tests RI 6721
Burme mineral industry an-
Burner fuel oils, annual data PPS 56,61
Dunner fuel eile ennuel dete PPS 56 61
Durner fuel ons, annual uata is ou,or
Burnett compressibility apparatus, elastic
pressure distortion of volumes, equations for RI 7136
equations for RI (130
Burnett compressibility apparatus data, re-
duction of, equations for RI 7020
Burnett method, for high-pressure, high-
accuracy compressibility determina-
tions IC 8350
Burundi, mineral industry, an- nual review MY 1968 (v. IV) Bush Dome, Cliffside field, Tex., helium
nual review MY 1968 (v. IV)
Bush Dome, Cliffside field, Tex., helium
storage in OP 112-67 Butane-air mixtures, layered, flame propa-
Butang-air mixtures layered flame propa.
gation characteristics in, investiga-
tion RI 7078
Butane-natural gas mixtures, com-
pressibility factors, cell for
determining OP 132-67, 133-67
determining OP 132-67, 133-67 Butenes, mass spectral analyses B 634
Butt Mountain area, Va., hematitic sand-
stone deposits, study RI 6966
Buttenes, mass spectral analyses Butt Mountain area, Va., hematitic sand- stone deposits, study RI 6966 Butte copper deposit, Mont., assay data, statistical analysis RI 6955 tert-Butylamine, enthalpy of combustion OP 184-67 orbidan of formetics
statistical analysis RI 6955
tert-Butylamine, enthalpy of combustion OP 184-67
entrator of tormation OF 184-01
n-Butylbenzene, low-temperature ther-
modynamic properties UF 101-00
n-Butylbenzene, thermodynamic proper-
ties OP 64-66
ties OP 64-66 Butylpyrroles, thermal reactions RI 6720
1-Butylpyrrole, autoxidation OP_195-67
Butylthiophenes, mass. spectra RI 6741
structure correlations DI 6744
structure correlations RI 6741
c
Codmium annual data MN 1069 (T. II)
Cadmium, annual data MY 1968 (I-II)
consumption B 630
imports and exports B 630
prices B 630
production B 630
reserves B 630
technology B 630

uses _____ --+ Cadmium-antimony-lead alloys, properties RI 7285 Cadmium chloride-lead chloride system, vapor pres-

sures _____ RI 7307; OP 65-69

E

f

B 630

Cadmium-copper alloys, electrodeposition, effects of ultrasonics in RI 6938
Cadmium industry, organization H 630
problems B 630 Cadmium sulfate, anhydrous, heat of for-
mation RI 6617 Caking coals, pretreating-carbonizing-gasi-
fying combined process, patent P 6-69 Caking properties, bituminous coal, destroy-
ing, fixed-bed thermal and oxidate treatment RI 6605
coal, destroying, fluid-bed method RI 6797
Calcination, anthracite, in vertical-shaft retort OFR 6-66 Calcioborthite, magnetic susceptibil-
ity IC 9360 9993
Calcite, in coal, quantitative infrared determination OP 21-68
determination OP 21-68 Calcium, annual data MY 1968 (v. I-II) in coal, determination RI 7124
in fuel oil, determination, flame spec- trometric method OP 88-66
soluble, in iron flotation pulps meas-
urement, method OP 24-66 in iron-ore flotation, tests OP 30-65
Calcium chloride, chemical-industry use, Calif IC 8244
Calcium compounds, annual data MY 1968 (v. I-II)
Calcium fluoride, nonreactive flux, for
electroslag melting of titanium OP 159-68 use, as slag cover, in induction melting of titanium
use, in electrosiag melting of titanium OP 172-67
Calcium ion concentration, in iron flota- tion pulps, measurement OP 24-66 Calcium metal, transportation problems B 630
Calcium metal, transportation problems B 630 uses B 630
Calcium oxide, in coal ash, determination , RI 7240
spectrochemical method RI 6985 Calcium oxide-zirconium oxide system, cubic field, determination OFR 6-67
Calcium vanadate, precipitation, from alka-
line sodium vanadate solutions, methods
thermodynamic properties RI 6727
Calcium vanadate precipitate, vanadium recovery from, methods RI 7058
Calibration, primary standard gas mixtures for, preparation, method RI 6674
rotating-piston deadweight gage, piston constant determination, study RI 6824
California, alumina, chemical-industry de-
mand IC 8244 anorthosite, as potential aluminum source IC 8335
antimony, chemical-industry demand IC 8244
supply IC 8244
arsenic, chemical-industry demand IC 8244 supply IC 8244
asbestos, asphalt-product use IC 8300
chemical-industry demand IC 8244 production IC 8300
supply IC 8244
asphalt products, types, specifications,
and uses IC 8300
barite, chemical-industry demand IC 8244 supply IC 8244
bauxite, chemical-industry demand IC 8244
supply IC 8244
boron, chemical-industry demand IC 8244 supply IC 8244
bromine, chemical-industry demand IC 8244
Burbank area, auto wrecking and scrap processing industries SP 1-67
calcium chloride, chemical-industry de- mand IC 8244
supply IC 8244

۰ .

(

4

_

California, clays, chemical-industry de- mand IC 8244
supply IC 8244 coal, sulfur content, forms IC 8244 cobalt, chemical-industry demand IC 8244 supply IC 8244 copper, chemical-industry demand IC 8244 supply IC 8244 supply IC 8244 supply IC 8244
coal, sultur content, forms 1C 8301 cobalt, chemical-industry demand IC 8244
supply IC 8244
copper, chemical-industry demand IC 8244
crude oil, high-sulfur, composition B 642
crude oil, high-sulfur, composition B 642 low-sulfur, composition B 642
sulfur content RI 7059 Desolation Valley primitive area, min-
eral appraisal GS 10-67
eral appraisal GS 10-67 Devil Canyon-Bear Canyon primitive area, mineral appraisal GS 1-67
diatomite, asphalt-product use IC 8300
diatomite, asphalt-product use IC 8300 chemical-industry demand IC 8244 production IC 8300
supply IC 8300
Elk Hills field, oil-reservoir model studies RI 7052
fire clay, as potential aluminum source IC 8335 gold resources, Mother Lode belt, poten-
gold resources, Mother Lode belt, poten-
Tertiary gravels, investigation TPR 3
gypsum, chemical-industry demand IC 8244
gold resources, Mother Lode belt, poten- tial TPR 5 Tertiary gravels, investigation TPR 3 gypsum, chemical-industry demand IC 8244 supply IC 8244 heavy crude oil, production forecast IC 8352 resource IC 8352 thermal projects IC 8352 heavy crude-oil reservoirs, survey IC 8263 helium-bearing natural gases, analyses IC 8302 ilmenite deposits survey IC 8290
resource IC 8352
thermal projects IC 8352
heavy crude-oil reservoirs, survey IC 8263 helium-hearing natural gases analyses IC 8302
ilmenite deposits, survey IC 8290 Imperial and Riverside Counties, auto
Imperial and Riverside Counties, auto
wrecking and scrap processing in- dustries SP 1-67
iodine, chemical-industry demand IC 8244
dustries SP 1-67 iodine, chemical-industry demand IC 8244 supply IC 8244 iron oxide pigments, chemical-industry
supply IC 8244
lead, chemical-industry demand IC 8244 supply IC 8244
supply IC 8244 lead compounds, chemical-industry de- mand IC 8244
mand IC 8244 lime, chemical-industry demand IIC 8244
supply IC 8244
supply IC 8244 limestone, asphalt-product use IC 8300
chemical-industry demand IC 8244 production IC 8300
production IC 8300 supply IC 8244 Long Beach area, auto wrecking and
Long Beach area, auto wrecking and scrap processing industries SP 1-67
magnesium compounds, chemical-industry
demand IC 8244
supply IC 8244 manganese, chemical-industry demand_ IC 8244
supply IC 8244 mercury, chemical-industry demand IC 8244
mercury, chemical-industry demand IC 8244
production IC 8252 supply IC 8244
mercury mines, description IC 8252
mercury occurrences IC 8252 mercury prospects IC 8252
mica, asphalt-product use IC 8300 ground, chemical-industry demand IC 8244
ground, chemical-industry demand IC 8244
supply IC 8244 micaceous schist, mica flotation from RI 6668
mines, visitors' guide SP 2-67
minerals, production, annual data MY 1968 (v. I-II, III)
mineral commodities, in asphalt prod-
ucts, use IC 8300 mineral industry, annual re-
view MY 1968 (v. III) natural gas, analyses_IC 8241, 8316, 8356, 8395
natural gas, analyses_IC 8241, 8316, 8356, 8395
nonmetallic minerals, in asphalt prod- ucts, use IC 8300
ucts, use IC 8300 occupational diseases, workmen's compen- sation law on B 623
Sation law on B 023

.

California, offshore oil and gas production _ IC 8408
California, offshore oil and gas production _ IC 8408 oil reservoirs, production-rate data IC 8362
well-depth data
oilfields, shallow M 12 perlite, chemical-industry demand IC 8244
perlite, chemical-industry demand IC 8244
SupplyIC 8244
pesticides, regulations concerning IC 8260
pesticide industry, economic factors IC 8260
mineral fillers, use IC 8260
pesticide producers, list
petroleum-coke industry
pesticide producers, list IC 8260 petroleum-coke industry IC 8259 petroleum-impregnated rocks, surface and shallow M 12
petroleum refineries, fresh-water intake IC 8270
water-conservation practices IC 8270
water utilization IC 8270
water utilization IC 8270 phosphate rock, chemical-industry de-
mand IC 8244
supply IC 8244 phosphorus chemical-industry demand IC 8244
phosphorus chemical-industry demand IC 8244
SUDDLY IC 8244
phosphorus compounds, chemical-indus-
phosphorus compounds, chemical-indus- try demand IC 8244
potassium compounds, chemical-industry
demand IC 8244
supply IC 8244
pozzolanic materials, investigation OFR 1-68
primitive areas, mineral appraisal GS 11-67 pumice, chemical-industry demand IC 8244
pumice, chemical-industry demand 10 8244
nurite chamical industry domand IC 9244
supply IC 8244
pyrophyllite chemical-industry demand IC 8244
supply IC 8244 pyrite, chemical-industry demand IC 8244 supply IC 8244 pyrophyllite, chemical-industry demand IC 8244 supply IC 8244 roofing granules, asphalt-product use IC 8300 production IC 8300
roofing granules, asphalt-product use IC 8300
production IC 8300
salt. chemical-industry demand 10 82.44
supply IC 8244 San Rafael primitive area, mineral ap-
San Rafael primitive area, mineral ap-
praisal GS 1-66
sand and gravel, asphalt-product use IC 8300
praisal GS 1-66 sand and gravel, asphalt-product use IC 8300 production IC 8300 silica sand, chemical-industry demand IC 8244 supply IC 8244
sinca sano, chemical-industry demand IC 8244
silver potential resources OFP 22-69
silver, potential resources OFR 22-69 slate, asphalt-product use IC 8300
production IC 8300
soapstone, chemical-industry demand IC 8244
production IC 8300 soapstone, chemical-industry demand IC 8244 supply IC 8244 sodium compounds, chemical-industry de-
sodium compounds, chemical-industry de-
mand 1C 8244
supply IC 8244
supply IC 8244 sulfur, chemical-industry demand IC 8244
supply IC 8244
supply IC 8244 sulfuric acid, chemical-industry demand IC 8244 talc, chemical-industry demand IC 8244
taic, chemical-industry demand IC 8244
supply IC 8244
tin, chemical-industry demand IC 8244
titanium, supply
mond IC 8244
mand IC 8244 titanium mineral deposits, survey IC 8290 tungsten, chemical-industry demand IC 8244
tungsten, chemical-industry demand IC 8244
Wilmington field, oil-well scales, anal- ysis RI 6602
Willington held, on-wen scales, anal-
Vsis R1 6602
ysis RI 6602 oil-well scale formation. study RI 6658
oil-well scale formation, study RI 6658
oil-well scale formation, study RI 6658 wollastonite, chemical-industry demand IC 8244
oil-well scale formation, study R1 6658 wollastonite, chemical-industry demand IC 8244 zinc, supply IC 8244
oil-well scale formation, study RI 6658 wollastonite, chemical-industry demand IC 8244 zinc, supply IC 8244 zinc compounds, chemical-industry de-
oil-well scale formation, study RI 6688 wollastonite, chemical-industry demand IC 8244 zinc, supply IC 8244 zinc compounds, chemical-industry de- mand IC 8244
oil-well scale formation, study RI 6688 wollastonite, chemical-industry demand IC 8244 zinc, supply IC 8244 zinc compounds, chemical-industry de- mand IC 8244 zircon resources IC 8266
oil-well scale formation, study RI 6688 wollastonite, chemical-industry demand IC 8244 zinc, supply IC 8244 zinc compounds, chemical-industry de- mand IC 8244 zircon resources IC 8246 Calorific value, coal, determination, method B 638
oil-well scale formation, study RI 6688 wollastonite, chemical-industry demand IC 8244 zinc, supply IC 8244 zinc compounds, chemical-industry de- mand IC 8244 zircon resources IC 8246 Calorific value, coal, determination, method B 638
oil-well scale formation, study RI 6688 wollastonite, chemical-industry demand IC 8244 zinc, supply IC 8244 zinc compounds, chemical-industry de- mand IC 8244 zircon resources IC 8244 zircon resources IC 8266 Calorific value, coal, determination, method B 638 Calorimeter, diphenyl ether, for high-tem- perature heat content measure-
oil-well scale formation, study RI 6668 wollastonite, chemical-industry demand IC 8244 zinc, supply IC 8244 zinc compounds, chemical-industry de- mand IC 8244 zircon resources IC 8244 zircon resources IC 8244 zircon resources IC 8246 Calorific value, coal, determination, method B 638 Calorimeter, diphenyl ether, for high-tem- perature heat content measure- ments, design and operation RI 6723
oil-well scale formation, study RI 6688 wollastonite, chemical-industry demand IC 8244 zinc, supply IC 8244 zinc compounds, chemical-industry de- mand IC 8244 zircon resources IC 8244 zircon resources IC 8266 Calorific value, coal, determination, method B 638 Calorimeter, diphenyl ether, for high-tem- perature heat content measure-

Calorimetry, adiabatic low-temperature, apparatus for
methods OP 24-69
high-temperature drop, data correc-
high-temperature drop, data correc- tions OP 83-69 furnace for, design and operation. OP 83-69
normatishetic enneratus OP 18-69
nonadiabatic, apparatus OP 18-69 vapor flow nonadiabatic, method OP 18-69
Camera, high-speed streak, for indirect measurement, detonation pres-
measurement, detonation pres-
sures RI 6701 for shock and particle-velocity meas-
uromente rock sembles under dy-
namic loading conditions RI 6770 NX borehole, goniometer for RI 7097
NX borehole, goniometer for RI 7097
Cambodia, mineral industry, an- nual review MY 1968 (v. IV)
Cameroon, mineral industry, and nual review MY 1968 (v. IV) Campbell Creek bed, W. Va., coal, float- and-sink data RI 6652 froth-flotation washability data RI 6652 Canada, coal, production and consumption IC 8380
Campbell Creek bed, W. Va., coal, float-
and-sink data RI 6652
froth-flotation washability data R1 6652
Canada, coal, production and consumption 10 6360
coal reserves BPA 1-65 crude oil, production RI 7059
sulfur content RI 7059
sulfur content RI 7059 mineral industry, annual re- view MY 1968 (v. IV)
View MY 1968 (V. 1V)
natural gas, analyses IC 8356, 8395 Candida Tropicalis, growth, on water ex-
tract of leonardite IC 8376
tract of leonardite IC 8376 Cape Beaufort, Alaska, coalbeds, sampling and coking studies RI 7321
and coking studies RI 7321
Cape Mountain area, Alaska, petrography RI 6737 tin deposits, investigation RI 6737
Capillarity, in oil reservoirs, determina-
tion, methods OP 170-67
Capillary tubing, stainless steel, physical
dimensions, measuring, methods RI 6949
Carbazoles, from low-temperature coal-tar
neutral oil, identification B 637 Carbides, iron, nature B 631
refractory, reclaiming, from cemented-
carbide scrap, method OP 149-69
Carbide formation, in alpha iron, study B 631
in iron oxide, study B 631
Carbon, activated, adsorbent, for organic- contaminant removal, from waste
waters, use RI 6884
waters, use RI 6884 use, in catalytic oxidation of ferrous
iron, in acid mine water RI 7337 additions to columbium-base alloys, effect RI 6988
additions to columbium-base alloys, effect RI 6988 atomic radial distribution OP 83-68
chemical shifts in conjugated mole-
cules, theory, experimental tests OP 77-68 in coal, determination, method B 638
in coal, determination, method B 638
nuclear method OP 15-67 in electrorefined vanadium, effect OP 92-69
in granular materials, determination,
nuclear method OP 15-67
in iron-ore sinter, determination, nu-
clear method OP 15-67 in petroleum-related materials, auto-
mated X-ray determination OP 29-66
industrial, consumption B 630
prices B 630
problems B 630
production B 630 raw-material sources B 630
technology B 630
trade B 630
types B 630
uses B 630 reaction, with carbon dioxide, study OP 52-67
with steam, study $____________________________________$
reduction, in electron-beam purification
of vanadium RI 7014 reflectance, relation to density B 641
renectance, relation to density B 641

4

D (

ŧ

(

Carbon, structure, study OP 83-68
Carbon, structure, study OP 83-68 X-ray diffraction data B 620 Carbon-13, magnetic shieldings
substituted pyridines OP 76-68, 79-68
nuclear magnetic resonance, 2-substi- tuted pyridines OP 149-67
nuclear magnetic resonance spectra, mono- substituted pyridines B 649
nuclear magnetic resonance spectrom-
etry, aromatic carbon atom de- termination by OP 24-67
coal derivatives OP 32-67 diene-iron tricarbonyl complexes OP 31-67
Carbon-14, use, as tracer in oxygen-
Carbon-14, use, as tracer in oxygen- exchange reaction, carbon diox-
ide-carbon monoxide on carbon OP 157–67 Carbon black, annual data MYB 1968 (v. I–II)
carbon black, almual dataMrB 1968 (V. 1-11) atomic radial density curves, correct- ing, method OP 127-68 coal-derived, structure, study OP 41-67 from bituminous coal, properties OP 90-67 pyrolysis process OP 90-67 economic evaluation OP 90-67
coal-derived, structure, study OP 41-67
from bituminous coal, properties OP 90-67
pyrolysis process OP 90-67
use in rubber compounding, evalua-
tion OP 90-67
grades B 630
observed X-ray pattern, correction,
grades B 630 observed X-ray pattern, correction, method OP 68-68 production from coal patent P 10-69
production, from coal, patent P 10-69
raw-material sources
Carbon diavida adcorption isotherms OP 5 65
production, from coal, patent P 10-69 raw-material sources B 630 stacking distribution in OP 80-69 Carbon dioxide, adsorption isotherms OP 5-65 determination, in diesel exhaust gas,
continuous monitoring method RI 7241
in inspired air, self-contained breath-
ing apparatus RI 6865 hydrogenation, Raney nickel catalyst, ac-
tivation energy RI 6941
tivation energy RI 6941 in coal, determination, method B 638
production, from coal drivatives, ultra- sonic irradiation method RI 7027
thermonhysical properties IC 8317
thermophysical properties IC 8317 vapor pressure, at ice point RI 6791
Carbon-boron additions, electrorefined va-
nadium, effect on mechanical prop- erties
effect on response to heat treatment RI 7113
Carbon deposition reaction, in blast fur-
nace, kinetics, laboratory study RI 7064 Carbon dioxide, concentration, in tunnel air BI 7074
Carbon dioxide, concentration, in tunnel air RI 7074 Carbon dioxide absorption, low-tempera-
ture, coal surface area studies by RI 6864
Carbon dioxide-carbon reaction, kinetics OP 52-67 Carbon dioxide-helium mixtures, compres-
sibility factors RI 7233 Carbon disulfide, production, charcoal
for OP 134-65
from lignite char and sulfur RI 6891
lignite char for UP 134-65
for OP 134-65 from lignite char and sulfur RI 6891 lignite char for OP 134-65 Carbon electrodes, preparation, from low-temperature lignite tar OP 101-69
Carbon-naimum phase diagram Xex 0000
Carbon industry, organization B 630
problems B 630 Carbon monoxide, as ferrous oxide reduct-
ant RI 6712
concentration, in combustion gases of flames, predicting RI 6958
in tunnel air RI 7074 disproportionation reaction, laboratory
disproportionation reaction, laboratory study RI 7064
granular ferrous oxide reduction with,
in packed bed, reaction rate coef-
ficients RI 7128 hydrogenation, nitrided fused-iron cata-
lyst, activation energy KI 6941
Raney nickel catalyst, activation en-

I

ergy _____ RI 6941

Carbon No. 5 mine, Okla., longwall mining Carbon No. 5 mine, Okla., longwall mining in, results ______ IC 8321 Carbon No. 20 mine, W. Va., longwall min-ing in, results ______ IC 8321 Carbon potlining residues, leached, alum-inum-fluorine recovery from, sin-ter-leach method ______ RI 7264 IC 8321 Carbon steels, rare-earth metals, additions, effect _____ RI 6907 rare-earth oxides, additions, effect _____ RI 6907 tempering stages, study ______ Carbon tetrachloride, adsorptivity tests, ac-.... B 631 tivated charcoals ______ RI 6847 Carbon-uranium-oxygen system, phase rela-Carbon-uranium-oxygen system, phase rela-tions RI 6968 solubility limits RI 6968 Carbon-vanadium alloys, properties_RI 6628, 6637 strain-aging effects in RI 7222 Carbon-vanadium phase diagram RI 6628 Carbonaceous dusts, explosibility RI 6597 Carbonaceous materials, heat contents RI 6607 specific heats RI 6607 specific heats _____ RI 6607 Carbonates, far-infrared spectroscopy_ OP 102-69 Carbonate purification system, hot, size and cost of equipment, computer program for _____ IC 8366 Carbonate reservoir, heterogeneous, log and core analyses, comparison OP 144-68 Carbonic acid, use, in kerogen concen-tration from oil shale_OP 197-68, 49-69 Carbonization, coal, continuous process, P 13-69 patent P 13-69 entrained-bed, bituminous coal RI 6608 highly fluid bituminous coal RI 7141 highly fluid bituminous coal ______ RI 7141 scrap tires, results ______ RI 7302 wood wastes, experimental ______ RI 7282 Carbonization conditions, effect on coke size RI 7024 effect on coke strength ______ RI 7024 Carbonization tests, Sunnyside coal, with char-coke-coal additions _____ RI 7235 Carbonizing properties, coal _____ RI 6615, 6872, 6899, 7131, 7236 Carbonyl compounds, in pyrrole oxidation products Card-gap test, explosives sensitivity, _ OP 132-65 Card-gap test, explosives sensitivity, modifications in _____ OP 109-68 Caribbean islands, mineral indus-try, annual review ____ MY 1968 (v. IV) Carnotite, magnetic susceptibility _____ IC 8360 Carrollite, magnetic susceptibility _____ IC 8351 Cassity No. 7 mine, W. Va., coal, prepara-tion characteristics _____ RI 6874 Cast iron, process, patent _____ P 12-67 scrap, from junk automobile, amount ____ RI 7350 Casting, centrifugal. reactive metals meth-Casting, centrifugal, reactive metals, meth-ods ______ B 646 skull, tungsten, method ______ OP 104-66 Castle Gate bed. coal, coke from, properties RI 7050 Castle Mountain mine, Alaska, coal, carbonization tests _____ OFR 7-66 Castlegate field, Utah, coal, potential car-bonization yields _____ RI 6990 Catalysts, coal hydrogenation _____ B 633 dry method, study _____ B 622 cobalt molybdate, in shale-oil hydro-gasification _____ OP 20-68 dealkylation of high-boiling tar acids, evaluation _____ RI 6585

Carbon monoxide, in diesel exhaust gas,

.
Catalyst, depleted uranium, in shale-oil hydrogasification OP 20-68 fused-iron, sulfur poisoning of B 628 in hot-gas-recycle process, recent devel- opments OP 78-65 sulfur poisoning, tests B 628; OP 8-65 temperature measurements OP 78-65 methemation molybdanum as investiga
in hot-gas-recycle process, recent devel-
iron, activation energies OP 78-65
sulfur poisoning, tests B 628; OP 8-65
methanation, molybdenum as, investiga-
noble metals as, investigation RI 6974
tungsten as, investigation RI 6974 nickel, temperature measurements OP 78-65
nitrided-iron, sulfur poisoning of B 628
methanation, molybdenum as, investiga- tion
in tube-wall reactor, tests RI 7033
oxide on, at moderate pressures OP 77-65 hydrogenation of carbon monoxide
on, at moderate pressures OP 77-65
Cotechols from low-temperature lignite
tar, extraction OP 50-65 Catharanthus lanceus, lochnerinine in, isolation of OP 120-67 periformyline in, isolation of OP 120-67 tetrahydroalstonine in, isolation of OP 120-67 Cattierite megnetic sugartibility
periformyline in, isolation of OP 120-67
Cattierite, magnetic susceptibility IC 8351
Cattierite, magnetic susceptibility IC 8851 Cebolla Creek titaniferous iron deposit,
Colo., assay data, statistical anal- ysis RI 6955
ysis RI 6955 Cedar Grove bed, W. Va., coal, behavior, gas-producer tests OP 37-66 carbonizing properties RI 6899
carbonizing properties RI 6899 float-and-sink data RI 6652
froth-flotation washability data RI 6652
Cedar Keys National Wildlife Refuge.
Fla., mineral appraisal GS 12-68 Cement, see also Portland cement
Cement, annual data MYB 1968 (v. I) barge transportation of IC 8431
barge transportation of IC 8431
consumption B 630 fly ash use in OP 189-68 imports and exports B 630 pozzolan use in IC 8421
imports and exports B 630
prices B 630
production B 630 specifications B 630
specifications B 630 technology B 630
transportation methods B 630
types B 630
uses B 630 Cement copper, production, automobile
Cement copper, production, automobile scrap in rotating-drum precipita- tor
Cement industry, automation in, appli- cations OFR 24-69
organization B 630 problems B 630
problems B 630
Cement-mortar, explosive tests in RI 6679
Cementite, properties B 631 work hardening, effect B 631
Cendrex X-ray ash meter, per- formance tests RI 7101; OP 7-67
Central African Republic, min-
eral industry, annual review MY 1968 (v. IV)
Central Treaty Organization of the Mid-
dle East countries, proposed mine rescue and accident pre-
vention training OP 141-67
Centrifuge, for red mud dewatering, cost estimate
tests RI 7140
Ceramics, feldspar use in IC 8310
Ceramic materials, roll forming at high
temperatures, feasibility RI 6967

Ceramic powders, molybdenum coating on, study _____ OP 87-65 tungsten coating on, study _____ OP 87-65 Cerium, annual data _____ MY 1968 (v. I-II) electrowinning from cerium oxide _____ RI 7146 in coal ash, spectrochemical determination _____ RI 7281 recovery, from lanthanide solutions, oxi-dation-precipitation process _____ P 2-69 recovery, from lanthanide solutions, oxi-dation-precipitation process _____ RI 7123 Cerium fluoride-alkali fluoride molten sys-tems, density and molar volume _ RI 6836 Cerium-iron alloy, component separation, field freezing technique _____ PI 7196 lanthanum mixtures containing, fraction-Cerium-iron alloy, component separation, field freezing technique ______ RI 7186 Cerium-magnesium alloys, properties _____ RI 6866 Cerium-magnesium system, phase diagram RI 6866 Cerium metal, purifying, solid-state elec-tromigration technique ______ RI 6894 Cerium-praseodymium, separation from lanthanides, amine extraction method ______ RI 7100 Cerussite, magnetic susceptibility ______ IC 8383 Cesium, annual data ______ MY 1968 (v. I-II) consumption ______ B 630 from pollucite, extraction methods _____ OP 78-67 selected extraction methods, cost selected extraction methods, cost evaluation OP 78-67 imports ______ B 630 in minerals, field test for detecting _____ DP 78-67 in oilfield waters, determination _____ RI 6641 in ores, flame-photometric determination RI 6820 prices ______ B 630 production _____ B 630 reserves _____ B 630 technology _____ B 630 transportation methods _____ B 630 Cesium metal, transportation methods _____ B 630 Cetane improvers, in diesel fuel, effect on nitrogen oxides, in exhaust gas __ RI 7310 Ceylon, mineral industry, annual Chalcophanite, magnetic susceptibility ____ IC 8359, Chalcophanite, magnetic susceptibility _____ IC 8359, Chalcophanite, magnetic susceptibility ______ IC 8359, Chalcophanite, magnetic susceptibility _______ IC 8359, Chalcophanite, magnetic susceptibility ______ IC 8359, Chalcophanite, magnetic susceptibility _______ IC 8359, Chalcophanite, magnetic susceptibility ________ IC 8359, Chalcophanite, magnetic susceptibility ________ IC 8359, Chalcophanite, magnetic susceptibility _________ IC 8359, Chalcophanite, magnetic susceptibility 8383 Chalcopyrite, magnetic susceptibility _____ IC 8383 Charcopyrite, magnetic susceptionity _____ IC 8383 Char, carbonized-lignite, properties ______ B 639 chloroform-extract yield, investigation _ RI 6973 from entrained-bed carbonization prop-erties ______ RI 7141 infrared spectra ______ B 640 nonagglomerating, from strongly caking coal, production method, patent __ P 6-67 oxygen-18 labeled, infrared spectra __ OP 70-68 Chorsola, adsorptivity, laboratory, arm Charcoals, adsorptivity, laboratory comparison ______ RI 6847 as fuel, properties and calorific value _ OP 158-67 Charloal granite, elastic moduli, at elevated temperatures _____ RI 7269 Charcoal gray granite, transgranular-intergranular fracture in, effect of loading rate OP 99-69 Charge-transfer complexes, use, in electrochemical cells _____ OP 69-68 Chattanooga Shale, uranium content, investigation RI 6932

-

f

Chemical plants, investment and operating costs, bibliography IC 8265, 8297, 8346, 8386, 8415

Chemical raw materials, demand, by end
use IC 8418 Chi iron carbide, free energy of formation B 631
properties B 631
properties B 631 Chi-square distribution, tabulation B 621
Chile, crude oil, sulfur content RI 7059 economic progress, review OP 198-67
mineral industry, annual re- view MY 1968 (v. IV) Chilton bed, W. V., coal, carbonizing
Chilton bed, W. V., coal, carbonizing
properties RI 6615, 6899 Chillagite, magnetic susceptibility IC 8360, 8383
China, mainland, mineral industry, annual review MYB 1968 (v. IV); OP 85-67 effect of cultural revolution OP 98-69
effect of cultural revolution OP 98-69
Chloride electrolyte, electrorefining ura- nium in RI 6624 fused, electrodeposition of aluminum from, investigation RI 6785 Chlorination, aluminous materials, methods. IC 8412
fused, electrodeposition of aluminum
Chloringtion, eluminous materials, methods IC 8412
columbium ores RI 6635
manganiferous ores and slags, tests OP 5-67
tantalum ores Ki 6635
columbium ores RI 6635 manganiferous ores and slags, tests OP 5-67 tantalum ores RI 6635 tungsten extraction from scheelite by, methods RI 6612
tungsten extraction from scheelite-wol- framite concentrate by, methods _ RI 6612
tramite concentrate by, methods _ RI 6612 Chloringtion kinetics, study RI 6640
Chlorination kinetics, study RI 6649 Chlorine, in coal RI_6579
determination, method B 638 in coal combustion, behavior RI 7260
in coal combustion, behavior RI 7260
in petroleum, literature survey OP 122-69 Chlorine-anthracite reaction, gamma ir
radiation effect RI 6881
Chlorine compounds, in gas effluent, pul- verized coal combustion
Chlorine gas, dissolution of ferroalloy scrap by, laboratory study RI 7178
Chloroform extractions, coals and chars, investigations RI 6973
Chromatographic analysis, gas, automo- tive exhaust OP 179-69
Chromatography, adsorption, asphaltic material separation by OP 159-69
olefins OP 79-65
parafins OP 79-65
and mass spectrometry. of high-
olefins OP 79-65 paraffins OP 79-65 gas, analysis of gas by, review OP 26-65 and mass spectrometry, of high- boiling oils, from coal, com- parison OP 126-65 light oils, from fluidized carbonization of coal RI 6709
light oils, from fluidized carbonization
gas-liquid, separation of basic nitrogen
compounds by stationary phases
for measurement of oleid acid on mineral Every action of the second seco
surfaces by RI 7135
surfaces by RI 7135 ogygenates in automobile exhausts _ OP 43-65
separation of nonbasic nitrogen com-
pounds by, stationary phases for OP 46-69
sulfur compounds in petroleum OP 89-66, 137-66
and streams in helium production OP 76-66
gel permeation, separation of crude oil fractions by OP 77-69 inverse gas-liquid, for petroleum-as-
inverse gas-liquid, for petroleum-as-
DDALL CDATACIETIZATION UF 20-00
road asphalts OP 181-68 silylated asphalts, results OP 157-69
use in asphalt oxidation, study OF 20-67, 76-67
liquid and gas, assaying low-tempera-
ture coal tar by OP 51-66 reversed-phase partition, asphaltic
reversed-phase partition, asphaltic material separation by OP 159-69 Chrome-leonardite, use, in bentonite drill-
Universitionarative, use, in Demonitive unit-

.

.

)

Ì

)

Chrome spinel, recrystallization, effect of cooling rate RI 6923 recrystallized, chromium-iron ratio, ef- fect of fluxing agents on RI 6923 Chromic oxide, carbon reduction of, study _ RI 6755 Chromita as refrectory raw materials
recrystallized, chromium-iron ratio, ef-
fect of fluxing agents on RI 6923
Chromic oxide, carbon reduction of, study _ RI 6755
Chromite, as refractory raw materials IC 8382
Chromite, as refractory raw materials IC 8382 carbon reduction of, study RI 6755
consumption B 630
grades B 630
magnetic susceptibility IC 8360
consumption B 630 grades B 630 magnetic susceptibility IC 8360 prices B 630
production B 630 recrystallized, chromium-iron ratio, ef- fect of fluxing agents on RI 6923
recrystallized, chromium-iron ratio, el-
Tect of nuxing agents on R1 0923
reserves B 630 stockpile accumulation, amount OP 62-66
technology B 630
Uses B 630
uses B 630 Chromium, addition to columbium-base al-
annual data MY 1968 (v. I-II) as automotive metal, supply situation OF 47-67
anhydrous chromous chloride from.
method RI 7194
annual data
as automotive metal, supply situation OP 47-67
consumable-electrode arc mering of, meriod b 040
extraction from ferrochromium, low-tem-
perature chlorination process, fea-
sibility RI 7088 from ferrochromium, molten-salt
electrorefining method RI 7226
electrorefining method RI 7226 in coal ash, spectrochemical deter-
mination RI 7281
mination RI 7281 recovery, from superalloy scrap, chemical
method RI 7316
secondary, recovery B 630
secondary, recovery B 630 vapor-deposited, corrosion resistance RI 7112
uses B 630
Chromium diboride-titanium diboride sys-
tem, electrical properties RI 6691 Chromium carbides, heats of formation RI 7217
Chromium carbides, heats of formation RI 7217
Chromium ferroalloys, grades B 630 uses B 630 Chromium-gadolinium phase diagram RI 6636
uses B 630
Chromium-gadolinium phase diagram RI 6636
Chromium industry, organization B 630
problems B 630 Chromium metal, anhydrous chromous chlor-
ide from, production method, patent P 8-68
grades B 630
preparation, from thermal decomposition
of bisbenzene chromium, technical
feasibility RI 7112 Chromium minerals, magnetic susceptibil-
Chromium minerals, magnetic susceptibil-
ity, determination IC 8360
Chromium phosphide, molten-salt electro- lytic preparation of OP 69-67
lytic preparation of OP 69-67
Chromium-thorium alloys, thorium recov-
ery from, vacuum distillation method RI 7265
Chromium-tungsten-vanadium alloys, prop-
erties
Chromium-vanadium alloys, properties RI 6929
Chromous chloride, anhydrous, from chro-
mium metal, production method,
patent P 8-68 preparation, method RI 7194
preparation, method RI 7194
Chrysene, mass spectrum RI 6951 spinning-electrode system OP 74-68
spinning-electrode system OF 14-05
pyrolysis, in microwave discharge, prod- ucts from, composition OP 11-69
Chrysoberyl flotation characteristics RI 7188
Chrysoberyl, flotation characteristics RI 7188 Chrysocolla, magnetic susceptibility IC 8383
Chrysocolla ores, copper recovery from,
acustic loosh method tests OFP 4 66
caustic leach method, tests Or & 4-00
caustic leach method, tests OFR 4-66 Chrysotile, bulk, density measurements OP 71-65
Chrysotile, bulk, density measurements OP 71-65
Chrysotile, bulk, density measurements _ OP 71-65 fibers, structure, electron micrographs OP 21-66
Chrysotile, bulk, density measurements OP 71-65 fibers, structure, electron micrographs OP 21-66 Cities Service Oil Co., Okla., Northeast
Chrysotile, bulk, density measurements _ OP 71-65 fibers, structure, electron micrographs OP 21-66

Chrome-leonardite, use, in bentonite drilling fluid, effect _____ RI 7043

Say Gaua, Stati

Cladding, copper, removal, by high-tem-
perature oxidation RI 6647 Clarion bed, W. Va., coal, chloroform-ex- tract yield, investigation RI 6973
Liarion Ded, W. Va., coal, chloroform-ex-
Clarion County. Pa coal preparation
Clarion County, Pa., coal, preparation characteristics
Ulark Deu, ra., anthracite, properties - R1 7086
Clark's Fork North field Mont record
Voir-oil analysesOFR 2-67 Clay, analysesTMR 1-69; VMR 1-67 annual dataTMR 1-69; VMR 1-67 as refractory raw materialsIC 8382 ceramic evaluationTMR 1-69 chemical-industry use, CalifIC 8244 consumptionIC 8244
Clay, analyses TMR 1-69; VMR 1-67
annual data MYB 1968 (v. I-II)
as refractory raw materials IC 8382
chemical industry use Calif IC 9944
consumption B 630
consumption B 630 dewatering, electro-osmotic and elec-
trophoretic methods OP 72-66
expandable, Md MNR for lightweight aggregates, eval-
for lightweight aggregates, eval-
uation RI 6614, 7244
glacial lake, iron ore pelletizing bonding
glacial lake, iron ore pelletizing bonding agent, tests
aradea B 630
grades B 630 imports and exports B 630
nuclear-waste disposal in. laboratory
nuclear-waste disposal in, laboratory testsRI 6926
paper-coating grade, from coarse kaolin.
by attrition grinding RI 6694
operating variables in attrition
grinding of, investigation RI 7168 Pa., properties PNR
Pa., properties
uses PNR prices B 630
production B 630
production B 630 production of alumina from, methods
RI 6573, 6927, 7299; OP 181–67
reserves B 630
technology B 630
uses B 630
utilization in iron are pelletizing tests OP $102-68$
utilization in iron are pelletizing tests OP $102-68$
utilization in iron are pelletizing tests OP $102-68$
utilization, in iron ore pelletizing, tests OP 102-68 Clay-bentonite binder, iron ore pelletizing tests with RI 7206; OP 102-68 Clay County, W. Va., coal, preparation characteristics RI 7216
utilization, in iron ore pelletizing, tests OP 102-68 Clay-bentonite binder, iron ore pelletizing tests with RI 7206; OP 102-68 Clay County, W. Va., coal, preparation characteristics RI 7216
utilization, in iron ore pelletizing, tests OP 102-68 Clay-bentonite binder, iron ore pelletizing tests with RI 7206; OP 102-68 Clay County, W. Va., coal, preparation characteristics RI 7216 Clay industry, organization B 630 problems 8 630
utilization, in iron ore pelletizing, tests OP 102-68 Clay-bentonite binder, iron ore pelletizing tests with RI 7206; OP 102-68 Clay County, W. Va., coal, preparation characteristics RI 7216 Clay industry, organization B 630 problems 8 630
utilization, in iron ore pelletizing, tests OP 102-68 Clay-bentonite binder, iron ore pelletizing tests with RI 7206; OP 102-68 Clay County, W. Va., coal, preparation characteristics RI 7216 Clay industry, organization B 630 problems 8 630
utilization, in iron ore pelletizing, tests OP 102-68 Clay-bentonite binder, iron ore pelletizing tests with RI 7206; OP 102-68 Clay County, W. Va., coal, preparation characteristics
utilization, in iron ore pelletizing, tests OP 102-68 Clay-bentonite binder, iron ore pelletizing tests with RI 7206; OP 102-68 Clay County, W. Va., coal, preparation characteristics RI 7216 Clay industry, organization B 630 problems B 630 Clay materials, analyses VNR 1-65, 1-67 processing B 630 Cleveland-Cliffs Iron CoBureau of Mines nonmagnetic
utilization, in iron ore pelletizing, tests OP 102-68 Clay-bentonite binder, iron ore pelletizing tests with RI 7206; OP 102-68 Clay County, W. Va., coal, preparation characteristics
utilization, in iron ore pelletizing, tests OP 102-68 Clay-bentonite binder, iron ore pelletizing tests with RI 7206; OP 102-68 Clay County, W. Va., coal, preparation characteristics
utilization, in iron ore pelletizing, tests OP 102-68 Clay-bentonite binder, iron ore pelletizing tests with RI 7206; OP 102-68 Clay County, W. Va., coal, preparation characteristics RI 7216 Clay industry, organization B 630 problems B 630 Clay materials, analyses VNR 1-65, 1-67 processing B 630 Cleveland-Cliffs Iron CoBureau of Mines nonmagnetic taconite flotation re- search OP 82-69, 112-69 Cliffside gasfield, Tex., Government- owned well data OFR 2-68
utilization, in iron ore pelletizing, tests OP 102-68 Clay-bentonite binder, iron ore pelletizing tests with RI 7206; OP 102-68 Clay County, W. Va., coal, preparation characteristics RI 7216 Clay industry, organization B 630 problems B 630 Clay materials, analyses NNR 1-65, 1-67 processing B 630 Cleveland-Cliffs Iron CoBureau of Mines nonmagnetic taconite flotation re- search OP 82-69, 112-69 Cliffside gasfield, Tex., Government- owned, well data OF R 2-68 gasfield, Tex., beium storage in OP 112-67
utilization, in iron ore pelletizing, tests OP 102-68 Clay-bentonite binder, iron ore pelletizing tests with RI 7206; OP 102-68 Clay County, W. Va., coal, preparation characteristics RI 7216 Clay industry, organization B 630 problems B 630 Clay materials, analyses NNR 1-65, 1-67 processing B 630 Cleveland-Cliffs Iron CoBureau of Mines nonmagnetic taconite flotation re- search OP 82-69, 112-69 Cliffside gasfield, Tex., Government- owned, well data OF R 2-68 gasfield, Tex., beium storage in OP 112-67
utilization, in iron ore pelletizing, tests OP 102-68 Clay-bentonite binder, iron ore pelletizing tests with RI 7206; OP 102-68 Clay County, W. Va., coal, preparation characteristics RI 7216 Clay industry, organization B 630 problems B 630 Clay materials, analyses NR 1-65, 1-67 processing R630 Cleveland-Cliffs Iron CoBureau of Mines nonmagnetic taconite flotation re- search OP 82-69, 112-69 Cliffside gasfield, Tex., Government- owned, well data OFR 2-68 gasfield, Tex., helium storage in OP 112-67 Climax molybdenum mine, Colo., assay data. statistical analysis RI 6955
utilization, in iron ore pelletizing, tests OP 102-68 Clay-bentonite binder, iron ore pelletizing tests with RI 7206; OP 102-68 Clay County, W. Va., coal, preparation characteristics RI 7216 Clay industry, organization B 630 problems B 630 Clay materials, analyses NR 1-65, 1-67 processing R630 Cleveland-Cliffs Iron CoBureau of Mines nonmagnetic taconite flotation re- search OP 82-69, 112-69 Cliffside gasfield, Tex., Government- owned, well data OFR 2-68 gasfield, Tex., helium storage in OP 112-67 Climax molybdenum mine, Colo., assay data. statistical analysis RI 6955
utilization, in iron ore pelletizing, tests OP 102-68 Clay-bentonite binder, iron ore pelletizing tests with RI 7206; OP 102-68 Clay County, W. Va., coal, preparation characteristics RI 7216 Clay industry, organization B 630 problems B 630 Clay materials, analyses NR 1-65, 1-67 processing R630 Cleveland-Cliffs Iron CoBureau of Mines nonmagnetic taconite flotation re- search OP 82-69, 112-69 Cliffside gasfield, Tex., Government- owned, well data OFR 2-68 gasfield, Tex., helium storage in OP 112-67 Climax molybdenum mine, Colo., assay data. statistical analysis RI 6955
utilization, in iron ore pelletizing, tests OP 102-68 Clay-bentonite binder, iron ore pelletizing tests with RI 7206; OP 102-68 Clay County, W. Va., coal, preparation characteristics RI 7216 Clay industry, organization B 630 problems B 630 Clay materials, analyses VNR 1-65, 1-67 processing B 630 Cleveland-Cliffs Iron CoBureau of Mines nonmagnetic taconite flotation re- search OP 82-69, 112-69 Cliffside gasfield, Tex., Government- owned, well data OF 82-68 gasfield, Tex., Government- owned, well data OF 112-67 Climax molybdenum mine, Colo., assay data, statistical analysis RI 6955 stresses in development workings, measuring RI 6666 strain gage, for measuring RI 6653
utilization, in iron ore pelletizing, tests OP 102-68 Clay-bentonite binder, iron ore pelletizing tests with RI 7206; OP 102-68 Clay County, W. Va., coal, preparation characteristics RI 7216 Clay industry, organization B 630 problems B 630 Clay materials, analyses NNR 1-65, 1-67 processing B 630 Cleveland-Cliffs Iron CoBureau of Mines nonmagnetic taconite flotation re- search OP 82-69, 112-69 Cliffside gasfield, Tex., Government- owned, well data OFR 2-68 gasfield, Tex., helium storage in OFR 2-68 gasfield, Tex., helium storage in OFR 2-68 stresses in development workings, measuring RI 6955 stresses in development workings, measuring RI 6666 strain gage, for measuring RI 6663 Clinton sand, Ohio, core samples, density
utilization, in iron ore pelletizing, tests OP 102-68 Clay-bentonite binder, iron ore pelletizing tests with RI 7206; OP 102-68 Clay County, W. Va., coal, preparation characteristics RI 7216 Clay industry, organization B 630 problems B 630 Clay materials, analyses NNR 1-65, 1-67 processing B 630 Cleveland-Cliffs Iron CoBureau of Mines nonmagnetic taconite flotation re- search OP 82-69, 112-69 Cliffside gasfield, Tex., Government- owned, well data OFR 2-68 gasfield, Tex., helium storage in OFR 2-68 gasfield, Tex., helium storage in OFR 2-68 stresses in development workings, measuring RI 6955 stresses in development workings, measuring RI 6666 strain gage, for measuring RI 6663 Clinton sand, Ohio, core samples, density
utilization, in iron ore pelletizing, tests OP 102-68 Clay-bentonite binder, iron ore pelletizing tests with RI 7206; OP 102-68 Clay County, W. Va., coal, preparation characteristics B 630 problems B 630 Clay materials, analyses NNR 1-65, 1-67 processing B 630 Cleveland-Cliffs Iron CoBureau of Mines nonmagnetic taconite flotation re- search OP 82-69, 112-69 Cliffside gasfield, Tex., Government- owned, well data OFR 2-68 gasfield, Tex., Government- OFR 2-68 gasfield, Tex., helium storage in OFR 2-68 stresses in development workings, measuring RI 6955 stresses in development workings, measuring RI 6666 strain gage, for measuring RI 6653 Clinton sand, Ohio, core samples, density and porosity data OP 190-67
utilization, in iron ore pelletizing, tests OP 102-68 Clay-bentonite binder, iron ore pelletizing tests with RI 7206; OP 102-68 Clay County, W. Va., coal, preparation characteristics RI 7216 Clay industry, organization B 630 problems B 630 Clay materials, analyses VNR 1-65, 1-67 processing B 630 Cleveland-Cliffs Iron Co-Bureau of Mines nonmagnetic taconite flotation re- search OP 82-69, 112-69 Cliffside gasfield, Tex., Government- owned, well data OFR 2-68 gasfield, Tex., Government- owned, well data OFR 2-68 gasfield, Tex., helium storage in OF R 2-68 stresses in development workings, measuring RI 6955 stresses in development workings. Measuring RI 6666 strain gage, for measuring RI 6653 Clinton sand, Ohio, core samples, density and porosity data OP 190-67 oil reservoir study, progress report OP 151-68
utilization, in iron ore pelletizing, tests OP 102-68 Clay-bentonite binder, iron ore pelletizing tests with RI 7206; OP 102-68 Clay County, W. Va., coal, preparation characteristics RI 7216 Clay industry, organization B 630 Clay materials, analyses NRR 1-65, 1-67 processing B 630 Cleveland-Cliffs Iron Co-Bureau of Mines nonmagnetic taconite flotation re- search OP 82-69, 112-69 Cliffside gasfield, Tex., Government- owned, well data OF R 2-68 gasfield, Tex., Government- owned, well data OF R 2-68 gasfield, Tex., Government- RI 6955 stresses in development workings, measuring RI 6955 stresses in development workings, measuring RI 6666 strain gage, for measuring RI 6653 Clinton sand, Ohio, core samples, density and porosity data OP 190-67 oil reservoir study, progress report OP 151-68 Clintwood bed, Va., coal, washing charac-
utilization, in iron ore pelletizing, tests OP 102-68 Clay-bentonite binder, iron ore pelletizing tests with RI 7206; OP 102-68 Clay County, W. Va., coal, preparation characteristics RI 7216 Clay industry, organization B 630 problems B 630 Clay materials, analyses VNR 1-65, 1-67 processing B 630 Cleveland-Cliffs Iron CoBureau of Mines nonmagnetic taconite flotation re- search OP 82-69, 112-69 Cliffside gasfield, Tex., Government- owned, well data OF 82-68 gasfield, Tex., helium storage in OF 112-67 Climax molybdenum mine, Colo., assay data, statistical analysis RI 6955 stresses in development workings, measuring RI 6666 strain gage, for measuring RI 66653 Clinton sand, Ohio, core samples, density and porosity data OP 190-67 oil reservoir study, progress report OP 151-68 Clintwood bed, Va., coal, washing charac- teristics RI 6740
<pre>utilization, in iron ore pelletizing, tests OP 102-68 Clay-bentonite binder, iron ore</pre>
<pre>utilization, in iron ore pelletizing, tests OP 102-68 Clay-bentonite binder, iron ore</pre>
<pre>utilization, in iron ore pelletizing, tests OP 102-68 Clay-bentonite binder, iron ore</pre>
 utilization, in iron ore pelletizing, tests OP 102-68 Clay-bentonite binder, iron ore pelletizing tests with RI 7206; OP 102-68 Clay County, W. Va., coal, preparation
<pre>utilization, in iron ore pelletizing, tests OP 102-68 Clay-bentonite binder, iron ore</pre>
 utilization, in iron ore pelletizing, tests OP 102-68 Clay-bentonite binder, iron ore pelletizing tests with RI 7206; OP 102-68 Clay County, W. Va., coal, preparation characteristics
 utilization, in iron ore pelletizing, tests OP 102-68 Clay-bentonite binder, iron ore pelletizing tests with RI 7206; OP 102-68 Clay County, W. Va., coal, preparation characteristics
<pre>utilization, in iron ore pelletizing, tests OP 102-68 Clay-bentonite binder, iron ore</pre>
 utilization, in iron ore pelletizing, tests OP 102-68 Clay-bentonite binder, iron ore pelletizing tests with RI 7206; OP 102-68 Clay County, W. Va., coal, preparation characteristics

.

.

-

•
Coal, agglomerating index, determination, methodB 638 AlaskaRI 6767; OFR 7-66 coking properties RI 7321; OFR 7-66 (28380)
method B 638
Alaska RI 6767; OFR 7-66
American, world markets for IC 8380
analyses D 043
Ala
methods description b 638
and related products new uses re-
search, review IC 8277
annual data
and Feiter products, new decs, new IC 8277 search, review IC 8277 annual data MY 1968 (v. I-II) Appalachian, froth-flotation washability data RI 6652
erometicity B 640
aromaticity B 640 arsenic in, determination, colorimetric
method
as adsorbent, organic contaminants
from secondary effluents, evalu-
ation OP 75-65
ash content, continuous determination,
here transportation of IC 8431
X-ray ash meter RI 7101 barge transportation of IC 8431 binder and surface coating from, method, B 17 cc
bituminous, adsorbent, for organic-con-
taminant removal, from waste
bituminous, adsorbent, for organic-con- taminant removal, from waste waters, use
caking properties, destroying, method RI 6605
markets for, technological changes in OP 203-68
problemsB 630 properties, effect on coking timeRI 7093 brown, hydrogenationB 633 Bureau of Mines low-temperature carboni-
properties, effect on coking time RI 7093
brown, hydrogenation B 633
Bureau of Mines low-temperature carboni-
zation for, procedure B 638
ourning method, patent P 2-65
fluid bed gasification of OP 63-67
gas-producer tests OP 37-66
zation for, procedure B 638 burning method, patent P 2-68 caking, decaking method, patent P 7-67 fluid-bed gasification of OP 63-67 gas-producer tests OP 37-66 high-Btu gas from, laboratory study OP 89-67 maccolomorating abor from produce
nonagglomerating char from, produc- tion method, patent P 6-67
pretreating-carbonizing-gasifying com-
bined process patent P 6-69
bined process, patent P 6-69 caking properties, destroying, fluid-bed method RI 6797
method
calorific value. determination, method B 638 carbon black production from, patent P 10-69
carbon black production from, patent P 10-69
archan diaxide in determination method B 638
structure, study OP 41-67 carbon dioxide in, determination, method B 638 carbon in, determination, method B 638 carbonizing properties RI 6615, 6872,
carbonizing properties RI 6615, 6872,
characteristics Ri 6579, 7131, 7237 chlorine content RI 6579 determination, method B 638
characteristics
chlorine content
determination, method B 638 chloroform-extract yield, investigation RI 6973
classification methods OP 159-67
coarse, dense-medium cleaning equipment
for, performance study OP 6-67
hydraulic transportation of, automated
pilot plant for RI 7283
coking, Australian, entrained-bed carbon- ization, study RI 6608
color changes in cause R 640
color changes in, cause B 640 composition OP 159-67
conversion to gasoline, methods OP 181-69
conversion to gasoline, methods OP 181-69 new catalytic chemistry concepts for OP 181-69
cutting rate, in hydraulic mining, deter- mination RI 7090
decaking methods OP 55-65
delivered, analyses
RI 6622, 6792, 6904, 7104, 7219
density, data RI 6657
electrochemical reduction of, in ethylene-
diamine RI 7017 nature of reduced material, study OP 131–66
mente of regered mencingly sears OI 101-00

I

•) (

きんきもきぎ ー

nature of reduced material, study__ OP 131-66 electron diffraction patterns from _____ B 641 Coal, electron paramagnetic resonance, during electron irradiation ___ OP 147-68 electron spin resonance ____ OP 148-68 Coal, optical properties, reflectance determifine, cleaning, hydrocyclone performance tests _____ RI 7067 froth flotation cleaning potential, evaluation froth-flotation washability, timed-re----- B 638 lease analysis ______ RI 6652 Fischer-Schrader low-temperature carbon-____ ization assay for, procedure _____ B 638 float, explosion hazard, alleviating, methods OP 103-67 fluorine in, determination, method RI 7054 free-swelling index, determination, method B 638 g values, electron paramagnetic res-onance investigation _____ OP 78-68 onance investigation _____ OP 78-68 gamma irradiation, effect _____ IC 8377 gas from, in combined-cycle generating plant, discussion _____ OP 86-66 grindability, determination, method _____ B 638 heat content _____ RI 6607 high-ash, analyses _____ RI 6623 high-Btu gas from, by direct conver-sion, method _____ OP 14-68 high-sulfur, crushing, effect on sulfur high-sulfur, crushing, effect on sulfur content _____ IC 8282 removal of sulfur from, economics ____ of _____ OFR 26-69 feasibility _____ OFR 26-69 _ OFR 26-69 substitution of low-sulfur coal for, social and economic effects ____ OFR 26-69 high-volatile A bituminous, flash ir-radiation, gases from ______ OP 34-67 laser irradiation gases from __ OP 34-67, 36-67 high-volatile bituminous, entrained-bed laser irradiation, product gases from, distribution hydraulic mining, analysis of operating __ RI 7141 OP 27-67 variables _____ RI 7120 engineering-development studies ____ RI 6610 hydraulic transport, problems, study ___ RI 6743 hydrogen in, determination, method ____ B 638 in gas pipeline transport systems, sepa-liquid fuels from, hydrogenation processes B 633 liquid fuels from, nyarogenation procession low-rank, low-temperature tar from, dis-RI 6586 low-sulfur, availability ______ OP 108-67 substitution for high-sulfur coal, social and economic effects __ OFR 26-69 low-volatile bituminous, laser irradiation, product gases from, dis-tribution OP 27-67 magnetic susceptibilities medium-volatile bituminous, laser ir-radiation, product gases from, OP 19-68 distribution OP 27-67 minerals in, infrared analysis OP 28-67 quantitative infrared multicompo-nent analysis OP 21-68 mineral matter in, X-ray fluorescence OP 27-67 RI 7124 analysis _____ mining methods ______ moisture content, continuous determi-OP 159-67 nation, thermal neutron detector method _____ OP 144-67 determination, method _____ B 638 moving, moisture in, continuous measurement, by neutron thermalization, apparatus and process _____ P 15-67 nitrogen in, determination, method _____ B 638

1

1

]

1 3

1

]

1

nation ______ B 641 organic sulfur content ______ IC 8301 Pennsylvania anthracite, annual data ______ MY 1968 (v. I-II) ______ RI 6579 MI 1968 (V. 1-11) phosphorus content ______ RI 6579 pipeline gas from, progress, review____ OP 93-67 Pittsburgh-seam, tar from, effect of coal carbonziation conditions on OP 29-68 plastic properties, determination, method__ B 638 pneumatic transport, economic evalua-tion _____ IC 8314 methods ______ IC 8314 pressure drop in ______ IC 8314 porosity, data ______ IC 8314 potassium content ______ RI 6657 powdered, aqueous slurries of, flow behavior ______ RI 6706 hydrogen cyanide production, from, method ______ RI 6994 powerplant-consumed, sulfur content_ OP 114-65 preparation ______ OP 159-67 preparation characteristics RI 6740, 6825 6874, 7216, 7324 pretreated, adsorbent, for organic-con-taminant removal, from waste waters, use ______ RI 6884 pulverized, cohesion index, for calcu-lating gravity flow through ori-OP 4-69 fices combustion of, chlorine retention in ash, effect of alkaline earth additions _____ RI 7260 flame propagation in, study _____ RI 7239 in argon plasma jets, reactions ____ OP 43-66 flame propagation in, study _____ RI 7239 in argon plasma jets, reactions ____ OP 43-66 packed bed density, for calculating gravity flow through orifices ___ OP 4-69 purchase specifications _____ OP 159-67 pyridine extracts from, composition__ OP 141-68 pyrite in, selective dielectric heating of, patent _____ P 5-69 pyritic sulfur content ______ IC 8301 nvritic sulfur removal from, by mag-netic separation, study ______ RI 7181 netic separation, study _____ RI 7181 pyrolysis, in microwave discharge, gaseous products from, composition OP 11-69, 84-69 products from, composition ____ OP 11-69 reaction, in microwave discharge in deuterium oxide ______ OP 168-67 in microwave discharge in waterargon mixtures _____ OP 168-67 reactions in argon and argon-hydrogen _____ reactions in argon and argon-hydrogen plasmas ______ BI 6829 reflectance, relation to density ______ B 641 research and technologic work, annual report IC 8277, 8309, 8357, 8385, 8416 resistivity to gamma irradiation _____ IC 8377 road binder from, production, patent ____ P 8-67 Roslyn-Cle Elum field, Wash., float-and-sink tests _____ BI 6623 sampling methods _____ OP 159-67 sampling and analysis methods, litera-ture survey _____ OP 40-67 ture survey _____ OP 40-67 sodium content _____ RI 6579 specific gravity, determination, method __ B 638 specific heat _____ RI 6607 steam-plant, pyrite size parameters, correlation with float-sink cleaning procedures **RI 7231** stockpiling-reclaiming operations, safety IC 8256 precautions _____ IC 8256 storage problems _____ OP 159-67 structural parameters _____ RI 6657 structure assignments _____ B 640 subbituminous. adsorbent, for organic-contaminant removal, from waste waters, use ______ RI 6884 analyses, Colo. _____ RI 6726

Coal, subbituminous, heat content RI 6607
specific heat RI 6607
coal, substitutingous, near content RI 6607 sulfate sulfur content RI 6607 sulfate sulfur content RI 7174 forms IC 8301 reducing, methods OP 108-67, 180-67 sulfur in, determination B 638 X-ray flurgescape
sulfur content RI 7174
forms IC 8301
reducing, methods OP 108-67, 180-67
sulfur in determination B 638
X-ray fluorescence OP 112-68
reduction, by stage crushing, survey OP 103-66
X-ray fluorescence OP 112-68 reduction, by stage crushing, survey OP 103-66 supply and demand IC 8401 surface area, determination by carbon dioxide absorption method RI 6864
surface area, determination by carbon
dioxide absorption method RI 6864
tars from, analyses B 643 testing, methods, description B 638 thermal analysis, methods OP 143-67
testing methods description B 629
thermal analysis methods OD 149 07
tipple and delivered analysis
tipple and delivered, analyses RI 6622, 6792, 6904, 7104, 7219
RI 0022, 0792, 0904, 7104, 7219
ultrafine structures in, electron micro-
graphs of OF of-67
ultrathin sections, absorption in ultra-
violet visible light B 641
graphs of OP 51-67 ultrathin sections, absorption in ultra- violet visible light B 641 refractive index and thickness determi-
nation, by interferometry B 641 ultraviolet-visible spectra B 640 U.S., ash constituents in RI 7240 ash fusibility data RI 7240
ultraviolet-visible spectra B 640
U.S., ash constituents in RI 7240
ash fusibility data RI 7240
sulfur content IC 8312
sulfur content IC 8312 use, in treatment of sewage OFR 12-69
various ranks, infrared spectra B 640 vitrinites from, optical properties D 97-65 volatile matter in, determination, method B 638 W. Va., preparation characteristics RI 7004 washing characteristics RI 7004 Westorn recommender RI 704
vitrinites from, optical properties OP 97-65
volatile matter in, determination, method B 638
W. Va., preparation characteristics RI 7004
washing characteristics RI 7004
Western, research in, trends OF 113-67
Western, research in, trends OF 113-67 research program OP 133-66 utilization, trends OP 113-67 with ammonia, hydrogen cyanide pro-
utilization, trends OP 113-67
with ammonia, hydrogen cyanide pro-
duction from OP 12-68 X-ray diffraction data B 620
X-ray diffraction data B 620
X-ray studies B 648
Coal acids, analyses, method OP 83-67
Coal acids, analyses, method OP 83-67 phthalic acids from, selective decar-
Coal acids, analyses, method OP 83–67 phthalic acids from, selective decar- boxylation OP 188–67
Coal acids, analyses, method OP 83-67 phthalic acids from, selective decar- boxylation OP 188-67 Coal ash analysis, methods B 638
Coal acids, analyses, method OP 83-67 phthalic acids from, selective decar- boxylation OP 188-67 Coal ash analysis, methods B 638
Coal acids, analyses, method OP 83-67 phthalic acids from, selective decar- boxylation OP 188-67 Coal ash analysis, methods B 638
Coal acids, analyses, method OP 83-67 phthalic acids from, selective decar- boxylation OP 188-67 Coal ash, analysis, methods B 638 blade wear by, turbine blades B 638 in ces turbing monthing methods B 638
Coal acids, analyses, method OP 83-67 phthalic acids from, selective decar- boxylation OP 188-67 Coal ash, analysis, methods B 638 blade wear by, turbine blades B 638 in ces turbing monthing methods B 638
Coal acids, analyses, method OP 83-67 phthalic acids from, selective decar- boxylation OP 188-67 Coal ash, analysis, methods B 638 blade wear by, turbine blades B 638 in ces turbing monthing methods B 638
Coal acids, analyses, method OP 83-67 phthalic acids from, selective decar- boxylation OP 188-67 Coal ash, analysis, methods B 638 blade wear by, turbine blades B 638 in ces turbing monthing methods B 638
Coal acids, analyses, method OP 83-67 phthalic acids from, selective decar- boxylation OP 188-67 Coal ash, analysis, methods B 638 blade wear by, turbine blades B 638 in ces turbing monthing methods B 638
Coal acids, analyses, method OP 83-67 phthalic acids from, selective decar- boxylation OP 188-67 Coal ash, analysis, methods B 638 blade wear by, turbine blades RI 7255 fusibility, determination, methods B 638 in gas turbine working fluid, permissible amount RI 7255 low-frequency infrared spectra OP 13-68 major constituents RI 7240 spectrochemical analysis RI 6985 trace elements in spectrochemical anal-
Coal acids, analyses, method OP 83-67 phthalic acids from, selective decar- boxylation OP 188-67 Coal ash, analysis, methods B 638 blade wear by, turbine blades RI 7255 fusibility, determination, methods B 638 in gas turbine working fluid, permissible amount RI 7255 low-frequency infrared spectra OP 13-68 major constituents RI 7240 spectrochemical analysis RI 6985 trace elements in spectrochemical anal-
Coal acids, analyses, method OP 83-67 phthalic acids from, selective decar- boxylation OP 188-67 Coal ash, analysis, methods B 638 blade wear by, turbine blades B 638 in gas turbine working fluid, permissible amount B 638 low-frequency infrared spectra OP 13-68 major constituents RI 7240 spectrochemical analysis RI 6985 trace elements in, spectrochemical anal- yses RI 7281
Coal acids, analyses, method OP 83-67 phthalic acids from, selective decar- boxylation OP 188-67 Coal ash, analysis, methods B 638 blade wear by, turbine blades RI 7255 fusibility, determination, methods B 638 in gas turbine working fluid, permissible amount RI 7255 low-frequency infrared spectra OP 13-68 major constituents RI 7240 spectrochemical analysis RI 6985 trace elements in, spectrochemical anal- yses RI 7281 Coal blends chloroformextract yields, in-
Coal acids, analyses, method OP 83-67 phthalic acids from, selective decar- boxylation OP 188-67 Coal ash, analysis, methods B 638 blade wear by, turbine blades RI 7255 fusibility, determination, methods B 638 in gas turbine working fluid, permissible amount RI 7255 low-frequency infrared spectra OP 13-68 major constituents RI 7240 spectrochemical analysis RI 6985 trace elements in, spectrochemical anal- yses RI 7281 Coal blends, chloroform-extract yields, in- vestigation RI 6973
Coal acids, analyses, method OP 83-67 phthalic acids from, selective decar- boxylation OP 188-67 Coal ash, analysis, methods B 638 blade wear by, turbine blades RI 7255 fusibility, determination, methods B 638 in gas turbine working fluid, permissible amount RI 7255 low-frequency infrared spectra OP 13-68 major constituents RI 7240 spectrochemical analysis RI 6985 trace elements in, spectrochemical anal- yses RI 7281 Coal blends, chloroform-extract yields, in- vestigation RI 6973
Coal acids, analyses, method OP 83-67 phthalic acids from, selective decar- boxylation OP 188-67 Coal ash, analysis, methods B 638 blade wear by, turbine blades RI 7255 fusibility, determination, methods B 638 in gas turbine working fluid, permissible amount RI 7255 low-frequency infrared spectra OP 13-68 major constituents RI 7240 spectrochemical analysis RI 6985 trace elements in, spectrochemical anal- yses RI 7281 Coal blends, chloroform-extract yields, in- vestigation RI 6973
Coal acids, analyses, method OP 83-67 phthalic acids from, selective decar- boxylation OP 188-67 Coal ash, analysis, methods B 638 blade wear by, turbine blades RI 7255 fusibility, determination, methods B 638 in gas turbine working fluid, permissible amount RI 7255 low-frequency infrared spectra OP 13-68 major constituents RI 7240 spectrochemical analysis RI 7240 spectrochemical analysis RI 6985 trace elements in, spectrochemical anal- yses RI 7281 Coal blends, chloroform-extract yields, in- vestigation RI 6973 Coal blending, improving coking qualities by RI 7235
Coal acids, analyses, method OP 83-67 phthalic acids from, selective decar- boxylation OP 188-67 Coal ash, analysis, methods B 638 blade wear by, turbine blades RI 7255 fusibility, determination, methods B 638 in gas turbine working fluid, permissible amount RI 7255 low-frequency infrared spectra OP 13-68 major constituents RI 7240 spectrochemical analysis RI 6985 trace elements in, spectrochemical anal- yses RI 7281 Coal blends, chloroform-extract yields, in- vestigation RI 6973 Coal blending, improving coking qualities by RI 7235 Coal carbonization. Castle Mountain coal.
Coal acids, analyses, method OP 83-67 phthalic acids from, selective decar- boxylation OP 188-67 Coal ash, analysis, methods B 638 blade wear by, turbine blades B 638 in gas turbine working fluid, permissible amount RI 7255 low-frequency infrared spectra OP 13-68 major constituents RI 7240 spectrochemical analysis RI 6985 trace elements in, spectrochemical anal- yses RI 7281 Coal blends, chloroform-extract yields, in- vestigation RI 6973 Coal blending, improving coking qualities by RI 7235 Coal carbonization, Castle Mountain coal, tests OFR 7-66
Coal acids, analyses, method OP 83-67 phthalic acids from, selective decar- boxylation OP 188-67 Coal ash, analysis, methods B 638 blade wear by, turbine blades RI 7255 fusibility, determination, methods B 638 in gas turbine working fluid, permissible amount RI 7255 low-frequency infrared spectra OP 13-68 major constituents RI 7240 spectrochemical analysis RI 7240 spectrochemical analysis RI 6985 trace elements in, spectrochemical anal- yses RI 7281 Coal blends, chloroform-extract yields, in- vestigation RI 6973 Coal blending, improving coking qualities by RI 7235 Coal carbonization, Castle Mountain coal, tests OFR 7-66 coking time in. dependence on carboniza-
Coal acids, analyses, method OP 83-67 phthalic acids from, selective decar- boxylation OP 188-67 Coal ash, analysis, methods B 638 blade wear by, turbine blades RI 7255 fusibility, determination, methods B 638 in gas turbine working fluid, permissible amount RI 7255 low-frequency infrared spectra OP 13-68 major constituents RI 7240 spectrochemical analysis RI 6985 trace elements in, spectrochemical anal- yses RI 6985 trace elements in, spectrochemical anal- yses RI 6973 Coal blends, chloroform-extract yields, in- vestigation RI 6973 Coal blending, improving coking qualities by RI 7235 Coal carbonization, Castle Mountain coal, tests OFR 7-66 coking time in, dependence on carboniza- tion parameters RI 7093
Coal acids, analyses, method OP 83-67 phthalic acids from, selective decar- boxylation OP 188-67 Coal ash, analysis, methods B 638 blade wear by, turbine blades R 7255 fusibility, determination, methods B 638 in gas turbine working fluid, permissible amount R 7255 low-frequency infrared spectra OP 13-68 major constituents RI 7240 spectrochemical analysis RI 6985 trace elements in, spectrochemical anal- yses RI 7281 Coal blends, chloroform-extract yields, in- vestigation RI 6973 Coal blending, improving coking qualities by RI 7235 Coal carbonization, Castle Mountain coal, tests OFR 7-66 coking time in, dependence on carboniza- tion parameters RI 7093 dependence on coal properties RI 7093
Coal acids, analyses, method OP 83-67 phthalic acids from, selective decar- boxylation OP 188-67 Coal ash, analysis, methods B 638 blade wear by, turbine blades RI 7255 fusibility, determination, methods B 638 in gas turbine working fluid, permissible amount RI 7255 low-frequency infrared spectra OP 13-68 major constituents RI 7240 spectrochemical analysis RI 6985 trace elements in, spectrochemical anal- yses RI 6985 trace elements in, spectrochemical anal- yses RI 6973 Coal blends, chloroform-extract yields, in- vestigation RI 6973 Coal blending, improving coking qualities by RI 7235 Coal carbonization, Castle Mountain coal, tests OFR 7-66 coking time in, dependence on carboniza- tion parameters RI 7093 dependence on coal properties RI 7093 composition of tar from, effect of car- bonization conditions
Coal acids, analyses, method OP 83-67 phthalic acids from, selective decar- boxylation OP 188-67 Coal ash, analysis, methods B 638 blade wear by, turbine blades RI 7255 fusibility, determination, methods B 638 in gas turbine working fluid, permissible amount RI 7255 low-frequency infrared spectra OP 13-68 major constituents RI 7240 spectrochemical analysis RI 6985 trace elements in, spectrochemical anal- yses RI 6985 trace elements in, spectrochemical anal- yses RI 6973 Coal blends, chloroform-extract yields, in- vestigation RI 6973 Coal blending, improving coking qualities by RI 7235 Coal carbonization, Castle Mountain coal, tests OFR 7-66 coking time in, dependence on carboniza- tion parameters RI 7093 dependence on coal properties RI 7093 composition of tar from, effect of car- bonization conditions
Coal acids, analyses, method OP 83-67 phthalic acids from, selective decar- boxylation OP 188-67 Coal ash, analysis, methods B 638 blade wear by, turbine blades RI 7255 fusibility, determination, methods B 638 in gas turbine working fluid, permissible amount RI 7255 low-frequency infrared spectra OP 13-68 major constituents RI 7240 spectrochemical analysis RI 7240 spectrochemical analysis RI 6985 trace elements in, spectrochemical anal- yses RI 7281 Coal blends, chloroform-extract yields, in- vestigation RI 6973 Coal blending, improving coking qualities by RI 7235 Coal carbonization, Castle Mountain coal, tests OFR 7-66 coking time in. dependence on carboniza- tion parameters RI 7093 dependence on coal properties RI 7093 composition of tar from, effect of car- bonization conditions OP 29-68 continuous, process for, patent P 13-69
Coal acids, analyses, method OP 83-67 phthalic acids from, selective decar- boxylation OP 188-67 Coal ash, analysis, methods B 638 blade wear by, turbine blades R 7255 fusibility, determination, methods B 638 in gas turbine working fluid, permissible amount R 7255 low-frequency infrared spectra OP 13-68 major constituents RI 7240 spectrochemical analysis RI 6985 trace elements in, spectrochemical anal- yses RI 7281 Coal blends, chloroform-extract yields, in- vestigation RI 6973 Coal blending, improving coking qualities by RI 7285 Coal carbonization, Castle Mountain coal, tests RI 7093 dependence on coal properties RI 7093 composition of tar from, effect of car- bonization conditions OP 29-68 continuous, process for, patent RI 6083
Coal acids, analyses, method OP 83-67 phthalic acids from, selective decar- boxylation OP 188-67 Coal ash, analysis, methods B 638 blade wear by, turbine blades RI 7255 fusibility, determination, methods B 638 in gas turbine working fluid, permissible amount RI 7255 low-frequency infrared spectra OP 13-68 major constituents RI 7240 spectrochemical analysis RI 6985 trace elements in, spectrochemical anal- yses RI 7241 Coal blends, chloroform-extract yields, in- vestigation RI 7281 Coal blending, improving coking qualities by RI 7235 Coal carbonization, Castle Mountain coal, tests OFR 7-66 coking time in, dependence on carboniza- tion parameters RI 7093 dependence on coal properties RI 7093 composition of tar from, effect of car- bonization conditions P 13-69 entrained-bed, Australian coal RI 66073
Coal acids, analyses, method OP 83-67 phthalic acids from, selective decar- boxylation OP 188-67 Coal ash, analysis, methods B 638 blade wear by, turbine blades RI 7255 fusibility, determination, methods B 638 in gas turbine working fluid, permissible amount RI 7255 low-frequency infrared spectra OP 13-68 major constituents RI 7240 spectrochemical analysis RI 7240 spectrochemical analysis RI 7240 spectrochemical analysis RI 7281 Coal blends, chloroform-extract yields, in- vestigation RI 7281 Coal blending, improving coking qualities by RI 7235 Coal carbonization, Castle Mountain coal, tests OFR 7-66 coking time in, dependence on carboniza- tion parameters RI 7093 dependence on coal properties RI 7093 composition of tar from, effect of car- bonization conditions P 13-69 entrained-bed, Australian coal RI 6673
Coal acids, analyses, method OP 83-67 phthalic acids from, selective decar- boxylation OP 188-67 Coal ash, analysis, methods B 638 blade wear by, turbine blades RI 7255 fusibility, determination, methods B 638 in gas turbine working fluid, permissible amount RI 7255 low-frequency infrared spectra OP 13-68 major constituents RI 7240 spectrochemical analysis RI 7240 spectrochemical analysis RI 6985 trace elements in, spectrochemical anal- yses RI 7281 Coal blends, chloroform-extract yields, in- vestigation RI 7285 Coal blending, improving coking qualities by RI 7235 Coal carbonization, Castle Mountain coal, tests OFR 7-66 coking time in, dependence on carboniza- tion parameters RI 7093 dependence on coal properties RI 7093 composition of tar from, effect of car- bonization conditions P 13-69 entrained-bed, Australian coal RI 6673 highly fluid bituminous coal RI 7141 product yield RI 7141 fuidized, light oils from, analyses RI 6709
Coal acids, analyses, method OP 83-67 phthalic acids from, selective decar- boxylation OP 188-67 Coal ash, analysis, methods B 638 blade wear by, turbine blades RI 7255 fusibility, determination, methods B 638 in gas turbine working fluid, permissible amount RI 7255 low-frequency infrared spectra OP 13-68 major constituents RI 7240 spectrochemical analysis RI 7240 spectrochemical analysis RI 6985 trace elements in, spectrochemical anal- yses RI 7281 Coal blends, chloroform-extract yields, in- vestigation RI 7285 Coal blending, improving coking qualities by RI 7235 Coal carbonization, Castle Mountain coal, tests OFR 7-66 coking time in, dependence on carboniza- tion parameters RI 7093 dependence on coal properties RI 7093 composition of tar from, effect of car- bonization conditions P 13-69 entrained-bed, Australian coal RI 6673 highly fluid bituminous coal RI 7141 product yield RI 7141 fuidized, light oils from, analyses RI 6709
Coal acids, analyses, method OP 83-67 phthalic acids from, selective decar- boxylation OP 188-67 Coal ash, analysis, methods B 638 blade wear by, turbine blades B 638 in gas turbine working fluid, permissible amount B 638 in gas turbine working fluid, permissible amount RI 7255 low-frequency infrared spectra OP 13-68 major constituents RI 7240 spectrochemical analysis RI 6985 trace elements in, spectrochemical anal- yses RI 7261 Coal blends, chloroform-extract yields, in- vestigation RI 7235 Coal blending, improving coking qualities by RI 7235 Coal carbonization, Castle Mountain coal, tests OFR 7-66 coking time in, dependence on carboniza- tion parameters RI 7093 dependence on coal properties RI 7093 composition of tar from, effect of car- bonization conditions OP 29-68 continuous, process for, patent P 18-69 entrained-bed, Australian coal RI 7111 product yield RI 7111 fluidized, light oils from, analyses RI 6709 fluidized-bed low-temperature, char yields
Coal acids, analyses, method OP 83-67 phthalic acids from, selective decar- boxylation OP 188-67 Coal ash, analysis, methods B 638 blade wear by, turbine blades R 7255 fusibility, determination, methods B 638 in gas turbine working fluid, permissible amount R 7255 low-frequency infrared spectra OP 13-68 major constituents RI 7240 spectrochemical analysis RI 6985 trace elements in, spectrochemical anal- yses RI 7281 Coal blends, chloroform-extract yields, in- vestigation RI 6973 Coal blending, improving coking qualities by RI 7285 Coal carbonization, Castle Mountain coal, tests RI 7285 coal carbonization coal properties RI 7093 dependence on coal properties RI 7093 composition of tar from, effect of car- bonization conditions OP 29-68 continuous, process for, patent P 13-69 entrained-bed, Australian coal RI 7141 product yield RI 7141 fluidized, light oils from, analyses RI 7093 and composition RI 7222
Coal acids, analyses, method OP 83-67 phthalic acids from, selective decar- boxylation OP 188-67 Coal ash, analysis, methods B 638 blade wear by, turbine blades RI 7255 fusibility, determination, methods B 638 in gas turbine working fluid, permissible amount RI 7255 low-frequency infrared spectra OP 13-68 major constituents RI 7240 spectrochemical analysis RI 6985 trace elements in, spectrochemical anal- yses RI 7241 Coal blends, chloroform-extract yields, in- vestigation RI 7281 Coal blending, improving coking qualities by RI 6973 Coal blending, improving coking qualities by RI 7235 Coal carbonization, Castle Mountain coal, tests OFR 7-66 coking time in, dependence on carboniza- tion parameters RI 7093 dependence on coal properties RI 7093 composition of tar from, effect of car- bonization conditions P 13-69 entrained-bed, Australian coal RI 7411 product yield RI 7141 fluidized, light oils from, analyses RI 7141 fluidized, light oils from, analyses RI 7322 tar yields RI 7322
Coal acids, analyses, method OP 83-67 phthalic acids from, selective decar- boxylation OP 188-67 Coal ash, analysis, methods B 638 blade wear by, turbine blades B 7255 fusibility, determination, methods B 638 in gas turbine working fluid, permissible amount RI 7255 low-frequency infrared spectra OP 13-68 major constituents RI 7240 spectrochemical analysis RI 6985 trace elements in, spectrochemical anal- yses RI 7281 Coal blends, chloroform-extract yields, in- vestigation RI 6973 Coal blending, improving coking qualities by RI 7235 Coal carbonization, Castle Mountain coal, tests OFR 7-66 coking time in. dependence on carboniza- tion parameters RI 7093 dependence on coal properties RI 7093 composition of tar from, effect of car- bonization conditions P 18-69 entrained-bed, Australian coal RI 6673 highly fluid bituminous coal RI 7141 fluidized, light oils from, analyses RI 7122 tar yields RI 7322 tar yields RI 7322 high-temperature, comparison with laser
Coal acids, analyses, method OP 83-67 phthalic acids from, selective decar- boxylation OP 188-67 Coal ash, analysis, methods B 638 blade wear by, turbine blades R 7255 fusibility, determination, methods B 638 in gas turbine working fluid, permissible amount RI 7255 low-frequency infrared spectra OP 13-68 major constituents RI 7240 spectrochemical analysis RI 6985 trace elements in, spectrochemical anal- yses RI 7281 Coal blends, chloroform-extract yields, in- vestigation RI 6973 Coal blends, chloroform-extract yields, in- vestigation RI 6973 Coal blends, chloroform-extract yields, in- vestigation RI 7235 Coal carbonization, Castle Mountain coal, tests OFR 7-66 coking time in, dependence on carboniza- tion parameters RI 7093 dependence on coal properties RI 7093 composition of tar from, effect of car- bonization conditions RI 7093 composition of tar from, patent P 13-69 entrained-bed, Australian coal RI 6608 highly fluid bituminous coal RI 7141 product yield RI 7141 fluidized, light oils from, analyses RI 6709 fluidized-bed low-temperature, char yields and composition RI 7322 tar yields RI 6868
Coal acids, analyses, method OP 83-67 phthalic acids from, selective decar- boxylation OP 188-67 Coal ash, analysis, methods B 638 blade wear by, turbine blades RI 7255 fusibility, determination, methods B 638 in gas turbine working fluid, permissible amount RI 7255 low-frequency infrared spectra OP 13-68 major constituents RI 7240 spectrochemical analysis RI 6985 trace elements in, spectrochemical anal- yses RI 7281 Coal blends, chloroform-extract yields, in- vestigation RI 6973 Coal blends, chloroform-extract yields, in- vestigation RI 7235 Coal carbonization, Castle Mountain coal, tests RI 7235 Coal carbonization coal properties RI 7093 dependence on coal properties RI 7093 composition of tar from, effect of car- bonization conditions OP 29-68 continuous, process for, patent P 13-69 entrained-bed, Australian coal RI 6073 fluidized light oils from, analyses RI 6709 fluidized-bed low-temperature, char yields and composition RI 7322 tar yields RI 7322 high-temperature, comparison with laser and flash irradiation products RI 6868 Kuknowruk River area, Alaska, coals,
Coal acids, analyses, method OP 83-67 phthalic acids from, selective decar- boxylation OP 188-67 Coal ash, analysis, methods B 638 blade wear by, turbine blades RI 7255 fusibility, determination, methods B 638 in gas turbine working fluid, permissible amount RI 7255 low-frequency infrared spectra OP 13-68 major constituents RI 7240 spectrochemical analysis RI 6985 trace elements in, spectrochemical anal- yses RI 7281 Coal blends, chloroform-extract yields, in- vestigation RI 6973 Coal blending, improving coking qualities by RI 7235 Coal carbonization, Castle Mountain coal, tests RI 7235 coal carbonization coal properties RI 7093 dependence on coal properties RI 7093 dependence on coal properties RI 7093 composition of tar from, effect of car- bonization conditions P 18-69 entrained-bed, Australian coal RI 6073 fluidized, light oils from, analyses RI 6709 fluidized, light oils from, analyses RI 7322 high-temperature, comparison with laser and fash irradiation products RI 6368 kukpowruk River area, Alaska, coals, studies RI 6767
Coal acids, analyses, method OP 83-67 phthalic acids from, selective decar- boxylation OP 188-67 Coal ash, analysis, methods B 638 blade wear by, turbine blades RI 7255 fusibility, determination, methods B 638 in gas turbine working fluid, permissible amount RI 7255 low-frequency infrared spectra OP 13-68 major constituents RI 7240 spectrochemical analysis RI 6985 trace elements in, spectrochemical anal- yses RI 7281 Coal blends, chloroform-extract yields, in- vestigation RI 6973 Coal blends, chloroform-extract yields, in- vestigation RI 7235 Coal carbonization, Castle Mountain coal, tests RI 7235 Coal carbonization coal properties RI 7093 dependence on coal properties RI 7093 composition of tar from, effect of car- bonization conditions OP 29-68 continuous, process for, patent P 13-69 entrained-bed, Australian coal RI 6073 fluidized light oils from, analyses RI 6709 fluidized-bed low-temperature, char yields and composition RI 7322 tar yields RI 7322 high-temperature, comparison with laser and flash irradiation products RI 6868 Kuknowruk River area, Alaska, coals,

Coal carbonization, light oil yield B 643 low-temperature, problems OP 113-67 product yield, 1900-62 IC 8251 steam-fluidized low-temperature, char and gas yields RI 6625 top wields RI 6625
low-temperature, problems OP 113-67
product yield, 1900-62 IC 8251
steam-fluidized low-temperature, char
and gas yields RI 6025
tar yields RI 6625 subbituminous coal, varying parameters in, study RI 6839
in study RI 6839
tar from analysis B 643
tar from, analysis B 643 tar yield B 643
U.S., 1900-62 IC 8251 Coal-carbonization products, properties_ OP 156-67
Coal-carbonization products, properties_ OP_156-67
research, review IC 8277 Coal carbonization tests, Bureau of Mines-
American Gas Association meth-
od, retort-size relationship RI 6871
Coal carbonization yields, Utah coals, esti-
mate RI 6990
Coal char, heat content RI 6607
specific heat RI 6607
Coal chemicals, annual data MY 1968 (v. I-II)
Coal chemistry, research, review IC 8277 Coal cleaning, at low density, for sulfur re-
Coal cleaning, at low density, for sulfur re-
dense-medium processes OP 89-68
fine-coal concentrating devices OP 90-68
Coal cleaning, at low density, for sulfur re- duction, predicted results RI 7098 dense-medium processes OP 89-68 fine-coal concentrating devices OP 90-68 Coal-cleaning equipment, sales OP 169-65 Coal combustion high-temperature com-
Coal combustion, high-temperature, com-
bustion gas-liquid slag equilib-
Coal combustion, high-temperature, com- bustion gas-liquid slag equilib- rium compositions RI 7257 pulverized coal, chlorine compounds in combustion gas RI 7260 chlorine retention in ash RI 7260
pulverized coal, chlorine compounds in
computition gas RI (200
Coal-combustion deposits, low-frequency
infrared spectra OP 13-68
infrared spectra OP 13-68 Coal-combustion products, sulfur dioxide
pollution in, reducing, methods OP 47-68 Coal components, determination, automated
Coal components, determination, automated
reflectance scanning microscope system RI 7256
DT 70EC
system RI 7256
reflectance, determination B 641
reflectance, determination B 641 ultrafine structures in, electron microscopy studies B 641 X-ray studies B 648 Coal composition, research, review IC 8277 Coal dehydrogenation, catalytic, effect
reflectance, determination B 641 ultrafine structures in, electron microscopy studies B 641 X-ray studies B 648 Coal composition, research, review IC 8277 Coal dehydrogenation, catalytic, effect of rank
reflectance, determination B 641 ultrafine structures in, electron microscopy studies B 641 X-ray studies B 648 Coal composition, research, review IC 8277 Coal dehydrogenation, catalytic, effect of rank
reflectance, determination B 641 ultrafine structures in, electron microscopy studies B 641 X-ray studies B 648 Coal composition, research, review IC 8277 Coal dehydrogenation, catalytic, effect of rank OP 166-68 Coal deposits, U.S., recovery percentage RI 7109 Coal derivatives, aromaticity B 640 carbon-13 nuclear magnetic
reflectance, determination B 641 ultrafine structures in, electron microscopy studies B 641 X-ray studies B 648 Coal composition, research, review IC 8277 Coal dehydrogenation, catalytic, effect of rank OP 166-68 Coal deposits, U.S., recovery percentage RI 7109 Coal derivatives, aromaticity B 640 carbon-13 nuclear magnetic resonance spectrometry OP 24-67 32-67
reflectance, determination B 641 ultrafine structures in, electron microscopy studies B 641 X-ray studies B 648 Coal composition, research, review IC 8277 Coal dehydrogenation, catalytic, effect of rank OP 166-68 Coal deposits, U.S., recovery percentage RI 7109 Coal derivatives, aromaticity B 640 carbon-13 nuclear magnetic resonance spectrometry OP 24-67 32-67
reflectance, determination B 641 ultrafine structures in, electron microscopy studies B 641 X-ray studies B 648 Coal composition, research, review IC 8277 Coal dehydrogenation, catalytic, effect of rank OP 166-68 Coal deposits, U.S., recovery percentage RI 7109 Coal derivatives, aromaticity B 640 carbon-13 nuclear magnetic resonance spectrometry OP 24-67 32-67
reflectance, determination B 641 ultrafine structures in, electron microscopy studies B 641 X-ray studies B 648 Coal composition, research, review IC 8277 Coal dehydrogenation, catalytic, effect of rank OP 166-68 Coal deposits, U.S., recovery percentage RI 7109 Coal derivatives, aromaticity B 640 carbon-13 nuclear magnetic resonance spectrometry OP 24-67 32-67
reflectance, determination B 641 ultrafine structures in, electron microscopy studies B 648 Coal composition, research, review B 648 Coal composition, research, review IC 8277 Coal dehydrogenation, catalytic, effect of rank OP 166-68 Coal deposits, U.S., recovery percentage RI 7109 Coal derivatives, aromaticity OP 166-68 carbon-13 nuclear magnetic resonance spectrometry OP 24-67, 32-67 Coal-derived materials, bacterial growth on, study OP 77-66, 126-66 bacterial growth on OP 202-67 Coal-deuterium oxide mixtures, micro-
reflectance, determination B 641 ultrafine structures in, electron microscopy studies B 648 Coal composition, research, review B 648 Coal composition, research, review IC 8277 Coal dehydrogenation, catalytic, effect of rank OP 166-68 Coal deposits, U.S., recovery percentage RI 7109 Coal derivatives, aromaticity OP 166-68 carbon-13 nuclear magnetic resonance spectrometry OP 24-67, 32-67 Coal-derived materials, bacterial growth on, study OP 77-66, 126-66 bacterial growth on OP 202-67 Coal-deuterium oxide mixtures, micro-
reflectance, determination B 641 ultrafine structures in, electron microscopy studies B 648 Coal composition, research, review B 648 Coal composition, research, review IC 8277 Coal dehydrogenation, catalytic, effect of rank OP 166-68 Coal deposits, U.S., recovery percentage RI 7109 Coal derivatives, aromaticity OP 166-68 Coal deposits, U.S., recovery percentage RI 7109 Coal derivatives, aromaticity B 640 carbon-13 nuclear magnetic resonance spectrometry OP 24-67, 32-67 Coal-derived materials, bacterial growth on, study OP 77-66, 126-66 bacterial growth on OP 77-66, 126-66 bacterial growth on OP 202-67 Coal-deuterium oxide mixtures, micro- wave discharges in, product iden- tification, by high-resolution messe enertrometry OP 73-68
reflectance, determination B 641 ultrafine structures in, electron microscopy studies B 648 Coal composition, research, review B 648 Coal composition, research, review IC 8277 Coal dehydrogenation, catalytic, effect of rank OP 166-68 Coal deposits, U.S., recovery percentage RI 7109 Coal derivatives, aromaticity OP 166-68 Coal deposits, U.S., recovery percentage RI 7109 Coal derivatives, aromaticity B 640 carbon-13 nuclear magnetic resonance spectrometry OP 24-67, 32-67 Coal-derived materials, bacterial growth on, study OP 77-66, 126-66 bacterial growth on OP 77-66, 126-66 bacterial growth on OP 202-67 Coal-deuterium oxide mixtures, micro- wave discharges in, product iden- tification, by high-resolution messe enertrometry OP 73-68
reflectance, determination B 641 ultrafine structures in, electron microscopy studies B 648 Coal composition, research, review B 648 Coal composition, research, review IC 8277 Coal dehydrogenation, catalytic, effect of rank OP 166-68 Coal deposits, U.S., recovery percentage RI 7109 Coal derivatives, aromaticity OP 166-68 Coal deposits, U.S., recovery percentage RI 7109 Coal derivatives, aromaticity B 640 carbon-13 nuclear magnetic resonance spectrometry OP 24-67, 32-67 Coal-derived materials, bacterial growth on, study OP 77-66, 126-66 bacterial growth on OP 77-66, 126-66 bacterial growth on OP 202-67 Coal-deuterium oxide mixtures, micro- wave discharges in, product iden- tification, by high-resolution messe enertrometry OP 73-68
reflectance, determination B 641 ultrafine structures in, electron microscopy studies B 648 Coal composition, research, review B 648 Coal composition, research, review IC 8277 Coal dehydrogenation, catalytic, effect of rank OP 166-68 Coal deposits, U.S., recovery percentage RI 7109 Coal derivatives, aromaticity OP 166-68 Coal deposits, U.S., recovery percentage RI 7109 Coal derivatives, aromaticity B 640 carbon-13 nuclear magnetic resonance spectrometry OP 24-67, 32-67 Coal-derived materials, bacterial growth on, study OP 77-66, 126-66 bacterial growth on OP 77-66, 126-66 bacterial growth on OP 202-67 Coal-deuterium oxide mixtures, micro- wave discharges in, product iden- tification, by high-resolution messe enertrometry OP 73-68
reflectance, determination B 641 ultrafine structures in, electron microscopy studies B 648 Coal composition, research, review B 648 Coal composition, research, review IC 8277 Coal dehydrogenation, catalytic, effect of rank OP 166-68 Coal deposits, U.S., recovery percentage RI 7109 Coal derivatives, aromaticity OP 166-68 Coal deposits, U.S., recovery percentage RI 7109 Coal derivatives, aromaticity B 640 carbon-13 nuclear magnetic resonance spectrometry OP 24-67, 32-67 Coal-derived materials, bacterial growth on, study OP 77-66, 126-66 bacterial growth on OP 77-66, 126-66 bacterial growth on OP 77-66, 126-66 coal-deuterium oxide mixtures, micro- wave discharges in, product iden- tification, by high-resolution mass spectrometry OP 73-68 Coal distillates, infrared spectra B 640 Coal dryers, thermal, fluidized-bed, explo- sion hazards IC 8258
reflectance, determination B 641 ultrafine structures in, electron microscopy studies B 648 Coal composition, research, review B 648 Coal composition, research, review IC 8277 Coal dehydrogenation, catalytic, effect of rank OP 166-68 Coal deposits, U.S., recovery percentage RI 7109 Coal derivatives, aromaticity OP 166-68 Coal deposits, U.S., recovery percentage RI 7109 Coal derivatives, aromaticity B 640 carbon-13 nuclear magnetic resonance spectrometry OP 24-67, 32-67 Coal-derived materials, bacterial growth on, study OP 77-66, 126-66 bacterial growth on OP 77-66, 126-66 bacterial growth on OP 77-66, 126-66 coal-deuterium oxide mixtures, micro- wave discharges in, product iden- tification, by high-resolution mass spectrometry OP 73-68 Coal distillates, infrared spectra B 640 Coal dryers, thermal, fluidized-bed, explo- sion hazards IC 8258
reflectance, determination B 641 ultrafine structures in, electron microscopy studies B 648 Coal composition, research, review B 648 Coal composition, research, review IC 8277 Coal dehydrogenation, catalytic, effect of rank OP 166-68 Coal deposits, U.S., recovery percentage RI 7109 Coal derivatives, aromaticity OP 166-68 Coal deposits, U.S., recovery percentage RI 7109 Coal derivatives, aromaticity B 640 carbon-13 nuclear magnetic resonance spectrometry OP 24-67, 32-67 Coal-derived materials, bacterial growth on, study OP 77-66, 126-66 bacterial growth on OP 77-66, 126-66 bacterial growth on OP 77-66, 126-66 coal-deuterium oxide mixtures, micro- wave discharges in, product iden- tification, by high-resolution mass spectrometry OP 73-68 Coal distillates, infrared spectra B 640 Coal dryers, thermal, fluidized-bed, explo- sion hazards IC 8258
reflectance, determination B 641 ultrafine structures in, electron microscopy studies B 648 Coal composition, research, review IC 8277 Coal dehydrogenation, catalytic, effect of rank OP 166-68 Coal deposits, U.S., recovery percentage RI 7109 Coal derivatives, aromaticity B 640 carbon-13 nuclear magnetic resonance spectrometry OP 24-67, 32-67 Coal-derived materials, bacterial growth on, study OP 77-66, 126-66 bacterial growth on OP 77-66, 126-66 bacterial growth on OP 77-66, 126-66 bacterial growth on OP 77-66, 20-67 Coal-deuterium oxide mixtures, micro- wave discharges in, product iden- tification, by high-resolution mass spectrometry OP 73-68 Coal distillates, infrared spectra B 640 Coal dryers, thermal, fluidized-bed, explo- sion hazards IC 8258 fire hazards IC 8258 coal drying, methods OP 113-67 Coal dust, float, explosion hazard, evalua-
reflectance, determination B 641 ultrafine structures in, electron microscopy studies B 648 Coal composition, research, review IC 8277 Coal dehydrogenation, catalytic, effect of rank OP 166-68 Coal deposits, U.S., recovery percentage RI 7109 Coal derivatives, aromaticity B 640 carbon-13 nuclear magnetic resonance spectrometry OP 24-67, 32-67 Coal-derived materials, bacterial growth on, study OP 77-66, 126-66 bacterial growth on OP 77-66, 126-66 bacterial growth on OP 77-66, 126-66 bacterial growth on OP 77-68 Coal-deuterium oxide mixtures, micro- wave discharges in, product iden- tification, by high-resolution mass spectrometry OP 73-68 Coal distillates, infrared spectra B 640 Coal dryers, thermal, fluidized-bed, explo- sion hazards IC 8258 fire hazards IC 8258 coal drying, methods OP 113-67 Coal dust, float, explosion hazard, evalua- tion RI 6581 incendivity of hot gases to, reducing RI 6581
reflectance, determination B 641 ultrafine structures in, electron microscopy studies B 648 Coal composition, research, review IC 8277 Coal dehydrogenation, catalytic, effect of rank OP 166-68 Coal deposits, U.S., recovery percentage RI 7109 Coal derivatives, aromaticity B 640 carbon-13 nuclear magnetic resonance spectrometry OP 24-67, 32-67 Coal-derived materials, bacterial growth on, study OP 77-66, 126-66 bacterial growth on OP 77-66, 126-66 bacterial growth on OP 77-66, 126-66 bacterial growth on OP 77-68 Coal-deuterium oxide mixtures, micro- wave discharges in, product iden- tification, by high-resolution mass spectrometry OP 73-68 Coal distillates, infrared spectra B 640 Coal dryers, thermal, fluidized-bed, explo- sion hazards IC 8258 fire hazards IC 8258 coal drying, methods OP 113-67 Coal dust, float, explosion hazard, evalua- tion RI 6581 incendivity of hot gases to, reducing RI 6581
reflectance, determination B 641 ultrafine structures in, electron microscopy studies B 648 Coal composition, research, review IC 8277 Coal dehydrogenation, catalytic, effect of rank OP 166-68 Coal deposits, U.S., recovery percentage RI 7109 Coal derivatives, aromaticity B 640 carbon-13 nuclear magnetic resonance spectrometry OP 24-67, 32-67 Coal-derived materials, bacterial growth on, study OP 77-66, 126-66 bacterial growth on OP 77-66, 126-66 bacterial growth on OP 77-66, 126-66 bacterial growth on OP 77-68 Coal-deuterium oxide mixtures, micro- wave discharges in, product iden- tification, by high-resolution mass spectrometry OP 73-68 Coal distillates, infrared spectra B 640 Coal dryers, thermal, fluidized-bed, explo- sion hazards IC 8258 fire hazards IC 8258 coal drying, methods OP 113-67 Coal dust, float, explosion hazard, evalua- tion RI 6581 incendivity of hot gases to, reducing RI 6581 Coal dust-air mixtures, incendivity of ex- plosives in, effect of sodium ni-
reflectance, determination B 641 ultrafine structures in, electron microscopy studies B 648 Coal composition, research, review IC 8277 Coal dehydrogenation, catalytic, effect of rank OP 166-68 Coal deposits, U.S., recovery percentage RI 7109 Coal derivatives, aromaticity B 640 carbon-13 nuclear magnetic resonance spectrometry OP 24-67, 32-67 Coal-derived materials, bacterial growth on, study OP 77-66, 126-66 bacterial growth on OP 77-66, 126-66 bacterial growth on OP 77-66, 126-66 bacterial growth on OP 77-68 Coal-deuterium oxide mixtures, micro- wave discharges in, product iden- tification, by high-resolution mass spectrometry OP 73-68 Coal distillates, infrared spectra B 640 Coal dryers, thermal, fluidized-bed, explo- sion hazards IC 8258 fire hazards IC 8258 coal drying, methods OP 113-67 Coal dust, float, explosion hazard, evalua- tion RI 6581 incendivity of hot gases to, reducing RI 6581 Coal dust-air mixtures, incendivity of ex- plosives in, effect of sodium ni-
reflectance, determination B 641 ultrafine structures in, electron microscopy studies B 648 Coal composition, research, review IC 8277 Coal dehydrogenation, catalytic, effect of rank OP 166-68 Coal deposits, U.S., recovery percentage RI 7109 Coal derivatives, aromaticity B 640 carbon-13 nuclear magnetic resonance spectrometry OP 24-67, 32-67 Coal-derived materials, bacterial growth on, study OP 77-66, 126-66 bacterial growth on OP 77-66, 126-66 bacterial growth on OP 77-67 Coal-deuterium oxide mixtures, micro- wave discharges in, product iden- tification, by high-resolution mass spectrometry OP 73-68 Coal distillates, infrared spectra B 640 Coal dryers, thermal, fluidized-bed, explo- sion hazards IC 8258 fire hazards IC 8258 coal drying, methods IC 8258 Coal drying, methods OP 113-67 Coal dust, float, explosion hazard, evalua- tion RI 6581 incendivity of hot gases to, reducing RI 6581 incendivity of hot gases to, reducing RI 6581 incendivity of hot gases to, reducing RI 6581 use, in coal-fired water pump, study RI 6858
reflectance, determination B 641 ultrafine structures in, electron microscopy studies B 648 Coal composition, research, review IC 8277 Coal dehydrogenation, catalytic, effect of rank OP 166-68 Coal deposits, U.S., recovery percentage RI 7109 Coal derivatives, aromaticity B 640 carbon-13 nuclear magnetic resonance spectrometry OP 24-67, 32-67 Coal-derived materials, bacterial growth on, study OP 77-66, 126-66 bacterial growth on OP 77-66, 126-66 bacterial growth on OP 77-66, 126-66 coal-deuterium oxide mixtures, micro- wave discharges in, product iden- tification, by high-resolution mass spectrometry OP 73-68 Coal distillates, infrared spectra B 640 Coal drying, methods IC 8258 safety recommendations IC 8258 coal drying, methods OP 113-67 Coal dust, float, explosion hazard, evalua- tion RI 6581 incendivity of hot gases to, reducing RI 6581 incendivity of hot gases to, reducing RI 6954 Coal dust-air mixtures, incendivity of ex- plosives in, effect of sodium ni- trate additions RI 6858 coal.dist cloud ignitibility by explosives RI 6858
reflectance, determination B 641 ultrafine structures in, electron microscopy studies B 648 Coal composition, research, review IC 8277 Coal dehydrogenation, catalytic, effect of rank OP 166-68 Coal deposits, U.S., recovery percentage RI 7109 Coal derivatives, aromaticity B 640 carbon-13 nuclear magnetic resonance spectrometry OP 24-67, 32-67 Coal-derived materials, bacterial growth on, study OP 77-66, 126-66 bacterial growth on OP 77-66, 126-66 bacterial growth on OP 77-66, 126-66 coal-deuterium oxide mixtures, micro- wave discharges in, product iden- tification, by high-resolution mass spectrometry OP 73-68 Coal distillates, infrared spectra B 640 Coal dist, thermal, fluidized-bed, explo- sion hazards IC 8258 safety recommendations IC 8258 coal drying, methods OP 113-67 Coal dust, float, explosion hazard, evalua- tion RI 6581 incendivity of hot gases to, reducing RI 6954 Coal dust-air mixtures, incendivity of ex- plosives in, effect of sodium ni- trate additions RI 7318 use in coal-fired water pump, study RI 6858 coal dist cloud ignitibility by explosives RI 6858
reflectance, determination B 641 ultrafine structures in, electron microscopy studies B 648 Coal composition, research, review IC 8277 Coal dehydrogenation, catalytic, effect of rank OP 166-68 Coal deposits, U.S., recovery percentage RI 7109 Coal derivatives, aromaticity B 640 carbon-13 nuclear magnetic resonance spectrometry OP 24-67, 32-67 Coal-derived materials, bacterial growth on, study OP 77-66, 126-66 bacterial growth on OP 77-66, 126-66 bacterial growth on OP 77-66, 126-66 coal discharges in, product iden- tification, by high-resolution mass spectrometry OP 73-68 Coal distillates, infrared spectra B 640 Coal dryers, thermal, fluidized-bed, explo- sion hazards IC 8258 fire hazards IC 8258 coal drying, methods IC 8258 coal drying, methods IC 8258 Coal dust, float, explosion hazard, evalua- tion RI 6581 incendivity of hot gases to, reducing RI 6581 incendivity of hot gases to, reducing RI 6581 incendivity of hot gases to, reducing RI 6581 coal dust-air mixtures, incendivity of ex- plosives in, effect of sodium ni- trate additions RI 6858 Coal-dust cloud, ignitibility, by explosives RI 6815 Coal dust-cloud, ignitibility, by explosives RI 7318 use in coal-fired water pump, study RI 7318
reflectance, determination B 641 ultrafine structures in, electron microscopy studies B 648 Coal composition, research, review IC 8277 Coal dehydrogenation, catalytic, effect of rank OP 166-68 Coal deposits, U.S., recovery percentage RI 7109 Coal derivatives, aromaticity B 640 carbon-13 nuclear magnetic resonance spectrometry OP 24-67, 32-67 Coal-derived materials, bacterial growth on, study OP 77-66, 126-66 bacterial growth on OP 77-66, 126-66 bacterial growth on OP 77-66, 126-66 bacterial growth on OP 77-68 Coal distillates, infrared spectra DP 73-68 Coal distillates, infrared spectra B 640 Coal dryers, thermal, fluidized-bed, explo- sion hazards IC 8258 fire hazards IC 8258 coal dist, float, explosion hazard, evalua- tion RI 6581 incendivity of hot gases to, reducing RI 6581 incendivity of hot gases to, reducing RI 6581 coal dust. fine mixtures, incendivity of ex- plosives in, effect of sodium ni- trate additions RI 6858 Coal dust-fired water pump, study RI 6858 Coal dust-gas-air mixtures, incendivity of explosives in, effect of sodium ni-

) [

EIEIE

Coal dust-methane-air mixtures, flame propagation limits ______ RI 7103 ignitibility, effect of ash content ____ OP 93-68

Coal dust-methane mixtures, burning, quenching distances, study RI 6761 ignition limits RI 6931 Coal dust particles, dust-cloud formation
quenching distances, study RI 6761
ignition limits RI 6931
Coal dust particles, dust-cloud formation
from, aerodynamic aspects, study RI 7252
Coal exports, U.S., delivered prices IC 8380
destinations IC 8380
freight rates IC 8380 markede IC 8380
markaN IC 8380
Arigine IC 9990
notontial IC 9990
quantities 10 8380
origins IC 8380 potential IC 8380 quantities IC 8380 Coal extracts, infrared spectra B 640
pyrolyzates of aromatic structures in, mass spectra OP 35-67
mass spectra OP 35-67
LOSI TEEDET, DREUMSTIC DESIGN SDA ODETS-
tion IC 8314
tion IC 8314 Coal filter cake, vacum dewatering, use of
steam as aid in RI 6718 Coal - fired powerplants, air-pollutant
Coal fred nowerplants air-pollutent
omissions OP 59 65
emissions OP 58-65 Coal flotation, effect of air oxidation on coal
Coal notation, enect of air oxidation on coal
recovery KI 6620
Coal flotation tailing, dewatering, by ad- mixture of crushed washery ref-
mixture of crushed washery ref-
use investigation RI 7110
Coal gas, transport through coalbeds, fun-
damental concents TPR 10
Coal-gas reservoirs, behavior OP 114-68
Coal-gas reservoirs, behavior OP 114-68 study TPR 10 Coal gasification, coal-water slurry, in tube-
Coal gasification coal-water slurry in tube.
coil gasifier, investigation RI 7284
Auid bed asking coals OP 63-67
Pittshungh had goal in fixed had Lungi
Fittsburgh beu coal, in inkeu-beu Lurgi
fluid-bed, caking coals OP 63-67 Pittsburgh bed coal, in fixed-bed Lurgi gasifiers, tests RI 6721 pressure, highly caking coals, method OP 117-66 process variable changes, effect on gas
pressure, nighly caking coals, method OP 117-66
process variable changes, effect on gas
yield RI 7209 Coal gasification research, trends OP 113-67
Coal gasification research, trends OP 113-67
Coal hydrogenation, at extreme tempera-
tures and pressures, results OP 38-68 catalysts B 633
catalysts
economics B 633
experimental methods and equipment B 633
economics B 633 experimental methods and equipment B 633 high-pressure technology development B 633
experimental methods and equipment B 633 high-pressure, technology, development B 633 history B 633
high-pressure, technology, development B 633 history B 633
high-pressure, technology, development B 633 history B 633 in hatch autoclave, dry method, study B 622
high-pressure, technology, development B 633 history B 633 in batch autoclave, dry method, study B 622 industrial liquid-phase B 633
high-pressure, technology, development B 633 history B 633 in batch autoclave, dry method, study B 622 industrial liquid-phase B 633
high-pressure, technology, development B 633 history B 633 in batch autoclave, dry method, study B 622 industrial liquid-phase B 633 industrial vapor-phase B 633 lithium-ethylenediamine method B 615
high-pressure, technology, development B 633 history B 633 in batch autoclave, dry method, study B 622 industrial liquid-phase B 633 industrial vapor-phase B 633 lithium-ethylenediamine method B 615 Coal hydrogenation products, infrared spectra B 640
high-pressure, technology, development B 633 history B 633 in batch autoclave, dry method, study B 622 industrial liquid-phase B 633 industrial vapor-phase B 633 lithium-ethylenediamine method B 615 Coal hydrogen mixtures, temperatures, in
high-pressure, technology, development B 633 history B 633 in batch autoclave, dry method, study B 622 industrial liquid-phase B 633 industrial vapor-phase B 633 lithium-ethylenediamine method B 615 Coal hydrogenation products, infrared spectra B 640 Coal-hydrogen mixtures, temperatures, in externally heated tubes, determin-
high-pressure, technology, development B 633 history B 633 in batch autoclave, dry method, study B 622 industrial liquid-phase B 633 industrial vapor-phase B 633 lithium-ethylenediamine method B 615 Coal hydrogenation products, infrared spectra B 640 Coal-hydrogen mixtures, temperatures, in externally heated tubes, determin- ing method IC 8343
high-pressure, technology, development B 633 history B 633 in batch autoclave, dry method, study B 622 industrial liquid-phase B 633 industrial vapor-phase B 633 lithium-ethylenediamine method B 615 Coal hydrogenation products, infrared spectra B 640 Coal-hydrogen mixtures, temperatures, in externally heated tubes, determin- ing method IC 8343
high-pressure, technology, development B 633 history B 633 in batch autoclave, dry method, study B 622 industrial liquid-phase B 633 industrial vapor-phase B 633 lithium-ethylenediamine method B 615 Coal hydrogenation products, infrared spectra B 640 Coal-hydrogen mixtures, temperatures, in externally heated tubes, determin- ing method IC 8343
high-pressure, technology, development B 633 history B 633 in batch autoclave, dry method, study B 622 industrial liquid-phase B 633 industrial vapor-phase B 633 lithium-ethylenediamine method B 615 Coal hydrogenation products, infrared spectra B 640 Coal-hydrogen mixtures, temperatures, in externally heated tubes, determin- ing method IC 8343
high-pressure, technology, development B 633 history B 633 in batch autoclave, dry method, study B 622 industrial liquid-phase B 633 industrial vapor-phase B 633 lithium-ethylenediamine method B 615 Coal hydrogenation products, infrared spectra B 640 Coal-hydrogen mixtures, temperatures, in externally heated tubes, determin- ing method IC 8343
high-pressure, technology, development B 633 history B 633 in batch autoclave, dry method, study B 622 industrial liquid-phase B 633 industrial vapor-phase B 633 lithium-ethylenediamine method B 615 Coal hydrogenation products, infrared spectra B 640 Coal-hydrogen mixtures, temperatures, in externally heated tubes, determin- ing, method IC 8343 Coal industry, air pollution problems, description OP 27-68 Boulder-Weld coalfield, Colo., analysis RI 6726 Pacific Northwest, potential BPA 1-65
high-pressure, technology, development B 633 history B 633 in batch autoclave, dry method, study B 622 industrial liquid-phase B 633 industrial vapor-phase B 633 lithium-ethylenediamine method B 615 Coal hydrogen anixtures, infrared spectra B 640 Coal-hydrogen mixtures, temperatures, in externally heated tubes, determin- ing, method IC 8343 Coal industry, air pollution problems, description OP 27-68 Boulder-Weld coalfield, Colo., analysis RI 6726 Pacific Northwest, potential BPA 1-65 surface mine regulation. effect OP 79-69
high-pressure, technology, development B 633 history B 633 in batch autoclave, dry method, study B 622 industrial liquid-phase B 633 lithium-ethylenediamine method B 633 lithium-ethylenediamine method B 615 Coal hydrogen mixtures, temperatures, in externally heated tubes, determin- ing, method IC 8343 Coal industry, air pollution problems, description OP 27-68 Boulder-Weld coalfield, Colo., analysis RI 6726 Pacific Northwest, potential BPA 1-65 surface mine regulation, effect OF 79-69 U S process analysis OF 8 8-68
high-pressure, technology, development B 633 history B 633 in batch autoclave, dry method, study B 622 industrial liquid-phase B 633 lindustrial vapor-phase B 633 lithium-ethylenediamine method B 615 Coal hydrogenation products, infrared spectra B 640 Coal-hydrogen mixtures, temperatures, in externally heated tubes, determin- ing, method IC 8343 Coal industry, air pollution problems, description OP 27-68 Boulder-Weld coalfield, Colo., analysis RI 6726 Pacific Northwest, potential BPA 1-65 surface mine regulation, effect OP 79-69 U.S., process analysis OF R 8-68 western, status report OP 113-67
high-pressure, technology, development B 633 history B 633 in batch autoclave, dry method, study B 622 industrial liquid-phase B 633 industrial vapor-phase B 633 lithium-ethylenediamine method B 640 Coal-hydrogen mixtures, infrared spectra B 640 Coal-hydrogen mixtures, temperatures, in externally heated tubes, determin- ing, method IC 8343 Coal industry, air pollution problems, description OP 27-68 Boulder-Weld coalfield, Colo., analysis RI 6726 Pacific Northwest, potential BPA 1-65 surface mine regulation, effect OF 79-69 U.S., process analysis OFR 8-68 western, status report OF 113-67 Coal injection, experimental blast fur-
high-pressure, technology, development B 633 history B 633 in batch autoclave, dry method, study B 622 industrial liquid-phase B 633 industrial vapor-phase B 633 lithium-ethylenediamine method B 640 Coal-hydrogen mixtures, infrared spectra B 640 Coal-hydrogen mixtures, temperatures, in externally heated tubes, determin- ing, method IC 8343 Coal industry, air pollution problems, description OP 27-68 Boulder-Weld coalfield, Colo., analysis RI 6726 Pacific Northwest, potential BPA 1-65 surface mine regulation, effect OF 79-69 U.S., process analysis OFR 8-68 western, status report OF 113-67 Coal injection, experimental blast fur-
high-pressure, technology, development B 633 history B 633 in batch autoclave, dry method, study B 622 industrial liquid-phase B 633 industrial vapor-phase B 633 lithium-ethylenediamine method B 615 Coal hydrogenation products, infrared spectra B 640 Coal-hydrogen mixtures, temperatures, in externally heated tubes, determin- ing, method IC 8343 Coal industry, air pollution problems, description OP 27-68 Boulder-Weld coalfield, Colo., analysis RI 6726 Pacific Northwest, potential BPA 1-65 surface mine regulation, effect OP 79-69 U.S., process analysis OFR 8-68 western, status report OP 113-67 Coal injection, experimental blast fur- nace, method OP 186-67
high-pressure, technology, development B 633 history B 633 in batch autoclave, dry method, study B 622 industrial liquid-phase B 633 industrial vapor-phase B 633 lithium-ethylenediamine method B 640 Coal-hydrogen mixtures, infrared spectra B 640 Coal-hydrogen mixtures, temperatures, in externally heated tubes, determin- ing, method IC 8343 Coal industry, air pollution problems, description OP 27-68 Boulder-Weld coalfield, Colo., analysis RI 6726 Pacific Northwest, potential BPA 1-65 surface mine regulation, effect OF 79-69 U.S., process analysis OFR 8-68 western, status report OFR 8-68 western, status report OP 113-67 Coal injection, experimental blast fur- nace, method OP 69-68
high-pressure, technology, development B 633 history B 633 in batch autoclave, dry method, study B 622 industrial liquid-phase B 633 lindustrial vapor-phase B 633 lithium-ethylenediamine method B 615 Coal hydrogenation products, infrared spectra B 640 Coal-hydrogen mixtures, temperatures, in externally heated tubes, determin- ing, method IC 8343 Coal industry, air pollution problems, description OP 27-68 Boulder-Weld coalfield, Colo., analysis RI 6726 Pacific Northwest, potential BPA 1-65 surface mine regulation, effect OP 79-69 U.S., process analysis OFR 8-68 western, status report OF 8-68 western, status report OP 113-67 Coal injection, experimental blast fur- nace, method OP 69-68 Coal-indectals, performance tests OP 69-68
high-pressure, technology, development B 633 history B 633 in batch autoclave, dry method, study B 622 industrial liquid-phase B 633 lindustrial vapor-phase B 633 lithium-ethylenediamine method B 615 Coal hydrogenation products, infrared spectra B 640 Coal-hydrogen mixtures, temperatures, in externally heated tubes, determin- ing, method IC 8343 Coal industry, air pollution problems, description OP 27-68 Boulder-Weld coalfield, Colo., analysis RI 6726 Pacific Northwest, potential DF 1-65 surface mine regulation, effect OF 79-69 U.S., process analysis OFR 8-68 western, status report OFR 8-68 western, status report OP 113-67 Coal injection, experimental blast fur- nace, method OP 186-67 Coal-iodine batteries, performance tests OP 69-68 Coal macerals, product gases from, by laser irradiation OP 139-68
high-pressure, technology, development B 633 history B 633 in batch autoclave, dry method, study B 622 industrial liquid-phase B 633 lindustrial vapor-phase B 633 lithium-ethylenediamine method B 615 Coal hydrogenation products, infrared spectra B 640 Coal-hydrogen mixtures, temperatures, in externally heated tubes, determin- ing, method IC 8343 Coal industry, air pollution problems, description OP 27-68 Boulder-Weld coalfield, Colo., analysis RI 6726 Pacific Northwest, potential DF 1-65 surface mine regulation, effect OF 79-69 U.S., process analysis OFR 8-68 western, status report OFR 8-68 western, status report OP 113-67 Coal injection, experimental blast fur- nace, method OP 186-67 Coal-iodine batteries, performance tests OP 69-68 Coal macerals, product gases from, by laser irradiation OP 139-68
high-pressure, technology, development B 633 history B 633 in batch autoclave, dry method, study B 622 industrial liquid-phase B 633 lithium-ethylenediamine method B 643 lithium-ethylenediamine method B 640 Coal-hydrogen mixtures, infrared spectra B 640 Coal-hydrogen mixtures, temperatures, in externally heated tubes, determin- ing, method IC 8343 Coal industry, air pollution problems, description OP 27-68 Boulder-Weld coalfield, Colo., analysis RI 6726 Pacific Northwest, potential BPA 1-65 surface mine regulation, effect OP 79-69 U.S., process analysis OFR 8-68 western, status report OFR 8-68 western, status report OF 113-67 Coal injection, experimental blast fur- nace, method OP 139-68 Coal macerals, product gases from, by laser irradiation OP 139-68 Coal mines, abandoned, microfilmed means catelog
high-pressure, technology, development B 633 history B 633 in batch autoclave, dry method, study B 622 industrial liquid-phase B 633 lithium-ethylenediamine method B 643 lithium-ethylenediamine method B 640 Coal-hydrogen mixtures, infrared spectra B 640 Coal-hydrogen mixtures, temperatures, in externally heated tubes, determin- ing, method IC 8343 Coal industry, air pollution problems, description OP 27-68 Boulder-Weld coalfield, Colo., analysis RI 6726 Pacific Northwest, potential BPA 1-65 surface mine regulation, effect OP 79-69 U.S., process analysis OFR 8-68 western, status report OFR 8-68 western, status report OF 113-67 Coal injection, experimental blast fur- nace, method OP 139-68 Coal macerals, product gases from, by laser irradiation OP 139-68 Coal mines, abandoned, microfilmed means catelog
high-pressure, technology, development B 633 history B 633 in batch autoclave, dry method, study B 622 industrial liquid-phase B 633 lithium-ethylenediamine method B 643 lithium-ethylenediamine method B 640 Coal-hydrogen mixtures, infrared spectra B 640 Coal-hydrogen mixtures, temperatures, in externally heated tubes, determin- ing, method IC 8343 Coal industry, air pollution problems, description OP 27-68 Boulder-Weld coalfield, Colo., analysis RI 6726 Pacific Northwest, potential BPA 1-65 surface mine regulation, effect OP 79-69 U.S., process analysis OFR 8-68 western, status report OFR 8-68 western, status report OF 113-67 Coal injection, experimental blast fur- nace, method OP 139-68 Coal macerals, product gases from, by laser irradiation OP 139-68 Coal mines, abandoned, microfilmed means catelog
high-pressure, technology, development B 633 history B 633 in batch autoclave, dry method, study B 622 industrial liquid-phase B 633 lithium-ethylenediamine method B 633 lithium-ethylenediamine method B 633 lithium-ethylenediamine method B 633 lithium-ethylenediamine method B 640 Coal-hydrogen mixtures, temperatures, in externally heated tubes, determin- ing, method IC 8343 Coal industry, air pollution problems, description OP 27-68 Boulder-Weld coalfield, Colo., analysis RI 6726 Pacific Northwest, potential DF 79-69 U.S., process analysis OF 78-68 western, status report OF 78-68 western, status report OF 133-67 Coal injection, experimental blast fur- nace, method OP 136-67 Coal-iodine batteries, performance tests OP 69-68 Coal macerals, product gases from, by laser irradiation OP 139-68 Coal mines, abandoned, microfilmed maps catalog IC 8274, 8379 air sealing experiment, results OP 66-68 firefighting facilities, selected mines,
high-pressure, technology, development B 633 history B 633 in batch autoclave, dry method, study B 622 industrial liquid-phase B 633 lithium-ethylenediamine method B 633 lithium-ethylenediamine method B 633 lithium-ethylenediamine method B 633 lithium-ethylenediamine method B 640 Coal-hydrogen mixtures, temperatures, in externally heated tubes, determin- ing, method IC 8343 Coal industry, air pollution problems, description OP 27-68 Boulder-Weld coalfield, Colo., analysis RI 6726 Pacific Northwest, potential DF 79-69 U.S., process analysis OF 78-68 western, status report OF 78-68 western, status report OF 133-67 Coal injection, experimental blast fur- nace, method OP 136-67 Coal-iodine batteries, performance tests OP 69-68 Coal macerals, product gases from, by laser irradiation OP 139-68 Coal mines, abandoned, microfilmed maps catalog IC 8274, 8379 air sealing experiment, results OP 66-68 firefighting facilities, selected mines,
high-pressure, technology, development B 633 history B 633 in batch autoclave, dry method, study B 622 industrial liquid-phase B 633 lithium-ethylenediamine method B 633 lithium-ethylenediamine method B 633 lithium-ethylenediamine method B 633 lithium-ethylenediamine method B 640 Coal-hydrogen mixtures, temperatures, in externally heated tubes, determin- ing, method IC 8343 Coal industry, air pollution problems, description OP 27-68 Boulder-Weld coalfield, Colo., analysis RI 6726 Pacific Northwest, potential DF 79-69 U.S., process analysis OF 78-68 western, status report OF 78-68 western, status report OF 133-67 Coal injection, experimental blast fur- nace, method OP 136-67 Coal-iodine batteries, performance tests OP 69-68 Coal macerals, product gases from, by laser irradiation OP 139-68 Coal mines, abandoned, microfilmed maps catalog IC 8274, 8379 air sealing experiment, results OP 66-68 firefighting facilities, selected mines,
high-pressure, technology, development B 633 history B 633 in batch autoclave, dry method, study B 622 industrial liquid-phase B 633 lithium-ethylenediamine method B 633 lithium-ethylenediamine method B 633 lithium-ethylenediamine method B 633 lithium-ethylenediamine method B 640 Coal-hydrogen mixtures, temperatures, in externally heated tubes, determin- ing, method IC 8343 Coal industry, air pollution problems, description OP 27-68 Boulder-Weld coalfield, Colo., analysis RI 6726 Pacific Northwest, potential DF 79-69 U.S., process analysis OF 78-68 western, status report OF 78-68 western, status report OF 133-67 Coal injection, experimental blast fur- nace, method OP 136-67 Coal-iodine batteries, performance tests OP 69-68 Coal macerals, product gases from, by laser irradiation OP 139-68 Coal mines, abandoned, microfilmed maps catalog IC 8274, 8379 air sealing experiment, results OP 66-68 firefighting facilities, selected mines,
high-pressure, technology, development B 633 history B 633 in batch autoclave, dry method, study B 622 industrial liquid-phase B 633 lithium-ethylenediamine method B 633 lithium-ethylenediamine method B 633 lithium-ethylenediamine method B 640 Coal-hydrogen mixtures, temperatures, in externally heated tubes, determin- ing, method IC 8343 Coal industry, air pollution problems, description OP 27-68 Boulder-Weld coalfield, Colo., analysis RI 6726 Pacific Northwest, potential BPA 1-65 surface mine regulation, effect OP 79-69 U.S., process analysis OF 78-68 western, status report OP 113-67 Coal injection, experimental blast fur- nace, method OP 139-68 Coal macerals, product gases from, by laser irradiation OP 139-68 Coal mines, abandoned, microfilmed maps catalog IC 8274, 8379 air sealing experiment, results OP 66-69 firefighting facilities, selected mines, study IC 8361 gas flow in, control methods OP 114-67 physical laws governing OP 114-67
high-pressure, technology, development B 633 history B 633 in batch autoclave, dry method, study B 622 industrial liquid-phase B 633 lithium-ethylenediamine method B 633 lithium-ethylenediamine method B 633 lithium-ethylenediamine method B 640 Coal-hydrogen mixtures, temperatures, in externally heated tubes, determin- ing, method IC 8343 Coal industry, air pollution problems, description OP 27-68 Boulder-Weld coalfield, Colo., analysis RI 6726 Pacific Northwest, potential BPA 1-65 surface mine regulation, effect OP 79-69 U.S., process analysis OF 78-68 western, status report OP 113-67 Coal injection, experimental blast fur- nace, method OP 139-68 Coal macerals, product gases from, by laser irradiation OP 139-68 Coal mines, abandoned, microfilmed maps catalog IC 8274, 8379 air sealing experiment, results OP 66-69 firefighting facilities, selected mines, study IC 8361 gas flow in, control methods OP 114-67 physical laws governing OP 114-67
high-pressure, technology, development B 633 history B 633 in batch autoclave, dry method, study B 622 industrial liquid-phase B 633 lithium-ethylenediamine method B 633 lithium-ethylenediamine method B 640 Coal-hydrogen mixtures, infrared spectra B 640 Coal-hydrogen mixtures, temperatures, in externally heated tubes, determin- ing, method IC 8343 Coal industry, air pollution problems, description OP 27-68 Boulder-Weld coalfield, Colo., analysis RI 6726 Pacific Northwest, potential BPA 1-65 surface mine regulation, effect OP 79-69 U.S., process analysis OF R 8-68 western, status report OP 113-67 Coal injection, experimental blast fur- nace, method OP 186-67 Coal-iodine batteries, performance tests OP 69-68 Coal mines, abandoned, microfilmed maps catalog IC 8274, 8379 air sealing experiment, results OP 139-68 firefighting facilities, selected mines, study IC 8361 gas flow in, control methods OP 114-67 physical laws governing OP 114-67 gassy, with bleeder entries, effect of atmospheric - pressure changes on ventilation RI 6786; OP 111-68
high-pressure, technology, development B 633 history B 633 in batch autoclave, dry method, study B 622 industrial liquid-phase B 633 lithium-ethylenediamine method B 633 lithium-ethylenediamine method B 633 lithium-ethylenediamine method B 640 Coal-hydrogen mixtures, temperatures, in externally heated tubes, determin- ing, method IC 8343 Coal industry, air pollution problems, description OP 27-68 Boulder-Weld coalfield, Colo., analysis RI 6726 Pacific Northwest, potential DP 27-68 Boulder-Weld coalfield, Colo., analysis RI 6726 Pacific Northwest, potential DP 79-69 U.S., process analysis OF R 8-68 western, status report OF R 8-68 western, status report OF 113-67 Coal injection, experimental blast fur- nace, method OP 186-67 Coal-iodine batteries, performance tests OP 69-68 Coal macerals, product gases from, by laser irradiation OP 139-68 Coal mines, abandoned, microfilmed maps catalog IC 8274, 8379 air sealing experiment, results OP 66-68 firefighting facilities, selected mines, study IC 8361 gas flow in, control methods OP 114-67 physical laws governing OP 114-67 gassy, with bleeder entries, effect of atmospheric - pressure charges on ventilation RI 6786; OP 111-68 geologic and hydrologic environmental
high-pressure, technology, development B 633 history B 633 in batch autoclave, dry method, study B 622 industrial liquid-phase B 633 lithium-ethylenediamine method B 633 lithium-ethylenediamine method B 640 Coal-hydrogen mixtures, infrared spectra B 640 Coal-hydrogen mixtures, temperatures, in externally heated tubes, determin- ing, method IC 8343 Coal industry, air pollution problems, description OP 27-68 Boulder-Weld coalfield, Colo., analysis RI 6726 Pacific Northwest, potential BPA 1-65 surface mine regulation, effect OP 79-69 U.S., process analysis OF R 8-68 western, status report OP 113-67 Coal injection, experimental blast fur- nace, method OP 186-67 Coal-iodine batteries, performance tests OP 69-68 Coal mines, abandoned, microfilmed maps catalog IC 8274, 8379 air sealing experiment, results OP 139-68 firefighting facilities, selected mines, study IC 8361 gas flow in, control methods OP 114-67 physical laws governing OP 114-67 gassy, with bleeder entries, effect of atmospheric - pressure changes on ventilation RI 6786; OP 111-68

:

Coal mines, longwall, degasification, using vertical borehole method TPR 13
longwall mining in, roof-support require-
ments, estimating IC 8424 recording anemometers for underground
use in TPR 15 reflectors, standards for RI 7202
refuse dumps, locations IC 8430
refuse dumps, locations IC 8430 rehabilitation IC 8430 strip, waste disposal methods, cost esti-
mates IC 8406 underground, face ventilation, study RI 7223
underground, face ventilation, study RI 7223
coal-recovery percentage RI 7109 factors affecting RI 7109 waste disposal methods, cost estimates IC 8406
waste disposal methods, cost estimates IC 8406 Coal-mine dust, atmospheric, measuring,
Coal-mine dust, atmospheric, measuring, methods OP 129-65 incombustible content, determination, nu-
clear method RI 7193 respirable, control, ventilation methods for TPR 19
Coal-mine dust samples, midget-impinger.
electronic-counter analysis RI 7105 Coal mine employment, annual data IC 8419 Coal-mine fatalities, annual data
IC 8287, 8355, 8389, 8419 Coal-mine injuries, annual data
IC 8287, 8355, 8389, 8419 Coal-mine pillars, pressure changes, pres- sure cell for measuring OP 59-65
Coal-mine refuse, burning, extinguishing, laboratory study RI 6758 low-frequency infrared spectra OP 13-68
low-frequency infrared spectra OP 13-68 spontaneous ignition studies RI 6758
Coal-mine refuse banks, burning, control, field tests RI 6758 Coal-mine safety, research and technologic
work annual report
IC 8277, 8309, 8357, 8385, 8416 Coal Mine Safety Act, Federal, provisions CMS
Coal minerals, low-frequency infrared
Coal minerals, low-frequency infrared spectra OP 12-68 Coal miners, attitudes, studying, method-
ology for OFR 8-69 Coal miners, mechanization, sociological
impact of OP 50-69 Coal miners' families, mechanization, so- ciological impact of OP 50-69
ciological impact of OP 50-69 Coal miners' wives, attitudes, studying, methodology for OFR 8-69 Coal mining, hydraulic, in pitching coalbeds RI 6685
Coal mining, hydraulic, in pitching coalbeds RI 6685 research and technologic work, annual
research and technologic work, annual reportIC 8277, 8309, 8357, 8385, 8416 Coal-mining equipment, sales OP 169-65 Coal-mining industry, input-output re- lationships
Coal-mining industry, input-output re- lationships IC 8338: OP 199-67
Coal oil, hydrorefining, for supersonic-air-
Coal-particle velocity, measuring, radioac- tive method IC 8314
Coal pellets, coke from, properties RI 7050 Coal pillars, burst-prone, stress distribution
in, investigationRI 6971 stress changes in, during extraction RI 6980
Coal preparation B 630
Appalachian coals, for sulfur reduction, predicted results RI 7098
cyclones OP 90-68 dense-medium coarse-coal vessels, per- formance characteristics BI 7154
dense-medium separation processes UP 89-68
dewatering fine coal RI 6718 fine-coal cleaning, hydrocyclone perform-
ance tests RI 7067 fine-coal feldspar jig OP 90-68 fine-coal launders OP 90-68 hydrotator process OP 90-68
hydrotator process

Coal preparation, sand cones, performance
characteristics evaluation RI 6606 waste from, disposal costs IC 8406 wet concentrating tables OP 90-68 zeta potential control, applications OP 18-68
waste from, disposal costs IC 8406
zeta potential control applications OP 18-68
Coal-preparation research, review IC 8277
Coal-preparation research, review IC 8277 Coal products, gamma irradiation, effect IC 8377 Coal program, Bureau of Mines, review IC 8416 Coal properties, effect on coke size RI 7024 effect on coke strength RI 7024
Coal program, Bureau of Mines, review IC 8416
Coal properties, effect on coke size RI 7024
research review IC 9277
research, review IC 8277 Coal-pyrite particle association, determina-
tion, automated reflectance scan-
ning method RI 7256 Coal rank, effect of gaseous product dis-
tribution, in laser pyrolysis OP 72-68
Coal reduction, by metal-amine systems _ B 615
Coal refuse banks, anthracite, survey IC 8409 Coal refuse slurries, synthetic organic floc-
Coal refuse slurries, synthetic organic floc-
culants for treating, evaluation RI 7102 Coal research, basic, U.S., summary IC 8390
Coal research organizations, activities and
publications IC 8279
publications IC 8279 Coal reserves, Greenup County, Ky OFR 2-69
Pacific Northwest BPA 1-65
sulfur content IC 8312 Coal resources, Ala IC 8295
Mont. OP 144-65
southwestern Utah IC 8326
Mont. OP 144-65 southwestern Utah IC 8326 Coal seams, thickness, effect on production IC 8345
Coal-seam fires, controlling, methods OP 91-67 Coal-steam gasification, residence time, ef-
fort RI 7284
fect RI 7284 steam-coal ratio, effect RI 7284 steam concentration, effect RI 7284
steam concentration, effect RI 7284
temperature, effect RI 7284
temperature, effect RI 7284 Coal-storage research, review IC 8277 Coal-storage sites, safe construction of, recommendations IC 8256
recommendations IC 8256
Coal structure, correlation with resin struc- ture B 636
Coal structure research, infrared spec-
troscopy in OP 22-67 Coal synthesis processes, research, review IC 8277
Coal taxe low-tomperature eccepting
liquid and gas chromatographic
liquid and gas chromatographic method OP 51-66 high-boiling neutral oils from, coun- tercurrent distribution OP 44-65
tercurrent distribution OP 44-65
spectroscopic analysis UP 44-65
neutral-oil products, identification B 637
oils from, naphthalenes in, ultraviolet spectrophotometric determination OP 32-66
Coal-tar pitch, high-resolution mass spec-
trometry OP 110-68, 152-68
Coal-tar products, gamma irradiation, ef-
Coal-tar pitch, high-resolution mass spec- trometry OP 110-68, 152-68 Coal-tar products, gamma irradiation, ef- fect IC 8377 mass spectrometric analyses RI 7000
I DAT LEADSDOFL, DIDENDE, LESEALCH, LEVIEW IV OGII
pneumatic, discussion OP 115-66 Coal utilization, research and technologic
Coal utilization, research and technologic
work, annual report IC 8277, 8309, 8357, 8385, 8416
Coal utilization trends, western area, U.S. OP 113-67
U.S OP 113-67
Coal vitrain, electrochemical reduction of,
in ethylenediamine RI 7017
ultraviolet-visible reflectivity B 640 Coal-washery refuse, plant mulching with, effect OP 87-68
Coal-washing equipment, dense-medium coarse-coal vessels, performance
characteristics RI 7154 sand cones, performance characteristics,
evaluation R1 6606
Coal-water slurries, flow properties RI 6706
Coollegie Alaska compliant and colving
Coalbeds, Alaska, sampling and coking studies RI 7321

Coalbeds, degasifying, surface borehole
method, feasibility OP 114-68
method, feasibility OP 114-68 gas transport through, fundamental con-
cepts IPR IV
horizontal drilling in, equipment for, de- sign and development TPR_11
sign and development IFR 11
hudraulia mining tests RI 6685
pitching, experimental longwall mining RI 6745 hydraulic mining, tests RI 6685 Coalburg bed, W. Va., coal, carbonizing properties RI 6872, 6899, 7236
properties RI 6872, 6899, 7236
washing characteristics RI 6665, 7216
washing characteristics RI 6665, 7216 Coalville field, Utah, coal, potential car-
bonization wield RI 6990
Coating, surface, from coal, production, patent P 8-67 from coal and asphalt, patent P 17-66
patent P 8-67
from coal and asphalt, patent P 17–66
Consit southors in territe control in senu-
austenitic stainless steel, prac- ticability RI 7107
ticability RI 7107
in semiaustenitic stainless steel, effect on precipitation hardening RI 7121
annual data MV 1968 (v. I_II)
annual data MY 1968 (v. I-II) as substitute for nickel, in stainless steel,
effect on corrosion rate RI 6591
effect on corrosion rate RI 6591 chemical-industry use, Calif IC 8244
consumption B 630
consumption B 630 electrolytic separation from nickel, po-
tassium chloride-lithium chloride-
nickel chloride electrolyte RI 7082
high-purity, preparation, method, patent. P_{3-69}
nickel chloride electrolyte RI 7082 high-purity, preparation, method, patent. P 3-69 imports and exports B 630 in coal ash, spectrochemical determina-
in coal ash, spectrochemical determina-
tion RI 7281 prices B 630
prices B 630
production B 630 reclaiming, from cemented - carbide
scrap, method
scrap, method OP 149-09 recovery, from sulfatized laterite Ri <u>6644</u>
from superalloy scrap, chemical method RI 7316
reinforcement, with fine tungsten wire, laboratory investigation RI 7130
laboratory investigation RI 7130
reserves B 630
reserves B 630 stockpile accumulation, amount OP 62-66
technology B 630
uses B 630
uses B 630 Cobalt-60 irradiation, methylpyridines,
technology B 630 uses B 630 Cobalt-60 irradiation, methylpyridines, reactions OP 42-69
technology B 630 uses B 630 Cobalt-60 irradiation, methylpyridines, reactions OP 42-69 pyridine, reactions OP 42-69 Cobalt industry organization B 630
technology B 630 uses B 630 Cobalt-60 irradiation, methylpyridines, reactions OP 42-69 pyridine, reactions OP 42-69 Cobalt industry organization B 630
technology B 630 uses B 630 Cobalt-60 irradiation, methylpyridines, reactions OP 42-69 pyridine, reactions OP 42-69 Cobalt industry, organization B 630 problems B 630 Cobalt-nickel alloy, separation of nickel
technology B 630 uses B 630 Cobalt-60 irradiation, methylpyridines, reactions OP 42-69 pyridine, reactions OP 42-69 Cobalt industry, organization B 630 problems B 630 Cobalt-nickel alloy, separation of nickel and cobalt from, electrolytic proc-
technology B 630 uses B 630 Cobalt-60 irradiation, methylpyridines, P 42-69 pyridine, reactions OP 42-69 Cobalt industry, organization DP 42-69 problems B 630 Cobalt-nickel alloy, separation of nickel and cobalt from, electrolytic proc- B 630 RI 7082 RI 7082
technology B 630 uses B 630 Cobalt-60 irradiation, methylpyridines, reactions pyridine, reactions OP 42-69 cobalt industry, organization DP 42-69 problems B 630 cobalt-nickel alloy, separation of nickel and cobalt from, electrolytic process ess Cobalt-nickel diarsenides magnetic suscension
technology B 630 uses B 630 Cobalt-60 irradiation, methylpyridines, reactions OP 42-69 pyridine, reactions OP 42-69 Cobalt industry, organization B 630 problems B 630 Cobalt-nickel alloy, separation of nickel and cobalt from, electrolytic proc- ess RI 7082 Cobalt-nickel diarsenides, magnetic suscep- tibility IC 8351
technology B 630 uses B 630 Cobalt-60 irradiation, methylpyridines, reactions OP 42-69 pyridine, reactions OP 42-69 Cobalt industry, organization B 630 problems B 630 Cobalt-nickel alloy, separation of nickel and cobalt from, electrolytic proc- ess RI 7082 Cobalt-nickel diarsenides, magnetic suscep- tibility IC 8351 Cobalt-rare earth alloys, preparation, elec-
technology B 630 uses B 630 Cobalt-60 irradiation, methylpyridines, reactions OP 42-69 pyridine, reactions OP 42-69 Cobalt industry, organization B 630 problems B 630 Cobalt-nickel alloy, separation of nickel and cobalt from, electrolytic proc- ess RI 7082 Cobalt-nickel diarsenides, magnetic suscep- tibility IC 8351 Cobalt-rare earth alloys, preparation, elec- trolytic method OP 5-69
technology B 630 uses B 630 Cobalt-60 irradiation, methylpyridines, reactions P 42-69 pyridine, reactions OP 42-69 Cobalt-industry, organization DP 42-69 Cobalt industry, organization B 630 Cobalt-nickel alloy, separation of nickel and cobalt from, electrolytic proc- ess B 630 Cobalt-nickel diarsenides, magnetic suscep- tibility IC 8351 Cobalt-rare earth alloys, preparation, elec- trolytic method OP 5-69 Cobalt sulfate, anhydrous, entropy RI 6669
technology B 630 uses B 630 Cobalt-60 irradiation, methylpyridines, reactions OP 42-69 pyridine, reactions OP 42-69 Cobalt industry, organization B 630 problems B 630 Cobalt-nickel alloy, separation of nickel and cobalt from, electrolytic proc- ess RI 7082 Cobalt-nickel diarsenides, magnetic suscep- tibility IC 8351 Cobalt-rare earth alloys, preparation, elec- trolytic method OP 5-69 Cobalt sulfate, anhydrous, entropy RI 6669 heat of formation RI 6617
technology B 630 uses B 630 Cobalt-60 irradiation, methylpyridines, reactions P 42-69 pyridine, reactions OP 42-69 cobalt industry, organization B 630 problems B 630 cobalt-nickel alloy, separation of nickel and cobalt from, electrolytic proc- ess B 630 Cobalt-nickel diarsenides, magnetic suscep- tibility IC 8351 Cobalt-rare earth alloys, preparation, elec- trolytic method OP 5-69 Cobalt sulfate, anhydrous, entropy RI 6669 heat of formation RI 6617 low-temperature heat capacity RI 6669
technology B 630 uses B 630 Cobalt-60 irradiation, methylpyridines, reactions P 42-69 pyridine, reactions OP 42-69 cobalt industry, organization B 630 problems B 630 cobalt-nickel alloy, separation of nickel and cobalt from, electrolytic proc- ess B 630 Cobalt-nickel diarsenides, magnetic suscep- tibility IC 8351 Cobalt-rare earth alloys, preparation, elec- trolytic method OP 5-69 Cobalt sulfate, anhydrous, entropy RI 6669 heat of formation RI 6617 low-temperature heat capacity RI 6669
technology B 630 uses B 630 Cobalt-60 irradiation, methylpyridines, reactions P 42-69 pyridine, reactions OP 42-69 cobalt industry, organization B 630 problems B 630 cobalt-nickel alloy, separation of nickel and cobalt from, electrolytic proc- ess B 630 Cobalt-nickel diarsenides, magnetic suscep- tibility IC 8351 Cobalt-rare earth alloys, preparation, elec- trolytic method OP 5-69 Cobalt sulfate, anhydrous, entropy RI 6669 heat of formation RI 6617 low-temperature heat capacity RI 6669
technology B 630 uses B 630 Cobalt-60 irradiation, methylpyridines, reactions B 630 pyridine, reactions OP 42-69 cobalt-formation DP 42-69 cobalt industry, organization OP 42-69 poroblems B 630 Cobalt-nickel alloy, separation of nickel and cobalt from, electrolytic proce- ess B 7082 Cobalt-nickel diarsenides, magnetic suscep- tibility IC 8351 Cobalt-rare earth alloys, preparation, elec- trolytic method OP 5-69 Cobalt sulfate, anhydrous, entropy RI 6669 heat of formation RI 6669 cobalt-tungsten alloys, reactions with oxy- gen, at high temperatures RI 6998 vapor deposition of, method RI 6713
technology B 630 uses B 630 Cobalt-60 irradiation, methylpyridines, reactions P 42-69 pyridine, reactions OP 42-69 cobalt-formation B 630 cobalt industry, organization OP 42-69 poblems B 630 cobalt-nickel alloy, separation of nickel and cobalt from, electrolytic proc- ess B 7082 Cobalt-nickel diarsenides, magnetic suscep- tibility IC 8351 Cobalt-rare earth alloys, preparation, elec- trolytic method OP 5-69 Cobalt sulfate, anhydrous, entropy RI 6669 heat of formation low-temperature heat capacity RI 6669 cobalt-tungsten alloys, reactions with oxy- gen, at high temperatures RI 6998 vapor deposition of, method RI 6713 Cobalt-tungsten phase diagram RI 6956
technology B 630 uses B 630 Cobalt-60 irradiation, methylpyridines, reactions P 42-69 pyridine, reactions OP 42-69 cobalt-60 irradiation, methylpyridines, reactions OP 42-69 cobalt industry, organization DP 42-69 cobalt industry, organization B 630 Cobalt-nickel alloy, separation of nickel and cobalt from, electrolytic proc- ess B 7082 Cobalt-nickel diarsenides, magnetic suscep- tibility IC 8351 Cobalt-rare earth alloys, preparation, elec- trolytic method OP 5-69 Cobalt sulfate, anhydrous, entropy RI 6669 heat of formation RI 6669 cobalt-tungsten alloys, reactions with oxy- gen, at high temperatures RI 6998 vapor deposition of, method RI 6713 Cobalt-tungsten phase diagram RI 6956 Cobaltie, magnetic susceptibility IC 8351
technology B 630 uses B 630 Cobalt-60 irradiation, methylpyridines, reactions P 42-69 pyridine, reactions OP 42-69 cobalt-industry, organization B 630 problems B 630 Cobalt-industry, organization B 630 Cobalt-nickel alloy, separation of nickel and cobalt from, electrolytic proc- ess RI 7082 Cobalt-nickel diarsenides, magnetic suscep- tibility IC 8351 Cobalt-rare earth alloys, preparation, elec- trolytic method OP 5-69 Cobalt sulfate, anhydrous, entropy RI 6669 heat of formation RI 6669 Cobalt-tungsten alloys, reactions with oxy- gen, at high temperatures RI 6998 vapor deposition of, method RI 6713 Cobalt-tungsten phase diagram RI 6956 Cobaltie, magnetic susceptibility IC 8351
technology B 630 uses B 630 Cobalt-60 irradiation, methylpyridines, reactions DP 42-69 pyridine, reactions OP 42-69 Cobalt-industry, organization DP 42-69 problems B 630 Cobalt-industry, organization DP 42-69 poblems DP 42-69 poblems B 630 Cobalt-industry, organization DP 42-69 poblems DP 42-69 cobalt-industry, organization DP 42-69 cobalt-industry, organization DP 42-69 cobalt-industry, organization DP 42-69 cobalt-industry, organization DP 630 cobalt-industry, organization If 630 Cobalt-industry, organization If 7082 Cobalt-industry, organization, electrolytic method IC 8351 Cobalt-rare earth alloys, preparation, electrolytic method OP 5-69 Cobalt sulfate, anhydrous, entropy RI 6669 heat of formation RI 6669 cobalt-tungsten alloys, reactions with oxy- gen, at high temperatures RI 6998 vapor deposition of, method RI 6956 Cobalt-tungsten phase diagram
technology B 630 uses B 630 Cobalt-60 irradiation, methylpyridines, reactions DP 42-69 pyridine, reactions OP 42-69 Cobalt-industry, organization DP 42-69 problems B 630 Cobalt-industry, organization DP 42-69 poblems DP 42-69 poblems B 630 Cobalt-industry, organization DP 42-69 poblems DP 42-69 cobalt-industry, organization DP 42-69 cobalt-industry, organization DP 42-69 cobalt-industry, organization DP 42-69 cobalt-industry, organization DP 630 cobalt-industry, organization If 630 Cobalt-industry, organization If 7082 Cobalt-industry, organization, electrolytic method IC 8351 Cobalt-rare earth alloys, preparation, electrolytic method OP 5-69 Cobalt sulfate, anhydrous, entropy RI 6669 heat of formation RI 6669 cobalt-tungsten alloys, reactions with oxy- gen, at high temperatures RI 6998 vapor deposition of, method RI 6956 Cobalt-tungsten phase diagram
technology B 630 uses B 630 cobalt-60 irradiation, methylpyridines, reactions P 42-69 pyridine, reactions OP 42-69 cobalt-formation B 630 cobalt industry, organization OP 42-69 poblems B 630 cobalt-nickel alloy, separation of nickel and cobalt from, electrolytic proc- ess B 630 Cobalt-nickel diarsenides, magnetic suscep- tibility IC 8351 Cobalt-rare earth alloys, preparation, elec- trolytic method OP 5-69 Cobalt sulfate, anhydrous, entropy RI 6669 heat of formation RI 6669 cobalt-tungsten alloys, reactions with oxy- gen, at high temperatures RI 6998 vapor deposition of, method RI 6713 Cobalt-tungsten phase diagram RI 6956 Cobaltie, magnetic susceptibility IC 8351 Cochran mine, Pa., coal, carbonizing prop- erties RI 7131 Cogar & Avis No. 1 mine, W. Va., coal, washing characteristics RI 6825
technology B 630 uses B 630 Cobalt-60 irradiation, methylpyridines, reactions OP 42-69 pyridine, reactions OP 42-69 Cobalt industry, organization B 630 Cobalt-nickel alloy, separation of nickel and cobalt from, electrolytic proc- ess RI 7082 Cobalt-nickel diarsenides, magnetic suscep- tibility IC 8351 Cobalt-rare earth alloys, preparation, elec- trolytic method OP 5-69 Cobalt sulfate, anhydrous, entropy RI 6669 heat of formation RI 6669 cobalt-tungsten alloys, reactions with oxy- gen, at high temperatures RI 6998 vapor deposition of, method RI 6998 vapor deposition of, method RI 6956 Cobalt-tungsten phase diagram RI 6956 Cobaltie, magnetic susceptibility IC 8351 Cochran mine, Pa., coal, carbonizing prop- erties RI 6825 Coke, analysis, methods, description RI 6825
technology B 630 uses B 630 Cobalt-60 irradiation, methylpyridines, reactions OP 42-69 pyridine, reactions OP 42-69 Cobalt industry, organization B 630 Cobalt-nickel alloy, separation of nickel and cobalt from, electrolytic proc- ess RI 7082 Cobalt-nickel diarsenides, magnetic suscep- tibility IC 8351 Cobalt-rare earth alloys, preparation, elec- trolytic method OP 5-69 Cobalt sulfate, anhydrous, entropy RI 6669 heat of formation RI 6669 heat of formation RI 6669 Cobalt-tungsten alloys, reactions with oxy- gen, at high temperatures RI 6998 vapor deposition of, method RI 6713 Cobalt-tungsten phase diagram RI 6956 Cobaltie, magnetic susceptibility IC 8351 Cochran mine, Pa., coal, carbonizing prop- erties RI 7131 Cogar & Avis No. 1 mine, W. Va., coal, washing characteristics RI 6825 Coke, analysis, methods, description B 638 annual data MY 1968 (v. I-II)
 technology
 technology
technology B 630 uses B 630 Cobalt-60 irradiation, methylpyridines, reactions OP 42-69 pyridine, reactions OP 42-69 Cobalt industry, organization B 630 Cobalt-nickel alloy, separation of nickel and cobalt from, electrolytic proc- ess RI 7082 Cobalt-nickel diarsenides, magnetic suscep- tibility IC 8351 Cobalt-rare earth alloys, preparation, elec- trolytic method OP 5-69 Cobalt sulfate, anhydrous, entropy RI 6669 heat of formation RI 6669 cobalt-tungsten alloys, reactions with oxy- gen, at high temperatures RI 6998 vapor deposition of, method RI 6713 Cobalt-tungsten phase diagram RI 6956 Cobaltie, magnetic susceptibility IC 8351 Cochran mine, Pa., coal, carbonizing prop- erties RI 6825 Coke, analysis, methods, description RI 638 annual data MY 1968 (v. I-II) blast-furnace, mechanical strength, at high temperatures RI 6814 blast-furnace consumption, 1900-62 IC 8251
technology B 630 uses B 630 Cobalt-60 irradiation, methylpyridines, reactions OP 42-69 pyridine, reactions OP 42-69 Cobalt industry, organization B 630 Cobalt-nickel alloy, separation of nickel and cobalt from, electrolytic proc- ess RI 7082 Cobalt-nickel diarsenides, magnetic suscep- tibility IC 8351 Cobalt-rare earth alloys, preparation, elec- trolytic method OP 5-69 Cobalt sulfate, anhydrous, entropy RI 6669 heat of formation RI 6669 cobalt-tungsten alloys, reactions with oxy- gen, at high temperatures RI 6998 vapor deposition of, method RI 6713 Cobalt-tungsten phase diagram RI 6956 Cobaltie, magnetic susceptibility IC 8351 Cochran mine, Pa., coal, carbonizing prop- erties RI 6825 Coke, analysis, methods, description RI 638 annual data MY 1968 (v. I-II) blast-furnace, mechanical strength, at high temperatures RI 6814 blast-furnace consumption, 1900-62 IC 8251
technology B 630 uses B 630 Cobalt-60 irradiation, methylpyridines, reactions OP 42-69 pyridine, reactions OP 42-69 Cobalt industry, organization B 630 Cobalt-nickel alloy, separation of nickel and cobalt from, electrolytic proc- ess RI 7082 Cobalt-nickel diarsenides, magnetic suscep- tibility IC 8351 Cobalt-rare earth alloys, preparation, elec- trolytic method OP 5-69 Cobalt sulfate, anhydrous, entropy RI 6669 heat of formation RI 6669 cobalt-tungsten alloys, reactions with oxy- gen, at high temperatures RI 6669 vapor deposition of, method RI 6998 vapor deposition of, method RI 6956 Cobaltite, magnetic susceptibility IC 8351 Cochran mine, Pa., coal, carbonizing prop- erties RI 6825 Coke, analysis, methods, description RI 6825 Coke, analysis, methods, description RI 6814 blast-furnace, mechanical strength, at high temperatures RI 6814 blast-furnace consumption, 1900-62 IC 8251 chemical, chain-grate stoker produced, properties RI 7050
technology B 630 uses B 630 Cobalt-60 irradiation, methylpyridines, reactions OP 42-69 pyridine, reactions OP 42-69 Cobalt industry, organization B 630 Cobalt-nickel alloy, separation of nickel and cobalt from, electrolytic proc- ess RI 7082 Cobalt-nickel diarsenides, magnetic suscep- tibility IC 8351 Cobalt-rare earth alloys, preparation, elec- trolytic method OP 5-69 Cobalt sulfate, anhydrous, entropy RI 6669 heat of formation RI 6669 cobalt-tungsten alloys, reactions with oxy- gen, at high temperatures RI 6998 vapor deposition of, method RI 6713 Cobalt-tungsten phase diagram RI 6956 Cobaltie, magnetic susceptibility IC 8351 Cochran mine, Pa., coal, carbonizing prop- erties RI 6825 Coke, analysis, methods, description RI 638 annual data MY 1968 (v. I-II) blast-furnace, mechanical strength, at high temperatures RI 6814 blast-furnace consumption, 1900-62 IC 8251

) ₿{: ₽

E

.

1

ł

E.

Coke showing production continuous
Coke, chemical, production, continuous method OP 43-68
method OP 43-68 traveling-grate process, effect of op
erating variables RI 7050
drop shatter test, method B 638 in simulated blast-furnace shaft, pres-
sure-drop study RI 6945 heat content RI 6607 industrial-carbon applications B 630
heat content RI 6607
lignite, low-temperature, carbon elec-
trodes from OP 101-69 petroleum, industry study, U.S. west coast IC 8259 production, from thermally cracked
petroleum, industry study, U.S. west
production from thermally cracked
low - temperature lignite tar pitch OP_147-67
pitch OP 147-67
reactions, with steam OP 52-67 sampling and analysis methods, litera-
ture survey OP 40-67
ture survey OP 40-67 specific gravity, determination, method B 638
Sunnyside coal, improving quality of, antifissurants use for RI 7235
testing, methods, description B 638
testing, methods, description B 638 tumbler test, method B 638 types OP 164-67
X-ray diffraction data B 620 Coke ash, analysis, methods B 638 Coke breeze, production, 1920-62 IC 8251 Coke industry, United States, 1900-62 IC 8251 Coke-oven ammonia, production, 1900-62 IC 8251 Coke-oven gas, production, 1900-62 IC 8251 Coke-oven light oil, production, 1915-62 IC 8251 Coke-oven light oil, production, 1915-62 IC 8251
Coke ash, analysis, methods B 638
Coke industry United States 1900-62 IC 8251
Coke-oven ammonia, production, 1900-62 IC 8251
Coke-oven gas, production, 1900-62 IC 8251
Coke-oven light oil, production, 1915-62 IC 8251 Coke-oven pitch, high-resolution mass
spectrometry OP 152-68 Coke-oven tar, production, 1900-62 IC 8251
Coke plants, beehive, number and size,
employment, 1916-62
oven, number and size, 1900-62 IC 8251
Coke-plant practice, European, review OP 62-67
Coke-plant products, U.SEuropean prac-
tices, comparison OP 62-67
Coke rate, in blast furnace, effect of wind
rate on OP 13-67 prereduced burdens, effect OP 130-66 Coke size, effect of carbonization conditions
Coke size, effect of carbonization conditions
on
effect of coal properties on RI 7024 Coke strength, effect of carbonization con
ditions on RI 7024
effect of coal properties on RI 7024
Coking. delayed, low-temperature lignite pitch, investigation OP 192-68
Cohing process chain-grate-stoker feasi-
bility study Coking properties, Alaska coals RI 7050 Coking properties, Alaska coals RI 7321
Utah coals RI 6948
Utah coals RI 6948 Coking time, coal, effect of bulk density RI 7093 effect of flue temperature RI 7093 Effect of flue temperature RI 7093
effect of flue temperature RI 7093
effect of oven width RI 7093 in coal carbonization, dependence on car-
bonization parameters RI 7093
dependence on coal properties RI 7093 Colloids, in petroleum, small-angle X-ray
Colloids, in petroleum, small-angle X-ray scattering, study OP 40-65
Colombia, crude oil, production RI 7059
Colombia, crude oil, production RI 7059 sulfur content RI 7059 economic progress, review OP 198-67
economic progress, review OP 198-67
mineral industry, annual re- view MYB 1968 (v. IV)
natural gas, analyses IC 8356
Colorado, Adena field, gas-cap reservoir study M 13
Barcus Creek Corehole No. 1. well
logs OFR 15-69 beryllium-bearing pegmatites, reconnais-
sance IC 8298

ł

1

)

)

3

ſ

Colorado, beryllium deposits, investigation. RI 6828 Boulder-Weld coalfield, coal industry in, economic analysis RI 6723
Boulder-Weld coalfield, coal industry in,
boulder- nely coanield, coar industry in,
economic analysis RI 6/20
economic forecast RI 6726
Bureau of Mines-Atomic Energy Com-
mission corehole, progress re-
port OP 128-67 Bureau of Mines-Atomic Energy Com- mission corehole No. 1, well
Bureau of Mines-Atomic Energy Com-
mission corehole No. 1, well
logs OFR 2-66
Bureau of Mines-Atomic Energy Commission corehole No. 3, data
Commission corebole No 3
data OFP 15 69
data OFR 15-68 Bureau of Mines oil-shale retorting proc-
Bureau of Mines off-shale reforting proc-
ess, development B 638 Cheyenne Mountain, North American Air Defense Command under- ground facility, construction meth-
Cheyenne Mountain, North American
Air Defense Command under-
ground facility, construction meth-
ods and costs IC 8294
Climax molvbdenum mine, stresses, in
development workings, measuring RI_6666
strain-gage for measuring RI 665
and analyzes P 642. DI 6699
2004 200 7104 201
6904, 6792, 7104, 721
entrained-bed carbonization tests RI 7141
major ash constituents RI 7240
Climax molybdenum mine, stresses, in development workings, measuring IC 8294 strain-gage, for measuring RI 6665 coal, analyses B 643; RI 6622 6904, 6792, 7104, 7219 entrained-bed carbonization tests RI 7143 major ash constituents RI 7242 phosphorus content RI 6577
potassium content RI 6576 sodium content RI 6576
sodium content RI 6579
subbituminous, carbonization method, study RI 6833
study PI 6830
cultur content forms
sumur concent, forms 10 800
COAL ASD, ANALYSES
fusibility data R1 (24)
sulfur content, forms IC 8300 coal ash, analyses RI 7240 fusibility data RI 7240 coal carbonization, light oil from, analysis B 644 light oil yield B 644
light oil yieldB 643
tar yield B 643
Creede district, geology and ore deposits. IC 8376
mines and prospects IC 8370
tar from, analysis B 64 tar yield B 64 Creede district, geology and ore deposits_ IC 837 mines and prospects IC 837 silver, production potential IC 837 reserves IC 837 crude oil, production RI 705 sulfur content RI 705
reserves IC 937
aruda oil production PI 7050
oulfun content
Suntr content
sulfur content RI 7055 Denver area, auto wrecking and scrap
processing industries
processing industries
processing industries SP 1-6 Denver-Julesburg basin, reservoir-oil angluese OFR 3-6'
Denver-Julesburg basin, reservoir-oil analyses OFR 3-6' Eureka-Animas Forks area, manganese
Denver-Julesburg basin, reservoir-oil analyses OFR 3-6' Eureka-Animas Forks area, manganese occurrences
Denver-Julesburg basin, reservoir-oil analyses OFR 3-6' Eureka-Animas Forks area, manganese occurrences
Denver-Julesburg basin, reservoir-oil analyses
processing industries SF 1-6 Denver-Julesburg basin, reservoir-oil analyses OFR 3-6' Eureka-Animas Forks area, manganese occurrences IC 8300 ferrous scrap industry, survey IC 8300 ferrous scrap industry, survey IC 8304 Flat Tops primitive area, minerals sur- vey GS 3-60 gas-cap reservoir, conservation practices, engineering evaluation M 10
processing industries SF 1-6 Denver-Julesburg basin, reservoir-oil analyses OFR 3-6' Eureka-Animas Forks area, manganese occurrences IC 8300 ferrous scrap industry, survey IC 8300 ferrous scrap industry, survey IC 8304 Flat Tops primitive area, minerals sur- vey GS 3-60 gas-cap reservoir, conservation practices, engineering evaluation M 10
processing industries SF 1-5 Denver-Julesburg basin, reservoir-oil analyses OFR 3-6 Eureka-Animas Forks area, manganese occurrences IC 8303 ferrous scrap industry, survey IC 8304 Flat Tops primitive area, minerals sur- vey GS 3-66 gas-cap reservoir, conservation practices, engineering evaluation M 13 Green River oil shale, dawsonite in RI 7286 nahcolite in RI 7286
processing industries SF 1-6 Denver-Julesburg basin, reservoir-oil analyses OFR 3-6 Eureka-Animas Forks area, manganese occurrences IC 8303 ferrous scrap industry, survey IC 8304 Flat Tops primitive area, minerals sur- vey GS 3-66 gas-cap reservoir, conservation practices, engineering evaluation M 13 Green River oil shale, dawsonite in RI 7286 nahcolite in RI 7286 oil vields RI 7265
processing industries SF 1-6 Denver-Julesburg basin, reservoir-oil analyses OFR 3-6' Eureka-Animas Forks area, manganese occurrences IC 8304 ferrous scrap industry, survey IC 8304 flat Tops primitive area, minerals sur- vey GS 3-66 gas-cap reservoir, conservation practices, engineering evaluation M 13 Green River oil shale, dawsonite in RI 7286 nahcolite in RI 7286 oil yields OP 132-66
processing industries SF 1-6 Denver-Julesburg basin, reservoir-oil analyses OFR 3-6' Eureka-Animas Forks area, manganese occurrences IC 8304 ferrous scrap industry, survey IC 8304 flat Tops primitive area, minerals sur- vey GS 3-66 gas-cap reservoir, conservation practices, engineering evaluation M 13 Green River oil shale, dawsonite in RI 7286 nahcolite in RI 7286 oil yields OP 132-66
processing industries SF 1-6 Denver-Julesburg basin, reservoir-oil analyses OFR 3-6 Eureka-Animas Forks area, manganese occurrences IC 8303 ferrous scrap industry, survey IC 8304 Flat Tops primitive area, minerals sur- vey GS 3-66 gas-cap reservoir, conservation practices, engineering evaluation M 13 Green River oil shale, dawsonite in RI 7286 oil yields RI 7286 oil yields RI 705 technology, developments OP 132-66 thermal treatment of, effect on physical properties OP 161-67
processing industries SF 1-6 Denver-Julesburg basin, reservoir-oil analyses OFR 3-6 Eureka-Animas Forks area, manganese occurrences IC 8303 ferrous scrap industry, survey IC 8304 Flat Tops primitive area, minerals sur- vey GS 3-66 gas-cap reservoir, conservation practices, engineering evaluation M 13 Green River oil shale, dawsonite in M 17286 nahcolite in M 17286 oil yields M 1705 technology, developments OP 132-66 thermal treatment of, effect on physical properties OP 161-67 Green River oil-shale parafins, changes
processing industries SF 1-6 Denver-Julesburg basin, reservoir-oil analyses OFR 3-6 Eureka-Animas Forks area, manganese occurrences IC 8303 ferrous scrap industry, survey IC 8304 Flat Tops primitive area, minerals sur- vey GS 3-66 gas-cap reservoir, conservation practices, engineering evaluation M 13 Green River oil shale, dawsonite in M 17286 nahcolite in M 17286 oil yields M 1705 technology, developments OP 132-66 thermal treatment of, effect on physical properties OP 161-67 Green River oil-shale parafins, changes
processing industries SP 1-6 Denver-Julesburg basin, reservoir-oil analyses OFR 3-6' Eureka-Animas Forks area, manganese occurrences IC 8303 ferrous scrap industry, survey IC 8304 Flat Tops primitive area, minerals survey IC 8344 Flat Tops primitive area, minerals survey GS 3-66 gas-cap reservoir, conservation practices, engineering evaluation M 13 Green River oil shale, dawsonite in RI 7286 oil yields RI 7286 oil yields RI 7286 thermal treatment of, effect on physical properties OP 132-66 Green River oil-shale paraffins, changes in, with depth OP 122-66
processing industries SP 1-6 Denver-Julesburg basin, reservoir-oil analyses OFR 3-6' Eureka-Animas Forks area, manganese occurrences IC 8300 ferrous scrap industry, survey IC 8344 Flat Tops primitive area, minerals survey IC 8344 reg neering evaluation M 13 Green River oil shale, dawsonite in RI 7286 oil yields RI 7055 technology, developments OP 132-66 thermal treatment of, effect on physical properties OP 161-67 Green River oil-shale paraffins, changes in, with depth or, with depth OP 122-66 Green River shale oil, specific gravity. OP 122-66
processing industries SP 1-6 Denver-Julesburg basin, reservoir-oil analyses OFR 3-6' Eureka-Animas Forks area, manganese occurrences OFR 3-6' ferrous scrap industry, survey IC 830' gas-cap reservoir, conservation practices, engineering evaluation IC 834' Green River oil shale, dawsonite in IT 728' oil yields RI 705' technology, developments oil yields PI 122-6' Green River oil-shale paraffins, changes in, with depth OP 122-6' Green River shale oil, specific gravity, variations RI 688'
processing industries SP 1-6 Denver-Julesburg basin, reservoir-oil analyses OFR 3-6' Eureka-Animas Forks area, manganese occurrences OFR 3-6' ferrous scrap industry, survey IC 830' gas-cap reservoir, conservation practices, engineering evaluation IC 834' Green River oil shale, dawsonite in IT 728' oil yields RI 705' technology, developments oil yields PI 122-6' Green River oil-shale paraffins, changes in, with depth OP 122-6' Green River shale oil, specific gravity, variations RI 688'
processing industries SP 1-6 Denver-Julesburg basin, reservoir-oil analyses OFR 3-6' Eureka-Animas Forks area, manganese occurrences OFR 3-6' ferrous scrap industry, survey IC 830' gas-cap reservoir, conservation practices, engineering evaluation IC 834' Green River oil shale, dawsonite in IT 728' oil yields RI 705' technology, developments oil yields PI 122-6' Green River oil-shale paraffins, changes in, with depth OP 122-6' Green River shale oil, specific gravity, variations RI 688'
processing industries SP 1-6 Denver-Julesburg basin, reservoir-oil analyses OFR 3-6' Eureka-Animas Forks area, manganese occurrences IC 8300 ferrous scrap industry, survey IC 8304 flat Tops primitive area, minerals survey IC 8344 Flat Tops primitive area, minerals survey GS 3-60 gas-cap reservoir, conservation practices, engineering evaluation M 13 Green River oil shale, dawsonite in RI 7286 oil yields RI 705' technology, developments OP 132-60 thermal treatment of, effect on physical properties OP 161-67 Green River oil-shale paraffins, changes in, with depth OP 122-60 Green River shale oil, specific gravity, variations RI 6883 heavy crude oil, production forecast IC 8355 thermal project IC 8355
processing industries SP 1-6 Denver-Julesburg basin, reservoir-oil analyses OFR 3-6' Eureka-Animas Forks area, manganese occurrences IC 8300 ferrous scrap industry, survey IC 8304 flat Tops primitive area, minerals survey IC 8344 Flat Tops primitive area, minerals survey GS 3-60 gas-cap reservoir, conservation practices, engineering evaluation M 13 Green River oil shale, dawsonite in RI 7286 oil yields RI 705' technology, developments OP 132-60 thermal treatment of, effect on physical properties OP 161-67 Green River oil-shale paraffins, changes in, with depth OP 122-60 Green River shale oil, specific gravity, variations RI 6883 heavy crude oil, production forecast IC 8355 thermal project IC 8355
processing industries SP 1-6 Denver-Julesburg basin, reservoir-oil analyses OFR 3-6' Eureka-Animas Forks area, manganese occurrences IC 8303 ferrous scrap industry, survey IC 8344 Flat Tops primitive area, minerals survey GS 3-66 gas-cap reservoir, conservation practices, engineering evaluation M 13 Green River oil shale, dawsonite in RI 7286 nahcolite in RI 7286 oil yields RI 7286 oil yields RI 7286 oil wields RI 7286 oil wields RI 7286 oil yields RI 7286 oil wields RI 7286 oil wields RI 7286 oil wields RI 7286 oil wields RI 7286 in with depth OP 132-61 Green River shale oil, specific gravity, variations PI 122-61 Green River shale oil, specific gravity, variations RI 6835 heavy crude oil, production forecast IC 8355 heavy crude oil, production forecast IC 8355 heavy crude oil reservoirs, survey IC 8290
processing industries SP 1-6 Denver-Julesburg basin, reservoir-oil analyses OFR 3-6' Eureka-Animas Forks area, manganese occurrences IC 8303 ferrous scrap industry, survey IC 8344 Flat Tops primitive area, minerals survey GS 3-66 gas-cap reservoir, conservation practices, engineering evaluation M 13 Green River oil shale, dawsonite in RI 7286 nahcolite in RI 7286 oil yields RI 7286 oil yields RI 7286 oil wields RI 7286 oil wields RI 7286 oil yields RI 7286 oil wields RI 7286 oil wields RI 7286 oil wields RI 7286 oil wields RI 7286 in with depth OP 132-61 Green River shale oil, specific gravity, variations PI 122-61 Green River shale oil, specific gravity, variations RI 6835 heavy crude oil, production forecast IC 8355 heavy crude oil, production forecast IC 8355 heavy crude oil reservoirs, survey IC 8290
processing industries SP 1-6 Denver-Julesburg basin, reservoir-oil analyses OFR 3-6' Eureka-Animas Forks area, manganese occurrences IC 8303 ferrous scrap industry, survey IC 8344 Flat Tops primitive area, minerals survey GS 3-66 gas-cap reservoir, conservation practices, engineering evaluation M 13 Green River oil shale, dawsonite in RI 7286 nahcolite in RI 7286 oil yields RI 7286 oil yields RI 7286 oil wields RI 7286 oil wields RI 7286 oil yields RI 7286 oil wields RI 7286 oil wields RI 7286 oil wields RI 7286 oil wields RI 7286 in with depth OP 132-61 Green River shale oil, specific gravity, variations PI 122-61 Green River shale oil, specific gravity, variations RI 6835 heavy crude oil, production forecast IC 8355 heavy crude oil, production forecast IC 8355 heavy crude oil reservoirs, survey IC 8290
processing industries SP 1-6 Denver-Julesburg basin, reservoir-oil analyses OFR 3-6' Eureka-Animas Forks area, manganese occurrences IC 8303 ferrous scrap industry, survey IC 8344 Flat Tops primitive area, minerals survey GS 3-66 gas-cap reservoir, conservation practices, engineering evaluation M 13 Green River oil shale, dawsonite in RI 7286 nahcolite in RI 7286 oil yields RI 7286 oil yields RI 7286 oil wields RI 7286 oil wields RI 7286 oil yields RI 7286 oil wields RI 7286 oil wields RI 7286 oil wields RI 7286 oil wields RI 7286 in with depth OP 132-61 Green River shale oil, specific gravity, variations PI 122-61 Green River shale oil, specific gravity, variations RI 6835 heavy crude oil, production forecast IC 8355 heavy crude oil, production forecast IC 8355 heavy crude oil reservoirs, survey IC 8290
processing industries SP 1-6 Denver-Julesburg basin, reservoir-oil analyses OFR 3-6' Eureka-Animas Forks area, manganese occurrences IC 8300 ferrous scrap industry, survey IC 8344 Flat Tops primitive area, minerals survey GS 3-66 gas-cap reservoir, conservation practices, engineering evaluation M 13 Green River oil shale, dawsonite in RI 7286 oil yields RI 7055 technology, developments OP 132-66 green River oil-shale paraffins, changes in, with depth in, with depth OP 122-66 Green River shale oil, specific gravity, variations RI 6883 heavy crude oil, production forecast IC 8355 heavy crude oil reservoirs, survey IC 8355 heavy crude oil reservoirs, survey IC 8263 ilmenite deposits, survey IC 8263 manganese occurrences IC 8265 mines, visitors' guide SP 2-65
processing industries SF 1-6 Denver-Julesburg basin, reservoir-oil analyses OFR 3-6' Eureka-Animas Forks area, manganese occurrences IC 8303 ferrous scrap industry, survey IC 8344 Flat Tops primitive area, minerals survey GS 3-66 gas-cap reservoir, conservation practices, engineering evaluation M 13 Green River oil shale, dawsonite in RI 7286 nahcolite in RI 7286 oil yields RI 7286 oil yields RI 7286 inhermal treatment of, effect on physical properties OP 132-66 Green River oil-shale paraffins, changes in, with depth OP 122-61 Green River shale oil, specific gravity, variations RI 6835 heavy crude oil, production forecast IC 8355 thermal project IC 8355 heavy crude oil reservoirs, survey IC 8355 heavy crude oil reservoirs, survey IC 8355 manganese occurrences IC 8300 mercury occurrences IC 8301 manganese occurrences IC 8302 manganese occurrences IC 8302 manganese occurrences IC 8302 mines, visitors' guide SP
processing industries SP 1-6 Denver-Julesburg basin, reservoir-oil analyses OFR 3-6' Eureka-Animas Forks area, manganese occurrences IC 830' ferrous scrap industry, survey IC 834' Flat Tops primitive area, minerals survey GS 3-66' gas-cap reservoir, conservation practices, engineering evaluation M 1' Green River oil shale, dawsonite in RI 728' nahcolite in RI 728' nahcolite in RI 728' oil yields RI 728' in thermal treatment of, effect on physical properties OP 132-61' Green River oil-shale paraffins, changes in, with depth OP 122-61' Green River shale oil, specific gravity, variations RI 6835' heavy crude oil, production forecast IC 8355' heavy crude oil reservoirs, survey IC 8250' manganese occurrences IC 830' mercury occurrences IC 835' manganese occurrences IC 830' minerals, production, annual data MY 1968 (v. I-II, III)
processing industries SP 1-6 Denver-Julesburg basin, reservoir-oil analyses OFR 3-6' Eureka-Animas Forks area, manganese occurrences IC 8300 ferrous scrap industry, survey IC 8304 Flat Tops primitive area, minerals survey IC 8344 Flat Tops primitive area, minerals survey GS 3-66 gas-cap reservoir, conservation practices, engineering evaluation M 13 Green River oil shale, dawsonite in RI 7286 oil yields RI 7026 thermal treatment of, effect on physical properties OP 132-66 Green River oil-shale paraffins, changes in, with depth OP 122-66 Green River shale oil, specific gravity, variations RI 6883 heavy crude oil, production forecast IC 8352 heavy crude oil, production forecast IC 8352 heavy crude oil reservoirs, survey IC 8252 ilmenite deposits, survey IC 8252 manganese occurrences IC 8252 minerals, production, annual data MY 1968 (v. I-II, III) mineral aggregate industry, effect of MY 1968
processing industries SP 1-6 Denver-Julesburg basin, reservoir-oil analyses OFR 3-6' Eureka-Animas Forks area, manganese occurrences IC 8300 ferrous scrap industry, survey IC 8304 Flat Tops primitive area, minerals survey IC 8344 Flat Tops primitive area, minerals survey GS 3-66 gas-cap reservoir, conservation practices, engineering evaluation M 13 Green River oil shale, dawsonite in RI 7286 oil yields RI 7026 thermal treatment of, effect on physical properties OP 132-66 Green River oil-shale paraffins, changes in, with depth OP 122-66 Green River shale oil, specific gravity, variations RI 6835 heavy crude oil, production forecast IC 8355 heavy crude oil, production forecast IC 8355 heavy crude oil, survey IC 8265 inmenite deposits, survey IC 8255 manganese occurrences IC 8265 minerals, production, annual data MY 1968 (v. I-II, III) mineral aggregate industry, effect of urbanization IC 8326
processing industries SP 1-6 Denver-Julesburg basin, reservoir-oil analyses OFR 3-6' Eureka-Animas Forks area, manganese occurrences IC 8300 ferrous scrap industry, survey IC 8304 Flat Tops primitive area, minerals survey IC 8344 Flat Tops primitive area, minerals survey GS 3-66 gas-cap reservoir, conservation practices, engineering evaluation M 13 Green River oil shale, dawsonite in RI 7286 oil yields RI 7026 thermal treatment of, effect on physical properties OP 132-66 Green River oil-shale paraffins, changes in, with depth OP 122-66 Green River shale oil, specific gravity, variations RI 6835 heavy crude oil, production forecast IC 8355 heavy crude oil, production forecast IC 8355 heavy crude oil, survey IC 8265 inmenite deposits, survey IC 8255 manganese occurrences IC 8265 minerals, production, annual data MY 1968 (v. I-II, III) mineral aggregate industry, effect of urbanization IC 8326
processing industries SF 1-6 Denver-Julesburg basin, reservoir-oil analyses OFR 3-6' Eureka-Animas Forks area, manganese occurrences IC 8300 ferrous scrap industry, survey IC 8304 Flat Tops primitive area, minerals survey IC 8344 Flat Tops primitive area, minerals survey GS 3-66 gas-cap reservoir, conservation practices, engineering evaluation M 13 Green River oil shale, dawsonite in RI 7286 oil yields RI 7055 technology, developments OP 132-66 thermal treatment of, effect on physical properties OP 161-67 Green River oil-shale paraffins, changes in, with depth OP 122-66 Green River shale oil, specific gravity, variations RI 6835 heavy crude oil reservoirs, survey IC 8355 heavy crude oil reservoirs, survey IC 8352 imercury occurrences IC 8300 manganese occurrences IC 8300 mercury occurrences IC 8302 mineral, production, annual data MY 1968 (v. I-II, III) mineral aggregate industry, effect of urbanization IC 8320 mineral industry, annual review IC 8320
processing industries SP 1-6 Denver-Julesburg basin, reservoir-oil analyses OFR 3-6' Eureka-Animas Forks area, manganese occurrences IC 8300 ferrous scrap industry, survey IC 8304 Flat Tops primitive area, minerals survey IC 8344 Flat Tops primitive area, minerals survey GS 3-66 gas-cap reservoir, conservation practices, engineering evaluation M 13 Green River oil shale, dawsonite in RI 7286 oil yields RI 7026 thermal treatment of, effect on physical properties OP 132-66 Green River oil-shale paraffins, changes in, with depth OP 122-66 Green River shale oil, specific gravity, variations RI 6835 heavy crude oil, production forecast IC 8355 heavy crude oil, production forecast IC 8355 heavy crude oil, survey IC 8265 inmenite deposits, survey IC 8255 manganese occurrences IC 8265 minerals, production, annual data MY 1968 (v. I-II, III) mineral aggregate industry, effect of urbanization IC 8326

ł

Colorado, natural gas, analyses ____ IC 8241, 8316, 8356, 8395 occupational diseases, workmen's compensation law on ______ B 623 oil reservoirs, production-rate data _____ IC 8362 well-depth data _____ IC 8362 oil shale, retorting temperatures, effect of _____ OP 35-65 oil-shale core samples, oil-yield data ____ RI 7071 oilfields, shallow M 12 petroleum-impregnated rocks, surface and ___ M 12 shallow _ Pueblo area, auto wrecking and scrap processing industries _____ SP 1-67 rhodonite deposits, investigation _____ IC 8303 San Juan County, manganese occurrences ___ IC 8303 -----San Juan primitive area, mineral appraisal ______ GS 3-69 silver, potential resources ______ OFR 22-69 southern counties, auto wrecking and SP 1-67 _ IC 8290 yields ______ RI 7071 Colorado corehole No. 2, drill core analysis _____ OFR 5-67 Colorado corehole No. 3, drilling and coring data ______ OFR 15-68 Columbite, flotation characteristics _____ RI 7189 OFR 5-67 **B** 630 grades ----magnetic susceptibility _____ IC 8360 Columbite concentrate, columbium and tantalum extraction from, direct chlorination method ______ RI 6635 Columbium, annual data _____ MY 1968 (v. I-II) chlorination, kinetics, study ______ RI 6649 coefficient of expansion, determination, by laser interferometric dilatom-grades _____ B 630 imports and exports _____ B 630 in coal ash, spectrochemical determina-_____ RI 7281 tion _____ ----in euxenite concentrate, recovery, ammonium sulfate fusion process ____ RI 6906 liquid, vapor pressure palladium deposits on, from aqueous elec-_ RI 7125 paliadium deposits on, from aqueous elec-trolyte ______ RI 7016 platinum deposits on, from aqueous elec-trolyte ______ RI 7016 prices ______ B 630 production ______ B 630 reserves ______ B 630 stockpile accumulation, amount _____ OP 62-66 technology ______ B 630 technology _____ B 630 technology _____ B 630 Uses B 630 Columbium alloys, aluminum additions to, effect ______ RI 6988 carbon additions to, effect ______ RI 6988 chromium additions to, effect ______ RI 6988, 7116, 7211 high-temperature oxidation resistance __ RI 7211 high-temperature properties ______ RI 7116 high-temperature strength ______ RI 7211 properties, study ______ RI 6964, 6988 vanadium additions to, effect ______ RI 6968 zirconium additions to, effect ______ RI 6988 Columbium carbide, hyperstoichiometric, Columbium carbide, hyperstoichiometric, electrical resistivity, at elevated tempera-__ RI 7289 tures Columbium-gallium system, phase rela-____ OP 57-68 tions OP 57-68 Columbium-hafnium alloys, high-tempera-ture properties _____ RI 6777 tions

Columbium-hafnium system, superconductivity in, effect of microstructure _ RI 7258 Columbium-hafnium-tungsten alloys, high-_ RI 6777 temperature properties _____ Columbium-hafnium-tungsten-boron alloys, high-temperature strength ____ RI 7211 Columbium-hafnium-tungsten-titanium alloys, high-temperature properties_ RI 6777 Columbium-hafnium-tungsten-zirconium al-**RI 7116** loys, high-temperature strength _ Columbium-hafnium-tingsten-zirconium-al-uminum-titanium-nitrogen alloys, high-temperature strength _____ Columbium-hafnium-vanadium alloys, high-RI 7116 temperature properties _ RI 6777 Columbium-nitrogen-tungsten-vanadiumhafnium alloys, high-temperature strength _____ RI_7211 Columbium industry, organization _____ B 630 ___ B 630 columbium minerals, magnetic susceptibility, determination ______ Columbium-tantalum alloys, high-tempera-IC 8360 ture properties Columbium-tantalum-bearing alloy, from _ RI 6777 tin slags, production _____ Columbium-tantalum-hafnium-tungsten_al-RI 6734 loys, high-temperature properties. RI 6777 Columbium-tantalum minerals, flotation characteristics, contract-angle method _____ microflotation method _____ RI 7189 _ RI 7189 Columbium-titanium-zirconium-hafnium alloys, high-temperature strength __ RI 7116 Columburtungsten alloys, high-tempera-ture properties ______ RI 6777 Column dead volume, determination, at cryogenic temperatures, method. OP 39-68 Colusite, magnetic susceptibility _____ IC 8360, 8383 Combustibles, autoignition temperatures, ot uprious procursos in pin at various pressures, in air ____ OP 85-68 in nitrogen tetroxide _____ OP 85-68 in oxygen _____ OP 85-68 in oxygen Combustible fluids, flammability propcombustible nulds, nammability prop-erties ______ OP 118-69 ignition temperatures ______ OP 118-69 Combustion, in situ, laboratory investiga-tion, in sand-water-oil packs ____ RI 7044 pulverized-coal, nitrogen oxides, formation of, reducing, study _____ OP 7-66 research and technologic work, annual report ___ IC 8254, 8272, 8308, 8349, 8387 underground, secondary recovery by, commendations Combustion characteristics, allene OP 106-66 RI 6908 __ OP 81-69 condensed-phase hydrazine-type fuels with nitrogen tetroxide _____ OP 149-67 Combustion gas-liquid slag equilibrium composition. computing method _____ RI 7257 Combustion method, underground, for re-Combustion products, cleaning, methods OP 109-69 Combustion products, cleaning, methods OP 109-69 Combustion research, large-diameter spherical vessel for, design and OP 139-66 OP 139-66 construction ____ Combustion systems, cvlindrical, tangential overfire air, design and operation. RI 6908 Combustor, pulverizer-coal, for open-cycle gas turbine, tests _____ RI 7295 Compacts, tungsten powder, properties ____ RI 6835 yttrium oxide, fabrication, method __ OP 113-66 Compaction, hydraulic backfill, internal probe vibrators, field tests _____ RI 6922 plate-type vibrators, field tests _____ RI 6922 Compounds, organic, sonolysis _____ RI 7027

ŧ

) (

Compressibility, determination, Burnett ap-
paratus, operating procedure IC 8350 helium RI 7003; 0P 80-67
helium RI 7003; 0P 80-67
Compressibility apparatus, elastic pressure
distortion, equations for RI 7136
Compressibility factors, helium RI 7287 calculated from Burnett apparatus
data RI 7020
tabulation RI 6896
tabulation RI 6896 helium-carbon dioxide mixtures RI 7233
helium-nitrogen mixtures, tabulation RI 6896
high liquid-gas ratio fluids, determi-
nation, cell for OP 132-67, 133-67
nitrogen, tabulation RI 6896 Compression chamber, mine backfill, stress-
Compression chamber, mine backfill, stress-
strain tests, laboratory tests RI 7198 Compressive strength, rock samples, head
Compressive strength, rock samples, nead
fect RI 7235
size-specimen diameter ratio, ef- fect
considerations IL 5514
power requirements IC 8314 high-temperature, low-rate, for hydro-
high-temperature, low-rate, for hydro-
carbon gas, description OP 108-00
Computer method, for fitting surfaces to
assay data, in three dimensions,
regression analysis method RI 6876
quick, pressure distribution in petroleum reservoirs OP 3-69
Computer program, calculating areas and
shape factors, in fluid flow, im-
shape factors, in fluid flow, im- proved method RI 7111
calculating capital and operating costs.
metallurgical processes IC 8426
calculating volume and shape factors of
cells, for waterflood performance
prediction RI 6760
compound-multinomial distribution, finite
and infinite populations RI 6598
critical path planning, mining applica-
tions RI 6739
tions RI 6739
tions RI 6739 distribution moments RI 6598 electron-probe microanalysis RI 6648; OP 11-66, 12-66
tions RI 6739 distribution moments RI 6598 electron-probe microanalysis RI 6648; OP 11-66, 12-66 exploration process, nonfuel minerals
tions RI 6739 distribution moments RI 6598 electron-probe microanalysis RI 6648; OP 11-66, 12-66 exploration process, nonfuel minerals industry, costs and benefits OFR 17-69
tions RI 6739 distribution moments RI 6598 electron-probe microanalysis RI 6648; OP 11-66, 12-66 exploration process, nonfuel minerals industry, costs and benefits OFR 17-69 for constructing contour maps, quadratic-
tions RI 6739 distribution moments RI 6598 electron-probe microanalysis RI 6648; OP 11-66, 12-66 exploration process, nonfuel minerals industry, costs and benefits OFR 17-69 for constructing contour maps, quadratic- regression analysis method RI 6876
tions RI 6739 distribution moments RI 6598 electron-probe microanalysis RI 6648; OP 11-66, 12-66 exploration process, nonfuel minerals industry, costs and benefits OFR 17-69 for constructing contour maps, quadratic- regression analysis method RI 6876 for predicting three-phase flow in five-
tions RI 6739 distribution moments RI 6598 electron-probe microanalysis RI 6648; oP 11-66, 12-66 exploration process, nonfuel minerals industry, costs and benefits OFR 17-69 for constructing contour maps, quadratic- regression analysis method RI 6876 for predicting three-phase flow in five- spot waterfloods RI 7011 gold mining operation, economic analy-
tions RI 6739 distribution moments RI 6598 electron-probe microanalysis RI 6648; OP 11-66, 12-66 exploration process, nonfuel minerals industry, costs and benefits OFR 17-69 for constructing contour maps, quadratic- regression analysis method RI 6876 for predicting three-phase flow in five- spot waterfloods RI 7011 gold mining operation, economic analy- sis IC 8374
tions RI 6739 distribution moments RI 6598 electron-probe microanalysis RI 6648; OP 11-66, 12-66 exploration process, nonfuel minerals industry, costs and benefits OFR 17-69 for constructing contour maps, quadratic- regression analysis method RI 6876 for predicting three-phase flow in five- spot waterfloods RI 7011 gold mining operation, economic analy- sis IC 8374
tions RI 6739 distribution moments RI 6548; electron-probe microanalysis RI 6648; OP 11-66, 12-66 exploration process, nonfuel minerals industry, costs and benefits OFR 17-69 for constructing contour maps, quadratic- regression analysis method RI 6876 for predicting three-phase flow in five- spot waterfloods RI 7011 gold mining operation, economic analy- sis IC 8374 engineering analysis IC 8374 grinding mill products, calculating size
tions RI 6739 distribution moments RI 6548; electron-probe microanalysis RI 6648; OP 11-66, 12-66 exploration process, nonfuel minerals industry, costs and benefits OFR 17-69 for constructing contour maps, quadratic- regression analysis method RI 6876 for predicting three-phase flow in five- spot waterfloods RI 7011 gold mining operation, economic analy- sis IC 8374 engineering analysis IC 8374 grinding mill products, calculating size
tions RI 6739 distribution moments RI 6598 electron-probe microanalysis RI 6648; OP 11-66, 12-66 exploration process, nonfuel minerals industry, costs and benefits OFR 17-69 for constructing contour maps, quadratic- regression analysis method RI 6876 for predicting three-phase flow in five- spot waterfloods RI 6876 for predicting three-phase flow in five- spot waterfloods RI 7011 gold mining operation, economic analy- sis IC 8374 engineering analysis IC 8374 grinding mill products, calculating size distribution functions of RI 7309 hot potassium carbonate gas purification
tions RI 6739 distribution moments RI 6598 electron-probe microanalysis RI 6648; OP 11-66, 12-66 exploration process, nonfuel minerals industry, costs and benefits OFR 17-69 for constructing contour maps, quadratic- regression analysis method RI 6876 for predicting three-phase flow in five- spot waterfloods RI 7011 gold mining operation, economic analy- sis IC 8374 engineering analysis IC 8374 grinding mill products, calculating size distribution functions of RI 7309 hot potassium carbonate gas purification system equipment cost IC 8366
tions RI 6739 distribution moments RI 6598 electron-probe microanalysis RI 6648; OP 11-66, 12-66 exploration process, nonfuel minerals industry, costs and benefits OFR 17-69 for constructing contour maps, quadratic- regression analysis method RI 6876 for predicting three-phase flow in five- spot waterfloods RI 7011 gold mining operation, economic analy- sis IC 8374 engineering analysis IC 8374 grinding mill products, calculating size distribution functions of RI 7309 hot potassium carbonate gas purification system equipment cost IC 8366
tions RI 6739 distribution moments RI 6598 electron-probe microanalysis RI 6648; OP 11-66, 12-66 exploration process, nonfuel minerals industry, costs and benefits OFR 17-69 for constructing contour maps, quadratic- regression analysis method RI 6876 for predicting three-phase flow in five- spot waterfloods RI 7011 gold mining operation, economic analy- sis IC 8374 grinding mill products, calculating size distribution functions of RI 7309 hot potassium carbonate gas purification system, equipment cost IC 8366 isotropic-anisotropic stress determination, in rock RI 7224 matrix-manipulation Leontief-type
tions RI 6739 distribution moments RI 6598 electron-probe microanalysis RI 6648; OP 11-66, 12-66 exploration process, nonfuel minerals industry, costs and benefits OFR 17-69 for constructing contour maps, quadratic- regression analysis method RI 6876 for predicting three-phase flow in five- spot waterfloods RI 7011 gold mining operation, economic analy- sis IC 8374 engineering analysis IC 8374 grinding mill products, calculating size distribution functions of RI 7309 hot potassium carbonate gas purification system, equipment cost IC 8366 isotropic-anisotropic stress determination, in rock RI 7224 matrix-manipulation, Leontief-type models OFR 19-69
tions RI 6739 distribution moments RI 6539 electron-probe microanalysis RI 6648; OP 11-66, 12-66 exploration process, nonfuel minerals industry, costs and benefitsOFR 17-69 for constructing contour maps, quadratic- regression analysis method RI 6876 for predicting three-phase flow in five- spot waterfloods RI 7011 gold mining operation, economic analy- sis IC 8374 engineering analysis IC 8374 grinding mill products, calculating size distribution functions of IC 8366 isotropic-anisotropic stress determination, in rock OFR 19-69 mine and mill operation. lead-zinc mine _ RI 7220
tions RI 6739 distribution moments RI 6539 electron-probe microanalysis RI 6648; OP 11-66, 12-66 exploration process, nonfuel minerals industry, costs and benefitsOFR 17-69 for constructing contour maps, quadratic- regression analysis method RI 6876 for predicting three-phase flow in five- spot waterfloods RI 7011 gold mining operation, economic analy- sis IC 8374 engineering analysis IC 8374 grinding mill products, calculating size distribution functions of IC 8366 isotropic-anisotropic stress determination, in rock OFR 19-69 mine and mill operation. lead-zinc mine _ RI 7220
tions RI 6739 distribution moments RI 6598 electron-probe microanalysis RI 6648; OP 11-66, 12-66 exploration process, nonfuel minerals industry, costs and benefits OFR 17-69 for constructing contour maps, quadratic- regression analysis method RI 6876 for predicting three-phase flow in five- spot waterfloods RI 6876 for predicting three-phase flow in five- spot waterfloods RI 6876 for predicting three-phase flow in five- spot waterfloods RI 6874 engineering analysis IC 8374 grinding mill products, calculating size distribution functions of RI 7309 hot potassium carbonate gas purification system, equipment cost IC 8366 isotropic-anisotropic stress determination, in rock RI 7224 matrix-manipulation, Leontief-type models OFR 19-69 mine and mill operation. lead-zinc mine _ RI 7230 mine production-scheduling model RI 6937 mineral-denosit evaluation, developing OP 4-65
tions RI 6739 distribution moments RI 6539 electron-probe microanalysis RI 6648; OP 11-66, 12-66 exploration process, nonfuel minerals industry, costs and benefitsOFR 17-69 for constructing contour maps, quadratic- regression analysis method RI 6876 for predicting three-phase flow in five- spot waterfloods RI 7011 gold mining operation, economic analy- sis IC 8374 engineering analysis IC 8374 grinding mill products, calculating size distribution functions of IC 8376 isotropic-anisotropic stress determination, in rock RI 7224 matrix-manipulation, Leontief-type models OFR 19-69 mine and mill operation, lead-zinc mine _ RI 7230 mine production-scheduling model RI 6937 mineral-deposit evaluation, developing _ OP 4-65 nonlinear regression problem solutions IC 8460
tions RI 6739 distribution moments RI 6539 electron-probe microanalysis RI 6648; OP 11-66, 12-66 exploration process, nonfuel minerals industry, costs and benefits OFR 17-69 for constructing contour maps, quadratic- regression analysis method RI 6876 for predicting three-phase flow in five- spot waterfloods RI 7011 gold mining operation, economic analy- isis IC 8374 engineering analysis IC 8374 grinding mill products, calculating size distribution functions of RI 7309 hot potassium carbonate gas purification system, equipment cost IC 8366 isotropic-anisotropic stress determination, in rock OFR 19-69 mine and mill operation, lead-zinc mine _ RI 7220 mine production-scheduling model RI 6937 mineral-deposit evaluation, developing _ OP 4-65 nonlinear regression problem solutions IC 8423 ail recovery by steamflooding. applying
tions RI 6739 distribution moments RI 6598 electron-probe microanalysis RI 6648; OP 11-66, 12-66 exploration process, nonfuel minerals industry, costs and benefitsOFR 17-69 for constructing contour maps, quadratic- regression analysis method RI 6876 for predicting three-phase flow in five- spot waterfloods RI 7011 gold mining operation, economic analy- isis IC 8374 engineering analysis IC 8374 grinding mill products, calculating size distribution functions of RI 7309 hot potassium carbonate gas purification system, equipment cost IC 8366 isotropic-anisotropic stress determination, in rock OFR 19-69 mine and mill operation, lead-zinc mine _ RI 7224 matrix-manipulation, Leontief-type OFR 19-69 mine production-scheduling model RI 6937 mineral-deposit evaluation, developing _ OP 4-65 nonlinear regression problem solutions IC 8432 oil recovery by steamflooding, applying Marx-Langenheim calculations IC 8432
tions RI 6739 distribution moments RI 6548; electron-probe microanalysis RI 6648; OP 11-66, 12-66 exploration process, nonfuel minerals industry, costs and benefits OFR 17-69 for constructing contour maps, quadratic- regression analysis method RI 6876 for predicting three-phase flow in five- spot waterfloods RI 6876 grinding operation, economic analy- is IC 8374 engineering analysis IC 8374 grinding mill products, calculating size distribution functions of RI 7309 hot potassium carbonate gas purification system, equipment cost IC 8366 isotropic-anisotropic stress determination, in rock RI 7224 matrix-manipulation, Leontief-type models OFR 19-69 mine and mill operation, lead-zinc mine _ RI 7230 mine production-scheduling model RI 6937 mineral-deposit evaluation, developing _ OP 4-65 nonlinear regression problem solutions IC 8432 oil recovery by steamflooding, applying Marx-Langenheim calculations IC 8432 price optimum design, shell-and-tube heat
tions RI 6739 distribution moments RI 6538 electron-probe microanalysis RI 6648; OP 11-66, 12-66 exploration process, nonfuel minerals industry, costs and benefits OFR 17-69 for constructing contour maps, quadratic- regression analysis method RI 6876 for predicting three-phase flow in five- spot waterfloods RI 7011 gold mining operation, economic analy- sis IC 8374 engineering analysis IC 8374 grinding mill products, calculating size distribution functions of RI 7309 hot potassium carbonate gas purification system, equipment cost IC 8366 isotropic-anisotropic stress determination, in rock RI 7224 matrix-manipulation, Leontief-type models OFR 19-69 mine and mill operation, lead-zinc mine _ RI 7230 mine production-scheduling model RI 6937 mineral-deposit evaluation, developing _ OP 4-65 nonlinear regression problem solutions IC 8423 oil recovery by steamflooding, applying Marx-Langenheim calculations IC 8432 price optimum design, shell-and-tube heat exchanger IC 8334, 8398, 8420;
tions RI 6739 distribution moments RI 6548; electron-probe microanalysis RI 6648; OP 11-66, 12-66 exploration process, nonfuel minerals industry, costs and benefits OFR 17-69 for constructing contour maps, quadratic- regression analysis method RI 6876 for predicting three-phase flow in five- spot waterfloods RI 7011 gold mining operation, economic analy- sis IC 8374 engineering analysis IC 8374 grinding mill products, calculating size distribution functions of RI 7309 hot potassium carbonate gas purification system, equipment cost IC 8366 isotropic-anisotropic stress determination, in rock RI 7224 matrix-manipulation, Leontief-type models OFR 19-69 mine and mill operation, lead-zinc mine _ RI 7230 mine production-scheduling model RI 6937 mineral-deposit evaluation, developing _ OP 4-65 nonlinear regression problem solutions IC 8423 oil recovery by steamflooding, applying Marx-Langenheim calculations IC 8334, 8393, 8399, 8420; oP 138-48
tions RI 6739 distribution moments RI 6538 electron-probe microanalysis RI 6648; OP 11-66, 12-66 exploration process, nonfuel minerals industry, costs and benefitsOFR 17-69 for constructing contour maps, quadratic- regression analysis method RI 6876 for predicting three-phase flow in five- spot waterfloods RI 7011 gold mining operation, economic analy- sis IC 8374 engineering analysis IC 8374 grinding mill products, calculating size distribution functions of RI 7309 hot potassium carbonate gas purification system, equipment cost IC 8366 isotropic-anisotropic stress determination, in rock OFR 19-69 mine and mill operation. lead-zinc mine _ RI 7224 matrix-manipulation, Leontief-type OFR 19-69 mine production-scheduling model RI 6937 mineral-deposit evaluation, developing _ OF 4-65 nonlinear regression problem solutions IC 8423 oil recovery by steamflooding, applying Marx-Langenheim calculations IC 8432 price optimum design, shell-and-tube heat exchanger IC 8334, 8393, 8399, 8420; OP 138-48 Redlich-Kwong fluid, in two-phase region.
tions RI 6739 distribution moments RI 6739 electron-probe microanalysis RI 6648; OP 11-66, 12-66 exploration process, nonfuel minerals industry, costs and benefits OFR 17-69 for constructing contour maps, quadratic- regression analysis method RI 6876 for predicting three-phase flow in five- spot waterfloods RI 7011 gold mining operation, economic analy- sis IC 8374 engineering analysis IC 8374 grinding mill products, calculating size distribution functions of RI 7309 hot potassium carbonate gas purification system, equipment cost IC 8366 isotropic-anisotropic stress determination, in rock RI 7224 matrix-manipulation, Leontief-type models OFR 19-69 mine and mill operation, lead-zinc mine _ RI 72300 mine production-scheduling model RI 6937 mineral-deposit evaluation, developing OF 4-65 nonlinear regression problem solutions IC 8423 oil recovery by steamflooding, applying Marx-Langenheim calculations IC 8432 price optimum design, shell-and-tube heat exchanger IC 8334, 8393, 8399, 8420; OP 138-48 Redlich-Kwong fluid, in two-phase region, thermodynamic properties, pre- dicting RI 7312
tions RI 6739 distribution moments RI 6598 electron-probe microanalysis RI 6648; OP 11-66, 12-66 exploration process, nonfuel minerals industry, costs and benefitsOFR 17-69 for constructing contour maps, quadratic- regression analysis method RI 6876 for predicting three-phase flow in five- spot waterfloods RI 7011 gold mining operation, economic analy- sis IC 8374 engineering analysis IC 8374 grinding mill products, calculating size distribution functions of RI 7309 hot potassium carbonate gas purification system, equipment cost IC 8366 isotropic-anisotropic stress determination, in rock RI 7224 matrix-manipulation, Leontief-type models OFR 19-69 mine and mill operation, lead-zinc mine RI 72300 mine production-scheduling model RI 6937 mineral-deposit evaluation, developing OP 4-65 nonlinear regression problem solutions IC 8432 price optimum design, shell-and-tube heat exchanger IC 8334, 8399, 8420; OP 138-48 Redlich-Kwong fluid, in two-phase region, thermodynamic properties, pre- dicting RI 7312 regional interindustry transactions
tions RI 6739 distribution moments RI 6538 electron-probe microanalysis RI 6648; OP 11-66, 12-66 exploration process, nonfuel minerals industry, costs and benefitsOFR 17-69 for constructing contour maps, quadratic- regression analysis method RI 6876 for predicting three-phase flow in five- spot waterfloods RI 7011 gold mining operation, economic analy- sis IC 8374 engineering analysis IC 8374 grinding mill products, calculating size distribution functions of RI 7309 hot potassium carbonate gas purification system, equipment cost IC 8366 isotropic-anisotropic stress determination, in rock OFR 19-69 mine and mill operation, lead-zinc mine RI 7224 matrix-manipulation, Leontief-type models OFR 19-69 mine regression problem solutions IC 8423 oil recovery by steamflooding, applying Marx-Langenheim calculations IC 8432 price optimum design, shell-and-tube heat exchanger IC 8334, 8393, 8399, 8420; OP 138-48 Redlich-Kwong fluid, in two-phase region, thermodynamic properties, pre- dicting RI 7312 regional interindustry transactions tables, from secondary data OFR 18-69
tions RI 6739 distribution moments RI 6548 electron-probe microanalysis RI 6648; OP 11-66, 12-66 exploration process, nonfuel minerals industry, costs and benefits OFR 17-69 for constructing contour maps, quadratic- regression analysis method RI 6876 for predicting three-phase flow in five- spot waterfloods RI 7011 gold mining operation, economic analy- is IC 8374 engineering analysis IC 8374 grinding mill products, calculating size distribution functions of RI 7309 hot potassium carbonate gas purification system, equipment cost IC 8366 isotropic-anisotropic stress determination, in rock RI 7224 matrix-manipulation, Leontief-type models OFR 19-69 mine and mill operation, lead-zinc mine RI 7230 mine production-scheduling model RI 6937 mineral-deposit evaluation, developing OF 4-65 nonlinear regression problem solutions IC 8432 oil recovery by steamflooding, applying Marx-Langenheim calculations IC 8432 price optimum design, shell-and-tube heat exchanger IC 8334, 8393, 8399, 8420; OP 138-48 Redlich-Kwong fluid, in two-phase region, thermodynamic properties, pre- dicting RI 7312 regional interindustry transactions tables, from secondary data OFR 18-69 secondary oil recovery by reaflooding.
tions RI 6739 distribution moments RI 6548; electron-probe microanalysis RI 6648; OP 11-66, 12-66 exploration process, nonfuel minerals industry, costs and benefits OFR 17-69 for constructing contour maps, quadratic- regression analysis method RI 6876 for predicting three-phase flow in five- spot waterfloods RI 7011 gold mining operation, economic analy- is IC 8374 engineering analysis IC 8374 grinding mill products, calculating size distribution functions of RI 7309 hot potassium carbonate gas purification system, equipment cost IC 8366 isotropic-anisotropic stress determination, in rock RI 7224 matrix-manipulation, Leontief-type models OFR 19-69 mine and mill operation, lead-zinc mine RI 7230 mine production-scheduling model RI 6937 mineral-deposit evaluation, developing OF 4-65 nonlinear regression problem solutions IC 8432 oil recovery by steamflooding, applying Marx-Langenheim calculations IC 8432 price optimum design, shell-and-tube heat exchanger IC 8334, 8393, 8399, 8420; OP 138-48 Redlich-Kwong fluid, in two-phase region, thermodynamic properties, pre- dicting RI 7312 regional interindustry transactions tables, from secondary data OFR 18-69 secondary oil recovery, by gasflooding, performance prediction RI 7272
tions RI 6739 distribution moments RI 6548 electron-probe microanalysis RI 6648; OP 11-66, 12-66 exploration process, nonfuel minerals industry, costs and benefits OFR 17-69 for constructing contour maps, quadratic- regression analysis method RI 6876 for predicting three-phase flow in five- spot waterfloods RI 7011 gold mining operation, economic analy- is IC 8374 engineering analysis IC 8374 grinding mill products, calculating size distribution functions of RI 7309 hot potassium carbonate gas purification system, equipment cost IC 8366 isotropic-anisotropic stress determination, in rock RI 7224 matrix-manipulation, Leontief-type models OFR 19-69 mine and mill operation, lead-zinc mine RI 7230 mine production-scheduling model RI 6937 mineral-deposit evaluation, developing OF 4-65 nonlinear regression problem solutions IC 8432 oil recovery by steamflooding, applying Marx-Langenheim calculations IC 8432 price optimum design, shell-and-tube heat exchanger IC 8334, 8393, 8399, 8420; OP 138-48 Redlich-Kwong fluid, in two-phase region, thermodynamic properties, pre- dicting RI 7312 regional interindustry transactions tables, from secondary data OFR 18-69 secondary oil recovery by reaflooding.

Computer program, usefulness in mincomputer program, user differences in fine-ing research ______ OP 128-65 waterflood performance, in five-spot patterns, stratified reservoirs___ OP 169-68 Concrete, fly ash in, use _____ OP 19-66, 189-68 Concrete support, precast, eight-piece drift set, for underground mines, tests RI 7274 flue piece drift cost for mines program OP 128-65 five-piece drift sets, for mine openings, tests __ **RI 7249** three-piece drift sets, for underground three-piece drift sets, for underground mines, tests ______ RI 7114 Concrete tunnel linings, structural design data ______ RI 7297 Condensate mixtures, butane additions to, effect on phase-boundary pressures ______ OP 110-66 Conduits, embankment, design and field tests ______ RI 6893 Congo (Brazzaville), mineral in-_____ RI 6893 dustry, annual review__ MY 1968 (v. IV) Congo (Kinshasa), Democratic Republic of, mineral in-dustry, annual review_____MY 1968 (v. IV) Connate water, in sandstone, immobility OP 137-67 Connecticut, beryllium deposits, investiga-tion_______RI 7070 tion _____ RI 7070 Hartford area, auto wrecking and scrap processing industries _____ SP 1-67 **RI 7070** processing industries _____ SP 2-57 mines, visitors' guide _____ SP 2-57 minerals, production, annual data MY 1968 (v. I-II, III) mineral industry, annual review MY 1968 (v. III) occupational diseases, workmen's compen-sation law on ______ B 623 Construction, protective, literature survey_ RI 6893 Conservation, mineral resources, prob-Conservation, mineral resources, prob-lems ______OP 132-69 Contaminants, organic, removal, using coal adsorbents, process, patent ______P 11-69 Construction methods and costs, North American Air Defense Command underground facility, Cheyenne Mountain, Colo. ______ IC 2224 Mountain, Colo. Containers, caustic-resistant, for high-tem-_____ IC 8294 perature use, preparation process, Perature use, preparation process, patent _____ gastight, volume determination, method OP 1-68 Contaminants, thermal stability test ap-paratus, removal by electropol-ishing OP 95-66 Continental Oil Co., Okla., Northwest Camp Deese unit project, waterflood... IC 8311 Conveyor, undulatory, patent P 10-67 Conveyor belts, fire-resistant, fees for testing, amendments S 28 mine, fire hazard, laboratory and field tests ______ RI 7053 gastight, volume determination, method OP 1-68 Copalis National Wildlife Refuge, Wash., mineral appraisal ______ GS 1-68 Copiapite, X-ray diffraction data _____ OP 194-67 Copper, annual data ______ MY 1968 (v. I-11) block-caving mining methods and costs ____ IC 8271 byproducts ______ B 630 chemical-industry use, Calif. ______ IC 8244 commercial classifications ______ IC 8244 consumable-electrode arc melting of, meth-ods ______ B 646 consumption ______ B 630 consumption _____ B 630 determination, disodium ethylenedinitrilo tetraacetate method, modifications RI 6852 dispersion-strengthened, electrical conductivity _____ RI 7228 preparation RI 7228

Copper,	dispersion-strengthened, proper- ties RI 72 eriority to oxygen-free high-conduc-		7920
sup	eriority to oxygen-free high-conduc-	<u> 2</u> 20,	(200
t1V1	ty copper	RI	7266
explos	bution	IC	6225
	ical shapes from O tion, from lead blast furnace	FR	6–68
extrac	tion, from lead blast furnace matte, dilute acid solution method	ъĩ	7100
fror	n molten metal melts, patent	_ P	9-69
ferrot	hermic extraction, from copper		
grades		RI	7301 3 630
impor	n molten metal melts, patent hermic extraction, from copper oxides ts and exportss al ash, spectrochemical determina-	Ē	630
in coa	al ash, spectrochemical determina-	DT	7001
leachi	tion ng practices, Western United States	IC	8341
legisla	tion and Government programs	IC	8225
micro	bial extraction of, from lead blast furnace matte	RI	7126
fror	n low-grade ore, optimum environ- mental and nutritional conditions		
minin	mental and nutritional conditions	RI	6714
mmm	g and metallurgical methods, U.S.S.R.	P 11	1-69
minin	g methods and costs	IC	8271
occurr	g methods and costs rences, associated with Permian formations OF um deposits on, from aqueous elec-	R 1	10-69
platin	um deposits on, from aqueous elec-		
presip	trolyte	RI	7016
precip	mobile scrap	RI	7182
Drices		E	630
recove	rties ery, from chrysocolla ores, metal-	-•	
from	Iurgical studiesO n leach liguors, electrolytic deposi- tion method on precipitation method n lead blast-furnace matte, method	FR	4-66
1101	tion method	IC	8341
ir	on precipitation method	ĨĈ	8341
fron	n lead blast-furnace matte, method n sub-mill-grade ore, leaching meth-	RI	7042
	ods for, review	IC	8394
remov	al, from automobile scrap, in oxi-	Βт	7910
in	dizing atmosphere, results	RI	7210
fron	n molten iron, sodium sulfate additions forOl dium sulfate method, laboratory		
sc	additions for U	r 16	00-69
	study n scrap steel, thermal treatment	RI	7199
fron	n scrap steel, thermal treatment methods, feasibility study	τα	7919
reserv	ec	- B	630
resour	ces, world from junk automobile, amount	IÇ	8225
scrap,	ary, resources B 630;	IC RI	7350
separa	tion, from copper-containing		
	ferrous scrap, improved method Ol casting		83-68 646
strate	gic factors	IC	8225
supply		IC	8225 8225
techno uses	logy B 630; B 630;		8225 8225
	alloys, copper determination in.		
	disodium ethylendinitrilo tetraace-		
uitrae	tate method onic-irradiated electrodeposited, cor-		6852
	rosion properties		693 8
Copper-a	alumina alloys, dispersion strength-		
<u> </u>	ening in, study	RI	7266
Copper-t	base alloys, commercial classifica- tions	IC	8225
types		B	630
		IĊ	8225
Copper-c	admium alloys, electrodeposition, effects of ultrasonics in	RT	6938
Copper	cementation, using automobile		5500
	scrap, in rotating-drum precipita-	-	
	tor	КI	7182

Copper cladding, on steel, removal, by high-
temperature oxidation RI 6647 Copper concentrates, nonpyritic smelting of, technical feasibility RI 7119 Copper deposit, Alaska, investigation OP 115-65
Copper concentrates, nonpyritic smelting
Conner denosit Alaska investigation OP 115-65
low-grade, evaluating, drill-hole grid spacing design for RI 6634 nuclear-fractured, in situ leaching RI 6996
spacing design for RI 6634
nuclear-fractured, in situ leaching RI 6996
Copper-gold deposits, Alaska, sampling
data OFR 9-67 Copper-gold-silver deposits, Alaska, re-
connaissance UFR 3~65
Conner bydromots (inforv review and ontionly IC 8394
LIS cost englysia OFR 1 67
Copper industry, employment IC 8225 U.S., cost analysis OFR 1-67 organization B 630; IC 8225
Dropienis D Qov
productivity IC 8225
research and development IC 8225
technology OFR 1-67 Copper-manganese damping alloys, metal-
lurgical characteristics B 624
Copper-manganese equilibrium phase dia-
gram B 624 Copper matte, from nonpyritic smelting of
concentrate, properties RI 7119
concentrate, properties RI 7119 Copper mine, open-pit, mining methods and
costs IC 8129 waste dump leaching solutions, ura-
waste dump leaching solutions, ura-
nium recovery from OP 48-68 Copper minerals, leaching, chemistry of,
study RI 6808
magnetic susceptibility IC 8383
Copper ore, cyanide leaching solution for
copper extraction, effect of am-
monia addition RI 7138 leaching, methods RI 6996
potential sources, evaluation IC 8325
reserves, evaluation IC 8325 silver production from IC 8266; OP 123-67
silver production from IC 8266; OP 123-67
sub-mill-grade, leaching methods, review IC 8394 Copper oxide, copper from, ferrothermic
extraction RI 7301
Copper prospect, Alaska, reconnaissance OFR 3-66
Copper sulfate, anhydrous, entropy RI 6669
heat of formation RI 6617
low-temperature heat capacity RI 6669 Copper sulfides, oxidation leaching, in am-
moniacal pulps, at elevated tem-
moniacal pulps, at elevated tem- peratures and pressures RI 6808
Copper sulfide ore, microbial extraction of
copper from, optimum conditions_ RI 6714
Copper-tin alloys, electrodeposition, effects
of ultrasonics in RI 6938 Copper-titanium-zinc alloy, varied extru-
sion temperatures, effect on prop-
erties RI 7229
Copper-yttria alloys, dispersion strengthen-
ing in, study RI 7266
Copper-zinc alloys, electrodeposition, effects
of ultrasonics in RI 6938 rolled, thermal expansion anisotropy, ef-
fect of titanium on RI 6690
Copper-zinc ores, potential sources, evalua-
tion IC 8325
reserves, evaluation IC 8325
Copper-zinc-titanium alloys, semicontinu-
ous-cast ingots, for rolling-slab
use, study RI 7089 varied extrusion temperatures, effect on
properties RI 7229
properties RI 7229 Cores, oil-well, permeability, laboratory de-
properties RI 7229 Cores, oil-well, permeability, laboratory de- termination RI 6804: OP 200-67
properties RI 7229 Cores, oil-well, permeability, laboratory de- termination RI 6804; OP 200-67 rock, disking characteristics OP 108-65
properties RI 7229 Cores, oil-well, permeability, laboratory de- termination RI 6804; OP 200-67 rock, disking characteristics OP 108-65 Core analyses, Flat Lake oilfield OP 144-68
properties RI 7229 Cores, oil-well, permeability, laboratory de- termination RI 6804; OP 200-67 rock, disking characteristics OP 108-65

1

ſ

ł

	Coring, rotary, Appalachian area oil-pro-
	Coring, rotary, Appalachian area oil-pro- ducing formations OFR 3-69 costs RI 7238
	equipment and operating methods RI 7238 Cornstarch, ignition, thermal phenomena
	during RI 6811 Corona, negative, high-temperature, char-
	acteristics, effect of wire size OP 68-69 in air, at high temperatures and
	pressures, electrical character- istics OP 125-65
	ionic mechanisms in, at high tempera-
	ture and atmospheric pressure, study IC 8353 positive, in air, at high temperatures
(and pressures, electrical charac-
	teristics OP 125-65 Corona discharges, in hot air, effect of elec- tron detachment on, new concept IC 8353
ł	Coronadite, magnetic susceptibility IC 8359 Coronene, mass spectrum RI 6951 Correlation index, use, in crude oil anal-
(Correlation index, use, in crude oil anal- yses RI 6846
e	Corrosion, high-temperature, fireside sur- faces of coal-fired steam genera-
	tors, laboratory study OP 55-68 Corrosion behavior, hot-finished mild-steel
	coupons, in corrosion-inhibitor test-
	Corrosion cracking, stress, molybdenum, in
	acids RI 6680 tintanium-vanadium alloy, in acids RI 6680 vanadium, in acids RI 6680
	Corrosion inhibitor, alkaline carbonate so- lutions, patent P 4-65
	evaluating, test procedures RI 6696 in oxygen-containing dynamic systems,
	evaluation R1 6696 Corrosion properties, copper alloys, ultra-
	sonic-irradiated, electrodeposited_ RI 6938 molybdenumRI 6715
	molybdenum alloys RI 7169 stainless steel-gadolinium alloys RI 6636
	tungsten RI 6715 tungsten alloys RI 7169 vanadium RI 6715
	vanadium alloys RI 6715
	yttrium-nickel alloys, at high tempera- tures RI 6800
	Corrosion resistance, stainless steel, effect of cobalt content RI 6591 vapor-deposited chromium RI 7112
	vapor-deposited chromium RI 7112 Corundum, abrasive, consumption B 630 imports B 630
	imports B 630 prices B 630
	prices B 630 production B 630 reserves B 630
	technology B 630 uses B 630
•	Corundum industry, organization B 630
C	Corvusite, magnetic susceptibility IC 8360 Cosalite, magnetic susceptibility IC 8383 Cosgray No. 2 mine, Pa., coal, carbonizing
;	Cosgray No. 2 mine, Pa., coal, carbonizing properties RI 7131
	Costs, capital and operating, metallurgical processes, calculating, computer
1	program for IC 8426
:	Cost-benefit analysis, applied research, methodology IC 8414 mined-land reclamation, discussion OP 127-69
4	Cost evaluation, use, in mineral resource
-	planning OP 199-68 Cost reduction, diamond drilling, using wetting agents OP 183-69
	Costa Rica, mineral industry, an- nual review MY 1968 (v. IV)
	Covellite, magnetic susceptibility IC 8383

Cow Run sand, W. Va., core samples, den-
sity and porosity data IC 8330
Cracking, thermal, low-temperature lig- nite tar pitch, results OP 147-67
Cow Run Sand, W. Val., core samples, den- sity and porosity data IC 8330 Cracking, thermal, low-temperature lig- nite tar pitch, results OP 147-67 tar vapors, in fluidized bed, study RI 6625, 7322 Crater formation, rock drill-bit stress_ OP 148-65
Creede district, Colo., geology and ore de-
posits IC 8370 mines and prospects IC 8370
mines and prospects IC 8370
silver, production potential IC 8370 reserves IC 8370 Creep, model potash-ore pillars, tests IC 8370 model salt pillars, tests RI 6703 model trona pillars, tests RI 6703 Creosote, from high-temperature coal car- bonizion mess snootrometric
Creep, model potash-ore nillars, tests RI 6703
model salt pillars, tests RI 6703
model trona pillars, tests RI 6703
Creosote, from high-temperature coal car-
bonization, mass spectrometric
bonization, mass spectrometric analysis RI 7000 Crescent mine, Pa., coal, carbonizing prop-
erties RI 7131
Cretaceous formation waters, pil-bear-
ing, geochemistry OP 174-67 Crichton No. 5 mine, W. Va., coal, washing
Crichton No. 5 mine, W. Va., coal, washing
characteristics RI 6825 Critical path analysis, mine-development schedules RI 6937
schedules RI 6937
Critical path planning, application to min-
ing operations
computer program for, mining applica- tions RI 6739
Critical point, analytical fluid at, ther-
modynamic quantities, discon-
tinuities OP 131-68
Crocoite, magnetic susceptibilityIC 8360, 8383
Crude oil see also Oil crude
Crude oil, Africa, analyses
characteristics, from routine petroleum
Crude oil, Africa, analyses IC 8298 characteristics, from routine petroleum analyses RI 6846
classification systems B 642
composition, qualitative aspects B 642
relation to netroleum origin theories OP 62 68
relation to petroleum origin theories OP 62-68 for asphalt manufacture properties OP 11-65
relation to petroleum origin theories OP 62-68 for asphalt manufacture, properties_ OP 11-65 foreign and domestic, properties OP 191-67
relation to petroleum origin theories OP 62-68 for asphalt manufacture, properties_OP 11-65 foreign and domestic, properties OP 191-67 from important U.S. oilfields, analyses_ RI 6819
quantitative aspects B 642 relation to petroleum origin theories OP 62-68 for asphalt manufacture, properties OP 11-65 foreign and domestic, properties OP 191-67 from important U.S. oilfields, analyses RI 6819 fuel deposition characteristics, in ther-
mal recovery, laboratory tests RI 6756
mai recovery, laboratory tests RI 6756 gas-oil content, correlaton with depth
mai recovery, laboratory tests RI 6756 gas-oil content, correlaton with depth
mai recovery, laboratory tests RI 6756 gas-oil content, correlaton with depth
mai recovery, laboratory tests RI 6756 gas-oil content, correlaton with depth
mai recovery, laboratory tests RI 6756 gas-oil content, correlaton with depth
mai recovery, laboratory tests RI 6756 gas-oil content, correlaton with depth
mai recovery, laboratory tests RI 6756 gas-oil content, correlaton with depth of burial
mai recovery, laboratory tests RI 6756 gas-oil content, correlaton with depth of burial
mai recovery, laboratory tests RI 6756 gas-oil content, correlaton with depth of burial
mai recovery, laboratory tests RI 6756 gas-oil content, correlaton with depth of burial
mai recovery, laboratory tests RI 6756 gas-oil content, correlaton with depth of burial
mai recovery, laboratory tests RI 6756 gas-oil content, correlaton with depth of burial
mai recovery, laboratory tests RI 6756 gas-oil content, correlaton with depth of burial
mal recovery, laboratory tests RI 6756 gas-oil content, correlaton with depth of burial OP 170-69 correlation with geologic age OP 170-69 distribution by depth of burial OP 186-68 gas oil in, composition I 8642 heavy, potential production IC 8352 production IC 8352 reserves IC 8352 resources IC 8352 high-sulfur, composition B 642 low-sulfur, composition B 642 low-sulfur, composition B 642 low-sulfur, composition B 642 naphtha content, correlation with depth of burial OP 170-69 correlation with geologic age OP 186-68 distribution by depth of burial OP 186-68
mai recovery, laboratory tests RI 6756 gas-oil content, correlaton with depth of burial OP 170-69 correlation with geologic age OP 186-68 distribution by depth of burial OP 186-68 gas oil in, composition B 642 heavy, potential production IC 8352 reserves IC 8352 resources IC 8352 resources IC 8352 high-sulfur, composition B 642 low-sulfur, composition B 642 low-sulfur, composition B 642 naphtha content, correlation with depth of burial OP 170-69 correlation with geologic age OP 186-68 distribution by depth of burial OP 186-68 distribution by depth of burial OP 186-68 distribution by geologic age OP 186-68 distribution by geologic age OP 186-68
mal recovery, laboratory tests RI 6756 gas-oil content, correlaton with depth of burial
mal recovery, laboratory tests RI 6756 gas-oil content, correlaton with depth of burial
mal recovery, laboratory tests RI 6756 gas-oil content, correlaton with depth of burial OP 170-69 correlation with geologic age OP 170-69 distribution by depth of burial OP 186-68 gas oil in, composition B 642 heavy, potential production IC 8352 production IC 8352 reserves IC 8352 reserves IC 8352 resources IC 8352 naphtha content, correlation with depth of burial OP 170-69 distribution by geologic age IC 8352 resources IC 8352 naphtha content, correlation with depth of burial OP 170-69 distribution by geologic age OP 170-69 distribution by geologic age OP 186-68 naphthas in, composition B 642 nitrogen compounds in, origin B 642 nitrogen-type analysis OP 109-65 oxygen compounds in, origin B 642 Parceuluenis create thermed oil_recovery
mal recovery, laboratory tests RI 6756 gas-oil content, correlaton with depth of burial OP 170-69 correlation with geologic age OP 170-69 distribution by depth of burial OP 186-68 gas oil in, composition B 642 heavy, potential production IC 8352 production IC 8352 reserves IC 8352 reserves IC 8352 resources IC 8352 naphtha content, correlation with depth of burial OP 170-69 distribution by geologic age IC 8352 resources IC 8352 naphtha content, correlation with depth of burial OP 170-69 distribution by geologic age OP 170-69 distribution by geologic age OP 186-68 naphthas in, composition B 642 nitrogen compounds in, origin B 642 nitrogen-type analysis OP 109-65 oxygen compounds in, origin B 642 Parceuluenis create thermed oil_recovery
mal recovery, laboratory tests RI 6756 gas-oil content, correlaton with depth of burial
mal recovery, laboratory tests RI 6756 gas-oil content, correlaton with depth of burial
mal recovery, laboratory tests RI 6756 gas-oil content, correlaton with depth of burial
mal recovery, laboratory tests RI 6756 gas-oil content, correlaton with depth of burial
mal recovery, laboratory tests RI 6756 gas-oil content, correlaton with depth of burial
mal recovery, laboratory tests RI 6756 gas-oil content, correlaton with depth of burial
mal recovery, laboratory tests RI 6756 gas-oil content, correlaton with depth of burial

.

Crude oil fractions, separation, gel per-meation chromatographic tech-niques ______OP 77-69 Crude petroleum, analyses, Williston basin oilfields ______B 629 annual data _______MY 1968 (v. I-II) Crushed-stone industry, problems ______B 630 Cryogenic chromatographic system, de-sign and operation ______OP 135-69 Cryolite, annual data _______MY 1968 (v. I-II) Crystomelane, magnetic susceptibility ______IC 8359 Crystals, analyzing, X-ray emission lines, angular positions, tabulation ______IC 8400 large, nonmetallic growing, method and apparatus, patent _______MY 1968 (v. IV) Cupric oxide, thermodynamic data _______RI 7026 Cuprous oxide, thermodynamic data _______RI 7026 Cuprous oxide, thermodynamic data _______RI 7026 Cut Bank oilfield, Mont., reservoir oil char-acteristics ________RI 6909 Cuyuna range, brown ores, manganese pro-duction and iron from, laboratory tests ________RI 6775 manganiferous ore. manganese recovery Crude oil fractions, separation, gel pertests _____ **RI 6775** manganiferous ore, manganese recovery from, ammonium sulfate leaching cyanide leaching solution, for copper ex-traction, effect of ammonia addi-vapor pressures _____C Cycloalkane, in petroleum, literature sur-__ IC 8286 vey Cycloalkanoaromatics, in petroleum, litera-Cycloalkanoaromatics, in petroleum, litera-ture survey ______ IC 8286 Cyclohexanes, alkyl-substituted, thermo-dynamic properties ______ OP 48-65 enthalpy of combustion ______ OP 72-69 Cyclohexanethiol, chemical thermody-namic propertes ______ OP 14-67 conformational analysis ______ OP 14-67 low-temperature thermal properties.____ OP 99-67 vibrational assignment ______ OP 14-67 Cyclohexene, enthalpy of combustion _____ OP 72-69 Cyclone, heavy-liquid, for mineral concen-tration, design and operating chartration, design and operating characteristics ______ RI 7134 mineral concentration by, effect of op-erating variables ______ RI 6969 multistage, spodumene beneficiation ______ RI 6969 by _____ OP 145-67 potash ore concentration by _____ OP 149-65 potash ore concentration by _____ OF 149-65 Cyclone furnace boilers, high-moisture fuel use in _____ IC 8376 lignite use in _____ IC 8376 Cyclopentane, low-temperature thermo-dynamic properties _____ OP 100-65 molecular vibrational analysis _____ OP 56-66 Cyprus, mineral industry, annual review _____ MY 1968 (v. IV)

1

Dadeville, Ala., talc and asbestos deposits, investigation RI 7045
Dehomey mineral industry an-
nual review MY 1968 (v. IV) Dams, for mill tailings disposal, design
principles

Damping, dislocation, in magnesium single crystals, orientation depend-

ence _____ OP 29-67

Damping, internal, metals and alloys, torsion pendulum for measuring OP 174-69
Domining connectly meanesium UP 74-65
magnesium alloys B 624
changes in rock fabric OP 62-69
Dewsonite in Green Kiver Oll Shale, de-
identification and estimation OP 80-66 occurrence OP 80-66
occurrence OP 80-66 infrared spectrum OP 84-68
occurrence OP 84-68 infrared spectrum OP 84-68 Dealkylation, tar acids, from low-tempera- ture lignite tar RI 6585 Decaking, caking coals, method, patent P 7-67 coal, fluid-bed method RI 6797
Decaking, caking coals, method, patent P 7-67
Decline-curve analysis, oil production, new method OP 120-68 Decoupling, effect, in explosive tests in mor-
new method OP 120-68
Decoupling, effect, in explosive tests in mor-
Deformation, in rock, analysis of OP 50-68 measuring, instrumentation for OP 50-68 methods
measuring, instrumentation for OP 50-68
Degasification, coal mines, methods OP 99-65
methods OF 50-68 Degasification, coal mines, methods OF 99-65 coal-mine workings, methods OP 114-67 coalbeds, surface borehole method, fea-
sibility OP 114-68 experimental, longwall gob areas, verti-
cal borehole method TPR 13 Dehydrogenation, catalytic, coal, effect of
Dehydrogenation, catalytic, coal, effect of rank OP 166-68
rank OP 166-68 for structure determination of pitch regins OP 80-65
resins OP 80-65 Delafossite, magnetic susceptibility IC 8383 Delaware, mines, visitors' guide SP 2-67
minerals, production, annual data MY 1968 (v. I-II, III)
mineral industry, annu <u>al rev</u> iew MY 1968 (v. III)
occupational diseases, workmen's compen-
sation law on B 623 Denmark, mineral industry, annual review MY 1968 (v. IV)
Dense-medium coal cleaning equipment,
performance study OP 6-67 Dense-medium coarse-coal vessels, coal preparation by, performance char-
actaristics RI 7154
Density, packed-bed, for pulverized coal, for gravity flow calculations OP 4-69
Denver, Colo., mineral aggregate industry, effect of urbanization IC 8320
Denver-Julesburg basin, Colo., reservoir- oil analyses OFR 3-67
Deoxidation, alloy steel, effect of rare-earth
metal additions RI 7153 steel, effect of rare-earth metal additions RI 7091
Deposit formation, in thermally stressed jet
fuels, determination, radiotracer technique RI 7325
Descloizite, magnetic susceptibilityIC 8360, 8383
Desiliconization, molten iron, with vortex cone, tests RI 6686
Desolation Valley primitive area, Calif., mineral appraisal GS 10-67
Desulfatization, natural brines, ion-ex- change process for, patent P 11-68
Desulfurization, alloy steel, effect of rare- earth metal additions RI 7153
Detergents, biodegradable syn-
thetic, from low-tem- perature lignite tar RI 7115; OP 14-65 for foaming crude oil-brine mixtures,
for foaming crude oil-brine mixtures,

tests _____ RI 6660 for foaming heavy brines, tests _____ RI 6660

Detonability, allene OP 81-69
ammonium nitrate, under fire exposure _ RI 6773
nitrobenzene-nitric acid-water system _ OP 95-65 nitroglycerin, absorbed in porous rock_ OP 66-65
nitromethane-hydrazine-methanol sys-
tem OP 158-69 propargyl bromide OP 81-69
propargyl chloride OP 81-69
propargyl bromide OP 81-69 propargyl chloride OP 81-69 Detonating cord, nonincendive, develop- ment RI 7149
evaluation RI 7149
Detonating fuses, properties IC 8405
evaluation RI 7149 Detonating fuses, properties IC 8405 Detonations, gas, large-scale, studies RI 7196 in alkane-oxygen mixtures, initiation RI 6840
iow-velocity, in liquid explosives, initia-
tion of, mechanism OP 16-69 spherical, initiation, in acetylene-oxygen
mixtures RI 7061 sympathetic, ammonium nitrate, large-
sympathetic, ammonium nitrate, large-
study RI 6746, 6903
sympatietic, ammonium nitrate, large- scale investigation OP 23-69 study RI 6746, 6903 ammonium nitrate-fuel oil, large- scale investigation OP 23-69 study RI 6746, 6903 Detonation hazards, liquid explosives, evaluating wedge technique for OP 20-69
study RI 6746, 6903
Detonation hazards, liquid explosives,
evaluating, wedge technique for OP 20-69 Detonation waves, low-velocity, struc-
ture, high-speed photography of OP 140-69
Detrital-cover sampling, use, in mineral
exploration RI 6737 Deuteration, homogeneous catalytic, of
olennic double bonds UP 121-69
Deuterium oxide-coal mixtures, micro- wave discharges in, product iden-
tincation, by high-resolution
mass spectrometry OP 73-68 Devil Canyon-Bear Canyon primitive area,
Calif., mineral appraisal GS 1-67
Devitrification, lithium disilicate glass, method RI 6711
Dewatering, anthracite slurries, method KI /012
coal flotation tailing, by mixing with
washery refuse RI 7110 electro-osmotic and electrophoretic,
solid-liquid separation applica- tionOP 72-66
vacuum, of fine coal, use of steam as aid
in RI 6718 Dewdrop sand, Pa., core samples, density
and porosity data IC 6550
Dextrose, carbonized, as reductant for silica
in vacuum RI 7207 Diaboleite, magnetic susceptibility IC 8383
Dialkylacetylenes, infrared spectra OP 173-86
Diamines, enthalpies of formation OP 2-69
Diammoniumdecaborane, enthalpy of for-
mation OP 41-66
Diamond, hexagonal, in meteorites OP 117-67 synthesis, at high pressure OP 117-67 industrial, annual data MY 1968 (v. I-II)
industrial, annual data MY 1968 (v. I-II)
grades B 630 imports and exports B 630
Drices B 630
production B 630 reserves B 630
substitutes B 630
technology B 630
uses B 630 structure OP 83-68
synthesis of, method OP 1-69 synthetic, Hannay specimens, history of OP 1-69
Diamond drilling, cost reduction in. ef-
Diamond drilling, cost reduction in, ef- fects of additives in circulating
medium OP 183-69 impregnated bit, laboratory and field
studies RI 6776
predicting drilling rates, regression anal- ysis techniques RI 6880
ysis techniques RI 0880

i

. 4 8

-

.

Diamond industry, organization B 630 problems B 630 Diaphragm, alumina-silica, in titanium electrowinning cell, evaluation OP 55-69 Diatomite, annual data MY 1968 (v. I-II) asphalt-product use IC 8300 chemical-industry use, Calif IC 8244 consumption B 630 grades B 630 nesticide diluent, use as IC 8260
electrowinning cell, evaluation OP 55-69 Diatomite, annual data MY 1968 (v. I-II)
asphalt-product use IC 8300
consumption B 630
grades B 630 pesticide diluent, use as IC 8260
prices B 630
pesticide diluent, use as IC 8260 prices B 630 production B 630 reserves B 630
Leconology B 540
uses B 630 Diatomite industry, problems B 630 Dibenzothiophene, electrochemical reduc-
tion of, effect on sulfur content OP 95-68 2,3-Dichloropropene, infrared spectra OP 165-67
Dicobalt octacarbonyl catalyst, aromatic
anhydride and acid decarboxyl- ation OP 188-67 use, in hydrogenation of benzhydrol
use, in hydrogenation of benzhydrol and related compounds OP_178-67
Dicycloalkyl sulfides, synthesis, methods RI 6796 Didymium, high-purity, electrowin-
ning, from didymium oxide RI 6957, 7146 Dielectric constant, rock, determination RI 6913
Dielectric constant, rock, determination RI 6913 Dielectric heating, selective, pyrite in coal, patent P 5-59
Diene-iron tricarbonyl complexes, carbon- 13 nuclear magnetic resonance
spectrometry OP 31-67 Diesel engine, pollutants from, discus-
Diesel engine emissions, controlling, methods OP 129-69 Diesel engine emissions, controlling, methods OP 182-68 measuring, techniques for OP 71-68
measuring, techniques for OP 71-68 nature of OP 182-68
Diesel exhaust, air contamination from, in
tunnel, study RI 7074 constituents, determination, continuous
monitoring method RI 7241 Diesel exhaust emission, engine and fuel factors in study OP 106-68
factors in, study OP 106-68 measuring, techniques for OP 116-69 Diesel exhaust gas, effect of cetane im- provers in fuel on RI 7310
provers in fuel on
nitrogen oxides in, determination, by modified Saltzman method BI 6790
sampling and analysis OP 50-66 Diesel fuels, certain improvers in, effect in
flammability characteristics B 627
ignition characteristics, in constant- volume bomb OFR 5-69 Diesel fuel oils, annual data PPS 57, 62
Diesel fuel oils, annual data PPS 57, 62
summer, annual data PPS 62 Diesel mine locomotives, fees for testing, amend-
ments S 22 Diesel-powered equipment mobile, for noncoal mines fees for testing emendments S 24
Diesel-powered transportation equipment, mo-
bile, for gassy noncoal mines and tun- nels, fees for testing, amendments S 31
Diethylenetriaminepentaacetic acid, use, in
amine extraction system RI 7100 in rare-earth element separation_RI 6601, 7175
Differential sulfatization, high-temperature, manganese recovery by, descrip-
tion IC 8368 Diffraction patterns, limestone, multi- spectral photography of OP 146-68
spectral photography of OP 146-68 1-2-bis-Difluoroamino-4-methylpentane,
purification method RI 6633
purity, estimation RI 6633 spectral data RI 6633 Digenite, magnetic susceptibility IC 8383
Digenite, magnetic susceptibility IC 8383 Dilatometer, improved, description OP 73-65

.

Dilatometer, interferometric, high-tempera-
ture, design and operation RI 7142 Dimension stone, classifications and defini-
tions IC 8391 geology of deposits IC 8391
geology of deposits IC 8391
history IC 8391 imports and exports IC 8391
prices IC 8391
prices IC 8391 properties and specifications IC 8391 quarry and plant waste disposal IC 8391
quarry and plant waste disposal IC 8391
quarry size renabilitation IC 8391
quarrying IC 8391 resources IC 8391
shaping and finishing IC 8391
substitutes IC 8901
tariffs IC 8391
transportation and handling IC 8391 uses IC 8391
Dimension-stone industry, employment IC 8391
geographic distribution IC 8391
Government programs IC 8391 legislation IC 8391
organization B 630
outlook IC 8391
problems IC 8391
productivity IC 8391 research IC 8391
structure IC 8391
structure IC 8391 2,4-Dimethyl-3-thiapentane, chemical ther
modynamic propertiesOP 14-67
conformational analysisOP 14-67 low-temperature thermal propertiesOP 99-67
vibrational assignment OP 14-67
vibrational assignment OP 14-67 Dimolybdenum carbide, from molybdenite
concentrate, fused-salt electrolysis RI 6590 molybdenum metal from, fused-salt elec-
molybdenum metal from, fused-salt elec-
trolysis RI 6590 Dioptase, magnetic susceptibility IC 8383
Diphenyl ether, from low-temperature coal-
tar neutral oil, identification B 637 Disasters, coal-mine, causes OP 160-65
Disasters, coal-mine, causes OP 160-65
prevention OP 160-65 Disk cutter, rock, laboratory tests OP 152-69
Dispansion devices colide and motivated
Dispersion devices, solids, gas-motivated,
Dispersion devices, solids, gas-motivated, aerodynamic factors, in RI 6910
Displacement, determination, in infinite elastic plate, containing circular
Displacement, determination, in infinite elastic plate, containing circular
Displacement, determination, in infinite elastic plate, containing circular hole, theoretical solution RI 7030 in rock, boring machine-induced, theoret-
Displacement, determination, in infinite elastic plate, containing circular hole, theoretical solution RI 7030 in rock, boring machine-induced, theoret-
Displacement, determination, in infinite elastic plate, containing circular hole, theoretical solution RI 7030 in rock, boring machine-induced, theoret- ical solution RI 7200 Dissiplation factor, rock, determination RI 6913 Distillate fuels, catalytically cracked, effect
Displacement, determination, in infinite elastic plate, containing circular hole, theoretical solution RI 7030 in rock, boring machine-induced, theoret- ical solution RI 7200 Dissipation factor, rock, determination RI 6913 Distillate fuels, catalytically cracked, effect of hydrogenation RI 6961
Displacement, determination, in infinite elastic plate, containing circular hole, theoretical solution RI 7030 in rock, boring machine-induced, theoret- ical solution RI 7200 Dissipation factor, rock, determination RI 6913 Distillate fuels, catalytically cracked, effect of hydrogenation RI 6961
Displacement, determination, in infinite elastic plate, containing circular hole, theoretical solution RI 7030 in rock, boring machine-induced, theoret- ical solution RI 7200 Dissipation factor, rock, determination RI 6913 Distillate fuels, catalytically cracked, effect of hydrogenation RI 6961 properties RI 6961 hydrogenated, storage stability RI 6961 storage stability tests, review OP 125-66
Displacement, determination, in infinite elastic plate, containing circular hole, theoretical solution RI 7030 in rock, boring machine-induced, theoret- ical solution RI 7200 Dissipation factor, rock, determination RI 6913 Distillate fuels, catalytically cracked, effect of hydrogenation RI 6961 properties RI 6961 hydrogenated, storage stability RI 6961 storage stability tests, review OP 125-66 Distillation, destructive, scrap tires, feasj-
Displacement, determination, in infinite elastic plate, containing circular hole, theoretical solution RI 7030 in rock, boring machine-induced, theoret- ical solution RI 7200 Dissipation factor, rock, determination RI 6913 Distillate fuels, catalytically cracked, effect of hydrogenation RI 6961 properties RI 6961 hydrogenated, storage stability RI 6961 storage stability tests, review OP 125-66 Distillation, destructive, scrap tires, feasi- bility RI 7302
Displacement, determination, in infinite elastic plate, containing circular hole, theoretical solution RI 7030 in rock, boring machine-induced, theoret- ical solution RI 7200 Dissipation factor, rock, determination RI 6913 Distillate fuels, catalytically cracked, effect of hydrogenation RI 6961 properties RI 6961 hydrogenated, storage stability RI 6961 storage stability tests, review OP 125-66 Distillation, destructive, scrap tires, feasi- bility RI 7302
Displacement, determination, in infinite elastic plate, containing circular hole, theoretical solution RI 7030 in rock, boring machine-induced, theoret- ical solution RI 7200 Dissipation factor, rock, determination RI 6913 Distillate fuels, catalytically cracked, effect of hydrogenation RI 6961 properties RI 6961 hydrogenated, storage stability RI 6961 storage stability tests, review OP 125-66 Distillation, destructive, scrap tires, feasi- bility RI 7302 products RI 7308
Displacement, determination, in infinite elastic plate, containing circular hole, theoretical solution RI 7030 in rock, boring machine-induced, theoret- ical solution RI 7200 Dissipation factor, rock, determination RI 6913 Distillate fuels, catalytically cracked, effect of hydrogenation RI 6961 properties RI 6961 hydrogenated, storage stability RI 6961 storage stability tests, review OP 125-66 Distillation, destructive, scrap tires, feasi- bility RI 7302 yacuum, rare-earth metals from alloys RI 7308 yttrium from yttrium alloys RI 7308 District of Columbia, occupational diseases,
Displacement, determination, in infinite elastic plate, containing circular hole, theoretical solution RI 7030 in rock, boring machine-induced, theoret- ical solution RI 7200 Dissipation factor, rock, determination RI 6913 Distillate fuels, catalytically cracked, effect of hydrogenation RI 6961 properties RI 6961 hydrogenated, storage stability RI 6961 storage stability tests, review OP 125-66 Distillation, destructive, scrap tires, feasi- bility RI 7302 yacuum, rare-earth metals from alloys RI 7308 yttrium from yttrium alloys RI 7308 District of Columbia, occupational diseases, workmen's compensation law on B 623
Displacement, determination, in infinite elastic plate, containing circular hole, theoretical solution RI 7030 in rock, boring machine-induced, theoret- ical solution RI 7200 Dissipation factor, rock, determination RI 6913 Distillate fuels, catalytically cracked, effect of hydrogenation RI 6961 properties RI 6961 storage stability tests, review OP 125-66 Distillation, destructive, scrap tires, feasi- bility RI 7302 yroducts RI 7302 vacuum, rare-earth metals from alloys RI 7308 yttrium from yttrium alloys RI 7308 District of Columbia, occupational diseases, workmen's compensation law on B 623 Disulfides, mass spectra RI 6698
Displacement, determination, in infinite elastic plate, containing circular hole, theoretical solution RI 7030 in rock, boring machine-induced, theoret- ical solution RI 7200 Dissipation factor, rock, determination RI 6913 Distillate fuels, catalytically cracked, effect of hydrogenation RI 6961 properties RI 6961 storage stability tests, review RI 6961 storage stability tests, review OP 125-66 Distillation, destructive, scrap tires, feasi- bility RI 7302 products RI 7302 vacuum, rare-earth metals from alloys RI 7308 yttrium from yttrium alloys RI 7308 District of Columbia, occupational diseases, workmen's compensation law on B 623 Disulfides, mass spectra RI 6961 Earth 6698 Dithiaalkanes, valence force field for OP 142-69
Displacement, determination, in infinite elastic plate, containing circular hole, theoretical solution RI 7030 in rock, boring machine-induced, theoret- ical solution RI 7200 Dissipation factor, rock, determination RI 6913 Distillate fuels, catalytically cracked, effect of hydrogenation RI 6961 properties RI 6961 hydrogenated, storage stability RI 6961 storage stability tests, review OP 125-66 Distillation, destructive, scrap tires, feasi- bility RI 7302 products RI 7308 yttrium from yttrium alloys RI 7308 District of Columbia, occupational diseases, workmen's compensation law on B 623 Disulfides, mass spectra RI 6969 Dithiaalkanes, valence force field for OP 142-69 Dithionate leach process, manganese recov-
Displacement, determination, in infinite elastic plate, containing circular hole, theoretical solution RI 7030 in rock, boring machine-induced, theoret- ical solution RI 7200 Dissipation factor, rock, determination RI 6913 Distillate fuels, catalytically cracked, effect of hydrogenation RI 6961 properties RI 6961 hydrogenated, storage stability RI 6961 bistilation, destructive, scrap tires, feasi- bility RI 7302 yacuum, rare-earth metals from alloys RI 7308 District of Columbia, occupational diseases, workmen's compensation law on B 623 Disulfides, mass spectra RI 6698 Dithiaalkanes, valence force field for OP 142-69 Dithionate leach process, manganese recov- ery by, description IC 8368 Dodecyl phosphoric acid, solvent-extraction
Displacement, determination, in infinite elastic plate, containing circular hole, theoretical solution RI 7030 in rock, boring machine-induced, theoret- ical solution RI 7200 Dissipation factor, rock, determination RI 6913 Distillate fuels, catalytically cracked, effect of hydrogenation RI 6961 properties RI 6961 storage stability tests, review OP 125-66 Distillation, destructive, scrap tires, feasi- bility RI 7302 products RI 7302 yacuum, rare-earth metals from alloys RI 7308 yttrium from yttrium alloys RI 7308 District of Columbia, occupational diseases, workmen's compensation law on B 623 Disulfides, mass spectra RI 6698 Dithiaalkanes, valence force field for OP 142-69 Dithionate leach process, manganese recov- ery by, description IC 8368 Dodecyl phosphoric acid, solvent-extraction characteristics, rare earth-yttrium
Displacement, determination, in infinite elastic plate, containing circular hole, theoretical solution RI 7030 in rock, boring machine-induced, theoret- ical solution RI 7200 Dissipation factor, rock, determination RI 6913 Distillate fuels, catalytically cracked, effect of hydrogenation RI 6961 properties RI 6961 storage stability tests, review OP 125-66 Distillation, destructive, scrap tires, feasi- bility RI 7302 yroducts RI 7302 ytrium from yttrium alloys RI 7308 yttrium from yttrium alloys RI 7308 District of Columbia, occupational diseases, workmen's compensation law on B 623 Disulfides, mass spectra RI 6698 Dithiaalkanes, valence force field for OP 142-69 Dithionate leach process, manganese recov- ery by, description IC 8368 Dodecyl phosphoric acid, solvent-extraction characteristics, rare earth-yttrium mixture RI 6601
Displacement, determination, in infinite elastic plate, containing circular hole, theoretical solution RI 7030 in rock, boring machine-induced, theoret- ical solution RI 7200 Dissipation factor, rock, determination RI 6913 Distillate fuels, catalytically cracked, effect of hydrogenation RI 6961 hydrogenated, storage stability RI 6961 hydrogenated, storage stability RI 6961 bistillation, destructive, scrap tires, feasi- bility RI 7302 products RI 7302 yacuum, rare-earth metals from alloys RI 7308 yttrium from yttrium alloys RI 7308 jistrict of Columbia, occupational diseases, workmen's compensation law on B 623 Distlides, mass spectra RI 6968 Dithiaalkanes, valence force field for OP 142-69 Dithionate leach process, manganese recov- ery by, description IC 8368 Dodecyl phosphoric acid, solvent-extraction characteristics, rare earth-yttrium mixture RI 6601 Dolomite, as refractory raw material IC 8382
Displacement, determination, in infinite elastic plate, containing circular hole, theoretical solution RI 7030 in rock, boring machine-induced, theoret- ical solution RI 7200 Dissipation factor, rock, determination RI 6913 Distillate fuels, catalytically cracked, effect of hydrogenation RI 6961 hydrogenated, storage stability RI 6961 hydrogenated, storage stability RI 6961 bistillation, destructive, scrap tires, feasi- bility RI 7302 products RI 7302 products RI 7308 yttrium from yttrium alloys RI 7308 District of Columbia, occupational diseases, workmen's compensation law on B 623 Disulfides, mass spectra RI 6698 Dithiaalkanes, valence force field for OP 142-69 Dithionate leach process, manganese recov- ery by, description IC 8368 Dodecyl phosphoric acid, solvent-extraction characteristics, rare earth-yttrium mixture RI 6601 Dolomite, as refractory raw material IC 8382 for radioactive-waste disposal, labora-
Displacement, determination, in infinite elastic plate, containing circular hole, theoretical solution RI 7030 in rock, boring machine-induced, theoret- ical solution RI 7200 Dissipation factor, rock, determination RI 6913 Distillate fuels, catalytically cracked, effect of hydrogenation RI 6961 properties RI 6961 storage stability tests, review OP 125-66 Distillation, destructive, scrap tires, feasi- bility RI 7302 products RI 7302 products RI 7308 yttrium from yttrium alloys RI 7308 yttrium from yttrium alloys RI 7308 District of Columbia, occupational diseases, workmen's compensation law on B 623 Disulfides, mass spectra RI 6698 Dithiaalkanes, valence force field for OP 142-69 Dithionate leach process, manganese recov- ery by, description IC 8368 Dodecyl phosphoric acid, solvent-extraction characteristics, rare earth-yttrium mixture RI 6601 Dolomite, as refractory raw material IC 8382 for radioactive-waste disposal, labora- tory tests RI 6926 magnesium production from, carbother-
Displacement, determination, in infinite elastic plate, containing circular hole, theoretical solution RI 7030 in rock, boring machine-induced, theoret- ical solution RI 7200 Dissipation factor, rock, determination RI 6913 Distillate fuels, catalytically cracked, effect of hydrogenation RI 6961 hydrogenated, storage stability RI 6961 hydrogenated, storage stability RI 6961 bistillation, destructive, scrap tires, feasi- bility RI 7302 products RI 7302 yacuum, rare-earth metals from alloys RI 7308 yttrium from yttrium alloys RI 7308 District of Columbia, occupational diseases, workmen's compensation law on B 623 Disulfides, mass spectra RI 6698 Dithiaalkanes, valence force field for OP 142-69 Dithionate leach process, manganese recov- ery by, description IC 8368 Dodecyl phosphoric acid, solvent-extraction characteristics, rare earth-yttrium mixture RI 6601 Dolomite, as refractory raw material IC 8382 for radioactive-waste disposal, labora- tory tests RI 6926 magnesium production from, carbother- mic process RI 6946
Displacement, determination, in infinite elastic plate, containing circular hole, theoretical solution RI 7030 in rock, boring machine-induced, theoret- ical solution RI 7200 Dissipation factor, rock, determination RI 6913 Distillate fuels, catalytically cracked, effect of hydrogenation RI 6961 hydrogenated, storage stability RI 6961 hydrogenated, storage stability RI 6961 bistilation, destructive, scrap tires, feasi- bility RI 7302 products RI 7302 ytroum, rare-earth metals from alloys RI 7308 yttrium from yttrium alloys RI 7308 District of Columbia, occupational diseases, workmen's compensation law on B 623 Disulfides, mass spectra RI 6698 Dithiaalkanes, valence force field for OP 142-69 Dithionate leach process, manganese recov- ery by, description IC 8368 Dodecyl phosphoric acid, solvent-extraction characteristics, rare earth-yttrium mixture RI 6601 Dolomite, as refractory raw material IC 8382 for radioactive-waste disposal, labora- tory tests RI 6926 magnesium production from, carbother- mic process RI 6946 metallothermic process RI 6656
Displacement, determination, in infinite elastic plate, containing circular hole, theoretical solution RI 7030 in rock, boring machine-induced, theoret- ical solution RI 7200 Dissipation factor, rock, determination RI 6913 Distillate fuels, catalytically cracked, effect of hydrogenation RI 6961 hydrogenated, storage stability RI 6961 hydrogenated, storage stability RI 6961 bistillation, destructive, scrap tires, feasi- bility RI 7302 products RI 7302 yacuum, rare-earth metals from alloys RI 7308 yttrium from yttrium alloys RI 7308 District of Columbia, occupational diseases, workmen's compensation law on B 623 Disulfides, mass spectra RI 6698 Dithiaalkanes, valence force field for OP 142-69 Dithionate leach process, manganese recov- ery by, description IC 8368 Dodecyl phosphoric acid, solvent-extraction characteristics, rare earth-yttrium mixture RI 6601 Dolomite, as refractory raw material IC 8382 for radioactive-waste disposal, labora- tory tests RI 6926 magnesium production from, carbother- mic process RI 6946

Dominican Republic, mineral in-dustry, annual review _ MY 1968 (v. IV) Douglas bed, W. Va., coal, carbonizing properties ______ RI 6615 Douglas mine, Mont., phosphate rock, vi-brating-blade planer, tests ______ RI 6863 Dredging operations, offshore, tabulation OP 154-69 Dresser basalt, elastic moduli, at elevated temperatures ______ RI 7269 RI 7269 temperatures _____ ____ Dribble project, Salmon nuclear explo-Dribble project, Saimon nuclear explo-sion, results ______ OP 156-65 Drills, energy output, longitudinal strain energy measurements ______ RI 7329 percussive, operating characteristics, study ______ RI 7253 penetration rate, predicting, labora-tory tests tory tests _________performance characteristics, measur-**RI 7300** ing, instrumentation for _____ RI 7253 Drill bit, hemispherical, rock stress under, study OP 70-66 rock deformation under, study RI 6838 Drill equipment, coalbed, long-hole, design and development TPR 11 Drill holes, photographs in geniers that Drill holes, photographs in, goniometer for Drill holes, photographs in, goniometer for interpreting ______ RI 7097 Drill-hole grid spacing, design, for evalua-tion of grade of copper ore ______ RI 6634 Drillability, lunar materials, possible methods for predicting ______ OP 37-69 percussive, determination, longitudinal strain energy data ______ RI 7329 rock, predicting, laboratory and field tests ______ OP 45-68 rock, predicting, laboratory and field tests OP 45-68 regression analysis techniques IP RI 6880 under hemispherical drill bit OP 70-66 Drillability index, percussive system, labo-ratory tests RI 7300 Drillability studies, impregnated diamond bits RI 6776 Drilling, hydraulic drive, patent P 1-69 in tunnel construction, recommended safety in tunnel construction, recommended safety in tunnel construction, recommended safety rules B 644 lunar, problems OP 37-69 Drilling fluid, bentonite, leonardite additions to, effect on viscosity RI 7043 Drilling systems, lunar-use, development of, problems OP 37-69 Drop shatter test, coke, method B 638 Drop-weight test, for explosive liquids, equipment, evaluation RI 6799 Dryers, coal, fluidized-bed, thermal, fire and explosion hazards IC 8258 Dua-negative system, duplicating nega-tives by Comment of 173-67 tives by Dubros, Inc., steamflooding project, de-OP 173-67 Scription _____ OP 117-69 Dufrenoysite, magnetic susceptibility ____ IC 8383 Dump leaching, low-grade copper ore mate-rials, description rials, description _____ IC 8341 mine waste, gold recovery from, labora-tory tests _____ RI 7250

 Dunmore No. 3 bed, Pa., anthracite, washing characteristics
 RI 6989

 Dusts, agricultural, explosibility
 RI 7208

 airborne, concentration, in coal mines, electronic-counter determination
 RI 7105

 measuring, personal respirable dust sampler for
 TPR 17

 atmospheric, in coal mines, acceptable
 Iimits

 limits
 OP 129-65

 control, methods
 OP 129-65

 carbonaceous, explosibility
 RI 6597

 ignition-sensitivity index
 RI 6597

 cellulosic, explosibility
 RI 7208

 chemical. explosibility
 RI 7208

 Dunmore No. 3 bed, Pa., anthracite, wash-

()

Dust, coal-mine, incombustible content, de-
termination, nuclear method RI 7193 detergent and soap, explosibility RI 7208
detergent and soap, explosibility RI 7208
drug, explosibility RI 7132
drug, explosibility RI 7132 dye, explosibility RI 7132 explosibility RI 7132 tabulation OP 151-67 explosion hazards, safety precautions RI 7132 feed and fertilizer, explosibility RI 7208 foot and fertilizer, explosibility RI 7208
explosibility RI 7132
tabulation OP 151-67
explosion hazards, safety precautions RI 7132
feed and fertilizer, explosibility R1 7208
noat-coal, allaying, toam systems OP 130-65
float-ccal, allaying, foam systems OP 130-65 explosion hazard, evaluation RI 6581 transportation and deposition RI 6581 in tunneling, recommended safety rules B 644
in tunneling recommended sofety rules P 644
miscellaneous, explosibility RI 7208
pesticide, explosibility RI 7132
pesticide, explosibility RI 7132 plant, explosibility RI 7208
respirable, concentration, hygienic eval- uation, comparison of methods OP 9-68
uation, comparison of methods _ OP 9-68
in coal mines, controlling TPR 19 Dust clouds, float-coal, formation, aerody- namic aspects, study RI 7252 Dust collectors, for use in connection with
Dust clouds, float-coal, formation, aerody-
namic aspects, study RI 7252
Dust collectors, for use in connection with
rock urining in coal mines, lees lor
testing, amendments S 25B Dust concentration, from midget impinger
Dust concentration, from midget impinger
samples, electronic counter deter-
mination RI 7105
in air. measuring, methods OP 9-68 personal respirable dust sampler for
measuring TPR 17
measuring TPR 17 Dust control, legislation, mining and quar- rying, literature survey IC 8407
rving literature survey IC 8407
mining and quarrying, literature survey IC 8407
mining and quarrying, literature survey IC 8407 Dust deposits, float-coal, explosion hazards,
evaluation RI 6581
Dust dispersion, heated, ignition of, ther-
mal phenomena RI 6811 Dust-ignition process, study RI 6811 Dust particles, heated, ignition of, study RI 6811
Dust-ignition process, study RI 6811
Dust particles, heated, ignition of, study RI 6811
Dust prevention, mining and quarrying, literature survey
interature survey
practices, literature survey IC 8407
Dust removal, by high-temperature elec- trostatic precipitator, progress
report OP 183-67
Dye, fluorescent penetrant, use on rock
fractures, results OP 162-68 Dynamite, composition and properties OP 162-67 semigelatin, explosive performance, effect
Dynamite, composition and properties OP 162-67
semigelatin, explosive performance, effect
of charge diameter on RI 6806
explosive properties RI 6806 Dysprosium, electrowinning, from oxide RI 7146
Dysprosium, electrowinning, from oxide RI 7146
preparation, electrodeposition-vacuum
distillation method OP 174–68 from alloys, vacuum distillation method RI 7308
Dysprosium alloy, vacuum distillation of
dysprosium from RI 7308
dysprosium from RI 7308 Dysprosium metal, high-temperature elec-
trowinning of, method OP 47-66
U ,
E
-
Eagle bed, Va., coal, washing characteris-
tics RI 6740
W. Va., coal, carbonizing properties
RI 6615, 6872, 6899, 7236
froth-flotation washability data RI 6652
East Kentucky coalfields, surface mine
regulation, effect OP 79-69 Eastern Middle anthracite field, abandoned
Eastern Middle anthracite field, abandoned
mines, microfilmed maps IC 8274 Fconomic analysis, U.S. mining industry
IC 8338; OP 199-67

1

) (

)

1

•

_

.

_	mines, micromined maps to bert
Ec	omic analysis, U.S. mining industry
	IC 8338; OP 199–67
Ec	omy, U.S., mining industry relationship to
	IC 8338; OP 199-67
Ec	dor, mineral industry, annual review
	MYB 1968 (v. IV)
_	

Egnaty Creek mercury deposit, Alaska, soil sampling OFR 16-68

Egypt, crude oil, production	RI RI	7059
Egypt, crude oil, production sulfur content mineral industry, annual review MY 1968	(v	IV
El Camton project, secondary backfilling,		
strip mines strip-mine area rehabilitation, revege- tation	RI	7075
El Salvador, mineral industry, annual revie MY 1968		. IV)
Elastic constants, anisotropic materials, orientation conventions for		7334
for anisotropic media, transformation equations for successive rotation		
method Elastic symmetry, materials, determina- tion, ultrasonic method	RI	7243
polycrystalline and amorphous materials, orientation conventions for	RI	7888
Electric arc; See Arc	U1	1334
Electric cap lamps, fees for testing, amen		S 6D
Electric lines, underground, horizontal bor- ing technology for	IC	, 8392
plowing and trenching methods Electric mine lamps, other than standard ca	IČ	8392
lamps, lees for testing, amendmen	ιs δ	5 100
Electric motors, automotive use, evaluation	RI	6918
Electric motors, automotive use, evaluation Electric-power generation, coal, research, review	IC	8277
Electric power transmission lines, under- ground, horizontal boring tech-		
nology for Electrical equipment, in tunnel construction	n.	
recommended safety rules underground-mining, intermediate ac		
voltage, need	r T	10-69
Electrical resistivity, anthracite, determi- nation, method	RI	6788
fly ash, at various temperatures, study effect of carbon content solid specimens, apparatus for determin-	RI	7041
ing, description	RI	6788
Electricity, generation from coal, methods, discussion OP 6-6 in shaft-sinking operations, safety rec- ommendations production, biochemical method use, in oil shale fracturing laboratory	59, ·	45-69
ommendations	IC	8365
production, biochemical method	P (16 6 7
use, in oil shale fracturing, laboratory and field experiments Ol uses in electrometallurgy, outlook O	.	
uses in electrometallurgy outlook	10''	92—07 71_60
utility, supply and demand	Ίc	8402
utility, supply and demand Electrodes, carbon, preparation, from low-temperature lignite tar Ol	P 10	01-69
consumable, fabrication guard, response in oil-well logging, labo-	_ Ì	3 646
ratory investigation	RI	6783
Electrode assembly, constant low-voltage		
Electrodeposition, aluminum, from fused chloride electrolytes	9 P 9	98-66 0705
brass effect of ultrasonica	ND (0/00
iridium, from aqueous electrolyte	RI	7023
from fused cyanide electrolyte	RI	7023
molypdenum, method, patent	P 2	22-68
palladium, on refractory metals, from aqueous electrolytes	RI	7016
platinum, on refractory metals, from aqueous electrolytes	Rτ	7016
rhodium, from molten sodium cyanide electrolyte		
titanium diboride coatings, on nickel		
Electrohydraulic effect, rock fragmenta-		
tion, potential application	ĸı	7317

Electrokinetic potential application _____ RI 7317 in aluminum chloride solution ____ RI 7048 in oleylammonium acetate solution ____ RI 7048

Electrolysis, boron, fused-salt electrolyte___ RI 7028 molybdenum production by, modified method ______ RI 6834 molten-salt, ferrochromium beneficiation by _____ RI 7226 metal phosphides _____ OP 69-67 RI 7226 solid-state, cerium metal purification by RI 6894 solid-state, cerium metal purification by RI 6894 Electrolytes, aqueous, for preparing pal-ladium deposits, composition... OP 105-69 for preparing platinum deposits, composition OP 105-69 palladium, composition RI 7016 platinum, composition RI 7016 halide, use, in tungsten recovery RI 6742 life of, in repetitive electrowinning of of tungsten RI 6805 phosphate use, in tungsten recovery RI 6742 phosphate, use, in tungsten recovery ____ RI 6742 Electromagnetic field-fluid interaction sys-Electromagnetic hermodynamics ______ RI 7066 Electrometallurgy, applications in min-eral processing ______ OP 70-69 Electrons, backscattered, measurement, in Electrons, backscattered, measurement, in electron-probe microanalyzer _____ RI 6681 solvated, electrolytic generation ______ OP 4-67 Electron microscope, scanning, advan-tages ______ OP 66-69 description ______ OP 9-69 Electron microscopy, ultrafine structures in coal components ______ OP 51-67 Electron paramagnetic resonance spec-tra, coals, during electronic irtra, coals, during electronic irradiation _____ OP 147-68 Electron-probe microanalysis, literature survey Electron spin resonance, coals _____ OP 100-66, 56-68 lignite _____ OP 148-68 peat _____ OP 148-68 Electro-osmosis, in liquid-solid separation OP 72-66 Electrophoresis, high-molecular-weight pe-Electrophoresis, high-molecular-weight pe-RI 6912 troleum components _____ RI 6912 in liquid-solid separation _____ OP 72-66 Electrophoresis cell, continuous-flowing, use, in study of petroleum _____ RI 6912 Electropolishing, anodic, stainless steel apparatus _____ OP 95-66 Electrorefining, amalgam, zinc and tin, laboratory tests ______ RI 7313 hafnium, chloride electrolytes for, investigation ______ RI 6818 molten-salt, ductile vanadium production by ______ RI 6972 titanium, process development _____ OP 75-69 vanadium ______ OP 137-65 methods ______ OP 68-67 NOT 000 PE 7022 _ RI 6818 vanadium scrap _____ RI 7036 molybdenum, in molten salt cells _____ RI 6850 hititanium-nitrogen alloys, tests ______ RI 6878 titanium-oxygen alloys, oxygen content of anode, effect ______ RI 6588 uranium, magnesium-reduced, in molten sodium chloride-uranium trichoride ______ RI 6624 vanadium, in molten bromide electrolyte RI 6631 two-cycle molten-salt process _____ OP 24-68 yttrium _____ RI 7018 Electroslag melting, titanium ingot production by _____ OP 178-68 Electroslag process, molybdenum melt-ing by, evaluation _____ OP 172-67 titanium melting by, evaluation ____ OP 172-67 Electrostatic precipitation, process patent_ P 20-69 Electrostatic precipitator, high-tempera-ture, high-pressure, design and operation _____ RI 7276

Electrostatic precipitator, high-tempera-
ture, high-pressure, dust removal efficiency, positive and negative co- rona
top closure for, patent P 10-66
search, review OP 157-65
top closure for, patent P 10-66 Electrostatic separation, minerals, re- search, review OP 157-65 Electrosynthesis, dimolybdenum carbide, from molybdenite RI 6590 Electrotransport, cerium-iron alloy separa-
tion by, effect of field freezing RI 7186
tion by, effect of field freezing RI 7186 cerium metal purification by RI 6894 Electrowinning, aluminum from aluminum
chloride, two-compartment cell
cerium, from cerium oxide RI 7146
fused-fluoride, of thorium-based alloys,
method RI 6789 hafnium, high-purity, from hafnium
Electrowinning, auminum from aluminum chloride, two-compartment cell method RI 7212 cerium, from cerium oxide RI 7146 columbium, operating parameters OP 53-68 fused-fluoride, of thorium-based alloys, method RI 6789 hafnium, high-purity, from hafnium chloride OP 166-69 lanthanum metal, from lanthanum oxide RI 6882, 7146
molybdenum RÍ 6834 rare-earth metals, from oxides RI 6957; OP 47–66
repetitive, tungsten from scheelite, eval- uation RI 6805
titanium, from titanium dioxide, feasi-
from titanium tetrachloride OP 36-68
tungsten, halide electrolyte RI 6742 uranium metal, in molten fluoride solu-
tions, reaction rate, study RI 6736
Electrowinning cell, diaphragm-type, for high-purity titanium production,
description OP 36-68
evaluation OP 55-69 Elements, analytical chemistry of, re- view OP 117-65 low-atomic-number, determination, X-
view OP 117-65
ray tube vacuum spectrograph
ray tube vacuum spectrograph forOP 53-67 Elk Hills field, Calif., oil-reservoir model studiesRI 7052
Elkol bed, Wyo., coal, chloroform-extract
vield, investigation RI 6973 Ellsworth No. 51 mine, Pa., coal, carbon-
izing properties RI 7131 Ellsworthite, magnetic susceptibility IC 8360 Eluex process, eluting uranium from ion-
Eluex process, eluting uranium from ion- exchange resins by, new system RI 7227
Emerald mine, Pa., coal, carbonizing prop- erties RI_7131
Emery, consumption B 630
imports B 630 prices B 630
production B 630
reserves B 630 technology B 630 uses B 630
uses B 630 Emery field, Utah, coal, potential carbon-
Emery field, Utah, coal, potential carbon- ization yield RI 6990 Emery industry, organization B 630
problems B 630
Emperius Mining Co., Colo., milling meth- ods IC 8370
mining methods IC 8370 operating costs IC 8370
Emulsions, ultrasonically formed, oil-in- water, oil-displacement tests, labo-
ratory-scale RI 7296 water-in-oil, oil-displacement tests,
laboratory-scale RI 7296
Enargite, magnetic susceptibility
Endlichite, magnetic susceptibility IC 8360 Energetics, percussive drills RI 7253
longitudinal strain energy measure- ments RI 7329

Energy, consumption, outlook OP 151-65
patterns OP 151-65 demand and supply, technological fore-
demand and supply, technological fore-
casting, case studies IC 8384
release, in rockbursts, calculating OP 39-65
in underground explosions, calcu-
lating OP 39-65 supply and demand, by States and re-
supply and demand, by States and re-
gions, coal industry IC 8401
dry natural gas IC 8403
petroleum and natural gas liquids IC 8411
gions, coal industry IC 8401 dry natural gas IC 8403 petroleum and natural gas liquids IC 8402 utility electricity IC 8402
Energy Datance, analytical uses UP ISIL-KA
analytical uses for, description and ap-
plication OP 67-69 forecast OP 104-65
101000000 = 100000000000000000000000000
U.S., 1947-65 IC 8384 present OP 68-66
projected OP 68-66 projected OP 68-66 projected OP 68-66 projected OP 68-66 Energy demand, future, estimating IC 8384 Energy economy, all-electric, model of OP 202-68 all-gas, model of OP 202-68 Energy fuels, consumption, Btu index IC 8275 production Btu index
Energy consumption, U.S., present OP 68-66
projected OP 68-66
Energy demand, future, estimating IC 8384
Energy economy, all-electric, model of OP 202-68
all-gas, model of OP 202-68
Energy fuels, consumption, Btu index IC 8275
production, Btu index IC 8275
production, Btu index IC 8275 Energy model, U.S., energy balances, 1947-
65 IC 8384
Energy model, 0.3., energy balances, 1947- 65 IIC 8384 projected demand and supply IIC 8384 Energy resources, consumption OP 205-68, 206-68 patterns OP 151-65 summary OP 104-65 demand OP 202-68 forecast OP 104-65 production, summary OP 104-65
Energy resources, consumption _ OP 205-68, 206-68
patterns OP 151-65
summary OP 104-65
demand OP 202-68
forecast
production, summary OP 104-65 projected consumption OP 205-68, 206-68 projected demand IC 8384; OP 202-68
projected consumption OP 205-68, 206-68
projected demand IC 8384; OP 202-68
Energy supply, future, estimating 10 6364
Engine oil, aircraft, autoignition temper-
ature OP 84-65 flammability characteristics DP 118-69 ignition temperatures OP 118-69
flammability properties OP 119 69
ignition temperatures OP 118-69
Enthalpies fluids determining experi-
Enthalpies, fluids, determining, experi- mental methods, survey IC 8245 Environmental control, research program OP 30-67 Epsilon iron carbide, properties B 631
Environmental control, research program OP 30-67
Epsilon iron carbide, properties B 631
Equations of state, engineering applica-
tions OP 184-69
helium and helium mixtures RI 7076
Equilibrium composition, multiconstituent,
multiphase chemical reacting sys-
tems, computing method RI 7257
Erbium, cross-section measurements OP 20-65
Erythrite, magnetic susceptibility IC 8351
Esopus Shale, N.J., expansion properties
of, test OP 134-66 Esperite magnetic susceptibility IC 8383
Esperite, magnetic susceptionity IU 8383
Esters, flammability characteristics
mass spectra B 634 unsaturated fatty, hydroformylation of, fatty alcohole from
fatty alcohols from OP 56-69
fatty aldebydes from OP 56-69
fatty aldehydes from OP 56-69 Ethane, thermophysical properties IC 8317
Ethanethiol, conformational analysis OP 28-68
Ethanol, with hexamethylphosphora-
mide, use, in electrochemical
reduction of benzene OP 107-69
Ethers, flammability characteristics B 627 trimethylsilyl, mass spectra B 634
The main of induction of
Ethiopia, mineral industry, an- nual review
nual review MII 1905 (V. IV)
Ethyl alcohol, properties OP 156-67
Ethylene, flammability characteristics RI 6659
gas tracer, in underground gas storage,
evaluation RI 6793
Ethylene-acetylene mixtures, flammability
characteristics RI 6659

Ethylene-air flames, combustion products, equilibrium composition _____ RI 6672 Ethylenediamine, electrochemical reduction of tetralin in, effect of operating variables _____ OP 135-65 operating variables ______ OP 128-66 Ethylenediamine-lithium chloride, electro-chemical reduction of vitrain in__ RI 7017 Ethylenediaminetetraacetic acid, use, in rare-earth element separation by RI 7175 rare-earth element separation by ion exchange ______ RI 7175 Ethylenimine, chemical thermodynamic properties _____ OP 2-69 Ethylmethylphenols, infrared spectra ___ OP 99-66 synthesis _____ OP 99-66 Eucolyte, magnetic susceptibility _____ IC 8360 Eucryptite, heat of formation _____ RI 6873 thermodynamic properties _____ RI 7001 Eudialyte, magnetic susceptibility _____ IC 8360 Eucryptick, heat of forks area, manganese oc-currences _____ IC 8303 currences IC 8303 Europe, crude oil, sulfur content IC 8303 Europium, annual data III 1968 (v. I-II) Europium oxide, crystallographic modificaking transformation rate ______ RI 6616 phase transformation rate ______ RI 6616 Europium sesquioxide, heat of formation__ RI 6640 Europium trichloride, heat of formation__ RI 6640 Euxenite, columbium and tantalum extraction from, direct chlorination method ____ _____ RI 6635 magnetic susceptibility ______ Euxenite concentrate, extraction of metal IC 8360 values from, using ammonium sulfate ______ RI 6906 solvent extraction of rare-earth elements from, di(2-ethylhexyl) phosphoric acid method ______ RI 6577 Excavation, rapid, methods ______ OP 119-68 RI 6906 projected research program, benefits ______ OFR 12-68 projected technological advances __ OFR 12-68 underground, blasting methods and costs IC 8294 Exhaust, diesel-engine, measuring, tech-OFR 7-68

 Exhaust, diesel-engine, measuring, tech-niques
 OP 71-68

 Exhaust gas, automotive, nitrogen oxides
 OP 21-67

 representative sampling, methods
 OP 72-65

 diesel, constituents, determination, con-tinuous monitoring method
 RI 7241

 nitrogen oxides in, determination
 RI 7290

 reactivity, effect of hydrocarbon type
 on, study

 on, study
 OP 179-67

 Explosibility, agricultural dusts
 RI 7208

 chemical dusts
 RI 7208

 detergent dusts
 RI 7132, 7208

 detergent dusts
 RI 7132

 dusts
 RI 7132

 dusts
 RI 7132

 explosives dusts
 RI 7208

 feed dusts
 RI 7208

 miscellaneous dusts
 RI 7208

 miscellaneous dusts
 RI 7208

 plant dusts
 RI 7208

 resin dusts
 RI 7208

 resin dusts
 RI 7208

 resin dusts
 RI 7208

 soap dusts
 RI 7208

 niques _____ OP 71-68 dex _____ RI 6597

Explosion, dust, in buildings, study ____ OP 151-67 Explosions, in mortar, with change in stemming, tests ______ RI 6679 with decoupled charge, tests ______ RI 6679 isothermal, in spherical vessel, equations for _____ RI 7279 nuclear, forming of gas-storage cavi-ties by, cost ______ OP 102-66 in granite, effect on permeability ____ OP 10-65 Project Gasbuggy, design ______ OP 92-66 projected effects ______ OP 92-66 stripping overburden with, potential OP 67-67 underground, effects ______ OP 37-67 predicted effects ______ OP 49-67 research and technologic work, annual report IC 8254, 8272, 8308, 8349, 8387 underground, energy from, calculating OP 39-65 pressures pulses from, investigation___ RI 7147 vibration levels in, determining, meth-od ______ OP 132-66 nuclear, forming of gas-storage cavi-Vibration levels in, determining, mean-od OP 132-66 Explosion apparatus, for ignition-limit study, hybrid coal dust-methane mixtures RI 6931 Explosion development, in closed spherical vessel, mathematical model _____ RI 7279 Explosion hazard, ammonium nitrate, sympathetic detonation of, gap tests _____ RI 6746, 6903 under fire exposure _____ RI 6773 dusts, safety precautions _____ RI 7132 flammable materials, at extreme pres-sures and temperatures _____ OP 54-67 float-coal deposits, alleviating, methods _____ OP 103-67 in mines, evaluation _____ RI 6581 fluidized-bed thermal coal dryers _____ IC 8258 liquid hydrogen _____ OP 150-65 Explosion research, discussion _____ OP 53-66 Explosives, commercial, composition properties _____ IC 8405; OP 162-67 properties _____ IC 8405; OP 162-67 selection factors for _____ IC 8405 cratering ability, in granite gneiss, comparison _____ OP 124-65 effect of charge diameter on performance RI 6806 fracturing oil-shale formation with, in situ tests _____ C gap-sensitivity tests, new methods _____ gelatinous, incendivity in coal dust-gas------ OP_44-68 RI 6947 air mixtures, effect of sodium nitrate _____ ___ RI 7318 in granite, axial or one-ended detonation, comparison ______ RI 6700 strain-producing abilities ______ RI 6693 in rock, relative performance, evaluating, m rock, relative performance, evaluating, pressure-gage method _____ RI 6888 evaluating, strain-gage method _____ RI 6888 incendivity, in coal dust-gas-air mixtures _____ RI 6815, 7127 liquid, detonation hazard, evaluating, wedge technique for _____ OP 20-69 detonation velocities, in simulated un-derground rock fractures _____ RI 7277 derground rock fractures ____ RI 7277 drop-weight test for, equipment and .___ RI 6799 procedures, evaluation _____ OP 16-69 _ OP 52-68 nation use in oil-shale fracturing experiment_____OP 122-67 military, composition and properties OP 162-67 nitrogen dioxide in fumes from, field de-termination______ termination, rapid colorimetric _ RI 6981 method nuclear, copper-deposit fracturing with, RI 6996 cost estimate _____ RI 6996 petroleum reservoir fracturing, product contamination from, study RI 6684 in

Explosives, projectile impact sensitivity RI 6986 tests ______ research and technologic work, annual report IC 8254, 8272, 8308, 8349, 8387 rock-breaking ability of, study ----- OP 116-67 sensitivity, card-gap test for, modifi-OP 109-68 cations __ up-and-down method, factorial design _ IC 8324 for IC 8324 slurry, for underground mine use, feasi-bility RI 7195 storage, recommended distances, table _____ B 644 recommended safety rules ______ B 644 storage and transportation, in shaft-sink-ing operations, safety recommen-dations ______ IC 8365 transportation, recommended safety rules B 644 type, effect on anchor-tube performance, in rock bolting, tests ______ RI 7163 use, in tunnel construction, recommended for _____ use, in tunnel construction, recommended use, in tunnel construction, recommended safety rules ______ B 644 Explosive blasts, unconfined, in under-ground openings, study, instru-mentation and procedure ______ RI 7147 Explosive charges, cylindrical, compres-sion waves generated by, com-puter model-field test compari-OP 41-68 _____ OP 41-68 son _____ lateral pressure from, measurement __ RI 6701 Explosive charge weight, in quarry blasting, effect on vibration levels _____ RI 6774 Explosives facilities, effect of sonic booms on Explosive forming, small metal shapes, OP 128-68 feasibility _____ O Explosive liquids, drop-weight testing of, **OFR 6-68** equipment for, evaluation _____ RI 6799 procedures for, evaluation _____ RI 6799 Explosive materials, initiation of detoxplosive materials, initiation of deto-nation, mechanism _____ OP 145-65 shock sensitivity, card-gap test for OP 145-65, 147-65 evaluation _____ OP 145-65 mechanical tests _____ OP 145-65 thermal tests _____ OP 145-65 Explosive shots, sound transmission, effect of weather on ______ RI 6921 Extensometer, patent _____ P 17~67 Extrusion, high-energy-rate, metals, effect P 17~67 on structure and properties _____ RI 6757 Extrusion powder material, high-energy-rate, consolidation and forming, patent P 7-68 F Fabius-Flat Rock area, Ala., coal resources IC 8295 Face ignitions, quenching, dust-dispersal system for, research report OP 3-67 Famatinite, magnetic susceptibility IC 8383 Farm revolution, effect on demand for fortilizer OP 88-69 IC 8337, 8378, 8433 IC 8337, 8378, 8433 mineral industries, annual data MY 1968 (v. I-II, III) nonmetallic mineral industries ______ IC 8336 Fayette County, Pa., coal, carbonizing properties _____ RI 7131 W. Va., coal, carbonizing properties ____ RI 6872 preparation characteristics ____ RI 6665 Faderal coal lands lossing preparations IC 8276 Federal coal lands, leasing, present status_ IC 8376 Federal Coal Mine Safety Act, provisions..._ CMS Feeder, fluidized, small, powdered-fuel in-jection, for experimental unit_ OP 70-65 Feldspar, annual data MYB 1968 (v. I-II)

•

R ŧ

í

(

I

Feldspar, consumption B 630
Feldspar, consumption B 630 grades B 630 ground, size distribution data, moment analysis of RI 7309 marketing, Eastern United States IC 8310 mining and beneficiation IC 8310 nrices B 630
marketing, Eastern United States IC 8310
mining and beneficiation IC 8310
production B 630
prices B 630 production B 630 recovery, flotation from mica waste tail- ing RI 7319
reserves B 630
resources, eastern United States IC 8310 separation from granite, method RI 7245
substitutes B 630
substitutes B 630 technology B 630 uses B 630
Feldspar industry, economic outlook IC 8310
uses B 630 Feldspar industry, economic outlook IC 8310 history and organization IC 8310 organization B 630 problems B 630
organization B 630
Ferberite, magnetic susceptibility IC 8359, 8360
problems B 630 Ferberite, magnetic susceptibility IC 8359, 8360 Fergusonite, magnetic susceptibility IC 8359, 8360 Fergusonite, magnetic susceptibility IC 8360 Fernando Po, mineral industry, annual review MY 1968 (v. IV) Ferric oxide, carbon reduction of, study RI 6755 in oxide, carbon reduction of, study RI 6755
annual review MY 1968 (v. IV)
in coal ash, determination, specifochem-
ical method RI 6985 Ferric sulfate, anhydrous, heat of forma-
tion RI 6687 thermodynamic properties, high- and
low-temperature RI 7280 Ferrimolybdite, magnetic susceptibility IC 8360
Ferrimolybdite, magnetic susceptibility IC 8360 Ferrite, control, in semiaustenitic stainless
steel, using cobalt additions RI 7107
reduction, in semiaustenitic stainless
steels, effect on mechanical prop- erties RI 7107
Ferroalloys, annual data MYB 1968 (v. I-II)
consumption B 630 grades B 630
imports and exports B 630
prices B 630 production B 630
erties RI 7107 Ferroalloys, annual data MYB 1968 (v. I-II) consumption B 630 grades B 630 prices B 630 production B 630 technology B 630
technology B 630
broadcion B 630 uses B 630 Ferroallov industry, organization B 630
broadcion B 630 uses B 630 Ferroallov industry, organization B 630
brotheriology B 630 uses B 630 Ferroalloy industry, organization B 630 problems B 630 Ferroalloy scrap, chlorine dissolution of, laboratory study RI 7178 Ferrobacillus ferroozidans, copper extrac-
b) contrology B 630 uses B 630 Ferroalloy industry, organization B 630 problems B 630 Ferroalloy scrap, chlorine dissolution of, laboratory study B 630 Ferroballoy scrap, chlorine dissolution of, laboratory study RI 7178 Ferrobacillus ferroozidans, copper extrac- tion from lead blast furnace matte State
by technology B 630 uses B 630 Ferroalloy industry, organization B 630 problems B 630 Ferroalloy scrap, chlorine dissolution of, laboratory study RI 7178 Ferrobacillus ferroozidans, copper extrac- tion from lead blast furnace matte by RI 7126
bechnology B 630 uses B 630 Ferroalloy industry, organization B 630 problems B 630 Ferroalloy scrap, chlorine dissolution of, laboratory study RI 7178 Ferrobacillus ferroozidans, copper extrac- tion from lead blast furnace matte by RI 7126 copper extraction from low-grade ore by, nutritional factors and environ-
bechnology B 630 uses B 630 problems B 630 Ferroalloy industry, organization B 630 problems B 630 Ferroalloy scrap, chlorine dissolution of, laboratory study RI 7178 Ferrobacillus ferroozidans, copper extrac- tion from lead blast furnace matte by RI 7126 copper extraction from low-grade ore by, nutritional factors and environ- mental conditions RI 6714 lead extraction from lead blast furnace
bechnology B 630 uses B 630 problems B 630 Ferroalloy industry, organization B 630 problems B 630 Ferroalloy scrap, chlorine dissolution of, laboratory study RI 7178 Ferrobacillus ferroozidans, copper extrac- tion from lead blast furnace matte by RI 7126 copper extraction from low-grade ore by, nutritional factors and environ- mental conditions RI 6714 lead extraction from lead blast furnace
bechnology B 630 uses B 630 problems B 630 problems B 630 Ferroalloy scrap, chlorine dissolution of, laboratory study B 7178 Ferrobacillus ferroozidans, copper extrac- tion from lead blast furnace matte by RI 7176 copper extraction from low-grade ore by, nutritional factors and environ- mental conditions RI 6714 lead extraction from lead blast furnace matte by RI 7126 pyrite oxidation by, mechanism OP 169-67 Ferrochromium, beneficiation, by molten-
b) b) <td< td=""></td<>
b) b) b) b) b) b) b) b) b) b) b) c) b) b) b) b) b) b) b) c) <
b) b) b) b) b) b) b) b) b) b) b) b) <
b) control of technology B 630 uses B 630 problems B 630 problems B 630 Ferroalloy industry, organization B 630 problems B 630 Ferroalloy scrap, chlorine dissolution of, laboratory study B 630 Ferrobacillus ferroozidans, copper extrac- tion from lead blast furnace matte by RI 7178 Ferrobacillus ferroozidans, copper extrac- tion from lead blast furnace matte by RI 7126 copper extraction from low-grade ore by, nutritional factors and environ- mental conditions RI 6714 lead extraction from lead blast furnace matte by RI 7126 pyrite oxidation by, mechanism OP 169-67 Ferrochromium, beneficiation, by molten- salt electrolysis RI 7226 chromium extraction from, low-tempera- ture chlorination process, feasi- bility RI 7088 Ferromanganese, recovery from high-man- ganese pig-iron slags, study RI 6728
bility Before for the formulation for the set of the set o
billity RI 7126 chromium extraction from lead blast furnace matte by RI 7126 pyrite oxidation by, mechanism PI 169-67 Ferrobacillus ferrozidans, copper extrac- tion from lead blast furnace matte by RI 7126 copper extraction from low-grade ore by, nutritional factors and environ- mental conditions RI 6714 lead extraction from lead blast furnace matte by RI 7126 pyrite oxidation by, mechanism PI 169-67 Ferrochromium, beneficiation, by molten- salt electrolysis RI 7226 chromium extraction from, low-tempera- ture chlorination process, feasi- bility RI 7088 Ferromanganese, recovery from high-man- ganese pig-iron slags, study RI 6728 Ferrosilicon, prices B 630
bit of the second se
b) b) b) b) b) b) b) c) b) c) b) c) b) c) b) c) c) <t< td=""></t<>
b) control of technology B 630 uses B 630 problems B 630 problems B 630 problems B 630 ferroalloy scrap, chlorine dissolution of, laboratory study B 630 Ferrobacillus ferroozidans, copper extraction from lead blast furnace matte B 7178 Ferrobacillus ferroozidans, copper extraction from lead blast furnace matte By RI 7126 copper extraction from low-grade ore by, nutritional factors and environ- mental conditions RI 6714 lead extraction from lead blast furnace RI 7126 pyrite oxidation by, mechanism OP 169-67 Ferrochromium, beneficiation, by molten- salt electrolysis RI 728 ferromanganese, recovery from high-man- ganese pig-iron slags, study RI 7088 Ferrous iron, in acid mine water, catalytic oxidation of, activated carbon RI 737 reducing, limestone treatment RI 6307 Ferrous molybdate, low-temperature heat Gapacity and entropy RI 6387 Ferrous oxide, high-temperature reduction RI 6387 fer
bility Billing
bility Before first fi
bitchnology B 630 technology B 630 problems B 630 problems B 630 Ferroalloy industry, organization B 630 problems B 630 Ferroalloy scrap, chlorine dissolution of, laboratory study RI 7178 Ferrobacillus ferroozidans, copper extrac- tion from lead blast furnace matte by RI 7126 copper extraction from low-grade ore by, nutritional factors and environ- mental conditions RI 6714 lead extraction from lead blast furnace matte by RI 7126 pyrite oxidation by, mechanism OP 169-67 Ferrochromium, beneficiation, by molten- salt electrolysis RI 7226 chromium extraction from, low-tempera- ture chlorination process, feasi- bility RI 7088 Ferromanganese, recovery from high-man- ganese pig-iron slags, study RI 6728 Ferrosilicon, prices B 630 Ferrous iron, in acid mine water, catalytic oxidation of, activated carbon RI 7337 reducing, limestone treatment RI 6987 limestone-lime treatment RI 6987 Ferrous oxide, high-temperature reduction of, with carbon monoxide, kinetics RI 6712 with hydrogen-nitrogen mixture, kinet- ics RI 6712 in blast fu
bility Before first fi

:

Ferrous scrap, as reductant, in magnetic
rearrows scrap, as reductant, in ingitate roasting, use OP 46-65 copper-containing, separation of steel and copper from, method OP 183-68 junked automobiles as source of OP 198-68
junked automobiles as source of OP 198-68
Express industry operating methods SP 1-67
Southeastern States IC 8329
Southeastern States IC 8329 Ferrous scrap utilization, Bureau of IC 8329 Mines research, review OP 100-68
Ferrous tungstate, low-temperature heat capacity and entropy RI 6782
Ferrous vanadate, heat of formation KI 6618
thermodynamic properties RI 6727 Fertilizer, coal-based, oxidative ammonia-
consumption, predicting, method OP 88-69
tion method IC 8376 consumption, predicting, method IC 8376 demand, effect of user technology OP 88-69 Fifth sand, Pa., core samples, density and procesity data
porosity data IC 8330 Fifty Foot sand, Pa., core samples, density
and porosity data IC 8330
annual review MY 1968 (v. IV)
Fifth sand, Fa., core samples, density and porosity data IC 8330 Fifty Foot sand, Pa., core samples, density and porosity data IC 8330 Fiji Islands, mineral industry, annual review MY 1968 (v. IV) Film, liquid, rupture mechanism OP 103-68 motion picture, timing marks on, counting device for an OP 184-68
counting device for OP 184-68
counting device for OP 184-68 Finland, mineral industry, an- nual review MY 1968 (v. IV) Fires, coal-seam, controlling, methods OP 91-67
conveyor-belt, in coal mines, extinguish-
conveyor-belt, in coal mines, extinguish- ing
specific burning rates OP 63-65
rire clay, alumina extraction from, melting-quenching-sulfuric acid
leaching method OP 197-67 Fire control, in tunnels, recommended safety
rules B 644
Fire Creek bed. W. Va., coal, carbonizing
Fire Creek bed, W. Va., coal, carbonizing properties RI 6615, 6872, 7236 washing characteristics RI 6665, 6825
Fire Creek bed, W. Va., coal, carbonizing properties RI 6615, 6872, 7236 washing characteristics RI 6665, 6825 Fire hazard. ammonium nitrate-sulfur sys-
tems OP 6-68
tems OP 6-68
Fire hazard, ammonium hitrate-sulfur sys- tems OP 6-68 flammable materials, at extreme pres- sures and temperatures OP 54-67 liquid hydrogen OP 150-65 mine conveyor belts, laboratory and field tests RI 7058
Fire hazard, ammonium hitrate-sulfur sys- tems OP 6-68 flammable materials, at extreme pres- sures and temperatures OP 54-67 liquid hydrogen OP 150-65 mine conveyor belts, laboratory and field tests RI 7058
Fire hazard, ammonium nitrate-sulfur sys- tems OP 6-68 flammable materials, at extreme pres- sures and temperatures OP 54-67 liquid hydrogen OP 150-65 mine conveyor belts, laboratory and field tests RI 7053 Fire prevention, in shaft-sinking opera- tions, recommendations IC 8365 in tunnels, recommended safety rules B 644
Fire hazard, ammonium hitrate-sulfur sys- tems OP 6-68 flammable materials, at extreme pres- sures and temperatures OP 54-67 liquid hydrogen OP 150-65 mine conveyor belts, laboratory and field tests RI 7053 Fire prevention, in shaft-sinking opera- tions, recommendations IC 8365 in tunnels, recommended safety rules B 644 Fire protection, in shaft-sinking operations.
Fire hazard, ammonium hitrate-sulfur sys- tems OP 6-68 flammable materials, at extreme pres- sures and temperatures OP 54-67 liquid hydrogen OP 150-65 mine conveyor belts, laboratory and field tests RI 7053 Fire prevention, in shaft-sinking opera- tions, recommendations IC 8365 in tunnels, recommended safety rules B 644 Fire protection, in shaft-sinking operations.
Fire hazard, ammonium hitrate-sulfur sys- tems OP 6-68 flammable materials, at extreme pres- sures and temperatures OP 54-67 liquid hydrogen OP 150-65 mine conveyor belts, laboratory and field tests RI 7053 Fire prevention, in shaft-sinking opera- tions, recommended safety rules B 644 Fire protection, in shaft-sinking operations, recommendations IC 8365 selected coal mines, study IC 8361 Firedamp-coal mixtures, ignition limits RI 6931
Fire hazard, ammonium hitrate-sulfur sys- temsOP 6-68 flammable materials, at extreme pres- sures and temperaturesOP 54-67 liquid hydrogenOP 150-65 mine conveyor belts, laboratory and field testsRI 7053 Fire prevention, in shaft-sinking opera- tions, recommendations IC 8365 in tunnels, recommended safety rules B 644 Fire protection, in shaft-sinking operations, recommendations IC 8365 selected coal mines, study IC 8361 Firefighting equipment, coal mines, min- imum standards IC 8361 in shaft-sinking operations, recommenda-
Fire hazard, ammonium hitrate-sulfur sys- tems OP 6-68 flammable materials, at extreme pres- sures and temperatures OP 54-67 liquid hydrogen OP 150-65 mine conveyor belts, laboratory and field tests RI 7053 Fire prevention, in shaft-sinking opera- tions, recommended safety rules R 644 Fire protection, in shaft-sinking operations, recommendations IC 8365 selected coal mines, study IC 8361 Firedamp-coal mixtures, ignition limits RI 6931 Firefighting equipment, coal mines, min- imum standards IC 8361 in shaft-sinking operations, recommenda- tions IC 8365
Fire hazard, ammonium hitrate-sulfur sys- temsOP 6-68 flammable materials, at extreme pres- sures and temperaturesOP 54-67 liquid hydrogenOP 150-65 mine conveyor belts, laboratory and field testsR 7058 Fire prevention, in shaft-sinking opera- tions, recommendations IC 8365 in tunnels, recommended safety rules B 644 Fire protection, in shaft-sinking operations, recommendations IC 8365 selected coal mines, study IC 8361 Firedamp-coal mixtures, ignition limits IC 8361 Firefighting equipment, coal mines, min- imum standards IC 8361 in shaft-sinking operations, recommenda- tions IC 8361 Firefighting facilities, coal mines, study IC 8361 Firefighting facilities, coal mines, study IC 8361
Fire hazard, ammonium hitrate-sulfur sys- tems OP 6-68 flammable materials, at extreme pres- sures and temperatures OP 54-67 liquid hydrogen OP 150-65 mine conveyor belts, laboratory and field tests RI 7053 Fire prevention, in shaft-sinking opera- tions, recommendations IC 8365 in tunnels, recommended safety rules B 644 Fire protection, in shaft-sinking operations, recommendations IC 8365 selected coal mines, study IC 8361 Firedamp-coal mixtures, ignition limits RI 6931 Firefighting equipment, coal mines, min- imum standards IC 8361 in shaft-sinking operations, recommenda- tions IC 8361 Firefighting facilities, coal mines, study IC 8361 First Cow Run sand, W. Va., core sam- ples, density and porosity data IC 8330 Fischer retorts, for assaving oil-shale sam-
Fire hazard, ammonium hitrate-sulfur sys- temsOP 6-68 flammable materials, at extreme pres- sures and temperaturesOP 54-67 liquid hydrogenOP 150-65 mine conveyor belts, laboratory and field testsR 7059 Fire prevention, in shaft-sinking opera- tions, recommendationsIC 8365 in tunnels, recommended safety rules B 644 Fire protection, in shaft-sinking operations, recommendationsIC 8361 Firedamp-coal mixtures, ignition limits IC 8361 Firefighting equipment, coal mines, min- imum standards IC 8361 in shaft-sinking operations, recommenda- tions IC 8361 Firefighting facilities, coal mines, study IC 8361 Firefighting facilities, coal mines, study IC 8361 Firscher retorts, for assaying oil-shale sam- ples, modifications RI 6676 Fischer-Schrader low-temperature carboniza-
Fire hazard, ammonium hitrate-sulfur sys- tems OP 6-68 flammable materials, at extreme pres- sures and temperatures OP 54-67 liquid hydrogen OP 150-65 mine conveyor belts, laboratory and field tests RI 7053 Fire prevention, in shaft-sinking opera- tions, recommendations IC 8365 in tunnels, recommended safety rules B 644 Fire protection, in shaft-sinking operations, recommendations IC 8365 selected coal mines, study IC 8361 Firedamp-coal mixtures, ignition limits RI 6931 Firefighting equipment, coal mines, min- imum standards IC 8361 Firefighting facilities, coal mines, study IC 8361 Firefighting facilities, coal mines, study IC 8361 First Cow Run sand, W. Va., core sam- ples, density and porosity data IC 8330 Fischer retorts, for assaying oil-shale sam- ples, modifications RI 6676 Fischer-Schrader low-temperature carboniza- tion assay for coal, procedure B 638 Fischer-Tropsch synthesis, iron catalysts,
Fire hazard, ammonium hitrate-sulfur sys- tems OP 6-68 flammable materials, at extreme pres- sures and temperatures OP 54-67 liquid hydrogen OP 150-65 mine conveyor belts, laboratory and field tests IC 8365 Fire prevention, in shaft-sinking opera- tions, recommended safety rules B 644 Fire protection, in shaft-sinking operations, recommendations IC 8365 selected coal mines, study IC 8361 Firedamp-coal mixtures, ignition limits RI 6931 Firefighting equipment, coal mines, min- imum standards IC 8361 in shaft-sinking operations, recommenda- tions IC 8361 Firefighting facilities, coal mines, study IC 8361 First Cow Run sand, W. Va., core sam- ples, density and porosity data IC 8330 Fischer retorts, for assaying oil-shale sam- ples, modifications RI 6676 Fischer-Schrader low-temperature carboniza- tion assay for coal, procedure B 638 Fischer-Tropsch synthesis, iron catalysts, activation energies OP 78-65
Fire hazard, ammonium hitrate-sulfur sys- temsOP 6-68 flammable materials, at extreme pres- sures and temperaturesOP 54-67 liquid hydrogenOP 150-65 mine conveyor belts, laboratory and field testsR 7059 Fire prevention, in shaft-sinking opera- tions, recommendations IC 8365 in tunnels, recommended safety rules B 644 Fire protection, in shaft-sinking operations, recommendations IC 8365 selected coal mines, study IC 8361 Firefighting equipment, coal mines, min- imum standards IC 8361 in shaft-sinking operations, recommenda- tions IC 8361 Firefighting facilities, coal mines, study IC 8361 Firscher retorts, for assaying oil-shale sam- ples, density and porosity data RI 6676 Fischer-Schrader low-temperature carboniza- tion assay for coal, procedure B 638 Fischer-Tropsch synthesis, iron catalysts, activation energies OP 78-65 temperature measurement, method OP 78-65 nickel catalysts, temperature measures
Fire hazard, ammonium hitrate-sultur sys- tems OP 6-68 flammable materials, at extreme pres- sures and temperatures OP 54-67 liquid hydrogen OP 150-65 mine conveyor belts, laboratory and field tests IC 8365 Fire prevention, in shaft-sinking opera- tions, recommended safety rules B 644 Fire protection, in shaft-sinking operations, recommendations IC 8365 selected coal mines, study IC 8361 Firedamp-coal mixtures, ignition limits RI 6931 Firefighting equipment, coal mines, min- imum standards IC 8361 in shaft-sinking operations, recommenda- tions IC 8365 Firefighting facilities, coal mines, study IC 8361 First Cow Run sand, W. Va., core sam- ples, density and porosity data IC 8330 Fischer retorts, for assaying oil-shale sam- ples, modifications RI 6676 Fischer-Schrader low-temperature carboniza- tion assay for coal, procedure B 638 Fischer-Tropsch synthesis, iron catalysts, activation energies OP 78-65 temperature measurement, method OP 78-65 nickel catalysts, temperature measure- ment, method OP 78-65 nickel dataysts, temperature measure- ment, method OP 78-65 nickel dataysts, temperature measure- ment, method OP 78-65
Fire hazard, ammonium hitrate-sulfur sys- tems OP 6-68 flammable materials, at extreme pres- sures and temperatures OP 54-67 liquid hydrogen OP 150-65 mine conveyor belts, laboratory and field tests RI 7053 Fire prevention, in shaft-sinking opera- tions, recommendations IC 8365 in tunnels, recommended safety rules B 644 Fire protection, in shaft-sinking operations, recommendations IC 8365 selected coal mines, study IC 8361 Firedamp-coal mixtures, ignition limits RI 6931 Firefighting equipment, coal mines, min- imum standards IC 8361 Firefighting facilities, coal mines, study IC 8361 Firefighting facilities, coal mines, study IC 8361 First Cow Run sand, W. Va., core sam- ples, density and porosity data IC 8330 Fischer retorts, for assaying oil-shale sam- ples, modifications RI 6676 Fischer-Schrader low-temperature carboniza- tion assay for coal, procedure B 638 Fischer-Tropsch synthesis, iron catalysts, activation energies OP 78-65 temperature measurement, method OP 78-65 nickel catalysts, temperature measure- ment, method OP 78-65 nitrided fused-iron catalyst kinetics RI 6941 sulfur poisoning, iron catalysts, constant- productivity tests
Fire hazard, ammonium hitrate-sultur sys- temsOP 6-68 flammable materials, at extreme pres- sures and temperaturesOP 54-67 liquid hydrogenOP 150-65 mine conveyor belts, laboratory and field testsRI 7053 Fire prevention, in shaft-sinking opera- tions, recommendationsR 644 Fire protection, in shaft-sinking operations, recommendationsR 644 Fire protection, in shaft-sinking operations, recommendationsR 644 Firedamp-coal mixtures, ignition limitsR 6931 Firefighting equipment, coal mines, min- imum standards IC 8361 in shaft-sinking operations, recommenda- tions IC 8361 Firefighting facilities, coal mines, study IC 8361 First Cow Run sand, W. Va., core sam- ples, density and porosity data IC 8330 Fischer retorts, for assaying oil-shale sam- ples, modifications RI 6676 Fischer-Schrader low-temperature carboniza- tion assay for coal, procedure B 638 Fischer-Tropsch synthesis, iron catalysts, activation energies OP 78-65 temperature measurement, method OP 78-65 nickel catalysts, temperature measure- ment, method OP 78-65 nitrided fused-iron catalyst kinetics RI 6941 sulfur poisoning, iron catalysts, constant-

number distribution data, mass spectrometric methods _____ B 634

-

Fischer-Tropsch synthetic fuel fractions, as Fischer-Frögen synthetic rule i factons, as substrate for microbrial food pro-duction _____ OP 77-66, 126-66, 202-67 Flames, propagating, coal dust-methane mixtures, lower limit of flamma-RI 6761 bility pulverized-coal, propagation, in absence of recirculation ______RI 7239 research and technological work, annual re-port _____IC 8254, 8272, 8308, 8349, 8387 Flame arrestors, cylindrical channel, design _____ OP 131-69 design requirements _____ OP 93-65 reignition problems, hot gases _____ OP 93-65 Flame detector, face ignitions, design cri-. OP 3-67 teria fronts, extinguishing, arrestors Flame for _____ Cesium determination OP 93-65 by _____ RI 6820 rubidium determination by _____ RI 6820 Flame propagation, layered gas mixtures, characteristics RI 7078 limits, coal dust-methane-air mixtures, investigation RI Flame safety lamps, fees for testing, amend-**RI** 7103 .__ S 7C ments Flame spraying, catalytically active pulverized metal oxides, on supports, patized metal oxides, on supports, pat-ent ______ P 6-66 Flame velocity, equations for ______ RI 7279 pulverized coal, without recirculation ____ RI 7239 Flammability, urethene foam, tests ______ RI 6837 Flammability characteristics, combustible gases B 627; OP 170-68 combustible vapors _____ B 627; OP 170-68 ethylene _____ RI 6659 ethylene ______ RI 6659 ethylene-acetylene mixtures _____ RI 6659 halogenated hydrocarbons, in air _____ RI 6748 in nitrogen tetroxide atmospheres ____ RI 6748 in mitrogen tetroxide atmospheres _____ RI 6748 hydrocarbon jet fuel ______ RI 6654 trichloroethylene _____ RI 6656 Flammability limits, chlorinated hydro-carbons, in nitrogen tetroxide-pitrogen atmospheres _____ OP 162 69 nitrogen atmospheres _____ OP 163-68 in oxygen-nitrogen atmospheres_____ OP 163-68 combustible gases ______ B 627 flammable materials, effects of temper-ature and pressure ______ OP 54-67 lower, coal dust-methane mixtures _____ RI 6761 upper, hydrocarbon fuel vapors, effect upper, nyurocaroon tuel vapors, effect of temperature on _____ OP 75-67 Flammability properties, combustible fluids _____ OP 118-69 hydraulic fluids _____ OP 118-69 lubricants _____ OP 118-69 Flammable gas-air mixtures, effect on methane detectors _____ IC 8292 Flammable mixtures, ignition, as consequence of gaseous-electronic dis-Charge OP 60-69 Flammable zones, vapor space of fuel tanks during loading, study... OP 57-66, 56-67 Flat, Alaska, gold, in monzonites, recon-OFR 6-69 naissance Flat Lake oilfield, log and core analysis results, comparison _____ OP 144-68 Flat Tops primitive area, Colo., mineral GS 3-66 appraisal Flatjack, rock stress determination by, method _____ **RI 6887** Flattery Rocks National Wildlife Refuge, Wash., mineral appraisal GS 1-68 Flint, ground, size distribution data, moment analysis of _____ RI 7309 Float coal, recovery, effect of air oxidation RI 6620

Float-coal dust, mixing rock dust with, rock-dust-disseminator for, design __IC 8253 and operation ______IC 8253 Flocculants, synthetic organic, for treating coal refuse slurries, evaluation __ RI 7102 Florida, Cedar Keys National Wildlife Refuge, mineral appraisal _____ GS 12-68 crude oil, production ______ RI 7059 sulfur content ______ RI 7059 heavy crude oil, production forecast _____ IC 8352 resource ______ IC 8352 heavy crude-oil reservoirs, survey _____ IC 8263 ilmenite deposits, survey ______ IC 8263 ilmenite deposits, survey _______ IC 8263 ilmenite deposits, survey ______ IC 8263 ilmenite deposits, survey _______ IC 8263 ilmenite deposits, survey ______ IC 8263 ilmenite deposits, survey _______ IC 8263 ilmenite deposits, survey _______ IC 8263 mineral appraisal _______ SS 12-68 minerals, production, annual data _______ MY 1968 (v. I-II, III) mineral industry, annual review _______ Refuge, mineral appraisal _____ GS 12-68 mineral industry, annual review MY 1968 (v. III) occupational diseases, workmen's compen-sation law on B 623 Passage Key National Wildlife Refuge, mineral appraisal Pelican Island National Wildlife Ref-GS 12-68 uge, mineral appraisal _____ GS 12-68 phosphate plant waste, disposal, cost estimates _____ IC 8404 rutile deposits, survey _____ IC 8290 titanium mineral deposits, survey _____ IC 8290 zircon, recovery and benefication _____ IC 8268 Flotation, acid-cationic, mica recovery by__ RI 7159 alkaline-anionic-cationic, mica recovery RI 7159 by anionic, iron ore, soluble calcium in, effect OP 30-65 anionic-cationic, fine mica, from pegmatite ores RI 6589 fluorspar, lignin-fluoride process RI 6982 quebracho process _______ froth, fine coal, timed-release analysis **RI 6982** RI 6652 technique ____. fuorspar ore, sodium-fluoride-lignin sulfonate-fatty acid process _____ RI 6953 magnetite, in dense-medium circuits, laboratory tests _____ RI 6821 mineral production from, review ____ OP 97-67 oleic acid, in flotation waters, measur-ing radioracer method ____ RI 7094 ing, radioracer method _____ RI 7094 oleic acid, on flotation products, measuring, radiotracer method _____ froth densities, measuring, with radio-**RI 7094** hematitic ores, using selective floccula-tion-desliming technique ______ l iron ores, by selective flocculation, im-proved method, patent ______ Ol _ RI 6855 RI 6976 P 7-66 OP 84-67 prospects starch products used in, infrared speckyanite recovery by, from quartzite-kyanite ore, pilot-plant tests____ OP 151-69 RI 6668 mica, from schist ______ RI 6668 method, patent ______ P 13-66, 2-67 selective, from weathered pegmatite rom mica tailing _____ RI 6830 ores _____ RI 7319 minerals, from mica tailing _____ RI 7319 ores mineral pulp flow in circuits, measuring, with radioisotopes _____ RI 6855 muscovite recovery by, from graphiticmica schist nonmagnetic semitaconite, pilot plant mica schist RI 7263 RI 6719 tests__ nonmagnetic taconite, pilot plant tests__ RI 6719 phosphate ore, Idaho ______ RI 6751 reagent consumption in _____ OP 97-67

	-
Flotation characteristics, beryllium min- erals RI 7188	Fluor
columbium-tantalum minerals	Fluore
Flotation products, oleic acid on, measur-	
ing, method RI 7135 Flotation response, determination, by sol-	ison
Flotation response, determination, by sol-	opti proj
uble calcium measurement OP 24-66 Flotation tailing, coal, dewatering, by ad-	stru
mixture of crushed washery ref-	syn
use, investigation RI 7110	
Flow, two-phase, oil-air mixtures, in ver- tical pipes, laboratory experiments RI 6670	synt ri
Flow characteristics, oil-producing sand-	0]
stones, laboratory determination	syn
RI 6804: OP 200-67	P
transient, low-permeability gas reser- voirs OP 133-68	toxi wat
effect of nuclear fracture on OP 133-68	re
Flow nets, calculating areas and shape fac-	X-ra
tors of, improved method RI 7111	Fluor
Flow rate, in porous media, effect of ultra- sonic energy on RI 6978	T
mercury, in porous media, in transverse	Fluor
magnetic field RI 7259	reco
in transverse magnetic field and elec- tric current RI 7259	sing
Flow table, interindustry, computer pro-	p:
gram for OFR 18-69	Fluor
Flowmeter, gas-solids suspensions, patent P 12-68	
mass, automatic correction device for OP 145–68 Flue dust, phosphorous-furnace, germa-	syn wat
nium extraction from, method RI 6940	Hat
gallium extraction from, method, labo-	Fluor
ratory tests RI 6940 Flue gas, coal-fired powerplants, air-pol-	cera
lutant emissions OP 58-65	cons
hot, sulfur dioxide removal from, alka-	dep
lized alumina process OP 157-68	hea
process development RI 7021 nitrogen oxides in, sampling and analysis RI 7108	imp
removal of sulfur dioxide from, alkalized	min
alumina absorbent RI 7275	pro
cost estimate OP 119-67 dry process, evaluation OP 15-65	reco
processes, cost evaluation OP 52-66	rese
processes, cost evaluation OP 52-66 sulfur oxides in, sampling and analysis RI 7108	tari
Fluid, analytical, at critical point, co- existence-curve shape OP 119-66	use: Eluce
enthalpies of, determining, experimental	Fluor Fluor
methods, survey IC 8245	outl
thermodynamic properties, calculating,	Fluor
from an equation of state RI 6924 van der Waals, at critical point, ther-	
modynamic properties OP 4-66	fl
Fluid-bed reduction, multiple, iron ore,	
estimating, graphical method_ OP 87-69 Fluid dynamics, literature review OP 159-65	com Fluos:
Fluid-electromagnetic systems, thermody-	1 1403
namics KI 7066	
Fluid saturation, effect on secondary re- covery, studyOP 151-68	Flux
Fluorenes, from low-temperature coal-tar	Fluxi
neutral oil, identification B 637	I IGAN
Fluorescence, coal and graphite OP 23-67	
Fluorescent dye penetrants, rock frac- ture applications OP_162-68	Fly a
Eluoridos alkali density BI 6836	
molar volume RI 6836	
Fluorides, and and the start of	agr
Fluorine, extraction, from leached carbon	83.S (
notlining residue sinter-leach	ava
in coal determination, method RI 7254	elec
organic derivatives, spectral data RI 6633	gall
method RI 7264 in coal, determination, method RI 7054 organic derivatives, spectral data RI 6633 Fluorine-anthracite reaction, gamma irradi-	gan
ation effect MI 0001	ger
Fluorite-beryllium deposits, Alaska_OFR 1-65, 7-65 Fluorine micas, synthesis B 647	higi ligh
Figurine micas, synthesis	ligh

1

a

)

J

)

Fluoroamphiboles, water-swelling, produc- tion method, patent P 11-67
Fluoromica, ceramics from, preparation meth-
ods B 647 isomorphic substitutions in B 647
optical properties B 647
properties B 647
structure B 647
structure B 647 synthetic, flakes, 2V values, measure- ments OP 18-65
ments OP 18-65
synthesis B 647; OFR 3-65 raw materials for B 647
operational problems B 647
synthetic, milling methods B 647
patents B 647
toxicity B 647 water-swelling, properties B 647 reconstituted sheet from B 647
water-swelling, properties B 647
X-ray data B 647
X-ray data B 647 Fluoromontmorillonoids, water-swelling, prop-
erties B 647
reconstituted sheet from B 647
Fluorophlogopite, chemical properties B 647
reconstituted sheet from B 647 single crystals, growth of B 647
single crystals, growth of B 647 dielectric properties B 647
properties B 647
Fluornhlogopite mica, large crystals, syn-
Fluorphlogopite mica, large crystals, syn- thesis, patentP 9-65
synthesis OFR 3-65 water-swelling, production method, pat-
water-swelling, production method, pat-
ent P 11-67 Fluorspar, annual data MY 1968 (v. I-II) ceramic-grade, recovery, froth flotation method RI 6953
ceramic-grade, recovery, froth flotation
method RI 6953
consumption IC 8339
deposits IC 8339 heavy-liquid cyclone concentration of,
heavy-liquid cyclone concentration of,
semicontinuous tests RI 7134 imports IC 8339
imports IC 8339 mining and milling methods IC 8339
production IC 8339
production IC 8339 recovery, from calcareous ore, lignin-
fluoride process RI 6982
reserves IC 8339 tariff IC 8339
tariff IC 8339
uses IC 8307, 8339 Fluorspar deposits, N. Mex IC 8307; OFR 11-65 Fluorspar industry, Eastern United States IC 8339 outleak
Fluorspar industry, Eastern United States IC 8339
Fluorspar ore, calcareous, fluorspar con- centrate from, quebracho method,
tests RI 6982
tests RI 6982 flurospar recovery from, lignin-fluoride
method, tests R1 6982
complex calcareous, selective flotation RI 6953
Fluosilic acid, waste, hydrofluoric acid re-
covery from, by direct hydrolysis, preliminary study BI 7213
Flux refining, zinc-base die-cast scrap.
Flux refining, zinc-base die-cast scrap, methods RI 7315
Fluxing agents, effect, on chromium-iron
ratio, in recrystallization of
chrome spinel RI 6923
Fly ash, adsorbent, for organic-contami-
nant removal, from secondary effluents, evaluation OP_75_65
from waste waters, use RI 6884
agricultural uses IC 8348
as coagulant aid, in turbid water clarifi-
cation RI 6869
availability IC 8348 electrical resistivity, at various tempera-
tures, study RI 7041
tures, study RI 7041 gallium extraction from, method, labora-
tory tests R1 6940
germanium extraction from, method RI 6940
high-carbon, electrical resistivity RI 7041 lightweight aggregate from OP 73–67
HEHVACIENT AERICEATE TION OL 10-01

Fly ash, lignite, utilization IC 8304 low-carbon, electrical resistivity II RI 7041 present utilization IC 8348 properties OP 189-68
present utilization IC 8348
properties OP 189-68
quality IC 8348 removal, from gas streams, by fluidized
bed technique OFR 17-68 sintered, agricultural uses OP 78-67
sintered, agricultural uses OP 73-67
as soil modifier, laboratory and field tests OP_167-69
soil-conditioner use OP 73-67
soil-conditioner use OP 73-67 specifications, limitations, and restric- tions IC 8348 underground cavity filling, remote, by pneumatic injection, field tests RI 7214
uons IC 8348
pneumatic injection, field tests RI 7214
uses OP 189-68 in cement manufacture IC 8348
in cement manufacture IC 8348
in concrete and concrete block IC 8348 in reclaiming acid surface-mined
in reclaiming acid surface-mined areas OP 48-67 utilization technology, study OP 19-66
utilization technology, study OP 19-66
Fly ash utilization, symposium proceedings IC 8348 Foam for dust suppression in coal
Foam, for dust suppression, in coal mines, properties OP 130-65
urethane, role, in mines OP 61-67 well-bore liquid removal by, methods OP 30-66
Foaming agents, use, in capillary water-
block relief
block relief
Food synthesis, microbial, from coal-derived
Forge Slope mine. Pa., anthracite, proper-
Forge Slope mine, Pa., anthracite, proper- ties
Forging, high energy-rate, metals, effect on structure and properties RI 6757
Formaldehyde, diesel-exhaust content, sampling and analysis OP 50-66
use, in determination of ammonium ni-
trate in oilfield brines OP 54-69 Formation waters oil-bearing Creta.
Formation waters, oil-bearing, Creta- ceous, geochemistry OP 174-67 Tertiary, geochemistry OP 174-67 Formcoke, blast furnace use of, evaluation RI 6717
Tertiary, geochemistry OP 174-67
chemical and physical propertiesRI 6717
experimental blast furnace tests OP 43-68
experimental blast furnace tests OP 43-68 in simulated blast-furnace shaft, pres-
sure-drop study RI 6945 production, continuous method OP 43-68
Forrester Island National Wildlife Refuge.
Alaska, mineral appraisal GS 7-68 Forsterite, thermodynamic properties RI 6962
Forsterite, thermodynamic properties RI 6962 Fort Union Formation, coal reserves, rapid
estimate, method IC 8376
estimate, method IC 8376 Fourth sand, W. Va., core samples, density and porosity data IC 8330
and porosity data IC 8330
Fracture, hydraulic, in oilfields, predict- ing results of, method OP 123-68
underground, simulated, detonation ve-
underground, simulated, detonation ve- locities of desensitized nitroglyc-
erin in RI 7277
Fracture direction, effect on secondary recovery, study OP 151-68
Fracture plane, presplit, effect, on vibration
levels in blasting
Fracture system, in oil reservoir, detecting,
method OP 15-66, 16-66 natural and induced, petroleum pro-
duction applications OP 134-69
Fracturing, electrical, oil shale, labora- tory and field tests OP 37-68
explosive, in oil and gas reservoirs, effect OP 82-68, 104-68
hydraulic in oilfields, predicting re-
sults, method OP 26-68 nuclear explosive, discussion OP 39-69
France, coal, production and consumption. IC 8380
France, coal, production and consumption. IC 8380 crude oil, production RI 7059
sulfur content

- France, fly ash, production and utilization IC 8348 rance, fly ash, production and mineral industry, annual re-MY 1968 (v. IV)
- Franklinite, magnetic susceptibility_IC 8359, 8383 Free-swelling index, coal, determination, method _______B 638
- method B 638 Freeze drying, ultrafine metal powder production by, method _____ OP 86-65 French Guniana, mineral indus-
- French Guniana, mineral indus-try, annual leave _____ MY 1968 (v. IV) French Territory of the Afars and Issas, mineral indus-try, annual review ____ MY 1968 (v. IV)
- Frequency converter system, patent _____ P 15-68 Fresnillo mine, Mexico, assay data, quad-ratic-regression analysis _____ RI 6876

- metal distribution, geometry ______ RI 6919 Friebergite, magnetic susceptibility _____ IC 8383 Friedelite, magnetic susceptibility _____ IC 8359 Frisco mine, Mexico, assay data, linear dis-criminant analysis _____ RI 6898
- Front-end loaders, fatal accidents with, IC 8347
- analysis _____ IC 8347 Froth flotation, increase in, review ____ OP 97-67 Froth flotation cleaning potential, fine coal,
- From notation cleaning potential, line coal, evaluation ______ B 638 Fuels, gaseous, analysis, literature review OP 3-65 analysis methods, annual review __ OP 103-69 properties _____ OP 155-67 sampling and analysis methods, lit-erature survey _____ OP 40-67 high-moisture, cyclone furnace boiler use IC 8376 high to remove the restore of cholient and
- high-temperature, storage stability, ra-OP 9-67 diotracer studies
- study ______ OP 96-66 jet, storage stability, radiotracer studies OP 164-65, 96-66, 9-67

- OP 164-65, 96-66, 9-67 liquid, loading, vapor-space flammable zones, study ______ OP 57-66 synthetic, from coal, technology ______ B 633 low-rank, utilization, problems ______ IC 8304 natural, thermal analysis, methods ___ OP 143-67 powdered, fluidized feeder for ______ OP 70-65 solid, analysis, literature review _____ OP 3-65 analysis methods, annual review ____ OP 103-69 byproduct, properties and calorific value ______ OP 158-67
- _____ OP 158-67 value properties and calorific value _____ (sampling and analysis methods, lit-OP 158-67

- san.pring and analysis methods, itt-erature survey ______ OP 40-67 synthetic liquid, properties ______ OP 156-67 tariff schedules for, review ______ IC 8262 ultrahigh-speed aircraft, from coal oils___ RI 6655 with lignite-type ash, utilization, methods IC 8304
- Fuel briquets, tests for, development, discussion OP 31-69
- Fuel composition, effect on automobile
- Fuel gases, heating values, improving, proc-
- ess, patent P 7-69
- Fuel oils, burner, annual data PPS 61 diesel, summer, annual data ________ distillate, trace metal determination in, **PPS 62**
- flame spectrometric method ____ OP 88-66 Fuel tanks, vapor space in, flammability,
- OP 57-66 study Fuel volatility, effect on vehicle emis-
- sions OP 80-68
- Fuller's earth, pesticide diluent, use as ... IC 8260 Fuming, in oxygen steelmaking, causes ____ RI 7047
- in top-blowing processes, mechanism, investigation OP 67-66
- Fuming rate, in oxygen steelmaking, investigation _____ RI 7047

- F ١

Furnace, arc-melting, experimental, design
and operation B 625
casting, for high-melting-point metals, laboratory-scale B 646
skull-casting, for tungsten casting, de-
sign and operation OP 104-66
Fusain, heat content RI 6607
specific heat RI 6607
Fusibility, coal ash, determination RI 7240
methods B 638

G

•

- > - > - > - > - - -

Gabon, mineral industry, annual review MY 1968 (v. IV) Gadolinium, annual data MY 1968 (v. I-11) electrowinning, from oxide RI 7146 preparation, electrodeposition-vacuum distillation mathematica OD 151 (2)
Gadolinium, annual data MY 1968 (v. I-11)
electrowinning, from oxide RI 7146
preparation, electrodeposition-vacuum
distillation method OP 174-68
distillation method OP 174-68 from alloys, vacuum distillation meth-
od RI 7308 Gadolinium alloy, vacuum distillation of gadolinium from RI 7308
gadolinium from RI 7308
Gadolinium metal, high-temperature elec- trowinning of, method OP 47-66
trowinning of, method OP 47-66
Gadolinium oxide, crystallographic modifi- cation RI 6616
nhase transformation rate RI 6616
Gadolinium-stainless steel alloys, corrosion
properties R1 6636
fabrication RI 6636
mechanical properties RI 6636
phase relationships RI 6636 Gage, borehole-deformation, three-compo-
nent design and oberation
pressure, dynamic, patent
for determining shock pressure, design
and operation OP 60-67, 129-67
inclined piston, for low and inter-
pressure, dynamic, patent for determining shock pressure, design and operation OP 60-67, 129-67 inclined-piston, for low and inter- mediate pressure range, design and operation OP 36-65
and operation UP 36-65
and operation OP 36-65 inclined-piston deadweight, patent P 4-66 use, in studies of explosives in rock RI 6888 rotating-piston deadweight, calibration, BL 6894
rotating-piston deadweight, calibration.
strain, evaluation RI 6653
strain, evaluation RI 6653 field tests RI 6653 use, in studies of explosives in rock RI 6888 Galena, magnetic susceptibility IC 8383
Use, in studies of explosives in rock Ki 6888
reduction, with catalytically cracked
methane RI 6662
with molecular hydrogen RI 6662
methane
Galena mine, Idano, rock-ourst-prone area,
stress ellipsoid determination in RI 6997
conv studies RI 6816
Gallium, annual data
consumption B 630
Galena-zanthate system, infrared spectros- copy studies RI 6816 Gallium, annual data MY 1968 (v. I-II) consumption B 630 imports B 630 in coal ash, spectrochemical determina- tion RI 7281
in coal ash, spectrochemical determina-
tion
production
reserves B 630
reserves B 630 technology B 630
1196g B 630
Gallium concentrate, recovery, from coal fly
ash, selective volatilization method RI 6940 Gallium-niobium system, phase relations OP 57-68
Gallium phosphide, high-temperature heat
content and entropy RI 6592
content and entropy RI 6592 Gallium producers, problems B 630
Gambia, mineral industry, an-
Gambia, mineral industry, an- nual review
Community cost effect IC 8377
coel-derived products, effect IC 8377 resistivity of coal to IC 8377
resistivity of coal to IC 8377

,

Gamma-ray logs, exploratory drill hole s, in
uranium deposit, statistical analy-
sis RI 6645 Gammacerane, in Green River oil-shale bitumen, identification OP 48-66
bitumen, identification OP 48-66
Gangue, metals separation from, method,
patent $P 13-68$
Gap sensitivity, explosives, measuring, RI 6947
Garnet, abrasive, consumption B 630 prices B 630
production B 630
production B 630 technology B 630
uses B 630 industrial uses B 630
industrial uses B 630
Garnet industry, organization B 630
reserves B 630 Garnet industry, organization B 630 problems B 630 Garnierite, magnetic susceptibility IC 8351
Garnierite, magnetic susceptibility IC 8351
Garrison Dam, Riverdale, N. Dak., lignite
storage at RI 7037
Gas, ash particles in, removing, electro- static precipitator for RI 7276
combustible, flammability characteristics
B 627: OP 170–68
compressed, thermodynamic properties OP 201-67
compressibility determination, Burnett
apparatus for, description IC 8350 detonating, particle velocity in, deter-
mining, hy magnetohydrodynamic
principle OP 9-66
diesel exhaust, nitrogen oxide content, effect of fuel additives on RI 7310
flue, nitrogen oxides in, sampling and
analysis RI 7108
removal of sulfur dioxide from, alka- lized alumina absorbent RI 7021, 7275
lized alumina absorbent RI 7021, 7275
sulfur oxides in, sampling and analysis RI 7108 from coal, fixed-bed producer for OP 117-66
from entrained-bed carbonization. prop-
erties RI 7141 fuel, improving heating values of, proc-
fuel, improving heating values of, proc-
high-Btu, from coal, by direct conver- sion, method OP 14-68 synthesis; Raney-nickel-coated tube- wall reactor RI 7033
sion, method OP 14-68
synthesis; Raney-nickel-coated tube-
wall reactor RI 7033
steel lathe turnings as catalyst RI 6609 wrought iron turnings as catalysts RI 6609
using recycle systems, kinetics RI 6941
high-temperature viscosity of esti-
mating, nomograph for OP 163-67
mating, nomograph for OP 163-67 in coalbed, behavior OP 114-68 in mine atmospheres, effect on methane
lignite-carbonization, properties B 639
liquefied petroleum, properties OP 155-67
natural displacement from a water-
lignite-carbonization, properties B 639 liquefied petroleum, properties OP 155-67 manufactured, properties OP 155-67 natural, displacement, from a water- drive reservoir, laboratory tests RI 6735
oxidizing, in high-purity inert-gas streams, monitoring OP 2-65
streams, monitoring OP 2-65
from shale oil. hydrogasification
pipeline, from coal, progress, review OP 93-67 from shale oil, hydrogasification methods OP 20-66 production from shale oil, method OP 61-66
production from shale oil, method OP 61-66
powerplant stack, sulfur dioxide re- moval, from, cost estimate OP 119-67
presence, in vacuum melting of metals.
residual gas analysis of RI 7293 product, from laser irradiation of coal
product, from laser irradiation of coal
macerals OP 139-68 from laser pyrolysis of coal, distri-
bution OP 72-68 production, from laser irradiation of
production, from laser irradiation of
coal, distribution OP 27-67 from thermally cracked low-temper-
ature lignite tar pitch OP 147-67

.

ature lignite tar pitch _____ OP 147-67 sampling and analysis methods, literature survey _____ OP 40-67

Gas, solids in, convective heat transfer, study OP 8-66 synthetic, from solid fuels, exchange- ability with pipeline natural gas RI 6629
synthetic, from solid fuels, exchange- ability with pipeline natural gas RI 6629
synthesis, unpurified, shift conversion of, study OP 158–68 thermodynamic properties OP 44–66
thermodynamic properties OP 44-66 thermophysical properties IC 8317
Gas-air mixtures, incendivity of explosives in, effect of sodium nitrate addi-
thermophysical properties IC 8317 Gas-air mixtures, incendivity of explosives in, effect of sodium nitrate addi- tions RI 7318 Gas combustion retorting, oil shale, experi-
mental program RI 7303
results RI 7303 Gas cycling, vaporization of oil during, labo- ratory study RI 7278
Gas-cap reservoirs, oil recovery from, conser- vation practices, engineering evalua-
tion <u>M</u> 13 Gas chromatograph, for auto exhaust
gas analysis, design and opera- tion OP 142-67
Gas chromatographic analyzer, in thermal oil-recovery tests, use RI 6621 Gas chromatography, determination of com-
bustion products in thermal oil re-
covery by, applicability RI 6621 methane in mine air, comparison with
infrared spectrophotometry RI 7179 mine gas analysis by RI 7180 Gas-condensate fluids, flow, in porous
liquid phase, cumulation and flow, computing OP 136-67 transient linear flow in porous struc- tures, computing OP 135-66 Gas cycling, for oil recovery, laboratory tests OP 25 66 46 67
transient linear flow in porous struc- tures, computing OP 135-66
Gas cycling, for oil recovery, laboratory tests OP 25-66, 46-67
Gas detonations, in earthen tunnels, char-
in steel pipe, characteristics RI 7196 large-scale, studies RI 7196 Gas drive, predicted secondary recovery of
Gas injection, secondary recovery of oil by RI 6943, 7049 Gas injection, secondary recovery of oil by RI 6798
Gas-hould chromatography, inverse, for
petroleum-asphalt studies OP 28-66 Gas-liquid chromatography samples,
transfer, to infrared cavity cells, method OP 12-67
Gas masks, approved by Bureau of Mines IC 8281 fees for testing, amendments S 14F
Gas masks, approved by Bureau of mines to 524F fees for testing, amendments S 14F limitations OP 54-68 performance requirements, discussion OP 33-66, 109-66
performance requirements, discussion OP 33-66, 109-66 permissible, list IC 8436 phosphine, tests and approval IC 8291 protections partective acquires amines
Gas mixtures, ignition energy, determina-
tion, techniques and apparatus for RI 7009 ignition quenching distance, determina-
tion, techniques and apparatus for KI 7009
primary standard, producing, method RI 7078 thermodynamic properties OP 44-66
thermodynamic properties OP 44-66 Gas oil, in crude oils, composition B 642
Gee oil content, crude oil, correlation
with geologic age OP 170-69 distribution by depth of burial OP 186-68 distribution by geologic age OP 186-68
generating plant, discussion OP 86-66 highly coking coals in, tests
Gas purification, hot potassium carbonate system, equipment cost, computer IC 8366
Gas reserves, estimating OP 41-65

Gas reservoirs, low-permeability, effect
of nuclear fracturing on OP 133-68 stimulating, chemical explosive frac- turing method OP 128-69 nuclear explosion technique OP 39-69
stimulating, chemical explosive frac-
turing method OP 128-69
properties, calculating, from pressure-
buildup data, method RI 7013
buildup data, method RI 7013 Gas saturation, oil-reservoir, laboratory and field tests RI 7052 optimum, in oil recovery by water drive, calculating, method OP 143-68
and held tests RI 7052
drive, calculating, method OP 143-68
Gas-solids mixture, in externally heated
Gas-solids mixture, in externally heated tube, heat-transfer characteris- tics, determination IC 8343
tics, determination IC 8343
metering IC 8314 turbomachinery for, field tests IC 8314 Gas-solids suspensions, as heat-transfer
Gas-solids suspensions. as heat-transfer
as heat-transport media IC 8314 circulating, power requirements RI 7019
as heat-transport media OP 1-65
circulating, power requirements RI 7019
test system, design and operation RI 7019 continuously recirculated, heat-transfer
coefficients RI 7057
flowmeter for. patent P 12-68
fluid mechanics IC 8314 mass-flux meter for, fiber-optic probe,
mass-flux meter for, fiber-optic probe,
design and operation OP 39-66 strain probe, design and operation OP 39-66
transport properties IC 8314
transport properties IC 8814 Gas storage, reservoirs for, nuclear ex-
plosion for forming OP 102-66 Gas-storage projects, in oil reservoirs, ef-
Gas-storage projects, in oil reservoirs, el-
fects OP 205-67 Gas streams, in helium production, chro-
matographic analysia UP 76-66
Gas synthesis, kinetics of, using recycle
Gas synthesis, kinetics of, using recycle system, study RI 6941 Gas turbine, coal-fired, ash separators for, tests RI 7295
das turbine, coal-nred, asn separators for,
blade wear, by coal ash particles, tests RI 7255
closed-cycle, high-temperature capa-
bility OP 127-66 turbomachinery development OP 127-66 combustor for, tests RI 7295 development, progress in OP 106-65 new blode device tests
turbomachinery development OP 12/-65
development, progress in OP 106-65
new blade design, tests RI 6920
onen-cycle, ash senarator develop-
ment OP 127-66
blade-erosion problems OP 127-66 coal-fired combustor development OP 127-66
with water injection, as peaking-
power plant OP 136-65
Gas viscosometer, capillary-tube, un-
steady pressure differential in, approximate correction for OP 185-69
Gas wells, capacity, estimating, back-
Gas wells, capacity, estimating, back- pressure method OP 41-65 hydraulically fractured, chemical ex- plosive fracturing in, results OP 128-69
hydraulically fractured, chemical ex-
plosive fracturing in, results OP 128-69
pressure-buildup data, calculating reser-
voir properties by RI 7013 waterblocks in, removing, method RI 6688
water-block treatment, neutron-log use
in OP 102-65 Gascoyne mine, N. Dak., lignite and lignite
Gascoyne mine, N. Dak., lignite and lignite ash analyses RI 7158
Gasfield, nuclear explosion, underground
Gasfield, nuclear explosion, underground, effect on equipment OP 156-65
Gasflood, secondary oil recovery by, per-
formance prediction RI 7272
Gasification, pressure, coal, gas yield, effect
of process variables changes RI 7209
Gasoline annual data PPS 58 60
Gasoline, annual data PPS 58, 60 composition, effect on vehicle emis-

Asoline, annual data _____ PPS 58, 60 composition, effect on vehicle emis-sions _____ OP 80-68 conversion from coal, methods _____ OP 181-69 new catalytic chemistry concepts for OP 181-69 flammability characteristics _____ B 627

ľ

l

Ł

Gasoline, storage stability, predicting method OP 167-68, 182-69 RI 7197 oven test for ___ storage and rapid bomb aging methods _ RI 7084 ----storage test-oven test comparison OP 182-69 storage stability tests, review_____ OP 125-66 Gasolines, summer, annual data _____ PPS 58 synthesis, hot-gas-recycle process, fused iron oxide on carbon steel catalyst RI 6609 winter, annual data _____ PPS 60 Gasoline-air mixtures, detonation of, studies RI 7196 Gasoline tanks, vapor space, flammable zones in, study ______ OP 56-67 Gassy tunnels, special safety precautions for B 644 Gay mine phosphate ore, Idaho, beneficia-Gaylor Stripping mine, Pa., anthracite, properties ______ RI 6930 Gebo field, Wyo., reservoir-oil analyses __ OFR 4-67 Gelation, in lime-soda sinter process, causes RI 6933 Gem stones, annual data _____ MY 1968 (v. I-II) Generation, electrolytic, solvated electrons, in ethanol containing hexamethyl phosphoramide _____ OP 4-67 Generators, coal-fired, high-temperature corrosion in, study _____ OP 55-68 steam, combustion products _____ OP 110-65 flue gas sampling and analysis _____ RI 7108 open-cycle vortex magnetohydrody-namic, design _____ OP 47-69 Geneva coal, Utah, coking properties ____ RI 6948 Georgetown Canyon phosphate ore, Idaho, beneficiation studies _____ RI 6930 George F. Pettinos, Inc., Pa., quartzite de-posit, mining and processing methods and costs ______ IC 8248 Georgia, Appalachian area, lightweight-aggregate raw materials, evaluation _____ RI 7244 mineral resources _____ GS 4-68 mineral resources potential _____ GS 4-68 bauxite, as potential aluminum source_ IC 8335 brown iron-ore deposits, investigation __ IC 8264 clay, for lightweight-aggregate, evaluation _____ RI 7244 coal, sulfur content, forms _____ IC 8301 iron and steel production _____ IC 8329 iron and steel scrap industry, study ____ IC 8329 kzolin, as potential aluminum source ___ IC 8335 kyanite, recovery, from ore, flotation tests _____ OP 151-69 Lithonia granite, explosives tests_RI 6693, 6700 Lithonia granite-gneiss, explosives test OP 124-85 mica, selective flotation, from mica pegmatite ores ______ RI 6830 mines, visitors' guide _____ SP 2-67 minerals, production, annual data MY 1968 (v. I-II, III) mineral industry, annual review MY 1968 (v. III) occupational diseases, personal b ozo pensation law on Okefenokee National Wildlife Refuge, GS 11-68 OP 13-66 occupational diseases, workmen's compermatite ores, mica flotation from ____ OP 13-66 Quitman County, brown iron-ore de-_ IC 8264 RI 7244 tion ____ southeastern counties, auto wrecking and southeastern counties, auto wrecking and scrap processing industries _____ SP 1-67 titanium mineral deposits, survey _____ IC 8290 umber ore, leach liquor, manganese from RI 7166 umber ore, manganese recovery from ____ RI 6692 Germanium, annual data _____ MY 1968 (v. I-II) chlorination kinetics, study _____ RI 6649 consumption _____ B 630 grades _____ B 630

i

ł

2

4

)

Germanium, in coal ash, spectrochemical determination ______ RI 7281 in willemite, occurrence _____ OP 59-67 m whem a occurrence _____ 0 b = 57 production _____ B 630 reserves _____ B 630 technology _____ B 630 uses _____ B 630 Germanium concentrate, recovery, from coal fly ash, selective volatilization _____ RI_6940 method _____ Germanium industry, organization _____ B 630 B 630 problems Germanium oxide-aluminum oxide system, phase relations Germanium oxide - magnesium oxide-lithium fluoride system, ternary OP 100-67 lithium fluoride system, ternary phases ______ OP 138-67 Germany, coal-hydrogenation plants ______ B 633 crude oil, production ______ RI 7059 sulfur content ______ RI 7059 Dorsten coal-gasification tests ______ RI 6721 East, mineral industry, annual review MY 1968 (v. IV) Federal Bapublic of coal production Federal Republic of, coal, production and consumption _____ IC 8380 fly ash, production and utilization ____ IC 8348 mineral industry, annual review MY 1968 (v. IV) Gersdorffite, magnetic susceptibility _____ IC 8351 Ghana, mineral industry, annual review MY 1968 (v. IV) Gibson petroleum, electrophoresis, in or-ganic electrolyte ______ metallo-organic materials in, separation RI 6912 Gilbert bed, W. Va., coal, washing char-atorities RI 7273 B 638 acteristics Gilmer County, W. Va., coal, preparation RI 6665 characteristics Given Run No. 1 mine, W. Va., coal, wash-RI 7216 ing characteristics Glade sand, Pa., core samples, density and and porosity data RI 6825 IC 8330 Glass, feldspar use in ______ ground, size distribution data, moment IC 8310 analysis of high-purity, preparation, by vacuum in-RI 7309 duction melting . RI 6651 lithium disilicate, devitrification, method_ RI 6711 optical properties, transmission losses, in mine environments respirator eyepiece, transmission losses, in mine environments Glass-oxide compositions, hot-roll forming of, method RI 7062 RI 7062 RI 6967 Glass sand, recovery, flotation from mica Glass sand, recovery, notation from mice waste tailing Glen Canyon Dam, Ariz, pozzolan for, mining and milling methods ____ OI Glen Nan mine, Pa., anthracite, washing characteristics ______ Goethite, heat of formation ______ pellets, physical strength, at elevated RI 7319 OP 165-65 RI 6989 **RI 6618** temperatures Gogebic range, Wisc., iron ore, metallurgi-RI 7060 Gogebic range, Wisc., iron ore, metallurgi-cal evaluation ______ RI 6895 Gold, annual data ______ MY 1968 (v. I-II) consumption ______ B 630 distribution in ore, sampling experiment_ RI 6897 imports and exports ______ B 630 in low-grade ores, determination, in presence of insoluble residues, by atomic absorption, ketone clean phase _____ OP 119-69 clean phase _____ OP 119-69 in ores, detection limit, radioisotopic X-ray analytical techniques ____ OP 52-69 in sea water, amount _____ OP 137-69

Gold, occurrence, in monzonite, reconnais- sance OFR_6-69
prices B 630
production B 630 recovery, from carbonaceous ores, meth-
recovery, from carbonaceous ores, meth-
ods for TPR 8 oxidation systems for improving, in-
vestigation TPR 2 from electronic scrap solder, fused-salt
from electronic scrap solder, fused-salt
from graphitic schist, beneficiation studies, preliminary RI 7251 from mine waste, dump leaching meth-
studies, preliminary RI 7251
od laboratory tests BI 7250
od, laboratory tests RI 7250 from sea water, method OP 137-69
reserves B 630 sampling for, in river bars OFR 16-69
technology B 630
technology B 630 uses B 630
Gold-copper deposits, Alaska, sampling
Gold-copper deposits, Alaska, sampling data OFR 9-67 Gold deposit, assay data, statistical anal-
ysis OP 94-67 domestic production potential IC 8331
ysis OP 94-67 domestic, production potential IC 8331 low-grade, evaluation, systems approach
method RI 7305 Gold mine, open-pit, milling methods, engi- neering and economic study IC 8374
neering and economic study IC 8374
mining methods, engineering and eco- nomic study IC 8374
nomic study
Gold mining, cost estimates IC 8331 Gold-mining industry, organization B 630
problems B 630 Gold ores, gold in, detection limit, radio-
Gold ores, gold in, detection limit, radio- isotopic X- ray analytical tech-
nique OP 52-69
low-grade, analysis, methyl isobutyl ketone
extraction and atomic absorption method TPR 7
gold recovery from, cyanide leaching
gold recovery from, cyanide leaching method TPR 20 Gold resources, California Tertiary gravels, investigation TPR 3 carbonaceous ores, northeastern Nevada _ TPR 1 domestic, production potential IC 8331 low-grade evaluation systems approach
investigation TPR 3
carbonaceous ores, northeastern Nevada _ TPR 1
method RI 7305 Mother Lode belt, potential TPR 5 oxidized ores, northeastern Nevada TPR 1
Mother Lode belt, potential TPR 5
Golden Sunlight area, whitehall mining
district, gold deposits, evaluation _ RI 7305
Golden Zone mine, Alaska, sampling data OFR 9-67 Goniometers, borehole photograph, devel-
opment and application RI 7097
opment and application RI 7097 Gordon sand, W. Va., core samples, density
and porosity data IC 8330 Gordon Stray sand, W. Va., core samples,
density and porosity data IC 8330
Goslarite, magnetic susceptibility IC 8383
Grace mine, Pa., iron-ore waste, disposal
system IC 8435
Granato-Hikata-Lucke equations, com- ment on errors in OP 25-68
Grand field, Utah, coal, potential carboniza- tion yield RI 6990
Granite, compressive strength, tests RI 7234
dielectric constant and dissipation factor, determination RI 6913
dimension stone uses IC 8391
elastic moduli, at elevated temperatures _ RI 7269
explosives in, axial or one-ended detona- tion, comparison RI 6700
tion, comparison RI 6700 behavior, comparative study RI 6693 relative performance, evaluating RI 6888 feldspar recovery from, method RI 7245
relative performance, evaluating RI 6888 feldener recovery from method RI 7945
in aluminum chloride solution, specific
damping measurements RI 7048
zeta potential determination RI 7048

.

٠

Granite, in oleylammonium acetate solu-
tion, specific damping measure- ments RI 7048
zeta potential determination RI 7048
longitudinal wave velocity in corre-
lation with rock fabric OP 172-69
mica recovery from, method RI 7245
microstructure, correlation with physi- cal properties study OP 118-66
cal properties, study OP 118-66 nuclear explosion in, effect OP 10-65
penetrapility, determination, denguium
sclerometer method RI 7048
sclerometer method RI 7048 quartz recovery from, method RI 7245 transgranular-intergranular fracture
in, effect of loading rate OP 99-69
Granite gneiss, explosion-generated com-
pressive waves, computer model-
field test comparison OP 41-68 Granite pillars, model, breaking strength,
effect of end constraint RI 7092
compressive strength determination.
effect of end conditions RI 7171
increased end constraint, effect on com-
pressive strength RI 7298 uniaxial compressive strength, effect
of planes of weakness RI 7155
of planes of weakness RI 7155 Graph paper, atomic absorption plotting, description OP 136-68 Graphite, annual data MY 1968 (v. I-II)
description OP 136-68
as substrate for vapor-deposited boron
carbide RI 7150
carbide RI 7150 consumption B 630
crystallinity, in meta-anthracite, elec-
tron microscopy observations OP 96-65
heat content RI 6607 imports B 630
laser irradiation, photographic study_ OP 140-68
lithium-ethylenediamine reduction of B 615
manufactured, sources B 630
imports B 630 laser irradiation, photographic study_ OP 140-68 lithium-ethylenediamine reduction of B 615 manufactured, sources B 630 micronized, in inert gases, heat-carrying characteristics OP 1-65 natural grades B 630
natural, grades B 630
natural, grades B 630 optical properties OP 153-67
reflectance determination B 641
palladium deposits on, from aqueous elec-
trolyte RI 7016 platinum deposits on, from aqueous elec-
trolyte RI 7016 polycrystalline, absorption spectra B 640
polycrystalline, absorption spectra B 640
reflectance spectra B 640 prices B 630
production B 630
production B 630 pyrolysis, in microwave discharge,
products from, composition OP 11-69
reaction, in microwave discharge, in deuterium oxide
in water-argon mixtures OP 168-67
in water-argon mixtures OP 168-67 reaction with silica in vacuum, effect of
physical parameters RI 7207
reserves B 630 single crystals, transmission spectra _ OP 167-65
specific heat RI 6607
structure OP 83-68
technology B 630 ultrathin sections, refractive index and
ultrathin sections, refractive index and thickness determination, by interfer-
ometry B 641
uses B 630
A-ray scattering intensities B 648
Graphite industry, organization B 630 problems B 630
Graphitic-mica schist, muscovite recovery
from, flotation method RI 7263
Gratonite, magnetic susceptibility IC 8383
Gratonite, magnetic susceptibility IC 8383 Gravel, annual data MY 1968 (v. I-II)
Gratonite, magnetic susceptibility IC 8383 Gravel, annual data MY 1968 (v. I-II) frozen, blasting techniques in, evalua-
Gratonite, magnetic susceptibility IC 8383 Gravel, annual data MY 1968 (v. I-II) frozen, blasting techniques in, evalua- tion OP 156-69
Gratonite, magnetic susceptibility IC 8383 Gravel, annual data MY 1968 (v. I-II) frozen, blasting techniques in, evalua-

.

I.

.

ていたいだいだい

-

Gravitational pressure gradient, in sand-
stone containing free gas, labora-
tory determination RI 7052
Gravity separation, minerals, research,
review OP 157-65
Gray Bautsch lead-zinc mine, 111., revenue-
oray Bautach lead-zine hime, in., revenues
cost system for, description RI 7311
Great Plains Province lignites, analyses,
variability study RI 7158
Great Plains Province lignite ash, analyses.
variability study RI 7158 Great Salt Lake, bitterns, sulfate removal
Great Salt Lake, bitterns, sulfate removal
from, preliminary process develop-
ment RI 6928
Great Salt Lake brines, sulfate removal
Great Salt Lake Brines, suitate removal
from, cost estimates RI 6928
preliminary process development RI 6928
Great Swamp National Wildlife Refuge,
N.J., mineral appraisal GS 9-67
Greece crude oil sulfur content RI 7059
mineral industry, annual re- view MY 1968 (v. IV) Green Bay National Wildlife Refuge, Wis.,
mineral modely, annual fet MV 1069 (IV)
$\mathbf{v}_{1} = \mathbf{v}_{1} $
Green Bay National Wildlife Refuge, Wis.,
mineral appraisal GS b-68
mineral appraisal GS 5-68 Green bed, Wash., coal, float-and-sink tests RI 6623
Green River Formation, oil shale, core
essay data
assay data 1 OFR 10-00
core lithology OFR 13-69 genesis, depositional geochemistry of OP 169-69
genesis, depositional geochemistry of OP 169-69
Wyoming corehole No. 1, in situ oil pro-
duction, potential OP 38-69
Green River kerogen-derived trona acids,
ovygen functional groups in de-
termination OP 34-66
Crear Diversal shale Cole ail trialda PI 7051
Green River of shale, Colo. of yields NI 7051
core samples, oil yields
termination OP 34-66 Green River oil shale, Colo. oil yields RI 7051 core samples, oil yields RI 7071 dawsonite in, determination, method RI 7286
explosive fracturing tests OP 122-67 fracturing, using nitroglycerin OP 1-67 lithology RI 7172 oil viold
fracturing, using nitroglycerin OP 1-67
lithology RI 7172
oil wirld dote
oil-yield data RI 7172 physical structure OP 143-65 pyrolysis, controlled low-temperature. OP 145-69 pyrolysis products, composition OP 145-69 retorting temperatures, effect of OP 175-65 retorting temperatures effect of OP 176-69
physical structure
pyrolysis, controlled low-temperature. UP 145-69
pyrolysis products, composition OP 145-69
retorting temperatures, effect of OP 35-65
steranes in, identification OP 176-69 stratigraphic distribution OP 131-65 technology, developments OP 132-68 thermal conductivity OP 168-68
stratigraphic distribution OP 131-65
technology developments OP 132-68
thermal and dustinity OP 168 68
thermal conductivity
thermal diffusivity OP 100-00
thermal diffusivity OP 168-68 thermal treatment of, effect on phys-
ical properties
Wvo., oil-yield data OP 133-65
ical properties
cerane in identification $$ UF 40-00
Green River oil-shale kerogen, oxygen
functional anouna in determine.
functional groups in, determina-
tion OP 34-66
Green River oil-shale paraffins, changes
in, with depth OP 122-65
Green River shale oil, specific gravity, vari-
etions stratigraphic and geo-
graphic Greenbrier County, W. Va., coal, carbon-
izing properties RI 6872
izing properties
Greenbrier Group, W. Va., lithology OP 105-67
izing properties RI 6872 Greenbrier Group, W. Va., lithology OP 105-67 reservoirs OP 105-67
Greenbrier Limestone, W. Va., composition IC 8369 underground mining of, cost estimates IC 8369
underground mining of next estimates IC 8369
underground mining of, cost estimates to 6305
methods IC 8369
Greene County, Pa., coal, carbonizing prop-
erties RI 7131
Greenland, mineral industry, an- nual review
Greensand, annual data MY 1968 (v. I–II)
Greenstone, dimension stone uses IC 8391
Greenstone, dimension scone uses
Greenup County, Ky., coal reserves OFR 2-69

j

.

Grindability, coal, determination, method B 638 Grinding, attrition, course kaolin, operating
Grinding attrition course kaolin, operating
variables in, investigation RI 7168
Grinding mill products, size distribution
data RI 7309
data RI 7309 Ground control, in tunneling, recommended
Ground control, in tunnening, recommended B 644
safety rules B 644 Ground control technology, research pro-
Ground control technology, research pro-
Grout, shrink-resistant, in confined spaces, BI 7267
Grout, shrink-resistant, in conned spaces,
<u> </u>
oxygen consumption RI 7267
Grouting mixtures, aluminum-containing, in confined spaces, hydrogen re-
in confined spaces, hydrogen re-
lease RI 7267 iron-containing, in confined spaces, oxy-
iron-containing, in confined spaces, oxy-
gen depletion RI 7267 Groutite, magnetic susceptibility IC 8359
Groutite, magnetic susceptibility IC 8359
Grove Hill Coal Co. mine, Va., coal, wash-
ing characteristics RI 6740
Grove Hill Coal Co. mine, Va., coal, wash- ing characteristics RI 6740 Guadeloupe, mineral industry, an- nual review MY 1968 (v. IV)
nual review
Guatemala, mineral industry, an-
Guatemala, mineral industry, an- nual review
Culuse sincerel inductor enough
Guinea, mineral mutatry, annual MV 1968 (v IV)
Cult exact mude all moduation BI 7059
Guir coast, crude on, production fri 1000
sultur content
Guinea, mineral industry, annual review MY 1968 (v. IV) Gulf coast, crude oil, production RI 7059 sulfur content RI 7059 Gulf Intracoastal Waterway, barge trans- portation on, mineral commodities IC 8431 Colf of Maximum budgesphere production IC 8408
Gulf of Mexico, hydrocarbon production IC 8408 hydrocarbon productive capacity IC 8408 hydrocarbon reserves IC 8408 petroleum development in, effect on on-
Gulf of Mexico, hydrocarbon production 10 8408
hydrocarbon productive capacity 10 8408
hydrocarbon reserves 1C 8408
petroleum development in, effect on on-
Gum formation, in gasoline, storage and
rapid bomb aging tests, compari-
son RI 7084
in gesoline during long-term storage. The-
dicting, methods RI 7084, 7197 in high-temperature fuels, radiotracer
in high-temperature fuels, radiotracer
Studies OP 164-65, 96-66, 9-67 Guyana, mineral industry, annual review MYB 1968 (v. IV)
Guyana, mineral industry, annual review
MYB 1968 (v. IV)
Gypsum, annual data MY B 1968 (v. 1V) chemical-industry use, Calif IC 8244
chemical-industry use, Calif IC 8244
consumption B 630
consumption B 630 imports B 630 in coal quantitative infrared determi-
in coal, quantitative infrared determi-
prices B 630 production B 630
production B 630
reserves B 630
technology B 630
reserves B 630 technology B 630 uses B 630 in nonpyritic smelting of copper con-
in nonpyritic smelting of copper con-
centrates, technical feasibility _ RI 7119
centrates, technical feasibility RI 7119 Gypsum industry, organization B 630
problems B 630
Gypsum products, definitions B 630
Gyptem produces, deministerie

н

Hafnium, annual data MY 1968 (v. I-II) consumption B 630
electrorefining, chloride electrolytes for, investigation RI 6818 enriched feed solutions, from zircon, pro-
duction RI 6802 high-purity, electrowinning from haf-
nium tetrachloride OP 166-69 liguid, vapor pressure RI 7125
prices B 630 production B 630
recovery, from zircon, selective reduc- tion method OFR 11-68 reserves B 630
technology B 630

н	afnium, transformation temperature OP 123-65	Hazards, detonatio
н	uses B 630 afnium carbide, fused, thermal linear- expansion coefficients OP 92-65	electrostatic, in
Н	afnium carbide-carbon alloys, cast, evalu- tion RI 7137	agents
	preparation RI 7137	exposure
	properties RI 7137 fused, thermal linear-expansion coeffi-	liquid hydroge miscellaneous (
н	cients OP 92-65 afnium-carbon phase diagramRI 6983, 7137	molten sulfur,
Н	afnium chloride, high-purity hafnium from, by electrowinning OP 166–69	fire, ammonium
H H	afnium-columbium alloys, properties RI 6964 afnium-columbium system, superconduc-	miscellaneous molten sulfur,
_	tivity in, effect of microstructure RI 7258	urethene foam,
н	afnium metal, production processes IC 8268 afnium producers, United States B 630	at tempera
н	afnium production, economic problems B 630 afnium-tantalum alloys, properties RI 6964	fluidized-bed th
	afnium-vanadium phase diagram RI 6594 afnium-zirconium separation, hafnium-	float-coal, allevia float-coal deposit
	enriched feed solutions for, pro- duction RI 6802	health, urethane high-pressure hy
н	selective reduction method OFR 11-68 agg iron carbide, properties B 631	ignition, tank atr loading, ir
H	agy bed, Va., coal, washing characteris- tics RI 6740	in tunnel constru
Н	aiti, mineral industry, annual review MY 1968 (v. IV)	liquid explosives, sensitivity
H	alogens, in petroleum, literature sur-	potential, allene
н	vey OP 122-69 alogen compounds, identification, hydro-	radiation, underg
	genolysis technique OP 45-67 organic, characterization, microhydro-	Hazard No. 4 bed, extract yie
н	genation technique OP 196-67 anna Mining Co., Nashwauk, Minn., low-	Hazy Islands Nat Alaska, m
	grade iron-bearing materials, flota- tion tests RI 6719 annah-Stout No. 3 mine, W. Va., coal,	Health and safety, coal mines, dust c
	preparation characteristics RI 6874	ods for, st publications, list
	annum lead prospect, Seward Penin- sula, examination OFR 6-65	research and te report
Н	ardness, minerals, determination, pen- dulum sclerometer method RI 6952	Heap leaching, low- rials, desc
H H	ardstart, in rocket engines, causes OP 51–68 ardystonite, magnetic susceptibility IC 8383	Heat capacity, ty phase sys
Н	arman Mining Corp. mine, Va., coal, washing characteristics RI 6740	method Heat exchanger, sh
Н	armony coalfield, Utah, steam-electric plant utilization potential IC 8326	rameters a gram for .
Н	armony magnetite, hydrogen reduction of, kinetics RI 7080	price optimum program f
н	art Mountain National Antelope Refuge,	Heat flux, during co
н	Oreg., mineral appraisal GS 10-68 artley mine, Pa., coal, carbonizing prop-	uum are n during nonconsur
ਸ	erties RI 7131 astelloy-X scrap, chlorine dissolution of,	arc meltin; Heat transfer, dur
	laboratory study RI 7178 aulage equipment, in tunnel construction,	molten ch: study
11	recommended safety rules B 644	Heat transfer, dur molten ch
	in shaft-sinking operations, safety rec- ommendations IC 8365	study film coefficients of
	ausmanite, magnetic susceptibility IC 8359 awaii, bauxite, as potential aluminum	flow, deter gas-solids mixtur
	source IC 8335 ferruginous bauxites, metallurgical test-	tubes, dete
	ing RI 6944 laterite, as potential aluminum source IC 8335	Heat-transfer coeff
	minerals, production, annual data MY 1968 (v. I-II, III)	solid-in-gas suspe Heat-transfer patte
	mineral industry, annual review MY 1968 (v. LLL)	crucibles, d ing
	occupational diseases, workmen's compen- sation laws on B 623	Heating system. con molumines
	titanium mineral deposits, survey IC 8290	Heavy liquids, org
Н	azards, ammonium nitrate-fuel oil blast- ing agents OP 34–65	moving fi process, pa
		330

Hazards, detonation, liquid explosives, wedge technique for evaluating OP 20-69 electrostatic, in pneumatic loading, am-	
monium nitrate-fuel oil blasting agents RI 7139 explosion, ammonium nitrate, under fire exposure RI 6773	
liquid hydrogen OP 150-65 miscellaneous dusts RI 7208 molten sulfur, ship transport IC 8272	
face-ignition, reducing, method OP 3-67 fire, ammonium nitrate-sulfur systems OP 6-68 liquid hydrogen OP 150-65 miscellaneous dusts RI 7208 EVALUATE TO SERVICE AND ADDRESS AND ADDR	
molten sulfur, ship transport IC 8272 urethene foam, in mine use RI 6837 fire and explosion, flammable materials, at temperature and pressure ex-	
tremes OP 54-67 fluidized-bed thermal coal dryers IC 8258 float-coal, alleviating, methods OP 103-67 float-coal deposits, alleviating, methods_ RI 6581	
health, urethane foam in mines OP 61–67 high-pressure hydraulic systems OP 116–65 ignition, tank atmospheres, during fuel loading, investigation OP 56–67	I
in tunnel construction, recommended safety precautions	
sensitivity OP 52-68 potential, allene OP 81-69 propargyl halides OP 81-69 radiation, underground uranium mines IC 8413 Hazard No. 4 bed, Ky., coal, chloroform-	
extract yield, investigation RI 6973 Hazy Islands National Wildlife Refuge, Alaska, mineral appraisal GS 7-68 Health and safety, activities, list IC 8306	
coal mines, dust control, ventilation meth- ods for, studies TPR 19 publications, list IC 8306 research and technologic work, 5-year	
report IC 8306 Heap leaching, low-grade copper ore mate- rials, description IC 8341 Heat capacity, two-component three-	
phase system, determination, method OP 191–68 Heat exchanger, shell-and-tube, design pa-	
rameters and cost, computer pro- gram for	
Heat flux, during consumable electrode vac- uum arc melting	-
Heat transfer, during vacuum arc melting, molten charge to cooling medium, study B 646 Heat transfer, during vacuum arc melting,	b
molten charge to cooling medium, study B 646 film coefficients of. helium in turbulent	•
gas-solids mixtures, in externally heated tubes, determination IC 8343 Heat-transfer coefficients, gas-solids sus-	(
pensions RI 7057 solid-in-gas suspensions, study OP 8-66 Heat-transfer patterns, water-cooled copper crucibles, during vacuum arc melt-	¢
ing RI 7035 Heating system. controlled-rate, for ther- moluminescence studies OP 17-68	
Heavy liquids, organic, washing and re- moving from mineral particles, process, patent P 14–67	

.

•

Heavy-liquid separation, mica determi-
nation by, in ores OP 131-67
Heavy metals program, cost-benefit anal-
ysis, case study IC 8414
gold-bearing deposits, Nev TPR 1
gold ore, low-grade, analysis, methyl iso-
nation by, in ores OP 131-67 Heavy metals program, cost-benefit anal- ysis, case study IC 8414 gold-bearing deposits, Nev TPR 1 gold ore, low-grade, analysis, methyl iso- butyl ketone extraction and atomic observation method
gold recovery from carbonaceous mate-
rials, oxidation systems for im-
proving, investigation TPR 2 gold recovery from carbonaceous ores, im-
gold recovery from carbonaceous ores, im-
proving, electrolytic oxidation TPR 8 gold recovery from electronic scrap solder TPR 9
gold recovery from electronic scrap solder IFR 9
gold resources, Calif TPR 3 offshore mining system, shallow waters,
development TPR 4 silver, in low-grade ores, detection limit, isotopic X-ray method TPR 6 Heavy minerals, S.C., data SCNR Heavy-oil reservoirs, Ark. evaluation IC 8428 thermal projects IC 8428
silver, in low-grade area detection limit
isotopic X-ray method TPR 6
Heavy minerals, S.C. data SCNR
Heavy-oil reservoirs. Ark evaluation IC 8428
thermal projects
Halupa No. 17 mine W. Va. cool propa
Helena No. 17 mine, W. Va., coal, prepa- ration characteristics RI 6874
rienum, analyses, didhography
Helium, analyses, bibliography IC 8373 annual data MY 1968 (v. I-II) bibliography of technical and scientific
bibliography of technical and scienting
literature on IC 8273, 8398 chemistry, bibliography IC 8373 compressibility data RI 7287
compressibility data DI 7997
compressibility factor, as function of pressure or molar density, for-
compressionity factor, as function of
mules for RI 7090
mulas for RI 7020 calculating RI 7003; OP 80-67
computer program for solution of non-
computer program, for solution of non- linear regression problems IC 8423
conservation B 630
conservation B 630 consumption B 630
discovery OP 113-68
effects, bibliography
equation of state RI 6896, 7003, 7076; OP 80-67
exports B 630
fugacity RI 7003: OP 80-67
gas, bibliography IC 8373
grade-A, gas-chromatographic anal-
consumption B 630 discovery OP 113-68 effects, bibliography IC 8373 equation of state RI 6896, 7003, 7076; OP 80-67 gas, bibliography RI 7003; OP 80-67 gas, bibliography IC 8373 grade-A, gas-chromatographic anal- ysis OP 118-65 heat-transfer tests, in turbulent flow RI 6856
heat-transfer tests, in turbulent flow RI 6856
high-purity, concentrating trace im-
purities in, apparatus for P 2–65
high-temperature, film coefficients of heat
transfer RI 6856
history IC 8417
hydrogen trace quantities in, detect-
ing, chromatographic procedure OP 150-68
impurities in, parts-per-billion range, analyzing, method RI 6779
analyzing, method RI 6779
in conservation gas streams, determi- nation, chromatographic method OP 193–67
nation, chromatographic method Or 193-67
in cylindrical steel containers, computa-
tion of volume IC 8366 in natural gas, origin RI 6936
in plasmas hibliography IC 9279
in plasmas, bibliography IC 8373 ionization in, bibliography IC 8373
isotonee OP 119_69
isotopes OP 113-68 liquefaction, bibliography IC 8373
liquid OP 113-68
bibliography IC 8373
measurement methods, description UP 128-68
motion of atomic narticles in, bibliog-
raphy IC 8373
raphy IC 8373 nuclear reactions involving, bibliography IC 8373
hibliography IC 8373
origin OP 113-68
prices B 630
prices B 630 production B 630; OP 113-68
bibliography IC 8373
bibliography IC 8373 production processes OP 113-68
properties OP 113-68

Helium, reserves B 630
Helium, reserves B 630 solid, bibliography IC 8373
substitutes for B 630 symposium proceedings IC 8417
technology B 630
technology B 630 thermodynamic properties, various tem-
neratures and pressures, tapula-
tion RI 7190 thermophysical properties IC 8317 trace impurities in, high-pressure mass
trace impurities in, high-pressure mass
spectrometry OP 87-66 transportation and storage, bibliography IC 8373 transportation methods B 630
transportation and storage, bibliography IC 8373
ysis OP 118-65 preparation, techniques OP 119-65
preparation, techniques OP 119-65
uses B 630 symposium proceedings IC 8417
utilization, bibliography IC 8373 volume, in cylindrical steel containers,
volume, in cylindrical steel containers,
computation, table of factors IC 8366 Helium-4, experimental pressure-volume-
temperature data, bibliography IC 8388
Helium activity, history OP 129-68 Helium analyzer, portable, design and oper-
Helium analyzer, portable, design and oper-
ation
ings IC 8417
ings IC 8417 Helium atom, bibliography IC 8373
Helium-bearing natural gases, analysis IC 8241, 8302, 8316, 8356, 8395
neon from, isotopic abundance OP 31-66
neon from, isotopic abundance OP 31-66 Helium-carbon dioxide mixtures, compres-
sibility factors RI 7233
viscosity OP 91-68 Helium centennial, symposium proceedings IC 8417
Helium conservation pipeline, materials balance and control chart OP 22-69
balance and control chart OP 22-69
Helium conservation program, Cliffside field, helium storage in OP 112-67
summary OP 79-67
summary OP 79-67 Helium industry, organization B 630
problems B 630 Helium mixtures, equation of state RI 7076
Helium-nitrogen solution. at critical
Helium-nitrogen solution, at critical point of nitrogen, thermody- namic anomalies OP 155-69
namic anomalies OP 155-69
thermodynamic properties, various tem-
equation of state RI 6896 thermodynamic properties, various tem- peratures and pressures, tabula-
tion RI 7190 Helium production, gas streams in, chro-
matographic analysis OP 76-66
matographic analysis OP 76-66 Helium research, Redlich-Kwong fluid, in
two-phase region, thermodynamic properties RI 7312
Helium-solid surface energy exchange, bib-
Helium-solid surface energy exchange, bib- liography IC 8373 Helium spectra, bibliography IC 8373
Helium spectra, bibliography IC 8373
Helmick No. 1 mine, W. Va., coal, prepara- tion characteristics RI 6874
Helvite, magnetic susceptibility IC 8359
Hemotite crystal structure refinement OP 136-68
Hematite, crystal structure, refinement. OP 136-66 interatomic angles OP 136-66
interatomic distances OP 136-86
interatomic distances OP 136-66 lump, reducibility index, determination RI 6827 pellets, physical strength, at elevated
temperatures RI 7060
separation from quartz, in matrix-type
magnetic separator RI 6722
Hematite ores, fine-grained, flotation pro- cedures RI 6976
selective flocculation-desliming tech-
nique RI 6976
Hemimorphite, magnetic susceptibility IC 8383
Heptane-natural gas mixtures, compressi-
bility factors, cell for determining
OP 132-67, 133-67

Ŭ

331

) |}

3

i-reptation ond formation OP 40 66
1-Heptanethiol, enthalpies of combustion and formation OP 40-66 Hetaerolite, magnetic susceptibility IC 8383
neteroatom species, in coal carbonization
products, high-resolution mass spectrometry OP 152–68
Heterocyclics, neutral, from low-temperature
coal-tar neutral oil, identification B 637
Heterogenite, magnetic susceptibility IC 8351 Heterosite, magnetic susceptibility IC 8359
Heterosite, magnetic susceptibility IC 8359
Hewettite, magnetic susceptibility IC 8360 Hexafluorides mixed thenium-tungston
vapor deposition of rhenium-tung-
Hexafluorides, mixed rhenium-tungsten, vapor deposition of rhenium-tung- sten from, hydrogen reduction method RI 6915
method RI 6915
Hexafluoride vapors, hydrogen reduction of tungsten-molybdenum alloys from RI 6853
Hexafluorobenzene, pressure-volume-tem-
perature relations OP 108-69
purification, method RI 6633
purification, method RI 6633 purity, estimation RI 6633 spectral data RI 6633 Hexamethylphosphoramide, use, with
Hevemethylphosphoremide use with
ethanoi, in electrochemical re-
duction of benzene OP 107-69
n-Hexane, enthalpy of combustion OP 72-69
1-Hexanethicl, enthalpies of combustion and formation OP 40-66
Hiawatha bed, coal, coke from, properties RI 7050
Hiawatha bed, coal, coke from, properties RI 7050 Hibbing area, Minn., nonmagnetic taconite,
flotation tests RI 6991
petrographic evaluation R1 6991
reduction roasting magnetic separa-
tion tests RI 6991 High Splint bed, coal, low-temperature car-
bonization, study RI 6625, 7322
Ky., coal, carbonization, fluidized-bed
low-temperature RI 7322 High Uintas primitive area, Utah, mineral
appraisal GS 3-67
appraisal GS 3-67 Hoists, in tunnel construction, recommended,
salety rules B 544
Hoisting equipment, in shaft-sinking opera-
tions, safety recommendations IC 8365 Holmium trichloride, heat of formation RI 7046
assays, statistical analysis RI 6897 gold distribution, in ore, study RI 6897
Homestake-Sapin Partners, N. Mex., Sec-
tion 92 mino unonjune mining
methods and costs IC 8280
Honduras, mineral industry an-
MV 1069 (TV)
nual review MY 1968 (v. IV) Hong Kong mineral industry
nual review MY 1968 (v. IV) Hong Kong, mineral industry, annual review MY 1968 (v. IV)
nual review MY 1968 (v. IV) Hong Kong, mineral industry, annual review MY 1968 (v. IV) Hopeite, magnetic susceptibility IC 8383
Methods and costs IC 8280 Honduras, mineral industry an NY 1968 (v. IV) Hong Kong, mineral industry, MY 1968 (v. IV) annual review MY 1968 (v. IV) Hopeite, magnetic susceptibility IC 8383 Hot gases, incendivity to methane, re-
ducing, by sodium nitrate addi-
ducing, by sodium nitrate addi- tions RI 6954
ducing, by sodium nitrate addi- tions RI 6954 incendivity to methane-coal dust-air mix- tures, reducing, by sodium nitrate
ducing, by sodium nitrate addi- tions RI 6954 incendivity to methane-coal dust-air mix- tures, reducing, by sodium nitrate
ducing, by sodium nitrate addi- tions
 RI 6954 incendivity to methane-coal dust-air mix- tures, reducing, by sodium nitrate additions RI 6954 Hot-gas-recycle process, catalysts in, recent developments RI 6609 Ranev-nickel-coated catalyst, high-Btu
 RI 6954 incendivity to methane-coal dust-air mix- tures, reducing, by sodium nitrate addi- tures, reducing, by sodium nitrate additions RI 6954 Hot-gas-recycle process, catalysts in, recent developments RI 60954 Raney-nickel-coated catalyst, high-Btu reas synthesis
 RI 6954 incendivity to methane-coal dust-air mix- tures, reducing, by sodium nitrate addi- tures, reducing, by sodium nitrate additions RI 6954 Hot-gas-recycle process, catalysts in, recent developments RI 60954 Raney-nickel-coated catalyst, high-Btu reas synthesis
 RI 6954 incendivity to methane, re- ducing, by sodium nitrate addi- tions
Rot gases, incentivity to methane, ite- ducing, by sodium nitrate addi- tions RI 6954 incendivity to methane-coal dust-air mix- tures, reducing, by sodium nitrate additions RI 6954 Hot-gas-recycle process, catalysts in, recent developments RI 6954 Baney-nickel-coated catalyst, high-Btu gas synthesis RI 6609 Howell mine, W. Va., coal, preparation characteristics RI 6874 Huber mine, Pa., anthracite, properties RI 7086 washing characteristics RI 69874
Rot gases, incentivity to methane, ite- ducing, by sodium nitrate addi- tions RI 6954 incendivity to methane-coal dust-air mix- tures, reducing, by sodium nitrate additions RI 6954 Hot-gas-recycle process, catalysts in, recent developments RI 6954 Baney-nickel-coated catalyst, high-Btu gas synthesis RI 6609 Howell mine, W. Va., coal, preparation characteristics RI 6874 Huber mine, Pa., anthracite, properties RI 7086 washing characteristics RI 69874
Rot gases, incentivity to intentite, re- ducing, by sodium nitrate addi- tions RI 6954 incendivity to methane-coal dust-air mix- tures, reducing, by sodium nitrate additions RI 6954 Hot-gas-recycle process, catalysts in, recent developments RI 6954 Raney-nickel-coated catalyst, high-Btu gas synthesis RI 6609 Howell mine, W. Va., coal, preparation characteristics RI 6874 Huber mine, Pa., anthracite, properties RI 7086 washing characteristics RI 6989 Huebnerite, magnetic susceptibility_IC 8359, 8360
Rot gases, incentivity to intentite, re- ducing, by sodium nitrate addi- tions RI 6954 incendivity to methane-coal dust-air mix- tures, reducing, by sodium nitrate additions RI 6954 Hot-gas-recycle process, catalysts in, recent developments RI 6954 Raney-nickel-coated catalyst, high-Btu gas synthesis RI 6609 Howell mine, W. Va., coal, preparation characteristics RI 6874 Huber mine, Pa., anthracite, properties RI 7086 washing characteristics RI 6989 Huebnerite, magnetic susceptibility_IC 8359, 8360
Rice gases, incentivity to methane, ite- ducing, by sodium nitrate addi- tions RI 6954 incendivity to methane-coal dust-air mix- tures, reducing, by sodium nitrate additions RI 6954 Hot-gas-recycle process, catalysts in, recent developments RI 6954 Raney-nickel-coated catalyst, high-Btu gas synthesis RI 609 Howell mine, W. Va., coal, preparation characteristics RI 6874 Huber mine, Pa., anthracite, properties RI 68874 Huebnerite, magnetic susceptibility_IC 8359, 8360 RI 6989 Humates, coal-derived, in hydroponic solu- tions, effect IC 8376
Rite gases, intentivity to minimize addi- tions RI 6954 incendivity to methane-coal dust-air mix- tures, reducing, by sodium nitrate additions RI 6954 Hot-gas-recycle process, catalysts in, recent developments RI 6954 gas synthesis RI 6609 Raney-nickel-coated catalyst, high-Btu gas synthesis RI 7033 Howell mine, W. Va., coal, preparation characteristics RI 6874 Huber mine, Pa., anthracite, properties RI 6959, 8360 Humates, coal-derived, in hydroponic solu- tions, effect IC 8376 Humic acid, from leonardite, plant growth effects RI 7203 use, in bentonite drilling fluid, effect RI 7043
Rot gases, incentivity to intentite, re- ducing, by sodium nitrate addi- tions RI 6954 incendivity to methane-coal dust-air mix- tures, reducing, by sodium nitrate additions RI 6954 Hot-gas-recycle process, catalysts in, recent developments RI 6954 Raney-nickel-coated catalyst, high-Btu gas synthesis RI 6609 Howell mine, W. Va., coal, preparation characteristics RI 6874 Huber mine, Pa., anthracite, properties RI 7086 washing characteristics RI 6989 Huebnerite, magnetic susceptibility_IC 8359, 8360
Hot gases, incentivity to mitrate addi- tions RI 6954 incendivity to methane-coal dust-air mix- tures, reducing, by sodium nitrate addi- tures, reducing, by sodium nitrate addi- ductions RI 6954 Hot-gas-recycle process, catalysts in, recent developments RI 6954 Raney-nickel-coated catalyst, high-Btu gas synthesis RI 6609 Raney-nickel-coated catalyst, high-Btu gas synthesis RI 7033 Howell mine, W. Va., coal, preparation characteristics RI 6874 Huber mine, Pa., anthracite, properties RI 7086 washing characteristics RI 6989 Huebnerite, magnetic susceptibilityIC 8359, 8360 B409 Humates, coal-derived, in hydroponic solu- tions, effect IC 8376 Humic acid, from leonardite, plant growth effects RI 7203 use, in bentonite drilling fluid, effect RI 7203 Humus, coal-derived, plant growth effects
Riteriolity gases, intendity gases, intendity, gases, intendity, gases,

•

Huntington field, Utah, coal, potential car-
bonization yield RI 6990
 Huntington field, Utah, coal, potential carbonization yield RI 6990 Huron National Wildlife Refuge, Mich., mineral appraisal GS 5-68 Hurst No. 7 mine, W. Va., coal, washing characteristics RI 6825 Hydraulic backfill, cement and dispersant additives in, study RI 6831 Hydraulic concentration, coal, methods OP 90-68 Hydraulic fluids, fire-resistant, fees for testing, amendments S 30 flammability characteristics B 627; OP 118-69 ignition temperatures OP 118-69 Hydraulic mining, anthracite, analysis of Operating variables RI 7120
Hurst No. 7 mine, W. Va., coal, washing characteristics RI 6825
Hydraulic backfill, cement and dispersant
Hydraulia concentration coal methods OP 90-68
Hydraulic drive drilling patent P 1-69
Hydraulic fluids, fire-resistant, fees for test-
ing amendments S 30
flammability characteristicsB 627; OP 118-69
ignition temperatures OP 118-69
Hydraulic mining, anthracite, analysis of
operating variables RI 7120 equipment RI 6610 loading and transportation methods RI 6610 roof support RI 6610
equipment RI 6610
loading and transportation methods RI 6610
roof support RI 6610
safety in RI 6610 bituminous coal, jetstreams, effective-
bituminous coal, jetstreams, effective-
ness, in cutting coal RI 7090
pitching coaldeds, tests
Hydraulic prop, lightweight recoverable,
fold tests BI 7029
Hudroulio systems high-pressure haz-
bituminous coal, jetstreams, effective- ness, in cutting coal RI 7090 pitching coalbeds, tests RI 6685 Hydraulic prop, lightweight recoverable, design and development RI 7029 field tests RI 7029 Hydraulic systems, high-pressure, haz- ards OP 116-65 safety precautions OP 116-65 Hydraulic transport, coal, problems, study RI 6743 coarse solids, lock-hopper feed system RI 7288 Hydrazine, combustion characteristics OP 149-67
safety precautions OP 116-65
Hydraulic transport, coal, problems, study RI 6743
coarse solids, lock-hopper feed system RI 7283
Hydrazine, combustion characteristics OP 149-67
Hydrazine hydrate, use, in disaggregating
rock OP 35-68
Hydroging nitromethang methanol mix
tures, detonability OP 158-69
Hydroaromatic molecules, X-ray diffraction data B 620
deta R 620
Undroserborg exemption combor 19 above
Hydrocarbons, aromatic, carbon-13 chem-
ical shifts, experimental tests OP 77-68
ical shifts, experimental tests OP 77-68 electrochemical reduction in ethylene-
ical shifts, experimental tests OP 77-68 electrochemical reduction in ethylene- diamine OP 85-66 nuclear magnetic resonance studies
ical shifts, experimental tests OP 77-68 electrochemical reduction in ethylene- diamine OP 85-66 nuclear magnetic resonance studies OP 76-68 77-68 79-68
ical shifts, experimental tests OP 77-68 electrochemical reduction in ethylene- diamine OP 85-66 nuclear magnetic resonance studies OP 76-68 77-68 79-68
ical shifts, experimental tests OP 77-68 electrochemical reduction in ethylene- diamine OP 85-66 nuclear magnetic resonance studies OP 76-68 77-68 79-68
ical shifts, experimental tests OP 77-68 electrochemical reduction in ethylene- diamine OP 85-66 nuclear magnetic resonance studies OP 76-68 77-68 79-68
ical shifts, experimental tests OP 77-68 electrochemical reduction in ethylene- diamine OP 85-66 nuclear magnetic resonance studies OP 76-68, 77-68, 79-68 spark-source mass spectra, using spin- ning electrode RI 6951; OP 74-68 automotive exhausts, gas chromatog- rephic analysis OP 179-69
ical shifts, experimental tests OP 77-68 electrochemical reduction in ethylene- diamine OP 85-66 nuclear magnetic resonance studies OP 76-68, 77-68, 79-68 spark-source mass spectra, using spin- ning electrode RI 6951; OP 74-68 automotive exhausts, gas chromatog- rephic analysis OP 179-69 chlorinated, flammability limits, effect
ical shifts, experimental tests OP 77-68 electrochemical reduction in ethylene- diamine OP 85-66 nuclear magnetic resonance studies OP 76-68, 77-68, 79-68 spark-source mass spectra, using spin- ning electrode RI 6951; OP 74-68 automotive exhausts, gas chromatog- raphic analysis OP 179-69 chlorinated, flammability limits, effect of pressure and temperature OP 163-68
ical shifts, experimental tests OP 77-68 electrochemical reduction in ethylene- diamine OP 85-66 nuclear magnetic resonance studies OP 76-68, 77-68, 79-68 spark-source mass spectra, using spin- ning electrode RI 6951; OP 74-68 automotive exhausts, gas chromatog- raphic analysis OP 179-69 chlorinated, flammability limits, effect of pressure and temperature OP 163-68 in nitrogen tetroxide-nitrogen at- mospheres OP 163-68
ical shifts, experimental tests OP 77-68 electrochemical reduction in ethylene- diamine OP 85-66 nuclear magnetic resonance studies OP 76-68, 77-68, 79-68 spark-source mass spectra, using spin- ning electrode RI 6951; OP 74-68 automotive exhausts, gas chromatog- raphic analysis OP 179-69 chlorinated, flammability limits, effect of pressure and temperature OP 163-68 in nitrogen tetroxide-nitrogen at- mospheres OP 163-68 in oxygen-nitrogen atmospheres OP 163-68
ical shifts, experimental tests OP 77-68 electrochemical reduction in ethylene- diamine OP 85-66 nuclear magnetic resonance studies OP 76-68, 77-68, 79-68 spark-source mass spectra, using spin- ning electrode RI 6951; OP 74-68 automotive exhausts, gas chromatog- raphic analysis OP 179-69 chlorinated, flammability limits, effect of pressure and temperature OP 163-68 in nitrogen tetroxide-nitrogen at- mospheres OP 163-68 in oxygen-nitrogen atmospheres OP 163-68 diesel exhaust, gas chromatographic
ical shifts, experimental tests OP 77-68 electrochemical reduction in ethylene- diamine OP 85-66 nuclear magnetic resonance studies OP 76-68, 77-68, 79-68 spark-source mass spectra, using spin- ning electrode RI 6951; OP 74-68 automotive exhausts, gas chromatog- raphic analysis OP 179-69 chlorinated, flammability limits, effect of pressure and temperature OP 163-68 in nitrogen tetroxide-nitrogen at- mospheres OP 163-68 in oxygen-nitrogen atmospheres OP 163-68 diesel exhaust, gas chromatographic
ical shifts, experimental testsOP 77-68 electrochemical reduction in ethylene- diamineOP 85-66 nuclear magnetic resonance studies OP 76-68, 77-68, 79-68 spark-source mass spectra, using spin- ning electrodeRI 6951; OP 74-68 automotive exhausts, gas chromatog- raphic analysisOP 179-69 chlorinated, flammability limits, effect of pressure and temperature OP 163-68 in nitrogen tetroxide-nitrogen at- mospheresOP 163-68 diesel exhaust, gas chromatographic analysisOP 179-69 diesel-exhaust content, sampling and
ical shifts, experimental testsOP 77-68 electrochemical reduction in ethylene- diamineOP 85-66 nuclear magnetic resonance studies OP 76-68, 77-68, 79-68 spark-source mass spectra, using spin- ning electrodeRI 6951; OP 74-68 automotive exhausts, gas chromatog- raphic analysisOP 179-69 chlorinated, flammability limits, effect of pressure and temperatureOP 163-68 in nitrogen tetroxide-nitrogen at- mospheresOP 163-68 diesel exhaust, gas chromatographic analysisOP 179-69 diesel-exhaust content, sampling and aralysisOP 50-66
ical shifts, experimental testsOP 77-68 electrochemical reduction in ethylene- diamineOP 85-66 nuclear magnetic resonance studies OP 76-68, 77-68, 79-68 spark-source mass spectra, using spin- ning electrodeRI 6951; OP 74-68 automotive exhausts, gas chromatog- raphic analysisOP 179-69 chlorinated, flammability limits, effect of pressure and temperatureOP 163-68 in nitrogen tetroxide-nitrogen at- mospheresOP 163-68 diesel exhaust, gas chromatographic analysisOP 179-69 diesel-exhaust content, sampling and aralysisOP 50-66
ical shifts, experimental testsOP 77-68 electrochemical reduction in ethylene- diamineOP 85-66 nuclear magnetic resonance studies OP 76-68, 77-68, 79-68 spark-source mass spectra, using spin- ning electrodeRI 6951; OP 74-68 automotive exhausts, gas chromatog- raphic analysisOP 179-69 chlorinated, flammability limits, effect of pressure and temperatureOP 163-68 in nitrogen tetroxide-nitrogen at- mospheresOP 163-68 diesel exhaust, gas chromatographic analysisOP 179-69 diesel-exhaust content, sampling and aralysisOP 50-66
ical shifts, experimental testsOP 77-68 electrochemical reduction in ethyleneOP 85-66 nuclear magnetic resonance studies OP 76-68, 77-68, 79-68 spark-source mass spectra, using spin- ning electrodeRI 6951; OP 74-68 automotive exhausts, gas chromatog- raphic analysisOP 179-69 chlorinated, flammability limits, effect of pressure and temperatureOP 163-68 in nitrogen tetroxide-nitrogen at- mospheresOP 163-68 diesel exhaust, gas chromatographic analysisOP 179-69 diesel-exhaust content, sampling and analysisOP 50-66 halogenated, autoignition temperatures, in oxidant atmospheresRI 6748 flammability characteristicsRI 6748
ical shifts, experimental testsOP 77-68 electrochemical reduction in ethyleneOP 85-66 nuclear magnetic resonance studies OP 76-68, 77-68, 79-68 spark-source mass spectra, using spin- ning electrodeRI 6951; OP 74-68 automotive exhausts, gas chromatog- raphic analysisOP 179-69 chlorinated, flammability limits, effect of pressure and temperatureOP 163-68 in nitrogen tetroxide-nitrogen at- mospheresOP 163-68 diesel exhaust, gas chromatographic analysisOP 179-69 diesel-exhaust content, sampling and analysisOP 50-66 halogenated, autoignition temperatures, in oxidant atmospheresRI 6748 flammability characteristicsRI 6748
ical shifts, experimental testsOP 77-68 electrochemical reduction in ethylene- diamineOP 85-66 nuclear magnetic resonance studies OP 76-68, 77-68, 79-68 spark-source mass spectra, using spin- ning electrodeRI 6951; OP 74-68 automotive exhausts, gas chromatog- raphic analysisOP 179-69 chlorinated, flammability limits, effect of pressure and temperatureOP 163-68 in nitrogen tetroxide-nitrogen at- mospheresOP 163-68 diesel exhaust, gas chromatographic analysisOP 179-69 diesel-exhaust content, sampling and analysisOP 50-66 halogenated, autoignition temperatures, in oxidant atmospheresRI 6748 flammability characteristicsRI 6748 ignition characteristics, in constant- volume bombOFR 5-69 in diesel exhaust, determination, meth-
ical shifts, experimental testsOP 77-68 electrochemical reduction in ethylene- diamineOP 85-66 nuclear magnetic resonance studies OP 76-68, 77-68, 79-68 spark-source mass spectra, using spin- ning electrodeRI 6951; OP 74-68 automotive exhausts, gas chromatog- raphic analysisOP 179-69 chlorinated, flammability limits, effect of pressure and temperatureOP 163-68 in nitrogen tetroxide-nitrogen at- mospheresOP 163-68 diesel exhaust, gas chromatographic analysisOP 179-69 diesel-exhaust content, sampling and aralysisOP 50-66
ical shifts, experimental testsOP 77-68 electrochemical reduction in ethylene- diamineOP 85-66 nuclear magnetic resonance studies OP 76-68, 77-68, 79-68 spark-source mass spectra, using spin- ning electrodeRI 6951; OP 74-68 automotive exhausts, gas chromatog- raphic analysisOP 179-69 chlorinated, flammability limits, effect of pressure and temperatureOP 163-68 in nitrogen tetroxide-nitrogen at- mospheresOP 163-68 diesel exhaust, gas chromatographic analysisOP 163-68 diesel-exhaust content, sampling and analysisOP 50-66 halogenated, autoignition temperatures, in oxidant atmospheresRI 6748 flammability characteristicsRI 6748 ignition characteristics, in constant- volume bombOP 116-69 Hydrogen chloride, in gas effluent, pulver-
ical shifts, experimental testsOP 77-68 electrochemical reduction in ethylene- diamineOP 85-66 nuclear magnetic resonance studies OP 76-68, 77-68, 79-68 spark-source mass spectra, using spin- ning electrodeRI 6951; OP 74-68 automotive exhausts, gas chromatog- raphic analysisOP 179-69 chlorinated, flammability limits, effect of pressure and temperatureOP 163-68 in nitrogen tetroxide-nitrogen at- mospheresOP 163-68 diesel exhaust, gas chromatographic analysisOP 179-69 diesel-exhaust content, sampling and analysisOP 50-66 halogenated, autoignition temperatures, in oxidant atmospheresRI 6748 flammability characteristicsRI 6748 ignition characteristics, in constant- volume bombOP 116-69 Hydrogen chloride, in gas effuent, pulver- ized coal combustionRI 7260
ical shifts, experimental testsOP 77-68 electrochemical reduction in ethylene- diamineOP 85-66 nuclear magnetic resonance studies OP 76-68, 77-68, 79-68 spark-source mass spectra, using spin- ning electrodeRI 6951; OP 74-68 automotive exhausts, gas chromatog- raphic analysisOP 179-69 chlorinated, flammability limits, effect of pressure and temperatureOP 163-68 in nitrogen tetroxide-nitrogen at- mospheresOP 163-68 diesel exhaust, gas chromatographic analysisOP 163-68 diesel exhaust, gas chromatographic analysisOP 179-69 diesel-exhaust content, sampling and analysisOP 50-66 halogenated, autoignition temperatures, in oxidant atmospheresRI 6748 flammability characteristicsRI 6748 ignition characteristics, in constant- volume bombOP 116-69 Hydrogen chloride, in gas effluent, pulver- ized coal combustionRI 7260 in gas oil, identificationRI 642
ical shifts, experimental testsOP 77-68 electrochemical reduction in ethylene- diamineOP 85-66 nuclear magnetic resonance studies OP 76-68, 77-68, 79-68 spark-source mass spectra, using spin- ning electrodeRI 6951; OP 74-68 automotive exhausts, gas chromatog- raphic analysisOP 179-69 chlorinated, flammability limits, effect of pressure and temperatureOP 163-68 in nitrogen tetroxide-nitrogen at- mospheresOP 163-68 diesel exhaust, gas chromatographic analysisOP 163-68 diesel exhaust, gas chromatographic analysisOP 179-69 diesel-exhaust content, sampling and analysisOP 50-66 halogenated, autoignition temperatures, in oxidant atmospheresRI 6748 flammability characteristicsRI 6748 ignition characteristics, in constant- volume bombOP 116-69 Hydrogen chloride, in gas effluent, pulver- ized coal combustionRI 7260 in gas oil, identificationRI 642
ical shifts, experimental testsOP 77-68 electrochemical reduction in ethylene- diamineOP 85-66 nuclear magnetic resonance studies OP 76-68, 77-68, 79-68 spark-source mass spectra, using spin- ning electrodeRI 6951; OP 74-68 automotive exhausts, gas chromatog- raphic analysisOP 169-69 chlorinated, flammability limits, effect of pressure and temperatureOP 163-68 in nitrogen tetroxide-nitrogen at- mospheresOP 163-68 diesel exhaust, gas chromatographic analysisOP 163-68 diesel exhaust, content, sampling and analysisOP 50-66 halogenated, autoignition temperatures, in oxidant atmospheresRI 6748 flammability characteristicsRI 6748 ignition characteristics, in constant- volume bombRI 6748 ignition chloride, in gas effluent, pulver- ized coal combustionRI 7260 in gas oil, identificationOP 16-68
ical shifts, experimental testsOP 77-68 electrochemical reduction in ethyleneOP 85-66 nuclear magnetic resonance studies OP 76-68, 77-68, 79-68 spark-source mass spectra, using spin- ning electrodeRI 6951; OP 74-68 automotive exhausts, gas chromatog- raphic analysisOP 179-69 chlorinated, flammability limits, effect of pressure and temperatureOP 163-68 in nitrogen tetroxide-nitrogen at- mospheresOP 163-68 diesel exhaust, gas chromatographic analysisOP 163-68 diesel exhaust, gas chromatographic analysisOP 179-69 diesel-exhaust content, sampling and analysisOP 50-66 halogenated, autoignition temperatures, in oxidant atmospheresRI 6748 flammability characteristicsRI 6748 ignition characteristics, in constant- volume bombOP 116-69 Hydrogen chloride, in gas effluent, pulver- ized coal combustionRI 7260 in gas oil, identification B 642 in naphtha, identification OP 16-68 liquid-phase pyrolytic residues mass
ical shifts, experimental testsOP 77-68 electrochemical reduction in ethyleneOP 85-66 nuclear magnetic resonance studies OP 76-68, 77-68, 79-68 spark-source mass spectra, using spin- ning electrodeRI 6951; OP 74-68 automotive exhausts, gas chromatog- raphic analysisOP 179-69 chlorinated, flammability limits, effect of pressure and temperatureOP 163-68 in nitrogen tetroxide-nitrogen at- mospheresOP 163-68 diesel exhaust, gas chromatographic analysisOP 163-68 diesel exhaust, gas chromatographic analysisOP 179-69 diesel-exhaust content, sampling and analysisOP 50-66 halogenated, autoignition temperatures, in oxidant atmospheresRI 6748 flammability characteristicsRI 6748 ignition characteristics, in constant- volume bombOP 116-69 Hydrogen chloride, in gas effluent, pulver- ized coal combustionRI 7260 in gas oil, identification B 642 in naphtha, identification OP 16-68 liquid-phase pyrolytic residues mass
ical shifts, experimental testsOP 77-68 electrochemical reduction in ethyleneOP 85-66 nuclear magnetic resonance studies OP 76-68, 77-68, 79-68 spark-source mass spectra, using spin- ning electrodeRI 6951; OP 74-68 automotive exhausts, gas chromatog- raphic analysisOP 179-69 chlorinated, flammability limits, effect of pressure and temperatureOP 163-68 in nitrogen tetroxide-nitrogen at- mospheresOP 163-68 diesel exhaust, gas chromatographic analysisOP 163-68 diesel exhaust, gas chromatographic analysisOP 179-69 diesel-exhaust content, sampling and analysisOP 50-66 halogenated, autoignition temperatures, in oxidant atmospheresRI 6748 flammability characteristicsRI 6748 ignition characteristics, in constant- volume bombOP 116-69 Hydrogen chloride, in gas effluent, pulver- ized coal combustionRI 7260 in gas oil, identification B 642 in naphtha, identification OP 16-68 liquid-phase pyrolytic residues mass
ical shifts, experimental tests OP 77-68 electrochemical reduction in ethylene- diamine OP 85-66 nuclear magnetic resonance studies OP 76-68, 77-68, 79-68 spark-source mass spectra, using spin- ning electrode RI 6951; OP 74-68 automotive exhausts, gas chromatog- raphic analysis OP 179-69 chlorinated, flammability limits, effect of pressure and temperature OP 163-68 in nitrogen tetroxide-nitrogen at- mospheres OP 163-68 diesel exhaust, gas chromatographic analysis OP 163-68 diesel exhaust, gas chromatographic analysis OP 179-69 diesel-exhaust content, sampling and analysis OP 50-66 halogenated, autoignition temperatures, in oxidant atmospheres RI 6748 ffammability characteristics RI 6748 ignition characteristics, in constant- volume bomb OFR 5-69 in diesel exhaust, determination, meth- od OP 116-69 Hydrogen chloride, in gas effluent, pulver- ized coal combustion RI 7260 in gas oil, identification RI 7260 in gas oil, identification B 642 in naphtha, identification RI 7260 in gas oil, identification OP 127-65 oxygenated, in automotive exhausts, gas chromatographic analysis OP 179-69
ical shifts, experimental tests OP 77-68 electrochemical reduction in ethylene- diamine OP 85-66 nuclear magnetic resonance studies OP 76-68, 77-68, 79-68 spark-source mass spectra, using spin- ning electrode RI 6951; OP 74-68 automotive exhausts, gas chromatog- raphic analysis OP 179-69 chlorinated, flammability limits, effect of pressure and temperature OP 163-68 in nitrogen tetroxide-nitrogen at- mospheres OP 163-68 diesel exhaust, gas chromatographic analysis OP 163-68 diesel exhaust, gas chromatographic analysis OP 179-69 diesel-exhaust content, sampling and analysis OP 50-66 halogenated, autoignition temperatures, in oxidant atmospheres RI 6748 ffammability characteristics RI 6748 ignition characteristics, in constant- volume bomb OFR 5-69 in diesel exhaust, determination, meth- od OP 116-69 Hydrogen chloride, in gas effluent, pulver- ized coal combustion RI 7260 in gas oil, identification RI 7260 in gas oil, identification B 642 in naphtha, identification RI 7260 in gas oil, identification OP 127-65 oxygenated, in automotive exhausts, gas chromatographic analysis OP 179-69
ical shifts, experimental tests OP 77-68 electrochemical reduction in ethylene- diamine OP 85-66 nuclear magnetic resonance studies OP 76-68, 77-68, 79-68 spark-source mass spectra, using spin- ning electrode RI 6951; OP 74-68 automotive exhausts, gas chromatog- raphic analysis OP 179-69 chlorinated, flammability limits, effect of pressure and temperature OP 163-68 in nitrogen tetroxide-nitrogen at- mospheres OP 163-68 diesel exhaust, gas chromatographic analysis OP 163-68 diesel exhaust, gas chromatographic analysis OP 179-69 diesel-exhaust content, sampling and analysis OP 50-66 halogenated, autoignition temperatures, in oxidant atmospheres RI 6748 ffammability characteristics RI 6748 ignition characteristics, in constant- volume bomb OFR 5-69 in diesel exhaust, determination, meth- od OP 116-69 Hydrogen chloride, in gas effluent, pulver- ized coal combustion RI 7260 in gas oil, identification RI 7260 in gas oil, identification B 642 in naphtha, identification RI 7260 in gas oil, identification OP 127-65 oxygenated, in automotive exhausts, gas chromatographic analysis OP 179-69
ical shifts, experimental testsOP 77-68 electrochemical reduction in ethylene- diamineOP 85-66 nuclear magnetic resonance studies OP 76-68, 77-68, 79-68 spark-source mass spectra, using spin- ning electrodeRI 6951; OP 74-68 automotive exhausts, gas chromatog- raphic analysisOP 169-69 chlorinated, flammability limits, effect of pressure and temperatureOP 168-68 in nitrogen tetroxide-nitrogen at- mospheresOP 163-68 diesel exhaust, gas chromatographic analysisOP 163-68 diesel exhaust, gas chromatographic analysisOP 179-69 diesel-exhaust content, sampling and analysisOP 50-66 halogenated, autoignition temperatures, in oxidant atmospheresRI 6748 flammability characteristicsRI 6748 ignition characteristics, in constant- volume bombOP 116-69 Hydrogen chloride, in gas effluent, pulver- ized coal combustionRI 7260 in gas oil, identificationRI 7260 in gas oil, identificationRI 7260 in gas chromatographic analysisOP 127-65 oxygenated, in automotive exhausts, gas chromatographic analysisOP 127-65 oxygenated, in automotive exhausts, gas chromatographic analysisOP 125-66 unsaturated, infrared spectraRI 6854 mass spectra
ical shifts, experimental tests OP 77-68 electrochemical reduction in ethylene- diamine OP 85-66 nuclear magnetic resonance studies OP 76-68, 77-68, 79-68 spark-source mass spectra, using spin- ning electrode RI 6951; OP 74-68 automotive exhausts, gas chromatog- raphic analysis OP 179-69 chlorinated, flammability limits, effect of pressure and temperature OP 163-68 in nitrogen tetroxide-nitrogen at- mospheres OP 163-68 diesel exhaust, gas chromatographic analysis OP 163-68 diesel exhaust, gas chromatographic analysis OP 179-69 diesel-exhaust content, sampling and analysis OP 50-66 halogenated, autoignition temperatures, in oxidant atmospheres RI 6748 ffammability characteristics RI 6748 ignition characteristics, in constant- volume bomb OFR 5-69 in diesel exhaust, determination, meth- od OP 116-69 Hydrogen chloride, in gas effluent, pulver- ized coal combustion RI 7260 in gas oil, identification RI 7260 in gas oil, identification B 642 in naphtha, identification OP 16-68 liquid-phase pyrolytic residues, mass spectra OP 127-65 oxygenated, in automotive exhausts, gas chromatographic analysis OP 179-69

.

F

1

(

() () () () ()

332

.

Hydrocarbon emissions, automobile ex-OP 80-68 haust Hydrocarbon ruels, autoignition tempera------ OP 84-65 tures _ from supplementary sources, projec-Hydrocarbon fuel vapors, in air, upper flammability limits, effect of temperature ___ OP 148-67 OP 75-67 Hydrocarbon fuel vapor-air mixtures, hotgas ignition temperatures _____ RI 6857 Hydrocarbon hemisphere, diagram ____ OP 16-68 RI 6857 Hydrocarbon isomers, various sources, similarities Hydrocarbon-oxides of nitrogen-air mix-tures, irradiation-chamber ex-_ RI 7122 periments _____ OP 115-67 Hydrocarbon synthesis, molybdenum cata-lysts in, investigation _____ RI 6974 noble-metal catalysts in, investigation ____ RI 6974 tungsten catalysts in, investigation ____ _ RI 6974 Hydrochloric acid, stainless steel corrosion rate in, effect of cobalt content ____ RI 6591 Hydrocracking, prehydrogenated shale oil OP 19-67 RI 6591 Hydrocyanic acid, production, from coal derivatives, ultrasonic irradiation RI 7027 method . Hydrocyclone, fine-coal cleaning with, performance tests ______ RI 7067 Hydrofluoric acid, recovery, from waste fluosilic acid, preliminary study__ RI 7213 ._ RI 7067 Hydrogasification, raw bituminous coal, method OP 89-67 process, economic analysis _____ OP 89-67 hale oil, methods ______ OP 20-66 Hydrogen, flammability characteristics _____ B 627 from coal, effect of rank ______ OP 166-68 in coal, determination, method ______ B 638 in petroleum-related materials, auto-mated X-ray determination ____ OP 29-66 liquid, safety problems ______ OP 150-65 production, from coal derivatives, ultrasonic irradiation method ______ Redlich-Kwong equation of state, modifi-_ RI 7027 cation ______ RI 7099
reduction of galena with ______ RI 6662
reduction of sphalerite with ______ RI 6662
thermonhysical properties ______ RI 662 thermophysical properties ______ IC 8317 trace quantities, in helium, detection, chromatographic procedure for OP 150-68 Hydrogen-1, magnetic shieldings, substituted pyridines ______ Hydrogen bonding, in asphalt, infrared OP 79-68 OP 15-68 study Hydrogen-coal mixtures, temperatures, in externally heated tubes, determinexternally heated tubes, determin-ing, method ______ IC 8343 Hydrogen cyanide, production, from coal and ammonia ______ OP 12-68 from coal reacted with ammonia, study RI 6994 Hydrogen detectors, evaluation _____ OP 96-68 Hydrogen deuteride, mass spectral analysis_ B 634 Hydrogen fluoride, separation, from hydro-gen fluoride-silicon tetrafluoride . RI 6877 ide reductant _____ RI 6712 Hydrogen sulfide, from molybdenite, thermite reduction method _____ RI_7185 mass spectral analysis _____ B 634 Hydrogenation, aromatic carbinols, un-der hydroformylation condi-tions, kinetics ______ OP 178-67 benzhydrol, under hydroformylation conditions, kinetics ______ OP 178-67 coal, at extreme temperatures and pressures, results _____ OP 38-68 shale oil, cobalt molybdate catalyst ____ OP 20-68 depleted upprive actalyst depleted uranium catalyst _____ OP 20-68

1

Ĵ

)

 τ_{1}^{-1}

.

. .

> Hydrogenolysis, identification of sulfur compounds in petroleum by, _ OP 45-67 method ___ vapor-phase catalytic, solid microsamples _____ OP 140-65 Hydrometallurgy, annual review ___ MY 1964 (v. I) Hydroponics, coal-derived humates in, ef-__ IC 8376 fect ___. Hydroxyethylenediaminetriacetic acid, use, in rare-earth element separation _ RI 7175 by ion exchange 8-Hydroxyquinoline, use, in determination of trace elements, in high-purity tungsten _____ RI 7072 1 Idaho, anorthosite, as potential aluminum source _____ IC 8335 beryllium resources, investigation _____ RI 7148 black-sand minerals, placer deposits ____ IC 8268, Blackfoot River district, phosphate-rock resources Blackfoot River Reservoir district, phos-RI 6801 phate-rock resources _____ Boise area, auto wrecking and scrap **RI 6801** processing industries _ SP 1-67 Chesterfield district, phosphate-rock resources RI 6801 coal, sulfur content, forms _____ IC 8301 Crow Creek district, phosphate-rock resources Fort Hall district, phosphate-rock re-_ RI 6801 _ RI 6801 sources ____ Galena mine, stress ellipsoid determination, in rock-burst-prone area __ **RI 6997** Gay mine phosphate ore, beneficiation _ RI 6930 study Georgetown Canyon phosphate ore, beneficiation study _______ RI 6930 helium-bearing natural gases, analyses___ IC 8302 kaolin. as potential aluminum source ... IC 8335
>
> xaoin. as potential aluminum source ____ IC 8335
>
>
> mercury, production _____ IC 8252
>
>
> mercury mines, description _____ IC 8252
>
>
> mercury occurrences _____ IC 8252
>
>
> mercury prospects _____ IC 8252
>
>
> mines, visitors' guide _____ SP 2-67
>
>
> minerals, production, annual data _____ MY 1968 (v. I-II, III)
>
>
> mineral industry. annual review
>
> mineral industry, annual review MY 1968 (v. III) TC 8381 mineral transportation costs _____ IC 8381 Montpelier district phosphate-rock re-sources . RI 6801 sources Mount Taylor district, phosphate-rock resources ______ RI 6801 occupational diseases, workmen's compen-sation laws on ______ B 623 phosphate fines, physical properties _____ RI 7205 RI 6801 phosphate industry, evaluation ______ RI 6801 phosphate minerals, beneficiation study___ RI 6993 phosphate ore, beneficiation study__RI 6749, 6751 petrography _____ RI 6751 phosphate resources, evaluation ______ RI 6801 silver, potential resources ______ OFR 22-69 Slug Creek district, phosphate-rock resources Snake River Range district, phosphate rock, resources Star mine, backfilled stopes, load dis-__ RI 6801 RI 6934 placement measurement in _ RI 7038

deep-mine rock stress, determination__ RI 6887

333

Idaho, Star mine, rock-deformation meas-
urements, analysis RI 6747 Swan Valley district, phosphate-rock re
SOURCER RI 6801
titanium mineral deposits, survey IC 8290
Trail Creek district, phosphate-rock re- sources RI 6801
zircon resources IC 8268
zircon resources IC 8268 Ignitibility, coal-dust cloud, by explosives RI 6815
coal dust-methane-air mixtures, effect
of ash content on OP 93-68 Ignition energy, determination, in gaseous
mixtures, techniques and appa-
mixtures, techniques and appa- ratus RI 7009
ignition equivalences, coal dust-methane
mixtures RI 6931 Ignition hazard, tank atmospheres, dur-
Ignition hazard, tank atmospheres, dur- ing fuel loading, investigation OP 56-67
· textile nders, by static sparks, in oxy-
gen atmospheres OP 64-65 Ignition limits, hybrid coal dust-methane
mixtures RI 6931 Ignition temperatures, hot gas, combustible
Ignition temperatures, hot gas, combustible
vapor-air mixtures RI 6857 hydrocarbon fuel vapor-air mixtures RI 6857
Illinois, clays, for lightweight aggregates,
evaluation RI 6614 • coal, analyses B 643; RI 6622, 6792,
• coal, analyses B 643; RI 6622, 6792,
6904, 7104, 7219 chlorine content BI 6579
major ash constituents RI 7240
major ash constituents RI 7240 oxygen in, direct determination, method RI 6753
phosphorus content RI 6579 potassium content RI 6579 sodium content RI 6579 sulfur content, forms RI 6579 sulfur content, forms RI 6579 sulfur content, forms RI 7240 fusibility data RI 7240 coal carbonization, light oil from, analysis B 643 bight oil wild B 643
potassium content R1 6579
sulfur content forms IC 8301
coal ash, analyses RI 7240
fusibility data RI 7240
coal carbonization, light oil from, analysis B 643
light oil yield B 643 tar from, analysis B 643 tar yield B 643 crude oil, production RI 7059
tar yield B 643
crude oil, production RI 7059
sulfur content
sulfur content IC 8342 ferrous scrap industry, survey IC 8342 fire clay, as potential aluminum source IC 8335 fluorspar deposits IC 8339 fluorspar ore, selective flotation RI 6953 heavy crude oil, production forecast IC 8352
fluorspar deposits IC 8339
fluorspar ore, selective flotation RI 6953
heavy crude oil, production forecast IC 8352
resource IC 8352 thermal projects IC 8352
heavy crude oil reservoirs, survey IC 8263
thermal projects IC 8352 heavy crude oil reservoirs, survey IC 8263 mines, visitors' guide SP 2-67 minerals, production, annual data
MY 1968 (v. I-II, III)
mineral industry, annual review
MY 1968 (v. III) occupational diseases workmen's compan-
sation laws on B 623
occupational diseases, workmen's compen- sation laws on B 623 oil reservoirs, production-rate data IC 8362 well-depth data IC 8362
well-depth data IC 8362
oilfields, shallow M 12 petroleum-impregnated rocks, surface and
shallow M 12 shales, for lightweight aggregates, evalu-
shales, for lightweight aggregates, evalu-
ation
erties destroying, method RI 6000
chloroform-extract yield, investiga-
tion
Ilmenite, magnetic susceptibility IC 8360
resources OFR 3-68
U.S. IC 8290 separation from quartz, in matrix-type
magnetic separator RI 6722
Ilsemannite, magnetic susceptibility IC 8360
In situ leaching, low-grade copper ore ma-
In situ leaching, low-grade copper ore ma- terials, description IC 8341

Incendivity, detonating cord, in natural
gas-air mixture, investigation RI 7149
Incendivity, detonating cord, in natural gas-air mixture, investigation RI 7149 permissible explosives, in coal dust_gas-
air mixtures RI 6815, 7127 Incineration, refuse and waste, bibliog- raphy OP 8-67 Incineration research, bibliography OP 8-67 Incineration technology, guide OP 104-69 Incinerators, single-chamber cylindrical, with temponitiel owner on air study RI 6908
raphy
Incineration research, bibliography OP 8-67
Incineration technology, guide OP 104-69
incinerators, single-chamber cylindrical,
Incinerator combustion products, clean- ing, principles OP 109-69 Incinerator residues, composition OP 44-67
Incinerator residues composition OP 44-67
metals and minerals in reclaiming.
laboratory study OP 60-68
metals and minerals in, reclaiming, laboratory study OP 60-68 methods OP 171-69 municipal, characteristics RI 7204
municipal, characteristics RI 7204
composition RI 7204
reclaiming minerals from SP 3-68
composition R1 7204 reclaiming minerals from SP 3-68 Ignitions, incipent, methane, quenching, process and method, patent P 15-69 pulying for PL 7230
process and method, patent P 15-69
Ignition characteristics, diesel fuels, in constant-volume bomb OFR 5-69
constant-volume bomb
hydrocarbons, in constant-volume bomb OFR 5-69
Ignition hazard, triboelectrified fluids OP 60-69
Ignition temperatures, engine ons OP 116-69
hydraulic nulds OF 116-09
Ignition temperatures, engine oils OP 118-69 hydraulic fluids OP 118-69 lubricants OP 118-69 Incinerator residues, metal and mineral
volues in physical and chem-
values in, physical and chem- ical beneficiation of OP 171-69
Inconel, nalladium denosits on, from aque-
Inconel, palladium deposits on, from aque- ous electrolyte RI 7016
Indans, from low-temperature neutral oil.
identification B 637
identification B 637 Indanols, idenols from, by catalytic de- hydrogenation OP 52-65
Indenes, from low-temperature coal-tar neu-
Indenes, from low-temperature coal-tar neu- tral oil, identification B 637
Indenols, structure determination OP 33-67
synthesis, by catalytic dehydrogenation
of indanols OP 52-65 Indentations, identifying texture by means of, method, patent P 19-69
of, method, patent P 19-69
Indexes, cohesion, for pulverized coal, for gravity flow calculations OP 4-69
Index numbers, mineral-industry, methods
of constructing IC 8275
India, mineral industry, annual
review MY 1968 (v. IV)
Indiana, coal, analyses B 643; RI 6622, 6792,
6904, 7104, 7219
6904, 7104, 7219 chlorine content
major ash constituents RI 7240 oxygen in, direct determination, method RI 6753
oxygen in, direct determination, method RI 6753
potassium content
phosphorus content RI 6579 sodium content RI 6579
sulfur content, forms IC 8301
coal ash, analyses RI 7240
fusibility data RI 7240
coal carbonization, light oil from, analysis B 643
light oil yield B 643
tar from, analysis B 643
tar vield B 643
crude oil, production RI 7059
sulfur content
ferrous scrap industry, survey IC 8342
hoover and oil production forecast IC 8855
heavy crude oil, production forecast IC 8352
resource IC 8352
resource IC 8352
resource IC 8352
heavy crude oil, production forecast IC 8352 resource IC 8352 thermal project IC 8352 heavy crude oil reservoirs, survey IC 8263 mines, visitors' guide SP 2-67 minerals, production, annual data
heavy crude oil, production forecast IC 8352 resource IC 8352 thermal project IC 8352 heavy crude oil reservoirs, survey IC 8263 mines, visitors' guide SP 2-67 minerals, production, annual data MY 1968 (v. I-II, III)
heavy crude oil, production forecast IC 8352 resource IC 8352 thermal project IC 8352 heavy crude oil reservoirs, survey IC 8263 mines, visitors' guide SP 2-67 minerals, production, annual data MY 1968 (v. I-II, III) mineral industry, annual review
heavy crude oil, production forecast IC 8352 resource IC 8352 thermal project IC 8352 heavy crude oil reservoirs, survey IC 8263 mines, visitors' guide SP 2-67 minerals, production, annual data MY 1968 (v. I-II, III)

ł

.

トモトモトモ

l E B

Indiana, natural gas, analyses IC 8316 occupational diseases, workmen's compen- sation laws on B 623 olide the low
sation laws on B 623
oilfields, shallow M 12 rural area, auto wrecking and scrap
Drocessing industries SP 1-67
shales, expansion properties, tests RI 6574
shales, expansion properties, tests RI 6574 Indium, annual data MY 1968 (v. I-II) Indium sulfate, anhydrous, thermodynamic
Indonesia, crude oil, low-sulfur, composition B 642
production RI 7059
mineral industry, annual re-
Indonesia, crude oil, low-sulfur, composition B 642 production RI 7059 sulfur content RI 7059 mineral industry, annual re- view MY 1968 (v. IV) Indium, consumption B 630 prices R 630
prices B 630
prices B 630 production B 630
properties B 630 reserves B 630
technology B 630
uses B 630 Indium industry, organization B 630
Indium production, problems B 630 Indium phosphide, high-temperature heat
Indium phosphide, high-temperature heat
content and entropy RI 6592 Indium sulfate, anhydrous, heat of forma-
tion RI 6687 Indium sulfide, high-temperature heat con-
tent and entropy RI 6592 Industrial diamonds, see Diamonds, industrial
Industrial diamonds, see Diamonds, industrial Infrared analysis, quantitative multi-
component, minerals occurring in coal
rapid, multicomponent mixtures, four-
compartment cell method RI 6787
Infrared cavity cells, transferring gas- liquid chromatography samples
in, method OP 12-67
Infrared ruminescence, coal and graphite OF 23-67 Infrared reflectance, coal and graphite OP 23-67 Infrared spectra, alkylacetylenes OP 173-68 condensed thiophenes RI 6911 low-frequency, coal minerals OP 13-68 organic compounds, in region 15 to 200 microna RI 6630
Infrared spectra, alkylacetylenes OP 173-68
low-frequency, coal minerals OP 13-68
organic compounds, in region 15 to 200
nicrons RI 6630 liquid-vapor frequency shifts OP 33-65 torsional frequencies OP 33-65 oxygenates in automobile exhausts OP 43-65 selected upsaturated hydrocarbons and
torsional frequencies OP 33-65
oxygenates RI 6854 Infrared spectrometry, coal B 640
Infrared spectrophotometry, methane in
mine air, comparison with gas chromatography RI 7179
chromatography RI 7179 Infrared spectroscopy, minerals in coal OP 28-67
techniques B 632 use, in coal structure research OP 22-67
Infrared vibrations, benzene rings in con- densed thiophenes RI 6911
Infusion-hole plug, device for securing, patent P 14-66
Inhibitors, ammonium nitrate-pyritic ore
mixtures reactivity RI 7187 Injuries, coal-mine, annual data IC 8287, 8355, 8389, 8419 metallic mineral industries IC 8337, 8378, 8433 mineral industries, annual data WY 1968 (w. L.H. HI)
IC 8287, 8355, 8389, 8419 metallic mineral industries IC 8337, 8378, 8433
nonmetallic mineral industries IC 8336
Inland waterways, barge transportation on, mineral commodities IC 8431
Interfacial tensiometer, pendant drop, de-
modifications IC 8323
Interferometer optical laser-powered, de-
sign and operation RI 7142

.

しろしょしうしう

Interindustry transactions table, re- gional, computer program for OFR 18-69
Indide in brings aboristry OP 52 60
Iodide, in brines, chemistry OP 53-69 origin OP 53-69 in oilfield brines, determination OP 18 67 75 67
in oilfield brines, determination RI 6959; OP 18-67, 75-67
Iodine, annual data
chemical-industry use, Calif IC 8244
consumption B 630 imports B 630
prices B 630
production B 630
properties B 630 reserves B 630
technology B 630
uses B 630
Iodine batteries, performance tests OP 69-68 Iodine-coal batteries, performance tests OP 69-68
Iodine compounds, uses B 630 Iodine industry, organization B 630
Iodine industry, organization B 630
problems B 630 Ion, thermodynamic functions, standard-
121ng UP 94-6a
Ion beam, instability, in mass spectrom- eter, eliminating, method OP 12-69
Ion-exchange resins, uranium recovery
from, improved Eluex process RI 7227
Ion-exchange resin-loaded papers, chem- ical characteristics OP 18-66
ical characteristics OP 18-66 X-ray spectrographic characteristics OP 18-66
Ion-exchange separation, rare-earth ele- ments, method, patent P 9-66
Iowa, coal, analysesRI 6622, 6792, 6904, 7104, 7219
chlorine content RI 6579
major ash constituents RI 7240
potassium content RI 6579
major ash constituents RI 7240 phosphorus content RI 6579 potassium content RI 6579 sodium content RI 6579
sulfur content, forms IC 8301 coal ash, analyses RI 7240
fusibility data RI 7240
ferrous scrap industry, survey IC 8342
fusibility data RI 7240 ferrous scrap industry, survey IC 8342 mines, visitors' guide SP 2-67 minerals, production, annual data
MY 1968 (V, 1-11, 111)
mineral industry, annual review MY 1968 (v. III)
occupational diseases, workmen's compen- sation laws on B 623
rural counties, auto wrecking and scrap
rural counties, auto wrecking and scrap processing industries SP 1-67
Iran, crude oil, production RI 7059 sulfur content RI 7059 mine rescue training, proposed OP 141-67
sulfur content RI 7059
mineral industry, annual review
MY 1968 (v. IV)
Iraq, crude oil, production RI 7059 sulfur content RI 7059
mineral industry, annual review
MY 1968 (v. IV)
Ireland, mineral industry, annual review MY 1968 (v. IV)
Iridium, annual data
electrodeposition, from aqueous electro-
lytes RI 7023 from fused sodium cyanide electrolyte RI 7023
Iron annual data MY 1968 (v. I-II)
blast-furnace, prerefining, patent P 18-66
blast-furnace, prerefining, patent P 18-66 byproduct, recovery from bauxite RI 6944 recovery from high-silica and titania
bauxite RI 6939 chlorination kinetics, study RI 6649 onthelation
enthalpy RI 6649
enthalpy RI 6723 ferrous, oxidation rate, in acid environ-
ment, study
ess, feasibility RI 7079

.

.

Iron, from wustite reduction in carbon
monoxide, effect of promoter ma-
terials on OP 5-68 heat of fusion, diphenyl ether calorimet- ric determination of RI 6723 in coal, determination RI 7124 Mossbauer spectroscopy OP 75-68 in oilfield waters, spectrometric deter-
heat of fusion, diphenyl ether calorimet-
ric determination of RI 6723
Moschever epotheceopy OR 55 69
in alfold waters spectroscopy data
mination using plasma are OP 17-67
mination, using plasma arc OP 17-67 in sulfate solutions, oxidation-precipi-
tation reaction rate OP 162-69
liquid, vapor pressure OP 38-67
tation reaction rate OP 162-69 liquid, vapor pressure OP 38-67 metallic, metallothermic reduction of cop- per oxide with RI 7301 migration, in cerium metal, solid-state electrolysis
per oxide with RI 7301
migration, in cerium metal, solid-state
electrolysis RI 6894 molten, copper removal from, sodium
molten, copper removal from, sodium
sulfate additions for OP 165-69 sodium sulfate slag method labora-
sodium suitate siag method labora-
tory study RI 7199 reduction of magnetite to, in hydrogen,
kinatica RI 7080
kinetics RI 7080 reduction roasting with, patent P 11-66
Iron and steel industry, refractories, tech-
nologic development IC 8382
refractory use patterns IC 8382
refractory use patterns IC 8382 Iron blast furnace, mathematical model, ferrous oxide reduction rate RI 7128 reduction-zone mathematical model RI 6975 thermochemical model, development RI 7031
ferrous oxide reduction rate RI 7128
reduction-zone mathematical model RI 6975
thermochemical model, development RI 7031
Iron borings and turnings, in magnetic
roasting of low-grade iron ores,
Use, study KI 5/04
from iron nitrides, propagation B 631
magnetic properties B 631
Iron borings and turnings, in magnetic roasting of low-grade iron ores, use, study
stoichiometry B 631
thermal reactions B 631
X-ray diffraction patterns B 631 Iron-carbon melts, oxygen injection in, me- chanics of fuming RI 7047 oxygen top-blowing in, mechanics of
Iron-carbon melts, oxygen injection in, me-
chanics of fuming RI 7047
oxygen top-blowing in, mechanics of
Iron-cerium alloy, component separation, field freezing technique RI 7186
neid ireezing technique RI /186
Iron-chromium phase diagram RI 6636 Iron concentrates, production, from high-
silica iron area method BI 7314
recovery from high-iron bauxite. labora-
silica iron ores, method RI 7314 recovery from high-iron bauxite, labora- tory tests RI 6914
Iron deposits, Alaska, examination OFR 8-65
Iron flotation pulps, soluble calcium in.
measurement OP 24-66 Iron-gadolinium phase diagram RI 6636 Iron industry, automation in, applications OFR 24-69
Iron-gadolinium phase diagram RI 6636
Iron industry, automation in, applications OFR 24-69
Iron-manganese alloys, manganese vapor
pressure, determination RI 6807
Iron mines, open-pit, pit and dump re-
Iron mines, open-pit, pit and dump re- habilitation, discussion OP 74-69
Iron minerals nonmagnetic, conversion to
magnetic form, reduction tech-
Dique KI (242
Iron mining industry, North America,
Iron mining industry, North America, problems OP 66-67
Iron nitrides, iron carbides from, prepara-
tion B 631
Iron ore, anionic flotation of silica from,
offect of soluble calcium ion OP 30-65
annual data MY 1968 (v. I-II)
brown, resources, Ala IC 8261
annual data
consumption B 630 direct-shipping, upgrading, concentration
direct-shipping, upgrading, concentration
method for KL 7314
grades B 630 hematitic-goethitic, flotation concentra-

hematitic-goethitic,	flotation	concentra-	
tion methods			RI 6976

• · · · · · · · · · · · · · · · · · · ·
Iron ore, high-silica, metallic concentrate production from, method RI 7314
imports B 630 improved flotation treatment, selective flocculation method, patent P 7-66
flocculation method, patent P 7-66 Lake Superior district, metallurgical evaluation BI 6895
Lake Superior district, metallurgical evaluation RI 6895 low-grade, flotation tests RI 6991 magnetic roasting, research, review OP 92-67 scrap iron as reductant, study RI 6764
scrap iron as reductant, study RI 6764 manganiferous low-grade manganese
manganiferous, low-grade, manganese recovery from, method RI 6596 manganese recovery from, ammonium
sulfate leaching process RI 7156 reduction roasting-acid solution tech-
niques RI 6775 marginal, upgrading, concentration meth-
od for RI 7314 metallization of, using solid reductants RI 7290
multiple fluid-bed reduction of, esti- mating results, graphical method OP 87-69
nonmagnetic, reduction roasting of RI 7242 phosphorus removal from, process, patent P 10-68
prereduced, briquets, direct steel- making with electric arc fur-
nace method OP 187-68 powdered, direct steelmaking with, electric arc furnace method OP 187-68
electric arc furnace method OP 187-68 prices B 630
prices B 630 production B 630 reduction rate, determination RI 6827 reduction roasting, with ferrous scrap,
reduction roasting, with ferrous scrap, laboratory tests OP 98-65
reserves B 630 solid fuel reduction of, with lignite RI 7290
laboratory tests OP 98-65 reserves B 630 solid fuel reduction of, with lignite RI 7290 technology B 630 Iron-ore concentrate, pelletizing, simul-
tion anthracite OP 35-66
lignite OP 35-66 Iron ore deposits, Alaska, reconnaissance OFR 1-69
Iron ore deposits, Alaska, reconnaissance OFR 1-69 S. Dak., investigation IC 8278 Wyo., investigation IC 8315
Iron-ore fines, agglomerating, method, patent P 7-65
Iron ore flotation, present commercial practices OP 84-67
practices OP 84-67 prospects OP 84-67 research, review OP 92-67
research, review OP 92-67 starch products used in, infrared evalua- tion RI 7306
tion RI 7306 Iron-ore industry, North American, prob- lems OP 73-66
organization B 630 problems B 630
Iron ore pellets, from magnetc taconite, production cost, discounted cash
production cost, discounted cash flow model OP 133-69 indurated, high-temperature compres-
high-temperature swelling proper- ties OP 110-69
DRVSICAL STRENGTH, AT Elevated tempera-
tures RI 7060 mechanical strength, at high temperature RI 6814
reducibility OP 110-69 reduction degradation OP 110-69
prereduced, carbon monoxide dispropor- tionation on, laboratory study RI 7064
economic forecast OP 60-66 improved process for OP 22-68 sulfide method OP 34-69 in blast furnace burdens, effect OP 130-66
sulfide method OP 34-69 in blast furnace burdens. effect OP 130-66
production methods UP hU-hh
research, comments OP 101-68 uses OP 60-66
reduced, blast-furnace smelting of, patent P 12-66 reduction, rate-coefficient measurement, mathematical model RI 7031
mathematical model RI 7031 research, review OP 92-67

.

.

R

ELE

-

Iron ore pellets, unfired, parameters affect- ing reduction-induration of RI	2069
physical strength, at elevated temper-	
atures RI T	
er, tests OP 102 clay as binder tests OP 103	-68
er, tests OP 102 clay as binder, tests OP 102 Iron-ore pelletizing industry, automa- tion in, applications OFR 24 Iron ore resources, Appalachian region RI 6 Iron ore waste, beneficiation OP 99	-00
Iron ore resources. Appalachian region RI 6	₩69 1966
Iron ore waste, beneficiation OP 99	-68
disposal methods	5430 1/25
occurrence OP 99 utilization OP 99 Iron oxide, in coal ash, determination RI	-68
Iron oxide, in coal ash, determination RI	240
reduction of, adsorption phenomena in	
study RI (with carbon monoxide, mechanism RI (832
Iron oxide pigments, annual data MY 1968 (v. I	-II)
Iron powder, blast furnace injection	-00
Iron phyllosilicates, Minn., analyses IC & Iron phyllosilicates, Minn., analyses OP 16 Iron powder, blast furnace injection with, results OP 130 Iron scrap industry, in intermountain States, survey IC & in North Central States, survey IC & in South Central States, survey IC & Iron sludge uranium.plant scendium recove)66
States, survey IC 8	344
in South Central States, survey IC &	342 289
Iron sludge, uranium-plant scandium recov- ery from, technique RI (
Iron sulfate-manganese sulfate solu- tions, iron from, oxidation-pre-	1000
cipitation rate OP 162	-69
cipitation rate OP 162 Iron-titanium alloys, reaction rate, with ti-	
tanium trichloride in molted so- dium chloride RI 7	039
Iron tricarbonyl-diene complexes, carbon 13 nuclear magnetic resonance	
spectrometry OP 31	-67
Iron-zinc-oxygen system, thermodynamic properties, at elevated tempera-	
tures	5769 1999
refractory use patterns IC 8	382
Irradiation, anthracite, effect on specific surface area RI (864
electron, coals, electron paramagnetic resonance studies of OP 147	
flash, coal, comparison with high-temper-	-08
ature carbonization products RI 6 gaseous products from, distribution OP 34	868
gamma, anthracite, effect on properties RI 6	657
in anthracite-chlorine reaction, effect. RI f	881 881
gamma, anthracite, effect on properties RI 6 in anthracite-chlorine reaction, effect. RI 6 in anthracite-fluorine reaction, effect. RI 6 pyridines, reaction OP 42 laser, coal, comparison with high-temper-	-69
ature coal carbonization produces RI of	868
gaseous products from, distribu- tion OP 34	
in argon, gaseous products from,	
distribution OP 36 in nitrogen, gaseous products from,	
distribution OP 36 in various atmospheres, gaseous	67
products from, distribution OP 36	<u>⊢67</u>
photographic study OP 140 coal macerals, product gas from OP 139	68 68
coal macerals, product gas from OP 13 eraphite, photographic study OP 140 ultrasonic, coal derivatives, results RI 5	-68 027
Irrigation canals, seepage from, reducing.	100
Irrigation canals, seepage from, reducing, chemical methods, tests RI 6 sodium carbonate technique RI 6	584
Island Pav National Wildlife Refuge,	
Fla., mineral appraisal GS 12	-68
Island Creek Coal Co. mine, Va., coal, wash- ing characteristics RI 6	740
Isomers alkane, calculation of, method BI	

1

) ł

ς.

Isomers, alkane, calculation of, method ____ RI 7122

Isopentane-natural gas mixture, compres-sibility factors, cell for determin-ing ______OP 132-67, 133-67 Isopropylamine, enthalpy of combustion OP 184-67 enthalpy of formation ______OP 184-67 Isopropylpyrroles, thermal reactions ______RI 6720 1-Isopropylpyrrole, autoxidation ______OP 195-67 Isotopic X-ray analyzers, evaluation of detectors for ______OP 134-67 Israel, mineral industry, annual review _______MY 1968 (v. IV) phosphate deposits _______RI 6935 Italy, coal, production and consumption____ IC 8380 mineral industry, annual re-view ______MY 1968 (v. IV) Ivory Coast, mineral industry, annual review ______ MY 1968 (v. IV)

1

Jackson County, Ala., coal resources IC 8295
Jamaica, mineral industry, an- nual review MY 1968 (v. IV)
Jamesonite, magnetic susceptibility IC 8383
Jamesonite, magnetic susceptibility TO 6565
Japan, coal, production and consumption IC 8380 mineral industry, annual re-
view
Jasper quartzite, elastic moduli, at elevated
temperatures RI 7269
Jet fuel, conversion of coal-hydrogenation
middle oil to RI 6655
conversion of low-temperature tar oil to RI 6655
flammability characteristics B 727
hydrocarbon, autoignition RI 6654
autoignition temperature RI 6654
properties RI 6654
properties RI 6654 Jet-fuel tanks, vapor space, flammable
zones in, study OP 56-67
Jetstreams, coal-cutting effectiveness, de-
termination DT 7000
termination RI 7090
Jewell Smokeless Coal Corp. mine, Va.,
coal, washing characteristics RI 6740
Johnny Gum No. 1 mine, W. Va., coal,
washing characteristics RI 6825
Joint systems, surface, correlation with
hydraulically induced fractures OP 134-69
Jordan, mineral industry, an-
Jordan, mineral industry, an-

annual review _____ MY 1968 (v. IV) phosphate deposits _____ RI 6935 Jordanite, magnetic susceptibility _____ IC 8383

κ

Kaiparowits coalfield, Utah, steam-electric
plant utilization potential IC 8326
Kaiparowits Plateau field, Utah, coal, po-
tential carbonization yield RI 6990
Kaliophite, entropy RI 7073
heat of formation RI 6873
high-temperature heat content RI 7073
Kampersian chromite, carbon reduction of,
study RI 6755
Kanab coalfield, Utah, steam-electric plant
utilization potential IC 8326
Kane oilfield, Pa., waterflood, theoretical and field performance RI 6917
Kane sand, Pa., core samples, density and
norosity data IC 8330
porosity data IC 8330 Kansas, coal, analyses RI 6622, 6904,
6792, 7104, 7219
major ash constituents RI 7240
oxygen in, direct determination, meth-
odRI 6753
sulfur content, forms IC 8301
coal ash. analyses RI 7240
fusibility data RI 7240
copper occurrences, in Permian for-
mations OFR 10-69

Kansas, crude oil, production RI 7059
Raisas, trute oil, production RI 7059 sulfur content RI 7059 Dubros, Inc., steamflood project, de- scription OP 117-69 ferrous scrap industry, survey IC 8289 heavy crude oil, production forecast IC 8352 resource IC 8352
scription OP 117-69
heavy crude oil, production forecast IC 8289
resource IC 8352
thermal projects IC 8352
heavy crude-oil reservoirs, survey IC 8263
mines visitors' guide SP 2 67
thermal projects IC 8352 thermal projects IC 8352 heavy crude-oil reservoirs, survey IC 8263 helium-bearing natural gases, analyses IC 8302 mines, visitors' guide SP 2-67 minerals, production, annual data MY 1968 (v. I-II, III) mineral inductry annual resident
MV 1000 (TIL)
natural gas, analyses_IC 8241, 8316, 8356, 8395 occupational diseases, workmen's compen- sation laws on B 623 oil reservoirs, production-rate data IC 8362 well-depth data IC 8362
setion laws on B 622
oil reservoirs, production-rate data IC 8362
well-depth data IC 8362
oilfields, shallow M 12 petroleum-impregnated rocks, surface and
petroleum-impregnated rocks, surface and
Kaolin coarse beneficiation by attrition
shallow M 12 Kaolin, coarse, beneficiation, by attrition grinding, investigation of oper- ating variables RI 7168 by continuous closed-circuit attrition
ating variables RI 7168
by continuous closed-circuit attrition grinding RI 6694
grinding RI 6694 continuous attrition grinding, closed-
circuit tests RI 6694 pesticide diluent, use as IC 8260 Kaolinite, alumina extraction from,
pesticide diluent, use as IC 8260
melting-quenching-sulfuric acid
leaching method
leaching method OP 197-67 in coal, quantitative infrared determi-
nation OP 21-68
solubility, in saline waters OP 100-69
Kaolinite beds, electrokinetic properties OP 180-69 surface conductance OP 180-69
Kaufman lease Clover-Rush oilfield W
Kaufman lease, Clover-Rush oilfield, W. Va., reservoir study RI 6992
Keener sand, Doddridge County, W. Va., investigation OP 189-67 Ohio, core samples, density and porosity
Ohio, core samples, density and porosity data IC 8330
data IC 8330 W. Va., core samples, density and poros- ity data IC 8330
Kennecott Copper Corp., McGill, Nev., cop-
per-mill tailing stabilization RI 7261
Kennedy bed, Va., coal, washing character- istics RI 6740
Kentucky, Appalachian area, mineral re-
sources GS 4-68 mineral resources potential GS 4-68 ball clay, as potential aluminum source IC 8335 coal analyses B 643; RI 6622, 6792, 6904, 7104, 7219 abloring content
mineral resources potential GS 4-55
coal analyses B 643: RI 6622, 6792.
6004 5104 5910
6904, 7104, 7219
major ash constituents RI 7240
major ash constituents RI 6579 phosphorus content RI 6579 potassium content RI 6579 sodium content RI 6579 sulfur content, forms IC 8301 coal ash analyses RI 7240
major ash constituents RI 6579 phosphorus content RI 6579 potassium content RI 6579 sodium content RI 6579 sulfur content, forms IC 8301 coal ash analyses RI 7240
major ash constituents RI 6573 potassium content RI 6579 sodium content RI 6579 sulfur content, forms IC 8301 coal ash, analyses RI 7240 fusibility data RI 7240 coal carbonization, light oil from, analysis B 643 light oil vield B 643
major ash constituents RI 6573 potassium content RI 6579 sodium content RI 6579 sulfur content, forms IC 8301 coal ash, analyses RI 7240 fusibility data RI 7240 coal carbonization, light oil from, analysis B 643 light oil vield B 643
major ash constituents RI 6579 phosphorus content RI 6579 potassium content RI 6579 sodium content RI 6579 sulfur content, forms RI 6579 sulfur content, forms RI 8301 coal ash, analyses RI 7240 fusibility data RI 7240 coal carbonization, light oil from, analysis B 643 light oil yield B 643 tar from, analysis B 643
major ash constituents RI 6579 phosphorus content RI 6579 potassium content RI 6579 sodium content RI 6579 sulfur content, forms RI 6579 sulfur content, forms RI 8301 coal ash, analyses RI 7240 fusibility data RI 7240 coal carbonization, light oil from, analysis B 643 light oil yield B 643 tar from, analysis B 643
major ash constituents RI 7240 phosphorus content RI 6579 potassium content RI 6579 sodium content RI 6579 sulfur content, forms IC 8301 coal ash, analyses RI 7240 fusibility data RI 7240 coal carbonization, light oil from, analysis B 643 B 643 tar from, analysis B 643 tar yield B 643 crude oil, production RI 7059 sulfur content RI 7059 fur content RI 7059 form clay, as potential aluminum source IC 8335
major ash constituents RI 7240 phosphorus content RI 6579 potassium content RI 6579 sodium content RI 6579 sodium content RI 6579 solium content RI 6579 solium content RI 6579 solium content RI 8301 coal ash, analyses RI 7240 fusibility data RI 7240 coal carbonization, light oil from, analysis B 643 B 643 tar from, analysis B 643 tar yield B 643 crude oil, production RI 7059 sulfur content RI 7059 sulfur content<
major ash constituents RI 7240 phosphorus content RI 6579 potassium content RI 6579 sodium content RI 6579 sulfur content RI 6579 sulfur content RI 6579 fusibility data RI 7240 fusibility data RI 7240 coal carbonization, light oil from, analysis B 643 B 643 tar from, analysis B 643 tar yield B 643 crude oil, production RI 7059 fire clay, as potential aluminum source IC 8335 fluorspar deposits IC 8352
major ash constituents RI 7240 phosphorus content RI 6579 potassium content RI 6579 sodium content RI 6579 sulfur content RI 6579 sulfur content RI 6579 fusibility data RI 7240 fusibility data RI 7240 coal carbonization, light oil from, analysis B 643 B 643 tar from, analysis B 643 tar yield B 643 crude oil, production RI 7059 fire clay, as potential aluminum source IC 8335 fluorspar deposits IC 8352
major ash constituents RI 7240 phosphorus content RI 6579 potassium content RI 6579 sodium content RI 6579 sodium content RI 6579 solium content RI 6579 solium content RI 6579 solium content RI 8301 coal ash, analyses RI 7240 fusibility data RI 7240 coal carbonization, light oil from, analysis B 643 B 643 tar from, analysis B 643 tar yield B 643 crude oil, production RI 7059 sulfur content RI 7059 sulfur content<

Kentucky, High Splint bed, coal, low-tempera-
ture carbonization, study RI 6625, 7322 tar vapor from, thermal cracking of,
effects RI 7322
iron and steel production IC 8329
iron and steel production IC 8329 iron and steel scrap industry, study IC 8329
mines, visitors' guide SP 2-67 minerals, production, annual data
311 1968 (V. 1-11, 111)
mineral industry annual re-
view MY 1968 (v. III) natural gas, analyses IC 8316, 8356, 8395
New Albany Shale, organic composi-
tion OP 11-68 northeastern counties, auto wrecking
and scrap processing industries_ SP 1-67
occupational diseases, workmen's compen-
sation laws on B 623
oilfields, shallow M 12 petroleum-impregnated rocks, surface and
shallow M 12
sandstone deposit, investigation KNR
shales, for lightweight aggregate, evalu-
ation RI 7129 surface mine regulation, effect on coal
industry UP 79-69
waste disposal methods, strip mine, coal,
cost estimate IC 8406 underground coal mine, cost estimate IC 8406
Kenya mineral industry appual
review MY 1968 (v. IV) Kerogen, oil-shale, concentration, carbonic
Kerogen, oil-shale, concentration, carbonic
acid method
oxygen functional groups, determi-
nation OP 34-66 Kerosine tanks, vapor space, flammable
Kerosine tanks, vapor space, flammable
zones in study OP 56-67 Kessler Peerless No. 5 mine W. Va., coal,
washing characteristics RI 6825
Ketones, flammability characteristics B 627 mass spectra B 634
mass spectra B 634 Keystone mine, W. Va., longwall mining in, results IC 8321
in, results IC 8321
Kimbley mine, Nev., mathematical model, for stress and displacement study RI 7002
open-pit slope stability RI 7002
Kincaid lignite, N. Dak., chloroform-extract
yield, investigation RI 6973 Kincaid mine, N. Dak., lignite and lignite
ash analyses RI 7158
ash analyses RI 7158 King mine, Pa., coal, carbonizing properties RI 7131
Klee mine, W. Va., coal, washing characis-
tics RI 6825 Knebelite, magnetic susceptibility IC 8359
Knox Third sand, Pa., core sample, density and porosity data IC 8330 Kokolik River area, Alaska, coalbeds, sam-
and porosity data IC 8330
pling and coking studies RI 7321
Kolob coalfield. Utab. steam-electric plant
utilization potential IC 8326 Kolob Plateau field, Utah, coal, potential
Rolob Plateau field, Utan, coal, potential carbonization yield RI 6990
Koppers-BCR solids feeder, high-pressure
pneumatic feeding with IC 8314 Kopperston No. 1 mine, W. Va., longwall
mining in, results IC 8321
Korea, North, mineral industry, annual review MY 1968 (v. IV)
South, mineral industry, an-
nual review
Krypton, thermophysical properties IC 8317
Krypton, thermophysical properties IC 8317 Krypton-85, gas-tracer tests, underground
Krypton, thermophysical properties IC 8317 Krypton-85, gas-tracer tests, underground combustion oil-recovery experi-
Krypton, thermophysical properties IC 8317 Krypton-85, gas-tracer tests, underground

ł

ł

Ē

yes RI 6767 coking studies RI 6767 coalbeds, sampling and coking studies RI 7321

.

·

-

naty Creek mercury deposit, soil sampling in river bars OFR 16-68 gold sampling in river bars OFR 16-69 mercury deposits, investigationOFR 4-66, 5-66 Kuwait, crude oil, high-sulfur, composition B 642 production RI 7059 sulfur content RI 7059 mineral industry, annual re- view MY 1968 (v. IV) Kuwait petroleum, metallo-organic mate- rials in, separation and character- ization RI 7273 Kuwait-Saudi Arabia Neutral Zone, mineral industry, annual review MY 1968 (v. IV) Kyanite, annual data MY 1968 (v. IV) Kyanite, annual data RI 7282 consumption B 630 heavy-liquid cyclone concentration of, semicontinuous tests B 630 production B 630 production B 630 technology B 630 kyanite concentrate, alumina extraction from, melting-quenching-sulfu- ric acid leaching method OP 197-67 Kyanite group minerals, annual data MY 1968 (v. I-II) imports and exports B 630 kyanite industry, annual data B 630 kyanite industry =	Kuskokwim River basin, Alaska, Eg-
soil sampling OFR 16-68 gold sampling in river bars OFR 16-69 mercury deposits, investigations RI 6892 mineral deposits, investigationOFR 4-66, 5-66 Kuwait, crude oil, high-sulfur, composition B 642 production RI 7059 sulfur content MY 1968 (v. IV) Kuwait petroleum, metallo-organic mate- rials in, separation and character- ization MY 1968 (v. IV) Kuwait-Saudi Arabia Neutral Zone, mineral industry, annual review MY 1968 (v. IV) Kyanite, annual data MY 1968 (v. I-II) as potential aluminum source, study IC 8335 as refractory raw material B 630 heavy-liquid cyclone concentration of, semicontinuous tests B 630 production B 630 production B 630 technology B 630 technology B 630 technology B 630 technology B 630 technology B 630 technology B 630 tyanite concentrate, alumina extraction from, melting-quenching-sulfu- ric acid leaching method OP 197-67 Kyanite group minerals, annual data MY 1968 (v. I-II) imports and exports B 630 reserves B 630 uses B 630 reserves B 630 reserves B 630 reserves B 630 reserves B 630 reserves B 630 reserves B 630 uses B 630 reserves	naty Creek mercury deposit.
mercury deposits, investigations RI 6892 mineral deposits, investigation_OFR 4-66, 5-66 Kuwait, crude oil, high-sulfur, composition B 642 production RI 7059 sulfur content RI 7059 mineral industry, annual re- view MY 1968 (v. IV) Kuwait petroleum, metallo-organic mate- rials in, separation and character- ization RI 7273 Kuwait-Saudi Arabia Neutral Zone, mineral industry, annual review MY 1968 (v. IV) Kyanite, annual data MY 1968 (v. I-II) as potential aluminum source, study IC 8335 as refractory raw material IC 8382 consumption B 630 heavy-liquid cyclone concentration of, semicontinuous tests RI 7134 imports and exports B 630 production B 630 technology B 630 technology B 630 kyanite concentrate, alumina extraction from, melting-quenching-sulfu- ric acid leaching method OP 197-67 Kyanite group minerals, annual data B 630 reserves B 630 reserves B 630 kyanite industry, organization B 630	soil sampling OFR 16-68
mercury deposits, investigations RI 6892 mineral deposits, investigation_OFR 4-66, 5-66 Kuwait, crude oil, high-sulfur, composition B 642 production RI 7059 sulfur content RI 7059 mineral industry, annual re- view MY 1968 (v. IV) Kuwait petroleum, metallo-organic mate- rials in, separation and character- ization RI 7273 Kuwait-Saudi Arabia Neutral Zone, mineral industry, annual review MY 1968 (v. IV) Kyanite, annual data MY 1968 (v. I-II) as potential aluminum source, study IC 8335 as refractory raw material IC 8382 consumption B 630 heavy-liquid cyclone concentration of, semicontinuous tests RI 7134 imports and exports B 630 production B 630 technology B 630 technology B 630 kyanite concentrate, alumina extraction from, melting-quenching-sulfu- ric acid leaching method OP 197-67 Kyanite group minerals, annual data B 630 reserves B 630 reserves B 630 kyanite industry, organization B 630	gold sampling in river bars OFR 16-69
<pre>mineral deposits, investigationOFR 4-66, 5-66 Kuwait, crude oil, high-sulfur, composition B 642 production</pre>	mercury deposits, investigations RI 6892
Kuwait, crude oil, high-sulfur, composition	mineral deposits, investigation OFR 4-66 5-66
production RI 7059 sulfur content RI 7059 mineral industry, annual re- view MY 1968 (v. IV) Kuwait petroleum, metallo-organic mate- rials in, separation and character- ization RI 7273 Kuwait-Saudi Arabia Neutral Zone, mineral industry, annual review MY 1968 (v. IV) Kyanite, annual data IC 8335 as refractory raw material IC 8382 consumption B 630 heavy-liquid cyclone concentration of, semicontinuous tests RI 7134 imports and exports B 630 production B 630 recovery, from quartzite-kyanite ore, flotation method OP 151-69 reserves B 630 technology B 630 kyanite concentrate, alumina extraction from, melting-quenching-sulfu- ric acid leaching method OP 197-67 Kyanite group minerals, annual data MY 1968 (v. I-II) imports and exports B 630 reserves B 630 vese B 630 vese R 630 reserves R 630 reserves R 630 reserves R 630 reserves R 630 reserves R 630 vese R 630 vese R 630 vese R 630 vese R 630 reserves R 630 reserves R 630 vese	Kuwait, crude oil high-sulfur composition B 642
mineral industry, annual re- view MY 1968 (v. IV) Kuwait petroleum, metallo-organic mate- rials in, separation and character- ization RI 7273 Kuwait-Saudi Arabia Neutral Zone, mineral industry, annual review MY 1968 (v. IV) Kyanite, annual data MY 1968 (v. IV) Kyanite, annual data MY 1968 (v. I-II) as potential aluminum source, study IC 8335 as refractory raw material B 630 heavy-liquid cyclone concentration of, semicontinuous tests B 630 production B 630 production B 630 recovery, from quartzite-kyanite ore, flotation method B 630 technology B 630 tuses B 630 Kyanite concentrate, alumina extraction from, melting-quenching-sulfu- ric acid leaching method OP 197-67 Kyanite group minerals, annual data MY 1968 (v. I-II) imports and exports B 630 vuses B 630 vuses B 630 vuses B 630 reserves B 630 kyanite industry, organization B 630	production RI 7059
mineral industry, annual re- view MY 1968 (v. IV) Kuwait petroleum, metallo-organic mate- rials in, separation and character- ization RI 7273 Kuwait-Saudi Arabia Neutral Zone, mineral industry, annual review MY 1968 (v. IV) Kyanite, annual data MY 1968 (v. IV) Kyanite, annual data MY 1968 (v. I-II) as potential aluminum source, study IC 8335 as refractory raw material B 630 heavy-liquid cyclone concentration of, semicontinuous tests B 630 production B 630 production B 630 recovery, from quartzite-kyanite ore, flotation method B 630 technology B 630 tuses B 630 Kyanite concentrate, alumina extraction from, melting-quenching-sulfu- ric acid leaching method OP 197-67 Kyanite group minerals, annual data MY 1968 (v. I-II) imports and exports B 630 vuses B 630 vuses B 630 vuses B 630 reserves B 630 kyanite industry, organization B 630	sulfur content RI 7059
view MY 1968 (v. IV) Kuwait petroleum, metallo-organic mate- rials in, separation and character- ization	mineral industry annual re-
Kuwait petroleum, metallo-organic mate- rials in, separation and character- ization RI 7273 Kuwait-Saudi Arabia Neutral Zone, mineral industry, annual review RI 7273 Kyanite, annual data MY 1968 (v. IV) Kyanite, annual data MY 1968 (v. I-II) as potential aluminum source, study IC 8332 consumption B 630 heavy-liquid cyclone concentration of, semicontinuous tests RI 7134 imports and exports B 630 production B 630 recovery, from quartzite-kyanite ore, flotation method B 630 technology B 630 uses B 630 kyanite concentrate, alumina extraction from, melting-quenching-sulfu- ric acid leaching method OP 197-67 kyanite group minerals, annual data MY 1968 (v. I-II) imports and exports B 630 vese B 630 vese B 630 serves B 630 serves B 630 kyanite industry, organization B 630 vese B 630 kyanite industry, organization B 630	
rials in, separation and character- ization	Kuwait netroleum metallo-organic mate.
ization RI 7273 Kuwait-Saudi Arabia Neutral Zone, mineral industry, annual review MY 1968 (v. IV) Kyanite, annual data MY 1968 (v. I-II) as potential aluminum source, study IC 8335 as refractory raw material IC 83852 consumption B 630 heavy-liquid cyclone concentration of, semicontinuous tests RI 7134 imports and exports B 630 production B 630 production B 630 production B 630 technology B 630 technology B 630 technology B 630 Kyanite concentrate, alumina extraction from, melting-quenching-sulfu- ric acid leaching method OP 197-67 Kyanite group minerals, annual data B 630 reserves B 630 reserves B 630 reserves B 630 Kyanite industry, organization B 630 Kyanite industry	rials in congretion and character
Kuwait-Saudi Arabia Neutral Zone, mineral industry, annual review MY 1968 (v. IV) Kyanite, annual data MY 1968 (v. I-II) as potential aluminum source, study IC 8335 as refractory raw material IC 8335 consumption B 630 heavy-liquid cyclone concentration of, semicontinuous tests semicontinuous tests B 630 production B 630 recovery, from quartzite-kyanite ore, fotation method fotation method OP 151-69 reserves B 630 uses B 630 kyanite concentrate, alumina extraction from, melting-quenching-sulfuric acid leaching method ric acid leaching method OP 197-67 Kyanite group minerals, annual data data MY 1968 (v. I-II) imports and exports B 630 uses B 630 veses B 630	
annual review MY 1968 (v. IV) Kyanite, annual data MY 1968 (v. I-II) as potential aluminum source, study IC 8335 as refractory raw material IC 8382 consumption B 630 heavy-liquid cyclone concentration of, semicontinuous tests B 630 production B 630 production B 630 recovery, from quartzite-kyanite ore, flotation method OP 151-69 reserves B 630 technology B 630 tuses B 630 Kyanite concentrate, alumina extraction from, melting-quenching-sulfu- ric acid leaching method OP 197-67 Kyanite group minerals, annual data MY 1968 (v. I-II) imports and exports B 630 vuses B 630 Kyanite industry, organization B 630	Kuwait Saudi Arabia Mautaal
Ayante, annual data MY 1968 (V. 1-11) as potential aluminum source, study IC 8335 as refractory raw material IC 8382 consumption B 630 heavy-liquid cyclone concentration of, semicontinuous tests B 630 production B 630 production B 630 recovery, from quartzite-kyanite ore, flotation method OP 151-69 reserves B 630 uses B 630 kyanite concentrate, alumina extraction from, melting-quenching-sulfu- ric acid leaching method OP 197-67 Kyanite group minerals, annual data MY 1968 (v. I-II) imports and exports B 630 reserves B 630 vese B 630 ses B 630 data MY 1968 (v. I-II) imports and exports B 630 uses B 630 veses B 630 veses B 630 uses B 630 veses B 630 serves B 630 uses B 630	Zono minerel industra
Ayante, annual data MY 1968 (V. 1-11) as potential aluminum source, study IC 8335 as refractory raw material IC 8382 consumption B 630 heavy-liquid cyclone concentration of, semicontinuous tests B 630 production B 630 production B 630 recovery, from quartzite-kyanite ore, flotation method OP 151-69 reserves B 630 uses B 630 kyanite concentrate, alumina extraction from, melting-quenching-sulfu- ric acid leaching method OP 197-67 Kyanite group minerals, annual data MY 1968 (v. I-II) imports and exports B 630 reserves B 630 vese B 630 ses B 630 data MY 1968 (v. I-II) imports and exports B 630 uses B 630 veses B 630 veses B 630 uses B 630 veses B 630 serves B 630 uses B 630	Zone, mineral industry,
Ayante, annual data MY 1968 (V. 1-11) as potential aluminum source, study IC 8335 as refractory raw material IC 8382 consumption B 630 heavy-liquid cyclone concentration of, semicontinuous tests B 630 production B 630 production B 630 recovery, from quartzite-kyanite ore, flotation method OP 151-69 reserves B 630 uses B 630 kyanite concentrate, alumina extraction from, melting-quenching-sulfu- ric acid leaching method OP 197-67 Kyanite group minerals, annual data MY 1968 (v. I-II) imports and exports B 630 reserves B 630 vese B 630 ses B 630 data MY 1968 (v. I-II) imports and exports B 630 uses B 630 veses B 630 veses B 630 uses B 630 veses B 630 serves B 630 uses B 630	annual review MY 1968 (v. IV)
as refractory raw material IC 8382 consumption B 630 heavy-liquid cyclone concentration of, semicontinuous tests RI 7134 imports and exports B 630 production B 630 recovery, from quartzite-kyanite ore, flotation method OP 151-69 reserves B 630 technology B 630 technology B 630 tuses B 630 kyanite concentrate, alumina extraction from, melting-quenching-sulfu- ric acid leaching method OP 197-67 Kyanite group minerals, annual data MY 1968 (v. I-II) imports and exports B 630 reserves B 630 uses B 630 vuses B 630 vuses B 630	Kyanice, annual data MII 1908 (V. 1-11)
consumption B 630 heavy-liquid cyclone concentration of, semicontinuous tests RI 7134 imports and exports B 630 production B 630 recovery, from quartzite-kyanite ore, flotation method B 630 reserves B 630 technology B 630 uses B 630 Kyanite concentrate, alumina extraction from, melting-quenching-sulfu- ric acid leaching method OP 197-67 Kyanite group minerals, annual data MY 1968 (v. I-II) imports and exports B 630 uses B 630 vese B 630 bases B 630 group minerals, annual data MY 1968 (v. I-II) imports and exports B 630 uses B 630 uses B 630 uses B 630 uses B 630	as potential aluminum source, study IC 8335
imports and exports B 680 production B 630 recovery, from quartzite-kyanite ore, flotation method OP 151-69 reserves B 630 technology B 630 technology B 630 teses B 630 Kyanite concentrate, alumina extraction from, melting-quenching-sulfu- ric acid leaching method OP 197-67 Kyanite group minerals, annual data MY 1968 (v. I-II) imports and exports B 630 reserves B 630 uses B 630 Kyanite industry, organization B 630	as retractory raw material IC 8382
imports and exports B 680 production B 630 recovery, from quartzite-kyanite ore, flotation method OP 151-69 reserves B 630 technology B 630 technology B 630 teses B 630 Kyanite concentrate, alumina extraction from, melting-quenching-sulfu- ric acid leaching method OP 197-67 Kyanite group minerals, annual data MY 1968 (v. I-II) imports and exports B 630 reserves B 630 uses B 630 Kyanite industry, organization B 630	consumption B 630
imports and exports B 680 production B 630 recovery, from quartzite-kyanite ore, flotation method OP 151-69 reserves B 630 technology B 630 technology B 630 teses B 630 Kyanite concentrate, alumina extraction from, melting-quenching-sulfu- ric acid leaching method OP 197-67 Kyanite group minerals, annual data MY 1968 (v. I-II) imports and exports B 630 reserves B 630 uses B 630 Kyanite industry, organization B 630	heavy-liquid cyclone concentration of,
imports and exports B 680 production B 630 recovery, from quartzite-kyanite ore, flotation method OP 151-69 reserves B 630 technology B 630 technology B 630 teses B 630 Kyanite concentrate, alumina extraction from, melting-quenching-sulfu- ric acid leaching method OP 197-67 Kyanite group minerals, annual data MY 1968 (v. I-II) imports and exports B 630 reserves B 630 uses B 630 Kyanite industry, organization B 630	semicontinuous tests RI 7134
flotation method OP 151-69 reserves B 630 technology B 630 uses B 630 Kyanite concentrate, alumina extraction from, melting-quenching-sulfu- ric acid leaching method OP 197-67 Kyanite group minerals, annual data MY 1968 (v. I-II) imports and exports B 630 reserves B 630 uses B 630 Kyanite industry, organization B 630	imports and exports B 630
flotation method OP 151-69 reserves B 630 technology B 630 uses B 630 Kyanite concentrate, alumina extraction from, melting-quenching-sulfu- ric acid leaching method OP 197-67 Kyanite group minerals, annual data MY 1968 (v. I-II) imports and exports B 630 reserves B 630 uses B 630 Kyanite industry, organization B 630	production B 630
flotation method OP 151-69 reserves B 630 technology B 630 uses B 630 Kyanite concentrate, alumina extraction from, melting-quenching-sulfu- ric acid leaching method OP 197-67 Kyanite group minerals, annual data MY 1968 (v. I-II) imports and exports B 630 reserves B 630 uses B 630 Kyanite industry, organization B 630	recovery, from quartzite-kyanite ore,
technology B 630 uses B 630 Kyanite concentrate, alumina extraction from, melting-quenching-sulfu- ric acid leaching method OP 197-67 Kyanite group minerals, annual data MY 1968 (v. I-II) imports and exports B 630 reserves B 630 uses B 630 Kyanite industry, organization B 630	flotation method OP 151-69
uses B 630 Kyanite concentrate, alumina extraction from, melting-quenching-sulfu- ric acid leaching method OP 197-67 Kyanite group minerals, annual data MY 1968 (v. I-II) imports and exports B 630 reserves B 630 uses B 630 Kyanite industry, organization B 630	reserves B 630
Kyanite concentrate, alumina extraction from, melting-quenching-sulfu- ric acid leaching method OP 197-67 Kyanite group minerals, annual data MY 1968 (v. I-II) imports and exports B 630 reserves B 630 uses B 630 Kyanite industry, organization B 630	technology B 630
from, melting-quenching-sulfu- ric acid leaching method OP 197-67 Kyanite group minerals, annual data MY 1968 (v. I-II) imports and exports B 630 reserves B 630 uses B 630 Kyanite industry, organization B 630	uses B 630
ric acid leaching method OP 197-67 Kyanite group minerals, annual data MY 1968 (v. I-II) imports and exports B 630 reserves B 630 uses B 630 Kyanite industry, organization B 630	Kyanite concentrate, alumina extraction
ric acid leaching method OP 197-67 Kyanite group minerals, annual data MY 1968 (v. I-II) imports and exports B 630 reserves B 630 uses B 630 Kyanite industry, organization B 630	from, melting-quenching-sulfu-
Kyanite group minerals, annual data MY 1968 (v. I-II) imports and exports B 630 reserves B 630 uses B 630 Kyanite industry, organization B 630	ric acid leaching method OP 197-67
data MY 1968 (v. I-II) imports and exports B 630 reserves B 630 uses B 630 Kyanite industry, organization B 630	Kyanite group minerals, annual
imports and exports B 630 reserves B 630 uses B 630 Kyanite industry, organization B 630	data
reserves B 630 uses B 630 Kyanite industry, organization B 630	
uses B 630 Kyanite industry, organization B 630	
Kyanite industry, organization B 630	uses B 630
nrohloms P 620	Kyanite industry, organization B 630
	problems B 630

í

ł

· · .

·

Ł

Lackawanna County, Pa., anthracite, prop-
erties RI 7086
washing characteristics RI 6989
Lagunillas petroleum, electrophoresis, in
organic electrolyte RI 6912
organic electrolyte RI 6912 metallo-organic materials in, separation
and characterization RI 7273
and characterization RI 7273 Lake Superior district, iron resources, eval-
uation BI 6650
iron-ore resources, metallurgical evalua-
tion \mathbf{K}
Lake Superior iron resources, nonmagnetic
taconite, beneficiation tests RI 6991
Lancashire No. 15 mine, Pa., longwall min-
ing in, results IC 8321
Lanthanides, cerium-group, separation, pri-
mary amine-chelating agent sys-
tem RI 7100 selective extraction and separation, with
selective extraction and separation, with
quarternary ammonium compound,
Lanthanide mixtures, cerium-containing,
fractionating, process, patent P 2-69
extraction and separation, tertiary amine
process, feasibility RI 6809 Lanthanide solutions, cerium recovery from,
Lanchande solutions, certain recovery from,
ozonation method RI 7123 lanthanum recovery from, ozonation
mathod BI 7193
method . RI 7123 Lanthanum, annual data MY 1968 (v. I-II)
electrowinning, from lanthanum oxide RI 7146
impurities in, determining, quantita-
tive, analysis OP 97-66
in coal ash, spectrochemical determina-
in cont mony spectroenentieus acterining-
tion RI 7281

Lanthanum, recovery, from lanthanide solu-
tions oxidation-precipitation proc-
cess RI 7123 solvent extraction, from rare-earth
mixtures OP 171-68 Lanthanum-cerium separation, from lantha- nides, amine extraction method RI 7100
nides, amine extraction method RI 7100 tertiary amine process RI 6809 Lanthanum fluoride-alkali fluoride molten
systems, density and molar volume RI 6836
Lanthanum metal, electrowinning, from lanthanum oxide RI 6882
molten, tapping, from electrolytic cell RI 6882 Lanthanum oxide, crystallographic modifi-
cation RI 6616 electrowinning lanthanum metal from RI 6882
phase transformation rate R1 6616
selective volatilization suppression, in spectrographic analysis OP 97-66
Laos, mineral industry, annual
Laos, mineral industry, annual review MY 1968 (v. IV) Las Animas County, Colo., coal, entrained- bed carbonization tests RI 7141
Laser interferometric unatometer, develop-
ment RI 7142 Laser microprobe, excitation of trace ele-
ments, in nowdered materials.
study OP 42-68 Laser pyrolysis, coals, gaseous products,
Laterite as notential aluminum source
study IC 8335 nickeliferous, sulfatization RI 6644
Latin American countries, economic
progress, review OP 198-67 Lattice parameter, magnesium oxide, finely divided, study OP 114-66
finely divided, study OP 114-66 Lauryl acid phosphate use in pare-earth
Lauryl acid phosphate, use, in rare-earth element extraction, tests RI 6601
Lawrence County, Pa., coal, preparation characteristics RI 7324
Leach residue, fluoferrate, beryllium recov- ery from, process RI 6841
Leaching ammonium sulfate manganifer-
caustic-soda, oxidized zinc ore, experi-
copper, from low-grade mine and dump
materials, methods IC 8341 cyanide, gold-mine waste heaps, method,
study TPR 20
in situ, copper deposits, methods KI 6996
nuclear-fractured copper deposits RI 6996
nuclear-fractured copper deposits RI 6996 manganese extraction by, from umber ore, sulfuric acid-ferrous sulfate
process RI 6692 oxidation, copper sulfides, in ammoniacal
pulps, at elevated temperatures
pulps, at elevated temperatures and pressures RI 6808 sulfuric acid, alumina, from albite and
anorthite RI 6744 from anorthosite RI 6744
Leaching solutions, copper waste dump,
uranium recovery from OP 48-68 cyanide, for copper extraction, effect of
ammonia addition RI 7138
Lead, annual data MY 1968 (v. I-II)
Lead, annual data
extraction of, from lead blast furnace matte, dilute acid solution, method RI 7126
imports B 630 in coal ash, spectrochemical determinants RI 7281
microbial extraction of, from lead blast
furnace matte
prices B 630 production B 630
Pacific Northwest IC 8327

.

Lead,	, recovery, from lead blast furnace	D.	
f	matte, method	RI	7042
f	rom galena, by hydrogen reduction rom sphalerite, by hydrogen reduction	RI	6662
res	ap, from junk automobile, amount	E	3 630
ser	ap, from junk automobile, amount	ŔĮ	7350
	hnologys	т	3 AOA
Lead	blast-furnace matte, lead recovery from, method bullion, recovery, from complex lead-	.	, 000
	from, method	RI	7042
Lead	bullion, recovery, from complex lead-		
	zinc sinter, electric-furnace smelt-	RI	6999
Lead	ing, investigation - cadmium - antimony alloys, rolled,		
	stress-rupture properties	RI	7285
	ensile properties carbonate, heat of formation		
Lead	chloride-cadmium chloride system.	1/1	0022
_	vapor pressure 0	P e	65-69
Lead	chloride-cadmium chloride system, vapor pressureO chloride-tin chloride system, vapor pressures chloride-zinc chloride system, vapor pressures compounds, chemical-industry use, CalifO	ъτ	7207
Lead	chloride-zinc chloride system yanor	RI	1307
Deau	pressures	RI	7307
Lead	compounds, chemical-industry use,		
T	Calif.	IC	8244
	deposits, Alaska, examination O industry, organization		
pro	blems	Ē	630
Lead	minerals, magnetic susceptibility	IC	8383
Lead	blems minerals, magnetic susceptibility ore, potential sources, evaluation erves, evaluation rer production fromIC 8266; OF	IC	8325
silv	er production from IC 8266: OF	2 12	6320 13-67
Lead-	tin alloys, properties	RÎ	6963
Lead	tin alloys, properties vanadates, thermodynamic properties	RI	6727
Lead-	zinc-copper ores, silver production from IC 8266; OI	D 19	9 67
Lead-	zinc industry, Pacific Northwest, anal-	; 12	·ə—0 (
	Vsis	IC	8327
Lead-	zinc mine, model, mine and mill opera-		
079	tion, computer program for		8327
Lead-	rating costs zinc mining operation, revenue-cost	10	0021
	system, effect of grouped physical		
T	variables zinc ore, coproducts, Pacific North-	RI	7311
read-	west	IC	8327
pot	west	ĪČ	8327
pot	ential sources, evaluation	IC	8325
rese	erves, evaluation	IC	8325 8327
Lead-	acific Northwest zinc sinter, complex, electric smelting,	10	0041
	investigation	KI.	6999
Leak	detection, methods, discussion age measurement, methods, discus-	OP	6-66
Leaka	ige measurement, methods, discus-	ΛP	6-66
Least	squares, application of matrix alge-		
	bra to non, mineral industry, an-	IC	8332
		(1373
Lecto	nual review MY 1968 wn Coal Co., Va., coal, washing char-	(۷.	14)
10000	acteristics	RI	6740
Leona	ardite, iron ore pellet binder, use in	IC	8376
use	s n bentonite drilling fluid, effect	.≞ B	630
1	ter extract of microbial growth on	IC	8376
wat	ter extract of, microbial growth on ter-soluble humic acid from, plant		0010
	growth effects	RI	7203
Leona	ardite-caustic, use, in bentonite drill-		
	ing fluid, effect	RI	7043
Lesot	ho, mineral industry, an- nual review MY 1968	(w	IV)
Laurei	te, entropy		7073
hea	t of formation	RI	6873
hig	h-temperature heat content	RI	7073
Lewis			804 -
	characteristics	КI	7216
Lewis	s Run sand, Pa., core samples, density and porosity data	IC	8330

Liberia, mineral industry, annual
review MY 1968 (v. IV)
Libya, crude oil, production RI 7059
Libya, crude oil, production
sulfur content RI 7059 crude petroleum, analyses IC 8293 mineral industry, annual re- view MY 1968 (v. IV)
crude petroleum, analyses 10 8293
mineral industry, annual re-
view MY 1968 (v. 1V)
Light oil, lignite-carbonization, properties B 639
Lighting equipment for underground work-
ings, fees for testing, amendments S 29A
Lignite, adsorbent, for organic-contaminant removal, from waste waters, use RI 6884 agglomeration elimination, by freeze- profing, study RI 6677 during shipment, freezing method, pat- ent P 5-66 ash fouling, study IC 8376 carbonization, catechols from OP 50-65 carbonization products, properties B 639 carbonized, product yields B 639 composition
removal, from waste waters, use RI 6884
agglomeration elimination, by freeze-
proofing, study R1 6677
during shipment, freezing method, pat-
entP 5-66
ash fouling, study IC 8376
carbonization, catechols from OP 50-65
carbonization products, properties B 639
carbonized, product vields B 639
composition RI 7158
consumption B 630
evelone furnace boiler use IC 8376
electron spin resonance OP 148-68
electron spin resonance OP 148-68 entrainment carbonization of, results B 639
freezeproofing, by dried-lignite additions RI 6677
methods OP 113-67
methods OP 113-67 oil-treatment method RI 6677
g values OP 78-68 gas production from, technical and eco- nomic feasibility IC 8376 heat content RI 6607 high-sodium, as boiler fuel, ash fouling tendencies, study OP 87-67 ion-exchange treatment, effect on ash composition RI 7176
g values technical and cap
gas production from, technical and eco-
nomic leasionity IC 8510
neat content
high-sodium, as boiler fuel, ash fouling
tendencies, study OP 87-67
ion-exchange treatment, effect on ash
composition RI 7176 iron ore processing applications IC 8376
iron ore processing applications IC 8376
laser irradiation, product gases from,
distribution OP 27-67
laser irradiation, product gases from, distribution OP 27-67 long-term storage, stockpiling for, method RI 7037
low-ash electrode carbon trom prelimi-
nary study IC 8376
nary study II
tendencies, study OP 87-67
magnetic roasting of taconite with IC 8376
mineral composition, effect of ion-
mineral composition, effect of ion- exchange treatment RI 7176
nitrogenous fertilizers from, investiga- tion IC 8376 N. D., production, forecast OP 30-68 prices B 630
tion IC 8376
N. D., production, forecast OP 30-68
ntices B 630
production B 630
production B 630 pulverization, ball mill-hammermill com-
parison tests RI 7010
in ball mill study DI 7010
in ball mill, study RI 7010 pyrolysis, in microwave discharge, prod-
ucts, from, composition OP 11-69
acts, from, composition OF 11-09
reactions, in argon and argon-hydrogen
plasmas RI 6829
shipping, unit-train concept, discussion IC 8304
specific heat RI 6607
specific heat RI 6607
specific heat RI 6607 stockpiled, analyses RI 7037 pile gas composition RI 7037
specific heat RI 6607 stockpiled, analyses RI 7037 pile gas composition RI 7037
specific heat RI 6607 stockpiled, analyses RI 7037 pile gas composition RI 7037 pile temperatures RI 7037 sulfur content IC 8376
specific heat RI 6607 stockpiled, analyses RI 7037 pile gas composition RI 7037 pile temperatures RI 7037 sulfur content IC 8376
specific heat RI 6607 stockpiled, analyses RI 7037 pile gas composition RI 7037 pile temperatures RI 7037 sulfur content IC 8376 tar oil, alcohol from, method OP 32-68 technology B 630
specific heat RI 6607 stockpiled, analyses RI 7037 pile gas composition RI 7037 pile temperatures RI 7037 sulfur content IC 8376 tar oil, alcohol from, method OP 32-68 technology B 630 technology and use, symposium proceed-
specific heat RI 6607 stockpiled, analyses RI 7037 pile gas composition RI 7037 pile temperatures RI 7037 sulfur content IC 8376 tar oil, alcohol from, method OP 32-68 technology B 630 technology and use, symposium proceed- ings IC 8304, 8376
specific heat RI 6607 stockpiled, analyses RI 7037 pile gas composition RI 7037 pile temperatures RI 7037 sulfur content IC 8376 tar oil, alcohol from, method OP 32-68 technology B 630 technology and use, symposium proceed- ings IC 8304, 8376
specific heat RI 6607 stockpiled, analyses RI 7037 pile gas composition RI 7037 pile temperatures RI 7037 sulfur content IC 8376 tar oil, alcohol from, method OP 32-68 technology B 630 technology and use, symposium proceed- ings IC 8304, 8376 uraniferous, uranium production from IC 8304 uses B 630
specific heat RI 6607 stockpiled, analyses RI 7037 pile gas composition RI 7037 pile temperatures RI 7037 sulfur content IC 8376 tar oil, alcohol from, method OP 32-68 technology B 630 technology and use, symposium proceed- ings IC 8304, 8376 uraniferous, uranium production from IC 8304 uses B 630
specific heat RI 6607 stockpiled, analyses RI 7037 pile gas composition RI 7037 pile temperatures RI 7037 sulfur content IC 8376 tar oil, alcohol from, method OP 32-68 technology B 630 technology and use, symposium proceed- ings IC 8304, 8376 uraniferous, uranium production from IC 8304 uses B 630
specific heat RI 6607 stockpiled, analyses RI 7037 pile gas composition RI 7037 pile temperatures RI 7037 sulfur content IC 8376 tar oil, alcohol from, method OP 32-68 technology B 630 technology and use, symposium proceed- ings IC 8304, 8376 uraniferous, uranium production from IC 8304 uses B 630
specific heat RI 6607 stockpiled, analyses RI 7037 pile gas composition RI 7037 pile temperatures RI 7037 sulfur content IC 8376 tar oil, alcohol from, method OP 32-68 technology B 630 technology and use, symposium proceed- ings IC 8304, 8376 uraniferous, uranium production from IC 8304 uses B 630 as solid fuel reductant for iron ore RI 7290 for prereduced iron ore pellets IC 8376 in large coal-fired powerplants OP 49-68
specific heat RI 6607 stockpiled, analyses RI 7037 pile gas composition RI 7037 pile temperatures RI 7037 sulfur content IC 8376 tar oil, alcohol from, method OP 32-68 technology B 630 technology and use, symposium proceed- ings IC 8304, 8376 uraniferous, uranium production from IC 8304 uses B 630 as solid fuel reductant for iron ore RI 7290 for prereduced iron ore pellets IC 8376 in large coal-fired powerplants OP 49-68
specific heat RI 6607 stockpiled, analyses RI 7037 pile gas composition RI 7037 pile temperatures RI 7037 sulfur content IC 8376 tar oil, alcohol from, method OP 32-68 technology B 630 technology and use, symposium proceed- ings IC 8304, 8376 uraniferous, uranium production from IC 8304 uses B 630 as solid fuel reductant for iron ore RI 7290 for prereduced iron ore pellets IC 8376 in large coal-fired powerplants OP 49-68 utilization IC 8304 vitrinites from, optical properties OP 97-65
specific heat RI 6607 stockpiled, analyses RI 7037 pile gas composition RI 7037 pile temperatures RI 7037 sulfur content IC 8376 tar oil, alcohol from, method OP 32-68 technology B 630 technology and use, symposium proceed- ings IC 8304, 8376 uraniferous, uranium production from IC 8304 uses B 630 as solid fuel reductant for iron ore RI 7290 for prereduced iron ore pellets IC 8376 in large coal-fired powerplants OP 49-68 utilization IC 8304 vitrinites from, optical properties OP 97-65 Western, research program OP 133-66
specific heat RI 6607 stockpiled, analyses RI 7037 pile gas composition RI 7037 pile temperatures RI 7037 sulfur content IC 8376 tar oil, alcohol from, method OP 32-68 technology B 630 technology and use, symposium proceed- ings IC 8304, 8376 uraniferous, uranium production from IC 8304 uses B 630 as solid fuel reductant for iron ore RI 7290 for prereduced iron ore pellets IC 8376 in large coal-fired powerplants OP 49-68 utilization IC 8304 vitrinites from, optical properties OP 97-65

1

ŧ

Lignite ash, characteristics and variability IC 8304
shaming in a second second and variability to over
fusion abaractoristics
rusion characteristics
chemical composition RI 7158 fusion characteristics RI 7158 mineral matter in RI 7158
properties IC 8304
properties IC 8304 Lignite ash composition, changes in, effect
OI 10h exchange on RI 7176
Lignite char, heat content RI 6607
specific heat RI 6607
use, in carbon disulfide production
DI 6001 AD 104 CE
Lignite coal, annual data MY 1968 (v. I-II)
Lignite coal, annual data MI 1968 (V. 1-11)
Lignite coke, carbon electrodes from,
preparation methods OP 101_69
Lignite deposit, carbonization properties
predicting, by statistical analysis
of core-sample data RI 7237 chemical properties, predicting, by sta-
chemical properties, predicting by sto-
tistical analysis of core-sample
doto DI 2007
data RI 7237 evaluating, from core-sample data, sta-
evaluating, from core-sample data, sta-
tisical analytical method RI 7237
prediction analyses from core-sample
data RI 7237 federally owned, leasing of IC 8376
federally owned, leasing of IC 9376
Lignite industry, organization B 630
nrohlema n and
problems B 630 Lignite mining, operational aspects IC 8376
Lignite mining, operational aspects IC 8376
Lignite nitch low-temperature delayed
coking of
thermal cracking, products OP 147-67
coking of
Lignite pulverization, status report IC 8376
Lignite research, trends OP 113-67
Lignite research, trends Or 110-07
Lignite reserves, evaluation, statistical
techniques for RI 6833
techniques for RI 6833 Lignite seams, thickness, effect on produc-
tion IC 8345 Lignite tar, low-temperature, biodegrad-
Lignite tar, low-temperature, biodegrad-
able synthetic detergents from
able synthetic detergents from RI 7115; OP 14-65 catechols from OP 50-65 dealkylation of tar acids from RI 6585
astechols from OP 50 65
daplimition of the saids from DI 6595
dealkylation of tar actus from RI 0000
maleic anhydride from, production
method RI 6916
phthalic anhydride from, production
method RI 6916
phthalic anhydride from, production method
resin fraction from, characterization B 636
Lignosulfonate, use, in bentonite drilling
fluid effect RI 7043
Lime annual data MV 1968 (w. I. II)
Line, annual data = 1 = 1 = 111 1500 (v. 1-11)
fluid, effect RI 7043 Lime, annual data MY 1968 (v. I-II) chemical-industry use, Calif IC 8244
consumption
imports and exportsB 630
B 630
prices b oov
production B 630
imports and exports B 630 prices B 630 production B 630 specifications B 630
specifications B 630 technology B 630
specifications B 630 technology B 630
specifications B 630 technology B 630
specifications B 630 technology B 630 transportation problems B 630 types B 630
specifications B 630 technology B 630 transportation problems B 630 types B 630 usage shifting patterns OP 2-66
specifications B 630 technology B 630 transportation problems B 630 types B 630 usage, shifting patterns CP 2-66 uses B 630
specifications B 630 technology B 630 transportation problems B 630 types B 630 usage, shifting patterns OP 2-66 uses B 630 Lime industry, organization B 630
specifications B 630 technology B 630 transportation problems B 630 types B 630 usage, shifting patterns OP 2-66 uses B 630 Lime industry, organization B 630 problems B 630
specifications B 630 technology B 630 transportation problems B 630 usage, shifting patterns OP 2-66 uses B 630 Lime industry, organization B 630 problems B 630 Lime neutralization, acid mine water, labo-
specifications B 630 technology B 630 transportation problems B 630 usage, shifting patterns B 630 usage, shifting patterns OP 2-66 uses B 630 Lime industry, organization B 630 problems B 630 Lime neutralization, acid mine water, labo- ratory tests RI 6987
specifications B 630 technology B 630 transportation problems B 630 usage, shifting patterns B 630 usage, shifting patterns OP 2-66 uses B 630 Lime industry, organization B 630 problems B 630 Lime neutralization, acid mine water, labo- ratory tests RI 6987
specifications B 630 technology B 630 transportation problems B 630 usage, shifting patterns B 630 usage, shifting patterns B 630 Lime industry, organization B 630 problems B 630 Lime neutralization, acid mine water, labo- ratory tests RI 6987 Lime sinter process, for producing alumina
specifications B 630 technology B 630 transportation problems B 630 types B 630 usage, shifting patterns D 2-66 uses B 630 Lime industry, organization B 630 problems B 630 Lime neutralization, acid mine water, labo- ratory tests B 630 Lime sinter process, for producing alumina from clay, economic evaluation RI 7299
specifications B 630 technology B 630 transportation problems B 630 types B 630 usage, shifting patterns OP 2-66 uses B 630 Lime industry, organization B 630 problems B 630 Lime neutralization, acid mine water, labo- ratory tests B 630 Lime sinter process, for producing alumina from clay, economic evaluation RI 7299 technical evaluation RI 7299
specifications B 630 technology B 630 transportation problems B 630 types B 630 usage, shifting patterns B 630 uses B 630 Lime industry, organization B 630 D problems B 630 Lime neutralization, acid mine water, labo- ratory tests B 630 Lime sinter process, for producing alumina from clay, economic evaluation RI 6987 Lime sinter process, for producing alumina from clay, economic evaluation RI 7299 technical evaluation RI 7299 Lime-soda sinter process, alumina extrac-
specifications B 630 technology B 630 transportation problems B 630 usage, shifting patterns B 630 usage, shifting patterns B 630 usage, shifting patterns B 630 Lime industry, organization B 630 problems B 630 Lime neutralization, acid mine water, labo- ratory tests B 630 Lime sinter process, for producing alumina from clay, economic evaluation RI 7299 technical evaluation RI 7299 Lime-soda sinter process, alumina extrac- tion, from clays and anorthosite.
specifications B 630 technology B 630 transportation problems B 630 usage, shifting patterns B 630 usage, shifting patterns B 630 usage, shifting patterns B 630 Lime industry, organization B 630 problems B 630 Lime neutralization, acid mine water, labo- ratory tests B 630 Lime sinter process, for producing alumina from clay, economic evaluation RI 7299 technical evaluation RI 7299 Lime-soda sinter process, alumina extrac- tion, from clays and anorthosite.
specifications B 630 technology B 630 transportation problems B 630 usage, shifting patterns B 630 usage, shifting patterns B 630 usage, shifting patterns B 630 Lime industry, organization B 630 problems B 630 Lime neutralization, acid mine water, labo- ratory tests B 630 Lime sinter process, for producing alumina from clay, economic evaluation RI 7299 technical evaluation RI 7299 Lime-soda sinter process, alumina extrac- tion, from clays and anorthosite.
specifications B 630 technology B 630 transportation problems B 630 types B 630 usage, shifting patterns B 630 usage, shifting patterns B 630 Lime industry, organization B 630 D problems B 630 Lime neutralization, acid mine water, labo- ratory tests B 630 Lime sinter process, for producing alumina from clay, economic evaluation RI 6987 Lime-soda sinter process, alumina extrac- tion, from clays and anorthosite, comparison RI 6933 for producing alumina from anorthosite, economic evaluation RI 7068
specifications B 630 technology B 630 transportation problems B 630 types B 630 usage, shifting patterns B 630 usage, shifting patterns B 630 Lime industry, organization B 630 D problems B 630 Lime neutralization, acid mine water, labo- ratory tests B 630 Lime sinter process, for producing alumina from clay, economic evaluation RI 6987 Lime-soda sinter process, alumina extrac- tion, from clays and anorthosite, comparison RI 6933 for producing alumina from anorthosite, economic evaluation RI 7068
specifications B 630 technology B 630 transportation problems B 630 usage, shifting patterns B 630 usage, shifting patterns B 630 usage, shifting patterns B 630 Lime industry, organization B 630 problems B 630 Lime neutralization, acid mine water, labo- ratory tests B 630 Lime sinter process, for producing alumina from clay, economic evaluation RI 6987 Lime sinter process, for producing alumina from clay, economic evaluation RI 7299 technical evaluation RI 7299 Lime-soda sinter process, alumina extrac- tion, from clays and anorthosite, comparison RI 6933 for producing alumina from anorthosite, economic evaluation RI 7068 technical evaluation RI 7068
specifications B 630 technology B 630 transportation problems B 630 usage, shifting patterns B 630 usage, shifting patterns B 630 usage, shifting patterns B 630 Lime industry, organization B 630 problems B 630 Lime neutralization, acid mine water, labo- ratory tests B 630 Lime sinter process, for producing alumina from clay, economic evaluation RI 6987 Lime sinter process, for producing alumina from clay, economic evaluation RI 7299 technical evaluation RI 7299 Lime-soda sinter process, alumina extrac- tion, from clays and anorthosite, comparison RI 6933 for producing alumina from anorthosite, technical evaluation RI 7068 technical evaluation RI 7068
specifications B 630 technology B 630 transportation problems B 630 usage, shifting patterns B 630 usage, shifting patterns B 630 usage, shifting patterns B 630 Lime industry, organization B 630 problems B 630 Lime neutralization, acid mine water, labo- ratory tests B 630 Lime sinter process, for producing alumina from clay, economic evaluation RI 6987 Lime sinter process, for producing alumina from clay, economic evaluation RI 7299 technical evaluation RI 7299 Lime-soda sinter process, alumina extrac- tion, from clays and anorthosite, comparison RI 6933 for producing alumina from anorthosite, economic evaluation RI 7068 technical evaluation RI 7068

÷

.

:

.

þ

) 【↓

Lime-soda-sinter solutions, simulated, prop-	DI	6509
erties, study Lime structure, in oxygen steelmaking,	DI	0004
Enect	KI TC	630U 030T
Limestone, asphalt-product use chemical-industry use, Calif coarse, hydraulic transportation of, auto- mated nilet plant for	îč	8244
coarse, hydraulic transportation of, auto-	DI	7000
mated pilot plant for compressive strength, tests dielectric constant and dissipation factor,	RI	7234
dielectric constant and dissipation factor.		1204
determination	RL	6913
dimension stone uses Indiana, strength, quantitative determi-	IC	8391
Indiana, strength, quantitative determi-	ъτ	6838
nation linear-cutter apparatus tests on O	л. Р 1	2_69
linear-cutter apparatus tests on O. multispectral photographs of, optical data processing of O. pesticide diluent, use as		μ-00
data processing of O	P 14	16-68
pesticide diluent, use as	IC	8260
relative permeability, to gas, oil, and water, laboratory determination	RI	6926
reserves	F	630
solenhofen, strength, quantitative deter- mination underground mining of, cost estimates methods	-	
mination	RI	6838
underground mining of, cost estimates	IC	8369
use in underground cavity filling remote	ю	8309
use in underground cavity filling remote by pneumatic injection, field tests	RI	7214
Limestone core mobility-saturation rela-		
tionship, laboratory study (Limestone-lime neutralization, acid mine)P 2	26-27
Limestone-lime neutralization, acid mine	זמ	0007
Limestone-internationation, acid mine water, laboratory tests Limestone neutralization, acid mine waters, effectiveness O laboratory tests nilet neutralization, acid mine	п	0991
waters, effectiveness 0	P 18	35-68
laboratory tests	RI	6987
pilot plant study (mine drainage water, pilot plant for, de-)P (37-68
mine drainage water, pilot plant for, de-	DT	7101
Limestone pillars, model, breaking strength, effect of end constraint compressive strength determination, ef-	KI.	1191
effect of end constraint	RI	7092
compressive strength determination, ef-		
lect of end conditions	RI	7171
increased end constraint, effect on com- pressive strength, laboratory study	ъ	7709
uniaxial compressive strength effect of		
planes of weakness	RI	7155
Limestone resources, Alaska O western West Virginia, appraisal	FR	9-65
western West Virginia, appraisal	IC	8368
Limestone slurry, acid mine water neu- tralization with, cost estimate O	P 19	35-68
effectiveness O equipment and method	P 18	35-68
equipment and method O	P_18	35-68
Linarite, magnetic susceptibility Lindgrenite, magnetic susceptibility Line brattice systems, face ventilation effi-	10	8383
Lindgrenite, magnetic susceptibility	10	8900
ciency. study	RI	7223
tests)P (50 6 7
mines, performance tests Linear cutter apparatus, determining	RI	6720
penetration characteristics, in		
rock. Jaboratory tests	P 18	52-69
Liners, flexible, for underground support,		
experimental procedures	ĸı	6893
literature survey Lipids, as petroleum precursors	ייפו	0893
Liquid film, rupture mechanism	P 1	3-68
Liquid film, rupture mechanism O Liquid level, monitoring, in sandstone		
core injection, automatic con-		
trol system O	P I.	54-00
Liquid petroleum gas storage, underground, in salt domes	IC	8313
Liquid-vapor equilibria data, equations for		
calculating	RI	7076
Lithiophilite, magnetic susceptibility	IC	8359
Lithium, annual data MY 1968 in coal ash, spectrochemical determina-	(v.	I–II)
in coal ash, spectrochemical determina-	זס	7001
tion	R1	(201
determination (DP 2	29-65

341

Lithium, reserves B 630
technology B 630
uses B 630
Lithium aluminum silicates, thermody- namic properties RI 7001 Lithium chloride, heat of formation RI 6583
Lithium chloride heat of formation BI 6592
Lithium chloride-potassium chloride-vana-
nadium dichloride electrol vte, va .
nadium recovery from RI 7036
Lithium chloride-yttrium chloride electro-
lyte, yttrium refining in RI 7018
Lithium columbate, high-temperature heat
content RI 6862
Lithium disilicate glass. devitrification.
method RI 6711
Lithium compounds, uses B 630 Lithium disilicate glass, devitrification, method RI 6711 Lithium-ethylenediamine, reduction of coal
by B 615 reduction of model oxygenated compounds _
by P cir
by B 615 Lithium fluoride, molten, reaction rate, with
solid yttrium metal RI 7008
Lithium fluoride-magnesium oxide-ger-
manium oxide system, ternary
phases OP 138-67 Lithium industry, organization B 630
Lithium industry, organization B 630
problems B 630
Lithium metasilicate-silica system, high- purity glass, devitrification, study RI 6651 Lithium minerals, consumption B 630 imports B 630
nurity glass devitrification study RI 6651
Lithium minerals, consumption B 630
imports B 630
Drices B bau
production B 630 technology B 630
technology B 630
Lithium oxalate, heat of formation RI 6583 Lithium silicate glass, vacuum-melted, de-
vitrification, study RI 6651
Lithium sulfate, heat of formation RI 6873
Little Eagle bed, W. Va., coal, carbonizing
nroperties RI 7236
washing characteristics RI 6665 Littleville Dam, Mass., shaft-sinking meth-
Littleville Dam, Mass., shalt-sinking metn-
ods and costs IC 8273 Loaders, front-end, fatal accidents, causes
IC 8347; OP 71-66, 109-67
Loading equipment, in tunnel construction.
Loading equipment, in tunnel construction, recommended safety rules B 644
Lochnerinine, isolation, from Catharan-
thus lanceus OP 120-67
Lode gold, in monsonite, reconnaissance OFR 6-69
Log analysis-core analysis comparison OP 115-68
Logan County, W. Va., coal, carbonizing
properties RI 6899
Longevall mining anthracite beds nitch-
ing, with shearer loader RI 6745
big with shearer loader RI 6745 bituminous coal, operating data IC 8321
degasification in, using vertical borehole
method TPR 13 roof support in, requirements, estimating IC 8424
roor support in, requirements, estimating IC 4424
Lost River tin mine, Seward Peninsula, Alaska, diamond-drill data OFR 2-65
fluorite-beryllium deposits, inves-
tigation $$ OFR 1-65
Lost River valley, Seward Peninsula,
Alaska, fluorite-dervillum de-
posits, sampling data OFR 7-65 petrography OFR 1-65; 7-65
petrography OFR 1-65; 7-65
Louisiana crude oil, high-sulfur, composition B 642
low-sulfur, composition B 642
production RI 7059
anifur content KI (1)59
terrous scrap industry, survey 10 5259
ferrous scrap industry, survey IC 8289 gas-cap reservoir, conservation practices, engineering evaluation M 13
heavy crude oil, production forecast IC 8352
resource IC 8352
engineering evaluation M 13 heavy crude oil, production forecast IC 8352 resource IC 8352 thermal projects IC 8352

Louisiana, heavy crude-oil reservoirs, sur-
helium-bearing natural gases, analyses IC 8263 helium-bearing natural gases, analyses IC 8302 mines, visitors' guide SP 2-67 minerals, production, annual data
mines, visitors' guide
minerals, production, annual data
MY 1968 (v. I–II, III) mineral industry, annual review
MY 1968 (v. III)
natural gas, analyses_IC 8241, 8302, 8316, 8356 occupational diseases, workmen's compen-
sation laws onB 623
offshore oil and gas operations IC 8408
offshore oil and gas operations IC 8408 oil reservoirs, production-rate data IC 8362 well-depth data IC 8362
well-depth data
oilfields, shallow M 12 petroleum-bearing formation waters,
chemistry OP 46-68
chemistry OP 46–68 West Tepetate field, gas-cap reservoir, M 12
Lower Banner hed Va coal washing
characteristics RI 6740
Lower Cedar Grove bed, W. Va., coal, car- bonizing properties RI 6899 Lower Clarion bed, Pa., coal, washing char-
bonizing properties RI 6899 Lower Clarion bed. Pa., coal washing char-
acteristics RI 7174
acteristics RI 7174 Lower Eagle bed, W. Va., coal, carbonizing
characteristics RI 6872 Lower Elkhorn bed, Ky., coal, froth-flota-
tion washability data RI 6652
float-and-sink data RI 6652 Lower Freeport bed, coal, sulfur content, effect of stage crushing on
Lower Freeport bed, coal, sulfur content,
IC 8282; OP 103-66
Pa., coal, caking properties, destroying,
method RI 6605 Lower Kitanning bed, coal, sulfur content,
effect of stage crushing on
IC 8282; OP 103-66
Pa., coal, caking properties, destroying,
method RI 6605
preparation characteristics RI 7324
washing characteristics RI 7174
washing characteristics RI 7131 washing characteristics RI 71324 washing characteristics RI 7174 W. Va., coal, carbonizing properties RI 7236 preparation characteristics RI 6874 washing characteristics RI 6874
washing characteristics KI $0/07$, 0020 , 7004
Lower Sunnyside bed, coal, coke from,
properties RI 7050
chloroform-extract yield, investigation RI 6973 coke from, improving, antifissurant
use for DI 7925
Loyalhanna sand, W. Va., core samples,
density and porosity data IC 8330 Lubricants, flammability properties OP 118-69 ignition temperatures OP 118-69 Luminescence, infrared, coal and coal de-
ignition temperatures OP 118-69
Luminescence, infrared, coal and coal de-
rivatives OP 23-67 graphite OP 23-67
Lunar drill program, drills for moon use.
development tests OP 26–69
Lunar drilling, systems for, descriptions OP 37-69 Lunar environment, inferred, ore de-
posits, in volcanic rocks
Lunar resources, mineral, utilization, re-
search program for OP 28-69 Lunar rocks, simulated, properties OP 35-69
volcanic, ore deposits in, probability OP 29-69
Luxembourg, mineral industry,
annual review MY 1968 (v. IV) Luzerne County, Pa., anthracite, prepara-
tion characteristics RI 6989
properties RI 7086 Lytle sand, Pa., core samples, density and
Lytle sand, Pa., core samples, density and porosity data IC 8330
porosity data to C000

E

Ľ

• !

.

M

Magnesite, magnesium production from,
Magnesite, magnesium production from, carbothermic process RI 6946 Magnesium, annual data MY 1968 (v. I-II) consumption B 630 damping capacity OP 74-65 direct reduction of rutile by RI 6599 grades B 630
damping capacity
direct reduction of rutile by RI 6599
grades B 630 imports and exports B 630
in cosl determination BI 7194
metallurgy B 630
prices B 630
in coal, determination RI 7124 metallurgy B 630 prices B 630 production B 630 from dolomite, process, description RI 6656 production RI 6656
production methods, carbothermic, eco
nomic and technical evaluation RI 6946
metallothermic, economic and technical evaluation RI_6656
secondary, sources B 630
secondary, sources B 630 single crystals, dislocation damping, orientation dependence OP 29-67
tation RI 6642 measurements RI 6642
measurements RI 6642
trade B 630
Magnesium alloys, damping capacity OP 74-65
uses B 630 Magnesium alloys, damping capacity OP 74-65 metallurgy B 630 Magnesium-cerium alloys, properties RI 6866 Magnesium-cerium system, phase diagram RI 6866 Magnesium-cerium system, phase diagram RI 6866
Magnesium-cerium alloys, properties RI 6866
Magnesium-cerium system, phase diagram RI 0000 Magnesium compounds, annual data
MY 1968 (v. I-II)
MY 1968 (v. I-II) chemical-industry use, Calif IC 8244
consumption B 630
grades B 630 imports and exports B 630
metallurgy B 630
prices B 630
production B 630 Magnesium compounds industry, organization B 630
Magnesium industry, organization B 630
problems B 630 Magnesium metal, production methods B 630
Magnesium metal, production methods B 630
Magnesium minerals, uses
dilatation, study OP 114-66 in coal ash, determination RI 7240 spectrochemical method RI 6985
spectrochemical method RI 6985
Magnesium oxide-germanium oxide-lith- ium fluoride system, ternary
phases
Magnesium oxide-germanium oxide-mag-
nesium fluoride system, proper- ties OP 116-66
synthesis OP 116-66
magnesium oxide-zirconium oxide system, phase relations OP 82-67
synthesis
for OP 72-69 Magnesium-titanium phase diagram OP 156-68
Magnesium vanadates, thermodynamic
properties RI 6727 Magnesium-zirconium alloy system, liquidus
determination RI 6673
Magnetic fields, effect on brine flow, in
petroleum-reservoir rock sam- ples OFR 5-65
effect on mercury flow rate, in porous
media RI 7259 Magnetic roasting, ferrous scrap as solid
reductant, use OP 46-65
Magnetic roasting process, iron ores, use of ferrous scrap as reductant, study RI 6764
Magnetic separation, minerals, low-suscep-
tibility small-particle-size, method RI 7292 pyrite from coal, study RI 7181
research, review OP 157-65
Magnetic separator effluent, froth flotation
tests RI 6821

I.

3 (3 (3

.

Magnetic susceptibility, coal OP 19-68
cobalt-bearing minerals IC 8351 copper-bearing minerals IC 8383 group IVB, VB, and VIB metal-bearing IC 8960
group IVB, VB, and VIB metal-bearing
minerals IC 8360 lead-bearing minerals IC 8363 manganese-bearing minerals IC 8359 nickel-bearing minerals IC 8351
manganese-bearing minerals
nickel-bearing minerals IC 8351
zinc-bearing minerals
Magnetite, artificial, from roasting non- magnetic taconite with scrap iron OP 124-69
in dense-medium circuits, reclaiming, froth-flotation method RI 6821
pelletizing, method OP 35-66 reduction, activation-energy variations, investigation RI 6699
reduction, activation-energy variations, investigation RI 6699
in hydrogen, kinetics of initial stages RI 7080
with carbon monoxide, kinetics RI 6832
reduction of marginal iron ore to, method RI 7314
synthetic, pelletizing, method OP 35-66
titaniferous, slag, liquidus temper- atures
dicting slag composition RI 7232 smelting, flux requirements, study BI 7081: 7083, 7232
111 1001, 1000, 100
Magnetite pellets, unfired, parameters af- fecting reduction-induration of RI 7069
Magnetsbudgedunemic generator ODen-
cycle vortex, design OP 47-69 operating, at low fuel-air ratios, re-
sults OP 135-68 Magnetohydrodynamic powerplants, open-
ing level, factors affecting OP 33-69
ing level, factors affecting OP 33-69 coal-fired, optimum seeding level, factors affecting OP 33-69 Magnetohydrodynamic systems, coal- burging open-cycle slag for-
Magnetohydrodynamic systems, coal- burning, open-cycle, slag for-
mation effect on dict operation
and seed recovery OP 177-67 Mahogany-zone oil shale, ankerite in OP 81-66
oil yields RI 7051 oil yields RI 7051
oil yield-shale density relationship, theo- retical equations for application RI 7248
organic material to oil, conversion con- stants OP 79-66
stants OP 79-66 Maine, Aroostook manganiferous ores, man-
ganese recovery from, ammonium
sulfate leaching process evaluation RI 7156 beryllium deposits, investigation RI 7070
mines, visitors' guide SP 2-67
beryllium deposits, investigation KI 7070 mines, visitors' guide SP 2-67 minerals, production, annual data MY 1968 (v. I-II, III) mineral industry annual review
mineral industry, annual review MY 1968 (v. III)
Moosehorn National Wildlife Refuge.
Edmunds Unit, mineral ap-
Edmunds Unit, mineral ap- praisal
Spencer Lake asbestos-serpentine de-
posits, investigation OFR 10-67
Malachite, magnetic susceptibility IC 8383
Malagasy Republic, mineral in- dustry, annual review MY 1968 (v. IV)
Malawi, mineral industry, annual review MY 1968 (v. IV)
Malaysia, mineral industry, an-
Maleic anhydride, production from low- temperature lignite tar, method RI 6916

. .

Malheur National Wildlife Refuge, Oreg., mineral appraisal _____ GS 9-68

Mali, mineral industry, annual review MY 1968 (v. IV)
Manganese, annual data MY 1968 (v. I-II) from manganiferous brown iron ore, re-
from manganiferous brown iron ore, re- duction roasting-acid solution tech-
niques RI 6775 in coal ash, spectrochemical determina-
in coal ash, spectrochemical determina- tion RI 7281
in liquid iron-manganese alloys, activity RI 6807
iron-vapor pressure RI 6807 in oilfield waters, spectrometric deter-
mination, using plasma arc OP 17-67 primary matte, upgrading, patent P 5-65
recovery. Irom domestic resources, sulfur
oxide processes, review IC 8368 from leach solutions, method, patent_ P 3-68
from low-grade manganese ores, am-
monium sulfate leaching process RI 7156 from low-grade manganiferous iron
ores, by smelting and selective oxi-
dation RI 6596 from manganese sulfate, by partial re-
duction process KI 6794
from manganiferous ore, clorination process RI 6859
process RI 6859 from manganiferous slag, clorination process RI 6859
from open-hearth slags, by smelting
and selective oxidation RI 6596 from ores, reduction-volatilization proc-
ess RI 6738
from pig-iron slags, laboratory study RI 6728 from umber ore, sulfuric acid-ferrous
sulfate process RI 6692
reserves B 630 solid-state reactions with silica, high-
temperature tests RI 6905 stockpile accumulation, amount OP 62-66
technology
Manganese-bearing minerals, magnetic sus- ceptibility IC 8359
ceptibility IC 8359 Manganese chloride, recovery, from ores
and slags, method OP 5-67 Manganese compounds, chemical-industry use, Calif IC 8244 Manganese-copper alloys, damping charac- toristics B 624
use, Calif IC 8244
metallurgical characteristics B 624 Manganese-iron alloys, manganese vapor
pressure, determination RI 6807 Manganese-iron system, activity of man-
ganese in RI 6807
Manganese leach solution, cyclic, purifica-
tion and concentration, autoclaving RI 7166 Manganese molybdate, heat of formation RI 6618
Manganese nodules, marine, analytical studies OFR 7-67
Manganese nodules, marine, analytical studies OFR 7-67 collecting, method OFR 7-67
Manganese ore, chemical-industry use, Calif IC 8244
consumption B 630
grades B 630 imports B 630
low-grade, clorination processes OP 5-67 iron-manganese separation, leach liquor
autoclaving RI 7166
manganese recovery from, reduction- volatilization process RI 6738
occurrences. Colo IC 8303
prices B 630 production B 630
Manganese phosphide, molten-salt elec- trolytic preparation of OP 69–67
Manganese sulfate, crystals, recovery from
solution, thermal combustion meth- od RI 6762
od
ess RI 6794

.

Manganese sulfate-iron sulfate solu-
tions, iron from, exidation-pre-
cipitation rate OP 162-69
cipitation rate OP 162-69 Manganese-thorium alloys, thorium recov-
ery from, vacuum distillation
method RI 7265
Manganese vanadate, thermodynamic prop-
erties RI 6727 Manganosite, magnetic susceptibility IC 8359
Manganosite, magnetic susceptionity 10 8555
Manganous sulfate, recovery from solu-
tions, methods IC 8368 Mannitol, flux, in tin-lead solder tests on
2000AF BI 5903
Maps, contour, constructing, by statistical
methods KI 6876
Marble, compressive strength, tests RI 7234 dimension stone uses IC 8391
dimension stone uses IC 8391
linear-cutter apparatus tests on OP 152–69
longitudinal wave velocity in, correla-
tion with rock fabric OP 172-69
Tennessee, strength, quantitative deter-
mination RI 6838
Marble pillars, model, breaking strength, effect of end constraint RI 7092
effect of end constraint RI 7092
compressive strength determination, effect of end conditions RI 7171
increased end constraint, effect on com-
presive strength, laboratory study RI 7298
Marine mineral exploration, technologic
lacks in OP 115-69 •
Marina mining systems research facility
Marine mining systems research, facility for, description OP 106–69
Markets, bituminous coal, technological
changes in OP 203-68
Changes in of 200-00
Marquette range, hematitic ores, fine-
grained, flotation procedures RI 6976 selective flocculation-desliming tech-
nique RI 6876
nique RI 6876 iron ore, metallurgical evaluation RI 6895
taconite, nonmagnetic, flotation proce-
dures for, developingOP 82-69, 112-69
Martinique, mineral industry, an-
nual review MY 1968 (v. IV)
Martinsburg Shale, N. J., expansion
properties of, tests OP 134-66
Marx-Langenheim calculations, oil recov-
ery prediction by, in steamflood-
ing IC 8432
Many No 1 mine W Ve coel weeking
Mary No. 1 mine, W. Va., coal, washing characteristics RI 6825
Maryland, Appalachian area, mineral re-
sources GS 4-68
mineral resources potential GS 4-68
Baltimore area, auto wrecking and scrap
processing industries SP 1-67
processing industries SP 1-67 coal. analyses RI 7104
processing industries SP 1-67 coal, analyses RI 7104 chlorine content RI 6579
processing industries SP 1-67 coal, analyses RI 7104 chlorine content RI 6579 major ash constituents RI 7240
processing industries SP 1-67 coal, analyses RI 7104 chlorine content RI 6579 major ash constituents RI 7240
processing industries SP 1-67 coal, analyses RI 7104 chlorine content RI 6579 major ash constituents RI 7240
processing industries SP 1-67 coal, analyses RI 7104 chlorine content RI 6579 major ash constituents RI 7240
processing industries SP 1-67 coal, analyses RI 7104 chlorine content RI 6579 major ash constituents RI 7240 sulfur content, forms IC 8301 coal ash, analyses RI 7240 fusibility data RI 7240 fire clay, as potential aluminum source IC 8335
processing industries SP 1-67 coal, analyses RI 7104 chlorine content RI 6579 major ash constituents RI 7240 sulfur content, forms IC 8301 coal ash, analyses RI 7240 fusibility data RI 7240 fire clay, as potential aluminum source IC 8335
processing industries SP 1-67 coal, analyses RI 7104 chlorine content RI 6579 maior ash constituents RI 7240 sulfur content, forms IC 8301 coal ash, analyses RI 7240 fusibility data RI 7240 fire clay, as potential aluminum source IC 8335 mines, visitors' guide SP 2-67 minerals, production, annual data
processing industries SP 1-67 coal, analyses RI 7104 chlorine content RI 6579 maior ash constituents RI 7240 sulfur content, forms RI 7240 fusibility data RI 7240 fire clay, as potential aluminum source _ IC 8335 mines, visitors' guide SP 2-67 minerals, production, annual data MY 1968 (v. I-II, III) mineral industry annual review
processing industries SP 1-67 coal, analyses RI 7104 chlorine content RI 6579 maior ash constituents RI 7240 sulfur content, forms RI 7240 fusibility data RI 7240 fire clay, as potential aluminum source _ IC 8335 mines, visitors' guide SP 2-67 minerals, production, annual data MY 1968 (v. I-II, III) mineral industry annual review
processing industries SP 1-67 coal, analyses RI 7104 chlorine content RI 6579 maior ash constituents RI 7240 sulfur content, forms RI 7240 fusibility data RI 7240 fire clay, as potential aluminum source _ IC 8335 mines, visitors' guide SP 2-67 minerals, production, annual data MY 1968 (v. I-II, III) mineral industry annual review
processing industries SP 1-67 coal, analyses RI 7104 chlorine content RI 6579 maior ash constituents RI 7240 sulfur content, forms IC 8301 coal ash, analyses RI 7240 fusibility data RI 7240 fire clay, as potential aluminum source IC 8335 mines, visitors' guide SP 2-67 minerals, production, annual data MY 1968 (v. I-II, III) mineral industry, annual review MY 1968 (v. III) natural gas, analyses IC 8356 occupational diseases, workmen's compen-
processing industries SP 1-67 coal, analyses RI 7104 chlorine content RI 6579 major ash constituents RI 7240 sulfur content, forms IC 8301 coal ash, analyses RI 7240 fusibility data RI 7240 fire clay, as potential aluminum source _ IC 8335 mines, visitors' guide SP 2-67 minerals, production, annual data MY 1968 (v. I-II, III) mineral industry, annual review MY 1968 (v. III) natural gas, analyses IC 8356 occupational diseases, workmen's compen R 623
processing industries SP 1-67 coal, analyses RI 7104 chlorine content RI 6579 major ash constituents RI 7240 sulfur content, forms IC 8301 coal ash, analyses RI 7240 fusibility data RI 7240 fire clay, as potential aluminum source _ IC 8335 mines, visitors' guide SP 2-67 minerals, production, annual data MY 1968 (v. I-II, III) mineral industry, annual review MY 1968 (v. III) natural gas, analyses IC 8356 occupational diseases, workmen's compen- Sation laws on B 623 St. Marys Formation, expandable clays MNR
processing industries SP 1-67 coal, analyses RI 7104 chlorine content RI 6579 maior ash constituents RI 7240 sulfur content, forms IC 8301 coal ash, analyses RI 7240 fusibility data RI 7240 fire clay, as potential aluminum source _ IC 8335 mines, visitors' guide SP 2-67 minerals, production, annual data MY 1968 (v. I-II, III) mineral industry, annual review MY 1968 (v. III) natural gas, analyses IC 8356 occupational diseases, workmen's compen- sation laws on B 623 St. Marys Formation, expandable clays MNR titanium mineral deposits, survey IC 8290
processing industries SP 1-67 coal, analyses RI 7104 chlorine content RI 6579 maior ash constituents RI 7240 sulfur content, forms IC 8301 coal ash, analyses RI 7240 fusibility data RI 7240 fire clay, as potential aluminum source _ IC 8335 mines, visitors' guide SP 2-67 minerals, production, annual data MY 1968 (v. I-II, III) mineral industry, annual review MY 1968 (v. III) natural gas, analyses IC 8356 occupational diseases, workmen's compen- sation laws on B 623 St. Marys Formation, expandable clays MNR titanium mineral deposits, survey IC 8290 Mass spectrograph. spark-source, with
processing industries SP 1-67 coal, analyses RI 7104 chlorine content RI 6579 maior ash constituents RI 7240 sulfur content, forms IC 8301 coal ash, analyses RI 7240 fusibility data RI 7240 fire clay, as potential aluminum source IC 8335 mines, visitors' guide SP 2-67 minerals, production, annual data MY 1968 (v. I-II, III) mineral industry, annual review MY 1968 (v. I-II, III) matural gas, analyses IC 8356 occupational diseases, workmen's compen- sation laws on B 623 St. Marys Formation, expandable clays MNR titanium mineral deposits, survey IC 8290 Mass spectrograph. spark-source, with spinning-electrode system OP 74-68
processing industries SP 1-67 coal, analyses RI 7104 chlorine content RI 6579 maior ash constituents RI 7240 sulfur content, forms IC 8301 coal ash, analyses RI 7240 fusibility data RI 7240 fire clay, as potential aluminum source _ IC 8335 mines, visitors' guide SP 2-67 minerals, production, annual data MY 1968 (v. I-II, III) mineral industry, annual review MY 1968 (v. III) natural gas, analyses IC 8356 occupational diseases, workmen's compen- sation laws on B 623 St. Marys Formation, expandable clays MNR titanium mineral deposits, survey IC 8290 Mass spectrograph. spark-source, with

ľ

ľ

ļ,

D

in. eliminating, method ____ OP 12-69 types and uses, review _____ OP 125-67 Mass spectrometry, gas evolved during vac-uum melting, residual gas analyzer RI 7293 lium _____ OP 87-66 review ----- OP 126-67 spark-source, organic compounds _____ RI 6951 Massachusetts, beryllium deposits, investigation RI 7070 gation RI 7070 Boston area, auto wrecking and scrap processing industries SP 1-67 Littleville Dam project, shaft-sinking methods and costs IC 8273 mines, visitors' guide SP 2-67 minerals, production, annual data MY 1968 (v. I-II, III) mineral industry, annual review MY 1968 ((v. III) Monompy National Wildlife Refuge min-Monomoy National Wildlife Refuge, mineral appraisal _____ GS 8-67 occupational diseases, workmen's compen-sation laws on _____ B 623 Material balance equation, calculation of average reservoir pressure-net gas in storage relationship, in natural gas storage operations _____ RI 6763 initial oil volume, in reservoir, calcula-Materials handling in tunnel construction, recommended safety rules ______ B 644 research program ______ OP 30-67 Materials handling research, hydraulic transportation of coarse solids ____ RI 7283 Materials recycling program, lowering tin content of secondary red brass, effect ______T Materials storage, in tunnel construction, **TPR 18** recommended safety rules _____ B 644 Materials survey, copper _____ IC 8225 selenium and tellurium _____ IC 8340 Mathematical statistics, matrix algebra in IC 8332 Mather Collieries mine, Pa., coal, carbonizing properties _____ RI 7131 Mathies mine, Pa., coal, carbonizing properties _____ RI 7131 Matrix algebra, basic properties _____ IC 8332 Matte, lead blast-furnace, copper recovery from, method ______ RI 7042 lead recovery from, method ______ RI 7042 oxidation of, by Ferrobacillus ferrooxidans _____ RI 7126 dilute acid leach method _____ RI 7126 Matte residue, lead blast-furnace, pig iron recovery from, method _____ RI 7042 Meade Park, Idaho, phosphate ore, flotation study ______ RI 6751 petrography _____ RI 6751 Mechanization, coal mines, effect on miners OP 50-69 effect on miners' wives _____ OP 50-69 Meerschaum. annual data _____ MY 1968 (v. I-II) Melanovanadinite, magnetic susceptibility_ IC 8360 Melcroft mine, Pa., coal, carbonizing properties _____ RI 7131 Meneghinite, magnetic susceptibility _____ IC 8383 Menominee range, iron ore, metallurgical evaluation RI 6895 Mercer County, N. Dak., lignite and lignite ash analyses ______ RI 7158 W. Va., coal, carbonizing properties _____ RI 6615

consumption B 630

Mercury, flow rate, in porous media, effect of magnetic field ______ RI 7259 effect of magnetic field and electric effect of magnetic held and electric current ______ B 630 prices ______ B 630 prices ______ B 630 price-production relationships ______ IC 8252 production ______ B 630 U.S. ______ IC 8252 U.S. IC 8252 production potential, engineering evalua-tion IC 8252 reserves B 630 U.S. IC 8252 secondary, consumption B 630 production B 630 stockpile accumulation, amount OP 62-66 substitutas B 630 stockpile accumulation, amount _____ OP 62-66 substitutes _____ B 630 technology _____ B 630 uses _____ B 630 Mercury deposits, Alaska, investigations___ RI 6892 petrography _____ RI 6892 Mercury industry, organization _____ B 630 problems ______ B 630 Mercury mines, U.S. _____ IC 8252 Mercury occurrences, U.S. _____ IC 8252 Mercury prospects, U.S. _____ IC 8252 Mesabi range, Minn, iron-bearing mate-____ RI 6650 sampling pits and dumps, rehabilitating, discussion Meta-anthracite, graphite crystallites in, _____ OP 74-69 electron microscopy observations OP 96-65 X-ray scattering intensities _____ B 648 Metahewettite, magnetic susceptibility ____ IC 8360 Metals, aluminothermically prepared, alu-minum removal from, patent __ PAT 1-65 oxygen removal from, patent ____ PAT 1-65 base, new applications _____ OP 58-67 ___ P 12_67 cast, process, patent _____ in incinerator residues, physical and chemical benefication OP 171-69 reclaiming, methods, laboratory study OP 60-68 in municipal incinerator residues, composition _____ RI 7204 internal damping of, measuring, tor-sion pendulum for _____ OP 174-69 molten, copper extraction from, method, patent ______plate, explosive forming of hemispher-ical shapes from _______ processing, electrometallurgical appli-P 9-69 OFR 6-68 cations OP 70-69 reactive, vacuum-induction melting ---- OP 70-69 reinforcement, with fine tungsten wire, feasibility, laboratory investigation _. _ RI 7130 separation from gangue constituents, P 13-68 patent sheet, explosive forming of hemispherical shapes from _____ OFR 6-68 U.S. self-sufficiency, tabulation _____ OP 63-66 Metal-amines systems, reaction of model compounds with ______ B 615 reduction of coal by ______ B 616 Metal chelates, infrared absorption spectra __ B 632 Metal compounds, organic, characterization, microhydrogenation technique _____ OP 196-67 Metal halides, hygroscopic, vapor pressure measurements, apparatus for ____ RI 6849 vapor pressures _____ RI 7022, 7307 RI 6849

Metal industries, water requirements and uses _____ IC 8288 Metal mining, annual review _____ OP 168-65 Metallic mineral industries, employment __ IC 8433 fatalities _____ IC 8433 International International International International International International International International International Internation Internatio Internation Internation I Metal powders, ultrafine, preparation, freeze-dry technique ______O Metal sulfides, electrochemical preparation ___ OP 69-67 OP 86-65

 Metali sunides, electrochemical preparation
 P 14-68

 Metallic mineral industries, employment...
 IC 8378

 fatalities, annual data
 IC 8378

 injuries, annual data
 IC 8378

 Metallic arcs, high-current, studies
 B 625

 Metallurgy, extractive, plasma, possible applications
 IC 8438

 Meteorite, iron, electron-probe microanalysis _____ OP 21-65 Methanation catalyst, molybdenum as, in-_____ Methanation catalyst, molybdenum as, in-vestigation ______ RI 6974 noble metals as, investigation ______ RI 6974 tungsten as, investigation ______ RI 6974 Methane, adsorption-desorption studies, in coalbeds ______ OP 101-66 adsorption rates, Pittsburgh seam coal___ RI 6750 Pocahontas seam coal ______ RI 6750 adsorption rate on coal, application of solutions of Fick's law____OP 6-65, 7-65 compressed, thermodynamic properties OP 201-67 compressed, thermodynamic properties OP 201-67 desorption, from coal particles, laboratory tests determination, in mine air, infrared ver-__ TPR 14 sus gas chromatographic methods RI 7179 distribution patterns, face ventilation, study ______ RI 7223 ____ RI 7223 flow, into mine workings, control methods _____ OP 114-67 physical laws governing _____ OP 114-67 in diesel exhaust gas, determination, continuous monitoring method _____ RI 7241 incendivity of hot gases to, reducing ____ RI 6954 incipient ignitions, quenching, process and method, patent ______ production, from coal derivatives, ultra---- P 15-69 sonic irradiation method _____ RI 7027 thermodynamic properties, bibliog-_____ OFR 14-69 raphy_ thermophysical properties _____ IC 8317 transport properties, bibliography ____ OFR 14-69 Methane-air flames, combustion products, equilibrium composition _____ RI 6672 Methane-coal dust-air mixtures, flame propagation limits ______ RI 7103 Methane-coal dust mixtures, burning, quenching distances, study _____ RI 6761 ignition limits ______ RI 6931 Methane control, research program ____ OP 30-67 Methane control program, behavior of coalgas reservoirs _____ TPR 10 degasification, longwall gob areas, ver-_ TPR 13 tical boreholes ______ design and development of drill equip-**TPR 11** ment TPR 11 gas migration characteristics of coalbeds TPR 12 methane sorption on coal, investigation__ TPR 14 recording anemometers, for underground coal mines, development _____ TPR 15 Methane detection, research and development _____ OP 72-67 Methane detectors, flammable gas-air mix-tures, effect on, tests _____ IC 8292 portable, fees for testing, amendments____ S 8C Methane drainage, coal mines, methods __ OP 99-65

Methane ignitions, at working face, quenching, method ______ OP 3-67 Methane monitors, description _____ OP 72-67 Methane monitors, description Methane-monitoring systems, fees for testing, S 32 amendments _____ rules for testing, amendments _____ S 32A Methane - tetrafluoromethane mixtures, compressed, thermodynamic proper-OP 201-67 ties OP 201-67 Methane-tetrafluoromethane system, com-pressibility OP 152-67 gas-density measurements OP 152-67 Methanol-hydrazine-nitromethane mix-Methanol-surfactant treatment, gas-well waterblocks ______ RI 6688 Methanometer, portable recording, description ______ RI 7270 recording, for use in underground coal ______ TPR 15 mines, development _____ TPR 15 Methyl alcohol, properties _____ OP 156-67 3-Methyl-1,2-butadiene, enthalpy of combustion _____ OP 178-69 enthalpy of formation _____ OP 178-69 Methylacetylene-propadiene-propane mixture, detonation of, studies _____ RI 7196 Methylcyclopentane, enthalpy of combus-OP 72-69 tion ___ 1-Methylcyclopentene, enthalpy of combustion ______ OP 72-69 Methylene bromide-tetrabromoethane comparison, in heavy-liquid cyclone use 1-Methylnaphthalene, ultrasonic radiation _ RI 7134 of, chemical reactions ______ RI 7027 Methylpyridines, cobalt-60 irradiation, re-Methylpyridines, cobalt-60 irradiation, re-actions OP 42-69 Mexico, mineral industry, an-nual review _____ MY 1968 (v. IV) Methylpyrroles, thermal reactions _____ RI 6720 1-Methylpyrrole, autoxidation _____ OP 195-67 Mexico, crude oil, production _____ RI 7059 sulfur content _____ RI 7059 Fresnillo mine, metal distribution, geom-etry _____ RI 6919 etry _____ RI 6919 Frisco mine, assay data, linear discriminant analysis ______ RI 6898 Mexico, mineral industry, annual review ______ MY 1968 (v. IV) natural gas, analyses _____ IC 8395 Miami Copper Co., Ariz., Miami mine, cop-consumption B 630 fine, recovery, from pegmatite ores, ani-onic-cationic flotation _____ RI 6589, 7159 flotation, from pegmatites _____ OP 13-66 method, patent _____P 13-66, 2-67 fluorine, milling methods _____ B 647 fluorine, synthesis ______ B 647 arc resistance electric melting method B 647 crucible method _____ B 647 internal resistance electric melting method B 647 method B 647 operational problems ______ B 647 solid-state reaction method ______ B 647 fluorophlogite, production method, patent P 11-67 glass-bonded, properties _____ B 647 grades _____ B 630 grades B 630 ground, chemical-industry use, Calif. ___ IC 8244 high-quality, flotation, from waste tailings ______ RI 7319 imports and exports ______ B 630 in ore samples, determination, heavy-liquid separation method _____ OP 131-67 prices ______ B 630 production _____ B 630

ĩ

f

1

Ð

Mica, recovery, from graphitic-mica schist ore, flotation tests RI 7263 from schist, flotation technique RI 6668
ore, flotation tests RI 7263
reserves B 630
from schist, notation technique R1 6668 reserves B 630 selective flotation of, from mica pegma- tite ores, tests R1 6830 separation from granite, method R1 7245 synthesis OFR 3-65 history B 647 synthetic, flakes, 2V values, measure- ments B 630 patent B 630 patent P 9-65 technology B 630
tite ores, tests RI 6830
synthesis OFR 3-65
history B 647
synthetic, flakes, 2V values, measure-
ments OP 18-60 manufacture B 630
patent P 9-65
uses B 630 waste tailing, minerals from, selective flotation tests RI 7319
flotation tests RI 7319
Mica industry, problem B 630 Mica paper, method of making, patent P 17-68
Michigan, crude oil, low-sulfur, composition B 642
production RI 7059
production RI 7059 sulfur content RI 7059
ferrous scrap industry, survey IC 8342 glacial lake clays, pellet-binder uses,
tests OFR 4-69 Grand Rapids area, auto wrecking and
Grand Rapids area, auto wrecking and
scrap processing industries SP 1–67 heavy crude oil, production forecast IC 8352
resource IC 8352
resource IC 8352 heavy crude oil reservoirs, survey IC 8263 heavy crude oil reservoirs, survey IC 8263
nelium-bearing natural gases, analyses 10 0002
hematitic ores, flotation procedures RI 6976 Huron National Wildlife Refuge, min-
eral appraisal
Marquette range iron ores, flotation tech-
niques RI 6976 metallurgical evaluation RI 6895
metallurgical evaluation RI 6895 Michigan Islands National Wildlife Ref-
uge, mineral appraisal GS 5-68
uge, mineral appraisal GS 5-68 mines, visitors' guide SP 2-67 minerals, production, annual data
MY 1968 (v. I-II, III)
mineral industry, annual review
MY 1968 (v. III) natural cas analyses IC 8302 8316 8356 8395
natural gas, analyses_IC 8302, 8316, 8356, 8395 occupational diseases, workmen's compen-
sation laws on B 623
sation laws on B 623 petroleum-impregnated rocks, surface and shallow M 12
Seney National Wildlife Refuge, min-
eral appraisal GS 5-68
shale, expansion properties, tests RI 7055 lightweight aggregate from, rotary-
kiln method, tests RI 7055
kiln method, tests RI 7055 taconite, nonmagnetic, flotation proce-
dures for UP 82-69, 112-69
White Pine copper ore, cyanide leaching of, effect of ammonia addition RI 7138
Michigan Islands National Wildlife Rei-
uge, Mich., mineral appraisal GS 5-68
Microanalysis, electron-probe, computer pro- gram RI 6648; OP 11-66, 12-66 iron meteorite OP 21-65
iron meteorite OP 21-65
literature survey
Microanalyzer, electron-probe, backscat- tered electron coefficients, meas-
urement RI 6681
urement
Microhydrogenation technique. for iden-
tincation of solid samples OF 140-05
identification of organic compounds by OP 45-67
Microlite, magnetic susceptibility IC 8360
Microscope, automated reflectance scanning, for coal component study RI 7256
Microscopy, electron, ultrafine structures in
coal B 541
scanning electron, electrodeposited zinc, surface structure of OP 148-69
$\mathbf{U}_{\mathbf{U}} = \mathbf{U}_{\mathbf{U}} = $

J

3

i

3

.

Microseismic system, for rock-noise studies OP 177-69
Microsersmit system, 101 Teck hoise OP 177-69 Microstructure, rock, correlation with physical behavior, study OP 118-66 Mid-Continent area, crude oil, production RI 7059 sulfur content RI 7059 Middle East, crude oil, sulfur content RI 7059
Mid-Continent area, crude oil, production RI 7059
Sulfur content RI 7059
Middle East, crude oil, suirur content RI 7059 Middle Kittanning bed, coal, coke from, properties RI 7050 Middle Kitanning bed, Pa., coal, prepara- tion characteristics RI 7324 washing characteristics RI 7324 W. Va., coal, carbonizing properties RI 7236 washing characteristics RI 6707 Middle oil, bituminous-coal, hydrogenation B 633 hydrogenation, vapor-phase, catalysts B 633
Middle Kitanning bed, Pa., coal, prepara-
washing characteristics RI 7174
W. Va., coal, carbonizing properties RI 7236
washing characteristics RI 6707
Middle oil, bituminous-coal, hydrogenation B 633 hydrogenation, vapor-phase, catalysts B 633
Mill tailings, as mine backfill, waterflow in, laboratory study RI 7034 disposal, dams for, design priciples IC 8410 Millerite, magnetic susceptibility IC 8351 Mimetite, magnetic susceptibility IC 8383
disposal dama for design priciples IC 8410
Millerite, magnetic susceptibility
Mimetite, magnetic susceptibility IC 8383
nomics
nomics OP 127-69 coal, gas flow in, control methods OP 114-67 physical laws governing OP 114-67
gassy noncoal, mobile dissel-powered transportation equipment for, list IC 8354
transportation equipment for, list IC 8354 nongassy noncoal, mobile diesel-powered
transportation equipment for, list IC 8363
open-pit, slope stability, determining, methods OP 58-66
strip and surface land rehabilitationMISC
underground, hydraulic backfill, vibra- tory compaction tests RI 6922
tory compaction tests RI 6922
visitors' guide
visitors' guide SP 2-67 Mine accidents, front-end loader fatalities, analysis IC 8347
Mine atmospheres constituents of deter-
mination, gas chromatographic
Mine backfill, potential support capability, DI 2000
aboratory tests RI 7198 waterflow in, laboratory study RI 7034
waterflow in, laboratory study RI 7034
mine development, critical path planning
and scheduling, application RI 6739 Mine environment, effect on optical prop-
erries of glass
for testing amendments S 2F rules for testing S 2G permissible, lists IC 8299, 8372 Mine-explosion research, review IC 8277
rules for testing
Mine-evolution research review IC 8277
Mine-explosives research, review IC 8277
Mine fires, firefighting facilities for, selected
Mine gases analysis gas chromatographic
method RI 7180 Mine health and safety, coal-mine dust,
respirable, control, by ventilation,
studies TPR 19 Mine openings, rock behavior around, anal-
ysis RI 6747
underground, flexible liners, use RI 6893
Mine passageways, remote filling of, by pneumatic injection of dry mate-
rials, tests RI 7214
Mine products, improving returns from, op- erations research techniques for RI 7230.
Mine production, long-range, critical path
maximizing returns from, operations
research techniques OFR 8-67

Mine refuse, coarse, hydraulic transportation of, automated pilot plant for RI 7283 Mine rescue training, CENTO countries, proposed ______ OP 141-67 Mine rock, stabilizing, with resin-rebar support, tests _____ RI 6626

Mine roof, gas pressure in, measuring OP 5-66
medduling OI 0=00
sonic testing, summary OP 5-66
stability, testing, methods OP 13-65
stability, testing, methods OP 13-65 Mine-roof bolting, laboratory pull tests RI 6613
tension-torque relationship, laboratory
Mine-roof borting, laboratory pull tests RI 6842 mine-roof control, review OP 23-65 Mine-roof pressure, determination, hy-
Mine-roof control, review OP 23-65
Mine-roof pressure, determination, hy-
draune pressure cen method OF 171-67
Mine-roof rock, roof-bolt anchorage ca-
pacity, testing RI 6646 Mine-roof scaling machine, description OP 45-65
Mine-root scaling machine, description UP 45-65
Mine safety, breathing apparatus, closed-
circuit, low-temperature tests RI 7192 Bureau of Mines research on OP 53-66
fire protection standards, coal mines.
fire protection standards, coal mines, summary IC 8361
permissible respiratory protective de-
permissible respiratory protective de- vices, list IC 8436 portable recording methanometer, de-
portable recording methanometer. de-
scription RI 7270
scription RI 7270 tunneling, recommended safety rules B 644 Mine safety competition, awards OP 102-67
Mine safety competition, awards OP 102-67
Mine safety devices, trip light-reflector
comparison RI 7202
Mine safety equipment, oxygen-deficiency
Mine safety devices, trip light-reflector comparison RI 7202 Mine safety equipment, oxygen-deficiency alarm, miniature RI 7165; IC 8358 Mine-safety research, review IC 8277
Mine-safety research, review IC 8277
Mine spoil, reclamation, with fly ash, tests OP 48-67
tests OP 48-67
Mine complete of lashess through that DI 6710
block, air leakage through, tests RI 6710
brattice-cloth, air leakage through.
tests
cinder-block, air leakage through,
Aline stoppings, air leakage through, tests RI 6710 block, air leakage through, tests RI 6710 brattice-cloth, air leakage through, tests OP 101-67 cinder-block, air leakage through, tests OP 101-67 construction and repair, improving face ventilation by OP 120-66 rupture strength, tests RI 6710 sheet, air leakage through, tests RI 6710
construction and repair, improving
face ventilation by OP_120-66
rupture strength, tests RI 6710
sheet, air leakage through, tests RI 6710
wille subsidence, preventing, nydradne-
backfill method OP 31-65
backfill method OP 31-65
Mine subsidence, preventing, hydraulics backfill method OP 31-65 Mine support, concrete versus wood, cost comparison RI 7114
Mine subsidence, preventing, hydraulics backfill method OP 31-65 Mine support, concrete versus wood, cost comparison RI 7114
Mine substance, preventing, hydraulics backfill method OP 31-65 Mine support, concrete versus wood, cost comparison RI 7114 strength comparison RI 7114 flexible liners, applicability considerations RI 6893
Mine substance, preventing, hydraulics OP 31-65 Mine support, concrete versus wood, cost comparison RI 7114 strength comparison RI 7114 flexible liners, applicability considerations RI 6893 experimental procedures RI 6893
Mine substance, preventing, hydraulic backfill method OP 31-65 Mine support, concrete versus wood, cost comparison RI 7114 strength comparison RI 7114 flexible liners, applicability considerations RI 6893 experimental procedures RI 6893 lightweight recoverable hydraulic prop.
Mine substance, preventing, hydraulic backfill method OP 31-65 Mine support, concrete versus wood, cost comparison RI 7114 strength comparison RI 7114 flexible liners, applicability considerations RI 6893 experimental procedures RI 6893 lightweight recoverable hydraulic prop, design and development RI 7029
Mine substance, preventing, hydraulic OP 31-65 Mine support, concrete versus wood, cost comparison RI 7114 strength comparison RI 7114 flexible liners, applicability considerations RI 6893 experimental procedures RI 6893 lightweight recoverable hydraulic prop, design and development RI 7029 field tests RI 7029
Mine substance, preventing, hydraulic OP 31-65 Mine support, concrete versus wood, cost comparison RI 7114 strength comparison RI 7114 flexible liners, applicability considerations RI 6893 experimental procedures RI 6893 lightweight recoverable hydraulic prop, design and development RI 7029 field tests RI 7029 precast concrete, eight-piece drift set, de-
Mine substance, preventing, hydraulic backfill method OP 31-65 Mine support, concrete versus wood, cost comparison RI 7114 strength comparison RI 7114 flexible liners, applicability considerations RI 6893 experimental procedures RI 6893 lightweight recoverable hydraulic prop, design and development RI 7029 field tests RI 7029 precast concrete, eight-piece drift set, de- sign RI 7274
Alle Substance, preventing, nydraulic OP 31-65 Mine support, concrete versus wood, cost RI 7114 strength comparison RI 7114 flexible liners, applicability considerations RI 6893 experimental procedures RI 6893 lightweight recoverable hydraulic prop, design and development field tests RI 7029 field tests RI 7029 recast concrete, eight-piece drift set, design RI 7274 tests RI 7274
Mine substance, preventing, nyuratine OP 31-65 Mine support, concrete versus wood, cost comparison
Mine substance, preventing, nyuratine OP 31-65 Mine support, concrete versus wood, cost comparison
Mine substrating, preventing, nyurating OP 31-65 Mine support, concrete versus wood, cost RI 7114 strength comparison RI 7114 flexible liners, applicability considerations RI 6893 RI 6893 lightweight recoverable hydraulic prop, RI 6893 design and development RI 7029 field tests RI 7029 precast concrete, eight-piece drift set, design RI 7274 tests RI 7274 five-piece drift set, design RI 7249 strength, three-piece versus five-piece RI 7249
Mine substrating, preventing, nyurating OP 31-65 Mine support, concrete versus wood, cost RI 7114 strength comparison RI 7114 flexible liners, applicability considerations RI 6893 RI 6893 lightweight recoverable hydraulic prop, RI 6893 design and development RI 7029 field tests RI 7029 precast concrete, eight-piece drift set, design RI 7274 tests RI 7274 five-piece drift set, design RI 7249 strength, three-piece versus five-piece RI 7249
Mine substrating, preventing, nyurating OP 31-65 Mine support, concrete versus wood, cost RI 7114 strength comparison RI 7114 flexible liners, applicability considerations RI 6893 RI 6893 lightweight recoverable hydraulic prop, RI 6893 design and development RI 7029 field tests RI 7029 precast concrete, eight-piece drift set, design RI 7274 tests RI 7274 five-piece drift set, design RI 7249 strength, three-piece versus five-piece RI 7249
All be Subsidence, preventing, nydraulic OP 31-65 Mine support, concrete versus wood, cost comparison RI 7114 strength comparison RI 7114 flexible liners, applicability considerations RI 6893 experimental procedures RI 6893 lightweight recoverable hydraulic prop, design and development RI 7029 field tests RI 7029 precast concrete, eight-piece drift set, de- sign RI 7274 five-piece drift set, design RI 7274 strength, three-piece versus five-piece drift sets RI 7249 strength, three-piece versus five-piece RI 7249 three-piece drift sets, cost estimate RI 7114 design RI 7114
Mine substrette, preventing, nyutatite OP 31-65 Mine support, concrete versus wood, cost comparison RI 7114 strength comparison RI 7114 flexible liners, applicability considerations RI 6893 RI 6893 lightweight recoverable hydraulic prop, design and development RI 7029 field tests RI 7029 precast concrete, eight-piece drift set, de- sign RI 7274 tests RI 7274 five-piece drift set, design RI 7249 strength, three-piece versus five-piece drift sets RI 7249 strength, three-piece versus five-piece RI 7114 design RI 7114 tests RI 7114 design RI 7114 design RI 7114
Allie Substance, Preventing, Preventing, Nyuratine OP 31-65 Mine support, concrete versus wood, cost comparison RI 7114 strength comparison RI 7114 flexible liners, applicability considerations RI 6893 Right recoverable hydraulic prop, design and development RI 7029 field tests RI 7029 precast concrete, eight-piece drift set, de- sign RI 7274 five-piece drift set, design RI 7249 strength, three-piece versus five-piece drift sets RI 7249 strength, three-piece versus five-piece RI 7114 design RI 7114
Allie Substance, Preventing, Preventing, Nyuratine OP 31-65 Mine support, concrete versus wood, cost comparison RI 7114 strength comparison RI 7114 flexible liners, applicability considerations RI 6893 Right recoverable hydraulic prop, design and development RI 7029 field tests RI 7029 precast concrete, eight-piece drift set, de- sign RI 7274 five-piece drift set, design RI 7249 strength, three-piece versus five-piece drift sets RI 7249 strength, three-piece versus five-piece RI 7114 design RI 7114
Mine substrating, preventing, nyurating OP 31-65 Mine support, concrete versus wood, cost comparison RI 7114 strength comparison RI 7114 flexible liners, applicability considerations RI 6893 RI 7014 lightweight recoverable hydraulic prop, design and development RI 7029 field tests RI 7029 precast concrete, eight-piece drift set, de- sign RI 7274 tests RI 7274 tests RI 7249 strength, three-piece versus five-piece RI 7249 three-piece drift sets, cost estimate RI 7114 design RI 7114 underground, flexible linings for, advantages OP 26-66 applications OP 26-66
All the Substance, Preventing, Preventing, Nyuraulter OP 31-65 Mine support, concrete versus wood, cost RI 7114 strength comparison RI 7114 flexible liners, applicability considerations RI 6893 RI 7014 lightweight recoverable hydraulic prop, RI 7029 field tests RI 7029 precast concrete, eight-piece drift set, design RI 7274 tests RI 7249 strength, three-piece versus five-piece RI 7249 strength, three-piece versus five-piece RI 7114 design RI 7249 tests RI 7114 design RI 7114 underground, flexible linings for, advantages OP 26-66 applications OP 26-66 Mine-system analysis, method OP 121-65
All the Substance, preventing, nyuratine OP 31-65 Mine support, concrete versus wood, cost RI 7114 strength comparison RI 7114 flexible liners, applicability considerations RI 6893 RI 7114 flexible liners, applicability considerations RI 6893 RI 7029 lightweight recoverable hydraulic prop, RI 7029 field tests RI 7029 precast concrete, eight-piece drift set, design RI 7274 tests RI 7274 tests RI 7249 strength, three-piece versus five-piece drift sets drift sets RI 7249 three-piece drift sets, cost estimate RI 7114 design RI 7249 three-piece drift sets, cost estimate RI 7114 design RI 7249 three-piece drift sets, cost estimate RI 7114 underground, flexible linings for, advantages OP 26-66 applications OP 26-66 Mine-system analysis, method OP 121-65 Mine transportation equipment, diesel-pow- Stesl-pow-
Mine substance, preventing, nyuratine of 31-65 Mine support, concrete versus wood, cost comparison
Mine substance, preventing, nyuratine of 31-65 Mine support, concrete versus wood, cost comparison
Allife Substance, Preventing, Preventing, Nyuratine OP 31-65 Mine support, concrete versus wood, cost comparison RI 7114 strength comparison RI 7114 flexible liners, applicability considerations RI 6893 R893 experimental procedures RI 6893 lightweight recoverable hydraulic prop, design and development RI 7029 field tests RI 7029 precast concrete, eight-piece drift set, de- sign RI 7274 tests RI 7249 strength, three-piece versus five-piece drift sets RI 7249 strength, three-piece versus five-piece drift sets RI 7114 underground, flexible linings for, ad- vantages OP 26-66 Mine-system analysis, method OP 26-66 Mine-system analysis, method OP 26-66 Mine transportation equipment, diesel-pow- ered, for nongassy noncoal mines, list IC 8363
Allife Substance, Preventing, Preventing, Nyuratine OP 31-65 Mine support, concrete versus wood, cost comparison RI 7114 strength comparison RI 7114 flexible liners, applicability considerations RI 6893 R893 experimental procedures RI 6893 lightweight recoverable hydraulic prop, design and development RI 7029 field tests RI 7029 precast concrete, eight-piece drift set, de- sign RI 7274 tests RI 7249 strength, three-piece versus five-piece drift sets RI 7249 strength, three-piece versus five-piece drift sets RI 7114 underground, flexible linings for, ad- vantages OP 26-66 Mine-system analysis, method OP 26-66 Mine-system analysis, method OP 26-66 Mine transportation equipment, diesel-pow- ered, for nongassy noncoal mines, list IC 8363
Mine substance, preventing, hydraulte backfill method OP 31-65 Mine support, concrete versus wood, cost comparison RI 7114 flexible liners, applicability considerations RI 6893 experimental procedures RI 6893 lightweight recoverable hydraulic prop, design and development RI 7029 field tests RI 7029 precast concrete, eight-piece drift set, de- sign RI 7274 tests RI 7274 five-piece drift set, design RI 7249 strength, three-piece versus five-piece drift sets RI 7249 three-piece drift sets, cost estimate RI 7114 design RI 7114 tests RI 7114 tests RI 7114 tests RI 7114 tests RI 7114 design RI 7114 tests OP 26-66 applications OP 26-66 Mine-system analysis, method OP 26-66 Mine-system analysis, method OP 26-66 Mine transportation equipment, diesel-pow- ered, for nongassy noncoal mines, list IC 8353 Mine ventilation, bituminous coal mines, jute line-brattice systems, per-
All the Substance, preventing, nyuratine OP 31-65 Mine support, concrete versus wood, cost comparison RI 7114 strength comparison RI 7114 flexible liners, applicability considerations RI 6893 RI 7029 lightweight recoverable hydraulic prop, design and development RI 7029 field tests RI 7029 precast concrete, eight-piece drift set, design RI 7274 tests RI 7249 tests RI 7249 tests RI 7249 strength, three-piece versus five-piece drift sets RI 7249 three-piece drift sets, cost estimate RI 7114 design RI 7114 underground, flexible linings for, advatages OP 26-66 wantages OP 26-66 Mine-system analysis, method OP 121-65 Mine transportation equipment, diesel-powered, for nongassy noncoal mines, list IC 8363 for gassy noncoal mines and tunnels, list IC 8354 Mine ventilation, bituminous coal mines, j
Mine substante, preventing, nyurative OP 31-65 Mine support, concrete versus wood, cost comparison
Mine substance, preventing, nyurative OP 31-65 Mine support, concrete versus wood, cost comparison
Mine substance, preventing, nyurative OP 31-65 Mine support, concrete versus wood, cost comparison
Mine substance, preventing, hydraulte backfill method OP 31-65 Mine support, concrete versus wood, cost comparison RI 7114 flexible liners, applicability considerations RI 6893 experimental procedures RI 6893 lightweight recoverable hydraulic prop, design and development RI 7029 field tests RI 7029 precast concrete, eight-piece drift set, de- sign RI 7274 tests RI 7274 five-piece drift set, design RI 7249 three-piece drift set, design RI 7249 strength, three-piece versus five-piece drift sets RI 7249 three-piece drift sets, cost estimate RI 7114 design RI 7114 tests RI 72149 three-piece drift sets, cost estimate RI 7114 design RI 7114 tests RI 7114 tests RI 7114 tests RI 7114 underground, flexible linings for, ad- vantages OP 26-66 applications OP 26-66 Mine-system analysis, method OP 26-66 Mine-system analysis, method OP 26-66 Mine-system analysis, method OP 26-66 Mine ventilation, bituminous coal mines, list IC 8354 Mine ventilation, bituminous coal mines, jute line-brattice systems, per- formance characteristics RI 6725 coal-mine, face, efficiency, study RI 7223 face, using flexible, spiral-reinforced tub- ing, study RI 7085
Mine substance, preventing, hydraulte backfill method OP 31-65 Mine support, concrete versus wood, cost comparison RI 7114 flexible liners, applicability considerations RI 6893 experimental procedures RI 6893 lightweight recoverable hydraulic prop, design and development RI 7029 field tests RI 7029 precast concrete, eight-piece drift set, de- sign RI 7274 tests RI 7274 five-piece drift set, design RI 7249 three-piece drift set, design RI 7249 strength, three-piece versus five-piece drift sets RI 7249 three-piece drift sets, cost estimate RI 7114 design RI 7114 tests RI 72149 three-piece drift sets, cost estimate RI 7114 design RI 7114 tests RI 7114 tests RI 7114 tests RI 7114 underground, flexible linings for, ad- vantages OP 26-66 applications OP 26-66 Mine-system analysis, method OP 26-66 Mine-system analysis, method OP 26-66 Mine-system analysis, method OP 26-66 Mine ventilation, bituminous coal mines, list IC 8354 Mine ventilation, bituminous coal mines, jute line-brattice systems, per- formance characteristics RI 6725 coal-mine, face, efficiency, study RI 7223 face, using flexible, spiral-reinforced tub- ing, study RI 7085
Mine substance, preventing, nyurative OP 31-65 Mine support, concrete versus wood, cost comparison

.

.

Mine ventilation, with bleeder entry system,
effect of barometric fluctuations RI 6786 Mine waste, gold recovery from, cyanide
leaching method TPR 20 leaching test, laboratory-scale RI 7250 Mine water, acid, ferrous iron oxidation OR 65 68
Mine water, acid, ferrous iron oxidation
rate in, study OP 65-68 neutralizing, coarse limestone method, OP 67 ca
pilot plant OP 67-68 laboratory tests RI 6987 limestone slurry method OP 185-68 mine air sealing method OP 66-68
limestone slurry method OP 185-68
neutralized, suspended solids content, turbidity measurement of, ac-
turbidity measurement of, ac-
curacy OP 63-68 uranium, uranium recovery from OP 86-67
Mine-water neutralization, limestone proc- cess, advantages RI 7191
cost estimates RI 7191 Mine water research, ferrous iron, in acid
mine water, catalytic oxidation of,
activated carbon RI 7337 neutralization, methods RI 6987
Minerals, basic, annual review OP 204-68 production OP 204-68 forecast OP 25-65, 153-65 value OP 204-68 chemical-manufacturing use, Calif IC 8244
production OP 204-68
forecast OP 25-65, 153-65
chemical manufacturing use Calif IC 8244
concentration, heavy-liquid cyclone for, design and operating characteris-
tics RI 7134 electrowinning, energy consumption in_ OP 71-69
electrowinning, energy consumption in $_{-}$ OP 71-69
fine-grained, dewatering, electro-os- motic and electrophoretic meth-
ods OP 72-66
ods OP 72-66 froth flotation of, review OP 97-67 heavy, removal, from mica waste tailing,
selective flotation method BI 7319
heavy-liquid cyclone concentration, oper-
heavy-liquid cyclone concentration, oper- ating variables in RI 6969 in incinerator residues, physical and chemical beneficiation OP 171-69
chemical beneficiation OP 171-69 in incinerator residues, reclaiming,
methods
methods OP 171-69 study OP 60-68 in municipal incinerator residues, com-
in world economy MY 1968 (v. IV) low-magnetic-susceptibility small-par- ticle-size, magnetic separation of, mothed BL 7202
low-magnetic-susceptibility small-par-
ticle-size, magnetic separation of, method BI 7292
method RI 7292 nonmetallic, production forecast OP 88-67 production problems OP 88-67
nuclear quadrupole resonance spectrom-
etry, quantitative aspects OP 51-69 processing, electrometallurgical appli-
cations OP 70-69
production, annual dataMY 1968 (v. I–II, III) recovery from oilfield brines, discus-
sion $OP 22-66$
refined, production, forecastOP 25–65, 153–65 relation to economic growth OP 146–67
relation to military power OP 146~67 sea-floor, exploitation, research pro-
gram OP 113-65
solid conveying through conduits meth.
od, patent P 3-67 strategic, supply OP 62-66 tariff schedules for, review IC 8262
tarin schedules for, review
U.S. self-sufficiency, tabulation OP 63-66
Mineral aggregate industry, effect of urban- ization on IC 8318, 8320
Mineral assay data, multivariate. linear
Mineral assay data, multivariate, linear discriminant analysis RI 6898

.

)

ł

•

)

E) E -

discriminant analysis ______ RI 6898 univariate, linear discriminant analysis _ RI 6898 Minerals attaché program, description __ OP 155-65

Mineral commodities, barge transportation of IC 8431
costsIC 8431 outlookIC 8431
Mineral concentration, research, review OP 157-65
Mineral concentration, research, review. OP 157-65 Mineral-concentration plants, review OP 157-65 Mineral consumption, indexes, description
Mineral consumption, indexes, description
and uses IC 8275 Mineral deposits, assays from, area of in-
fluence, determining, method RI 6955 computing reserves, analogous method IC 8283
geological blocks method IC 8283
geological blocks method IC 8283 linear cross section method IC 8283
mining blocks method IC 8283 polygonal prisms method IC 8283
standard cross section and isolines
method IC 8283
economic value, determining, program for OP 4-65 evaluating, polygonal method OP 4-65 statistical methods RI 6645 sample and assay data, statistical analysis B 621 Mineral-deposit exploration, decisionmak- ing use of probability models in RI 6778
for OP 4-65
evaluating, polygonal method RI 6645
sample and assay data, statistical analysis B 621
Mineral-deposit exploration, decisionmak-
Mineral development, economic consider-
ations OP 111-67
Mineral engineering, new concepts OP 1-66 problems OP 1-66
Mineral exploration, economic considera- tions OP 111-67 nonfuel minerals industry, analysis_ OFR 17-69 costs and benefits, study OFR 17-69 offshore, summary OP 154-69 undersea, research program OP 42-66 Mineral extraction from sec. Noter
costs and benefits, study OFR 17-69
offshore, summary OP 154-69
undersea, research program UP 42-66 Mineral extraction from sea water
Mineral extraction, from sea water, plants in operation OP 154-69 Mineral fillers, pesticide diluents, use IC 8260
Mineral fillers, pesticide diluents, use IC 8260
Mineral industry, annual review MY 1968 (v. I–II)
Appalachia, investigation GS 4-68
Ark study B645
assay data probability distributions the
Ark., study B 645 assay data, probability distributions, the- oretical confirmation and applica-
oretical confirmation and applica-
oretical confirmation and applica-
oretical confirmation and applica- tions RI 6768 automation in, applications OFR 24-69 employment, annual data MY 1968 (v. I-II, III) fatalities, annual data MY 1968 (v. I-II, III)
oretical confirmation and applica- tions

Mineral particles, fine, removal of heavy liquids from, methods ______ RI 6729 washing and removing heavy liquids from, process, patent ______ P 14-67 Mineral products, ground, size distribution data, moment anlysis ______ RI 7309 projected world demand _____ OP 203-67 world demand _____ OP 203-67 Mineral production, indexes, description and uses _____ IC 8275 and uses IC 8275 Mineral raw materials, projected world And uses ______ 1C 8276 Mineral raw materials, projected world demand ______ OP 203-67 world demand ______ OP 203-67 World supply ______ OP 203-67 Mineral recovery, undersea, current ac-tivities, tabulation ______ OP 155-68 Minerals research, benefits, measuring ___ OP 201-68 Mineral reserves, economic factors in, analysis ______ OP 176-67 Mineral resources, Appalachia, investiga-tion ______ GS 4-68 Ark., study ______ B 645 conservation of, problems ______ OP 176-67 extraterrestrial, 'utilization, research program for ______ OP 28-69 in-ground value, estimating, methodology IC 8422 marine, evaluating, problems ______ OP 64-67 offshore, exploitation, economic feasiin-ground value, estimating, methodology, A. 4-67 offshore, exploitation, economic feasi-bility ______ OP 69-65 on public lands, management of _____ OP 199-68 programs for, cost benefit analysis ____ OP 199-68 strategic planning program for _____ OP 199-68 undersea, review ______ OP 69-65 Mineral resources potential, Appalachia, investigation ______ GS 4-68 Mineral sample, reliability, probability model for ______ RI 7177 Mineral scrap, disposal problems _____ OP 200-68 Mineral wastes, disposal problems _____ OP 200-68 Mineral wastes, disposal problems _____ OP 200-68 social costs ______ SP 3-68 solid, rehabilitating, new approaches_____ OP 200-68 types SP 3-68 utilization, economic factors _____ OP 200-68 Mineralization, past geological structural processes, relationship to _____ OFR 8-66 Minerva Co. No. 1 mine, Ill., fluorspar ore, flotation tests _____ RI 6982 Mingo County. W. Va., coal, carbonizing properties _____RI 6899 properties ______KI 0055 Mining, bituminous coal, advancing long-wall method ______ IC 8321 face operating methods ______ IC 8321 retreating longwall method ______ IC 8321 dust control in, literature survey ______ IC 8407 longwall, roof support, hydraulic-pow-ered, specifications ______ IC 8424 requirements, estimating ______ IC 8424 ered, specifications _____ IC 8424 requirements, estimating _____ IC 8424 ocean-floor, shallow waters, development _TPR 4 offshore, summary _____ OP 154-69 sea-floor, methods and costs _____ OP 69-65 undersea, current activities, tabulation OP 155-68 problems _____ OP 64-67 research program _____ OP 42-66 [ining and metallurgical methods con-Mining and metallurgical methods, cop-per mine, Almalyk, U.S.S.R. __ OP 111-69 Mining and milling methods, fluorspar IC 8339 pozzolan, Glen Canyon Dam, Ariz. ... OP 165-65 zircon IC 8268 Mining and milling methods and costs, George F. Pettinos, Inc., Pa., quartzite deposit Mining Associates No. 1 mine, W. Va., coal, preparation characteristics ____ RI 6874

t

Minimum chairman and the second second second
Mining claims, staking or locating, regula- tions IC 8396
Mining districts, rock masses in, rela-
tionship of past geologic struc- tural processes to OFR 14-67
Mining equipment, underground, inter-
mediate ac voltage for, need OP 170-65
Mining industries, employment, shift
analysis OP 152-65 income, shift analysis OP 152-65 principal expenses index IC 9275
production, review OP 130-67 shift analysis OP 152-65
review OP 130-67
review OP 130-67 U. S., input-output relationships
IC 8338; OP 199–67 interindustry structure, study IC 8338; OP 199–67
structural interdependence
IC 8338; OP 199-67 Mining machines, coal, in pitching beds.
Mining machines, coal, in pitching beds, shearer loader
continuous borer, use, in pitching anthra-
cite beds RI 6759 pneumatic vibrating-blade planer, tests RI 6863
tunnel-boring nonuniform radial load
problems, theoretical solution RI 7030 Mining machine props, tunnel-boring, in
Mining machine props, tunnel-boring, in circular tunnels, rock stress from RI 7200
Mining methods, bucket-wheel simulator,
for marginal placer deposits, evaluation OFR 13-68
evaluation OFR 13-68 hydraulic, anthracite, engineering devel- opment studies RI 6610 hydraulic pitch, Roslyn, No. 5 coalbed RI 6685 offshore costs
opment studies RI 6610
hydraulic pitch, Roslyn, No. 5 coalbed Ri 6685
offshore, costs OP 69-65 review OP 69-65, 61-68
phosphate rock RI 6935
phosphate rock RI 6935 titanium-bearing minerals IC 8290 Mining methods and costs, Emperius Min-
ing CoIC 8370
ing Co. IC 8370 George F. Pettinos, Inc., Pa., quartzite
deposit IC 8248 Homestake-Sapin Partners, N. Mex., Sec-
tion 23 mine, prantum IC 8280
Miami Copper Co., Ariz., Miami mine, copper IC 8271
open-pit gold mine, mathematical model IC 8271 open-pit gold mine, mathematical model IC 8374 U.S. Army Corps of Engineers, Little- ville Dam Project, Mass., flood- control gate shaft IC 8273 Mining operations, visitors' guide SP 2-67 Mining records, Alaska, microfilms of OFR 11-69
U.S. Army Corps of Engineers, Little-
ville Dam Project, Mass., nood-
Mining operations, visitors' guide SP 2-67
Mining records, Alaska, microfilms of OFR 11-69
Mining research, usefulness of computer in OP 128-65
Mining systems, design and development.
operations research techniques OFR 8-67
Mining technology, review OP 130-67
Mining terms, dictionary SP 2-68
Minium, magnetic susceptibility IC 8383 Minnesota, anorthosite, as potential alum-
inum source IC 8335
inum source IC 8335 clays, as iron ore pelletizing binders, tests OP 102-68
clay deposits, glacial lake, bonding agent test for RI 7206
test for RI 7206 Cuyuna district, iron phyllosilicates, analyses OP 16-65
Cuyuna range brown iron ores, man- ganese and iron production from,
ganese and iron production from, laboratory tests RI 6775
Cuyuna range manganiferous ores, man-
ganese recovery from, ammonium sulfate leaching, evaluation RI 7156
ferrous coren industry survey IC 8342
granite, feldspar separation from,
method
granite, feldspar separation from, method

Minnesota, high-silica iron ores, metallic concentrate production from, p. 7014
concentrate production from.
DT 701A
method IC 8290 kaolin, as potential aluminum source IC 8335
limenite deposits, survey
kaolin, as potential aluminum source 10 8335
letizing binders, tests OP 102-68
letizing binders, tests OP 102-68 Mesabi range, low-grade iron-bearing
materials, notation tests RI 6/19
nonmagnetic taconite, metallurgical
evaluation RI 6650
sampling RI 6650 mines, visitors' guide SP 2-67
mines, visitors' guide SP 2-67
Minnesota, minerals, production, annual data MY 1968 (v. I-II, III)
MY 1968 (v I_U III)
mineral industry, annual review
MY 1968 (v. III)
Minnespelie St. Deul anse eute unselving
Minneapolis-St. Paul area, auto wrecking and scrap processing industries SP 1-67
and scrap processing industries SP 1-61
occupational diseases, workmen's compen-
sation laws on B 623
titanium mineral deposits, survey IC 8290
Minor metals, annual data MY 1968 (v. I-II)
titanium mineral deposits, survey IC 8290 Minor metals, annual data MY 1968 (v. I-II) Minor nonmetals, annual data MY 1968 (v. I-II)
Mission Mountains primitive area, Mont., mineral appraisal GS 1-69 Mississippi, bromide, in oilfield brines OP 18-67 Cranfield field, gas-cap reservoir, study M 13
mineral appraisal GS 1-69
Mississippi, bromide, in oilfield brines OP 18-67
Cranfield field, gas-cap reservoir, study M 13
sulfur content RI 7059 ferrous-scrap industry, survey IC 8289
forrous seron industry survey IC 8289
ferrous-scrap industry, survey to baos
gas-cap reservoir, conservation practices,
engineering evaluation M 13
heavy crude oil, production forecast 1C 8352
heavy crude oil, production forecast IC 8352 resource IC 8352 heavy-crude-oil reservoirs, survey IC 8263 helium-bearing natural gases, analyses IC 8302
heavy-crude-oil reservoirs, survey IC 8263
helium-bearing natural gases, analyses IC 8302
lodide, in ollheid brines OP 18-67
kaolin, as potential aluminum source IC 8335
minerals, production, annual data
MY 1968 (v. I–II, III)
mineral industry, annual review
MY 1968 (v. III)
natural gas. analyses IC 8241, 8302, 8356, 8395
occupational diseases workmen's compen-
occupational diseases, workmen's compen- sation laws onB 623
oil reservoirs, production-rate data IC 8362
well-denth data
well-depth data IC 8362 oilfield brines, bromide content, determi
nation DI 6050
nation RI 6959 iodide content, determination RI 6959
potroloum imprograted packs outfore and
petroleum-impregnated rocks, surface and
shallow M 12
saur donnes survev LC 8313
salt domes, survey IC 8313 titanium mineral deposits, survey IC 8290
Mississippi River, parge transportation on.
Mississippi River, parge transportation on.
Mississippi River, barge transportation on, mineral commodities IC 8431 Missouri, coal, analyses RI 6622, 6792, 6904,
Mississippi River, barge transportation on, mineral commodities IC 8431 Missouri, coal, analyses RI 6622, 6792, 6904, 7104, 7219
Mississippi River, barge transportation on, mineral commodities IC 8431 Missouri, coal, analyses RI 6622, 6792, 6904, 7104, 7219 chlorine content RI 6579
Mississippi River, barge transportation on, mineral commodities IC 8431 Missouri, coal, analyses RI 6622, 6792, 6904, 7104, 7219 chlorine content RI 6579 major ash constituents RI 7240
Mississippi River, barge transportation on, mineral commodities IC 8431 Missouri, coal, analyses RI 6622, 6792, 6904, 7104, 7219 chlorine content RI 6579 major ash constituents RI 7240 phosphorus content RI 6579
Mississippi River, barge transportation on, mineral commodities IC 8431 Missouri, coal, analyses RI 6622, 6792, 6904, 7104, 7219 chlorine content RI 6579 major ash constituents RI 7240 phosphorus content RI 6579 potassium content RI 6579
Mississippi River, barge transportation on, mineral commodities IC 8431 Missouri, coal, analyses RI 6622, 6792, 6904, 7104, 7219 chlorine content RI 6579 major ash constituents RI 6579 potassium content RI 6579 sodium content RI 6579
Mississippi River, barge transportation on, mineral commodities IC 8431 Missouri, coal, analyses RI 6622, 6792, 6904, 7104, 7219 chlorine content RI 6579 major ash constituents RI 6579 potassium content RI 6579 sodium content RI 6579
Mississippi River, barge transportation on, mineral commodities IC 8431 Missouri, coal, analyses RI 6622, 6792, 6904, 7104, 7219 chlorine content RI 6579 major ash constituents RI 7240 phosphorus content RI 6579 potassium content RI 6579 sodium content RI 6579 sulfur content, forms RI 6371 sulfur content, forms RI 7240
Mississippi River, barge transportation on, mineral commodities IC 8431 Missouri, coal, analyses RI 6622, 6792, 6904, 7104, 7219 chlorine content RI 6579 major ash constituents RI 7240 phosphorus content RI 6579 potassium content RI 6579 sodium content RI 6579 sulfur content, forms RI 6371 sulfur content, forms RI 7240
Mississippi River, barge transportation on, mineral commodities IC 8431 Missouri, coal, analyses RI 6622, 6792, 6904, 7104, 7219 chlorine content RI 6579 major ash constituents RI 7240 phosphorus content RI 6579 potassium content RI 6579 sodium content RI 6579 sulfur content, forms RI 6371 sulfur content, forms RI 7240
Mississippi River, barge transportation on, mineral commodities IC 8431 Missouri, coal, analyses RI 6622, 6792, 6904, 7104, 7219 chlorine content RI 6579 major ash constituents RI 7240 phosphorus content RI 6579 sodium content RI 6579 sodium content RI 6579 sulfur content, forms IC 8301 coal ash, analyses RI 7240 fusibility data RI 7240 fire clay, as potential aluminum source IC 8325
Mississippi River, barge transportation on, mineral commodities IC 8431 Missouri, coal, analyses RI 6622, 6792, 6904, 7104, 7219 chlorine content RI 6579 major ash constituents RI 7240 phosphorus content RI 6579 sodium content RI 6579 sodium content RI 6579 sulfur content, forms IC 8301 coal ash, analyses RI 7240 fusibility data RI 7240 fire clay, as potential aluminum source IC 8325
Mississippi River, barge transportation on, mineral commodities IC 8431 Missouri, coal, analyses RI 6622, 6792, 6904, 7104, 7219 chlorine content RI 6579 major ash constituents RI 7240 phosphorus content RI 6579 sodium content RI 6579 sodium content RI 6579 sulfur content, forms IC 8301 coal ash, analyses RI 7240 fusibility data RI 7240 fire clay, as potential aluminum source IC 8325
Mississippi River, barge transportation on, mineral commodities IC 8431 Missouri, coal, analyses RI 6622, 6792, 6904, 7104, 7219 chlorine content RI 6579 major ash constituents RI 7240 phosphorus content RI 6579 sodium content RI 6579 sodium content RI 6579 sulfur content, forms IC 8301 coal ash, analyses RI 7240 fusibility data RI 7240 fire clay, as potential aluminum source IC 8335 granite, feldspar separation from, method RI 7245 mica separation from, method RI 7245
Mississippi River, barge transportation on, mineral commodities IC 8431 Missouri, coal, analyses RI 6622, 6792, 6904, 7104, 7219 chlorine content RI 6579 major ash constituents RI 7240 phosphorus content RI 6579 sodium content RI 6579 sodium content RI 6579 sodium content RI 6579 sulfur content, forms IC 8301 coal ash, analyses RI 7240 fire clay, as potential aluminum source IC 8335 granite, feldspar separation from, method guartz separation from, method RI 7245 heavy crude oil, production forecast RI 7245
Mississippi River, barge transportation on, mineral commodities IC 8431 Missouri, coal, analyses IC 8622, 6792, 6904, 7104, 7219 chlorine content RI 6522, 6792, 6904, 7104, 7219 major ash constituents RI 6579 major ash constituents RI 6579 potassium content RI 6579 sodium content RI 6579 sulfur content, forms IC 8301 coal ash, analyses RI 7240 fusibility data RI 7240 fire clay, as potential aluminum source IC 8352 granite, feldspar separation from, method RI 7245 mica separation from, method RI 7245 heavy crude oil, production forecast IC 8352
Mississippi River, barge transportation on, mineral commodities IC 8431 Missouri, coal, analyses IC 8622, 6792, 6904, 7104, 7219 chlorine content RI 6522, 6792, 6904, 7104, 7219 major ash constituents RI 6579 major ash constituents RI 6579 potassium content RI 6579 sodium content RI 6579 sulfur content, forms IC 8301 coal ash, analyses RI 7240 fusibility data RI 7240 fire clay, as potential aluminum source IC 8352 granite, feldspar separation from, method RI 7245 mica separation from, method RI 7245 heavy crude oil, production forecast IC 8352
Mississippi River, barge transportation on, mineral commodities IC 8431 Missouri, coal, analyses IC 8622, 6792, 6904, 7104, 7219 chlorine content RI 6522, 6792, 6904, 7104, 7219 major ash constituents RI 6579 major ash constituents RI 6579 potassium content RI 6579 sodium content RI 6579 sulfur content, forms IC 8301 coal ash, analyses RI 7240 fusibility data RI 7240 fire clay, as potential aluminum source IC 8352 granite, feldspar separation from, method RI 7245 mica separation from, method RI 7245 heavy crude oil, production forecast IC 8352
Mississippi River, barge transportation on, mineral commodities IC 8431 Missouri, coal, analyses RI 6622, 6792, 6904, 7104, 7219 chlorine content RI 6579 major ash constituents RI 6579 potassium content RI 6579 sodium content RI 6579 sulfur content, forms IC 8301 coal ash, analyses RI 7240 fusibility data RI 7240 fire clay, as potential aluminum source IC 8335 granite, feldspar separation from, method RI 7245 mica separation from, method RI 7245 heavy crude oil, production forecast IC 8352 thermal projects IC 8352 heavy crude-oil reservoirs, survey IC 8352 heavy crude-oil reservoirs, survey IC 8352
Mississippi River, barge transportation on, mineral commodities IC 8431 Missouri, coal, analyses IC 8622, 6792, 6904, 7104, 7219 chlorine content RI 6522, 6792, 6904, 7104, 7219 major ash constituents RI 6579 major ash constituents RI 7240 phosphorus content RI 6579 sodium content RI 6579 sodium content RI 6579 sulfur content, forms IC 8301 coal ash, analyses RI 7240 fur clay, as potential aluminum source IC 8335 granite, feldspar separation from, method RI 7245 mica separation from, method RI 7245 resource IC 8352 thermal projects IC 8352 heavy crude-oil reservoirs, survey IC 8263 mines, visitors' guide SP 2-67 minerals, production, annual data SP 2-67
Mississippi River, barge transportation on, mineral commodities IC 8431 Missouri, coal, analyses RI 6622, 6792, 6904, 7104, 7219 chlorine content RI 6579 major ash constituents RI 7240 phosphorus content RI 6579 sodium content RI 6579 sodium content RI 6579 sulfur content, forms IC 8301 coal ash, analyses RI 7240 fusibility data RI 7240 fusibility data RI 7240 fusibility data RI 7240 fue clay, as potential aluminum source IC 8331 granite, feldspar separation from, method RI 7245 mica separation from, method RI 7245 theavy crude oil, production forecast IC 8352 thermal projects IC 8352 thermal projects IC 8352 heavy crude-oil reservoirs, survey IC 8263 mines, visitors' guide SP 2-67 minerals, production, annual data MY 1968 (v. I-II, III)
Mississippi River, barge transportation on, mineral commodities IC 8431 Missouri, coal, analyses RI 6622, 6792, 6904, 7104, 7219 chlorine content RI 6579 major ash constituents RI 7240 phosphorus content RI 6579 sodium content RI 6579 sodium content RI 6579 sodium content RI 6579 sulfur content, forms IC 8301 coal ash, analyses RI 7240 fusibility data RI 7240 fire clay, as potential aluminum source IC 8335 granite, feldspar separation from, method RI 7245 mica separation from, method RI 7245 quartz separation form, method RI 7245 heavy crude oil, production forecast IC 8352 thermal projects IC 8352 thermal projects IC 8352 mines, visitors' guide SP 2-67 minerals, production, annual data MY 1968 (v. I-II, III) mineral industry, annual review SP 2-67
Mississippi River, barge transportation on, mineral commodities IC 8431 Missouri, coal, analyses RI 6622, 6792, 6904, 7104, 7219 chlorine content RI 6579 major ash constituents RI 7240 phosphorus content RI 6579 sodium content RI 6579 sodium content RI 6579 sulfur content, forms IC 8301 coal ash, analyses RI 7240 fusibility data RI 7240 fusibility data RI 7240 fusibility data RI 7240 fue clay, as potential aluminum source IC 8331 granite, feldspar separation from, method RI 7245 mica separation from, method RI 7245 theavy crude oil, production forecast IC 8352 thermal projects IC 8352 thermal projects IC 8352 heavy crude-oil reservoirs, survey IC 8263 mines, visitors' guide SP 2-67 minerals, production, annual data MY 1968 (v. I-II, III)

-

ľ

ľ

k

C

.

.

ľ

2

Missouri, occupational diseases, workmen's compensation laws on ______ petroleum-impregnated rocks, surface and B 623 shallow M 12 St. Joseph area, auto wrecking and scrap St. Joseph area, auto wrecking and scrap processing industries ______ SP 1-67 shale, as potential aluminum source _____ IC 8335 Mitchell sand, Ohio, core samples, den-sity and porosity data ______ IC 8330 secondary-recovery prospects ______ RI 7007 Mobil Oil Corp., Okla., Ed Cox thermal recovery project _____ IC 8311 Mobility-saturation relationships, condensate-type fluids, determination __ OP 26-67 airlift well, siphon-type, vertical flow of oil-gas mixtures, design Model. and operation ______ all-electric energy economy _____ OP RI 6670 all-electric energy economy _____ OP 202-68 all-gas energy economy _____ OP 202-68 computer, mineral exploration proc-ess, costs and benefits _____ OFR 17-69 discounted cash flow, production cost of iron ore pellets _____ OFR 17-69 econometric, construction of, method OFR 26-69 mineral industry finance _____ OFP 7 60 mineral industry finance ______ OFR 7-69 Monongalia County, with changes Monongalia County, with changes in coal output _____ OFR 26-69 nitrogen demand _____ IC 8418 phosphate rock demand _____ IC 8418 potash demand _____ IC 8418 electrolytic, for investigation guard-elec-trode response in oil-well logging___ RI 6783 energy economy, projected demand ____ OP 202-68 lead-zinc mine, mine production schedule, using operations research tech-..... RI 7230 niques Leontief-type, computer program for manipulating OFR 19-69 mathematical, explosion in spherical vessel for predicting carbon depositions char RI 7279 acteristics, in thermal recovery of petroleum RI 6756 iron-blast-furnace reduction zone _____ RI 6975 open-pit gold mining operation open-pit mine, in gravity-loaded rock IC 8374 mass open-pit mine wall slope stability, ___ RI 7002 finite element stress analysis OP 188-68 plasma and liquid slag phases, seeded coal combustion, in coal-burning open - cycle magnetohydrody-_ OP 177-67 namic systems rate-coefficient measurement, iron-ore pellet reduction, in packed bed____ RI 7031 steamflood project, performance predic-____ IC 8432 tion thermal balance, ingot-crucible systems, in consumable-electrode arc melting _____ RI 7151 mine pillars, for creep tests _____ OP 107-65 mine - production - scheduling, computer RI 7151 program for ______ RI 6937 simulated production schedules from __ RI 6937 multistage probability, ideal mineral sam---- RI 7177 ple reduction process _____ oil-reservoir, for gas-cycling operation simulation _____ OP 25-66, 46-67 photoelastic, for stress studies _____ RI 6812 potash-ore pillars, for creep tests _____ RI 6703 potentiometric, waterflood, seven-spot RI 6760 well-spacing pattern probability, random component in bulk __ RI 6760 sampling _____ OP 71-87 simulating, using statistical means and _____ standard deviations ______ RI 6778 statistical, experimental confirmation __ RI 6627 use, in decisionmaking, mineral-deposit exploration _____ RI 6778

j

Model, rock pillars, compressive strength determination, effect of end conditions _____ **RI 7171** uniaxial compressive strength, effect of planes of weakness ______ salt pillars, for creep tests ______ sandstone, depletion-drive performance, RI 7165 **RI 6703** at various gas saturations _____ for water-drive studies _____ gravitational pressure gradient deter-RI 7052 RI 6735 mination, at various gas saturations __ RI 7052 thermochemical, iron blast furnace, de-velopment ______ RI 7031, 7128 trona pillars, for creep tests ______ RI 6703 U.S. energy economy ______ IC 8384 Moffit mine, Pa., coal, carbonizing properties _____ RI 7131 Moisture, in coal, continuous determina-tion, thermal neutron detector method ______ OP 144-67 determination, method ______ B 638 in moving coal, continuous measurement. by neutron thermalization, apparatus and process, patent _____ P 15-67 Moisture meter, continuous determination of moisture in coal by, nuclear method OP 144-67 Molybdate, low-temperature heat capacity and entropy _____ RI 6782 Molybdenite, magnetic susceptibility ____ _ IC 8360 molybdenum alloy from, thermite reduction method __ RI 7185 molybdenum production from, improved method, patent sulfur recovery from, thermite reduc-**P 9-67** tion-hydrolysis method _____ RI 7185 Molybdenite concentrate, dimolybdenum carbide from, fused-salt electrolysis ___ RI 6590 Molybdenum, additions to vanadium alloys, effect ______ MY 1968 (v. I-II) as automotive metal, supply situation OP 47-67 as methanation catalyst, investigation __ RI 6974 batch electrowinning, repetitive, from molybdic oxide, modified method__ RI 6834 cast shapes vacuum are malting technicate B 646 cast shapes, vacuum arc melting technique B 646 chlorination kinetics, study ______ RI 6649 coating ceramic particles with, study OP 87-65 consumption ________ corrosion properties, chemical and gal-_ B 630 tion _____ OP 172-67 electrowon, consolidation and fabrication, **RI 6771** methods _____ RI 6771 mechanical properties _____ RI 6771 expendable insert, for high-energy-rate extrusion of refractories _____ OP 27-66 exports __ B 630 from dimolybdenum carbide, fused-salt **RI 6590** structure and properties ______ RI 6757 high-purity, electrorefining, in molten-salt electrolytes ______ RI 6850 in potassium chloride-potassium hexachloromolybdate electrolyte__ RI 6850 in coal ash, spectrochemical determination ______ RI 7281 liquid, vapor pressure ______ RI 7063 palladium deposits on, from aqueous elec-RI 7063 trolyte platinum deposits on, from aqueous elec-RI 7016 trolyte _____ B 630

351

Molybdenum, production B 630 from molybdenite, improved method, patent P 9-67 recovery, from superalloy scrap, chemical
from molybdenite, improved method,
recovery, from superalloy scrap, chemical
method RI 7316 reserves B 630
secondary, sources B 630 stress-corrosion cracking, in organic and
stress-corrosion cracking, in organic and
inorganic acids RI 6680 in inorganic-salt solutions RI 6680
substitutes B 630
trace metal impurities in determina-
substitutes B 630 technology B 630 trace metal impurities in, determina- tion, ion exchange-X-ray spectro-
graphic method 07 83-66 uses B 630 Molybdenum alloys, corrosion properties, chemical and galvanic B 7169 Molybdenum carbide, heat capacity RI 7169 Molybdenum carbide, heat capacity RI 6861 heat content and entropy RI 6861 heat and free energy of formation RI 6861
chemical and galvanic RI 7169
heat content and entropy RI 6861
heat and free energy of formation RI 6861
Molybdenum coatings, electrodeposition, on metal substrates, fused-salt
electrolyte OP 120-69 Molybdenum-columbium alloys, properties_ RI 6964
Molybdenum columbium alloys, properties_ KI 6964 Molybdenum industry, organization B 630
Molybdenum industry, organization B 630 problems B 630 Molybdenum minerals, magnetic suscepti-
Molybdenum minerals, magnetic suscepti- bility, determination IC_8360
specifications B 630
specifications B 630 Molybdenum naphthenate, catalyst, coal hy-
drogenation B 622 Molybdenum-tungsten alloys, vapor deposi-
tion of RI 6853 Molybdic oxide, impure, molybdenum elec-
trowinning from RI 6834
trowinning from RI 6834 Mona-Ark No. 5 mine, Pa., coal, carbon-
izing properties RI 7131 Monazite, consumption B 630
production B 630
reserves B 630
production B 630 reserves B 630 resources OFR 3-68 Monel, reinforcement, with fine tungsten
wire, laboratory investigation KI 7130
Mongolia, mineral industry, an- nual review MY 1968 (v. IV)
Monoalkylacetylenes, infrared spectra OP 173-68 Monocrystals, large, nonmetallic, growing,
method and apparatus, patent P 17-69
Monomethylhydrazine combustion char-
acteristics OP 149-67 Monomoy National Wildlife Refuge, Mass., mineral appraisal GS 8-67
Monongalia County, W. Va., changes in coal production, social and eco-
nomic effects
Monopropellants, burning, in porous media, results OP 118-67 in reservoir rock, preliminary tests_ OP 44-68
in reservoir rock, preliminary tests_ OP 44-68
Montana, aluminum industry, water re-
quirements IC 8305 Anaconda district, phosphate-rock re-
sources RI 6611 anorthosite, as potential aluminum source IC 8335
anorthosite, as potential aluminum source 1C 8335 beryllium resources, investigation RI 7148
Centennial Range district, phosphate
rock, resources RI 6611
yses
vses OFR 2-67 coal, analyses RI 6622, 6792, 6904, 7104 major ash constituents RI 7240
phosphorus content RI 6579
phosphorus content RI 6579 potassium content RI 6579
sodium content RI 6579 sulfur content, forms IC 8301
coal reserves BPA 1-00
coal ash, analyses RI 7240
fusibility data RI 7240 copper industry, water requirements IC 8305

Montana, crude oil, production _____ RI 7059 sulfur content _____ RI 7059 sulfur content Cut Bank oilfield, crude petroleum, anal-Cut Bank Ollheid, crude petroleum, anal-yses _____ RI 6909 reservoir oil characteristics _____ RI 6909 Dillon district, phosphate rock, resources RI 6611 Douglas phosphate mine, pneumatic vi-brating-blade planer, tests _____ RI 6863 eastern, mineral resources _____ OP 144-65 eastern counties, auto wrecking and scrap processing industries _____ SP 1-67 scrap processing industries _____ SP 1-67 Elliston district, phosphate-rock resources RI 6611 fire clay, as potential aluminum source. IC 8335 Fort Union Formation, coal reserves, estimate IC 8376 Garrison district, phosphate-rock re-sources RI 6611 gold deposit, low-grade, evaluation RI 7305 heavy crude oil, production forecast IC 8352 resource IC 8352 resource _____ IC 8352 thermal project _____ IC 8352 thermal project ______ IC 8352 heavy crude-oil reservoirs, survey _____ IC 8263 helium-bearing natural gases, analyses___ IC 8302 ilmenite deposits, survey ______ IC 8290 Jefferson River district, phosphate rock, resources ______ RI 6611 lignite, composition ______ RI 7158 lignite ash, chemical composition and fu-sion characteristics ______ RI 7158 lignite industry, forecast ______ IC 8376 Lima district, phosphate rock, resources RI 6611 Madison Range district, phosphate rock. Madison Range district, phosphate rock, resources ______ RI 6611 manganese industry, water requirements IC 8305 Maxville-Philipsburgh district, phosphate

 Maxville-Philipsburgh district, phosphate rock, resources
 RI 6611

 Melrose district, phosphate rock, re-sources
 RI 6611

 mercury occurrences
 IC 8252

 mines, visitors' guide
 SP 2-67

 minerals, production, annual data
 MY 1968 (v. I-II, III)

 mineral industry, annual review
 MY 1968 (v. III)

 water requirements
 IC 8305

 mineral transportation costs
 IC 8361

 Mission Mountains primitive area, min-eral appraisal
 GS 1-69

 natural gas, analyses
 IC 8241, 8302, 8316, 8356, 8395

 8356, 8395 s _____ OP 144–65 natural gas reserves ______ OP 144-65 nonmetal mineral industries, water re-quirements ______ IC 8305 occupational diseases, workmen's compen-sation laws on ______ B 623 oil reservoirs, production-rate data _____ IC 8362 well-depth data ______ IC 8362 petroleum and natural gas, water re-quirements ______ IC 8305 petroleum-impregnated rocks, surface and shallow ______ M 12 natural gas reserves . __ OP 144-65 phosphate resources, evaluation ______ Richland County, lignite and lignite ash Ruby Valley district, phosphate rock, resources Savage mine, lignite and lignite ash anal-_ RI 7158 RI 6611 RI 7158 silver-zinc-lead processing, water requirements _____ IC 8305 solid wastes, coal-mine, disposal methods IC 8430 from future operations, legal requirements _____ IC 8430

Ż

E

Montana, Spanish Peaks primitive area, mineral appraisal GS 2-66 titanium mineral deposits, survey IC 8290 uranium resources OP 144-65 Whitehall mining district, geology RI 7305 Williston basin, crude oils, processing characteristics RI 7183 oilfields in B 629
mineral appraisal GS 2-66
titanium mineral deposits, survey IC 8290
uranium resources OP 144-65
Whitehall mining district, geology RI 7305
Williston basin, crude oils, processing
characteristics RI 7183
zircon resources IC 8268
zircon resources IC 8268 Montmorillonite, hydration, effect on per-
meability, of water-sensitive res-
ervoir rock OP 85-65
solubility, in saline waters OP 100-69 Montroseite, magnetic susceptibility IC 8360 Moon, drills for use on, development tests OP 26-69 minerals on, theoretical studies of min-
Montroseite, magnetic susceptibility IC 8360
Moon, drills for use on, development tests OP 26-69
minerals on, theoretical studies of min-
ing and processing, discussion OP 75-66 Moosehorn National Wildlife Refuge, Maine, Edmunds Unit, mineral
Moosehorn National Wildlife Refuge,
Maine, Edmunds Unit, mineral
appraisal GS 13-68
appraisal GS 13-68 Morocco, crude oil, sulfur content RI 7059
minoral industry annual vouiam
MY 1968 (v. IV) phosphate deposits RI 6935 Mortar, explosive tests in RI 6679 Mossbauer spectra, iron in coal OP 75-68 Moth Bay, Revillagigedo Island, zinc- conper deposit, sampling OFR 12-67
phosphate deposits RI 6935
Mortar, explosive tests in RI 6679
Mossbauer spectra, iron in coal OP 75-68
Moth Bay, Revillagigedo Island, zinc-
copper deposit, sampling OFR 12-67
Mother Lode belt, Calif., gold resources, po
tential TPR 5
Moth Bay, Revinggedo Island, 216- copper deposit, sampling OFR 12-67 Mother Lode belt, Calif., gold resources, po- tential TPR 5 Motor gasolines, summer, annual data PPS 58 winter, annual data PPS 60 Mottramite, magnetic susceptibilityIC 8360, 8383 Mouta chromite cashen reduction of study PL 6756
Winter, annual data
Mottramite, magnetic susceptibility1C 8360, 8383
Mount Baldy primitive area, Ariz., min- eral appraisal GS 2-67
Mount Iofferson printing and Oran
Mount Jefferson primitive area, Oreg.,
minerals survey GS 4-66
Mount Pleasant field, Utah, coal, potential carbonization yield RI 6990
Mount Wheeler New hereilium concer
Mount Wheeler, Nev., beryllium concen- trate, solvent extraction process-
ing study
Mozambique mineral industry
ing, study OP 57-67 Mozambique, mineral industry, annual review MY 1968 (v. IV)
Multimet scrap, chlorine dissolution of, laboratory study RI 7178 Muscat, mineral industry, an MY 1968 (v. IV) Muscovite, recovery, from graphite-mica ore, flotation method for RI 7263
lehoretory study DI 7179
Muscat mineral industry on-
musi review MV 1968 (v IV)
Muscovite, recovery from graphite-mice
ore flotation method for BI 7263
ore, notation method for figure in 1000
N
N
Nahcolite, in Green River oil shale, deter-
mination
in oil-shale formation, effect on density logsOP 94-68
logs OP 94-68

1

7

metric analyses RI 6879 National Safety Competition, awards OP 102-67
metric analyses RI 65/9
National Safety Competition, awards OP 102-67
Natoral unite, precipitation, from basic so- dium aluminum sulfate, study RI 7162 Natural gas, analyses IC 8241 annual data MB 1968 (v. I-II) argon in, isotopic composition RI 6936
dium aluminum sulfate, study
Natural gas analyses IC 8241
annual data MD 1069 (w I II)
$\operatorname{Annual} \operatorname{uaua} = \operatorname{III} \operatorname{IIII} \operatorname{IIII} \operatorname{IIII} \operatorname{IIIII \operatorname{IIII}} \operatorname{IIIII \operatorname{IIIII}} IIIII \operatorname{IIIIII \operatorname{IIIIIIII \operatorname{IIIIIIIII$
argon in, isotopic composition RI 6936
dry, supply and demand, by States and regions
dry, supply and demand, by States and
regions IC 8403 helium-bearing, analyses IC 8241, 8316, 8356, 8395
helium-bearing analyses IC 8241 8316 8356 8395
helium in, genesis RI 6936
imments and specific D coo
imports and exports B 630
injection, for secondary recovery of oil RI 6870
injustion in overgan envisional blast attact
nitrogen in, isotopic composition RI 6936 nitrogen in, isotopic composition RI 6936 pipeline, analysesIC 8241, 8316, 8356, 8395 exchangeability with synthetic gas RI 6629
neon in isotonic composition BI 6936
nitragen in justenia composition DI 6006
nicrogen in, isotopic composition
pipeline, analysesIC 8241, 8316, 8356, 8395
exchangeability with synthetic gas RI 6629
prices B 630
production B 630
properties OD 155 67
properties OF 100-67
prices B 630 production B 630 properties OP 155-67 reserves B 630 estimating OP 41-65
estimating OP 41-65
technology B 630
technology B 630 underground storage of, ethylene as gas
tracer, evaluation RI_6793
tracer, evaluation for 0.000
uses B 630
Natural gas industry, organization B 630
uses B 630 Natural gas industry, organization B 630 problems B 630 water use, new and recirculated IC 8284
water use new and recirculated IC 8284
Natural gas liquids, annual data
WW 1000 (- T TI)
MY 1968 (v. I-II) supply and demand IC 8411
supply and demand IC 8411
Natural gas research, annual report IC 8364
Natural gas research, annual report
Natural gas reservoirs, radioisotope use in.
literature survey OP 3-66
literature survey OP 3-66 stimulating, nuclear explosives for OP 37-67
Natural gas reservoirs, radioisotope use in, literature survey OP 3-66 stimulating, nuclear explosives for OP 37-67
Natural gas wells, capacity, estimating,
Natural gas wells, capacity, estimating, back-pressure method OP 41-65
Natural gas wells, capacity, estimating, back-pressure method OP 41-65
Natural gas wells, capacity, estimating, back-pressure method OP 41-65 Nauru, phosphate deposits RI 6935
Natural gas wells, capacity, estimating, back-pressure method OP 41-65 Nauru, phosphate deposits RI 6935 Nauru and Ocean Island, mineral
Natural gas wells, capacity, estimating, back-pressure method OP 41-65 Nauru, phosphate deposits RI 6935 Nauru and Ocean Island, mineral
Natural gas wells, capacity, estimating, back-pressure method OP 41-65 Nauru, phosphate deposits RI 6935 Nauru and Ocean Island, mineral industry, annual review MY 1968 (v. IV)
Natural gas wells, capacity, estimating, back-pressure method OP 41-65 Nauru, phosphate deposits RI 6935 Nauru and Ocean Island, mineral industry, annual review MY 1968 (v. IV) Nebraska, crude oil, analyses RI 7056
Natural gas wells, capacity, estimating, back-pressure method OP 41-65 Nauru, phosphate deposits RI 6935 Nauru and Ocean Island, mineral industry, annual review MY 1968 (v. IV) Nebraska, crude oil, analyses RI 7056 production RI 7059
Natural gas wells, capacity, estimating, back-pressure method OP 41-65 Nauru, phosphate deposits RI 6935 Nauru and Ocean Island, mineral industry, annual review MY 1968 (v. IV) Nebraska, crude oil, analyses RI 7056 production RI 7059
Natural gas wells, capacity, estimating, back-pressure method OP 41-65 Nauru, phosphate deposits RI 6935 Nauru and Ocean Island, mineral industry, annual review MY 1968 (v. IV) Nebraska, crude oil, analyses RI 7056 production RI 7059 sulfur content RI 7059 D sand, waterflood projects RI 7056
Natural gas wells, capacity, estimating, back-pressure method OP 41-65 Nauru, phosphate deposits RI 6935 Nauru and Ocean Island, mineral industry, annual review MY 1968 (v. IV) Nebraska, crude oil, analyses RI 7056 production RI 7059 sulfur content RI 7059 D sand, waterflood projects RI 7056
Natural gas wells, capacity, estimating, back-pressure method OP 41-65 Nauru, phosphate deposits RI 6935 Nauru and Ocean Island, mineral industry, annual review MY 1968 (v. IV) Nebraska, crude oil, analyses RI 7056 production RI 7059 sulfur content RI 7059 D sand, waterflood projects RI 7056
Natural gas wells, capacity, estimating, back-pressure method OP 41-65 Nauru, phosphate deposits RI 6935 Nauru and Ocean Island, mineral industry, annual review MY 1968 (v. IV) Nebraska, crude oil, analyses RI 7056 production RI 7059 sulfur content RI 7059 D sand, waterflood projects RI 7056 ferrous scrap industry, survey IC 8344 heavy crude oil production forecest IC 8354
Natural gas wells, capacity, estimating, back-pressure method OP 41-65 Nauru, phosphate deposits RI 6935 Nauru and Ocean Island, mineral industry, annual review MY 1968 (v. IV) Nebraska, crude oil, analyses RI 7056 production RI 7059 sulfur content RI 7059 D sand, waterflood projects RI 7056 ferrous scrap industry, survey IC 8344 heavy crude oil production forecest IC 8354
Natural gas wells, capacity, estimating, back-pressure method OP 41-65 Nauru, phosphate deposits RI 6935 Nauru and Ocean Island, mineral industry, annual review MY 1968 (v. IV) Nebraska, crude oil, analyses RI 7056 production RI 7059 sulfur content RI 7059 D sand, waterflood projects RI 7056 ferrous scrap industry, survey IC 8344 heavy crude oil production forecest
Natural gas wells, capacity, estimating, back-pressure method OP 41-65 Nauru, phosphate deposits RI 6935 Nauru and Ocean Island, mineral industry, annual review MY 1968 (v. IV) Nebraska, crude oil, analyses RI 7056 production RI 7059 sulfur content RI 7059 D sand, waterflood projects RI 7056 ferrous scrap industry, survey IC 8344 heavy crude oil production forecest
Natural gas wells, capacity, estimating, back-pressure method OP 41-65 Nauru, phosphate deposits RI 6935 Nauru and Ocean Island, mineral industry, annual review MY 1968 (v. IV) Nebraska, crude oil, analyses RI 7056 production RI 7059 sulfur content RI 7059 D sand, waterflood projects RI 7056 ferrous scrap industry, survey IC 8344 heavy crude oil production forecest
Natural gas wells, capacity, estimating, back-pressure method OP 41-65 Nauru, phosphate deposits RI 6935 Nauru and Ocean Island, mineral industry, annual review MY 1968 (v. IV) Nebraska, crude oil, analyses RI 7056 production RI 7059 sulfur content RI 7059 D sand, waterflood projects RI 7056 ferrous scrap industry, survey IC 8344 heavy crude oil production forecest
Natural gas wells, capacity, estimating, back-pressure method OP 41-65 Nauru, phosphate deposits RI 6935 Nauru and Ocean Island, mineral industry, annual review MY 1968 (v. IV) Nebraska, crude oil, analyses RI 7056 production RI 7059 sulfur content RI 7056 ferrous scrap industry, survey IC 8344 heavy crude oil, production forecast IC 8352 resource IC 8352 heavy crude-oil reservoirs, survey IC 8263 J sand, waterflood projects RI 7056 mines, visitors' guide SP 2-67 minesls production annual data
Natural gas wells, capacity, estimating, back-pressure method OP 41-65 Nauru, phosphate deposits RI 6935 Nauru and Ocean Island, mineral industry, annual review MY 1968 (v. IV) Nebraska, crude oil, analyses RI 7056 production RI 7059 sulfur content RI 7056 ferrous scrap industry, survey IC 8344 heavy crude oil, production forecast IC 8352 resource IC 8352 heavy crude-oil reservoirs, survey IC 8263 J sand, waterflood projects RI 7056 mines, visitors' guide SP 2-67 minesls production annual data
Natural gas wells, capacity, estimating, back-pressure method OP 41-65 Nauru, phosphate deposits OP 41-65 Nauru and Ocean Island, mineral industry, annual review MY 1968 (v. IV) Nebraska, crude oil, analyses RI 7056 production RI 7059 sulfur content RI 7056 ferrous scrap industry, survey IC 8344 heavy crude oil, production forecast IC 8352 resource IC 8352 heavy crude-oil reservoirs, survey IC 8263 J sand, waterflood projects RI 7056 mines, visitors' guide SP 2-67 minerals, production, annual data MY 1968 (v. I-II, III) mineral industry, annual review
Natural gas wells, capacity, estimating, back-pressure method OP 41-65 Nauru, phosphate deposits RI 6935 Nauru and Ocean Island, mineral industry, annual review MY 1968 (v. IV) Nebraska, crude oil, analyses RI 7056 production RI 7059 sulfur content RI 7059 D sand, waterflood projects RI 7056 ferrous scrap industry, survey IC 8344 heavy crude oil, production forecast IC 8352 heavy crude-oil reservoirs, survey RI 7056 J sand, waterflood projects RI 7056 minerals, production, annual data MY 1968 (v. I-II, III) mineral industry, annual review MY 1968 (v. III)
Natural gas wells, capacity, estimating, back-pressure method OP 41-65 Nauru, phosphate deposits RI 6935 Nauru and Ocean Island, mineral industry, annual review MY 1968 (v. IV) Nebraska, crude oil, analyses RI 7056 production RI 7059 sulfur content RI 7059 D sand, waterflood projects RI 7056 ferrous scrap industry, survey IC 8344 heavy crude oil, production forecast IC 8352 heavy crude-oil reservoirs, survey RI 7056 J sand, waterflood projects RI 7056 minerals, production, annual data MY 1968 (v. I-II, III) mineral industry, annual review MY 1968 (v. III)
Natural gas wells, capacity, estimating, back-pressure method OP 41-65 Nauru, phosphate deposits RI 6935 Nauru and Ocean Island, mineral industry, annual review MY 1968 (v. IV) Nebraska, crude oil, analyses RI 7056 production RI 7059 sulfur content RI 7059 D sand, waterflood projects RI 7056 ferrous scrap industry, survey IC 8344 heavy crude oil, production forecast IC 8352 heavy crude-oil reservoirs, survey RI 7056 J sand, waterflood projects RI 7056 minerals, production, annual data MY 1968 (v. I-II, III) mineral industry, annual review MY 1968 (v. III)
Natural gas wells, capacity, estimating, back-pressure method OP 41-65 Nauru, phosphate deposits RI 6935 Nauru and Ocean Island, mineral industry, annual review MY 1968 (v. IV) Nebraska, crude oil, analyses RI 7056 production RI 7059 sulfur content RI 7056 ferrous scrap industry, survey IC 8344 heavy crude oil, production forecast IC 8352 resource RI 7056 mineral, waterflood projects RI 7056 miners, visitors' guide RI 7056 minerals, production, annual data MY 1968 (v. I-II, III) mineral industry, annual review MY 1968 (v. III) natural gas, analyses IC 8356 occupational diseases, workmen's compen-
Natural gas wells, capacity, estimating, back-pressure method OP 41-65 Nauru, phosphate deposits RI 6935 Nauru and Ocean Island, mineral industry, annual review MY 1968 (v. IV) Nebraska, crude oil, analyses RI 7056 production RI 7059 sulfur content RI 7056 ferrous scrap industry, survey IC 8344 heavy crude oil, production forecast IC 8352 resource RI 7056 mineral, waterflood projects RI 7056 miners, visitors' guide RI 7056 minerals, production, annual data MY 1968 (v. I-II, III) mineral industry, annual review MY 1968 (v. III) natural gas, analyses IC 8356 occupational diseases, workmen's compen-
Natural gas wells, capacity, estimating, back-pressure method OP 41-65 Nauru, phosphate deposits RI 6935 Nauru and Ocean Island, mineral industry, annual review MY 1968 (v. IV) Nebraska, crude oil, analyses RI 7056 production RI 7059 sulfur content RI 7059 D sand, waterflood projects RI 7056 ferrous scrap industry, survey IC 8344 heavy crude oil, production forecast IC 8352 heavy crude-oil reservoirs, survey IC 8352 heavy crude-oil reservoirs, survey IC 8263 J sand, waterflood projects RI 7056 minerals, production, annual data MY 1968 (v. I-II, III) mineral industry, annual review MY 1968 (v. III) natural gas, analyses IC 8356 occupational diseases, workmen's compensation laws on B 623 Oil and Gas Conservation Commission
Natural gas wells, capacity, estimating, back-pressure method OP 41-65 Nauru, phosphate deposits RI 6935 Nauru and Ocean Island, mineral industry, annual review MY 1968 (v. IV) Nebraska, crude oil, analyses RI 7056 production RI 7059 sulfur content RI 7059 D sand, waterflood projects RI 7056 ferrous scrap industry, survey IC 8344 heavy crude oil, production forecast IC 8352 heavy crude-oil reservoirs, survey IC 8352 heavy crude-oil reservoirs, survey IC 8263 J sand, waterflood projects RI 7056 minerals, production, annual data MY 1968 (v. I-II, III) mineral industry, annual review MY 1968 (v. III) natural gas, analyses IC 8356 occupational diseases, workmen's compensation laws on B 623 Oil and Gas Conservation Commission
Natural gas wells, capacity, estimating, back-pressure method OP 41-65 Nauru, phosphate deposits OP 41-65 Nauru and Ocean Island, mineral industry, annual review MY 1968 (v. IV) Nebraska, crude oil, analyses RI 7056 production RI 7059 sulfur content RI 7059 D sand, waterflood projects RI 7056 ferrous scrap industry, survey IC 8344 heavy crude oil, production forecast IC 8352 heavy crude-oil reservoirs, survey IC 8263 J sand, waterflood projects RI 7056 mineral, production, annual data MY 1968 (v. III) mineral industry, annual review MY 1968 (v. III) natural gas, analyses IC 8356 occupational diseases, workmen's compensation laws on B 623 Oil and Gas Conservation Commission regulations RI 7056 oil and Gas Conservation Commission regulations RI 7056
Natural gas wells, capacity, estimating, back-pressure method OP 41-65 Nauru, phosphate deposits OP 41-65 Nauru and Ocean Island, mineral industry, annual review MY 1968 (v. IV) Nebraska, crude oil, analyses RI 7056 production RI 7059 sulfur content RI 7059 D sand, waterflood projects RI 7056 ferrous scrap industry, survey IC 8344 heavy crude oil, production forecast IC 8352 heavy crude-oil reservoirs, survey IC 8263 J sand, waterflood projects RI 7056 mineral, production, annual data MY 1968 (v. III) mineral industry, annual review MY 1968 (v. III) natural gas, analyses IC 8356 occupational diseases, workmen's compensation laws on B 623 Oil and Gas Conservation Commission regulations RI 7056 oil and Gas Conservation Commission regulations RI 7056
Natural gas wells, capacity, estimating, back-pressure method OP 41-65 Nauru, phosphate deposits OP 41-65 Nauru and Ocean Island, mineral industry, annual review MY 1968 (v. IV) Nebraska, crude oil, analyses RI 7056 production RI 7059 sulfur content RI 7059 D sand, waterflood projects RI 7056 ferrous scrap industry, survey IC 8344 heavy crude oil, production forecast IC 8352 heavy crude-oil reservoirs, survey IC 8263 J sand, waterflood projects RI 7056 mineral, production, annual data MY 1968 (v. III) mineral industry, annual review MY 1968 (v. III) natural gas, analyses IC 8356 occupational diseases, workmen's compensation laws on B 623 Oil and Gas Conservation Commission regulations RI 7056 oil and Gas Conservation Commission regulations RI 7056
Natural gas wells, capacity, estimating, back-pressure method OP 41-65 Nauru, phosphate deposits OP 41-65 Nauru and Ocean Island, mineral industry, annual review MY 1968 (v. IV) Nebraska, crude oil, analyses RI 7056 production RI 7059 sulfur content RI 7059 D sand, waterflood projects RI 7056 ferrous scrap industry, survey IC 8344 heavy crude oil, production forecast IC 8352 heavy crude-oil reservoirs, survey IC 8263 J sand, waterflood projects RI 7056 mineral, production, annual data MY 1968 (v. III) mineral industry, annual review MY 1968 (v. III) natural gas, analyses IC 8356 occupational diseases, workmen's compensation laws on B 623 Oil and Gas Conservation Commission regulations RI 7056 oil and Gas Conservation Commission regulations RI 7056
Natural gas wells, capacity, estimating, back-pressure method OP 41-65 Nauru, phosphate deposits RI 6935 Nauru and Ocean Island, mineral industry, annual review MY 1968 (v. IV) Nebraska, crude oil, analyses RI 7056 production RI 7059 sulfur content RI 7056 ferrous scrap industry, survey IC 8344 heavy crude oil, production forecast IC 8352 resource IC 8352 heavy crude-oil reservoirs, survey IC 8263 J sand, waterflood projects RI 7056 minerals, production, annual data MY 1968 (v. I-II, III) mineral industry, annual review MY 1968 (v. III) natural gas, analyses IC 8356 occupational diseases, workmen's compensation laws on B 623 Oil and Gas Conservation Commission regulations RI 7056 oilfields, reservoir data RI 7056 refractory clay deposits RI 7056 refractory clay deposits RI 7056
Natural gas wells, capacity, estimating, back-pressure method OP 41-65 Nauru, phosphate deposits OP 41-65 Nauru and Ocean Island, mineral industry, annual review MY 1968 (v. IV) Nebraska, crude oil, analyses RI 7056 production RI 7059 sulfur content RI 7056 ferrous scrap industry, survey IC 8344 heavy crude oil, production forecast IC 8352 heavy crude-oil reservoirs, survey IC 8263 J sand, waterflood projects RI 7056 mineral, without projects RI 7056 mineral, production, annual data MY 1968 (v. III) mineral industry, annual review MY 1968 (v. III) natural gas, analyses IC 8356 occupational diseases, workmen's compensation laws on B 623 Oil and Gas Conservation Commission regulations RI 7056 waterflood projects RI 7056 oilfields, reservoir data RI 7056 waterflood projects RI 7056 regulations RI 7056 waterflood projects RI 7056 regulations RI 7056 regulations RI 7056 waterflood projects RI 7056 waterflood projects RI 7056
Natural gas wells, capacity, estimating, back-pressure method OP 41-65 Nauru, phosphate deposits OP 41-65 Nauru and Ocean Island, mineral industry, annual review MY 1968 (v. IV) Nebraska, crude oil, analyses RI 7056 production RI 7059 sulfur content RI 7056 ferrous scrap industry, survey IC 8344 heavy crude oil, production forecast IC 8352 heavy crude-oil reservoirs, survey IC 8263 J sand, waterflood projects RI 7056 mineral, without projects RI 7056 mineral, production, annual data MY 1968 (v. III) mineral industry, annual review MY 1968 (v. III) natural gas, analyses IC 8356 occupational diseases, workmen's compensation laws on B 623 Oil and Gas Conservation Commission regulations RI 7056 waterflood projects RI 7056 oilfields, reservoir data RI 7056 waterflood projects RI 7056 regulations RI 7056 waterflood projects RI 7056 regulations RI 7056 regulations RI 7056 waterflood projects RI 7056 waterflood projects RI 7056
Natural gas wells, capacity, estimating, back-pressure method OP 41-65 Nauru, phosphate deposits RI 6935 Nauru and Ocean Island, mineral industry, annual review MY 1968 (v. IV) Nebraska, crude oil, analyses RI 7056 production RI 7059 sulfur content RI 7056 ferrous scrap industry, survey IC 8344 heavy crude oil, production forecast IC 8352 resource IC 8352 heavy crude-oil reservoirs, survey IC 8263 J sand, waterflood projects RI 7056 minerals, production, annual data MY 1968 (v. III) mineral industry, annual review IC 8256 occupational diseases, workmen's compensation laws on B 623 Oil and Gas Conservation Commission regulations RI 7056 refractory clay deposits RI 7056 regulations RI 7056 refractory clay deposits
Natural gas wells, capacity, estimating, back-pressure method OP 41-65 Nauru, phosphate deposits RI 6935 Nauru and Ocean Island, mineral industry, annual review MY 1968 (v. IV) Nebraska, crude oil, analyses RI 7056 production RI 7059 sulfur content RI 7056 ferrous scrap industry, survey IC 8344 heavy crude oil, production forecast IC 8352 heavy crude oil, production forecast IC 8352 heavy crude oil reservoirs, survey IC 8263 J sand, waterflood projects RI 7056 minerals, production, annual data MY 1968 (v. I-II, III) mineral industry, annual review MY 1968 (v. III) natural gas, analyses IC 8356 occupational diseases, workmen's compensation laws on RI 7056 waterflood projects RI 7056 oil and Gas Conservation Commission regulations RI 7056 refractory clay deposits OR 9-68 rural counties, auto wrecking and scrap processing industries RI 7056 refractory clay deposits
Natural gas wells, capacity, estimating, back-pressure method OP 41-65 Nauru, phosphate deposits RI 6935 Nauru and Ocean Island, mineral industry, annual review MY 1968 (v. IV) Nebraska, crude oil, analyses RI 7056 production RI 7059 sulfur content RI 7056 ferrous scrap industry, survey IC 8344 heavy crude oil, production forecast IC 8352 heavy crude oil, production forecast IC 8352 heavy crude oil reservoirs, survey IC 8263 J sand, waterflood projects RI 7056 minerals, production, annual data MY 1968 (v. I-II, III) mineral industry, annual review MY 1968 (v. III) natural gas, analyses IC 8356 occupational diseases, workmen's compensation laws on RI 7056 waterflood projects RI 7056 oil and Gas Conservation Commission regulations RI 7056 refractory clay deposits OR 9-68 rural counties, auto wrecking and scrap processing industries RI 7056 refractory clay deposits
Natural gas wells, capacity, estimating, back-pressure method OP 41-65 Nauru, phosphate deposits RI 6935 Nauru and Ocean Island, mineral industry, annual review MY 1968 (v. IV) Nebraska, crude oil, analyses RI 7056 production RI 7059 sulfur content RI 7056 ferrous scrap industry, survey IC 8344 heavy crude oil, production forecast IC 8352 heavy crude oil, production forecast IC 8352 heavy crude oil reservoirs, survey IC 8263 J sand, waterflood projects RI 7056 minerals, production, annual data MY 1968 (v. I-II, III) mineral industry, annual review MY 1968 (v. III) natural gas, analyses IC 8356 occupational diseases, workmen's compensation laws on RI 7056 waterflood projects RI 7056 oil and Gas Conservation Commission regulations RI 7056 refractory clay deposits OR 9-68 rural counties, auto wrecking and scrap processing industries RI 7056 refractory clay deposits
Natural gas wells, capacity, estimating, back-pressure method OP 41-65 Nauru, phosphate deposits RI 6935 Nauru and Ocean Island, mineral industry, annual review MY 1968 (v. IV) Nebraska, crude oil, analyses RI 7056 production RI 7059 sulfur content RI 7056 ferrous scrap industry, survey IC 8344 heavy crude oil, production forecast IC 8352 heavy crude oil, production forecast IC 8352 heavy crude oil reservoirs, survey IC 8263 J sand, waterflood projects RI 7056 minerals, production, annual data MY 1968 (v. I-II, III) mineral industry, annual review MY 1968 (v. III) natural gas, analyses IC 8356 occupational diseases, workmen's compensation laws on RI 7056 waterflood projects RI 7056 oil and Gas Conservation Commission regulations RI 7056 refractory clay deposits OR 9-68 rural counties, auto wrecking and scrap processing industries RI 7056 refractory clay deposits
Natural gas wells, capacity, estimating, back-pressure method OP 41-65 Nauru, phosphate deposits RI 6935 Nauru and Ocean Island, mineral industry, annual review MY 1968 (v. IV) Nebraska, crude oil, analyses RI 7056 production RI 7059 sulfur content RI 7056 ferrous scrap industry, survey IC 8344 heavy crude oil, production forecast IC 8352 heavy crude oil, production forecast IC 8352 heavy crude oil reservoirs, survey IC 8263 J sand, waterflood projects RI 7056 minerals, production, annual data MY 1968 (v. I-II, III) mineral industry, annual review MY 1968 (v. III) natural gas, analyses IC 8356 occupational diseases, workmen's compensation laws on RI 7056 waterflood projects RI 7056 oil and Gas Conservation Commission regulations RI 7056 refractory clay deposits OR 9-68 rural counties, auto wrecking and scrap processing industries RI 7056 refractory clay deposits
Natural gas wells, capacity, estimating, back-pressure method OP 41-65 Nauru, phosphate deposits RI 6935 Nauru and Ocean Island, mineral industry, annual review MY 1968 (v. IV) Nebraska, crude oil, analyses RI 7056 production RI 7059 sulfur content RI 7056 ferrous scrap industry, survey IC 8344 heavy crude oil, production forecast IC 8352 resource IC 8352 heavy crude-oil reservoirs, survey IC 8263 J sand, waterflood projects RI 7056 minerals, production, annual data MY 1968 (v. III) mineral industry, annual review IC 8256 occupational diseases, workmen's compensation laws on B 623 Oil and Gas Conservation Commission regulations RI 7056 refractory clay deposits RI 7056 regulations RI 7056 refractory clay deposits

Naphthenothiophenes, in high-boiling pe-

Neodymium, high-purity, electrowinning,
from neodymium oxide RI 6957
Neodymium, high-purity, electrowinning, from neodymium oxide
solvent extraction, from rare-earth mixtures OP 171-68
Neodymium oxide, crystallographic modi-
mixtures OP 171-68 Neodymium oxide, crystallographic modi- fication RI 6616 phase transformation rate RI 6616
Neogymium-samarium, separation from lan-
thanides, amine extraction method RI 7100 Neodymium trichloride, heat of formation RI 6697
Neon, from helium-bearing natural gases, isotopic abundance OP 31-66
isotopic abundance OP 31-66 isotopic abundance in natural gas, study RI 6936
Redlich-Kwong equation of state, modifi- cations RI 7099 separation, from natural gas or at- mosphere apparatus for de-
separation, from natural gas or at-
scription OP 105-68 thermophysical properties IC 8317
Neon isotopes, separation, by cryogenic
chromatographyOP 19-69, 135-69
Neoprene, conveyor belt, fire hazard RI 7053
Nepheline, glass-crystal transformation,
thermophysical properties IC 8317 Neon isotopes, separation, by cryogenic chromatographyOP 19-69, 135-69 Neoprene, conveyor belt, fire hazard RI 7053 Nepheline, glass-crystal transformation, heat of RI 6784 heat of formation RI 6784
heat of formation RI 6784 Nepheline syenite, annual data
MY 1968 (v. I–II)
Netherlands coal production and consump-
tion IC 8380 crude oil, production IC 8767
SUILUT CONTENT. BL (UD9
mineral industry annual re-
$\frac{V16W}{C} = \frac{MY}{256} \frac{1965}{C} \frac{(V, IV)}{256}$
view MY 1968 (v. IV) natural gas, analyses IC 8356 Netherlands Antilles, mineral in MY 1068 (u. IV)
dustry, annual review MI 1908 (v. 1v)
Neutral oil compounds, low-temperature coal-
ter infrared chestra B 637
tar, infrared spectra B 637
tar, infrared spectra B 637 ultraviolet spectra B 637
tar, infrared spectra B 637 ultraviolet spectra B 637 Neutron log, in water-block treatment.
tar, infrared spectra B 637 ultraviolet spectra B 637 Neutron log, in water-block treatment, gas wells, use OP 102-65
tar, infrared spectra B 637 ultraviolet spectra B 637 Neutron log, in water-block treatment, gas wells, use OP 102-65
tar, infrared spectra B 637 ultraviolet spectra B 637 Neutron log, in water-block treatment, gas wells, use OP 102-65 Nevada, antimony, supply IC 8244 barite, supply IC 8244 carbonaceous gold-bearing ores, improving
tar, infrared spectra B 637 ultraviolet spectra B 637 Neutron log, in water-block treatment, gas wells, use OP 102-65 Nevada, antimony, supply IC 8244 barite, supply IC 8244 carbonaceous gold-bearing ores, improving gold recovery from TPR 8
tar, infrared spectra B 637 ultraviolet spectra B 637 Neutron log, in water-block treatment, gas wells, use OP 102-65 Nevada, antimony, supply IC 8244 barite, supply IC 8244 carbonaceous gold-bearing ores, improving gold recovery from TPR 8
tar, infrared spectra B 637 ultraviolet spectra B 637 Neutron log, in water-block treatment, gas wells, use OP 102-65 Nevada, antimony, supply IC 8244 barite, supply IC 8244 carbonaceous gold-bearing ores, improving gold recovery from TPR 8 Churchill and Mineral Counties, auto wrecking and scrap processing in-
tar, infrared spectra B 637 ultraviolet spectra B 637 Neutron log, in water-block treatment, gas wells, use OP 102-65 Nevada, antimony, supply IC 8244 barite, supply IC 8244 carbonaceous gold-bearing ores, improving gold recovery from TPR 8 Churchill and Mineral Counties, auto wrecking and scrap processing in- dustries SP 1-67
tar, infrared spectra B 637 ultraviolet spectra B 637 Neutron log, in water-block treatment, gas wells, use OP 102-65 Nevada, antimony, supply IC 8244 barite, supply IC 8244 carbonaceous gold-bearing ores, improving gold recovery from TPR 8 Churchill and Mineral Counties, auto wrecking and scrap processing in- dustries SP 1-67 clays, supply IC 8244
tar, infrared spectra B 637 ultraviolet spectra B 637 Neutron log, in water-block treatment, gas wells, use OP 102-65 Nevada, antimony, supply IC 8244 barite, supply IC 8244 carbonaceous gold-bearing ores, improving gold recovery from TPR 8 Churchill and Mineral Counties, auto wrecking and scrap processing in- dustries SP 1-67 clays, supply IC 8244 copper, supply IC 8244
tar, infrared spectra B 637 ultraviolet spectra B 637 Neutron log, in water-block treatment, gas wells, use OP 102-65 Nevada, antimony, supply IC 8244 barite, supply IC 8244 carbonaceous gold-bearing ores, improving gold recovery from TPR 8 Churchill and Mineral Counties, auto wrecking and scrap processing in- dustries IC 8244 copper, supply IC 8244 copper, supply IC 8244 copper-mill tailings, stabilization, chem- ical-weetstive procedure for BI 7261
tar, infrared spectra B 637 ultraviolet spectra B 637 Neutron log, in water-block treatment, gas wells, use OP 102-65 Nevada, antimony, supply IC 8244 barite, supply IC 8244 carbonaceous gold-bearing ores, improving gold recovery from TPR 8 Churchill and Mineral Counties, auto wrecking and scrap processing in- dustries IC 8244 copper, supply IC 8244 copper, supply IC 8244 copper-mill tailings, stabilization, chem- ical-weetstive procedure for BI 7261
tar, infrared spectra B 637 ultraviolet spectra B 637 Neutron log, in water-block treatment, gas wells, use OP 102-65 Nevada, antimony, supply IC 8244 barite, supply IC 8244 carbonaceous gold-bearing ores, improving gold recovery from TPR 8 Churchill and Mineral Counties, auto wrecking and scrap processing in- dustries IC 8244 copper, supply IC 8244 copper, supply IC 8244 copper-mill tailings, stabilization, chem- ical-weetstive procedure for BI 7261
tar, infrared spectra B 637 ultraviolet spectra B 637 Neutron log, in water-block treatment, gas wells, use OP 102-65 Nevada, antimony, supply IC 8244 barite, supply IC 8244 carbonaceous gold-bearing ores, improving gold recovery from TPR 8 Churchill and Mineral Counties, auto wrecking and scrap processing in- dustries IC 8244 copper, supply IC 8244 copper, supply IC 8244 copper, supply IC 8244 copper, supply IC 8244 copper-mill tailings, stabilization, chem- ical-vegetative procedure for RI 7261 diatomite, supply IC 8244 gypsum, supply IC 8244 kyanite-group minerals, as notential alu-
tar, infrared spectra B 637 ultraviolet spectra B 637 Neutron log, in water-block treatment, gas wells, use OP 102-65 Nevada, antimony, supply IC 8244 barite, supply IC 8244 carbonaceous gold-bearing ores, improving gold recovery from TPR 8 Churchill and Mineral Counties, auto wrecking and scrap processing in- dustries IC 8244 copper, supply IC 8244 copper, supply IC 8244 copper, supply IC 8244 copper-milt tailings, stabilization, chem- ical-vegetative procedure for RI 7261 diatomite, supply IC 8244 gypsum, supply IC 8244 kyanite-group minerals, as potential alu- minum source IC 8335
tar, infrared spectra B 637 ultraviolet spectra B 637 Neutron log, in water-block treatment, gas wells, use OP 102-65 Nevada, antimony, supply IC 8244 barite, supply IC 8244 carbonaceous gold-bearing ores, improving gold recovery from TPR 8 Churchill and Mineral Counties, auto wrecking and scrap processing in- dustries IC 8244 copper, supply IC 8244 copper, supply IC 8244 copper, supply IC 8244 copper-mill tailings, stabilization, chem ical-vegetative procedure for RI 7261 diatomite, supply IC 8244 kyanite-group minerals, as potential alu- minum source IC 8335 lead, supply IC 8244
tar, infrared spectra B 637 ultraviolet spectra B 637 Neutron log, in water-block treatment, gas wells, use OP 102-65 Nevada, antimony, supply IC 8244 barite, supply IC 8244 carbonaceous gold-bearing ores, improving gold recovery from TPR 8 Churchill and Mineral Counties, auto wrecking and scrap processing in- dustries IC 8244 copper, supply IC 8244 copper, supply IC 8244 copper, supply IC 8244 copper-mill tailings, stabilization, chem ical-vegetative procedure for RI 7261 diatomite, supply IC 8244 kyanite-group minerals, as potential alu- minum source IC 8335 lead, supply IC 8244
tar, infrared spectra B 637 ultraviolet spectra B 637 Neutron log, in water-block treatment, gas wells, use OP 102-65 Nevada, antimony, supply IC 8244 barite, supply IC 8244 carbonaceous gold-bearing ores, improving gold recovery from TPR 8 Churchill and Mineral Counties, auto wrecking and scrap processing in- dustries IC 8244 copper, supply IC 8244 copper, supply IC 8244 copper, supply IC 8244 copper-mill tailings, stabilization, chem ical-vegetative procedure for RI 7261 diatomite, supply IC 8244 kyanite-group minerals, as potential alu- minum source IC 8335 lead, supply IC 8244
tar, infrared spectra B 637 ultraviolet spectra B 637 Neutron log, in water-block treatment, gas wells, use OP 102-65 Nevada, antimony, supply IC 8244 barite, supply IC 8244 carbonaceous gold-bearing ores, improving gold recovery from TPR 8 Churchill and Mineral Counties, auto wrecking and scrap processing in- dustries IC 8244 copper, supply IC 8244 copper, supply IC 8244 copper, supply IC 8244 copper-mill tailings, stabilization, chem ical-vegetative procedure for RI 7261 diatomite, supply IC 8244 kyanite-group minerals, as potential alu- minum source IC 8335 lead, supply IC 8244
tar, infrared spectra B 637 ultraviolet spectra B 637 Neutron log, in water-block treatment, gas wells, use OP 102-65 Nevada, antimony, supply IC 8244 barite, supply IC 8244 carbonaceous gold-bearing ores, improving gold recovery from TPR 8 Churchill and Mineral Counties, auto wrecking and scrap processing in- dustries IC 8244 copper, supply IC 8244 copper, supply IC 8244 copper, supply IC 8244 copper-mill tailings, stabilization, chem ical-vegetative procedure for RI 7261 diatomite, supply IC 8244 kyanite-group minerals, as potential alu- minum source IC 8335 lead, supply IC 8244
tar, infrared spectra B 637 ultraviolet spectra B 637 Neutron log, in water-block treatment, gas wells, use OP 102-65 Nevada, antimony, supply IC 8244 barite, supply IC 8244 carbonaceous gold-bearing ores, improving gold recovery from TPR 8 Churchill and Mineral Counties, auto wrecking and scrap processing in- dustries IC 8244 copper, supply IC 8244 copper, supply IC 8244 copper, supply IC 8244 copper-mill tailings, stabilization, chem ical-vegetative procedure for RI 7261 diatomite, supply IC 8244 kyanite-group minerals, as potential alu- minum source IC 8335 lead, supply IC 8244
tar, infrared spectra B 637 ultraviolet spectra B 637 Neutron log, in water-block treatment, gas wells, use OP 102-65 Nevada, antimony, supply IC 8244 barite, supply IC 8244 carbonaceous gold-bearing ores, improving gold recovery from TPR 8 Churchill and Mineral Counties, auto wrecking and scrap processing in- dustries IC 8244 copper, supply IC 8244 copper, supply IC 8244 copper, supply IC 8244 copper-mill tailings, stabilization, chem ical-vegetative procedure for RI 7261 diatomite, supply IC 8244 kyanite-group minerals, as potential alu- minum source IC 8335 lead, supply IC 8244
tar, infrared spectra B 637 ultraviolet spectra B 637 Neutron log, in water-block treatment, gas wells, use OP 102-65 Nevada, antimony, supply IC 8244 barite, supply IC 8244 carbonaceous gold-bearing ores, improving gold recovery from TPR 8 Churchill and Mineral Counties, auto wrecking and scrap processing in- dustries IC 8244 copper, supply IC 8244 copper, supply IC 8244 copper, supply IC 8244 copper-mill tailings, stabilization, chem ical-vegetative procedure for RI 7261 diatomite, supply IC 8244 kyanite-group minerals, as potential alu- minum source IC 8335 lead, supply IC 8244
tar, infrared spectra B 637 ultraviolet spectra B 637 Neutron log, in water-block treatment, gas wells, use OP 102-65 Nevada, antimony, supply IC 8244 barite, supply IC 8244 carbonaceous gold-bearing ores, improving gold recovery from TPR 8 Churchill and Mineral Counties, auto wrecking and scrap processing in- dustries IC 8244 copper, supply IC 8244 copper, supply IC 8244 copper, supply IC 8244 copper-mill tailings, stabilization, chem ical-vegetative procedure for RI 7261 diatomite, supply IC 8244 kyanite-group minerals, as potential alu- minum source IC 8335 lead, supply IC 8244
tar, infrared spectra B 637 ultraviolet spectra B 637 Neutron log, in water-block treatment, gas wells, use OP 102-65 Nevada, antimony, supply IC 8244 barite, supply IC 8244 carbonaceous gold-bearing ores, improving gold recovery from TPR 8 Churchill and Mineral Counties, auto wrecking and scrap processing in- dustries IC 8244 copper, supply IC 8244 copper, supply IC 8244 copper, supply IC 8244 copper, supply IC 8244 gypsum, supply IC 8244 kyanite-group minerals, as potential alu- minum source IC 8244 lime, supply IC 8244 limestone, supply IC 8244 magnesium compounds, supply IC 8244 manganese, supply IC 8244 mercury, supply IC 8244 mercury mines, description IC 8252 mercury production, 1902-61 IC 8252 mines, visitors' guide SP 2-67 mines annual data
tar, infrared spectra B 637 ultraviolet spectra B 637 Neutron log, in water-block treatment, gas wells, use OP 102-65 Nevada, antimony, supply IC 8244 barite, supply IC 8244 carbonaceous gold-bearing ores, improving gold recovery from TPR 8 Churchill and Mineral Counties, auto wrecking and scrap processing in- dustries IC 8244 copper, supply IC 8244 gypsum, supply IC 8244 kyanite-group minerals, as potential alu- minum source IC 8244 limestone, supply IC 8244 limestone, supply IC 8244 magnesium compounds, supply IC 8244 mercury mines, description IC 8252 mercury production, 1902-61 IC 8252 mercury prospects IC 8252 minerals, production, annual data MY 1968 (v. I-II, III) mineral industry, annual review
tar, infrared spectra B 637 ultraviolet spectra B 637 Neutron log, in water-block treatment, gas wells, use OP 102-65 Nevada, antimony, supply IC 8244 barite, supply IC 8244 carbonaceous gold-bearing ores, improving gold recovery from TPR 8 Churchill and Mineral Counties, auto wrecking and scrap processing in- dustries IC 8244 copper, supply IC 8244 copper, supply IC 8244 copper, supply IC 8244 copper, supply IC 8244 gypsum, supply IC 8244 kyanite-group minerals, as potential alu- minum source IC 8244 lime, supply IC 8244 limestone, supply IC 8244 magnesium compounds, supply IC 8244 manganese, supply IC 8244 mercury mines, description IC 8244 mercury prospects IC 8252 mercury prospects IC 8252 minerals, production, annual data MY 1968 (v. III) water requirements, present and pro-
tar, infrared spectra B 637 ultraviolet spectra B 637 Neutron log, in water-block treatment, gas wells, use OP 102-65 Nevada, antimony, supply IC 8244 barite, supply IC 8244 carbonaceous gold-bearing ores, improving gold recovery from TPR 8 Churchill and Mineral Counties, auto wrecking and scrap processing in- dustries IC 8244 copper, supply IC 8244 copper, supply IC 8244 copper, supply IC 8244 copper, supply IC 8244 gypsum, supply IC 8244 kyanite-group minerals, as potential alu- minum source IC 8244 lime, supply IC 8244 limestone, supply IC 8244 magnesium compounds, supply IC 8244 mercury, supply IC 8244 mercury mines, description IC 8252 mercury production, 1902-61 IC 8252 mercury production, 1902-61 IC 8252 mercury production, annual data MY 1968 (v. I-II, III) mineral industry, annual review MY 1968 (v. III) water requirements, present and pro- iected IC 8288
tar, infrared spectra B 637 ultraviolet spectra B 637 Neutron log, in water-block treatment, gas wells, use OP 102-65 Nevada, antimony, supply IC 8244 barite, supply IC 8244 carbonaceous gold-bearing ores, improving gold recovery from TPR 8 Churchill and Mineral Counties, auto wrecking and scrap processing in- dustries IC 8244 copper, supply IC 8244 copper, supply IC 8244 copper, supply IC 8244 copper, supply IC 8244 gypsum, supply IC 8244 kyanite-group minerals, as potential alu- minum source IC 8244 limes, supply IC 8244 limestone, supply IC 8244 magnesium compounds, supply IC 8244 manganese, supply IC 8244 mercury, supply IC 8244 mercury mines, description IC 8252 mercury prospects IC 8252 mineral industry, annual data MY 1968 (v. III) water requirements, present and pro IC 8288 water use new and recirculated IC 8288 water use new and recirculated IC 8288
tar, infrared spectra B 637 ultraviolet spectra B 637 Neutron log, in water-block treatment, gas wells, use OP 102-65 Nevada, antimony, supply IC 8244 barite, supply IC 8244 carbonaceous gold-bearing ores, improving gold recovery from TPR 8 Churchill and Mineral Counties, auto wrecking and scrap processing in- dustries IC 8244 copper, supply IC 8244 copper, supply IC 8244 copper, supply IC 8244 copper, supply IC 8244 gypsum, supply IC 8244 kyanite-group minerals, as potential alu- minum source IC 8244 limes, supply IC 8244 limestone, supply IC 8244 magnesium compounds, supply IC 8244 manganese, supply IC 8244 mercury, supply IC 8244 mercury mines, description IC 8252 mercury prospects IC 8252 mineral industry, annual data MY 1968 (v. III) water requirements, present and pro IC 8288 water use new and recirculated IC 8288 water use new and recirculated IC 8288
tar, infrared spectra B 637 ultraviolet spectra B 637 Neutron log, in water-block treatment, gas wells, use OP 102-65 Nevada, antimony, supply IC 8244 barite, supply IC 8244 carbonaceous gold-bearing ores, improving gold recovery from TPR 8 Churchill and Mineral Counties, auto wrecking and scrap processing in- dustries IC 8244 copper, supply IC 8244 copper, supply IC 8244 copper, supply IC 8244 copper, supply IC 8244 gypsum, supply IC 8244 kyanite-group minerals, as potential alu- minum source IC 8244 lime, supply IC 8244 limestone, supply IC 8244 magnesium compounds, supply IC 8244 mercury, supply IC 8244 mercury mines, description IC 8252 mercury production, 1902-61 IC 8252 mercury production, 1902-61 IC 8252 mercury production, annual data MY 1968 (v. I-II, III) mineral industry, annual review MY 1968 (v. III) water requirements, present and pro- iected IC 8288

3

Nevada, occupational diseases, workmen's compensation laws on B 623
compensation laws on B 623
perlite, supply IC 8244 possalanic materials, investigation OFR 1-68
pumice, supply IC 8244
salt, supply IC 8244
possalanic materials, investigation Urk 1-06 pumice, supply IC 8244 salt, supply IC 8244 silver, potential resources OFR 22-69 sulfur, supply IC 8244 talc, supply IC 8244 titanium mineral deposits, survey IC 8290 water laws IC 8288
sulfur, supply
talc, supply IC 8244
titanium mineral deposits, survey IC 8290
water laws IC 8288 zinc, supply IC 8244
New Albany Shale, organic composition OF 11-08
New Caledonia, mineral indus-
try, annual review MY 1968 (v. IV)
New England, beryllium deposits, investi-
New Garden Coal Corp. mine, Va., coal, washing characteristics RI 6740
washing characteristics RI 6740
New Guinea, mineral industry, annual review MY 1968 (v. IV)
New mampshire, berymum deposits, myes-
tigation RI 7070
Coos County area, auto wrecking and
scrap processing industries SP 1-67 fluorspar deposits IC 8339 mines, visitors' guide SP 2-67
mines, visitors' guide SP 2-67
minerals, production, annual data
MY 1968 (v. I–II, III) mineral industry, annual review
MY 1968 (v. III)
occupational diseases, workmen's compen-
sation laws on B 623
New Hebrides, mineral industry, annual review MY 1968 (v. IV)
New Lenger fre den er netentiel alumi
num source IC 8335
New Jersey, fire clay, as potential alumi- num source IC 8335 Great Swamp National Wildlife Refuge,
mineral appraisal GS 9-67
Hunterdon County, yttrium-rare earth resources reconnaissance RI 6885
resources, reconnaissance RI 6885 ilmenite deposits, survey IC 8290
mines, visitors' guide SP 2-67 minerals, production, annual data
minerals, production, annual data MY 1968 (v. I–II, III)
mineral industry, annual review
MY 1968 (v. III)
Morris County, yttrium-rare earth re- sources, reconnaissance RI 6885
occupational diseases, workmen's compen-
sation laws on B 623
Passaic County, yttrium-rare earth re- sources, reconnaissance RI 6885
rare-earth resources, reconnaissance RI 6885
shales, for lightweight aggregate, eval-
uation CP 134-66 Sussex County, yttrium-rare earth re-
sources, reconnaissance RI 6885
titanium mineral deposits, survey IC 8290
yttrium resources, reconnaissance RI 6885
New Mexico, barite deposits, investigation _ NMMR
Bear River Migratory Bird Refuge, min- eral appraisal GS 7-67
Bernalillo County, fluorspar deposits IC 8307
beryllium deposits, investigation RI 6828
beryllium-bearing pegmatites, reconnais-
sance IC 8298 Bitter Lake National Wildlife Refuge,
mineral appraisal GS 5-67
Blue Range primitive area, mineral ap-
praisal
Refuge, mineral appraisal GS 6-67
Catron County, fluorspar deposits IC 8307 coal, analysesB 643: RI 6622, 6792, 7104, 7219
coal, analyses . B 643; RI 6622, 6792, 7104, 7219 major ash constituents RI 7240
phosphorus content RI 6579
potassium content RI 6579

!

.

モリモトこと。

New Mexico, coal, sodium content RI 6579
sulfur content, forms IC 8301 coal ash, analyses RI 7240 fusibility data RI 7240 coal carbonization, light oil from, analysis B 643 B 643 light oil yield B 643 tar from, analysis B 643 tar from, analysis B 643 crude oil, high-sulfur, composition B 642 low-sulfur, composition B 642 production RI 7059 sulfur content RI 7059 Dona Ana County, fluorspar deposits IC 8307 ferrous scrap industry, survey IC 8307; OFR 11-65
fusibility data RI 7240
coal carbonization, light oil from, analysis B 643
tar from analysis B 643
tar yield B 643
crude oil, high-sulfur, composition B 642
low-sulfur, composition B 642
sulfur content RI 7059
Dona Ana County, fluorspar deposits IC 8307
ferrous scrap industry, survey IC 8344
IC 8307 OFR 11-65
Cormanium in willomite ecournesse. OP 50 67
Grant County, fluorspar deposits IC 8307
neavy crude oil, production forecast IC 8352
heavy crude-oil reservoirs, survey IC 8263
helium-bearing natural gases, analysis IC 8302
Grant County, fluorspar deposits IC 8367 heavy crude oil, production forecast IC 8362 resource IC 8352 heavy crude-oil reservoirs, survey IC 8263 helium-bearing natural gases, analysis IC 8302 Hidalgo County, fluorspar deposits IC 8307 Homestake_Samin Partners Section 23
Homestake-Sapin Partners, Section 23
Lincoln County, fluorspar deposits IC 8280 Luna County, fluorspar deposits IC 8307 Luna County, fluorspar deposits IC 8307
Lincoln County, fluorspar deposits IC 8307
Luna County, nuorspar deposits IC 8307
mines, visitors' guide SP 2-67
mercury occurrences IC 8252 mines, visitors' guide SP 2-67 minerals, production, annual data MY 1968 (v. I-II, III)
MY 1968 (v. 1–11, 111) mineral industry, annual review
MY 1968 (v. III) natural gas, analyses_IC 8241, 8316, 8356, 8395
natural gas, analyses. IC 8241, 8316, 8356, 8395
occupational diseases, workmen's compen- sation laws on B 623 oil reservoirs, production-rate data IC 8362 well-depth data IC 8362
oil reservoirs, production-rate data IC 8362
well-depth data IC 8362
oilfields, shallow M 12 netroleum impregnated rocks surface and
petroleum-impregnated rocks, surface and
petroleum-impregnated rocks, surface and shallow M 12
olineids, shallow M 12 petroleum-impregnated rocks, surface and shallow M 12 potash ores, beneficiation tests OP 91-66 Project Gasbuggy, nuclear fracturing experiment OP 92-66 status report OP 167-67 Rio Arriba County, fluorspar deposits IC 8307 Sierra County, fluorspar deposits IC 8307 silver, potential resources OFR 22-69 Socorro County, fluorspar deposits IC 8307
olineids, shallow M 12 petroleum-impregnated rocks, surface and shallow M 12 potash ores, beneficiation tests OP 91-66 Project Gasbuggy, nuclear fracturing experiment OP 92-66 status report OP 167-67 Rio Arriba County, fluorspar deposits IC 8307 Sierra County, fluorspar deposits IC 8307 silver, potential resources OFR 22-69 Socorro County, fluorspar deposits IC 8307 tantalum, in pegmatite dikes, investi OFR 10.68
olineids, shallow M 12 petroleum-impregnated rocks, surface and shallow M 12 potash ores, beneficiation tests OP 91-66 Project Gasbuggy, nuclear fracturing experiment OP 92-66 status report OP 167-67 Rio Arriba County, fluorspar deposits IC 8307 Sierra County, fluorspar deposits IC 8307 silver, potential resources OFR 22-69 Socorro County, fluorspar deposits IC 8307 tantalum, in pegmatite dikes, investi OFR 10.68
olineids, shallow M 12 petroleum-impregnated rocks, surface and shallow M 12 potash ores, beneficiation tests OP 91-66 Project Gasbuggy, nuclear fracturing experiment OP 92-66 status report OP 167-67 Rio Arriba County, fluorspar deposits IC 8307 Sierra County, fluorspar deposits IC 8307 silver, potential resources OFR 22-69 Socorro County, fluorspar deposits IC 8307 tantalum, in pegmatite dikes, investi OFR 10.68
olineids, shallow M 12 petroleum-impregnated rocks, surface and shallow M 12 potash ores, beneficiation tests OP 91-66 Project Gasbuggy, nuclear fracturing experiment OP 92-66 status report OP 167-67 Rio Arriba County, fluorspar deposits IC 8307 Sierra County, fluorspar deposits IC 8307 silver, potential resources OFR 22-69 Socorro County, fluorspar deposits IC 8307 tantalum, in pegmatite dikes, investi OFR 10.68
olineids, shallow M 12 petroleum-impregnated rocks, surface and shallow M 12 potash ores, beneficiation tests OP 91-66 Project Gasbuggy, nuclear fracturing experiment OP 92-66 status report OP 167-67 Rio Arriba County, fluorspar deposits IC 8307 Sierra County, fluorspar deposits IC 8307 silver, potential resources OFR 22-69 Socorro County, fluorspar deposits IC 8307 tantalum, in pegmatite dikes, investi OFR 10.68
olineids, shallow M 12 petroleum-impregnated rocks, surface and shallow M 12 potash ores, beneficiation tests OP 91-66 Project Gasbuggy, nuclear fracturing experiment OP 92-66 status report OP 167-67 Rio Arriba County, fluorspar deposits IC 8307 Sierra County, fluorspar deposits IC 8307 silver, potential resources OFR 22-69 Socorro County, fluorspar deposits IC 8307 tantalum, in pegmatite dikes, investi OFR 10.68
olineids, shallow M 12 petroleum-impregnated rocks, surface and shallow M 12 potash ores, beneficiation tests OP 91-66 Project Gasbuggy, nuclear fracturing experiment OP 92-66 status report OP 167-67 Rio Arriba County, fluorspar deposits IC 8307 Silver, potential resources OFR 22-69 Socorro County, fluorspar deposits IC 8307 tantalum, in pegmatite dikes, investi- gation OFR 10-68 titanium mineral deposits, survey IC 8290 Torrance County, fluorspar deposits IC 8307 valencia County, fluorspar deposits IC 8290 Torrance County, fluorspar deposits IC 8290 water requirements, mineral-industry IC 8276 water-use practices, mineral industry IC 8276
olineids, shallow M 12 petroleum-impregnated rocks, surface and shallow M 12 potash ores, beneficiation tests OP 91-66 Project Gasbuggy, nuclear fracturing experiment OP 92-66 status report OP 167-67 Rio Arriba County, fluorspar deposits IC 8307 Sierra County, fluorspar deposits IC 8307 silver, potential resources OFR 22-69 Socorro County, fluorspar deposits IC 8307 tantalum, in pegmatite dikes, investi- gation OFR 10-68 titanium mineral deposits, survey IC 8200 Torrance County, fluorspar deposits IC 8307 water requirements, mineral-industry IC 8207 water -supply potential IC 8276 water-supply potential IC 8276 water-use practices, mineral industry IC 8276 New Scotland Limestine, N. J., shale from, expansion properties of.
olineids, shallow M 12 petroleum-impregnated rocks, surface and shallow M 12 potash ores, beneficiation tests OP 91-66 Project Gasbuggy, nuclear fracturing experiment OP 92-66 status report OP 167-67 Rio Arriba County, fluorspar deposits IC 8307 Sierra County, fluorspar deposits IC 8307 silver, potential resources OFR 22-69 Socorro County, fluorspar deposits IC 8307 tantalum, in pegmatite dikes, investi- gation OFR 10-68 titanium mineral deposits, survey IC 8200 Torrance County, fluorspar deposits IC 8307 water requirements, mineral-industry IC 8276 water-supply potential IC 8276 water-use practices, mineral industry IC 8276 New Scotland Limestine, N. J., shale from, expansion properties of, test OP 134-66
olineids, shallow M 12 petroleum-impregnated rocks, surface and shallow M 12 potash ores, beneficiation tests OP 91-66 Project Gasbuggy, nuclear fracturing experiment OP 92-66 status report OP 92-66 status report OP 167-67 Rio Arriba County, fluorspar deposits IC 8307 silver, potential resources OFR 22-69 Socorro County, fluorspar deposits IC 8307 tantalum, in pegmatite dikes, investi- gation OFR 10-68 titanium mineral deposits, survey IC 8290 Torrance County, fluorspar deposits IC 8307 valencia County, fluorspar deposits IC 8290 Torrance County, fluorspar deposits IC 8290 Torrance County, fluorspar deposits IC 8276 water requirements, mineral-industry IC 8276 water-supply potential IC 8276 New Scotland Limestine, N. J., shale from, expansion properties of, test OP 134-66 New York, anorthosite, as potential alumi-
olineids, shallow M 12 petroleum-impregnated rocks, surface and shallow M 12 potash ores, beneficiation tests OP 91-66 Project Gasbuggy, nuclear fracturing experiment OP 92-66 status report OP 167-67 Rio Arriba County, fluorspar deposits IC 8307 Silver, potential resources OFR 22-69 Socorro County, fluorspar deposits IC 8307 tantalum, in pegmatite dikes, investi- gation OFR 10-68 titanium mineral deposits, survey IC 8290 Torrance County, fluorspar deposits IC 8307 Valencia County, fluorspar deposits IC 8307 water requirements, mineral-industry IC 8276 water-supply potential IC 8276 water-use practices, mineral industry IC 8276 New Scotland Limestine, N. J., shale from, expansion properties of, test OP 134-66 New York, anorthosite, as potential alumi- num source IC 8335 Apnalachian area, mineral resources GS 4-68
olineids, shallow M 12 petroleum-impregnated rocks, surface and shallow M 12 potash ores, beneficiation tests OP 91-66 Project Gasbuggy, nuclear fracturing experiment OP 92-66 status report OP 167-67 Rio Arriba County, fluorspar deposits IC 8307 Silver, potential resources OFR 22-69 Socorro County, fluorspar deposits IC 8307 tantalum, in pegmatite dikes, investi- gation OFR 10-68 titanium mineral deposits, survey IC 8290 Torrance County, fluorspar deposits IC 8307 Valencia County, fluorspar deposits IC 8307 water requirements, mineral-industry IC 8276 water-supply potential IC 8276 water-use practices, mineral industry IC 8276 New Scotland Limestine, N. J., shale from, expansion properties of, test OP 134-66 New York, anorthosite, as potential alumi- num source IC 8335 Apnalachian area, mineral resources GS 4-68
olineids, shallow M 12 petroleum-impregnated rocks, surface and shallow M 12 potash ores, beneficiation tests OP 91-66 Project Gasbuggy, nuclear fracturing experiment OP 92-66 status report OP 167-67 Rio Arriba County, fluorspar deposits IC 8307 Silver, potential resources OFR 22-69 Socorro County, fluorspar deposits IC 8307 tantalum, in pegmatite dikes, investi- gation OFR 10-68 titanium mineral deposits, survey IC 8200 Torrance County, fluorspar deposits IC 8207 Valencia County, fluorspar deposits IC 8207 vater requirements, mineral-industry IC 8276 water -supply potential IC 8276 New Scotland Limestine, N. J., shale from, expansion properties of, test OP 134-66 New York, anorthosite, as potential alumi- num source IC 8335 Appalachian area, mineral resources GS 4-68 mineral resources potential GS 4-68 crude oil, production R1 7059 sulfur content R1
olineids, shallow M 12 petroleum-impregnated rocks, surface and shallow M 12 potash ores, beneficiation tests OP 91-66 Project Gasbuggy, nuclear fracturing experiment OP 92-66 status report OP 167-67 Rio Arriba County, fluorspar deposits IC 8307 Silver, potential resources OFR 22-69 Socorro County, fluorspar deposits IC 8307 tantalum, in pegmatite dikes, investi- gation OFR 10-68 titanium mineral deposits, survey IC 8290 Torrance County, fluorspar deposits IC 8307 Valencia County, fluorspar deposits IC 8307 water requirements, mineral-industry IC 8276 water-supply potential IC 8276 water-use practices, mineral industry IC 8276 New Scotland Limestine, N. J., shale from, expansion properties of, test OP 134-66 New York, anorthosite, as potential alumi- num source IC 8335 Appalachian area, mineral resources GS 4-68 crude oil, production RI 7059 sulfur content IC 8276
 olinelds, shallow M 12 petroleum-impregnated rocks, surface and shallow M 12 potash ores, beneficiation tests OP 91-66 Project Gasbuggy, nuclear fracturing OP 92-66 status report OP 167-67 Rio Arriba County, fluorspar deposits IC 8307 silver, potential resources OFR 22-69 Socorro County, fluorspar deposits IC 8307 tantalum, in pegmatite dikes, investigation OFR 10-68 titanium mineral deposits, survey IC 8290 Torrance County, fluorspar deposits IC 8307 valencia County, fluorspar deposits IC 8276 water requirements, mineral-industry IC 8276 water-use practices, mineral industry IC 8276 New Scotland Limestine, N. J., shale from, expansion properties of, test IC 8335 Appalachian area, mineral resources GS 4-68 mineral resources potential GS 4-68 crude oil, production RI 7059 sulfur content RI 8302
 olinelds, shallow M 12 petroleum-impregnated rocks, surface and shallow M 12 potash ores, beneficiation tests OP 91-66 Project Gasbuggy, nuclear fracturing OP 92-66 status report OP 167-67 Rio Arriba County, fluorspar deposits IC 8307 silver, potential resources OFR 22-69 Socorro County, fluorspar deposits IC 8307 tantalum, in pegmatite dikes, investigation OFR 10-68 titanium mineral deposits, survey IC 8290 Torrance County, fluorspar deposits IC 8307 valencia County, fluorspar deposits IC 8276 water requirements, mineral-industry IC 8276 water-use practices, mineral industry IC 8276 New Scotland Limestine, N. J., shale from, expansion properties of, test IC 8335 Appalachian area, mineral resources GS 4-68 mineral resources potential GS 4-68 crude oil, production RI 7059 sulfur content RI 8302
 olinelds, shallow M 12 petroleum-impregnated rocks, surface and shallow M 12 potash ores, beneficiation tests OP 91-66 Project Gasbuggy, nuclear fracturing OP 92-66 status report OP 167-67 Rio Arriba County, fluorspar deposits IC 8307 silver, potential resources OFR 22-69 Socorro County, fluorspar deposits IC 8307 tantalum, in pegmatite dikes, investigation OFR 10-68 titanium mineral deposits, survey IC 8290 Torrance County, fluorspar deposits IC 8307 valencia County, fluorspar deposits IC 8276 water requirements, mineral-industry IC 8276 water-use practices, mineral industry IC 8276 New Scotland Limestine, N. J., shale from, expansion properties of, test IC 8335 Appalachian area, mineral resources GS 4-68 mineral resources potential GS 4-68 crude oil, production RI 7059 sulfur content RI 8302
olinelds, shallow M 12 petroleum-impregnated rocks, surface and shallow M 12 potash ores, beneficiation tests OP 91-66 Project Gasbuggy, nuclear fracturing experiment OP 92-66 status report OP 167-67 Rio Arriba County, fluorspar deposits IC 8307 tantalum, in pegmatite dikes, investi- gation OFR 10-68 titanium mineral deposits, survey IC 8276 vater county, fluorspar deposits IC 8307 Valencia County, fluorspar deposits IC 8276 water -supply potential IC 8276 water-supply potential IC 8276 water-use practices, mineral industry IC 8276 New Scotland Limestine, N. J., shale from, expansion properties of, test OP 134-66 New York, anorthosite, as potential alumi- num source IC 8335 Appalachian area, mineral resources GS 4-68 mineral resources potential GS 4-68 crude oil, production IR 7059 sulfur content RI 7059 heavy crude-oil reservoirs, survey IC 8263 helium-bearing natural gases, analyses IC 8290 mines, visitors' guide SP 2-67 minerals, production, annual data MY 1968 (v. I-II, III)
olineids, shallow M 12 petroleum-impregnated rocks, surface and shallow M 12 potash ores, beneficiation tests OP 91-66 Project Gasbuggy, nuclear fracturing experiment OP 92-66 status report OP 167-67 Rio Arriba County, fluorspar deposits IC 8307 Silver, potential resources OFR 22-69 Socorro County, fluorspar deposits IC 8307 tantalum, in pegmatite dikes, investi- gation OFR 10-68 titanium mineral deposits, survey IC 8290 Torrance County, fluorspar deposits IC 8290 Torrance County, fluorspar deposits IC 8207 valencia County, fluorspar deposits IC 8276 water -supply potential IC 8276 New Scotland Limestine, N. J., shale from, expansion properties of, test test IC 8335 Appalachian area, mineral resources IC 8335 Appalachian area, mineral resources IC 8336 crude oil, production IC 8336 helium-bearing natural gases, analyses IC 8302 ilmenite deposits, survey IC 8263 helium-bearing natural gases, analyses IC 8302 ilmenite deposits, survey IC 8263 helium-bearing natural gases, analyses IC 8200 mines, visitors' guide SP 2-67 mineral industry, annual data MY 1968 (v. III)
olineids, shallow M 12 petroleum-impregnated rocks, surface and shallow M 12 potash ores, beneficiation tests OP 91-66 Project Gasbuggy, nuclear fracturing experiment OP 92-66 status report OP 167-67 Rio Arriba County, fluorspar deposits IC 8307 Silver, potential resources OFR 22-69 Socorro County, fluorspar deposits IC 8307 tantalum, in pegmatite dikes, investi- gation OFR 10-68 titanium mineral deposits, survey IC 8290 Torrance County, fluorspar deposits IC 8290 Torrance County, fluorspar deposits IC 8207 valencia County, fluorspar deposits IC 8276 water -supply potential IC 8276 New Scotland Limestine, N. J., shale from, expansion properties of, test test IC 8335 Appalachian area, mineral resources IC 8335 Appalachian area, mineral resources IC 8336 crude oil, production IC 8336 helium-bearing natural gases, analyses IC 8302 ilmenite deposits, survey IC 8263 helium-bearing natural gases, analyses IC 8302 ilmenite deposits, survey IC 8263 helium-bearing natural gases, analyses IC 8200 mines, visitors' guide SP 2-67 mineral industry, annual data MY 1968 (v. III)
olineids, shallow M 12 petroleum-impregnated rocks, surface and shallow M 12 potash ores, beneficiation tests OP 91-66 Project Gasbuggy, nuclear fracturing experiment OP 92-66 status report OP 92-66 status report OP 167-67 Rio Arriba County, fluorspar deposits IC 8307 silver, potential resources OFR 22-69 Socorro County, fluorspar deposits IC 8307 tantalum, in pegmatite dikes, investi- gation OFR 10-68 titanium mineral deposits, survey IC 8290 Torrance County, fluorspar deposits IC 8200 Torrance County, fluorspar deposits IC 8207 water requirements, mineral-industry IC 8276 water-supply potential IC 8276 water-supply potential OP 134-66 New Scotland Limestine, N. J., shale from, expansion properties of, test OP 134-66 New York, anorthosite, as potential alumi- num source OP 134-66 New York, anorthosite, as potential alumi- num source GS 4-68 mineral resources potential GS 4-68 crude oil, production IC 8263 helium-bearing natural gases, analyses IC 8202 illemente deposits, survey IC 8203 helium-bearing natural gases, analyses IC 8203 imnerals, production, annual data MY 1968 (v. I-II, III) mineral industry, annual review

1

2

New York, petroleum-impregnated rocks, sur- New York, performing/regrated rocks, sur-face and shallow ______ M 12
 Richburg sand, core samples, density and porosity data ______ IC 8230
 titanium mineral deposits, survey ______ IC 8290
 New Zealand, mineral industry, annual review MY 1968 (* IV) MY 1968 (v. IV) Nicaragua, mineral industry, annual review MY 1968 (v. IV) Niccolite, magnetic susceptibility ______ IC 8351 Nicholas County, W. Va., coal, carbonizing properties ______ RI 7236 Nickel, annual data ______ MY 1968 (v. I-II) as automotive metal, supply situation OP 47-67 consumption ______ B 630 electrolytic separation from cobalt, potas-sium chloride-lithium chloride-nickel chloride electrolyte _____ RI 7082 high-purity, preparation, method, patent_ P 3-69 imports and exports ______ B 630 in coal ash, spectrochemical determina-tion ______ RI 7281 Nicaragua, mineral industry, annual review tion ______ RI 7281 in high-purity tungsten, determination OP 60-65 in tungsten trioxide, determination __ OP 60-65 palladium deposits on, from aqueous electrolyte platinum deposits on, from aqueous elec-___ RI 7016

 platinum deposits on, from aqueous elec-trolyte
 RI 7016

 platinum electrodeposition on, evalua-tion
 OP 105-69

 prices
 B 630

 production
 B 630

 recovery, from sulfatized laterite
 RI 6644

 from superalloy scrap, chemical method RI 7316

 reserves
 B 630

 secondary, recovery
 B 630

 specifications
 B 630

 substitutes
 B 630

 substitutes
 B 630

 substitutes
 B 630

 technology _____ B 630 Uses B 630 Nickel-cobalt alloy, separation of nickel and cobalt from, electrolytic proc-ess Nickel cobalt discussion RI 7082 Nickel-cobalt diarsenides, magnetic suscept-ibility ibility IC 8351 Nickel-gadolinium phase diagram RI 6636 Nickel industry, organization ______ B 630 problems ______ B 630 Nickel sulfate, anhydrous, entropy ______ RI 6669 heat of formation ______ RI 6617 low-temperature heat capacity _____ RI 6669 Nickel-yttrium, high-temperature corrosion of, studies ______ RI 6800 Niger, mineral industry, annual review MY 1968 (v. IV) Nigeria, crude oil, production ______ RI 7059 sulfur content ______ RI 7059 crude petroleum, analyses ______ IC 8293 mineral industry, annual review Niobium, see also Columbium Niobium-gallium system, phase relations OP 57-68 Niobium-galium system, phase relations OF 57-58 Niocalite, magnetic susceptibility ______ IC 8360 Nitric acid, mass spectrum ______ B 634 stainless steel corrosion rate in, effect of cobalt content ______ RI 6591 Nitric acid-nitrobenzene-water system, detonability ______ OP 95-65 Nitric oxide, concentration, in combustion gases of flames predicting _____ RI 6592 gases of flames, predicting _____ RI 6958 Nitrobenzene-aniline molecular complex, infrared spectrum _____ B 632 Nitrobenzene-nitric acid-water system, detonability _____ OP 95-65 Nitrogen, adsorption isotherms _____ OP 5-65 adsorptivity tests, activated charcoals._ RI 6847 annual data _____ MY 1968 (v. I-II) consumption _____ B 630

Nitrogen, demand, projected IC 8418 statistical analysis of IC 8418 equation of state RI 6896 in coal, determination, method B 638 in coal, determination, method B 638
in coal, determination, method B 638
in electron-beam purified vanadium RI 7014
in petroleum, type analysis OP 109-65
isotopic abundance in natural gas, study RI 6936
in electron-beam purified vanadium RI 7014 in electrorefined vanadium, effect OP 92-69 in petroleum, type analysis OP 109-65 isotopic abundance in natural gas, study RI 6936 literature review OP 88-65
production B 630 pure liquid, vapor pressure-temperature
data, tabulation IC 8322
technology B 630
technology B 630 thermodynamic properties, various tem- peratures and pressures, tabula-
peratures and pressures, tabula-
zero pressure OP 12-65
tion RI 7190 zero pressure OP 12-65 thermophysical properties IC 8317
uses B 630 zero pressure thermodynamic properties,
tabulation IC 8319
Nitrogen compounds, basic, in petroleum,
spectroscopic identification OP 193-68
consumption B 630 exports B 630
exports B 630
identification hydrogenolysis technique OP 45-67
grades B 630 identification, hydrogenolysis technique OP 45-67 in Colorado shale oil, pyrolysis products and kinetic data RI 6720 in petroleum, characterization, micro-
and kinetic data RI 6720
in petroleum, characterization, micro-
hydrogenation technique OP 196-67 identifying OP 4-68 literature surveyIC 8286; OP 7-68, 122-69
literature surveyIC 8286; OP 7-68, 122-69
origin B 642 physical properties OP 94-69
senerating UP 4_68
type analysis OP 109-65
in shale oil, identifying OP 4-68
separating OP 4-68
type analysis OP 109-65 in shale oil, identifying OP 4-68 separating OP 4-68 literature review OP 87-65 nonbasic, in petroleum, identification OP 89-65
selective separation, anion ex-
change of ferric chloride com-
$OP 43_69$
selective separation, anion ex- change of ferric chloride com- plexes OP 43-69 organic, chemical thermodynamic prop-
organic, chemical thermodynamic prop-
organic, chemical thermodynamic prop- erties OP 110-67 gas-ohase thermal reactions, bibli-
organic, chemical thermodynamic prop- erties OP 110-67 gas-phase thermal reactions, bibli- opranby OFR 4-65
organic, chemical thermodynamic prop- erties OP 110-67 gas-phase thermal reactions, bibli- opranby OFR 4-65
organic, chemical thermodynamic prop- erties OP 110-67 gas-phase thermal reactions, bibli- ography OFR 4-65 literature survey OFR 15-67 thermal decomposition, bibliography OFR 4-65 yapor pressure relations OP 165-68
organic, chemical thermodynamic prop- ertiesOP 110-67 gas-phase thermal reactions, bibli- ographyOFR 4-65 literature surveyOFR 15-67 thermal decomposition, bibliography OFR 4-65 vapor pressure relationsOP 165-68 prices B 630
organic, chemical thermodynamic prop- ertiesOP 110-67 gas-phase thermal reactions, bibli- ographyOFR 4-65 literature surveyOFR 15-67 thermal decomposition, bibliography OFR 4-65 vapor pressure relationsOP 165-68 prices B 630
organic, chemical thermodynamic prop- erties OP 110-67 gas-phase thermal reactions, bibli- ography OFR 4-65 literature survey OFR 15-67 thermal decomposition, bibliography OFR 4-65 vapor pressure relations OF 165-68 prices B 630 production B 630 separation, by gas-liquid chromatog-
organic, chemical thermodynamic prop- erties OP 110-67 gas-phase thermal reactions, bibli- ography OFR 4-65 literature survey OFR 15-67 thermal decomposition, bibliography OFR 4-65 vapor pressure relations OF 165-68 prices B 630 production B 630 separation, by gas-liquid chromatog- raphy, stationary phases for OP 46-46
organic, chemical thermodynamic prop- ertiesOP 110-67 gas-phase thermal reactions, bibli- ographyOFR 4-65 literature surveyOFR 15-67 thermal decomposition, bibliography OFR 4-65 vapor pressure relationsOP 165-68 pricesB 630 productionB 630 separation, by gas-liquid chromatog- raphy, stationary phases for OP 46-46 usesB 630 Nitrogen dioxide, in explosive fumes, field
organic, chemical thermodynamic prop- ertiesOP 110-67 gas-phase thermal reactions, bibli- ographyOFR 4-65 literature surveyOFR 15-67 thermal decomposition, bibliography OFR 4-65 vapor pressure relationsOP 165-68 pricesB 630 productionB 630 separation, by gas-liquid chromatog- raphy, stationary phases for OP 46-46 usesB 630 Nitrogen dioxide, in explosive fumes, field determination, rapid colorimetric
organic, chemical thermodynamic prop- ertiesOP 110-67 gas-phase thermal reactions, bibli- ographyOFR 4-65 literature surveyOFR 4-65 vapor pressure relationsOF 15-67 thermal decomposition, bibliography OFR 4-65 vapor pressure relationsOF 165-68 pricesB 630 productionB 630 separation, by gas-liquid chromatog- raphy, stationary phases for OP 46-46 usesB 630 Nitrogen dioxide, in explosive fumes, field determination, rapid colorimetric method RI 6981
organic, chemical thermodynamic prop- ertiesOP 110-67 gas-phase thermal reactions, bibli- ographyOFR 4-65 literature surveyOFR 4-65 vapor pressure relationsOF 15-67 thermal decomposition, bibliography OFR 4-65 vapor pressure relationsOF 165-68 pricesB 630 productionB 630 separation, by gas-liquid chromatog- raphy, stationary phases for OP 46-46 usesB 630 Nitrogen dioxide, in explosive fumes, field determination, rapid colorimetric methodRI 6981 Nitrogen-helium mixtures, equation of state RI 6896
organic, chemical thermodynamic prop- ertiesOP 110-67 gas-phase thermal reactions, bibli- ographyOFR 4-65 literature surveyOFR 15-67 thermal decomposition, bibliography OFR 4-65 vapor pressure relationsOF 165-68 pricesB 630 productionB 630 separation, by gas-liquid chromatog- raphy, stationary phases forOP 46-46 usesB 630 Nitrogen dioxide, in explosive fumes, field determination, rapid colorimetric methodRI 6981 Nitrogen-helium mixtures, equation of state RI 6896 Nitrogen-helium solution. at critical
organic, chemical thermodynamic prop- ertiesOP 110-67 gas-phase thermal reactions, bibli- ographyOFR 4-65 literature surveyOFR 4-65 vapor pressure relationsOFR 4-65 vapor pressure relationsOF 165-68 pricesB 630 productionB 630 separation, by gas-liquid chromatog- raphy, stationary phases forB 630 Nitrogen dioxide, in explosive fumes, field determination, rapid colorimetric methodB 630 Nitrogen-helium mixtures, equation of state RI 6896 Nitrogen-helium solution, at critical point of nitrogen, thermody- namic anomalies OP 155-69
organic, chemical thermodynamic prop- ertiesOP 110-67 gas-phase thermal reactions, bibli- ographyOFR 4-65 literature surveyOFR 4-65 vapor pressure relationsOFR 4-65 vapor pressure relationsOF 165-68 pricesB 630 productionB 630 separation, by gas-liquid chromatog- raphy, stationary phases forB 630 Nitrogen dioxide, in explosive fumes, field determination, rapid colorimetric methodB 630 Nitrogen-helium mixtures, equation of state RI 6896 Nitrogen-helium solution, at critical point of nitrogen, thermody- namic anomalies OP 155-69
organic, chemical thermodynamic prop- ertiesOP 110-67 gas-phase thermal reactions, bibli- ographyOFR 4-65 literature surveyOFR 15-67 thermal decomposition, bibliography OFR 4-65 vapor pressure relationsOP 165-68 pricesB 630 productionB 630 separation, by gas-liquid chromatog- raphy, stationary phases forOP 46-46 usesB 630 Nitrogen dioxide, in explosive fumes, field determination, rapid colorimetric methodRI 6981 Nitrogen-helium mixtures, equation of state RI 6896 Nitrogen-helium solution, at critical point of nitrogen, thermody- namic anomalies OP 155-69 Nitrogen industry, organization B 630 Nitrogen oxides, concentration, in tunnel
organic, chemical thermodynamic prop- ertiesOP 110-67 gas-phase thermal reactions, bibli- ographyOFR 4-65 literature surveyOFR 15-67 thermal decomposition, bibliography OFR 4-65 vapor pressure relationsOP 165-68 pricesB 630 productionB 630 separation, by gas-liquid chromatog- raphy, stationary phases forOP 46-46 usesB 630 Nitrogen dioxide, in explosive fumes, field determination, rapid colorimetric methodRI 6981 Nitrogen-helium mixtures, equation of state RI 6896 Nitrogen-helium solution, at critical point of nitrogen, thermody- namic anomaliesB 630 Nitrogen industry, organizationB 630 Nitrogen oxides, concentration, in tunnel airRI 7074
organic, chemical thermodynamic prop- ertiesOP 110-67 gas-phase thermal reactions, bibli- ographyOFR 4-65 literature surveyOFR 15-67 thermal decomposition, bibliography OFR 4-65 vapor pressure relationsOP 165-68 pricesB 630 productionB 630 separation, by gas-liquid chromatog- raphy, stationary phases for OP 46-46 usesB 630 Nitrogen dioxide, in explosive fumes, field determination, rapid colorimetric methodB 630 Nitrogen-helium mixtures, equation of state RI 6981 Nitrogen-helium solution, at critical point of nitrogen, thermody- namic anomaliesB 630 Nitrogen oxides, concentration, in tunnel air B 630 Nitrogen oxides, concentration, in tunnel air RI 7074 diesel-exhaust content, sampling and analysis OP 50-66 formation of, reducing, in pulverized-coal
organic, chemical thermodynamic prop- ertiesOP 110-67 gas-phase thermal reactions, bibli- ographyOFR 4-65 literature surveyOFR 15-67 thermal decomposition, bibliography OFR 4-65 vapor pressure relationsOP 165-68 pricesB 630 productionB 630 separation, by gas-liquid chromatog- raphy, stationary phases forOP 46-46 usesB 630 Nitrogen dioxide, in explosive fumes, field determination, rapid colorimetric methodRI 6981 Nitrogen-helium mixtures, equation of state RI 6896 Nitrogen-helium solution, at critical point of nitrogen, thermody- namic anomaliesB 630 Nitrogen oxides, concentration, in tunnel airB 630 Nitrogen oxides, concentration, in tunnel air RI 7074 diesel-exhaust content, sampling and analysis OP 50-66 formation of, reducing, in pulverized-coal combustion, study OP 7-66
organic, chemical thermodynamic prop- ertiesOP 110-67 gas-phase thermal reactions, bibli- ographyOFR 4-65 literature surveyOFR 15-67 thermal decomposition, bibliography OFR 4-65 vapor pressure relationsOP 165-68 pricesB 630 productionB 630 separation, by gas-liquid chromatog- raphy, stationary phases forOP 46-46 usesB 630 Nitrogen dioxide, in explosive fumes, field determination, rapid colorimetric methodRI 6981 Nitrogen-helium mixtures, equation of state RI 6896 Nitrogen-helium solution, at critical point of nitrogen, thermody- namic anomaliesB 630 Nitrogen oxides, concentration, in tunnel airB 630 Nitrogen oxides, concentration, in tunnel air RI 7074 diesel-exhaust content, sampling and analysis OP 50-66 formation of, reducing, in pulverized-coal combustion, study OP 7-66
organic, chemical thermodynamic prop- ertiesOP 110-67 gas-phase thermal reactions, bibli- ographyOFR 4-65 literature surveyOFR 15-67 thermal decomposition, bibliography OFR 4-65 vapor pressure relationsOP 165-68 pricesB 630 productionB 630 separation, by gas-liquid chromatog- raphy, stationary phases for OP 46-46 usesB 630 Nitrogen dioxide, in explosive fumes, field determination, rapid colorimetric methodB 630 Nitrogen-helium mixtures, equation of state RI 6981 Nitrogen-helium solution, at critical point of nitrogen, thermody- namic anomaliesB 630 Nitrogen oxides, concentration, in tunnel air B 630 Nitrogen oxides, concentration, in tunnel air RI 7074 diesel-exhaust content, sampling and analysis OP 50-66 formation of, reducing, in pulverized-coal

-

Nitrogen ovido in diogel exhaust ras de-
Nitrogen oxide, in diesel exhaust gas, de- termination, by modified Saltzman
method RI 6790 continuous monitoring method RI 7241
method
in flue gases, analytical methods RI 7108
method OP 116-69 in flue gases, analytical methods OP 116-69 sampling methods, description RI 7108 removal from stack gases, method OP 163-69
Nitrogen oxide mixtures, mass spectral anal-
ysis B 634 Nitrogen reserves, Williston basin, N. Dak. RI 6848
Nitrogen tetroxide-hydrazine mixtures.
combustion characteristics OP 149-67 Nitrogen-vanadium alloys, properties RI 6637
strain-aging effects in RI 7222
Nitroglycerin, desensitized, detonation ve- locity, in simulated underground
fractures RI 7277
use, in fracturing low-permeability oil-
shale formations OP 1-67 Nitroglycerin-ethylene glycol dinitrate, detonation, in sandstone OP 66-65
detonation, in sandstone OP 66-65 initiation of low-velocity detonations in,
study OP 16-69
study OP 16-69 thin films of, shock sensitivity, deter-
mination OP 52-68 Nitromethane-hydrazine-methanol mix- tures, detonability OP 158-69
tures, detonability OP 158-69
Nomograph, powder-compact density OP 42–67 Nonanes, isomeric, enthalpies of combus-
tions and formations OP 86-69 Nonlinear-regression problems, solution
method RI 6900
method RI 6900 Nonmetal industries, water requirements
and uses IC 8288 Nonminerals, tariff schedules for, review IC 8262
Nontronite, solubility, in saline waters OP 100-69
North Beulah mine, N. Dak., lignite and
lignite ash analyses RI 7158 North Carolina, Appalachian area, mineral
mineral resources potential GS 4-68 iron and steel production IC 8329 iron and steel scrap industry, study IC 8329 mines, visitors' guide SP 2-67
iron and steel scrap industry, study IC 8329
mines, visitors' guide SP 2-67
mines, visitors guide SP 2-67 minerals, production, annual data MY 1968 (v. I-II, III)
selective flotation, from mica tailing RI 7319 mineral industry, annual review
MV 10CR (III)
natural gas, analysesIC 8356, 8395 occupational diseases, workmen's compen-
titanium deposits, investigationsNCMR
titanium deposits, investigationsNCMR titanium mineral deposits, survey IC 8290
North Dakota, Antelope field, nitrogen re-
serves RI 6848 Baukol-Noonan mine, lignite and lignite
asn analyses RI (158
Blue Buttes field, nitrogen reserves RI 6848
Bowman County, lignite and lignite ash analyses RI 7158
Charlson field, nitrogen reserves RI 6848
Clear Creek field, nitrogen reserves RI 6848
coal, analyses B 643; RI 6622, 6792, 7104, 7219 major ash constituents RI 7240 phosphorus content RI 6579
phosphorus content RI 6579 potassium content RI 6579
sodium content BI 6579
sulfur content, forms IC 8301 coal ash, analyses RI 7240
fusibility data RI 7240 coal carbonization, light oil from, analysis B 643
coal carbonization, light oil from, analysis B 643
light oil yield B 643 tar from, analysis B 643
tar yield B 643 crude oil, low-sulfur, composition B 642
production RI 7059
sulfur content RI 7059

-

ľ

÷ ≩

2

f

vey IC 8344 Fort Union Formation, coal reserves, esti-
Gascoyne mine, lignite and lignite ash analyses IC 8376 Hawkeye field, nitrogen reserves RI 7158 heavy crude oil, production forecast IC 8352 heavy crude-oil reservoirs, survey IC 8263 Kinceid mine lignite and lignite ash anal-
analyses RI 7158
Hawkeye field, nitrogen reserves RI 6848
heavy crude oil, production forecast IC 8352
resource IC 8352
heavy crude-oil reservoirs, survey IC 8263 Kincaid mine, lignite and lignite ash anal-
yses RI 7158 lignite, ash composition, effect of ion-
exchange treatment RI 7176 ash fouling studies IC 8376 ash fouling tendencies OP 87-67
ash fouling tendencies OD 97 6
composition RI 7159
composition RI 7156 long-term storage of, method RI 7037 oxygen in, direct determination, method RI 6753
oxygen in, direct determination, method RI 6753
sulfur content IC 8376 lignite ash, chemical composition and
lignite ash, chemical composition and fusion characteristics BI 7156
fusion characteristics RI 7158 lignite deposits, federally owned, leasing of IC 8376 lignite-fired powerplants, descripiton IC 8376 development OP 49-68 lignite tereves, economic appraisal IC 8306 lignite tereves, economic appraisal IC 8306
of IC 8376
lignite-fred powerplants, description IC 8376
lignite reserves economic entrained UP 49-68
lignite tar, catechols from OP 50-6
lignite utilization, forecast
lignite tar, catechols from OP 50-60 lignite utilization, forecast OP 30-60 Mercer County, lignite and lignite ash
analyses RI 7150 mines, visitors guide SP 2-6
mines, visitors' guide SP 2-6'
Minerals, production, annual data MY 1968 (v. I-II, III)
mineral industry, annual review MY 1968 (v. III)
natural cas analyses IC 8241 8356 839
natural gas, analyses IC 8241, 8356, 839 North Beulah mine, lignite and lignite
ash analyses RI 715
occupational diseases, workmen's compen-
sation laws on B 623
on reservoirs, production-rate data IC 836
well-denth date IC 836
Oliver County, lignite and lignite ash
well-depth data
well-depth data Oliver County, lignite and lignite ash analyses refractory clay deposits South Feulah mine, lignite and lignite
ash analyses RI 7150 occupational diseases, workmen's compen- sation laws on B 623 oil reservoirs, production-rate data IC 8363 well-depth data IC 8363 Oliver County, lignite and lignite ash analyses OFR 9-60 South Feulah mine, lignite and lignite ash analyses RI 7150 Williston hasin crude oils processing
Williston basin crude oils, processing characteristics RI 7183
Williston basin crude oils, processing characteristics RI 7183
Williston basin crude oils, processing characteristics RI 718 Williston basin oilfields in B 622 North Korea mineral inductry annual review
Williston basin crude oils, processing characteristics
Williston basin crude oils, processing characteristics
Williston basin crude oils, processing characteristics RI 718; Williston basin oilfields in B 629 North Korea, mineral industry, annual review MY 1968 (v. IV) Norton mine, W. Va., coal, preparation characteristics RI 6874 Norway, mineral industry, annual review
Williston basin crude oils, processing characteristics RI 718 Williston basin oilfields in B 621 North Korea, mineral industry, annual review MY 1968 (v. IV) Norton mine, W. Va., coal, preparation characteristics RI 687 Norway, mineral industry, annual review MY 1968 (v. IV)
Williston basin crude oils, processing characteristics RI 718 Williston basin oilfields in B 621 North Korea, mineral industry, annual review MY 1968 (v. IV) Norton mine, W. Va., coal, preparation characteristics RI 687 Norway, mineral industry, annual review MY 1968 (v. IV)
Williston basin crude oils, processing characteristics II 718 Williston basin oilfields in II 624 North Korea, mineral industry, annual review MY 1968 (v. IV) Norton mine, W. Va., coal, preparation characteristics II 6874 Norway, mineral industry, annual review MY 1968 (v. IV) Nozzles, design, effect on jetstream pattern, in hydraulic coal mining II 7090
Williston basin crude oils, processing characteristics RI 718 Williston basin oilfields in B 62 North Korea, mineral industry, annual review MY 1968 (v. IV) Norton mine, W. Va., coal, preparation characteristics RI 687 Norway, mineral industry, annual review MY 1968 (v. IV) Nozzles, design, effect on jetstream pattern, in hydraulic coal mining RI 7090 Nsutite, magnetic susceptibility IC 8350 Nuclear blasting. stripping overburden
Williston basin crude oils, processing characteristics RI 718; Williston basin oilfields in B 62? North Korea, mineral industry, annual review MY 1968 (v. IV) MY 1968 (v. IV) Norton mine, W. Va., coal, preparation characteristics RI 6874 Norway, mineral industry, annual review MY 1968 (v. IV) RI 6874 Norway, mineral industry, annual review in hydraulic coal mining RI 7090 Nsutite, magnetic susceptibility IC 8355 Nuclear blasting, stripping overburden by, potential OP 67-67
Williston basin crude oils, processing characteristics
Williston basin crude oils, processing characteristics
 Williston basin crude oils, processing characteristics Williston basin oilfields in B 624 North Korea, mineral industry, annual review MY 1968 (v. IV) Norton mine, W. Va., coal, preparation characteristics Norway, mineral industry, annual review MY 1968 (v. IV) Norway, mineral industry, annual review MY 1968 (v. IV) Norway, mineral industry, annual review MY 1968 (v. IV) Nozzles, design, effect on jetstream pattern, in hydraulic coal mining RI 7090 Nsutite, magnetic susceptibility IC 8353 Nuclear blasting, stripping overburden by, potential OP 67-67 Nuclear chimney, in situ oil-shale retort- ing in, technical feasibility OP 96-67 Nuclear detonation, preshot data
Williston basin crude oils, processing characteristics
 Williston basin crude oils, processing characteristics Williston basin oilfields in B 621 North Korea, mineral industry, annual review MY 1968 (v. IV) Norton mine, W. Va., coal, preparation characteristics Norway, mineral industry, annual review MY 1968 (v. IV) Norway, mineral industry, annual review MY 1968 (v. IV) Nozzles, design, effect on jetstream pattern, in hydraulic coal mining Nozeles, design, effect on jetstream pattern, in hydraulic coal mining Nuclear blasting, stripping overburden by, potential OP 67-67 Nuclear chimney, in situ oil-shale retort- ing in, technical feasibility OP 96-67 Nuclear explosions, in granite, effects OP 10-66 underground, adjacent oil and gas fa- cilities, effect on
 Williston basin crude oils, processing characteristics

(1

)

Ì

Ĵ ¢ **)**.

Nuclear fracturing, reservoir rock, areas
of applicability OP 130-68
projected costs OP 130-68 theoretical gas recovery estimates OP 130-68
theoretical gas recovery estimates OP 130-68
Nuclear magnetic resonance, porphyrins OP 30-69
2-substituted pyridines OP 149-68
Nuclear magnetic resonance spectra, mono-
Nuclear magnetic resonance spectra, mono-
substituted pyridines B 649
Nuclear magnetic resonance spectrom- etry, coal derivatives OP 32-67
etry, coal derivatives OF 32-01
diene-iron tricarbonyl complexes UP 31-67
indenois UP 33-67
diene-iron tricarbonyl complexes OP 31-67 indenols OP 33-67 Nuclear magnetic resonance spectros-
CODV. POSI OPPIVALIVES UF 29-01
petroleum OP 24-67
petroleum OP 24-67 sulfur-33, in minerals OP 88-68
Nuclear measurement, carbon, in bulk ma-
terials, method OP 15-67
Nuclear quadrupole resonance, spectrom- etry, inorganics and minerals OP 51-69
etry, inorganics and minerals OP 51-69
Nuclear-waste disnosal, norous permeable
rock for, laboratory evaluation RI 6926 No. 1 bed, Wash., coal, float-and-sink tests RI 6623
No. 1 bed, Wash., coal, float-and-sink tests RI 6623
No. 2 bed, Wash., coal, float-and-sink tests RI 6623
No. 2 bed, Wash., coal, float-and-sink tests RI 6623 No. 2 Gas bed W. Va., coal, carbonizing
properties RI 6872, 6899
washing characteristics RI 6665 No. 5 bed, Wash., coal, float-and-sink tests RI 6623 No. 5 Block bed, W. Va., coal, carbonizing
No. 5 bed. Wash., coal. float-and-sink tests RI 6623
No. 5 Block bed, W. Va., coal, carbonizing
nroperties RI 6899
No. 6 bed. Wash., coal, float-and-sink tests RI 6623
No. 7 bed. Wash., coal, float-and-sink tests RI 6623
No. 6 bed, Wash., coal, float-and-sink tests RI 6623 No. 7 bed, Wash., coal, float-and-sink tests RI 6623 No. 8 bed, Wash., coal, float-and-sink tests RI 6623 No. 8 bed, Wash., coal, float-and-sink tests RI 6623 No. 21 mine, Ill., longwall mining in, re-
No. 21 mine III longwell mining in re-
sults IC 8321
No. 190 Tunnel mine Pa., anthracite, prop-
erties RI 7086
0
Oak waste, entrainment drying and carbon-
ization, tests RI 7282
ization, tests RI 7282 Oakwood Red Ash Coal Corp. mine, Va.,
coal, washing characteristics RI 6740
Occupational diseases, State compensatory
provisions for B 623
Ocean floor mining shallow water develop-

provisions for B 623 Ocean floor mining, shallow water, develop-ment TPR 4 Ocean Island, mineral industry, annual review MY 1968 (v. IV) phosphate deposits MY 1968 (v. IV) phosphate deposits OF 115-69 non-fuel, exploitation, economic fcasi-bility OP 194-68 Ocean mining, methods, review OP 61-68 problems OP 64-67 Ocean rock samples, carbonaceous mate-rials in OP 98-68 Octane rock samples, carbonaceous mate-rials in ______ OP 98-68 Octane-natural gas mixtures, compressi-bility factors, cell for deter-mining _____ OP 132-67, 133-67 n-Octane vapor-air mixtures, thermal oxi-dation, at reduced pressures, study _____ OP 95-67 dation, at reduced pressures, study ______ OP 95-67 Odor control, incinerator combustion products ______ IC 8408 Offshore gas leases, prices ______ IC 8408 Offshore mining, methods, review _____ OP 154-69 Offshore mining, methods, review _____ OP 61-68 summary _____ OP 154-69 Offshore natural resources, ownership status ______ IC 8408 Offshore oil and gas, leasing procedures, Federal ______ IC 8408 Offshore oil and gas operations, technology IC 8408 Offshore oil leases, prices ______ IC 8408 Offshore petroleum development, history ___ IC 8408 Offshore tidelands, salt domes in, survey___ IC 8313

Offshore tidelands, salt domes in, survey__ IC 8313

Ohio, Appalachian area, mineral resources GS 4-68
mineral resources potential GS 4-68
oil-producing formations, rotary coring operations RI 7238; OFR 3-69
oil reservoirs, investigation OP 93-66, 129-66, 190-67
oil-reservoir analysis RI 6683
oil-reservoir analysis RI 6683 production data IC 8250 secondary-recovery prospects RI 7007 study OP 163-65, 81-67
secondary-recovery prospects RI 7007
study OP 163-65, 81-67
Berea sand, core samples, density and porosity data IC 8330
secondary-recovery prospects RI 7007
Berea sand, core samples, density and porosity data RI 0083 secondary-recovery prospects RI 7007 Big Injun sand, core samples, density and porosity data
and porosity data IC 8330 Carroll County, oilfields, production data IC 8250
Clinton sand, core samples, density and
$\mathbf{R} = \mathbf{R} + $
6904, 7104, 7219
6904, 7104, 7219 chlorine content
entrained-bed carbonization tests RI 7141
major ash constituents RI 7240
oxygen in, direct determination, method RI 6753
phosphorus content RI 6579
potassium content RI 6579 sodium content RI 6579
soalum content
conlash analyses BI 7940
fusibility data RI 7240
coal carbonization light oil from analysis B 643
light oil vield B 643
solution content, forms IC 8301 coal ash, analyses RI 7240 fusibility data RI 7240 coal carbonization, light oil from, analysis B 643 light oil yield B 643 tar from, analysis B 643
tar yield B 643 Columbiana County, oilfields, production
Columbiana County, oilfields, production
data IC 8250
crude oil, production RI 7059
sulfur content RI 7059
Harrison County oilfields production
fire clay, as potential aluminum source. IC 8335 Harrison County, oilfields, production data IC 8250 helium-bearing natural gases, analyses. IC 8302
helium-bearing natural gases, analyses. IC 8302
Jenerson County, Onnelas, Broduculon
data IC 8250 Keener sand, core samples, density and
Keener sand, core samples, density and
porosity data IC 8330 Logan oilfield, core analyses RI 6683
Logan olineid, core analyses RI 6683
geologic and production data RI 6683 oil-reservoir analysis RI 6683
waterflooding predicted recovery RI 6683
waterflooding, predicted recovery RI 6683 well-survey logs RI 6683
Mahoning County oilfields, production
data IC 8250
data IC 8250 mines, visitors' guide SP 2_67
data IC 8250 mines, visitors' guide SP 2-67 minerals, production, annual data MY 1968 (v. I-II, III)
Mahoning County oilfields, production data IC 8250 mines, visitors' guide SP 2-67 minerals, production, annual data MY 1968 (v. I-II, III) mineral industry, annual review
mineral industry, annual review MV 1968 (v III)
mineral industry, annual review MV 1968 (v III)
mineral industry, annual review MV 1968 (v III)
mineral industry, annual review MV 1968 (v III)
MY 1968 (v. III) MY 1968 (v. III) Mitchell sand, core sample, density and porosity data IC 8330 secondary-recovery prospects RI 7007 natural gas. analysesIC 8241, 8316, 8356, 8395
Mineral industry, annual review MY 1968 (v. III) Mitchell sand, core sample, density and porosity data IC 8330 secondary-recovery prospects RI 7007 natural gas, analysesIC 8241, 8316, 8356, 8395 occupational diseases, workmen's compen- sation laws on B 623
Mineral industry, annual review MY 1968 (v. III) Mitchell sand, core sample, density and porosity data IC 8330 secondary-recovery prospects RI 7007 natural gas, analysesIC 8241, 8316, 8356, 8395 occupational diseases, workmen's compen- sation laws on B 623
MY 1968 (v. III) MY 1968 (v. III) Mitchell sand, core sample, density and porosity data IC 8330 secondary-recovery prospects RI 7007 natural gas, analysesIC 8241, 8316, 8356, 8395 occupational diseases, workmen's compen- sation laws on B 623 oilfields, shallow M 12 petroleum-impregnated rocks, surface and
MY 1968 (v. III) MY 1968 (v. III) Mitchell sand, core sample, density and porosity data IC 8330 secondary-recovery prospects RI 7007 natural gas, analyses_IC 8241, 8316, 8356, 8395 occupational diseases, workmen's compen- sation laws on B 623 oilfields, shallow M 12 petroleum-impregnated rocks, surface and shallow M 12
mineral industry, annual review MY 1968 (v. III) Mitchell sand, core sample, density and porosity data porosity data IC 8330 secondary-recovery prospects RI 7007 natural gas, analyses_IC 8241, 8316, 8356, 8395 occupational diseases, workmen's compensation laws on sation laws on B 623 oilfields, shallow M 12 petroleum-impregnated rocks, surface and M 12 shallow M 12 Squaw sand, core samples, density and porosity data porosity data IC 8330
Mineral industry, annual review MY 1968 (v. III) Mitchell sand, core sample, density and porosity data porosity data IC 8330 secondary-recovery prospects RI 7007 natural gas, analyses_IC 8241, 8316, 8356, 8395 occupational diseases, workmen's compensation laws on sation laws on B 623 oilfields, shallow M 12 petroleum-impregnated rocks, surface and M 12 shallow M 12 Squaw sand, core samples, density and porosity data porosity data IC 8330 Oil, crude, see also Crude oil; Petroleum
mineral industry, annual review MY 1968 (v. III) Mitchell sand, core sample, density and porosity data porosity data IC 8330 secondary-recovery prospects RI 7007 natural gas, analyses_IC 8241, 8316, 8356, 8395 occupational diseases, workmen's compensation laws on sation laws on B 623 oilfields, shallow M 12 petroleum-impregnated rocks, surface and M 12 Squaw sand, core samples, density and porosity data porosity data IC 8330 Oil, crude, see also Crude oil; Petroleum IC 8330
mineral industry, annual review MY 1968 (v. III) Mitchell sand, core sample, density and porosity data porosity data IC 8330 secondary-recovery prospects RI 7007 natural gas, analyses_IC 8241, 8316, 8356, 8395 occupational diseases, workmen's compensation laws on sation laws on B 623 oilfields, shallow M 12 petroleum-impregnated rocks, surface and M 12 Squaw sand, core samples, density and porosity data porosity data IC 8330 Oil, crude, see also Crude oil; Petroleum IC 8330
mineral industry, annual review MY 1968 (v. III) Mitchell sand, core sample, density and porosity data porosity data IC 8330 secondary-recovery prospects RI 7007 natural gas, analyses_IC 8241, 8316, 8356, 8395 occupational diseases, workmen's compensation laws on sation laws on B 623 oilfields, shallow M 12 petroleum-impregnated rocks, surface and shallow M 12 Squaw sand, core samples, density and porosity data IC 8330 Oil, crude, see also Crude oil; Petroleum Oils, crude, analyses, Bureau of Mines method method OP 191-67 domestic and foreign OP 191-67
mineral industry, annual review MY 1968 (v. III) Mitchell sand, core sample, density and porosity data porosity data IC 8330 secondary-recovery prospects RI 7007 natural gas, analyses_IC 8241, 8316, 8356, 8395 occupational diseases, workmen's compensation laws on sation laws on B 623 oilfields, shallow M 12 petroleum-impregnated rocks, surface and M 12 shallow M 12 Squaw sand, core samples, density and porosity data porosity data IC 8330 Oil, crude, see also Crude oil; Petroleum OP 191-67 domestic and foreign OP 191-67 domestic and foreign OP 191-67 domestic and foreign B 642
mineral industry, annual review MY 1968 (v. III) Mitchell sand, core sample, density and porosity data porosity data IC 8330 secondary-recovery prospects RI 7007 natural gas, analyses_IC 8241, 8316, 8356, 8395 occupational diseases, workmen's compensation laws on sation laws on B 623 oilfields, shallow M 12 petroleum-impregnated rocks, surface and M 12 shallow M 12 Squaw sand, core samples, density and porosity data porosity data IC 8330 Oil, crude, see also Crude oil; Petroleum OP 191-67 domestic and foreign OP 191-67 domestic and foreign OP 191-67 domestic and foreign B 642
mineral industry, annual review MY 1968 (v. III) Mitchell sand, core sample, density and porosity data porosity data IC 8330 secondary-recovery prospects RI 7007 natural gas, analyses_IC 8241, 8316, 8356, 8395 occupational diseases, workmen's compensation laws on sation laws on B 623 oilfields, shallow M 12 petroleum-impregnated rocks, surface and M 12 squaw sand, core samples, density and porosity data porosity data IC 8330 Oil, crude, see also Crude oil; Petroleum Oils, crude, analyses, Bureau of Mines method OP 191-67 domestic and foreign OP 191-67 classification systems B 642 composition B 642 consplation with stratigraphy OP 76-65
mineral industry, annual review MY 1968 (v. III) Mitchell sand, core sample, density and porosity data porosity data IC 8330 secondary-recovery prospects RI 7007 natural gas, analyses_IC 8241, 8316, 8356, 8395 occupational diseases, workmen's compensation laws on sation laws on B 623 oilfields, shallow M 12 petroleum-impregnated rocks, surface and M 12 shallow M 12 Squaw sand, core samples, density and porosity data porosity data IC 8330 Oil, crude, see also Crude oil; Petroleum OP 191-67 domestic and foreign OP 191-67 domestic and foreign OP 191-67 domestic and foreign B 642

Oile anude cultur content BI 7059
Oils, crude, sulfur content RI 7059 derived from coal, analysis, techniques B 634 from coal tar, naphthalenes in OP 32-66
form coal tan nonthelenes in OP 32-66
high-boiling from coal, mass-spectro-
nign-bolling from coal, mass-spectro-
metric and gas-chromatogra-
phic analyses, comparison OP 126-65 light, from coal carbonization, analyses B 643
light, from coal carbonization, analyses_ D 043
from fluidized carbonization of coal, analyses RI 6709
analyses KI 6709
neutral, high-boiling, from low-temper-
ature coal tar, countercurrent distribution OP 44-65 spectroscopic analysis OP 44-65
distribution OP 44-65
spectroscopic analysis OP 44-65
production, from thermally cracked
low temperature lignite ter
pitch OP 147-67
pitch OP 147-67 secondary recovery, gasflood performance prediction RI 7272
prediction RI 7272 underground combustion experiment RI 6942 shale, core-sample yields RI 7071
underground combustion experiment BI 6942
abala coro-sample vields RI 7071
gas-combustion retorting process for re-
covering, development B 635
covering, development b ood
recovery, aboveground batch retort for OP 96-67
refughility D 625
refinability B 635 vaporization during gas cycling, effect of
vaporization during gas cycling, enect of
oil volatility, laboratory study RI 7278 effect of temperature and pressure,
enect of temperature and pressure,
laboratory study RI 7278 viscous, recovery, steam soak method OP 127-67
viscous, recovery, steam soak method OP 127-67
Oil-air mixtures, complex two-phase flow, in vertical pipes, laboratory tests RI 6670
in vertical pipes, laboratory tests RI 6670
Oil and gas industry, input-output relation-
ships IC 8338; OP 199-67
Oil and gas industry, input-output relation- ships IC 8338; OP 199-67 Oil-brine mixtures, in gas wells, foaming
agents for removing RI 6660
Oil recovery, by underground combus-
tion study OP 106-66
by water drive, optimum gas satura- tion, calculating OP 143-68
$\Delta P = 143.69$
tion, carculating OI 143-00
effect of ultrasonic energy on laboratory
effect of ultrasonic energy on, laboratory tests RI 7144
effect of ultrasonic energy on, laboratory tests RI 7144 role of rock mechanics in, literature
effect of ultrasonic energy on, laboratory tests RI 7144 role of rock mechanics in, literature
effect of ultrasonic energy on, laboratory tests RI 7144 role of rock mechanics in, literature review OP 93-69
effect of ultrasonic energy on, laboratory tests RI 7144 role of rock mechanics in, literature review OP 93-69 thermal, methods IC 8352 Oil program Appelochien region applying RI 6693
effect of ultrasonic energy on, laboratory tests RI 7144 role of rock mechanics in, literature review OP 93-69 thermal, methods IC 8352 Oil program Appelochien region applying RI 6693
effect of ultrasonic energy on, laboratory tests RI 7144 role of rock mechanics in, literature review OP 93-69 thermal, methods IC 8352 Oil program Appelochien region applying RI 6693
effect of ultrasonic energy on, laboratory tests RI 7144 role of rock mechanics in, literature review OP 93-69 thermal, methods IC 8352 Oil program Appelochien region applying RI 6693
effect of ultrasonic energy on, laboratory tests RI 7144 role of rock mechanics in, literature review OP 93-69 thermal, methods IC 8352 Oil program Appelochien region applying RI 6693
effect of ultrasonic energy on, laboratory tests RI 7144 role of rock mechanics in, literature review OP 93-69 thermal, methods IC 8352 Oil program Appelochien region applying RI 6693
effect of ultrasonic energy on, laboratory tests RI 7144 role of rock mechanics in, literature review OP 93-69 thermal, methods IC 8352 Oil program Appelochien region applying RI 6693
effect of ultrasonic energy on, laboratory tests RI 7144 role of rock mechanics in, literature review OP 93-69 thermal, methods IC 8352 Oil program Appelochien region applying RI 6693
effect of ultrasonic energy on, laboratory tests RI 7144 role of rock mechanics in, literature review OP 93-69 thermal, methods IC 8352 Oil reservoirs, Appalachian region, analysis RI 6683 investigation OP 123-66 Ohio, investigation OP 93-66, 129-66 production data IC 8250 study OP 163-65 waterflooding, secondary - recovery prospects by RI 7007 Pa., investigation OP 24-65, 111-65, 94-66,
effect of ultrasonic energy on, laboratory tests RI 7144 role of rock mechanics in, literature review OP 93-69 thermal, methods IC 8352 Oil reservoirs, Appalachian region, analysis RI 6683 investigation OP 123-66 Ohio, investigation OP 93-66, 129-66 production data IC 8250 study OP 163-65 waterflooding, secondary - recovery prospects by RI 7007 Pa., investigation OP 24-65, 111-65, 94-66,
effect of ultrasonic energy on, laboratory tests RI 7144 role of rock mechanics in, literature review OP 93-69 thermal, methods IC 8352 Oil reservoirs, Appalachian region, analysis RI 6683 investigation OP 123-66 Ohio, investigation OP 93-66, 129-66 production data IC 8250 study OP 163-65 waterflooding, secondary - recovery prospects by RI 7007 Pa., investigation OP 24-65, 111-65, 94-66, 138-66, 81-67 pilot waterflood, field performance OP 37-65
effect of ultrasonic energy on, laboratory tests RI 7144 role of rock mechanics in, literature review OP 93-69 thermal, methods IC 8352 Oil reservoirs, Appalachian region, analysis RI 6683 investigation OP 123-66 Ohio, investigation OP 93-66, 129-66 production data IC 8250 study OP 163-65 waterflooding, secondary - recovery prospects by RI 7007 Pa., investigation OP 24-65, 111-65, 94-66, 138-66, 81-67 pilot waterflood, field performance OP 37-65
effect of ultrasonic energy on, laboratory tests RI 7144 role of rock mechanics in, literature review OP 93-69 thermal, methods IC 8352 Oil reservoirs, Appalachian region, analysis RI 6683 investigation OP 123-66 Ohio, investigation OP 93-66, 129-66 production data IC 8250 study OP 163-65 waterflooding, secondary - recovery prospects by RI 7007 Pa., investigation OP 24-65, 111-65, 94-66, 138-66, 81-67 pilot waterflood, field performance OP 37-65
effect of ultrasonic energy on, laboratory tests RI 7144 role of rock mechanics in, literature review OP 93-69 thermal, methods IC 8352 Oil reservoirs, Appalachian region, analysis RI 6683 investigation OP 93-66, 129-66 production data OP 93-66, 129-66 production data IC 8250 study OP 163-65 waterflooding, secondary - recovery prospects by RI 7007 Pa., investigation OP 24-65, 111-65, 94-66, 138-66, 81-67 pilot waterflood, field performanceOP 37-65 secondary-recovery potential RI 7049 waterflooding, predicted recovery RI 6683 W. Va., investigations OP 162-65
effect of ultrasonic energy on, laboratory tests RI 7144 role of rock mechanics in, literature review OP 93-69 thermal, methods IC 8352 Oil reservoirs, Appalachian region, analysis RI 6683 investigation OP 93-66, 129-66 Ohio, investigation OP 93-66, 129-66 production data IC 8250 study OP 163-65 waterflooding, secondary - recovery prospects by RI 7007 Pa., investigation OP 24-65, 111-65, 94-66, 138-66, 81-67 pilot waterflood, field performance OP 37-65 secondary-recovery potential RI 7049 waterflooding, predicted recovery RI 6683 W. Va., investigations OP 162-65
effect of ultrasonic energy on, laboratory tests RI 7144 role of rock mechanics in, literature review OP 93-69 thermal, methods IC 8352 Oil reservoirs, Appalachian region, analysis RI 6683 investigation OP 123-66 Ohio, investigation OP 93-66, 129-66 production data OP 93-66, 129-66 production data OP 163-65 waterflooding, secondary - recovery prospects by RI 7007 Pa., investigation OP 24-65, 111-65, 94-66, 138-66, 81-67 pilot waterflood, field performance OP 37-65 secondary-recovery potential RI 7049 waterflooding, predicted recovery RI 6683 W. Va., investigations OP 162-66 capillarity determination, methods OP 170-67 decline-curve analysis, new method OP 120-68
effect of ultrasonic energy on, laboratory tests RI 7144 role of rock mechanics in, literature review IC 8352 Oil reservoirs, Appalachian region, analysis RI 6683 investigation OP 123-66 Ohio, investigation OP 93-66, 129-66 production data OP 93-66, 129-66 production data OP 93-66, 129-66 study OP 163-65 waterflooding, secondary - recovery prospects by RI 7007 Pa., investigation OP 24-65, 111-65, 94-66, 138-66, 81-67 pilot waterflood, field performance OP 37-65 secondary-recovery potential RI 6683 W. Va., investigations OP 162-65 capillarity determination, methods OP 170-67 decline-curve analysis, new method OP 120-68 factors affecting secondary recovery.
effect of ultrasonic energy on, laboratory tests RI 7144 role of rock mechanics in, literature review OP 93-69 thermal, methods IC 8352 Oil reservoirs, Appalachian region, analysis RI 6683 investigation OP 93-66, 129-66 production data OP 93-66, 129-66 production data IC 8250 study OP 163-65 waterflooding, secondary - recovery prospects by RI 7007 Pa., investigation OP 24-65, 111-65, 94-66, 138-66, 81-67 pilot waterflood, field performance OP 37-65 secondary-recovery potential RI 7049 waterflooding, predicted recovery RI 6683 W. Va., investigations OP 162-65 capillarity determination, methods OP 170-67 decline-curve analysis, new method OP 120-68 factors affecting secondary recovery, progress report OP 151-68
effect of ultrasonic energy on, laboratory tests
effect of ultrasonic energy on, laboratory tests
effect of ultrasonic energy on, laboratory tests
effect of ultrasonic energy on, laboratory tests RI 7144 role of rock mechanics in, literature review OP 93-69 thermal, methods IC 8352 Oil reservoirs, Appalachian region, analysis RI 6683 investigation OP 93-66, 129-66 production data OP 93-66, 129-66 production data IC 8250 study OP 163-65 waterflooding, secondary - recovery prospects by RI 7007 Pa., investigation OP 24-65, 111-65, 94-66, 138-66, 81-67 pilot waterflood, field performanceOP 37-65 secondary-recovery potential RI 7049 waterflooding, predicted recovery RI 6683 W. Va., investigations OP 162-65 capillarity determination, methods OP 170-67 decline-curve analysis, new method OP 120-68 factors affecting secondary recovery, progress report OP 151-68 gas-cap, conservation practices, study M 13 gas-storage operations in, effect OF 205-67 heavy-cule, survey IC 8428
effect of ultrasonic energy on, laboratory tests
effect of ultrasonic energy on, laboratory tests RI 7144 role of rock mechanics in, literature review OP 93-69 thermal, methods IC 8352 Oil reservoirs, Appalachian region, analysis RI 6683 investigation OP 123-66 Ohio, investigation OP 93-66, 129-66 production data IC 8250 study OP 163-65 waterflooding, secondary - recovery prospects by RI 7007 Pa., investigation OP 24-65, 111-65, 94-66, 138-66, 81-67 pilot waterflood, field performance OP 37-65 secondary-recovery potential RI 7049 waterflooding, predicted recovery RI 6683 W. Va., investigations OP 162-65 capillarity determination, methods OP 162-68 factors affecting secondary recovery, progress report OP 151-68 gas-cap, conservation practices, study M 13 gas-storage operations in, effect OP 205-67 heavy-crude, survey IC 8263 heavy-oil, Ark., evaluation IC 8428 laboratory model, gas-cycling tests OP 25-66, 46-67
effect of ultrasonic energy on, laboratory tests RI 7144 role of rock mechanics in, literature review OP 93-69 thermal, methods IC 8352 Oil reservoirs, Appalachian region, analysis RI 6683 investigation OP 123-66 Ohio, investigation OP 93-66, 129-66 production data IC 8250 study OP 163-65 waterflooding, secondary - recovery prospects by RI 7007 Pa., investigation OP 24-65, 111-65, 94-66, 138-66, 81-67 pilot waterflood, field performance OP 37-65 secondary-recovery potential RI 7049 waterflooding, predicted recovery RI 6683 W. Va., investigations OP 162-65 capillarity determination, methods OP 162-68 factors affecting secondary recovery, progress report OP 151-68 gas-cap, conservation practices, study M 13 gas-storage operations in, effect OP 205-67 heavy-crude, survey IC 8263 heavy-oil, Ark., evaluation IC 8428 laboratory model, gas-cycling tests OP 25-66, 46-67
effect of ultrasonic energy on, laboratory tests

ニナモトモ

•

C

Oil shale Colo composition P 695
Oil shale, Colo., composition B 635
mining B 635
properties B 635 corehole data OFR 15-69
corehole data OFR 15-69
density logs, geologic factors affecting OP 94-68 electrical iracturing of, laboratory and
fold experiments OP 100 67
field experiments OP 192-67 exploratory corehole, progress report OP 128-67 explosive fracturing, tests OP 122-67, 44-68
explosive tracturing, tests OP 122-67 44-68
fracturing, high voltage electrical
fracturing, high - voltage electrical method, laboratory and field tests OP 37-68 with nuclear explosives, costs OP 91-65 feasibility OP 91-65 gas-combustion retorting process B 635 oil mist formation B 635
tests OP 37-68
with nuclear explosives, costs OP 91-65
feasibility OP 91-65
gas-combustion retorting process B 635
oil mist formation B 635
oil-recovery problems B 635 particle-size studies B 635
particle-size studies B 635
genesis, chemical conditions of deposi-
mechanics of deposition OP 169-69
Green River Formation core assay
data OFR 19-69
tion OP 169-69 mechanics of deposition OP 169-69 Green River Formation, core assay data OFR 13-69 in situ processing, application of
aboveground variables
aboveground variables OP 180-68 in situ retorting OP 91-65
experimental TPR 16
feasibility OP 59-68
feasibility OP 59–68 kerogen separation from, carbonic acid
method OP 197-68 oil recovery from, in aboveground batch
oil recovery from, in aboveground batch
retort OP 96-67 process description OP 91-69 oil yields RI 7051, 7172 estimating, method OP 79-66
oil violdo BI 7051 7179
estimating method OP 70 66
organic material in concentrating
using carbonic acid, method OP 49-69
physical structure OP 143-65
Piceance Creek basin, core-sample oil
yields RI 7071
organic material in, concentrating, using carbonic acid, method OP 49-69 physical structure OP 143-65 Piceance Creek basin, core-sample oil yields RI 7071 porphyrins in, spectroscopic determina- tion
problems B 630
pyrolysis, controlled low-temperature_ OP 145-69
problems B 630 pyrolysis, controlled low-temperature_ OP 145-69 pyrolysis products, composition OP 145-69
retorting, gas combustion process, experi- mental program RI 7303
retorting, gas combustion process, experi- mental program RI 7303 technical activities, summary OP 8-69 technology B 630
retorting, gas combustion process, experi- mental program RI 7303 technical activities, summary OP 8-69 technology B 630
retorting, gas combustion process, experi- mental program RI 7303 technical activities, summary OP 8-69 technology B 630
resources B 630 retorting, gas combustion process, experi- mental program RI 7303 technical activities, summary OP 8-69 technology B 630 availability OP 7-69 thermal analysis, methods OP 143-67 thermal treatment of effect on phys-
resources B 630 retorting, gas combustion process, experi- mental program RI 7303 technical activities, summary OP 8-69 technology B 630 availability OP 7-69 thermal analysis, methods OP 143-67 thermal treatment of effect on phys-
retorting, gas combustion process, experi- mental program RI 7303 technical activities, summary OP 8-69 technology B 630 availability OP 7-69 thermal analysis, methods OP 143-67 thermal treatment of, effect on phys- ical properties OP 161-67 ungraded oil vields OP 161-68
retorting, gas combustion process, experi- mental program RI 7303 technical activities, summary OP 8-69 technology B 630 availability OP 7-69 thermal analysis, methods OP 143-67 thermal treatment of, effect on phys- ical properties OP 161-67 ungraded, oil yields OP 161-68 retorting characteristics, study OP 161-68
retorting, gas combustion process, experi- mental program RI 7303 technical activities, summary OP 8-69 technology B 630 availability OP 7-69 thermal analysis, methods OP 143-67 thermal treatment of, effect on phys- ical properties OP 161-67 ungraded, oil yields OP 161-68 retorting characteristics, study OP 161-68 uses B 630
retorting, gas combustion process, experi- mental program RI 7303 technical activities, summary OP 8-69 technology B 630 availability OP 7-69 thermal analysis, methods OP 143-67 thermal treatment of, effect on phys- ical properties OP 161-67 ungraded, oil yields OP 161-68 retorting characteristics, study OP 161-68 uses B 630
retorting, gas combustion process, experi- mental program RI 7303 technical activities, summary OP 8-69 technology B 630 availability OP 7-69 thermal analysis, methods OP 143-67 thermal treatment of, effect on phys- ical properties OP 161-67 ungraded, oil yields OP 161-68 retorting characteristics, study OP 161-68 uses B 630 utilization, outlook OP 7-69
retorting, gas combustion process, experi- mental program RI 7303 technical activities, summary OP 8-69 technology B 630 availability OP 7-69 thermal analysis, methods OP 143-67 thermal treatment of, effect on phys- ical properties OP 161-67 ungraded, oil yields OP 161-68 uses DP 161-68 uses B 630 utilization, outlook OF 7-69 Oil-shale core, analysis OF 7-67
retorting, gas combustion process, experi- mental program RI 7303 technical activities, summary OP 8-69 technology B 630 availability OP 7-69 thermal analysis, methods OP 143-67 thermal treatment of, effect on phys- ical properties OP 161-67 ungraded, oil yields OP 161-68 uses OP 161-68 uses B 630 utilization, outlook OP 7-69 Oil-shale core, analysis OFR 5-67 Oil-shale density-organic content relation- ship, theoretical equations for RI 7248
retorting, gas combustion process, experi- mental program RI 7303 technical activities, summary OP 8-69 technology B 630 availability OP 7-69 thermal analysis, methods OP 143-67 thermal treatment of, effect on phys- ical properties OP 161-67 ungraded, oil yields OP 161-68 uses OP 161-68 uses B 630 utilization, outlook OP 7-69 Oil-shale core, analysis OFR 5-67 Oil-shale density-organic content relation- ship, theoretical equations for RI 7248
retorting, gas combustion process, experi- mental program RI 7303 technical activities, summary OP 8-69 technology B 630 availability OP 7-69 thermal analysis, methods OP 143-67 thermal treatment of, effect on phys- ical properties OP 161-67 ungraded, oil yields OP 161-68 uses DP 161-68 uses B 630 utilization, outlook OP 161-68 uses B 630 utilization, outlook OF 7-69 Oil-shale core, analysis OF 7-67 Oil-shale density-organic content relation- ship, theoretical equations for BI 7248 Oil shale deposit, in situ shale oil produc- tion, potential OP 38-69 Oil-shale kerogen, observed structural dif-
retorting, gas combustion process, experi- mental program RI 7303 technical activities, summary OP 8-69 technology B 630 availability OP 7-69 thermal analysis, methods OP 143-67 thermal treatment of, effect on phys- ical properties OP 161-67 ungraded, oil yields OP 161-68 uses OP 161-68 uses B 630 utilization, outlook OP 161-68 uses B 630 utilization, outlook OF 7-69 Oil-shale core, analysis OF 7-67 Oil-shale density-organic content relation- ship, theoretical equations for BI 7248 Oil shale deposit, in situ shale oil produc- tion, potential OP 38-69 Oil-shale kerogen, observed structural dif- ferences OP 40-68
retorting, gas combustion process, experi- mental program RI 7303 technical activities, summary OP 8-69 technology B 630 availability OP 7-69 thermal analysis, methods OP 143-67 thermal treatment of, effect on phys- ical properties OP 161-67 ungraded, oil yields OP 161-68 uses B 630 utilization, outlook OP 161-68 uses B 630 utilization, outlook OF 7-69 Oil-shale core, analysis OF 7-69 Oil-shale core, analysis OF 7-67 Oil-shale density-organic content relation- ship, theoretical equations for BI 7248 Oil shale deposit, in situ shale oil produc- tion, potential OP 38-69 Oil-shale kerogen, observed structural dif- ferences OP 40-68 Oil shale program in situ retorting, exper-
retorting, gas combustion process, experi- mental program RI 7303 technical activities, summary OP 8-69 technology B 630 availability OP 7-69 thermal analysis, methods OP 143-67 thermal treatment of, effect on phys- ical properties OP 161-67 ungraded, oil yields OP 161-68 uses OP 161-68 uses B 630 utilization, outlook OP 161-68 uses B 630 Oil-shale core, analysis OF 7-69 Oil-shale density-organic content relation- ship, theoretical equations for RI 7248 Oil shale deposit, in situ shale oil produc- tion, potential OP 38-69 Oil-shale kerogen, observed structural dif- ferences OP 40-68 Oil shale program, in situ retorting, exper- imental TPR 16
retorting, gas combustion process, experi- mental program RI 7303 technical activities, summary OP 8-69 technology B 630 availability OP 7-69 thermal analysis, methods OP 143-67 thermal treatment of, effect on phys- ical properties OP 161-67 ungraded, oil yields OP 161-68 uses OP 161-68 uses B 630 utilization, outlook OP 161-68 uses B 630 utilization, outlook OF 7-69 Oil-shale core, analysis OF 7-67 Oil-shale core, analysis OF 7-67 Oil-shale density-organic content relation- ship, theoretical equations for RI 7248 Oil shale deposit, in situ shale oil produc- tion, potential OP 38-69 Oil-shale kerogen, observed structural dif- ferences OP 40-68 Oil shale program, in situ retorting, exper- imental TPR 16 Oil-shale project, Rifle, Colo., description B 635
retorting, gas combustion process, experi- mental program RI 7303 technical activities, summary OP 8-69 technology DF 7-69 thermal analysis, methods OP 7-69 thermal treatment of, effect on phys- ical properties OP 161-67 ungraded, oil yields OP 161-68 uses DF 161-68 uses DF 161-68 uses DF 161-68 uses DF 7-69 Oil-shale core, analysis OF 7-69 Oil-shale core, analysis OF 7-67 Oil-shale density-organic content relation- ship, theoretical equations for BI 7248 Oil shale deposit, in situ shale oil produc- tion, potential OF 38-69 Oil-shale kerogen, observed structural dif- ferences OF 40-68 Oil shale program, in situ retorting, exper- imental TPR 16 Oil-shale project, Rifle, Colo., description B 635 Oil-shale research annual report IC 8364
retorting, gas combustion process, experi- mental program RI 7303 technical activities, summary OP 8-69 technology DF 7-69 thermal analysis, methods OP 7-69 thermal treatment of, effect on phys- ical properties OP 161-67 ungraded, oil yields OP 161-68 uses DF 161-68 uses B 630 utilization, outlook OP 7-69 Oil-shale core, analysis OFR 5-67 Oil-shale density-organic content relation- ship, theoretical equations for BI 7248 Oil shale deposit, in situ shale oil produc- tion, potential OF 38-69 Oil-shale kerogen, observed structural dif- ferences OF 40-68 Oil shale program, in situ retorting, exper- imental TPR 16 Oil-shale research, annual report IC 8364 status OP 148-67
retorting, gas combustion process, experi- mental program RI 7303 technical activities, summary OF 8-69 technology B 630 availability OF 7-69 thermal analysis, methods OP 143-67 thermal treatment of, effect on phys- ical properties OP 161-67 ungraded, oil yields OP 161-68 uses B 630 utilization, outlook OP 161-68 uses B 630 utilization, outlook OF 7-69 Oil-shale core, analysis OF 7-67 Oil-shale density-organic content relation- ship, theoretical equations for BI 7248 Oil shale deposit, in situ shale oil produc- tion, potential OP 38-69 Oil-shale kerogen, observed structural dif- ferences OP 40-68 Oil shale project, Rifle, Colo., description B 635 Oil-shale project, Rifle, Colo., description B 635 Oil-shale project, Rifle, Colo., description B 635 Oil-shale project, Rifle, op 148-67 Oil-shale recorring in situ physibility.
retorting, gas combustion process, experi- mental program RI 7303 technical activities, summary OF 8-69 technology B 630 availability OP 7-69 thermal analysis, methods OP 143-67 thermal treatment of, effect on phys- ical properties OP 161-67 ungraded, oil yields OP 161-68 uses B 630 utilization, outlook OP 161-68 uses B 630 utilization, outlook OF 7-69 Oil-shale core, analysis OF 7-67 Oil-shale density-organic content relation- ship, theoretical equations for BI 7248 Oil shale deposit, in situ shale oil produc- tion, potential OP 38-69 Oil-shale kerogen, observed structural dif- ferences OP 40-68 Oil shale project, Rifle, Colo., description B 635 Oil-shale project, Rifle, colo., description B 635
retorting, gas combustion process, experi- mental program OP 8-69 technical activities, summary OP 7-69 thermal analysis, methods OP 143-67 thermal treatment of, effect on phys- ical properties OP 161-67 ungraded, oil yields OP 161-67 ungraded, oil yields OP 161-68 uses B 630 utilization, outlook OF 7-69 Oil-shale core, analysis OF 7-67 Oil-shale density-organic content relation- ship, theoretical equations for BI 7248 Oil shale deposit, in situ shale oil produc- tion, potential OP 38-69 Oil-shale kerogen, observed structural dif- ferences OP 40-68 Oil-shale program, in situ retorting, exper- imental TPR 16 Oil-shale project, Rifle, Colo., description B 635 Oil-shale research, annual report IC 8364 status OP 82-66
retorting, gas combustion process, experi- mental program RI 7303 technical activities, summary OP 8-69 technology B 630 availability OP 7-69 thermal analysis, methods OP 143-67 thermal treatment of, effect on phys- ical properties OP 161-67 ungraded, oil yields OP 161-67 ungraded, oil yields OP 161-68 uses B 630 utilization, outlook OP 7-69 Oil-shale core, analysis OF 7-67 Oil-shale core, analysis OF 7-67 Oil-shale core, analysis OF 7-67 Oil-shale density-organic content relation- ship, theoretical equations for RI 7248 Oil shale deposit, in situ shale oil produc- tion, potential OP 38-69 Oil-shale kerogen, observed structural dif- ferences OP 40-68 Oil shale program, in situ retorting, exper- imental TPR 16 Oil-shale research, annual report IC 8364 status OP 82-66 Oil-shale retorting, in situ, possibility, discussion OP 82-66 Oil-shale samples, assaying, automated modified Fischer retorts RI 6676
retorting, gas combustion process, experi- mental program RI 7303 technical activities, summary OP 8-69 technology B 630 availability OP 7-69 thermal analysis, methods OP 143-67 thermal treatment of, effect on phys- ical properties OP 161-67 ungraded, oil yields OP 161-68 uses DP 161-68 uses B 630 utilization, outlook OP 7-69 Oil-shale core, analysis OF 7-67 Oil-shale core, analysis OF 7-67 Oil-shale core, analysis OF 7-67 Oil-shale density-organic content relation- ship, theoretical equations for BI 7248 Oil shale deposit, in situ shale oil produc- tion, potential OP 38-69 Oil-shale kerogen, observed structural dif- ferences OP 40-68 Oil shale program, in situ retorting, exper- imental TPR 16 Oil-shale research, annual report IC 8364 status OP 82-66 Oil-shale retorting, in situ, possibility, discussion OP 82-66 Oil-shale samples, assaying, automated modified Fischer retorts RI 6676
retorting, gas combustion process, experi- mental program RI 7303 technical activities, summary OF 8-69 technology B 630 availability OF 7-69 thermal analysis, methods OP 143-67 thermal treatment of, effect on phys- ical properties OP 161-67 ungraded, oil yields OP 161-68 uses B 630 utilization, outlook OF 7-69 Oil-shale core, analysis OF 7-69 Oil-shale core, analysis OF 7-69 Oil-shale core, analysis OF 7-67 Oil-shale core, analysis OF 7-67 Oil-shale core, analysis OF 7-67 Oil-shale density-organic content relation- ship, theoretical equations for RI 7248 Oil shale density-organic content relation- ship, theoretical equations for RI 7248 Oil shale kerogen, observed structural dif- ferences OP 38-69 Oil-shale kerogen, in situ retorting, exper- imental TPR 16 Oil-shale project, Rifle, Colo., description B 635 Oil-shale research, annual report IC 8364 status OP 148-67 Oil-shale retorting, in situ, possibility, discussion OP 82-66 Oil-shale samples, assaying, automated modified Fischer retorts RI 6676 Oil-shale technology, developments OP 132-68
retorting, gas combustion process, experi- mental program RI 7303 technical activities, summary OP 8-69 technology B 630 availability OP 7-69 thermal analysis, methods OP 143-67 thermal treatment of, effect on phys- ical properties OP 161-67 ungraded, oil yields OP 161-68 uses DP 161-68 uses B 630 utilization, outlook OP 7-69 Oil-shale core, analysis OF 7-67 Oil-shale core, analysis OF 7-67 Oil-shale core, analysis OF 7-67 Oil-shale density-organic content relation- ship, theoretical equations for BI 7248 Oil shale deposit, in situ shale oil produc- tion, potential OP 38-69 Oil-shale kerogen, observed structural dif- ferences OP 40-68 Oil shale program, in situ retorting, exper- imental TPR 16 Oil-shale research, annual report IC 8364 status OP 82-66 Oil-shale retorting, in situ, possibility, discussion OP 82-66 Oil-shale samples, assaying, automated modified Fischer retorts RI 6676

..... RI 7248 equations for _____ Oilfield, nuclear explosion, underground, OP 156-65 effect on equipment _____ OP 156-65 production decline curves, equations for, evaluation _____ OP 57-69 shallow, survey _____ M 12 Oilfield brines, ammonium nitrate in, potentiometric determination... OP 54-69 barium sulfate solubility in _____ OP 23-66 bromide in, determination...RI 6959; OP 174-67 bromide in, determination___KI 6959; OP 174-67 chemistry _____ OP 46-68 high-iodide, chemistry _____ OP 53-69 mineral content, removing, discussion_ OP 22-66 strontium sulfate solubility in _____ OP 23-66 trace elements in, spectrometric deter-mination, plasma arc method __ OP 17-67 Okefenokee National Wildlife Refuge, mineral appraisal _____ GS 11-68 Oklahoma, anorthosite, as potential alumi-

 bklahoma, anorthosite, as potential alumi-num source
 IC 8335

 coal, analyses
 B 643; RI 6792, 6904

 chlorine content
 RI 6579

 sulfur content, forms
 IC 8301

 coal carbonization, light oil from, analysis B 643
 643

 light oil yield
 B 643

 tar from, analysis
 B 643

 copper occurrences, in Permian for-mations
 OFR 10-69

 crude oil, production
 RI 7059

 sulfur content
 RI 7059

 gas-cap reservoir, conservation practices,
 IC 8289

 ferrous scrap industry, survey ______ IC 8289 gas-cap reservoir, conservation practices, engineering evaluation ______ M 13 heavy crude oil, production forecast _____ IC 8352 thermal projects ______ IC 8352 thermal projects ______ IC 8352 heavy crude-oil reservoirs, survey ______ IC 8263 helium-bearing natural gases, analyses _____ 8302 ilmenite deposits, survey ______ IC 8290 kaolin, as potential aluminum, source ____ IC 8335 mines, visitors' guide ______ SP 2-67 minerals, production, annual data MY 1968 (v. I-II, III) mineral industry, annual review mineral industry, annual review MY 1968 (v. III) natural gas, analyses _____ IC 8241, 8302, 8316 8356, 8395 northeast counties, auto wrecking and scrap processing industries _____ SP 1-67 occupational diseases, workmen's compensation laws on ______ B 623 oil reservoir, low-permeability sandstone, performance of, study ______ RI 7161 production-rate data ______ IC 8362 well-depth data _____ IC 8362 oilfields, shallow _____ M 12 oilfield brines, iodide in _____ OP 75-67 petroleum-impregnated rocks, surface and sign and operation _____ OP 124-68 shallow _____ M 12

Oil volume, initial, in oil reservoirs, material balance equation, for calcu-

Oil-well logging, guard-electrode response in, laboratory investigation _

Oil-well pumps, barium sulfate scale deposition in, physical factors in

Oil-well scales, rapid analysis, instrumental technique Oil-well stimulation, in low-permeability sandstone, techniques

Oil yield, from shale, relationship to or-ganic content, equations for

Oil yield-shale relationship, theoretical

offshore-onshore, cost comparison _____ OP 115-68 water coning in, overcoming, treatment and operation method, patent ____ P 9-68

..... BI 6763

RI 6783

BI 6960

BI 6602 RI 7161

RI 7248

lating Oil wells, log analysis-core analysis com-

Oklahoma, titanium mineral deposits, survey _____ IC 8290 waterflooding projects _____ IC 8311 Old-Bed magnetite, hydrogen reduction of, kinetics ______ RI 7080 Olefins, electrochemical reduction, in electrochemical reduction, ethanol and hexamethylphos-OP 107-69 phoramide _____ OP from low-temperature coal-tar neutral oil, identification ______ B 637 gas-solid chromatography _____ OP 79-65 in tar oil, conversion to alcohols, method OP 32-68 Olefinic double bonds, homogeneous cata-lytic deuteration of, method... OP 121-69 Oleic acid, in flotation water, measuring, radioactive tracer method _____ **RI 7094** mineral surfaces, measuring, gas-liquid chromatographic method __ RI 7135 radioactive tracer method ____ RI 7094 оп Olivenite, magnetic susceptibility Oliver County, N. Dak., lignite and lignite ash analyses IC 8383 RI 7158 Oman, mineral industry, annual review MY 1968 (v. IV) Ontario, Steep Rock Lakes area, iron-bearing materials, reduction roasting of RI 7242 Open-pit mining, copper, mining methods and costs _____ IC 8129 pit and dump rehabilitation, discussion OP 74-69 Optical data processing, sensitivity, to changes in rock fabric _____ OP 62-69 Ores, carbonaceous gold-bearing, improving gold recovery from ______ concentrated, blast-furnace operation TPR 8 with, results _____ OP 130-66 grade, estimating, correlation of assay values and unequal sample-inter-val lengths, method _____ RI 6867 manganiferous, manganese chloride from, RI 6959 niques for _____ B 621 for evaluating, using statistical analysis of RI 6876 assay data ______ RI 6778 in volcanic rock, lunar extrapolation ___ OP 29-69 metal distribution in, geometry _____ RI 6919 rock masses containing, effect of struc-ture-forming processes on _____ OR 8-66 RI 6778 Ore reserves, computing, methods _____ IC 8283 Oregon, bauxite, as potential aluminum source _____ IC 8335 beryllium resources, investigation _____ IC 8335 coal, sulfur content, forms _____ IC 8301 ilmenite deposits, survey _____ IC 8290 ilmenite deposits, survey Hart Mountain National Antelope Refuge, Fort Warner area, mineral appraisal _____ GS 10-68 Poker Jim Ridge area, mineral ap-praisal _____ GS 10-68 kaolin, as potential aluminum source ____ IC 8335 Malheur National Wildlife Refuge, Har-__ GS 10-68 Malheur Lake area, mineral appraisal GS 9-68 Malheur Lake area, mineral appraisal GS 9-68 mercury, production, 1882-1961 IC 8252 mercury mines, description IC 8252 mercury occurrences IC 8252 Oregon, mercury prospects ______ IC 8252 mines, visitors' guide _____ SP 2-67 minerals, production, annual data MY 1968 (v. I-II, III) mineral industry, annual review MY 1968 (v. III) mineral transportation costs _____ IC 8381 Mount Jefferson area, minerals survey_ GS 4-66 northwestern counties, auto wrecking nortnwestern counties, auto wrecking and scrap processing industries_ SP 1-67 occupational diseases, workmen's compen-sation laws on ______ B 623 Oregon Islands National Wildlife Ref-uge, mineral appraisal _____ GS 2-68 petroleum-impregnated rock, surface and shallow _____ M 12 shallow _____ Portland and Multnomah County area, auto wrecking and scrap processing industries ______ Salem Hills ferruginous bauxite, alumina SP 1-67 Salem Huis lerrughous oauxite, alumina from, tests ______ RI 6939 solid wastes, coal-mine, disposal methods IC 8430 Three Arch Rocks National Wildlife Ref-uge, mineral appraisal ______ GS 3-68 titanium mineral deposits, survey _____ IC 8290 zircon resources _____ IC 8268 Oregon Islands National Wildlife Refuge, Oregon Islands National wildlife Refuge, Oreg., mineral appraisal _____ GS 2-68 Organic compounds, infrared spectra, in re-

 organic compounds, infrared spectra, in re-gion 15 to 200 microns ______ RI 6630

 sonolysis ______ RI 7027

 spectra-structure correlations ______ B 632

 zone melting of, induction heating technique ______ OP 108-68

 Organic materials, industrial carbon from___ B 630

 Orthoboric acid, enthalpy of formation___ OP 41-66

 Orthophosphates. removal. from sew
 Orthophosphates, removal, from sew-age, by treatment with coal ____ OFR 12-69 Osmium, annual data _____ MY 1968 (v. I-II) as methanation catalyst, investigation ___ RI 6974 Overburden, stripping, with nuclear ex-plosives, potential _____ OP 67-67 Oxidation, electrolytic, carbonaceous gold-____ TPR 8 baring ores _____ TPR 8 float coal, effect on flotation recovery, using alcohol-type frother _____ RI 6620 using kerosine-pine oil frother _____ RI 6620 high-temperature, removal of copper cladding from steel by _____ RI 6647 tungsten-cobalt alloys, at high temperatures, study ______ RI 6998 Oxidation characteristics, asphalt, study_ OP 20-67 Oxides, far-infrared spectroscopy ____ OP 102-69 Oxide-glass compositions, hot-roll forming of, method _____ RI 6967 Oxygen, in coal, determination _____ RI 7124 direct determination, method ______ RI 6753 in diesel exhaust gas, determination, conin diesel exhaust gas, determination, con-tinuous monitoring method _____ RI 7241 in electrorefined vanadium, effect ____ OP 92-69 in metals, fast-neutron activation anal-ysis, improving, technique ____ OP 19-65 literature review _____ OP 65-65 reduction, in electron-beam purification of vanadium ____ PI 7014 of vanadium ______ RI 7014 thermophysical properties _____ IC 8317 Oxygen-18 labeled chars, infrared spectra OP 70-68 Oxygen-acetylene mixtures, spherical detonation initiation _____ RI 7061 Oxygen-alkane mixtures, detonation initiation _____ RI 6840 Oxygen compounds, identification, hydroin petroleum, characterization, nydro-genolysis technique _____ OP 45-67 in petroleum, characterization, micro-hydrogenation method _____ OP 196-67 literature survey___IC 8286; OP 7-68, 122-69 origin _____ B 642 literature review _____ OP 65-65

f

) {

b

E

1

ŗ

Oxygen-deficiency alarm, miniature, bi-	
level, development RI 7165; IC Oxygen exchange, carbon dioxide and carbon monoxide, on carbon,	
kinetics OP : Oxygen injection, in iron-carbon melts, me- chanics of fuming in, investiga-	157–67
tion R. Oxygen-vanadium allovs, properties R	I 7047 I 6637
strain-aging effects in R. Oxygenates, in automobile exhausts, iden-	1 7222
unsaturated infrared spectra R	43-65 I 6854
mass spectra R Ozonizer discharge, effect on water-gas shift reaction in OP :	138-69
•	
Pacific islands, laterite, as potential alumi- num source	C 8335
num source IC Pacific Islands, Trust Territory of, mineral industry, an- nual review MY 1968 (s	
Pacific Island possessions, min- eral industry, annual re-	
view MY 1968 (1 Pacific Northwest, aluminum mill products	v. III)
industry, economic trends I(3267
outlook BPA	1 4_65
bauxites, ferruginous, alumina from, feasibility tests R beryllium resources, investigation R coal industry, potential BPA	I 6939 I 7148
coal industry, potential BPA	1-65
coal-mining methods BPA coal-preparation methods BPA	1-65
recovery from R lead-zinc industry, analysis IC mineral transportation costs IC sulfite pulp, production BPA sulfur consumption BPA sulfuric acid, production BPA Pakistan, mine rescue training, proposed OP mineral industry	1 7079
lead-zinc industry, analysis	3 8327
mineral transportation costs IC	3 8381
sulfite pulp, production BPA	1 2-65
sulfur consumption BPA	2-65
Sulfuric acid, production BPA	141 67
mineral industry, annual re- view	141-07
Volladium oppusi data MV 1968 (v	1 (1)
as methanation catalyst, investigation R electrodeposition, from aqueous elec-	I 6974
citivities end OF	10569
thick coatings of, electrodeposition, on refractory metals R Palladium electrodeposits, properties R	I 7016
Panama mineral industry an-	
nual review MY 1968 (Panama Canal Zone, mineral in- dustry, annual review MY 1968 (Paper disks, ion-exchange resin-loaded,	v. IV) v. III)
Paper disks, ion-exchange resin-loaded, as microgram quantity collectors OP	18-66
chemical and X-ray characteristics _ OP Papua and New Guinea, mineral	18-66
industry, annual review MY 1968 (*	v. IV)
Paracrystalline substances. X-ray scat-	
tering intensities, correction of OP Paraffins, from low-temperature coal-tar neu- tral oil, identification	B 637
gas-colid chromatography OP oil-shale, changes in, with depth OP Paraffin hydrocarbons, flammability charac-	79-65 122-65
Paraffin hydrocarbons, flammability charac- teristics	B 627
teristics Paraffin-naphthene mixtures, type analysis_ Paragon Jewel Coal Co. mine, Va., coal, washing characteristics R	B 634
washing characteristics R	I 6740
Paraguay, mineral industry, an- nual review MY 1968 (Paramalagentia magnetia susceptibility (v. IV)
Dependence magnatic successibilities 7/	

Paramelaconite, magnetic susceptibility ____ IC 8383 Particles, ultrafine, homogeneous powders of, preparation, patent _____ P 13-67

Particle feeder, multiple-orifice, patent ____ P 14-69
Particle size, ultrafine anthracite, ball mill-ground, determination, methods ____ RI 7170
Particle velocity, detonating gases, determining, by magnetohydrodynamic principle ______ OP 9-66
Particulate matter, from incinerators, treatment methods ______ OP 109-69
Passage Key National Wildlife Refuge, Fla., mineral appraisal ______ GS 12-68
Payne No. 3 mine, W. Va., coal, washing characteristics _______ OP 136-65
Peak load, gas turbine, coal-fired, with water injection, use ______ OP 136-65
Peak shift, in proportional X-ray detectors, cause ______ OP 14-66

Peak shift, in proportional X-ray detec- tors, cause OP 14-66 Peat, annual data MY 1968 (v. I-II) as fuel, properties and calorific value OP 158-67 consumption consumption B 630 electron spin resonance OP 77-68 grades B 630 imports B 630 production B 630 production B 630 technology B 630 uses B 630 production B 630 problems B 630 problems B 630 propoties B 630 properties RI 6872, 7236 preparation characteristics RI 6872, 7236 preparation characteristics RI 6874 washing
Past appual data MY 1968 (v I_II)
as fuel, properties and calorific value OP 158-67
consumption B 630
electron spin resonance OP 148-68
grades B 630
imports B 630
prices B 630
production B 630
Peat industry, organization B 630
problems B 630
Pedersen process, alumina and iron recov-
Peerless bed. W. Va., coal, carbonizing
properties RI 6872, 7236
preparation characteristics RI 6874
Washing characteristics KI 6825
States, reconnaissance IC 8298
Pegmatite ores, mica, fine, selective flota-
tion of, methods OP 13-66
flotation RI 6589, 7159
weathered, mica recovery from, anionic-
cationic flotation RI 6830
Pelagite, magnetic susceptibility IC 8359
Fla. mineral appraisal GS 12-68
Pellets, green iron-ore, simultaneous re- duction and induration OP 35-66 iron ore, binders for OP 102-68 clay as bonding agent for RI 7206 from taconite, cost, discounted cash flow model OP 183-69 glacial lake clay as bonding agent for RI 7206 indurated properties high temper
duction and induration OP 35-66
iron ore, binders for OP 102-68
from taconite cost discounted cash
flow model OP 133-69
glacial lake clay as bonding agent for RI 7206
indurated, properties, high-temper-
mechanical strength, at high tempera-
glacial lake clay as bolding agent for KI 1206 indurated, properties, high-temper- ature evaluation OP 110-69 mechanical strength, at high tempera- tures RI 6814 physical strength, at elevated tempera- tures RI 7060 reducibility index, determination RI 6827 magnetite unfined parameters affecting
physical strength, at elevated tempera-
reducibility index determination RI 6827
magnetite, unfired, parameters affecting
reduction-induration of RI 7069
reduction-induration of RI 7069 prereduced, in magnetic roasting of low- grade iron ores, use, study RI 6764 blast-furnace operation with, results OP 130-66
blast-furnace operation with results OP 130-66
production, from natural and syn-
thetic magnetites, method OP 35-66
properties OP 35-66
Directeduced and iron ore production
and smelting costs, comparison OP 55-67
prereduced iron-ore, economic forecast OP 60-66
improved process for OP 22-68
blast-furnace operation with, results OP 130-66 production, from natural and syn- thetic magnetites, method OP 35-66 properties OP 35-66 research, comments OP 101-68 prereduced and iron ore, production and smelting costs, comparison OP 55-67 prereduced iron-ore, economic forecast OP 60-66 improved process for OP 22-68 production methods OP 60-66 uses OP 60-66 spherical, apparatus for forming, patent P 16-69 Pelletization, leached residue, umber ore BI 6692
spherical, apparatus for forming, patent P 16-69
Pendulum sclerometer, use, in granite, penetrability determination RI 7048
penetrability determination RI 7048

361

1

ŧ

-

Penetrability, granite, in solution environment, pendulum sclerometer measurement _____ RI 7048 Penetrometer, hydraulically operated, for roof-bolt anchorage testing, evaluation _____ RI 6646 Pennsylvania, anorthosite, as potential aluminum source _____ IC 8335 anthracite, analyses___RI 6622, 6792, 6904, 7104 oxygen in, determination method ____ RI 6753 _____ RI 7086 properties _____ RI 7086 anthracite refuse banks, survey _____ IC 8409 Annalection area mineral resources _____ CS 4 69 Appalachian area, mineral resources ____ GS 4-68 mineral resources potential _____ GS 4-68 oil-producing formations, rotary cor-ing operations RI 7238; OFR 3-69 oil reservoirs, investigations OP 111-65, 94-66, 138-66 pilot waterflood, field performance OP 37-65 waterflood performance prediction OP 154-67 oilfield reservoirs, steam injection --- OP 21-69 pilot tests _ underground combustion oil-recovery experiment, gas radiotracer test OP 24-65 Atlas mine, coal, carbonizing properties RI 7131 Banning mine, coal, carbonizing prop-_ RI 7131 erties __ Beaver County, coal, preparation characteristics Bell Mt. Tunnel mine, anthracite, wash-**RI** 7324 ing characteristics _____ RI 6989 bituminous coal, analyses B 643; RI 6622, 6792, 6904, 7104 Bottom Red Ash bed, anthracite, washing characteristics ____ RI 6989 Bottom Ross bed, anthracite, properties RI 7086 Boulder sand, core samples, density and porosity data Bradford Third sand, core samples, den-IC 8330 sity and porosity data Clarion County, coal, preparation char-_ IC 8330 acteristics ______ RI 7174 Clark bed, anthracite, properties _____ RI 7086 clays, properties _____ PTG Clyde mine, coal, carbonizing properties RI 7131 coal, analyses ______ B 643; RI 6622, 6792, 6804, 7104, 7219 chlorine content ______ RI 6579 major ash constituents ______ RI 7240 oxygen in, determination, method _____ RI 6753 PTG phosphorus content ______ RI 6579 potassium content ______ RI 6579 sodium content ______ RI 6579 sulfur content, forms ______ IC 8301 coal ash, analyses _____ RI 7240 fusibility data _____ RI 7240 coal carbonization, light oil from, analysis B 643 light oil yield _____ B 643 tar from, analysis _____ B 643 tar yield _____ B 643 Cochran mine, coal, carbonizing proper-___ RI 7131 ties _____ Cooper sand, oil recovery, gasflood perties __ formance prediction Cosgray No. 2 mine, coal, carbonizing properties _ RI 7272 RI 7131 Crescent mine, coal, carbonizing properties _____ RI 7131 crude oil, low-sulfur, composition _____ B 642 production _____ RI 7059 sulfur content _____ RI 7059 Dewdrop sand, core samples, density and porosity data _____ IC 8330 Dunmore No. 3 bed, anthracite, washing characteristics _____ RI 6989 Eastern Middle anthracite field, microfilmed maps, catalog _____ IC 8274

Pennsylvania, Ellsworth No. 51 mine, coal, carbonizing properties ______ RI 7131 Emerald mine, coal, carbonizing properties _____ RI 7131 Fayette and Green Counties, auto wrecking and scrap processing indus-SP 1-67 tries . Fayette County, coal, carbonizing proper-RI 7131 ties Fifth sand, core samples, density and por-IC 8330 and porosity data IC 8330 fire clay, as potential aluminum source IC 8335 Forge Slope mine, anthracite, properties RI 7086 Foster-Reno-Oil City field, underground-combustion oil-recovery experi-._ RI 6942 ment Gaylor Stripping mine, anthracite, properties **RI 7086** George F. Pettinos, Inc., quartzite deposit, mining and processing meth-IC 8248 ods and costs . Glade sand, core samples, density and Glen Alden Coal Co., anthracite mine, experimental longwall mining ____ IC 8330 RI 6745 Glen Nan mine, anthracite, washing char-RI 6989 acteristics _____ Grace mine, iron-ore waste from, dis-IC 8435 posal costs _____ disposal system _____ IC 8435 Green County, coal, carbonizing proper-_ RI 7131 ties _____ Hartley mine, coal, carbonizing proper-ties ______ RI 7131 heavy-crude-oil reservoirs, survey _____ IC 8263 helium-bearing natural gases, analyses___ IC 8302 Huber mine, anthracite, properties _____ RI 7086 washing characteristics _____ RI 6989 Kane oilfield, pilot waterflood, predicted performance ______ RI 6917 waterflood, field performance ______ RI 6917 theoretical and field performance OP 124-66 Kane sand, core samples, density and poresity data king mine, coal, carbonizing properties RI 7131 Kitanning, coal mine, geologic and hydrologic environment, study. OP 65-66 Knox Third sand, core samples, density and porosity data Lackawanna County, anthracite, wash-ing characteristics IC 8330 RI 6989 Lawrence County, coal, preparation char-RI 7324 acteristics Lewis Run sand, core samples, density and porosity data ______ Lower Clarion bed, coal, washing charac-IC 8330 RI 7174 teristics Lower Freeport bed, coal, preparation characteristics RI 7324 Lower Kitanning bed, coal, carbonizing **RI** 7174 OP 154-67 prediction ____ Luzerne County, anthracite, preparation characteristics Lytle sand, core samples, density and RI 6989 porosity data IC 8330 Mather Collieries mine, coal, carbonizing properties RI 7131 Mathies mine, coal, carbonizing proper-Melcroft mine, coal, carbonizing properties _____ RI 7131 Middle Kitanning bed, coal, preparation characteristics ______ RI 7324 washing characteristics ______ RI 7174

Pennsylvania, mine air sealing experiment OP 66–68 minerals, production, annual data MY 1968 (v. I–II, III) mineral industry, annual review MY 1968 (v. III) Mofatt mine, coal, carbonizing properties ______ Mona-Ark No. 5 mine, coal, carbonizing _ RI 7131 Nemacolin mine, coal, stress changes in pillars, during extraction ____ RI 6980 north-central, secondary backfilling, strip RI 6772 mines, microfilmed maps _____ IC 8379 No. 190 Tunnel mine, anthracite, prop-erties _____ RI 7086 erties R occupational diseases, workmen's compensation laws on _____ B 623 oil recovery, underground combustion, study _____ OP 106-66 oilfields, shallow _____ M 12 Pittsburgh bed, coal carbonizing properties RI 7131 Pittsburgh-Penn Hills area, auto wrecking and scrap processing industries Raven Run Coal Co. Germantown mine, _ SP 1-67 anthracite, continuous borer tests_ RI 6759 Rose's mine, coal, carbonizing properties RI 7131 Rosedale No. 7 mine, coal, carbonizing properties ______ RI 7131 Sartwell oilfield, predicted oil recovery, from gas drive ______ RI 6943 from waterflood _____ RI 6943 from waterflood Sartwell sand, core samples, density and RI 6943 porosity data _____ IC 8330 Sewickley bed, coal, tarbonizing proper-Sewickley Deu, Com, ties ties shale, for lightweight aggregate, eval-uation OP 134-66 properties PTG PTG uses strip mines, abandoned, revegetation studies studies ______ RI 7075 Sugar Notch mine, anthracite, properties RI 7086 washing characteristics ______ RI 6989 Sunshine No. 3 mine, coal, carbonizing properties ______ RI 7131 titanium mineral deposits, survey ______ IC 8290 Twilight Industries, Inc., mine, coal, car-bonizing properties ______ RI 7131 Underwood mine, anthracite, properties _ RI 7086 Upper Clarion bed, coal, washing characteristics Upper Freeport bed, coal, carbonizing _ RI 7174 properties RI 7131 preparation characteristics RI 7324 washing characteristics RI 7174 Venango First sand, core samples, density and porosity data _____ IC 8330 Venango Second sand, core samples, density and porosity data _____ IC 8330 Venango Third sand, core samples, density and porosity data _____ IC 8330 Wanamie mine, anthracite, properties __ RI 7086 washing characteristics _____ RI 6989 Washington County, coal, carbonizing Waynesburg bed, coal, carbonizing properties _____ RI 7181 West Lebanon experimental mine, bituminous coal, hydraulic mining RI 7090 tests _____ Whiteley No. 3 mine, coal, carbonizing properties _____ RI 7131

Pennsylvania, Wilkes-Barre, mine-subsi-dence project ______ OP 31-65 Wyoming basin, anthracite mines, microfilmed maps ______ IC 8379 Pennsylvania anthracite, annual data MY 1968 (v. I-II) Pentadienes, vapor pressures ______ OP 97-69 Pentane-natural gas mixures ______ OP 97-69 Pentanenatural gas mixures, compres-sibility factors, cell for deter-mining ______ OP 132-67, 133-67 1-Pentanethiol, heat of vaporization _____ OP 47-65 vapor, heat capacity ______ OP 47-65 Pentenes, mass spectral analyses ______ B 634 Pentenes, mass spectral analyses ______ B 634 Pentolite, explosive performance, effect of charge diameter on _____ RI 6806 explosive properties _____ RI 6806 Percolation rate, hydraulic backfill, factors influencing, laboratory study ____ RI 7034 problems _____ B 630 Permeability, blast-furnace burdens, experimental studies _____ RI 6945 oil, sandstones, laboratory determinaoil, sanustones, laboratory determina-tion ______ RI 6804; OP 200-67 oil and gas reservoirs, increasing, by explosive fracturing ______ OP 104-68 by heat ______ OP 104-68 oil reservoirs, determination. methods. OP 170-67 relative, three-phase imbibition, calcu-lating ______ OP 142 20 OP 142-68 lating _____ lating _____ RI 6826 to fluids, in porous media, studies _____ RI 6826 two phase and three-phase, studies ____ RI 6826 to fluids, in porous media, studies _____ RI 6826 two-phase and three-phase, studies ____ RI 6826 two-phase imbibition, calculating ___ OP 142-68 reservoir rock, calculating _____ RI 7006 improving, explosive fracturing tests_ OP 44-68 rock, improving, by explosive fracturing _____ OP 82-68, 104-68 sandstone samples, after monopropel-lant burning, results _____ OP 118-67 water, sandstones, laboratory determi-nation _____ RI 6804: OP 200-67 Permian Basin, crude oils, composition, correlation with stratigraphy __ OP 76-65 Permian red beds, correlation chart ___ OFR 10-69 Permissible blasting devices, general requirements for requirements for _____ IC 8249, 8371 _____ IC 8249, 8371 list _____ IC 8249, 8371 Permissible explosives, gap-sensitivity tests, new methods ______ RI 6947 gelatinous, in coal dust-air mixtures, ef-fect of sodium nitrate _____ RI 7318 general requirements for _____ IC 8249, 8371 incendivity, in coal dust-gas-air mixtures, evaluating, modified technique ___ RI 7127 in presence of coal dust _____ IC 8249, 8371 properties _____ IC 8405 properties sensitivity testing, combination statistical _ IC 8405 design for ______ IC 8324 Permissible gas masks, list ______ IC 8436 Permissible mine equipment, air compressors, list _____ IC 8299, 8372

1

D Ĩ Ľ 1

Permissible mine equipment, air sampling pumps, list IC 8372 auger drills, list IC 8299 blasting units, list IC 8299 multiple-shot, fees for testing, amend- ments S 16E single-shot, fees for testing, amend- ments S 12D
pumps, list IC 8372
auger drills, list IC 8299
multiple-shot, fees for testing, amend-
ments S 16E
ments S 12D
ments S 12D breathing apparatus, self-contained, fees
for testing, amendments S-13D
rules for testing S 13E
coal drills, list IC 8299, 8372
coal mines, reflectors, standards for RI 7202
conveyors list IC 8299, 8372
breathing apparatus, self-contained, fees for testing, amendments S-13D new requirements OF 161-69 rules for testing IC 8299, 8372 coal drills, list IC 8299, 8372 communication units, list IC 8299, 8372 conveyors, list IC 8299, 8372 conveyors belts, fire-resistant, fees for test- ing, amendmenta S 28
diesel-engine-driven equipment, for un-
for use in coal mines IC 8299
for use in gassy noncoal mines _ IC 8299, 8372
for use in noncoal mines, list IC 8372
for use in coal mines, list IC 8299 for use in coal mines IC 8299 for use in noncoal mines, list IC 8299, 8372 for use in noncoal mines, list IC 8372 diesel mine locomotives, fees for testing, amendments S 22
diesel-powered equipment for noncost mines
diesel-powered equipment for noncoal mines, mobile, fees for testing, amendments S 24
distribution boxes, list IC 8299, 8372
drilling equipment, list IC 8299, 8372
drilling machines list IC 8200 8272
distribution boxes, list IC 8299, 8372 drilling equipment, list IC 8299, 8372 with dust-collecting systems, list IC 8299, 8372 drilling machines, list IC 8299, 8372 dust collectors, list IC 8299
dust collectors for use in connection with rock drilling in coal mines, fees for
rock drilling in coal mines, fees for
testing, amendments S 25B dust samplers, list IC 8372 electric cap lamps, fees for testing, amend- ments S 6D
electric cap lamps, fees for testing, amend-
mentsS 6D
electric-drive units for blower fans.
list IC 8299, 8372 electric flashlights, list IC 8299, 8372
electric mine lamps, other than standard cap lamps, fees for testing, amend-
cap lamps, fees for testing, amend-
ments S 10C electric motor-driven mine equipment and
accessories, rules for testing S 2G
electric motor-driven mine equipment, junc- tion baxes, and other accessory equip-
tion boxes, and other accessory equip- ment, fees for testing, amendments $_$ S 2F
flame safety lamps, fees for testing, amend-
ments S 7C list IC 8299
gas masks
gas masks IC 8281 amine vapor-protective, list IC 8296
fees for testing, amendments S 14F schedule, discussion OP 33-66, 109-66
hydraulic fluids, fire-resistant, fees for test-
ing, amendments S 30 lighting equipment for underground work- ing, fees for testing, amendments S 29A
ing, iees for testing, amendments S 29A
loading machines, list IC 8299, 8372 locomotive, diesel-powered, list IC 8363
methane detectors, list IC 8299, 8372 portable, fees for testing, amendments S 8C laboratory tests IC 8292
methane-monitoring systems, fees for test-
ing, amendments S 32
rules for testing, amendments S 32A
mine-lighting equipment, list IC 8299
mine pumps, list IC 8299, 8372
mining machines, lists
misselleneous electric min-lement, list IC 8872
miscellaneous electric mine lamps, list IC 8299 miscellaneous trucks, list IC 8299
motemaneous trucks, list IU 0299

.

Permissible mine equipment, mobile diesel-
powered transportation equipment for gassy noncoal mines and tunnels, fees
list 1C 8354
recommended fuels for flame safety
recommended fuels for flame safety lamos, list IC 8299, 8372 reflectors RI 7202 respirators, chemical-cartridge, fees for testing, amendments S 23B discussion OP 164-69 dust IC 8281
respirators chemical-cartridge, fees for
testing, amendments S 23B
discussion OP 164–69
filter-type dust, fume, and mist, fees for
testing, amendments S 21B rules for testing, amendments S 21B
mist IC 8281
mist IC 8281 nonemergency gas IC 8281
fees for testing, amendments S 23B
paint-spray, fees for testing, amend- ments S 23B revised schedules, discussion OP 33-66
revised schedules, discussion OP 33-66
revised schedules, discussion OP 33-66 supplied-air, fees for testing, amend- ments S 19B rules for testing, amendments S 19B respiratory devices, list IC 8436 rock-dusting machines, list IC 8299 seismic instruments, list IC 8299 seismic instruments, list IC 8299 seif-contained breathing apparatus IC 8291 low-temperature performance tests RI 7077 revised schedules, discussion_ OP 33-66, 109-66 shuttle cars, dissel-powered, list IC 8299 seist IC 8354 list IC 8299 splice boxes, list IC 8299
rules for testing, amendments S 19B
respiratory devices, list
room and car-spotting hoists, list IC 8299, 8372
seismic instruments, list IC 8372
self-contained breathing apparatus IC 8281
revised schedules, discussion OP 33-66, 109-66
shuttle cars, diesel-powered, list IC 8354
list IC 8299, 8372
storage battory logomotives list IC 9979
telephone and signaling devices, fees for testing, amendments S 9B tractors and loaders, diesel-powered, list_ IC 8363 trucks, diesel-powered, list IC 8363 trucks and tractors, list IC 8364 wheel-type loaders, diesel-powered, list_ IC 8354 Parmiesible respirators list IC 8436
testing, amendments S 9B
trucks, diesel-powered, list IC 8363
trucks and tractors, list IC 8372
wheel-type loaders, diesel-powered, list _ IC 8354 Permissible respirators, list IC 8436
Perovskite, magnetic susceptibility IC 8360 Peru, crude oil, production RI 7059 sulfur content RI 7059
economic progress, review OP 198-67
mineral industry, annual review
MY 1968 (v. IV) Pesticides, fillers, Federal regulations con-
cerning IC 8260
mineral-filler requirements IC 8260 Petrofabric analysis, mining-induced defor-
mation, in deep mine RI 7173
mation, in deep mine RI 7173 tectonic deformation, in deep mine RI 7173
Petroleum, see also Crude oil; Oil, crude
Petroleum, aromatic fractions from, mass spectrometric determina-
tion OP 175-69
tion OP 175-69 aromaticity, carbon-13 nuclear mag-
netic resonance spectrometry OP 24-67 barge transportation of IC 8431
basic nitrogen compounds in, spectro- scopic identifications OP 193-68
byproducts B 630 colloids in, small-angle X-ray scatter-
ing, study OP 40_65
ing, study OP 40-65 composition, relation to petroleum ori-
gin theories OP 62-68 consumption B 630
consumption B 630 crude, annual data MY 1968 (v. I-II)
characteristics, from routine petroleum
analysis RI 6946 metallo-organic materials in, separation and characterization
and characterization RI 7273 processing characteristics RI 7183
imports and exports B 630

日日の日日の

•

1

) 2) 1

Petroleum, exploration and development costs B 630 exports B 630
exports B 630 for asphalt manufacture, properties OP 11-65 from important U.S. oilfields, analyses RI 6819 from salt domes, production IC 8313
from salt domes, production IC 8313 grades B 630 high-boiling fractions, sulfur compound
characterizations RI 6879
high-molecular-weight compounds, elec- trophoretic separation of RI-6912 hydrocarbon constituents of, identifica-
tion OP 16-68
imports B 630 nitrogen compounds in, separating and identifying OP 4-68
type analysis OP 109-65 nonbasic nitrogen compounds in, identi-
fication OP 89-65 removal, method OP 43-69 nonhydrocarbon constituents in, char-
acterization, microhydrogena- tion OP 196-67
nonnydrotaribon constituents in, char- acterization, microhydrogena- tion OP 196-67 nonmetal elements and compounds in, lit- erature survey OP 7-68, 122-69 origin, organic precursors B 642 porphyrins in, spectroscopic determi- nation OP 66-66 prices
origin, organic precursors B 642 porphyrins in, spectroscopic determi-
nation OP 66-66 prices B 630
prices B 630 production B 630 properties OP 156-67
properties OP 156-67 reserves B 630
secondary recovery missible phose
method, radiotracers in OP 9-65 sulfur compounds in, identification OP 27-65, 141-65, 89-66, 137-66 microhydrogenation technique OP 196-67
141-65, 89-66, 137-66
microhydrogenation technique OP 196-67
study OP 90-66 vapor pressures OP 69-66 supply and demand IC 8411
supply and demand IC 8411
technology B 630
technology B 630 uses B 630 west Texas analyses BI 6752
west Texas, analyses RI 6752
west Texas, analyses RI 6752
west Texas, analyses RI 6752 Petroleum asphalt, characterization, by inverse gas-liquid chromatog- raphy OP 28-66 inverse gas-liquid chromatography OP 181-68
west Texas, analyses RI 6752 Petroleum asphalt, characterization, by inverse gas-liquid chromatog- raphy OP 28-66 inverse gas-liquid chromatography OP 181-68
west Texas, analyses RI 6752 Petroleum asphalt, characterization, by inverse gas-liquid chromatog- raphy OP 28-66 inverse gas-liquid chromatography OP 181-68 Petroleum chemistry, role of Bartlesville Petroleum Besearch Center inOP 176-68
west Texas, analyses RI 6752 Petroleum asphalt, characterization, by inverse gas-liquid chromatog- raphy OP 28-66 inverse gas-liquid chromatography OP 181-68 Petroleum chemistry, role of Bartlesville Petroleum Research Center in _ OP 176-68 Petroleum coke, as industrial-carbon source _ B 630 calcining IC 8259
west Texas, analyses RI 6752 Petroleum asphalt, characterization, by inverse gas-liquid chromatog- raphy OP 28-66 inverse gas-liquid chromatography OP 181-68 Petroleum chemistry, role of Bartlesville Petroleum Research Center in _ OP 176-68 Petroleum coke, as industrial-carbon source _ B 630 calcining IC 8259 Calif. markets IC 8259
west Texas, analyses RI 6752 Petroleum asphalt, characterization, by inverse gas-liquid chromatog- raphy OP 28-66 inverse gas-liquid chromatography OP 181-68 Petroleum chemistry, role of Bartlesville Petroleum Research Center in _ OP 176-68 Petroleum coke, as industrial-carbon source _ B 630 calcining IC 8259 Calif. markets IC 8259
west Texas, analyses RI 6752 Petroleum asphalt, characterization, by inverse gas-liquid chromatog- raphy OP 28-66 inverse gas-liquid chromatography OP 181-68 Petroleum chemistry, role of Bartlesville Petroleum Research Center in OP 176-68 Petroleum coke, as industrial-carbon source B 630 calcining IC 8259 Calif., markets IC 8259 properties IC 8259 marketing IC 8259
west Texas, analyses RI 6752 Petroleum asphalt, characterization, by inverse gas-liquid chromatog- raphy OP 28-66 inverse gas-liquid chromatography OP 181-68 Petroleum chemistry, role of Bartlesville Petroleum Research Center in OP 176-68 Petroleum coke, as industrial-carbon source B 630 calcining IC 8259 properties IC 8259 marketing IC 8259 properties IC 8259 properties IC 8259 properties IC 8259 properties IC 8259 properties IC 8259
west Texas, analyses RI 6752 Petroleum asphalt, characterization, by inverse gas-liquid chromatog- raphy OP 28-66 inverse gas-liquid chromatography OP 181-68 Petroleum chemistry, role of Bartlesville Petroleum Research Center in OP 176-68 Petroleum coke, as industrial-carbon source B 630 calcining IC 8259 properties IC 8259 marketing IC 8259 properties IC 8259 properties IC 8259 properties IC 8259 properties IC 8259 properties IC 8259
west Texas, analyses RI 6752 Petroleum asphalt, characterization, by inverse gas-liquid chromatog- raphy OP 28-66 inverse gas-liquid chromatography OP 181-68 Petroleum chemistry, role of Bartlesville Petroleum coke, as industrial-carbon source _ B 630 calcining IC 8259 Calif., markets IC 8259 properties IC 8259 marketing IC 8259 raw, manufacture IC 8259 utilization IC 8259 Petroleum-coke industry, Calif., study IC 8259 Petroleum development, offshore IC 8259
west Texas, analyses RI 6752 Petroleum asphalt, characterization, by inverse gas-liquid chromatog- raphy OP 28-66 inverse gas-liquid chromatography OP 181-68 Petroleum chemistry, role of Bartlesville Petroleum Research Center in OP 176-68 Petroleum coke, as industrial-carbon source B 630 calcining IC 8259 properties IC 8259 marketing IC 8259 properties IC 8259 propertoleum-coke industry, Calif., study IC 8259 Petroleum-coke industry, offshore IC 8408 Petroleum development, offshore
west Texas, analyses RI 6752 Petroleum asphalt, characterization, by inverse gas-liquid chromatog- raphy OP 28-66 inverse gas-liquid chromatography OP 181-68 Petroleum chemistry, role of Bartlesville Petroleum Research Center in _ OP 176-68 Petroleum coke, as industrial-carbon source _ B 630 calcining IC 8259 Calif., markets IC 8259 properties IC 8259 properties IC 8259 properties IC 8259 raw, manufacture IC 8259 raw, manufacture IC 8259 Petroleum-coke industry, Calif., study IC 8259 Petroleum development, offshore IC 8259 Petroleum distillates, nonbasie nitrogen compounds in, identification OP 89-65 Petroleum for high-boiling, sulfur-
 west Texas, analyses RI 6752 Petroleum asphalt, characterization, by inverse gas-liquid chromatography OP 28-66 inverse gas-liquid chromatography OP 181-68 Petroleum chemistry, role of Bartlesville Petroleum Research Center in OP 176-68 Petroleum coke, as industrial-carbon source B 630 calcining IC 8259 properties IC 8259 protexting IC 8259 protexting IC 8259 protexting IC 8259 protexting IC 8259 preventies IC 8259 preventies IC 8259 preventies IC 8259 preventies IC 8259 petroleum-coke industry, Calif., study IC 8259 Petroleum development, offshore IC 8408 Petroleum distillates, nonbasic nitrogen compounds in, identification OP 89-65 Petroleum fractions, high-boiling, sulfur compound characterization, study OP 90-66 separation of sulfoxides from, method _ OP 8-68
<pre>west Texas, analyses RI 6752 Petroleum asphalt, characterization, by</pre>
<pre>west Texas, analyses RI 6752 Petroleum asphalt, characterization, by</pre>
west Texas, analyses RI 6752 Petroleum asphalt, characterization, by inverse gas-liquid chromatog- raphy OP 28-66 inverse gas-liquid chromatography OP 181-68 Petroleum chemistry, role of Bartlesville Petroleum Research Center in OP 176-68 Petroleum coke, as industrial-carbon source B 630 calcining IC 8259 properties IC 8259 Petroleum-coke industry, Calif., study IC 8259 Petroleum-coke industry, Calif., study IC 8259 Petroleum development, offshore IC 8259 Petroleum fractions, high-boiling, sulfur- compound characterization, study OP 90-66 separation of sulfoxides from, method _ OP 8-68 vanadium in, plasma arc determination,
<pre>west Texas, analyses RI 6752 Petroleum asphalt, characterization, by</pre>
west Texas, analyses RI 6752 Petroleum asphalt, characterization, by inverse gas-liquid chromatog- raphyOP 28-66 inverse gas-liquid chromatographyOP 181-68 Petroleum chemistry, role of Bartlesville Petroleum Research Center inOP 176-68 Petroleum coke, as industrial-carbon sourceB 630 calciningIC 8259 calif., marketsIC 8259 propertiesIC 8259 propertiesIC 8259 utilizationIC 8259 petroleum-coke industry, Calif., studyIC 8259 petroleum development, offshoreIC 8259 Petroleum distillates, nonbasic nitrogen compounds in, identificationOP 89-65 Petroleum fractions, high-boiling, sulfur- compound characterization, study OP 90-66 separation of sulfoxides from, methodOP 8-68 vanadium in, plasma arc determination, improved methodOP 196-68 Petroleum industry, operating expenses, 1958-63, comparison B 630
west Texas, analyses RI 6752 Petroleum asphalt, characterization, by inverse gas-liquid chromatog- raphy OP 28-66 inverse gas-liquid chromatography OP 181-68 Petroleum chemistry, role of Bartlesville Petroleum Research Center in OP 176-68 Petroleum coke, as industrial-carbon source B 630 calcining IC 8259 calif., markets IC 8259 marketing IC 8259 marketing IC 8259 properties IC 8259 properties IC 8259 properties IC 8259 Petroleum-coke industry, Calif., study IC 8259 Petroleum-coke industry, Calif., study IC 8259 Petroleum development, offshore IC 8259 Petroleum distillates, nonbasic nitrogen
west Texas, analyses RI 6752 Petroleum asphalt, characterization, by inverse gas-liquid chromatog- raphy OP 28-66 inverse gas-liquid chromatography OP 181-68 Petroleum chemistry, role of Bartlesville Petroleum Research Center in OP 176-68 Petroleum coke, as industrial-carbon source B 630 calcining IC 8259 calif., markets IC 8259 marketing IC 8259 marketing IC 8259 properties IC 8259 properties IC 8259 properties IC 8259 Petroleum-coke industry, Calif., study IC 8259 Petroleum-coke industry, Calif., study IC 8259 Petroleum development, offshore IC 8259 Petroleum distillates, nonbasic nitrogen
west Texas, analyses RI 6752 Petroleum asphalt, characterization, by inverse gas-liquid chromatog- raphy OP 28-66 inverse gas-liquid chromatography OP 181-68 Petroleum chemistry, role of Bartlesville Petroleum Research Center in OP 176-68 Petroleum coke, as industrial-carbon source B 630 calcining IC 8259 properties IC 8259 petroleum-coke industry, Calif., study IC 8259 petroleum-coke industry, Calif., study IC 8259 Petroleum development, offshore IC 8259 Petroleum distillates, nonbasic nitrogen compounds in, identification OP 89-65 Petroleum fractions, high-boiling, sulfur- compound characterization, study OP 90-66 separation of sulfoxides from, method OP 8-68 vanadium in, plasma arc determination,
west Texas, analyses RI 6752 Petroleum asphalt, characterization, by inverse gas-liquid chromatog- raphyOP 28-66 inverse gas-liquid chromatographyOP 181-68 Petroleum chemistry, role of Bartlesville Petroleum Research Center inOP 176-68 Petroleum coke, as industrial-carbon sourceB 630 calciningIC 8259 calif., marketsIC 8259 propertiesIC 8259 propertiesIC 8259 utilizationIC 8259 petroleum-coke industry, Calif., studyIC 8259 Petroleum development, offshoreIC 8259 Petroleum distillates, nonbasic nitrogen compounds in, identificationOP 89-65 Petroleum fractions, high-boiling, sulfur- compound characterization, study OP 90-66 separation of sulfoxides from, methodOP 8-68 vanadium in, plasma arc determination, improved methodOP 196-68 Petroleum industry, operating expenses, 1958-63, comparison B 630 problems B 630 producing technologies, 1958-63, com- parisonOP 177-68 water use, new and recirculatedOP 177-68 water use, new and recirculated

Petroleum precursors, hypothesis B 642 in simulated sediment, irradiation, results OP 196-68 Petroleum products, annual data
results OP 196-68 Petroleum products, annual data
MY 1968 (v. I-II) consumption B 630 imports and exports B 630 presence, in tunnel construction, special safety precautions for B 644 production B 630 properties OP 156-67 presence B 644
imports and exports B 630
presence, in tunnel construction, special
safety precautions for B 644
properties OP 156-67
uses B 630
uses B 630 Petroleum refineries, water-conservation practices IC 8270
water utilization IC 8270
Petroleum-related materials, organic analysis, automated X-ray method OP 29-66
ysis, automated X-ray method OP 29-66
Petroleum research, annual report IC 8364 Bureau of Mines programs in OP 130-69 Petroleum reservoirs, nuclear fracturing
Petroleum reservoirs, nuclear fracturing
of, product contamination, study _ RI 6684 radiolsotope use in, literature survey OP 3-66
radioisotope use in, literature survey OP 3-66
ity OP 82_65
Petroleum-reservoir rock, acoustic veloc- ity OP 82-65 Petroleum world, qualitative composition of
petroleum, literature survey IC-8286
Phase diagrams, condensate-natural gas systems, effect of butane addi-
tions OP 110-66
conner-manganese B 624
hafnium-carbon system RI 7137 magnesium-cerium RI 6866
magnesium-cerium RI 6866
nickel-gadolinum
magnesium-terum magnesium-titanium OP 156-68 nickel-gadolinum RI 6636 potassium fluoride-yttrium fluoride sys-
tem
Silica-alumina-lime system KI 0909 Phonosite flotation characteristics RI 7188
Phenanthrene, carbon shieldings, calcu-
Phenacite, flotation characteristics RI 7188 Phenanthrene, carbon shieldings, calcu- lated and observed OP 77-68 electrochemical reduction of RI 7017
electrochemical reduction of KI 7017 from low-temperature coal-tar neutral oil,
identification . B 637
impure, anthracene removal from, molten sodium method OP 17-65
molten sodium method OP 17-65 mass spectrum RI 6951
spinning-electrode system OP 74-68
Phenols, in low-temperature tar, from low-
rank coals, carbon number distri-
bution RI 6586
Phenylmethylcarbinol, hydrogenation un-
der hydroformylation condi- tions, kinetics OP 178–67
Philippines, mineral industry, annual review
MY 1968 (v. IV)
nickeliferous laterite, sulfatization, tests RI 6644
Phosgenite, magnetic susceptibility IC 8383
Phosgenite, magnetic susceptibility IC 8383 Phosphate, from Florida phosphate rock
Phospenite, magnetic susceptibility IC 8383 Phosphate, from Florida phosphate rock slime, chemical processing meth-
Phosgenite, magnetic susceptibility IC 8383 Phosphate, from Florida phosphate rock slime, chemical processing meth- ods RI 6844 recovery. Phosphoria phosphate rock,
Phosgenite, magnetic susceptibility IC 8383 Phosphate, from Florida phosphate rock slime, chemical processing meth- ods RI 6844 recovery, Phosphoria phosphate rock, effect of mineralogical features RI 6749
Phosgenite, magnetic susceptibility IC 8383 Phosphate, from Florida phosphate rock slime, chemical processing meth- ods RI 6844 recovery, Phosphoria phosphate rock, effect of mineralogical features RI 6749 Phosphate deposits, U.S RI 6935
 Phosgenite, magnetic susceptibility IC 8383 Phosphate, from Florida phosphate rock slime, chemical processing meth- ods RI 6844 recovery, Phosphoria phosphate rock, effect of mineralogical features RI 6749 Phosphate deposits, U.S RI 6935 world RI 6935 Phosphate fertilizers, consumption RI 6935
Phosgenite, magnetic susceptibility IC 8383 Phosphate, from Florida phosphate rock slime, chemical processing meth- ods recovery, Phosphoria phosphate rock, effect of mineralogical features RI 6935 world Phosphate fertilizers, consumption RI 6935 production
Phosgenite, magnetic susceptibility IC 8383 Phosphate, from Florida phosphate rock slime, chemical processing meth- ods RI 6844 recovery, Phosphoria phosphate rock, effect of mineralogical features RI 6749 Phosphate deposits, U.S RI 6935 world RI 6935 Phosphate fertilizers, consumption RI 6935 Production RI 6935 Phosphate fines, physical properties RI 7205
Phosgenite, magnetic susceptibility IC 8383 Phosphate, from Florida phosphate rock slime, chemical processing meth- ods RI 6844 recovery, Phosphoria phosphate rock, effect of mineralogical features RI 6749 Phosphate deposits, U.S RI 6935 world RI 6935 Phosphate fertilizers, consumption RI 6935 Phosphate fines, physical properties RI 7205 structural clay products from, forming
Phosgenite, magnetic susceptibility IC 8383 Phosphate, from Florida phosphate rock slime, chemical processing meth- ods RI 6844 recovery, Phosphoria phosphate rock, effect of mineralogical features RI 6749 Phosphate deposits, U.S. World Phosphate fertilizers, consumption RI 6935 Phosphate fines, physical properties RI 7205 structural clay products from, forming and fring tests
Phosgenite, magnetic susceptibility IC 8383 Phosphate, from Florida phosphate rock slime, chemical processing meth- ods RI 6844 recovery, Phosphoria phosphate rock, effect of mineralogical features RI 6749 Phosphate deposits, U.S. world Phosphate fertilizers, consumption RI 6935 Phosphate fines, physical properties RI 7205 structural clay products from, forming and firing tests Phosphate industry, U.S., discussion RI 6935
Phosgenite, magnetic susceptibility IC 8383 Phosphate, from Florida phosphate rock slime, chemical processing meth- ods RI 6844 recovery, Phosphoria phosphate rock, effect of mineralogical features RI 6749 Phosphate deposits, U.S RI 6935 world RI 6935 Phosphate fertilizers, consumption RI 6935 Phosphate fertilizers, consumption RI 6935 Phosphate fines, physical properties RI 7205 Structural clay products from, forming and firing tests RI 7205 Phosphate industry, U.S., discussion RI 6935 western, evaluation RI 6611, 6801, 6934, 6935 outlook RI 6935
 Phosgenite, magnetic susceptibility IC 8383 Phosphate, from Florida phosphate rock slime, chemical processing methods RI 6844 recovery. Phosphoria phosphate rock, effect of mineralogical features RI 6749 Phosphate deposits, U.S RI 6935 world RI 6935 Phosphate fertilizers, consumption RI 6935 Phosphate fines, physical properties RI 7205 structural clay products from, forming and firing tests RI 6935 Phosphate industry, U.S., discussion RI 6935 western, evaluation RI 6611, 6801, 6934, 6935 outlook RI 6935
Phosgenite, magnetic susceptibility IC 8383 Phosphate, from Florida phosphate rock slime, chemical processing meth- ods RI 6844 recovery, Phosphoria phosphate rock, effect of mineralogical features RI 6749 Phosphate deposits, U.S RI 6935 world RI 6935 Phosphate fertilizers, consumption RI 6935 Phosphate fines, physical properties RI 7205 structural clay products from, forming and firing tests RI 6935 Phosphate industry, U.S., discussion RI 6935 western, evaluation RI 6611, 6801, 6934, 6935 outlook RI 6935 resources RI 6935 rends RI 6935
Phosgenite, magnetic susceptibility IC 8383 Phosphate, from Florida phosphate rock slime, chemical processing meth- ods RI 6844 recovery, Phosphoria phosphate rock, effect of mineralogical features RI 6749 Phosphate deposits, U.S RI 6935 world RI 6935 Phosphate fertilizers, consumption RI 6935 Phosphate fines, physical properties RI 6935 Phosphate fines, physical properties RI 7205 structural clay products from, forming and firing tests RI 6935 Phosphate industry, U.S., discussion RI 6935 western, evaluation RI 6611, 6801, 6934, 6935 outlook RI 6935 world, discussion RI 6935 world, discussion RI 6935
Phosgenite, magnetic susceptibility IC 8383 Phosphate, from Florida phosphate rock slime, chemical processing meth- ods RI 6844 recovery, Phosphoria phosphate rock, effect of mineralogical features RI 6749 Phosphate deposits, U.S RI 6935 world RI 6935 Phosphate fertilizers, consumption RI 6935 Phosphate fines, physical properties RI 7205 structural clay products from, forming and firing tests RI 6935 Phosphate industry, U.S., discussion RI 6935 western, evaluation RI 6611, 6801, 6934, 6935 outlook RI 6935 resources RI 6935 rends RI 6935

•

1

. ٠

Phosphate ore, Idaho, beneficiation
studies RI 6749, 6751 flotation studies RI 6751
Mont., beneficiation studies RI 6749 Western, intermediate-grade, beneficia-
western, intermediate-grade, beneficia- tion studies RI 6930
tion studies
Phosphate pellets, Phosphoria Formation, heneficiation study BI 6992
beneficiation study RI 6993 Phosphate resources, world RI 6935
Phosphate rock, annual data MY 1968 (v. I-II)
consumption B 630: RI 6935
demand, projected IC 8418
Phosphate rock, annual data MY 1968 (v. I-II) chemical-industry use, Calif IC 8244 consumption B 630; RI 6935 demand, projected IC 8418 statistical analysis of IC 8418 Idaho, resources RI 6801
imports B 630
imports B 630 mining, with pneumatic vibrating-blade planer, tests RI 6863
Mont., resources RI 6611
prices B 630
production B 630 western RI 6935
western RI 6935 world RI 6935
reserves B 630 technology B 630
technology B 630 uses B 630
western, mining methods RI 6935 projected requirements RI 6935 Phosphate rock deposits, Idaho RI 6801 Mont RI 6611 Phosphate-rock industry, organization B 630
Phosphate rock deposits, Idaho RI 6801
Mont RI 6611
problems B 630
problems B 630 Phosphate rock slime, alumina extraction
from, agitation leaching, tests RI 6844 curing and baking, tests RI 6844
curing and baking, tests RI 6844 leach-electrolysis method, tests RI 6844
phosphate extraction from, agitation
phosphate extraction from, agitation leaching tests RI 6844 curing and baking, tests RI 6844
reach-electrolysis method, tests At 0044
Phosphate rock washer slimes, disposal, pond settling method, cost esti-
mates IC 8404 Phosphine, properties and uses IC 8291
Phosphine gas masks, approved by Bureau
of Mines, list IC 8291
Phosphonium iodide, phosphine production
from, method IC 8291 Phosphoria Formation, low-grade phosphate
ores, beneficiation studies RI 6930
phosphate pellets, beneficiation study RI 6993 phosphate rock types, recovery, batch
heavy-liquid tests RI 6749
Phosphorus, elemental production RI 6935
uses RI 6935 in coal BI 6579
uses RI 6935 in coal RI 6579 in petroleum, literature survey OP 122-69
removal, from fron ores, process, patent _ P 10-68
Phosphorus compounds, chemical-industry use, Calif IC 8244
Phosphorus oxide, in coal ash, determina-
tion RI 7240
Photochemical effect, hydrocarbon emis- sions, effect of fuel composition
on OP 63-69
Photochemical smog formation, irradia-
tion-chamber experiments, meth- odology OP 115–67
Photographs, multispectral, sedimentary
structures, optical data proc-
essing of OP 146-68 Photographic solutions, waste, silver recov-
ery from, metallic displacement
method RI 7117
Photography, dua-negative system for duplicating negatives OP 173-67

Photography, high-speed, for shock and particle-velocity measurements.
particle-velocity measurements, rock samples RI 6770 lateral-pressure measurements by, in
explosions RI 6701
explosions RI 6701 NX borehole, use of goniometer in RI 7097 Photometry, flame, cesium and rubidium
determination by RI 6820 Phthalic acids, from coal acid, selective OR 188 67
decarboxylation OP 188-67 Phthalic anhydride, production from low-
temperature lignite tar, method RI 6916 Piceance Creek basin, Colo., Bureau of Mines-Atomic Energy Commis-
sion corebole progress report OP $128-67$
dawsonite occurrence OP 80-66
dawsonite occurrence OP 80-66 oil shale, oil yields RI 7051 Piceance Creek oil shale, core samples, oil
Pickle liquor, waste, use, in manganese re-
covery IC 8368 Pictured Cliffs gas reservoir, N. Mex.,
nuclear detonation site, evalua-
tion OP 167-67 Piedra Hueca copper deposit, Puerto Rico, D
assay data, statistical analysis RI 6955 Piezoelectric pulsing equipment, shear wave
velocity measurements, in rock samples RI 7065
Pig iron, high-manganese, recovery of man- ganese from slag of, study RI 6728
prerefining, with vortex cone, tests RI 6686 recovery, from lead blast furnace matte
residue, method RI 7042 Pillars, mine, model, for deformational
behavior tests OP 107-65
model, quasi-plastic rock, for creep tests_ RI 6703
Pillar extraction, pressure changes during, study
Pinakiolite, magnetic susceptibility IC 8359
Pine Mountain primitive area, Ariz., min-
eral appraisal GS 4-67 Pipeline, hydraulic transport of coal by,
problems, study RI 6743 Pipeline gas, from coal, progress, review_ OP 93-67
Pipeline industry, review IC 8314
Pipeline transport, solids, methods IC 8314
Pipeline-transport research, coal, review IC 8277
Piperidines, vapor pressure relations OP 165-68
Pitch, bituminous, resin fraction from, char- acterization B 636
coal-tar, high-resolution mass spec- trometry OP 110-68, 152-68
trometry
electrode-binder, from high-temperature
characterization B 636
from high-temperature coal carboniza- tion, mass spectrometric analy-
sis RI 7000; OP 131-65 lignite-tar, low-temperature, thermal cracking, products OP 147-67
cracking, products OP 147–67 liquid fuels from, hydrogenation process _ B 633
liquid fuels from, hydrogenation process B 633 low-temperature, bituminous-coal, hydro- genation B 633
genation B 633 lignite, delayed coking of OP 192-68 subbituminous, resin fraction from, charac-
terization B 636 thermally cracked, analyses RI 6625 Pitch resins, low-temperature bituminous- coal tar structure determine
Pitch resins, low-temperature bituminous- coal tar, structure determina-
coal tar, structure determina- tion, method OP 80-65 Pittsburgh bed, coal, gas migration charac-
teristics TPR 12 methane control techniques TPR 12
suitur content effect of
stage crushing on IC 8282; OP 103-66

-

ŧ

f

ŧ

Pittsburgh bed, Pa., coal, caking properties, destroying, method RI 6604	5
carbonizing properties RI 713: chloroform-extract yield, investiga-	Ĺ
chloroform-extract yield, investiga- tion RI 6973	2
float-and-sink data RI 6653	2
IFOLD-BOLALION WAShability data RI 6659	2
the state of the s	6
float-and-sink data RI 665	2
gasification tests RI 6652	2
fioat-and-sink data OF 37-66 fioat-and-sink data RI 6652 froth-flotation washability data RI 6652 gasification tests RI 6722 methane adsorption and desorption rates RI 6756 methane adsorption studies OP 101-66 methane data response OP 20-25	
methane adsorption studies OP 101-66) R
methane drainage OF 99-60 washing characteristics_ RI 6707, 7004, 7210	5
washing characteristics_ RI 6707, 7004, 7210 Pittsburgh Coal Research Center, basic	5
and applied research, summary _ OP 64-69	9
Pittsburgh seam, coal dusts, characteris-	
tics RI 693 decaking, fluid-bed method RI 679'	7
flash irradiation, gases from, distribu- tion OP 34-67	
hydrogenation, at extreme conditions,	
results OP 38-68	3
laser irradiation, gases from, distribution OP 34–67, 36–67 tar from, effect of carbonization condi-	7
tar from, effect of carbonization condi-	
tions on OP 29-68 Pittsburgh-seam coal dust particles, dust-	2
cloud formation from, aerodynamic	
aspects, study RI 725 Plancheite, magnetic susceptibility IC 8383	3
Plancor magnesium production units, proc- ess description RI 6656	
Planer, vibrating-blade, pneumatic, for	י
Planer, vibrating-blade, pneumatic, for mining phosphate rock, tests RI 6863 Plant growth, leonaridite use in, effect RI 7203	3
Plasma, use, in extractive metallurgy, pos-	\$
sible applications IC 8438	3
problems IC 8438 Plasma electrical conductivity, in open-	5
cycle magnetohydrodynamic pow-	
erplants, factors affecting OP 33-69 increasing, magnetohydrodynamic gen-	*
increasing, magnetohydrodynamic gen- erators, methods OP 135-68 Plasma jet, coal reactions in RI 6829; OP 43-66 Diama jet, coal reactions in RI 6829; OP 43-66	3
Plasma jet unit, design and operation RI 6829; OF 43-00))
Plasma technology, in extractive metal-	
lurgy, possible applications IC 8438 in minerals processing, possible applica-	3
tions IC 8438	3
Plaster of paris, compressive strength,	
tests RI 7234 Plastic coating, for rock sample preser-	•
vation . OP 61–69)
oil-well rotary pump impellers, for reduc- ing barium sulfate deposition RI 6960)
Plastic properties, coal, determination,	•
method B 638	
Platinum, annual data MY 1968 (v. I-II) as methanation catalyst, investigation RI 6974	1
electrodenosition, from aqueous elec-	
trolytes OP 105-66 liquid, vapor pressure RI 7271	Ĺ
thick coatings of, electrodeposition, on	
refractory metals RI 7016 Platinum electrodeposits, properties RI 7016	נ ה
Platinum electrodeposits, properties in for	-
MY 1968 (v. I-II)	2
consumption B 630 grades B 630	ś
grades B 630 imports and exports B 630)
prices B 630	Ś
reserves B 630 secondary, recovery B 630)
secondary, recovery B 680	'

Platinum-group metals, technology _____ B 630 uses B 630 Platinum-group metals industry, organization B 630 problems ______ B 630 Plug, in infusion hole, device for securing, _ patent _____ P 14-66 Plugging, selective, water-injection wells, field tests ______ OP 38-66 Pneumatic transport, coal, economic evaldry solids ______ IC 8314 fine solids, blowcase devices for, aerody-namic factors ______ RI 6910 solids, methods, symposium ______ IC 8314 solds, methods, symposium ______ IC 8314 Pneumoconiosis, mining and quarrying, lit-erature survey ______ IC 8407 Pocahontas bed, coal, coke from, properties_ RI 7050 coal dust, characteristics ______ RI 6931 Pocahontas No. 3 bed, coal, gas migration characteristics ______ TPR 12 coal dust, characteristics ______ RI 6930 protheristics ______ RI 6930 W. Va., coal, carbonizing properties _____ RI 6616 chloroform-extract yield, investigation ______ RI 6973 float-and-sink data _____ RI 6973 froth-flotation washability data _____ RI 6652 methane adsorption and desorption RI 6750 methane adsorption studies _____ RI 6750 methane adsorption studies _____ OP 101-66 washing characteristics _____ RI 6740 Pocahontas No. 4 bed, W. Va., coal, caking properties, destroying, method ____ RI 6605 carbonizing properties _____ RI 6615 properties, destroying, method ____ RI 6605 carbonizing properties ______ RI 6615 float-and-sink data _____ RI 6652 froth-flotation washability data ____ RI 6652 methane drainage _____ OP 99-65 Pocahontas No. 6 bed, W. Va., coal, car-bonizing properties _____ RI 6615, 6872 washing characteristics _____ RI 6655 Poland Gu ash production and utilization ____ RI 9249 Poland, fly ash, production and utilization. RI 8348 mineral industry, annual review MY 1968 (v. IV) Polianite, magnetic susceptibility _____ IC 8359 Pollucite, cesium extraction from, methods _____ OP 78-67 Pollucite ore, extraction of cesium chloride from, volatilization method _____ RI 6780 Pollutants, air, from gasoline-powered equipment, chemical composition OP 182-68 photochemical reactivity _____ OP 182-68 in diesel-engine exhaust, discussion __ OP 129-69 Pollution, acid mine drainage, control methods _____ OP 55-66 air, abatement _____ SP 1-68 sulfur and nitrogen oxides rewithin and nitrogen oxides re-moval, from stack gases OP 163-69 coal industry problems OP 27-68 diesel-exhaust components, sampling and analysis OP 50-66 diesel exchaust emissions, engine and fuel factors in study OP 106-69 fuel factors in, study _____ OP 106-68 measuring, techniques for ____ OP 116-69 from automotive emissions, effect of fuel composition fuel composition ______ OP 160-69 reducing, methods ______ OP 160-69 from combustion gases of flames, pre-____ RI 6958 sion OP 129-69 from diesel-powered equipment ____ OP 182-68 from gasoline-powered equipment, crankcase blowby _____ OP 182-68 evaporative emissions _____ OP 182-68 exhaust emissions _____ OP 182-68 from vehicle emissions, study _____ OP 80-68 in tunnel, from diesel exhaust, observed and calculated _____ RI 7074 and calculated _____ RI 7074

Pollution, air, incineration technology, guide _____ OP 104-69 sources _____ SP 1-68 sources SP 1-68 cost-benefit analysis, methodology IIC 8414 organic contaminants, removing, coal ad-sorbent process, patent P 11-69 water, acid mine drainage, control P 09 83-65 from acid mine water, reducing, air acid mine water, pilot plant study Pollution control, mill tailings dams for, de-OP 67-68 Sign principles _____ IC 8410 Polyacrylamide, removal, from porous media, process, patent _____ P 18-69 Polydymite, magnetic susceptibility _____ IC 8351 _ IC 8410 IC 8351 Polyester resin, use, in mine walls, with reinforcing bars Polynomial method, estimating virial coeffi-RI 6626 cients from experimental data by, Clents from experimental data by, reliability IC 8437 Polystyrene beads, fly ash removal with, fluidized-bed method IC 8437 Polyvinyl chloride, conveyor belt, fire RI 7053 hazard media, polyacrylamide removal **RI 7053** Porous Porous media, polyactylamide tentore from, process, patent ______ Porphyrins, from shale oil, oil shale, and petroleum, comparison ______ in oil shale, characterization, absorp-tion and mass spectroscopy _____ P 18_69 OP 66-66 _ OP 66-66 in petroleum, characterization, absorp-tion and mass spectroscopy ____ OP 66-66 in shale oil, characterization, absorpin snale oil, characterization, absorp-tion and mass spectroscopy ---- OP 66-66 nuclear magnetic resonance study ---- OP 30-69 Portland cement, annual data ---MY 1968 (v. I-II) grades ------ B 630 pozzolan use in ------ IC 8421 uses ------ B 630 Portugal, mineral industry, annual review MY 1968 (v. IV) Portuguese Guinea. mineral in-semicontinuous tests ______ B 630 model pillars, creep tests ______ B 630 reserves ______ B 630 Potash industry, organization ______ B 630 Potash ore, benefication, heavy-liquid cycloning OP 149-65, 91-66 Potash-ore nillars model deformational Potash-ore pillars, model, deformational behavior ______ RI 6703 Potassium, determination, in fuel oil, flame spectrometric method ____ OP 88-66 _____ RI 6579 cipitation-ion exchange method__ OP 86-68 reserves ______ B 630 technology ______ B 630 uses ______ B 630 Potassium acid tartrate, in detonating cord, effect Potassium bicarbonate, quenching face ___ RI 7149 ignitions with, method ______ Potassium carbonate, seeding material, _ OP 3-67 in magnetohydrodynamic powerplants, effect _____ OP 33-69 Potassium carbonate seed, in magnetohydrodynamic generators, tests OP 135-68 Potassium chloride, vapor pressure measurements _____ RI 6849

Potassium chloride-lithium chloride-vanadium dichloride electrolyte, vana-__ RI 7036 dium recovery from _____ Potassium compounds, chemical-industry use, Calif. IC 8244 consumption _____ B 630 imports and exports _____ B 630 prices _____ B 630 production _____ B 630 USes _____ __ B 630 Potassium-compounds industry, organization B 630 _____ B 630 Potassium fluoroborate-boric oxide electrolyte, boron from _____ RI 7028 Potassium oxide, in coal ash, determina-RI 7240 tion Potassium sulfate seed, in magnetohydrodynamic generators, tests_ OP 135-68 Potassium salts, recovering and producing, Potassium sulfate, seeding material, in magnetohydrodynamic power-P 8-69 plants, effect _____ (Potato Mountain, Alaska, lode-tin deposits, OP 33-69 RI 6587 investigation _____ petrography _____ Powders, fine, blowcase devices for pneu-matic transport of, aerodynamic RI 6587 RI 6910 factors homogeneous, of ultrafine particles, prep-P 13-67 Powder compacts, density, nomograph for OP 42-67 Powder material, for high-energy-rate ex-trusion, consolidation and forming, P 7-68 patent ______ Powdered coal-natural gas mixtures, burner

 Powdered coal-natural gas mixtures, burner for
 IC 8314

 Powellite, magnetic susceptibility
 IC 8360

 Powellton bed, W. Va., coal, carbonizing properties
 IC 8360

 Powellton bed, W. Va., coal, carbonizing
 IC 8360

 Powellton bed, W. Va., coal, carbonizing
 RI 6615, 6872

 washing characteristics
 RI 6665

 Power generation, coal use in
 IC 8314

 Power transmission, underground, electric, horizontal boring technology for...
 IC 8392

 Powerplant, lignite-burning, design
 IC 8304

 lignite-fired, development
 OP 49-68

 mine-mouth, lignite-burning, description IC 8376
 Pozzolan, mining and milling methods...
 OP 165-65

 natural, commercial development, potential
 IC 8421

 tial _____ IC 8421 properties _____ IC 8421 raw materials resources for, Central raw materials resources for, Central States ______ IC 8421 Western States ______ IC 8421 resources ______ OFR 1-68 uses ______ OFR 1-68 factors influencing ______ IC 8421 Pozzolan reaction, in portland cement con-Pozzolanic materials, classification _____ IC 8421 properties _____ OFR 1-68 Praseodymium, electrowinning from oxide RI 7146 high-purity, electrowinning, from praseodymium oxide ______ RI 6957 Praseodymium-neodymium, separation from lanthanides, amine extraction method ___ method _____ Praseodymium oxides, high-temperature heat contents and entropies _____ RI 7100 RI 6781 Precipitation, electrostatic, process, patent P 20-69 Precipitation hardening, semiaustenitic stainless steel, effect of cobalt

additions ___ _____ RI 7121 Precipitator, electrostatic, high-temperature, progress report _____ OP 183-67 ŧ đ

E D

Precipitator, electrostatic, high-tempera-ture, top closure for, patent ---- P 10-66 negative and positive coronas, elec-

trical characteristics _____ OP 125-65 Preparation characteristics, anthracite ____ RI 6989 coal_____RI 6665, 6707, 6989, 7004, 7174, 7216, 7324

Coal_____RI 5055, 5707, 5985, 7004, 7174, 7210, 7524 Pa. RI 7174 Presplitting, rock, in presence of static stress field, tests ______ RI 6843 Pressure buildup, in gas wells, calculating reservoir properties by ______ RI 7013 Pressure cell, soil, design and operation OP 126-69 hydraulic, encapsulated, design and operation _____ OP 59-65

- operation _____ OP 59-65 field tests _____C in coal pillars, for stress distribution determination _____ heatfilled OP 59-65
 - **RI 6971** pressure determination by, in backfilled
 - mine stope ______ RI 7038 roof pressure determination by ____ OP 171-67
- wall closure determination by Primation Primation Pressure container, cylindrical, external pressure distortion coefficient RI 7136
- internal pressure distortion coefficient RI 7136 Pressure distribution, petroleum reser-
- voirs, determination, quick com-

ĩ

3

)

- voirs, determination, quick com-puter method OP 3-69 Pressure drop, simulated blast-furnace shaft, anthracite briquets, experi-mental study _______ RI 6945 coke, experimental study _______ RI 6945 Pressure gage, capacitative, underwater spark discharge pressure pulses, laboratory tests ______ RI 7317 dynamic, patent ______ P 18-67 for shock-pressure determination, design and operation ______ OP 60-67

- and operation _____ OP 60-67 inclined-piston deadweight, patents_P 3-65, 4-66 rotating-piston deadweight, calibration, piston constant determination ____ RI 6824 Pressure indicators, differential, cali-brating ____
- brating Pressure measurement, differential, prob-._ OP 92-68
- lems and techniques _____ OP 182-67 Pressure measuring device, with diaphragm
 - and strain gages, patent _____ _ P 1-68
- with diaphragm-type pressure responsive unit, patent ______ P 6-68 Pressure oscillations, initiation, cause ___ OP 62-65 Pressure pulses, from underground blasts, investigation RI 7147
- investigation _____ ____ RI 7147 underwater spark-generated, rock frag-
- mentation potential __ _____ RI 7317
- mentation potential ______ RI 7317 Primitive areas, mineral appraisal GS 1-66 through 6-66, 1-67 through 4-67, 10-67, 11-67, 1-69 through 3-69 Princess No. 3 bed, Ky., coal reserves___ OFR 2-69 Princess No. 7 bed, Ky., coal reserves___ OFR 2-69 Probability distribution, compound-bhiomial
 - functions, experimental confirma-
 - tion _ _ RI 6627 compound-multinomial functions, experimental confirmation ______ mineral-industry applications, theoretical **RI 6627**
 - confirmation **RI 6768** mineral-industry statistical applications, distribution moments, computer
- _____ RI 6598 program ____
- experimental confirmation RI 6627 Probability functions, sampling to λ amount of items per sample, development OP 71-67
- Probability model, random component in bulk sampling, development ____ OP 71-67 Probe, thermal radiation, design and con-
- struction ____ ._ OP 104-67
- Producer gas, pressurized, fixed-bed pro-
- ducer for, design and operation OP 117-66 Production decline curves, equations for, OP 57-69
 - evaluation _____

Project Gasbuggy, discussion OP 39-69 gas, water, and core analyses OFR 14-68 nuclear fracturing experiment, design OP 92-66
gas, water, and core analyses UFR 14-68
predicted underground effects OP 49-67
predicted underground effects OP 49-67 projected effects OP 92-66
results, review OP 130-68
status report OP 167-67
technical aspects, review OP 37-67
Projectile impact, initiation of explosives by study RI 6986
projected effects OP 52-60 results, review OP 167-67 status report OP 167-67 technical aspects, review OP 37-67 Projectile impact, initiation of explosives by, study RI 6986 Propane-air flames, combustion gases of, carbon monoxide concentration in RI 6958 pittic evide concentration in RI 6958
nitric oxide concentration in RI 6958
combustion products, equilibrium compo-
sition RI 6672 Propane-air mixtures, detonation of, studies RI 7196
lavered flame propagation characteris.
tics in, investigation RI 7078 2-Propanethiol, conformational analysis_ OP 28-68
Propargyl bromide, combustion charac-
teristics
detonability OP 81-69
detonability OP 81-69 Propargyl chloride, combustion charac-
toristics (JP 81_69
detonability OP 81-69
detonability OP 81-69 Propellant chemistry, energetics, review OP 146-65 n-Propylbenzene, thermodynamic proper-
ties OP 101-65. 64-66
ties OP 101-65, 64-66 Propylamine, enthalpy of combustion OP 184-67
enthalpy of formation OP 184-67 Propylene-air mixtures, layered, flame pro-
Propylene-air mixtures, layered, flame pro-
pagation characteristics in, inves-
tigation RI 7078 Proton nuclear magnetic resonance spec-
troscopy, coal derivatives OP 32-67 Pseudomalachite, magnetic susceptibility IC 8383
Psilomelane, magnetic susceptibility IC 8359
Psilomelane, magnetic susceptibility IC 8359 Psilomelane deposit, Alaska, reconnais-
sance OFR 10-65 Public lands, mining claims on, regulations IC 8396
Public lands, mining claims on, regulations IC 8396
Pucherite, magnetic susceptibility IC 8360 Puerto Rico, nickeliferous laterite, sulfat-
ization, tests RI 6644
ization, tests RI 6644 mineral industry, annual review MY 1968 (v. III)
occupational diseases, workmen's compen- sation laws on B 623
Puerto Rico Trench, carbonaceous mate-
Puerto Rico Trench, carbonaceous mate- rials from, characterization OP 98-68
Pulses, displacement, explosion-generated,
in mortar, effect of decoupling RI 6679 effect of stemming RI 6679
Pulse measurement system, ultrasonic,
automated, design and operation OP 48-69 Pulse velocity, in cemented rock speci- mens, errors in, study OP 40-69 Pulverized-coal suspensions, metering de- vice for IC 8314 Purpice operuch data
mens, errors in, study OP 40-69
Pulverized-coal suspensions, metering de-
Pumice annual data MV 1969 (v I_II)
vice for IC 8314 Pumice, annual data MY 1968 (v. I-II) chemical-industry use, Calif IC 8244 consumption R 220
consumption D 000
grades B 630
imports B 630 longitudinal wave velocity in, correla-
tion with rock fabric OP 172-69
prices B 630
production B 630 technology B 630
technology B 630
Uses B 630 Pumice industry problems
Pump, water, coal-fired evolutatory study RI 6959
uses B 630 Pumice industry, problems B 630 Pump, water, coal-fired, exploratory study RI 6858 Purkeypile prospects, Alaska, investiga- tion OFR 5-66
tion OFR 5-66
tion OFR 5-66
bion OFR 5-66 Pyrene, carbon shieldings, calculated and observed OP 77-68 Pyridines, alkyl-substituted, nuclear mag- netic resonance spectra, chem-
tion OFR 5-66

nuclear magnetic resonance measurements _____ OP 79-68

Pyridines, alkyl-substituted. carbon-13
nuclear magnetic resonance studies OP 76-68, 79-68
studies OP 76-68, 79-68
cobalt-60 irradiation, reactions OP 42-69
monosubstituted, carbon-13 nuclear mag- netic resonance spectra B 649
2-substituted, carbon-13 nuclear mag- netic resonance study OP 149-67 ultrasonic radiation of, chemical reactions RI 7027
netic resonance study OP 149-67
ultrasonic radiation of, chemical reactions RI 7027
vapor pressure relations OP 165-68 Pyridine extracts, reduced coal vitrains,
composition OP 141 69
composition OP 141-68 untreated coal vitrains, composition OP 141-68
untreated coal vitrains, composition OP 141-68 Pyrites, annual data MY 1968 (v. I-II) bacterial oxidation of, mechanism OP 169-07 chomical inductor use California
bacterial oxidation of, mechanism UP 169-07
chemical mustry use, Calli IC 8244
distribution in coal, determination, auto-
mated reflectance scanning micro-
scope system RI 7256
scope system RI 7256 imports B 630 in coal, determination, automated reflect- ance scanning method RI 7256 quantitative infrared determination_ OP 21-68 selective dielectric heating of, patent P 5-69 removal, predicting, microscopic anal- ytical method RI 7231 magnetic separation from coal, study RI 7231 magnetic separation from coal, study RI 7231
an coal, determination, automated renect-
quantitative infrared determination OP 21-68
selective dielectric heating of patent P 5-69
removal, predicting, microscopic anal-
ytical method RI 7231
magnetic separation from coal, study RI 7181
reserves B 630 size parameters, correlation with removal
size parameters, correlation with removal
from coal, by float-sink method RI 7231 Pyritic ores, reactivity, with ammonium
nitrate RI 7187
nitrate RI 7187 with ammonium nitrate-fuel oil mix-
Tures RI 7187 OP 15-69
Pyrochlore, flotation characteristics RI 7189
magnetic susceptibility IC 8360
Pyrochlore, flotation characteristics RI 7189 magnetic susceptibility IC 8360 Pyrolusite, magnetic susceptibility IC 8359
Pyrolysis, coal, in microwave discharge, gaseous products from, composi-
tion OP 11 60 94 60
tion OP 11-69, 84-69
tion OP 11-69, 84-69 in argon, effect on products_OP 11-69, 84-69 in hydrogen, effect on products_OP 11-69
tion OP 11-69, 84-69 in argon, effect on products_OP 11-69, 84-69 in hydrogen, effect on products_OP 11-69
tion OP 11-69, 84-69 in argon, effect on products_OP 11-69, 84-69 in hydrogen, effect on products OP 11-69 in water vapor, effect on products OP 11-69 laser, coals, gaseous products, distribu-
tion OP 11-69, 84-69 in argon, effect on products_OP 11-69, 84-69 in hydrogen, effect on products OP 11-69 in water vapor, effect on products OP 11-69 laser, coals, gaseous products, distribu-
tion OP 11-69, 84-69 in argon, effect on products_OP 11-69, 84-69 in hydrogen, effect on products OP 11-69 in water vapor, effect on products OP 11-69 laser, coals, gaseous products, distribu- tion OP 27-67 Pyrolysis product, laser irradiation, coal
tion OP 11-69, 84-69 in argon, effect on products_OP 11-69, 84-69 in hydrogen, effect on products OP 11-69 in water vapor, effect on products OP 11-69 laser, coals, gaseous products, distribu- tion OP 27-67 Pyrolysis product, laser irradiation, coal
tion OP 11-69, 84-69 in argon, effect on products_OP 11-69, 84-69 in hydrogen, effect on products_OP 11-69 laser, coals, gaseous products, distribu- tion OP 27-67 Pyrolysis product, laser irradiation, coal macerals OP 139-68 subbituminous coal, effect of various car- bosician codditions cond
tion OP 11-69, 84-69 in argon, effect on products_OP 11-69, 84-69 in hydrogen, effect on products_OP 11-69 laser, coals, gaseous products, distribu- tion OP 27-67 Pyrolysis product, laser irradiation, coal macerals OP 139-68 subbituminous coal, effect of various car- bosician codditions cond
tion OP 11-69, 84-69 in argon, effect on products_OP 11-69, 84-69 in hydrogen, effect on products_OP 11-69 laser, coals, gaseous products, distribu- tion OP 27-67 Pyrolysis product, laser irradiation, coal macerals OP 139-68 subbituminous coal, effect of various car- bosician codditions cond
tion OP 11-69, 84-69 in argon, effect on products_OP 11-69, 84-69 in hydrogen, effect on products_OP 11-69 laser, coals, gaseous products, distribu- tion OP 27-67 Pyrolysis product, laser irradiation, coal macerals OP 139-68 subbituminous coal, effect of various car- bosician codditions cond
tion OP 11-69, 84-69 in argon, effect on products_OP 11-69, 84-69 in hydrogen, effect on products_OP 11-69 laser, coals, gaseous products, distribu- tion OP 27-67 Pyrolysis product, laser irradiation, coal macerals OP 139-68 subbituminous coal, effect of various car- bosician codditions cond
tion OP 11-69, 84-69 in argon, effect on products_OP 11-69, 84-69 in hydrogen, effect on products_OP 11-69 laser, coals, gaseous products, distribu- tion OP 27-67 Pyrolysis product, laser irradiation, coal macerals OP 139-68 subbituminous coal, effect of various car- bonization conditions, study RI 6839 liquid-phase, aromatic hydrocarbons, mass spectra OP 35-67 Pyromorphite, magnetic susceptibility IC 8883 Pyrophyllite, annual data MY 1968 (v. I-II) chemical-industry use. Calif IC 8244
tion OP 11-69, 84-69 in argon, effect on products_OP 11-69, 84-69 in hydrogen, effect on products_OP 11-69 in water vapor, effect on products OP 11-69 laser, coals, gaseous products, distribu- tion OP 27-67 Pyrolysis product, laser irradiation, coal macerals OP 139-68 subbituminous coal, effect of various car- bonization conditions, study RI 6839 liquid-phase, aromatic hydrocarbons, mass spectra OP 35-67 Pyromorphite, magnetic susceptibility IC 8388 Pyrophyllite, annual data MY 1968 (v. I-II) chemical-industry use, Calif IC 8244 consumption B 630
tion OP 11-69, 84-69 in argon, effect on products_OP 11-69, 84-69 in hydrogen, effect on products_OP 11-69 in water vapor, effect on products OP 11-69 laser, coals, gaseous products, distribu- tion OP 27-67 Pyrolysis product, laser irradiation, coal macerals OP 139-68 subbituminous coal, effect of various car- bonization conditions, study RI 6839 liquid-phase, aromatic hydrocarbons, mass spectra OP 35-67 Pyromorphite, magnetic susceptibility IC 8383 Pyrophyllite, annual data MY 1968 (v. I-II) chemical-industry use, Calif IC 8244 consumption B 630
tion OP 11-69, 84-69 in argon, effect on products_OP 11-69, 84-69 in hydrogen, effect on products_OP 11-69 in water vapor, effect on products OP 11-69 laser, coals, gaseous products, distribu- tion OP 27-67 Pyrolysis product, laser irradiation, coal macerals OP 139-68 subbituminous coal, effect of various car- bonization conditions, study RI 6839 liquid-phase, aromatic hydrocarbons, mass spectra OP 35-67 Pyromorphite, magnetic susceptibility IC 8383 Pyrophyllite, annual data MY 1968 (v. I-II) chemical-industry use, Calif IC 8244 consumption B 630
tion OP 11-69, 84-69 in argon, effect on products_OP 11-69, 84-69 in hydrogen, effect on products_OP 11-69 laser, coals, gaseous products, distribu- tion OP 27-67 Pyrolysis product, laser irradiation, coal macerals OP 139-68 subbituminous coal, effect of various car- bonization conditions, study RI 6839 liquid-phase, aromatic hydrocarbons, mass spectra OP 35-67 Pyromorphite, magnetic susceptibility IC 8383 Pyrophyllite, annual data MY 1968 (v. I-II) chemical-industry use, Calif IC 8244 consumption B 630 grades B 630 imports and exports IC 8264
tion OP 11-69, 84-69 in argon, effect on productsOP 11-69, 84-69 in hydrogen, effect on products OP 11-69 laser, coals, gaseous products, distribu- tion OP 27-67 Pyrolysis product, laser irradiation, coal macerals OP 139-68 subbituminous coal, effect of various car- bonization conditions, study RI 6839 liquid-phase, aromatic hydrocarbons, mass spectra OP 35-67 Pyromorphite, magnetic susceptibility IC 8383 Pyrophyllite, annual data MY 1968 (v. I-II) chemical-industry use, Calif B 630 grades B 630 pesticide diluent, use as IC 8260 production B 630
tion OP 11-69, 84-69 in argon, effect on productsOP 11-69, 84-69 in hydrogen, effect on products OP 11-69 laser, coals, gaseous products, distribu- tion OP 27-67 Pyrolysis product, laser irradiation, coal macerals OP 139-68 subbituminous coal, effect of various car- bonization conditions, study RI 6839 liquid-phase, aromatic hydrocarbons, mass spectra OP 35-67 Pyromorphite, magnetic susceptibility IC 8383 Pyrophyllite, annual data MY 1968 (v. I-II) chemical-industry use, Calif B 630 grades B 630 pesticide diluent, use as IC 8260 production B 630
tion OP 11-69, 84-69 in argon, effect on productsOP 11-69, 84-69 in hydrogen, effect on products OP 11-69 laser, coals, gaseous products, distribu- tion OP 27-67 Pyrolysis product, laser irradiation, coal macerals OP 139-68 subbituminous coal, effect of various car- bonization conditions, study RI 6839 liquid-phase, aromatic hydrocarbons, mass spectra OP 35-67 Pyromorphite, magnetic susceptibility IC 8383 Pyrophyllite, annual data MY 1968 (v. I-II) chemical-industry use, Calif B 630 grades B 630 pesticide diluent, use as IC 8260 production B 630
tion OP 11-69, 84-69 in argon, effect on productsOP 11-69, 84-69 in hydrogen, effect on products OP 11-69 laser, coals, gaseous products, distribu- tion OP 27-67 Pyrolysis product, laser irradiation, coal macerals OP 139-68 subbituminous coal, effect of various car- bonization conditions, study RI 6839 liquid-phase, aromatic hydrocarbons, mass spectra OP 35-67 Pyromorphite, magnetic susceptibility IC 8383 Pyrophyllite, annual data MY 1968 (v. I-II) chemical-industry use, Calif B 630 grades B 630 pesticide diluent, use as IC 8260 production B 630
tionOP 11-69, 84-69 in argon, effect on products_OP 11-69, 84-69 in hydrogen, effect on products_OP 11-69 laser, coals, gaseous products, distribu- tionOP 27-67 Pyrolysis product, laser irradiation, coal maceralsOP 139-68 subbituminous coal, effect of various car- bonization conditions, study RI 6839 liquid-phase, aromatic hydrocarbons, mass spectra OP 35-67 Pyromorphite, magnetic susceptibility IC 8383 Pyrophyllite, annual data MY 1968 (v. I-II) chemical-industry use, Calif B 630 grades B 630 pesticide diluent, use as B 630 reserves B 630 uses B 630 Pyrophyllite industry, organization B 630
tionOP 11-69, 84-69 in argon, effect on products_OP 11-69, 84-69 in hydrogen, effect on products_OP 11-69 laser, coals, gaseous products, distribu- tionOP 27-67 Pyrolysis product, laser irradiation, coal maceralsOP 139-68 subbituminous coal, effect of various car- bonization conditions, study RI 6839 liquid-phase, aromatic hydrocarbons, mass spectra OP 35-67 Pyromorphite, magnetic susceptibility IC 8383 Pyrophyllite, annual data MY 1968 (v. I-II) chemical-industry use, Calif B 630 grades B 630 pesticide diluent, use as B 630 reserves B 630 uses B 630 Pyrophyllite industry, organization B 630
tionOP 11-69, 84-69 in argon, effect on products_OP 11-69, 84-69 in hydrogen, effect on products_OP 11-69 laser, coals, gaseous products, distribu- tionOP 27-67 Pyrolysis product, laser irradiation, coal maceralsOP 139-68 subbituminous coal, effect of various car- bonization conditions, study RI 6839 liquid-phase, aromatic hydrocarbons, mass spectra OP 35-67 Pyromorphite, magnetic susceptibility IC 8383 Pyrophyllite, annual data MY 1968 (v. I-II) chemical-industry use, Calif B 630 grades B 630 pesticide diluent, use as B 630 reserves B 630 uses B 630 Pyrophyllite industry, organization B 630
tionOP 11-69, 84-69 in argon, effect on productsOP 11-69, 84-69 in hydrogen, effect on productsOP 11-69 laser, coals, gaseous products, distribu- tionOP 27-67 Pyrolysis product, laser irradiation, coal maceralsOP 139-68 subbituminous coal, effect of various car- bonization conditions, study RI 6839 liquid-phase, aromatic hydrocarbons, mass spectra OP 35-67 Pyromorphite, magnetic susceptibility IC 8383 Pyrophyllite, annual data MY 1968 (v. I-II) chemical-industry use, Calif IC 8244 consumption B 630 grades B 630 pesticide diluent, use as B 630 pesticide diluent, use as B 630 uses B 630 uses B 630 Pyrophyllite industry' organization B 630 Pyrophyllite industry' organization B 630 Pyrophyllite industry' organization B 630 Pyrophyllite industry' organization B 630 Pyroxmangite, magnetic susceptibility IC 8359 Pyrroles, autoxidation, products OP 132-65 chemical thermodynamic properties OP 110-67 in Colorado shale oil, thermal reactions R 6120
tionOP 11-69, 84-69 in argon, effect on productsOP 11-69, 84-69 in hydrogen, effect on productsOP 11-69 laser, coals, gaseous products, distribu- tionOP 27-67 Pyrolysis product, laser irradiation, coal maceralsOP 139-68 subbituminous coal, effect of various car- bonization conditions, study RI 6839 liquid-phase, aromatic hydrocarbons, mass spectra OP 35-67 Pyromorphite, magnetic susceptibility IC 8383 Pyrophyllite, annual data MY 1968 (v. I-II) chemical-industry use, Calif IC 8244 consumption B 630 grades B 630 pesticide diluent, use as B 630 pesticide diluent, use as B 630 uses B 630 uses B 630 Pyrophyllite industry' organization B 630 Pyrophyllite industry' organization B 630 Pyrophyllite industry' organization B 630 Pyrophyllite industry' organization B 630 Pyroxmangite, magnetic susceptibility IC 8359 Pyrroles, autoxidation, products OP 132-65 chemical thermodynamic properties OP 110-67 in Colorado shale oil, thermal reactions R 6120
tionOP 11-69, 84-69 in argon, effect on products_OP 11-69, 84-69 in hydrogen, effect on products_OP 11-69 laser, coals, gaseous products, distribu- tionOP 27-67 Pyrolysis product, laser irradiation, coal maceralsOP 139-68 subbituminous coal, effect of various car- bonization conditions, study RI 6839 liquid-phase, aromatic hydrocarbons, mass spectra OP 35-67 Pyromorphite, magnetic susceptibility IC 8383 Pyrophyllite, annual data MY 1968 (v. I-II) chemical-industry use, Calif B 630 grades B 630 pesticide diluent, use as B 630 reserves B 630 uses B 630 Pyrophyllite industry, organization B 630

ł

Ġ

Qatar, mineral industry, annual review

			MY 1968 (v. IV)
Quarries,	underground,	roof	control, OP 13-65
m	ethods		OP 13-65
O	duck contend in	124.00	

Quarrying, dust control in, literature survey _____ IC 8407

Quartz, in coal, quantitative infrared de-
termination UP 21-68
separation from granite, method RI 7245
Quartz crystal, electronic-grade, annual data
MY 1968 (v. I-II)
classification B 630
consumption B 630
imports B 630
manufacture B 630
prices B 630 processing industry, organization B 630
processing industry, organization D 000
problems B 630
production B 630
reserves B 630
technology B 630
Quartzite, dielectric constant and dissipa-
tion factor, determination RI 6913
dimension stone uses IC 8391
elastic moduli, at elevated temperatures RI 7269
mining methods and costs IC 8248
processing methods and costs IC 8248
scanning electron microscopy ofOP 9-69, 66-69
thermal shack response
thermal shock response RI 6823 Quartzite resources, Alaska OFR 9-65
Quartzite resources, Alaska
Quebracho, use, in bentonite drilling fluid, effect RI 7043
Quenching distance, determination, in gas-
some mixtures techniques and au-
paratus

- Quicklime, hard-burned, in oxygen-blowing steelmaking process, behavior ____ RI 6901 soft-burned, in oxygen-blowing steel-making process, behavior ____ RI 6901 Quillayute Needles National Wildlife Ref-uge, Wash., mineral appraisal ____ GS 1-68

R

Race Fork Coal Co. mine, Va., coal, wash-

- ing characteristics ______ RI 6740 Radial flow, multicomponent two-phase
- Radial loads, nonuniform, to circular-tunnel walls, problems of, theoretical so-lution OP 136-67

- measurements with, techniques __ RI 6855 high-temperature fuel storage-stability tests, use in ____OP 164-65, 96-66, 9-67 in miscible-phase petroleum production_ OP 9-65 mineral pulp flow in circuits, measuring, techniques ____ RI 4955
- RI 6855
- -_ RI 7304 RI 7325
- OP 141-69
- bilization of uranium tailings ____ RI 7288

Radiosotopes, as excitation sources, in X-ray spectrography OP 31-68
notation from density measurements,
continuous, techniques RI 6855 flotation pulp flow rates, measuring, techniques RI 6855 in petroleum and natural gas reservoir
in petroleum and natural gas reservoir
exploitation, recent advances, lit-
erature survey OP 3-68 use, detecting gold in low-grade ores OP 52-69
detecting silver in silica OP 52-69
detecting silver in low-grade ores OP 52-69 detecting silver in silica OP 76-69 Radium, annual data MY 1968 (v. I-II)
consumption B 630 imports B 630
prices B 630
production B 630
reserves B 630 substitutes B 630
toobnology D 28A
Radium industry, problems B 630
Radon-daughter exposure, underground
Radium industry, problems B 630 Radium industry, problems B 630 Radon-daughter exposure, underground uranium mines, study IC 8413 Rainbow granite, feldspar-quartz-mica sep- aration from, method RI 7245 Rammelsbergite, magnetic susceptibility IC 8351 Randolph County, W. Va., coal, carbonizing properties RI 7236
aration from, method RI 7245
Randolph County, W. Va., coal, carbonizing
properties RI 7236 preparation characteristics RI 6874
preparation characteristics RI 6874 Rare earths, aqueous, fractional senara-
tion, using amines, patent P 15-66
Rare earth-cobalt alloys, preparation, elec- trolytic method OP 5-69
Rare-earth compounds, grades B 630 imports B 630
imports B 630 Rare-earth elements, differential extrac-
tion, quaternary ammonium
salt-chelating agent system OP 171-68
displacement chromatography of, amino acids as retaining agents
in OP 186-69 extraction and separation, with dodecyl
phosphoric acid-kerosine solvent RI 6601
fast-neutron cross sections, determina- tion OP 20-65
in euxenite concentrate, recovery, ammo-
nium sulfate fusion process RI 6906 in Idaho euxenite concentrate, extraction
and separation RI 6577 separation, by ion exchange, amino acids
as retaining agents RI 7175
ion-exchange process, patent P 9-66 solvent-extraction separation, method, pat-
ent P 8-65
substitutes B 630
uses B 630 Rare-earth metals, additions to carbon steel,
effect RI 6907 additions to molten steel, effect RI 7091,
7153
annual data MY 1968 (v. I-II) electrowinning, from rare-earth oxides_ RI 7146
Drenaration, electrodeposition-vacuum
distillation method OP 174-68 from alloys, vacuum distillation method RI 7308
prices B 630 Rare-earth metal alloys, electrowinning,
Rare-earth metal alloys, electrowinning, method RI 7146
method RI 7146 Rare-earth minerals, annual data
MY 1968 (v. I-II) consumption B 630
grades B 630
imports B 630 prices B 630
production B 630
reserves B 630 technology B 630 Rare-earth-minerals industry, organization B 630
Rare-earth-minerals industry, organization B 630 problems B 630

Rare-earth oxide, additions to carbon steel,
effect RI 6907 high-purity metals from, by direct elec-
trolysis RI 7146 Rare-earth resources, N.J RI 6885
Rare-earth separation, tertiary amine process RI 6809
Rare-earth sesquioxides, crystallographic modifications BI 6616
phase transformation rates RI 6616 Rare-earth silicides, additions, to alloy steel,
Rare-earth silicide-aluminum-cryolite addi-
tions to molten steel, effect RI 7091 Raven bed, Va., coal, washing character-
Raven bed, Va., coal, washing character- istics RI 6740 Raven Run Coal Co., Germantown mine,
Pa., anthracite, continuous borer tests
Reclamation, mined-land, economics OP 127-69
Reclamation, mined-land, economics OP 127-69 strip mines, cost estimates OP 79-69 Recovery percentage, U.S. underground coal mines RI 7109 Red beds, Alaska, reconnaissance OFR 1-69 Permian, correlation charts OFR 10-69
coal mines RI 7109
Red beds, Alaska, reconnaissance OFR 1-69 Permian correlation charte OFR 10.69
Red brass, leaded, tin content reduction,
Red brass, leaded, tin content reduction, effect TPR 18 Red mud, Jamaican, centrifugal dewater-
ing, datch and continuous tests RI 7140
cost estimate RI 7140 Reda No. 1 mine, W. Va., coal, preparation
Redlich-Kwong fluid, in two-phase region,
Redstone bed. W. Va. coal, washing char-
acteristics RI 6707, 7004, 7216 Reducibility index, iron ores, determina- tion RI 6827
tion RI 6827
Reduction roasting, with iron, patent P 11-66 Redwood waste, entrainment drying and carbonization, tests RI 7282 Reflectance, infrared, coal and coal deriv-
carbonization, tests RI 7282
atives OP 23-67
graphite OP 23-67 Reflectors for coal-mine use specifications RI 7909
atives OP 23-67 graphite OP 23-67 Reflectors, for coal-mine use, specifications RI 7202 standards for RI 7202
in coal mines, as substitutes for trip
lights OP 36-69 Reflector-trip light comparison, for coal-
mine use, results RI 7202 Refractories, extrusion of, molybdenum
insert, use OP 27-66
zirconia die, use OP 27-66 high-temperature, aluminum carbide-
aluminum nitride-aluminum oxide
system, survey RI 7320 extruding, zirconia dies for OP 27-66 prices IC 8382
prices IC 8382
Taw materials, types IC 8382
Refractories industry, trends IC 8382
production IC 8382 production IC 8382 raw materials, types IC 8382 Refractories industry, trends IC 8382 Refractory carbides, reclaiming, from cemented-carbide scrap, method OP 149-69
cemented-carbide scrap, method OP 149-69 Refractory clays deposite
Refractory clays, deposits OFR 9-68 Refractory metals, platinum deposition
on. evaluation OP 105-69
mentionetmont for electrodeposition with
pretreatment, for electrodeposition sub- strate use RI 7016
strate use RI (010
strate use RI (010
strate use RI 7016 space uses OP 58-67 Refractory metal compounds, joining, vac- uum-hot-press method RI 7225
strate use RI 7016 space uses OP 58-67 Refractory metal compounds, joining, vac- uum-hot-press method RI 7225
strate use RI 7016 space uses OP 58-67 Refractory metal compounds, joining, vac- uum-hot-press method RI 7225
strate use RI 7016 space uses OP 58-67 Refractory metal compounds, joining, vac- uum-hot-press method RI 7225
strate use RI 7016 space uses OP 58-67 Refractory metal compounds, joining, vac- uum-hot-press method RI 7225 vacuum-hot-press joined, strength tests RI 7225 thermal shock tests RI 7225 Refuse, incineration of, bibliography OP 8-67 Refuse banks, anthracite, survey IC 8409 coal, burning, control, field tests RI 6758 Refuse dumps, coal-mine, disposal methods IC 8430
strate use RI 7016 space uses OP 58-67 Refractory metal compounds, joining, vac- uum-hot-press method RI 7225 vacuum-hot-press joined, strength tests RI 7225 thermal shock tests RI 7225 Refuse, incineration of, bibliography OP 8-67 Refuse banks, anthracite, survey IC 8409 coal, burning, control, field tests RI 6758 Refuse dumps, coal-mine, disposal methods IC 8430
strate use RI 7016 space uses OP 58-67 Refractory metal compounds, joining, vac- uum-hot-press method RI 7225

1

τ ,

Regression analysis, predicting rock drillability by, method ______ RI 6880 rock properties, for predicting compressive strength _____ RI 6702 Rehabilitation, strip- and surface-mined areas MISC Reinite, magnetic susceptibility IC 8360 Research, applied, cost-benefit analysis____ IC 8414 Reserve taconite, elastic moduli, at ele-vated temperatures RI 7269 Reservoirs, gas-cap, oil recovery from, conservation practices, engineering evaluation _____ --- M 13 Reservoir oil characteristics, Cut Bank oilfield, Mont ______ RI 6909 Reservoir pressure distribution, determination, quick computer method ____ OP 3-69 Reservoir pressure-gas in storage relationship, material balance for calculating ______ RI 6763 Reservoir rock, nuclear fracturing of, projected costs _____ OP 130-68 projected field tests _____ OP 130-68 permeability curves, properties ______ RI 7006 permeability improvement, explosive permeability improvement, explosive fracturing, tests ______ OP 104-68 synthetic, permeability and porosity, controlling ______ OP 67-65 thermal alteration of, preliminary tests OP 44-68 tests ______ OP 104-68 water-sensitive, permeability, effect of hydration of montmorillonite on OP 85-65 esidues heavy from pyrolysis of aro-Residues, heavy, from pyrolysis of aro-matic compounds, mass spectral studies Ol Resin-bar support, for fractured wall rock, OP 127-65 Resin fraction, low-temperature coal tars, properties low-temperature tar pitches, catalytic de-hydrogenation RI 6626 B 636 combined pyrolysis-gas chromatography B 636 ring analysis ______ B 636 spectral characterization ______ B 636 Resin structure, correlation with coal struc-_ **B** 636 ture . ture Resistivity, electrical, columbium and zir-conium carbide, at elevated temperatures _____ RI 7289 Respirable dust sampler, personal, sam-____ **TPR 17** pling procedure for _____ TPR 17 Respirators, approved, performance ____ OP 54-68 chemical-cartridge, fees for testing, amend-

 chemical-cartridge, tees for testing, amend \$ 23B

 dispersoid, approved by Bureau of Mines_ IC 8281
 filter-type, dust, fume, and mist, fees for

 testing, amendments
 \$ 21B

 rules for testing, amendments
 \$ 21B

 low-temperature performance tests
 \$ 21B

 nonemergency gas, approved by Bureau
 OP 54-68

 of Mines
 IC 8281

 S 23B of Mines _____ IC 8281 fees for testing, amendments _____ S 23B performance requirements, discussion OP 33-66, 109-66 permissible list IC 8436 paint-spray, fees for testing, amendments_ S 23B self-contained, carbon dioxide determina-rules for testing, amendments ______ S 19B testing and approval ______ OP 164-69 Respirator eyepiece, used in mine environ-ment, transmission losses ______ RI 7062 Resistivity, electrical, fly ash, at various

temperatures, study ______ RI 7041 Retorts, zinc, fabrication, modifications in _ RI 7215

Retorts, zinc, failures in, causes, study ---- RI 7215 Revegetation abandoned strip-mine areas _ RI 7075 Revenue-cost system, lead-zinc mining operation, effect of grouped physical ration, enect of grouped physical variables _______ RI 7311 Rhenium, annual data ______ MY 1968 (v. I-II) Revillagigedo Island, Alaska, Moth Bay zinc-copper deposit, sampling _ OFR 12-67 Rhenium, as methanation catalyst, investi-gation ______ RI 6974 consumption ______ B 630 preparation and evaluation ______ B 630 problems ______ B 630 RI 7311

 prices
 B 630

 problems
 B 630

 production
 B 630

 recovery, from scrap tungsten alloy
 RI 7254

 process, patent
 P 2-66

 recovery methods
 B 630

 reserves
 B 630

 solvent-extraction process for recovering,
 patent

 patent
 P 3-66

 technology
 B 630

 uses
 B 630

 uses _____ B 630 vapor deposition, from rhenium hexa-fluoride, preliminary study _____ OP 3-68 on copper substrates, method _____ RI 6915 Rhenium-base alloys, preparation and evaluation OP 78-69 evaluation _____ C Rhenium hexafluoride, vapor deposition of rhenium from, hydrogen reduction OP 78-69 method ______ RI 6915 Rhenium oxides, heats of formation _____ RI 7323 Rhenium-tungsten alloy, rhenium recovery from, method ______ RI 7254 vapor deposition, from gaseous hexafluorides, preliminary study _____ OP 3-68 on copper substrates, method _____ RI 6915 Rhode Island, beryllium deposits, investigation ______ RI 7070 ilmenite deposits, survey ______ IC 8290 mines, visitors' guide ______ SP 2-67 minerals, production, annual data MY 1968 (v. I-II, III) mineral industry, annual review MY 1968 (v. III) occupational diseases, workmen's compen-B 623 occupational diseases, workmen's compet-sation laws on ______ B 623 titanium mineral deposits, survey ______ IC 8290 Rhodesian DFC chromite, carbon reduction of, study ______ RI 6755 Rhodium, annual data ______ MY 1968 (v. I-II) as methanation catalyst, investigation __ RI 6974 electrodarosition from moltan sodium ____ OP 125-69 Rhodochrosite, magnetic susceptibility _____ OP 125-69 Rhodochrosite, magnetic susceptibility _____ IC 8359 Rhodonite deposits, Colo. ______ IC 8303 Richburg sand, N.Y., core samples, density and porosity data and porosity data _____ IC 8330 Richland County, Mont, lignite and lignite ash analyses _____ RI 7158 Ringlemann smoke chart _____ IC 8333 LIC 8330 Rio Muni, mineral industry, annual review Rio Muni, mineral industry, annual review MY 1968 (v. IV) Road binder, production, from coal, patent _ P 8-67 Road cuts, slope stability, determining, methods ______ OP 58-66 Road tar, high-resolution mass spec-trometry ______ OP 152-68 Rock, anisotropic, stress measurements in _ RI 6860

behavior, in deep mines, study _____ RI 6880
 behavior, in deep mines, study _____ RI 6838; OP 7-66
 blasting, vibration levels in, effect of explosive charge weight ______ RI 6774
 circular disks, thermal shock in, stress analysis ______ RI 6823

Ł

E

Z

Ŧ٩

Rock, compressive strength, predicting ___ RI 6702 crystalline, stress measurements in ____ RI 6860 deep-sea, carbonaceous materials in __ OP 98-68 deformation, in block-caving operations_ RI 6666 in deep mine, measuring, instrumentain deep mine, measuring, instrumenta-tion and techniques ______ RI 6747 inelastic, under drill-bit stress ____ OP 148-65 deformation behavior, laboratory studies_ RI 6703 dielectric constant, determination, sus-ceptance-variation method _____ RI 6913 disking characteristics, laboratory study _____ OP 102 65 study ___ OP 108-65 dissipation factor, determination, susceptance-variation method _____ _ RI 6913 drillability, predicting, laboratory and field tests regression analysis techniques _____ OP 45-68 -- RI 6880 elastic constants, determination, effect of anisotropy _____ OP 37-65 elastic moduli, at elevated temperatures _ RI 7269 elastic wave velocities in, measuring, pulse transmission technique _____ RI 7164 electrical properties _____ RI 6913 fractured, stabilizing, polyester-type resin and reinforcing bars, use gravity-loaded, open-pit mine in, stress _ RI 6626 **RI** 7002 analysis _ hardness, determination, pendulum sclerometer method _____ RI 6952 horizontal boring methods for ______ in mine openings, behavior, instru-____ IC 8392 mentation for determining ____ OP 154-65 in situ stress, determination, computer program for inelastic deformation, under drill-bit RI 7224 stress, study _______ large underground openings in, stabiliza-RI 6838 tion methods _____ _ IC 8294 longitudinal pulse velocity in, automated ultrasonic pulse measurement system for OP 48-69 mechanical properties of, measuring__ OP 50-68 microstructure, correlation with physical properties, study _____ 01 mine, stress-relief tests; borehole stress-OP 118-66 relief method _____ . RI 6675 mining-induced deformation, petrofabric tests _____ RI 7052 openings in, design of _____ OP 50-68 RI 7052 overcores, anisotropic elastic solution for testing ______ RI 7143 permeability, improving, by explosive fracturing ______ OP 82-68 explosive-fracturing tests _____ OP 1-67 permeability to oil, effect of ultrasonic energy on, laboratory tests _____ RI 7144 energy on, laboratory tests _____ KI 7144 petroleum-impregnated, survey _____ M 12 petroleum-reservoir, brine flow in, magnetic fields, effects _____ OFR 5-65 physical properties of, microstructural techniques for studying _____ OP 25-69 porous, brine flow rate in, effect of ultra-sonic energy on _____ RI 6978 sonic energy on _____ porous permeable, for nuclear waste dis-_ RI 6978 posal, laboratory tests ______ presplitting, in presence of static stress field, tests ______ RI 6926 RI 6843 pulse measurement system, acoustical **RI 7164** bench for reaction to transient shocks, measuring, streak camera method **RI 6770** reservoir, permeability curves, proper-RÍ 7006 ties _____ sedimentary, for nuclear-waste disposal, laboratory tests _____ RI 6926 simulated lunar, properties _____ OP 35-69 **RI** 6926

Rock, sonic velocity, piezoelectric pulsing equipment for measuring _____ RI 6810 strength, static-indentation tests ____ OP 148-65 stress, around surface openings _____ OP 121-67 boring machine-induced, theoretical so-RI 7200 lution ____ determination drill-hole deformation method _____O from measurements of diametral de-OP 107-67 formation of drill hole ______ three-component borehole-deforma-..... RI 6732 tion gage method, laboratory and field tests ___ RI 7015 near underground openings, determination, summary _____ OP 139-67 under controlled thermal shock, study _____ OP 171-65 study _____ OP 171-65 stress relief cores, testing, anisotropic elastic solution for _____ RI 7143 structures in, design _____ OP 50-68 stability _ OP 50-68 _____ surface-joint patterns, relationship to induced subsurface fracturing orientation, study _____OP 26-28, 122-68 surface texture, identifying, linear vari-able differential transformer method __ _ RI 7095 synthetic, permeability and porosity, controlling OP 67-65 thermal conductivity, measurement, tranthermal conductivity, measurement, tran-sient-line-source method ______ RI 6604 thermal fragmentation, study _ OP 171-65, 59-66 transgranular-intergranular fracture in, effect of loading rate _____ OP 99-69 triaxial strength tests _____ OP 148-65 uniaxial compressive strength, determi-nation head size influence _____ RI 7234 nation, head size influence ______ RI 7234 specimen diameters, influence ______ RI 7234 volcanic, ore deposits in, lunar extrapolation _____ OP 29-69 Rock bolt, explosive-anchored, anchor tubes _ RI 7163 **RI 7163** tion yield and ultimate strengths, under combined loading, laboratory investigation _____ RI 6842 Rock-bolt anchors, expansion-shell type, transverse force developed, meas-RI 7087 urement explosive-centerhole, patent ______ explosively expanded, theoretical stress P 18-68 distribution **RI 6890** movement in, load loss from, field tests _ RI 7220 laboratory tests _____ RI 7220 laboratory tests ______ Rock-bolt assemblies, yield and ultimate strengths, under combined loading, laboratory investigation _____ Rock cutting, principles, mechanical bor-🗌 RI 6842 ing machine applications ____ OP 152-69 Rock deformation, in deep mine, petrofab-Rick disaggregation, chemical, labora-tory and field experiments _____ OP 35-68 Rock disintegration, research, review ___ OP 126-68 Rock disintegration, research, review ___ OP 126-68 Rock drills, percussive, operating charac-teristics, study penetration rate, predicting, labora-**RI 7253** RI 7300 tory tests Rock drilling, with impregnated diamond bits, study _ RI 6776 Rock dust, dust-cloud formation, aerodynamic aspects, study ______ RI 7252 Rock-dust disseminator, for return-air-cur-rent use, design and operation _____ IC 8253 **RI 7252** Rock fabric, changes in, sensitivity of op-tical data processing to _____ OP 62-69 chronological interpretation _____ RI 7173 correlation of longitudinal velocity

variations with _____ OP 172-69

•] 1

ł

Rock fabric, dynamic interpretation _____ RI 7173 Rock fabric elements, structural geometry. RI 7173 Rock failure, in model pillars, effect of end constraint _______ RI 7092 Rock fractures, fluorescent dye pene-trants applied to, results _____ OP 162-68 simulated, liquid explosives detonation velocities in, study ______ RI 7277 Rock fracturing, in oil and gas reser-voirs, permeability increase _____ OP 104-68 using nitroglycerin, tests ______ OP 104-68 using nitroglycerin, tests ______ OP 104-67 with nuclear explosives ______ OP 37-67 Rock fragmentation, electrohydraulic ef-fect, potential application ______ RI 7317 thermal, high-energy heat sources for, hazards, laboratory study ______ OP 16-67 methods, laboratory study ______ OP 16-67 Rock masses, associated with ore de-posits, effect of structure-form-ing processes on ______ OFR 8-66 Rock failure, in model pillars, effect of end posits, effect of structure-form-ing processes on ______ OFR 8-66 in mining districts, relationship of past geologic structural proc-esses to ______ OFR 14-67 Rock mechanics, experimental _____ OF 50-68 fundamentals _____ OF 50-68 in mines, instrumentation for, engi-neering applications _____ OP 154-65 role in oil recovery literature review ___ OP 93-69 role in oil recovery, literature review __ OP 93-69 vibration amplitudes, predicting, propagation equation for ______ Rock noises, self-generated, fundamental OP 147-69 properties O Rock pillars, model, breaking strength, ef-fect of end constraint, laboratory OP 177-69 compressive strength determination, effect of end conditions ______ compressive strength of, effect of in-creased end constraint, laboratory **RI 7092** RI 7171 study uniaxial compressive strength, effect RI 7298 of planes of weakness _____ RI 7155 Rock salt, deposits ___ -- IC 8313 Rock salt, deposits ______ IC 8313 Rock samples, for uniaxial compressive strength determination, effect of end conditions ______ RI 7171 preserving, plastic coating for _____ OP 61-69 shear wave velocity measurements in, piezoelectric pulsing equipment for RI 7065 uniaxial compressive strength, determination, head size-specimen diamnation, head size-specimen diam-eter ration, effect _____ RI 7234 Rock sample cylinders, disking in, stress requirements for laboratory tests OP 27-69 Rock slope, steepness and angle, stability factors, determining, methods __ OP 58-66 Rock specimens, cemented, velocity errors in dotermination OP 40-69 in, determination _____ OP 40-69 Rock spheres, preparation, new method_ OP 173-69 OP 40_69 Rock stress, in anisotropic rock, determi-_____ <u>RI</u> 6965 ning --Rockbolt, explosive-anchored, effect on surrounding rock RI 6595 field tests ignition test ______ RI 6595 submersion in water, effect ______ RI 6595 prestressed, pull tests, laboratory inves-_ RI 6613 tigations Rockbursts, seismic energy in, calculating Rocket engines, hydrazine-nitrogen te-troxide propellant, preignition OP 39-65 troxide propenant, pregnition phenomena ______OP 51-68 liquid- and solid-fueled, discussion ____ OP 150-67 Rocket fuels, types, discussion _____ OP 150-67 Rockville granite, feldspar-quartz-mica separation from, method ______ RI 7245 Rocky Mountain area, crude oil, production RI 7059 sulfur content _____ RI 7059

Roof bolts, prestressed, pull tests, labora- tory investigations RI 6613 research, summary OP 5-66
tory investigations OP 5-66
resin anchored tests OP 65-67
research, summary OP 65-67 resin-anchored tests OP 65-67 Roof-bolt anchorage, testing, using hy-
draulically operated penetrometer_ RI 6646
Roof-bolt anchorage, testing, using hy- draulically operated penetrometer_RI 6646 Roof bolting, rock-bolt anchor creep, load loss from RI 7220 underground quarries, methods OP 13-65 Roof control, mines, review OP 23-65 Roof-control research, discussion OP 53-66 summary OP 12-65, OP 5-66 Roof support, explosive-anchored tail- block anchor pins, design and testing OFR 5-68
underground quarries, methods OP 13-65
Roof control, mines, review OP 23-65
COP 12-65, OP 5-66
Roof support. explosive-anchored tail-
block anchor pins, design and
testing
requirements, estimating IC 8424
requirements, estimating IC 8424 specifications IC 8424
mines, explosive-anchored rock bolt, per-
formance tests RI 7163 self-advancing, in longwall mining, use _ IC 8321
Rone wire for mine use recommended salety
rules B 644
Rose's mine, Pa., coal, carbonizing proper- ties Rosedale No. 7 mine, Pa., coal, carbonizing RI 7131
Rosedale No. 7 mine, Pa., coal, carbonizing
propercies
Roslyn bed, Wash., coal, float-and-sink tests RI 6623
Roslyn-Cle Elum field, Wash., coal, float-
and-sink tests RI 6623
and-sink tests RI 6623 Roslyn No. 5 bed, Wash., coal, hydraulic pitch mining RI 6685
pitch mining
Roslyn No. 10 mine, Wash., coal, hydraulic pitch mining RI 6685 Rubber, compounding tests, with coal- derived carbon black OP 90-67 conveyor belt, fire hazard RI 7053 scrap, from junk automobile, amount RI 7350 Rubidium, annual data MY 1968 (v. I-II)
Rubber, compounding tests, with coal-
conveyor belt, fire hazard
scrap, from junk automobile, amount RI 7350
Rubidium, annual data MY 1968 (v. I-II)
in oilfield waters, determination RI 7281 in ores, flame photometric determination RI 6820
in oilfield waters, determination RI 6641
in ores, flame photometric determination RI 6820
prices B 630 reserves B 630
technology B 630
uses B 630 Rubidium metal, safety precautions for B 630
Rumania, mineral industry, annual review
MY 1968 (v. IV)
Ruthenium, annual data MY 1968 (v. I-II)
Rumania, mineral industry, annual review MY 1968 (v. IV) Ruthenium, annual data MY 1968 (v. I-II) as methanation catalyst, investigation RI 6974 catalyst, hydrogenation of carbon mon- oxide and carbon dioxide on OP 77-65
oxide and carbon dioxide on OP 77-65
Rutile, magnesium reduction of, for low-
cost titanium product RI 6599
magnetic susceptibility IC 8360 resources OFR 3-68
U.S. IC 8290 titanium chloride recovery from, effect of
titanium chloride recovery from, enect of recycling sludge RI 7991
recycling sludge RI 7221 titanium recovery from RI 7221 Rwanda, mineral industry, annual review
Rwanda, mineral industry, annual review
MY 1968 (v. IV)
S

 S-816 alloy, reinforcement, with fine tung-sten wire, laboratory investigation RI 7130
 S-816 scrap, chlorine dissolution of, labora-tory study
 RI 7178
 Safety, coal-mine, legislation
 CMS
 Safety hazard, use of shrink-resistant grout in confined places investigation
 RI 7267 Safety measures, radiation hazards, stabili-zation of uranium tailings pile ____ RI 7267 Safety practices, construction, North Amer-ican Air Defense Command Under-

ground facility, Colo. _____ IC 8294

Safety problems, nuclear explosives RI 6996
Safety recommendations, ammonium ni-
trate-fuel oil blasting agents,
trate-fuel oil blasting agents, pneumatic loading of RI 7139
shaft-sinking operations IC 9365
Safforite, magnetic susceptibility IC 8351
Safforite, magnetic susceptibility IC 8351 St. Lazaria National Wildlife Refuge, Alaska, mineral appraisal GS 7-68
Alaska, mineral appraisal
Saline water, silicate minerals solubili-
Salt, annual data OP 100-69 Salt, annual data MY 1968 (v. I-II) barge transportation of IC 8431 chemical-industry use, Calif IC 8244 consumption B 630 imports and exports B 630 model pillars, creep tests OP 107-65 prices
harge transportation of IC 9431
chemical-industry use. Calif. IC 8244
consumption B 630
imports and exports B 630
model pillars, creep tests OP 107-65
prices B 630 production B 630
production B 630
technology B 630 uses B 630 Salt domes, crude oil production from IC 8313 Gulf Coast States, survey IC 8313 in offshore tidelands, survey IC 8313 salt production from IC 8313 sulf production from IC 8313
uses B 630
Salt domes, crude oil production from IC 8313
in offshore tidelande survey
solt production from IC 8212
sulfur production from IC 8313
underground, liquid petroleum gas stor-
age in IC 8313
sulfur production from IC 8313 underground, liquid petroleum gas stor- age in IC 8313 Salt industry, automation in, applica- tions OFR 24-69
tions OFR 24-69
organization B 630
problems B 630
Salt pillars, model, deformational be-
havior RI 6703
Salt pillars, model, deformational be- havior B 630 Samarium, annual data MY 1968 (v. I-II) cross-section measurements OP 20-65 preparation, electrodeposition-vacuum
propagation measurements UP 20-00
distillation method OP 174-68
Samarium oxide, crystallographic modifi-
cation RI 6616
phase transformation rate RI 6616
Samarskita magnetic suscentibility IC 8360
Sample reduction, multistage, minerals,
Sample reduction, multistage, minerals, probability model for RI 7177
Sampling, bulk, random component in, probability model OP 71-67 in closed systems, gas or liquid, device
probability model OP 71-67
in closed systems, gas or liquid, device
for, patent P 4-68 statistical, to λ items per sample RI 7177
experimental values RI 6627
experimental values RI 6627 to n items per sample RI 7177
experimental values RI 6627
Sampling device, patent P 19-68
Sampling device, patent P 19-68 San Juan primitive area, Colo., mineral ap-
Draisal GS 3-69
San Manuel copper mine, Ariz., assay data, statistical analysis RI 6955 San Rafael primitive area, Calif., minerals
statistical analysis RI 6955
San Rafael primitive area, Calif., minerals
survey GS 1-66 Sand, annual data MY 1968 (v. I-II)
industrial deposit investigation KNP
industrial, deposit, investigation KNR underground cavity filling, remote, by
pneumatic injection, field tests RI 7214
pneumatic injection, field tests RI 7214 Sand and gravel, barge transportation of IC 8431
consumption B 630 grades B 630
grades B 630
imports and exports B 630
prices B 630 production B 630
production B 630
substitutes B 630
technology B 630 uses B 630
Sand and gravel industry, productivity,
study OF'R 18-68
organization B 630
problems B 630
problems B 630 Sand cones, in coal-preparation plants,
performance characteristics RI 6606
Sand flotation process, coal preparation by, performance criteria RI 6606
DE COOL

•

ł

Sandow lignite, carbonized, char from, prop-
Sandow lignite, carbonized, char from, prop- erties B 639 gas from, properties B 639
tar from, properties B 639 chemical analysis B 639
Sandstone, compressive strength, tests KI 7234
crushed, fine particles in, separation by ultrasonic elutriation OP 111-66
dimension stone uses IC 8391 disaggregating, chemical methods OP 35-68
for radioactive-waste disposal, labora-
for radioactive-waste disposal, labora- tory tests RI 6926
hematitic, analyses RI 6966 beneficiation studies RI 6966
hematitic, analyses RI 6966 beneficiation studies RI 6966 oil-producing, flow characteristics, laboratory determination OP 200-67
permeable, immobility of connate water in OP 137-67
saturated, immobile <u>fract</u> ion of pore
water in colculated and experi-
mental OP 95-69 porous, nitroglycerin absorbed in, de- tonability of OP 66-65 relative permeability, to gas, oil, and DP 66-65
tonability of OP 66-65 relative permeability, to gas, oil, and
water, laboratory determination RI 6826 synthetic, permeability and porosity, controlling OP 67-65 thermal alteration, by in situ burning of OP 2 27
controlling OP 67-65
nightenergy compound VI 4-VI
Sandstone cores, burning monopropel- lants in, permeability changes OP 118-67
normaghility siteration thermal lising
high-energy liquid compound, study OP 2-67
high-energy liquid compound, study OP 2-67 wettability, determination, method OP 41-69 Sandstone oil reservoir, low-permeability,
Sandstone pillars, model, breaking strength, BI 700
enect of end constraint RI 1094
compressive strength determination, effect of end conditions RI 7171
increased end constraint, effect on com-
pressive strength, laboratory study RI 7298 uniaxial compressive strength, effect of
planes of weakness RI 7155 Sartwell sand, Pa, core samples, density
and porosity data IC 8330 Saturation factor, in permeable sand-
stone OP 95-69 Saudi Arabia, crude oil, production RI 7059
Saudi Arabia, crude oil, production RI 7059 sulfur content RI 7059
sulfur content RI 7059 mineral industry, annual review MY 1968 (v. IV)
Savage mine, Mont., lignite and lignite ash
analyses RI 7158 Scaling machines, mine roof and walls, description OP 45-65 Scandium, annual data MY 1968 (v. I-II)
description OP 45-65 Scandium, annual data MY 1968 (v. I-II)
in coal ash, spectrochemical determina-
tion RI 7281 prices B 630
production B 630 recovery, from uranium-plant iron sludge,
technique RI 6580
from wolframite concentrate, technique RI 6580 reserves B 630
technology B 630
uses B 630 Scandium industry, organization B 630
problems B 630 Scandium trichloride, heat of formation RI 6705
Scheelite, electrowinning of tungsten from.
electrolyte life RI 6805 tungsten extraction from, chlorination
tungsten recovery from, amine solvent
extraction method RI 6845 tungstic oxide extraction from, two-phase
molten halide-silicate technique RI 7106

Scheelite-wolframite concentrate, tungsten extraction from, chlorination methods _____ RI 6612 Schist, micaceous, mica flotation from ____ RI 6668 Sclerometer, pendulum, design and opera-RI 6952 tion penetrability determination, granite, in claiming, method _____ OP 149-69 refractory carbides from, reclaiming, die-cast, zinc recovery from, patent ____ P 16-66 electronic solder, gold recovery from, fused-salt electrolytic method ____ TPR 9 Scrap, ferrous; see also Ferrous scrap Scrap, ferrous, automobile, copper removal from, sodium sulfate slag method, RI 7199 laboratory study ______ RI 7199 consumption _____ IC 8342, 8344 copper-containing, separation of steel and copper from _____ OP 183-68 grades _____ IC 8344, 8329 in magnetic roasting, use, study _____ RI 6764 industry, in intermountain States, sur-vey _____ IC 8344 vey _____ IC 8344 survey _____ IC 8344 in North Central States, survey ____ IC 8342 junked automobiles as source of ___ OP 198-68 SP 1-67 markets ____ metallothermic reduction copper oxide metallothermic reduction copper oxide with ______ RI 7301 preparation ______ IC 8329 prices ______ IC 8329, 8342, 8344 sources ______ IC 8342, 8344 transportation ______ IC 8342, 8344 transportation methods and costs _____ IC 8342 uses ______ IC 8344 IC 8344 Uses with taconite, in reduction roasting tests OP 98-65 Scrap iron and steel, annual data___MY 1968 (v. I) OP 98-65 mineral, disposal problems ______ OP 200-68 steel, copper removal from, thermal treat-ment methods, feasibility study__ RI 7218 superalloy, metal recovery from, chemical method ______ RI 7316 method RI 7316 zinc-base die-cast, molten, refining, with low-cost fluxes, methods RI 7315 Scrap iron, use, as reductant, in mag-netic roasting OP 46-65 as reductant in roasting nonmag-netic taconite OP 124-69 Scrap iron consumers, Southeastern States, survey IC 8329 Scrap metal, classification ______ IC 8329 consumption, Southeastern States _____ IC 8329 demand ______ IC 8329 from junk automobiles, components _____ RT 7350 value ______ RT 7250 value ______ RI 7350 superalloy, metal recovery from, chem-ical method ______ RI 7316 _____ IC 8329 supply ____ _____ Scrap metal industry, Southeastern States, study _____ IC 8329 Scrap mixtures, synthetic, nonferrous im-____ purity removal, rotary kiln method RI 7210 Scrap utilization, Bureau of Mines re-search, review _____ OP 100-68 Scrub Oaks mine, N.J., rare-earth-bearing minerals, beneficiation study _____ RI 6885 Sea, physical environment ______ OP 56-65 Sea floor minerals, exploitation, research program ______ OP 113-65 Sea water, chemical properties ______ OP 56-65 desulfation, preliminary process developdesulfation, preliminary process develop-ment ______ RI 6928

Sea water, gold in, recovering, method _OP 137-69 physical properties _____ OP 56-65 Seafloor mapping, technologic gaps in___ OP 115-69 Second Cow Run sand, W. Va., core samples, density and porosity data____ IC 8330 Secondary recovery, Appalachian region oil econdary recovery, Appalachian region oil reservoirs ______ RI 7007 continuous steam injection pilot tests __ OP 21-69 effect of existing saturations, study__ OP 151-68 effect of fracture orientation, study__ OP 151-68 emulsions as buffer slug, in waterflood-ing, laboratory tests ______ RI 7296 five-spot waterflood, three-phase flow, computer program for predicting_ RI 7011 gas drive, potential _____ RI 6943 predicting ______ RI 6943 gasflooding, oil recovery prediction _____ RI 7272 in situ combustion, Okla. _____ IC 8311 recommendations _____ OP 106-66 in situ combustion process, laboratory investigation ______ oil, by natural gas injection, from water-_ RI 7044 drive reservoirs ______ RI 6870 low-pressure gas drive method _____ RI 6798 miscible-phase technique, radiotracers in _____ OP 9-65 prediction _____ RI 6992 prediction ______ RI 6992 production ______ RI 6992 selective plugging, field tests ______ OP 38-66 injection wells, for water-injection profile changes, field study _____ RI 6733 methods ______ OP 38-66 steam stimulation method ______ OP 127-67 thermal, gas chromatographic analysis in. applicability ______ RI 6621 in, applicability ______ RI 6621 underground-combustion oil-recovery underground-combustion oil-recovery experiment ______ RI 6942 water-injection projects ______ RI 6603 peripheral waterflood, factors affect-ing performance ______ OP 17-69 steamflood project, description ______ OP 117-69 steamflooding, recovery predictions, com-puter program for ______ IC 8432 stimulating low-permeability gas res-ervoirs, explosive fracturing method ______ OP 128-69 vaporization of oil during gas cycling, laboratory study ______ RI 7278 vaporization of oil during gas cycling, laboratory study _______ RI 7278 waterflood, optimum gas saturation in, calculating ______ OP 143-68 predicting ______ RI 6943 waterflood performance in, predict-ing, five-spot patterns, in strati-fied reservoirs ______ OP 169-68 waterflood projects, Neb. _____ RI 7056 waterflooding, feasibility study ______ RI 7032 Okla. ______ IC 8311 potential ______ RI 7049 theoretical and field performance RI 6917 RI 7049 theoretical and field performance... RI 6917 Section 23 mine, Homestake-Sapin Part-ners, N. Mex., uranium, mining ners, N. Mex., uranium, mining methods and costs ______ IC 8280 Seed level, optimum, in coal-fired open-cycle magnetohydrodynamic pow-erplants, factors affecting _____ OP 33-69 Seismic energy, in rockbursts, calculating OP 39-65 Selenium, annual data ______ B 630; IC 8340 distribution ______ IC 8340 orades ______ B 630

 distribution
 IC 8340

 grades
 B 630;

 imports and exports
 B 630;

 legislation and Government programs
 IC 8340

 prices
 B 630;
 IC 8340

 production
 B 630;
 IC 8340

 properties
 IC 8340
 B 630;
 IC 8340

 properties
 IC 8340
 B 630;
 IC 8340

 reserves
 IC 8340
 Strategic factors
 IC 8340

 substitutes
 IC 8340
 IC 8340

ŧ

ſ

(

 Selenium, supply
 IC 8340

 technology
 B 630; IC 8340

 toxicology
 IC 8340

 uses
 B 630; IC 8340
 Selenium compounds, poisonous characteristics ______ B 630 Selenium industry, problems ______ B 630 Semidi Islands National Wildlife Refuge, Alaska, mineral appraisal _____ GS 7-68 Semitaconite, nonmagnetic, pilot plant flo-eral appraisal _____ GS 5-68 Separation, magnetic, fine-particle low-mag-netic-susceptibility minerals, tests RI 6722 Separator, magnetic, matrix-type, descrip-_ RI 6722 ments _____ OP 71-65 solubility, in saline waters _____ OP 100-69 OP 71-65 Sewage, metabolic treatment of, coal use in OFR 12-69 Sewage-treatment plants, final effluent, adsorption tests OP 75-65 Sewell "A" mine, W. Va., coal, prepara-tion characteristics RI 6874 Sewell bed, coal, coke from, properties RI 7050 W Va. coal explosing properties RI 7050 W. Va., coal, carbonizing properties RI 6615, 6872, 7236 chloroform-extract yield, investiga-RI 7131 W. Va., coal, caking properties, destroy-**RI 6605** Shafts, in tunner construction, B 644 safety rules ______ B 644 Shaft drilling, in rock, linear cutter ap-Shaft drilling, in rock, linear cutter ap-paratus tests ______ OP 152-69 Shaft sinking, presplitting technique, meth-ods and costs ______ IC 8273 recommended safety standards ______ IC 8365 Shaft-sinking methods and costs, U.S. Army Corps of Engineers, Littleville Dam project, Mass. ______ IC 8273 Shales, analyses _______ IC 8235 black, organic composition ______ OP 11-68 ceramic evaluation ______ IC 8335 black, organic composition ______ OP 11-68 ceramic evaluation ______ IT 1755 for lightweight aggregates, evaluation RI 6574, 6614, 7055, 7129, 7244; OP 134-66 tests _______ RI 7055 for nuclear-waste disposal, laboratory tests _______ RI 6926 Pa., properties _______ PTG uses ______ PTG uses ______ PTG uses ______ RI 7248 spent heat content ______ RI 7248 tent, equations for _____ RI 7248 spent, heat content ______ RI 7248 spent, heat content ______ RI 6607 Shale oil; see also Oil, shale Shale oil, Bureau of Mines publications on, list ______ IC 8429 commercial production of, forecast _____ OP 7-69 composition, effect of retorting tem-perature on ______ OP 35-65 hydrogenation, cobalt molybdate catadepleted uranium catalyst _____ OP 20-68 nitrogen compounds in, separating and identifying ______ OP 4-68 thermal reactions ______ RI 6720 pipeline gas from, hydrogasification____ OP 20-66 production method _____ OP 61-66

Shale oil, porphyrins in, spectroscopic determination _____ OP 66-66 prehydrogenated, hydrocracking ____ OP 19-67 production, cost estimate _____ OP 91-69 properties _____ OP 156-67 specific gravity, stratigraphic and geospecific gravity, stratigraphic and geo-graphic variations ______ RI 6883 Shape factors, calculating, computer pro-gram for ______ RI 7111 in fluid flow, calculating, method ______ RI 7111 Shattuckite, magnetic susceptibility ______ IC 8383 Shear wave, velocity measurements, in rock samples, piezoelectric pulsing equipment for ______ RI 7065 equipment for Sheet, hot-rolled, from rolling slabs of zinc RI 7065 RI 7089 alloys, microstructure ______ Shift analysis, application to mining in-Shift analysis, application of financial OP 152-65 Shock arrival time, in underground explo-sions, investigation ______ RI 7147 Shock pressure, gage for determining, design and operation ______ OP 129-67 RI 6986 Shock sensitivity, explosives _____ Shock wave, gage for measuring, design and operation _____ OP 60-67 lateral, in cylindrical explosive charges, Short Coal Co. mine, Va., coal, washing characteristics Shreve & Tizen Coal Co. mine, Va., coal, **RI 6701** RI 6740 washing characteristics _____ RI 6740 Washing characteristics ______ IC 8740 Sicklerite, magnetic susceptibility ______ IC 8359 Siderite, thermal decompositions, basic data RI 6643 decomposition products, reactions _____ RI 6643 Siegenite, magnetic susceptibility ______ IC 8351 Sierra Leone, mineral industry, annual review ______ MY 1968 (v. IV) Signal lights, trip light-reflector compari-Son ______ RI 7202 son _____ RI 7202 Silica, anionic flotation, from iron ore___ OP 30-65 RI 7202 ilica, anionic flotation, from iron ore____OP 30-65 as refractory raw material ______ IC 8382 in coal ash, determination ______ RI 7240 spectrochemical method ______ RI 6985 silver in, detection limit, radioisotopic X-ray analytical techniques ____ OP 76-69 determination, X-ray isotopic analysis, laboratory study ______ TPR 6 solid-state reactions with manganese, high-temperature tests ______ RI 6905 vacuum carbothermal reduction of, pavacuum carbothermal reduction of, parameters for ______ RI 7207 Silica-alumina-lime system, phase diagram RI 6939 Silica-graphite mixtures, reduction, in vac-RI 7207 Silica sand, chemical-industry use, Calif. __ IC 8244 fly ash removal with, fluidized-bed OFR 17-68 method __ from quartzite, milling methods and costs IC 8248 Silica-stone products, annual data MY 1968 (v. I-II) Silicate abrasives, natural, annual data MY 1968 (v. I-II)

 Silicate mineral, solubility in saline waters
 OP 100-69

 Silicate reactions, bibliography
 OP 13-69

 Silicon, annual data
 MY 1968 (v. I-II)

 chlorination kinetics, study
 RI 6649

 grades
 B 630

 technology
 B 630

 in coal, determination
 RI 7124

 organic derivatives, spectral data
 RI 7633

 prices
 B 630

 Silicon alloys, prices
 B 630

 Silicon-aluminum alloys, hypereutectic, com-mercial-purity, improving mechan-ical properties of, method
 RI 6765

 Silicate mineral, solubility in saline ical properties of, method _____ RI 6765 Silicon carbide, manufacture, trends and outlook _____ BPA 3-65

アイシイシイジィ

_

Silicon industry, organization B 630 problems B 630
Silicon metal, grades B 630
prices B 630 Silicon nitride, fibrous, synthesis, patent P 8-66 Silicon tetrafluoride-hydrogen fluoride mix-
Silicon tetrafluoride-hydrogen fluoride mix- tures, hydrogen fluoride separation
from RI 6877
from
demand IC 8257
imports and exports D 030
in ores, detection limit, radioisotopic
X-ray analytical techniques OP 52-69 in silica, detection limit, radioisotopic
X-ray analytical techniques OP 76-69 determination. X-ray isotopic analysis.
X-ray analytical techniques OP 76-69 determination, X-ray isotopic analysis, laboratory study TPR 6 precipitation, from waste photographic
solutions, iron flament-type unit,
design and operation RI 7117 prices B 630
production B 630
foreign IC 8257 U.S IC 8257
production potential IC 8370, 8427 production techniques, review and evalua
tion IC 8266; OP 123-67 recovery, from precipitated sludge, smelt-
recovery, from precipitated sludge, smelt- ing process RI 7117
from waste photographic solutions, metallic displacement method RI 7117
secondary scrap, review and evaluation
IC 8266; OP 123-67 recovery methods, primary ores, review
recovery methods, primary ores, review and evaluation IC 8266; OP 123-67 reserves B 630; IC 8257, 8370 secondary, production IC 8257
secondary, production IC 8257
recovery B 630
recovery B 630 technology B 630 U.S., potential resources OFR 22-69
vapor pressure, measuring, torsion-effu- sion apparatus RI 6682 Silver-bearing ores, processing, review and
evaluation IC 8266; OP 123-67
evaluation IC 8266; OP 123-67 Silver industry, problems B 630 Silver ores, silver in, detection limit, ra- diosotopic X-ray analytical tech-
diosotopic X-ray analytical tech-
silver production fromIC 8266; OP 123-67
silver production fromIC 8266; OP 123-67 Silver supply, deficitIC 8267 Silver supply, deficitIC 8427 SourcesIC 8427
SUMEDOT ISIADO INATIONAL WIIGHTE KETURE.
Alaska, mineral appraisal GS 7-68 Singapore, mineral industry, annual review
Single-crystal whiskers, aluminum borate, synthesis, methods RI 6575
tion OFR 8-65
petrography OFR 8-65 Size distribution, grinding mill products,
mathematical method for analyzing RI 7309 Skull casting, expendable molds for, devel-
opment B 646 reactive metals, development B 646
reactive metals, development B 646
tungsten, method B 646
titanium, methods B 646 tungsten, method B 646 Skutterudite, magnetic susceptibility IC 8351 Slag, analysis, methods, description B 638
heat content
high-manganese, from selective oxidation
of manganiferous pig iron, labora- tory study RI 6728
tory study RI 6728 recovery of manganese from, methods RI 6728 iron and steel MY 1968 (v. 1-II)
manganese recovery from, study RI 6728

Slag, manganiferous, manganese chloride
from, tests RI 6959 manganese recovery from, chlorination
stainless steel, chrome spinel from, effect
stainless steel, chrome spinel from, effect of silica-magnesia-lime ratio RI 6923
of slica-magnesia-lime ratio RI 6936 synthetic, enthalpy RI 6886 heat content RI 6886 testing, methods, description B 638 tin, columbium-tantalum-bearing alloys from, by electric-arc furnace smelting RI 6734 titaniferous, liquidus temperatures RI 7081, 7083, 7232
testing, methods, description B 638
tin, columbium-tantalum-bearing alloys
smelting RI 6734
flux composition determination by RI 7232
flux composition determination by RI 7232
nominal composition, production of RI 7232 Slag rate, low, blast-furnace operation with, problems RI 6678
tests RI 6678 experimental blast-furnace testsOP 166-65
experimental blast-furnace testsOP 166-65 Slate, consumptionB 630
dimension stone uses IC 8391
grades B 630 prices B 630
technology B 630 uses B 630
Slate industry, problems B 630
Slate industry, problems B 630 Slide rule, circular, for interconverting
weight-percent and atomic per- cent in binary compounds OFR 4-68
Slimes, phosphate rock washer, disposal, cost estimates IC 8404
weight-percent and atomic per- cent in binary compounds OFR 4~68 Slimes, phosphate rock washer, disposal, cost estimates IC 8404 Slope angle, stability of, in open-pit mine, field test OP 190-68 stable, in open pit mine, determina- tion, method OP 190-68 Slope stability, cuts in rock, determining,
stable, in open pit mine, determina-
Slope stability, cuts in rock, determining,
methods OP 58-66 open-pit mine, determination of angles OP 100 00
in method UP 190-65
mathematical model OP 188-68 Sludge, precipitated, silver-containing, BI 7117
smelting process for RI 7117 Slurries anthracite, dewatering, method_ RI 7012
focculants, evaluation RI 7102
anal water transport problems study RI 6743
hydraulic, for mine backfill, propertiesRI 6922 powdered-coal, flow propertiesRI 6706 Slurry explosives, for underground mine
Slurry explosives, for underground mine use, in potentially flammable gas
atmospheres, development RI 7195 Smaltite, magnetic susceptibility IC 8351
Smalting prereduced and iron ore pellets.
cost comparison OP 55_67 Smithsonite, magnetic susceptibility IC 8383
Smog. Dhotochemical, irradiation-cham-
ber studies OP 115-67 Smog formation, photochemical reactions in, stoichiometric studies, radio-
in, stoichiometric studies, radio-
tracer techniques for hydrocar- bons RI 7304
Smoke in diesel exhaust determination.
Smoke emission, determination, Ringelmann smoke chart for
Smoke chart for IC 8333 Soapstone, annual data MY 1968 (v. I-II) chemical-industry use, Calif IC 8244
consumption B bay
grades B 630
nesticide diluent, use as IC 8260
prices B 630 production B 630
reserves B 630
technology B 630 uses B 630
Soapstone industry, organization B 630
problems B 630 Soda-ash industry, problems B 630
······································

i

'(

Sodium, annual data MY 1968 (v. I–II) determination, in fuel oil, flame spectro-
metric method OP 88-66
in coal RI 6579 in reduction of titanium tetrachloride, use RI 6813
Sodium aluminum carbonate basic alka-
lized alumina from, processes RI 7294 Sodium aluminate solutions, density RI 6582
pH RI 6582 specific conductance RI 6582
viscosity RI 6582 Sodium borates, anhydrous, heats of for-
mation RI 7167 Sodium bromide, entropy RI 7040
high-temperature heat content RI 7040 Sodium calcium aluminate synthesized
alumina extraction from, in so- dium carbonate solution RI 6593
in sodium hydroxide solution RI 6593
in water RI 6593 Sodium-calcium silicates, crystalline, en-
tropies RI 7201 high-temperature heat contents RI 7201
Sodium carbonate, prices B 630 production B 630
reserves B 630 technology B 630
uses B 630 Sodium carbonate solutions, reducing per- meability of irrigation canal beds
WITH TASIS BU DA4
Sodium chloride, consumption B 630 imports and exports B 630
in permissible explosives, effect on in-
cendivity RI 6954 molten, reaction rate of titanium-iron
alloys with titanium trichloride in RI 7039 reaction rate of titanium-oxygen alloys with titanium chlorides RI 7005
prices B 630
production B 630 reserves B 630
Sodium compounds, annual data MY 1968 (v. I-II)
chemical-industry use, Calif. III 1966 (V. 1824 Sodium cyanide electrolyte, rhodium deposition from OP 125-69
Sodium hexametaphosphate, use, as dis-
Sodium hexametaphosphate, use, as dis- persant in hydraulic backfill, study RI 6831 Sodium iodide, entropy RI 7040 high-temperature heat content RI 7040
high-temperature heat content RI 7040 Sodium metal, production B 630
Sodium metal, production B 630 prices B 630 uses B 630
uses
in permissible explosives, effect on in-
cendivity RI 6954 Sodium oxide, in coal ash, determination RI 7240
Sodium sulfate, copper removal, from molten iron, by additions of OP 165-69
laboratory study RI 7199 prices B 630
production B 630
reserves B 630 Sodium sulfate industry, problems B 630 Sodium tetragermanate, crystal data OP 58-68
Sodium venedates thermodynamic proper-
ties RI 6727 Soil, horizontal boring methods for RI 6727 Soil modifier, sintered fly ash as, labora-
tory and neid tests OF 101-09
Soil stabilization, fly ash in, use OP 19-66, 189-68 Soil stress cell, design and operation OP 126-69
Solders, tin-lead. testing, methods KI 6963
Solenoid valve, high-speed, control cir- cuit OP 179-68

÷

l

ŧ

1

1

1

.

Solids, adsorption of gases by, energy
values, calculating RI 6639
values, calculating RI 6639 coarse, hydraulic transportation of, lock-
hopper feeder system, automated pilot plant for RI 7283
devices for feeding IC 8314
in gas, heat transfer, study OP 8-66
Solids-gas mixtures, metering IC 8314
Solids-gas transport, flow characteristics IC 8314
Solid-liquid separation, electro-osmotic dewatering in OP 72-66
electrophoretic dewatering in OP 72-66
pilot plant for R1 7283 devices for feeding IC 8314 in gas, heat transfer, study OP 8-66 pneumatic transport, discussion OP 115-66 Solids-gas mixtures, metering IC 8314 Solid-liquid separation, electro-osmotic dewatering in OP 72-66 electrophoretic dewatering in OP 72-66 Solid waste, anthracite refuse banks, sur- vey
vey IIC 8409 coal-mine, disposal methods IIC 8430 from future operations, legal require-
from future operations, legal require-
ments IC 8430 disposal, uranium tailings, chemical sta- bilization of IC 8430
bilization of RI 7288
disposal problems OP 200-68 fly ash, sintered, as soil modifier, eval-
uation OP 167-69
incinerator residues metal and mineral
values in, beneficiation of OP 171-69 minerals in, reclaiming, methods OP 171-69
iron ore disposed costs 11. 8435
disposal methods IC 8435 rehabilitation IC 8435
mineral, stabilization OP 136-69
mineral, stabilization OP 136-69 utilization OP 136-69 phosphates slimes, disposal, cost esti-
mates IC 8404 radioactively contaminated, inciner
radioactively contaminated, inciner-
ating, problems OP 141-69 stabilization, chemical-vegetative proce-
dure for RI 7261 Solid waste disposal, coal mine, cost esti-
mates IC 8406
methods IC 8406 titanium chlorination residues, beneficia-
tion of RI 7221 Solution calorimeter, construction and op-
$\mathbf{eration}$ \mathbf{KI} 6583
Solvent extraction, in presence of in-
soluble residues, atomic absorp- tion determination of gold in
low-grade ores, application OP 119-69
rare-earth elements, from euxenite con- centrate, phosphoric acid method RI 6577
quarternary ammonium salt-che- lating agent system OP 171-68
rare-earth element separation by method.
patent P 8-65
rare-earth-yttrium mixtures RI 6601 rhenium recovery by, process, patent P 3-66
tungsten, from low-grade concentrates RI 6845
Somali Republic, mineral indus- try, annual review MY 1968 (v. IV)
Sonic booms, effect on explosives facili-
ties OP 128-68 Sonic velocity, in rock, measuring, piezo-
electric pulsing equipment for RI 6810
electric pulsing equipment for RI 6810 Sound transmission, from explosive shots, effect of weather RI 6921
Sound waves, high-frequency, in brass plating, effects OP 81-65 South Africa, Republic of, City Deep mine, gold, distribution, statis-
South Africa, Republic of, City Deep
mine, gold, distribution, statis-
tical analysis OP 94-67 mineral industry annual re-
view MY 1968 (v. IV) South Beulah mine, N. Dak., lignite and
lignite ash analyses RI 7158 South Carolina, Appalachian area, min-
South Carolina, Appalachian area, min- eral resources GS 4_62
eral resources GS 4-68 mineral resources potential GS 4-68
Edisto River, heavy mineral resources OFR 3-68
heavy minerals, deposits SCNR mining and beneficiation SCNR

.

South Carolina, ilmenite deposits, survey IC 8290
iron and steel production IC 8329
kaolin, as notential aluminum source IC 8329
iron and steel production IC 8329 iron and steel scrap industry, study IC 8329 kaolin, as potential aluminum source IC 8335 kyanite, recovery, from ore, flotation
kyanice, recovery, rion ofe, notation OP 151-69 mines, visitors' guide SP 2-67 South Carolina, minerals, production, annual data MY 1968 (v. I-II, III) mineral industry, annual review
South Carolina, minerals, production,
annual data MY 1968 (v. 1-11, 111) mineral industry, annual review
mineral industry, annual review MY 1968 (v. III) monazite resources OFR 3-68 occupational diseases, workmen's compen- sation laws on B 623 rutile deposits, survey IC 8290 rutile resources OFR 3-68 titanium mineral deposits, survey IC 8290 zircon resources OFR 3-68 South-Central States, barge transportation, mineral commodities IC 8431
occupational diseases, workmen's compen-
sation laws on B 623
rutile resources OFR 3-68
titanium mineral deposits, survey IC 8290
South-Central States, barge transportation.
mineral commodities sales is orde
iron and steel scrap industry, survey IC 8289 South Dakota, bentonite resources, for iron-
industry use, investigation IC 8278
beryllium-bearing pegmatites, reconnais- sance
sance IC 8298 coal, sulfur content, forms IC 8301 dolomite resources, for iron-industry use,
investigation IC 8278
investigation IC 8278 ferrous scrap industry, survey IC 8344 Homestake mine, gold distribution, in ore,
study RI 6897
study RI 6897 iron industry, potential, study IC 8278 iron resources, investigation IC 8278
lignite resources, for iron-industry use, investigation IC 8278
limestone recourses for iron-industry
use, investigation IC 8278
mercury occurrences IC 8252
mercury occurrences
MY 1968 (v. 1-11, 111) mineral industry, annual review
MY 1968 (v. III)
occupational diseases, workmen's compen- sation laws on B 623
sation laws on B 623 petroleum and natural gas resources, for iron-industry use, investigation IC 8278
Detroleum-Impregnaled Tocks, Surlace and
shallow M 12
power resources, for fron-industry use, investigation IC 8278 refractory clay deposits OFR 9-68 taconite, mining and beneficiation, feasi- bility study IC 8278
taconite, mining and beneficiation, feasi-
bility study IC 8278 taconite pellets, production, cost estimate IC 8278
water resources, for iron-industry use,
investigation IC 8278 Williston basin crude oils, processing PL 7182
characteristics RI 7183
Williston basin oilfields in B 629 South-West Africa. Territory of,
mineral industry, annual
review MY 1968 (v. IV) Southern Rhodesia, mineral in-
dustry, annual review MI 1968 (V. IV)
Southern Yeman, mineral indus- try, annual review MY 1968 (v. IV)
Southeastern United States, crude oil, pro-
duction RI 7059 sulfur content RI 7059
sulfur content RI 7059 Southeastern Virginia Coal Corp., Va., coal, washing characteristics RI 6740
coal, washing characteristics RI 6740 Soybean oil, conjugation, by decomposi-
tion of iron tricarbonyl complex.
with carbon monoxide OP 10-67 Spain, coal, production and consumption IC 8380
mineral industry, annual re- view MY 1968 (v. IV)
AIGM WII 1900 (A. 14)

•

0	Spanish Peaks primitive area, Mont., min-
-	erals survey GS 2-66
8	Spanish Sahara, mineral indus-
9	try, annual review MY 1968 (V. IV)
9	Specific gravity, coal, determination, method D 030
5	coke, determination, method B 638
	coke, determination, method B 638 shale oil, stratigraphic and geographic variations RI 6883 Spectra, infrared, resins, from low-tempera-
9	variations RI 6883
7	Spectra, infrared, resins, from low-tempera-
	ture tar pitches B 636 mass, liquid-phase pyrolysis products,
)	mass, liquid-phase pyrolysis products,
·	of aromatic compounds OP 127-65
}	organic sulfur compounds, tabulation_ RI 6698
8	Spectra-structure correlations, organic com-
	pounds B 632
3	Spectrochemical analysis, tungsten, meth-
0	ods modifications . R1 6632
8	tungstic oxide, methods, modifications R1 6632
Ō	Spectrography, beryllium, high-purity,
8	Spectrography, beryllium, high-purity, determination of impurities in_ OP 107-66
-	lanthanum, suppressing selective vola-
1	tilization in OP 97-66
<u>9</u>	tilization in OP 97-66 long-wavelength X-ray spectra, from
	light elements, determination RI 6689
8	X-ray, literature survey OP 100-66
	X-ray, literature survey OP 100-66 Spectrometers, infrared prism, auxiliary ap-
8	paratus B 632 infrared prism, calibration B 632 mass, uses, review OP 125-67 Spectrometry, absorption, coal, study B 640 biob production more betrantum pro-
ĭ	infrared prism, calibration B 632
-	mass, uses, review OP 125-67
8	Snectrometry, absorption, coal, study B 640
4	high-resolution mass, heteroatom spe-
-	cies
7	cies OP 152-68 pyridine extracts, from coal vitrains OP 141-68
8	infrared, coal, sample preparation B 640
8	low-resolution mass, aromatic frac-
-	tions from petroleum OP 175-69
8	mass, analytical methods B 634
Ŭ.	and gas-chromatographic analysis,
8	of oil, high-boiling, from coal.
2	comparison OP 126-65
7	coal-tar products RI 7000
	comparison OP 126-65 coal-tar products RI 7000 indenols OP 33-67
)	broducts from microwave discharges
	in coal-deuterium oxide mix-
)	tures OP 73-68
	selected unsaturated hydrocarbons and
3	oxygenates RI 6854
	nuclear quadrupole resonance, inor-
8	ganics and minerals OP 51-69
_	ganics and minerals OP 51-69 ultraviolet-visible, coal, sample prepara-
2	LIGN D 040
~	Spectrophotometric analysis, oil-well scales RI 6602
8	Spectrophotometry, alkylnaphthalenes in
8	coal tar neutral oils OP 32-66
~	flame, cesium, in oilfield brines RI 6641
8	lithium, in oilfield brines OP 29-65
8	rubidium, in oilfield brines RI 6641
-	ultraviolet, correlations in B 632
8	ultraviolet, correlations in B 632 Spectroscopy, far-infrared, inorganics_ OP 102-69 minerals OP 102-69
0	minerals UP 102-69
3	inirared, galena-aqueous polassium ethvi
9	xanthate system RI 6816
	minerals in coal OP 28-67
`	starch products used in iron-ore flota-
)	tion RI 7306
<u>۱</u>	techniquesB 632 use, in coal structure research OP 22–67
)	use, in coal structure research OP 22-67
、	nitrogen compounds in petroleum OP 193-68
)	nuclear magnetic resonance alkylpyri-
۵	dines OP 164-68 Specularite, pellets, physical strength, at
9	opecularite, pellets, physical strength, at
9	elevated temperatures RI 7060
^	Spencer Lake asbestos-serpentine de-
0	posits, Maine, investigation OFR 10-67
	Sphalerite, entropy RI 6708 high-temperature heat content RI 6708
7	nign-temperature neat content R1 6708
7 0	magnetic susceptibility IC 8383
v	reduction, with hydrogen from cracked
	ammonia RI 6662 with molecular hydrogen RI 6662
1	

t

I

I

I

Sphene, magnetic susceptibility _____ IC 8360 Sphere, large-diameter, for combustion research, design and construc-

tion _____ Ol Spiegeleisen, oxidizing manganese from, OP 139-66 **RI 6596**

lization studies ______ RI 6923 Spinel structure, zinc ferrite-magnetite sys-

tem, relation of thermodynamic

properties Splash Dam bed, Va., coal, washing char-RI 6754

I.

ľ

Ľ •

۶.

Splash Dam bed, Va., coal, washing char-acteristics ______ RI 6740 Spodumene, beneficiation, multistage heavy-liquid cyclone method __ OP 145-67 heat of formation ______ RI 6873 heavy-liquid cyclone concentration of, semicontinuous tests ______ RI 7134 thermodynamic properties ______ RI 7134 thermodynamic properties ______ RI 7001 Spodumene-beryl ores, flotation, tests ____ OP 22-65 Spodumene concentrate, from ore, heavy-liquid cyclone separation study _____ RI 6969

- Spor Mountain, Utah, beryllium ore, sol-vent extraction processing, study OP 57-67 Squaw sand, Doddridge County, W. Va., investigation ______OP 189-67 investigation _____ Ol Ohio, core samples, density and porosity

 - data W. Va., core samples, density and por-IC 8330

va., core samples, density and por-osity data ______ IC 8330
 Stabilization, uranium tailings pile, chem-ical method ______ RI 7288
 Stack gas, sulfur and nitrogen oxides re-moval from, vapor phase reac-tion with ammonia ______ OP 163-69
 Stabilization of the second seco

Stainless steel, palladium deposits on, from aqueous electrolyte __ RI 7016 aqueous electronyte ______ KI 7010 platinum deposits on, from aqueous elec-trolyte ______ RI 7016 semiaustenitic, ferrite control in, by co-balt additions, practicability _____ RI 7107 precipitation hardening of, effect of cobalt additions ______ RI 7121 substituting cobalt for nickel in, effect on Stainless steel-gadolinium alloys, corrosion properties ______ RI 6636 fabrication _____ RI 6636 mechanical properties ______ RI 6636 phase relationships ______ RI 6636

Stainless steel-gadolinium pseudo-binary

 Stainless
 steel-gadolinium
 pseudo-binary

 phase
 diagram
 RI
 6636

 Stannick, magnetic susceptibility
 IC
 8383

 Stannous
 chloride, vapor pressure
 RI
 7022

 Stannous
 chloride-zinc
 chloride
 system,

 vapor
 pressures
 RI
 7022

 Star
 Bridge No. 1 mine, W. Va., coal, preparation characteristics
 RI
 6874

 Star mine, Idaho, backfilled stopes, load displacement masurement in
 RI
 7038

 r mile, luand, backhiled stopes, load dis-placement measurement in _____ RI 7038 deep-mine rock stress, determination__ RI 6887 rock-deformation measurements, in-strumentation and techniques ___ RI 6747 tectonic and mining-induced deforma-tion, petrofabric study _____ RI 7173 roch products in inconcore flotation infra-Starch products, in iron-ore flotation, infra-

red spectroscopy ______ RI 7306 Statistical analysis, compressive strength of rock, predicting, from other properties ______ RI 6702 computer programs of distribution mo-

RI 6598

- ments ______ RI 6598 gold-deposit assay data _____ OP 94-67 lignite deposit core-sample data _____ RI 7237 lignite reserves, from core data _____ RI 6838 mine and mineral-deposit sample and assay data _____ B 621 data ______ B 621 mine assay data ______ RI 6955 mineral-industry applications, experi-mental confirmation _____ RI 6627

Gastistical analyzin mineral industry an
Statistical analysis, mineral-industry ap- pli-ations, theoretical confirmation RI 6768
pli-ations, theoretical contraction of another
mineral transportation costs IC 8381
mineral transfortation costs
nitrogen demand IC 8418
nitrogen demand IC 8418 nonlinear-regression problems, solving, method RI 6900
RI 6900
inechod Ri 6000
ore-deposit assay data KI 6919
ore-deposit assay data
values and unequal sample-inter-
values and unequal sample-more-
val lengths RI 6867
panetrometer data Bi 6646
phosphate rock demand IC 8418
phosphate fock demand
phosphate rock demand IC 8418 polynomial method for estimating virial
coefficients, from experimental data, application IC 8437 potash demand IC 8418 random component in bulk sampling OP 71-67
data application IC 8487
potash demand IC 8418
random component in bulk sampling OP 71-67
uranium assay data, from gamma-ray
uraniuni assay data, from gamma-ray br core
logs RI 6645 Statistical design, combination, sensitivity testing, permissible explosives IC 8324
Statistical design, combination, sensitivity
testing, permissible explosives IC 8324
testing, permissione explosives in the los
Statistical evaluation, boron fused-salt elec-
trolysis, factors in RI 7028
Statistical methods constructing contour
Statistical methods, constructing contour
maps by RI 6876 drill-hole grid spacing design, copper- deposit evaluation RI 6634 linear discriminant analysis, multivariate
drill-hole grid spacing design, copper-
denosit evaluation BI 6634
linear discriminant analysis, multivariate
assay data
Statistical summary MY 1968 (v. III)
Gratistical task-investigation and mineral de
Statistical techniques, mine and mineral-de-
posit assay data applications H 621
Steurolite annual data MY 1968 (v. I-II)
Steam bollers, in tunnel construction, recom-
mended safety rules B 644
Steam carbon reaction kinetice OP 52-67
Steam injection Dubres Inc. project
Steam injection, Dubros, Inc., project,
Steam injection, Dubros, Inc., project, description OP 117-69
Steam injection, Dubros, Inc., project, description OP 117-69 oil reservoirs, continuous, pilot tests OP 21-69
Steam carbon reaction, America in the state of the state
linear discriminant analysis, multivariate assay data RI 6898 Statistical summary MY 1968 (v. III) Statistical techniques, mine and mineral-de posit assay data applications B 621 Staurolite, annual data MY 1968 (v. I-II) Steam boilers, in tunnel construction, recom- mended safety rules B 644 Steam-carbon reaction, kinetics B 644 Steam-carbon reaction, kinetics B 644 Steam-carbon reaction, kinetics B 644 Steam-carbon reaction, kinetics B 644 Steam injection, Dubros, Inc., project, description OP 117-69 oil reservoirs, continuous, pilot tests OP 21-69 method OP 127-67
results OP $127-67$
results OP $127-67$
results OP $127-67$
results OP 127-67 Steamflooding, secondary recovery by, pre- dicting results, computer program
results OP 127-67 Steamflooding, secondary recovery by, pre- dicting results, computer program
results OP 127-67 Steamflooding, secondary recovery by, pre- dicting results, computer program
results OP 127-67 Steamflooding, secondary recovery by, pre- dicting results, computer program
results OP 127-67 Steamflooding, secondary recovery by, pre- dicting results, computer program
results OP 127-67 Steamflooding, secondary recovery by, pre- dicting results, computer program
results OP 127-67 Steamflooding, secondary recovery by, pre- dicting results, computer program for IC 8432 Steel, annual data MY 1968 (v. I-II) barge transportation of IC 8431 consumable electrode vacuum arc melting of, heat flux during RI 7035
results OP 127-67 Steamflooding, secondary recovery by, pre- dicting results, computer program for IC 8432 Steel, annual data MY 1968 (v. I-II) barge transportation of IC 8431 consumable electrode vacuum arc melting of, heat flux during RI 7035
results OP 127-67 Steamflooding, secondary recovery by, pre- dicting results, computer program for IC 8432 Steel, annual data MY 1968 (v. I-II) barge transportation of IC 8431 consumable electrode vacuum arc melting of, heat flux during RI 7035
results OP 127-67 Steamflooding, secondary recovery by, pre- dicting results, computer program for IC 8432 Steel, annual data IC 8431 consumable electrode vacuum arc melting of, heat flux during RI 7035 consumption B 630 copper-clad, copper removal from, by
results OP 127-67 Steamflooding, secondary recovery by, pre- dicting results, computer program for IC 8432 Steel, annual data MY 1968 (v. I-II) barge transportation of IC 8431 consumable electrode vacuum arc melting of, heat flux during RI 7035 consumption B 630 copper-clad, copper removal from, by bightemperature oxidation RI 6647
results OP 127-67 Steamflooding, secondary recovery by, pre- dicting results, computer program for IC 8432 Steel, annual data MY 1968 (v. I-II) barge transportation of IC 8431 consumable electrode vacuum arc melting of, heat flux during RI 7035 consumption B 630 copper-clad, copper removal from, by bightemperature oxidation RI 6647
results OP 127-67 Steamflooding, secondary recovery by, pre- dicting results, computer program for IC 8432 Steel, annual data MY 1968 (v. I-II) barge transportation of IC 8431 consumable electrode vacuum arc melting of, heat flux during RI 7035 consumption B 630 copper-clad, copper removal from, by bightemperature oxidation RI 6647
results OP 127-67 Steamflooding, secondary recovery by, pre- dicting results, computer program for IC 8432 Steel, annual data MY 1968 (v. I-II) barge transportation of IC 8431 consumable electrode vacuum arc melting of, heat flux during RI 7035 consumption B 630 copper-clad, copper removal from, by bightemperature oxidation RI 6647
results OP 127-67 Steamflooding, secondary recovery by, pre- dicting results, computer program for IC 8432 Steel, annual data MY 1968 (v. I-II) barge transportation of IC 8431 consumable electrode vacuum arc melting of, heat flux during IC 8431 consumption B 630 copper-clad, copper removal from, by high-temperature oxidation B 630 imports and exports B 630 low-carbon, explosive forming of small
results OP 127-67 Steamflooding, secondary recovery by, pre- dicting results, computer program for IC 8432 Steel, annual data MY 1968 (v. I-II) barge transportation of IC 8431 consumable electrode vacuum arc melting of, heat flux during IC 8431 consumption B 630 copper-clad, copper removal from, by high-temperature oxidation B 630 imports and exports B 630 low-carbon, explosive forming of small
results OP 127-67 Steamflooding, secondary recovery by, pre- dicting results, computer program for IC 8432 Steel, annual data IC 8431 consumable electrode vacuum arc melting of, heat flux during IC 8431 consumption B 630 copper-clad, copper removal from, by high-temperature oxidation RI 6647 grades B 630 low-carbon, explosive forming of small hemispherical shapes from OFR 6-68 bigh concurrent of the state of the sta
results OP 127-67 Steamflooding, secondary recovery by, pre- dicting results, computer program for IC 8432 Steel, annual data MY 1968 (v. I-II) barge transportation of IC 8431 consumable electrode vacuum arc melting of, heat flux during RI 7035 consumption B 630 copper-clad, copper removal from, by high-temperature oxidation RI 6647 grades B 630 low-carbon, explosive forming of small hemispherical shapes from OFR 6-68 high energy-rate extrusion, effect on
results OP 127-67 Steamflooding, secondary recovery by, pre- dicting results, computer program for IC 8432 Steel, annual data MY 1968 (v. I-II) barge transportation of IC 8431 consumable electrode vacuum arc melting of, heat flux during RI 7035 consumption B 630 copper-clad, copper removal from, by high-temperature oxidation RI 6647 grades B 630 low-carbon, explosive forming of small hemispherical shapes from OFR 6-68 high energy-rate extrusion, effect on
results OP 127-67 Steamflooding, secondary recovery by, pre- dicting results, computer program for IC 8432 Steel, annual data MY 1968 (v. I-II) barge transportation of IC 8431 consumable electrode vacuum arc melting of, heat flux during RI 7035 consumption B 630 copper-clad, copper removal from, by high-temperature oxidation RI 6647 grades B 630 low-carbon, explosive forming of small hemispherical shapes from OFR 6-68 high energy-rate extrusion, effect on
results OP 127-67 Steamflooding, secondary recovery by, pre- dicting results, computer program for IC 8432 Steel, annual data MY 1968 (v. I-II) barge transportation of IC 8431 consumable electrode vacuum arc melting of, heat flux during IC 8431 consumption RI 7035 consumption B 630 copper-clad, copper removal from, by high-temperature oxidation RI 6647 grades B 630 imports and exports B 630 low-carbon, explosive forming of small hemispherical shapes from OFR 6-68 high energy-rate extrusion, effect on structure and properties RI 6757 maraging, properties OF 58-67
results OP 127-67 Steamflooding, secondary recovery by, pre- dicting results, computer program for IC 8432 Steel, annual data MY 1968 (v. I-II) barge transportation of IC 8431 consumable electrode vacuum arc melting of, heat flux during RI 7035 consumption B 630 copper-clad, copper removal from, by high-temperature oxidation RI 6647 grades B 630 low-carbon, explosive forming of small hemispherical shapes from OFR 6-68 high energy-rate extrusion, effect on structure and properties RI 6757 maraging, properties RI 6757
results OP 127-67 Steamflooding, secondary recovery by, pre- dicting results, computer program for IC 8432 Steel, annual data MY 1968 (v. I-II) barge transportation of IC 8431 consumable electrode vacuum arc melting of, heat flux during RI 7035 consumption B 630 copper-clad, copper removal from, by high-temperature oxidation RI 6647 grades B 630 low-carbon, explosive forming of small hemispherical shapes from OFR 6-68 high energy-rate extrusion, effect on structure and properties RI 6757 maraging, properties RI 6757
results OP 127-67 Steamflooding, secondary recovery by, pre- dicting results, computer program for IC 8432 Steel, annual data MY 1968 (v. I-II) barge transportation of IC 8431 consumable electrode vacuum arc melting of, heat flux during IC 8431 consumption B 630 copper-clad, copper removal from, by high-temperature oxidation B 630 imports and exports B 630 low-carbon, explosive forming of small hemispherical shapes from OFR 6-68 high energy-rate extrusion, effect on structure and properties CF 58-67 plain-carbon, rare-earth metals addi- tions, effect RI 6907 razearth oxides additions effect RI 6907
results OP 127-67 Steamflooding, secondary recovery by, pre- dicting results, computer program for IC 8432 Steel, annual data MY 1968 (v. I-II) barge transportation of IC 8431 consumable electrode vacuum arc melting of, heat flux during IC 8431 consumption B 630 copper-clad, copper removal from, by high-temperature oxidation B 630 imports and exports B 630 low-carbon, explosive forming of small hemispherical shapes from OFR 6-68 high energy-rate extrusion, effect on structure and properties CF 58-67 plain-carbon, rare-earth metals addi- tions, effect RI 6907 razearth oxides additions effect RI 6907
results OP 127-67 Steamflooding, secondary recovery by, pre- dicting results, computer program for IC 8432 Steel, annual data MY 1968 (v. I-II) barge transportation of IC 8431 consumable electrode vacuum arc melting of, heat flux during IC 8431 consumption B 630 copper-clad, copper removal from, by high-temperature oxidation B 630 imports and exports B 630 low-carbon, explosive forming of small hemispherical shapes from OFR 6-68 high energy-rate extrusion, effect on structure and properties CF 58-67 plain-carbon, rare-earth metals addi- tions, effect RI 6907 razearth oxides additions effect RI 6907
results OP 127-67 Steamflooding, secondary recovery by, pre- dicting results, computer program for IC 8432 Steel, annual data MY 1968 (v. I-II) barge transportation of IC 8431 consumable electrode vacuum arc melting of, heat flux during IC 8431 consumption B 630 copper-clad, copper removal from, by high-temperature oxidation B 630 imports and exports B 630 low-carbon, explosive forming of small hemispherical shapes from OFR 6-68 high energy-rate extrusion, effect on structure and properties CF 58-67 plain-carbon, rare-earth metals addi- tions, effect RI 6907 razearth oxides additions effect RI 6907
results OP 127-67 Steamflooding, secondary recovery by, pre- dicting results, computer program for IC 8432 Steel, annual data MY 1968 (v. I-II) barge transportation of IC 8431 consumable electrode vacuum arc melting of, heat flux during IC 8431 consumption B 630 copper-clad, copper removal from, by high-temperature oxidation B 630 imports and exports B 630 low-carbon, explosive forming of small hemispherical shapes from OFR 6-68 high energy-rate extrusion, effect on structure and properties CF 58-67 plain-carbon, rare-earth metals addi- tions, effect RI 6907 razearth oxides additions effect RI 6907
results OP 127-67 Steamflooding, secondary recovery by, pre- dicting results, computer program for IC 8432 Steel, annual data MY 1968 (v. I-II) barge transportation of IC 8431 consumable electrode vacuum arc melting of, heat flux during IC 8431 consumption B 630 copper-clad, copper removal from, by high-temperature oxidation B 630 imports and exports B 630 low-carbon, explosive forming of small hemispherical shapes from OFR 6-68 high energy-rate extrusion, effect on structure and properties CF 58-67 plain-carbon, rare-earth metals addi- tions, effect RI 6907 razearth oxides additions effect RI 6907
results OP 127-67 Steamflooding, secondary recovery by, pre- dicting results, computer program for IC 8432 Steel, annual data MY 1968 (v. I-II) barge transportation of IC 8431 consumable electrode vacuum arc melting of, heat flux during IC 8431 consumption B 630 copper-clad, copper removal from, by high-temperature oxidation B 630 imports and exports B 630 low-carbon, explosive forming of small hemispherical shapes from OFR 6-68 high energy-rate extrusion, effect on structure and properties RI 6757 maraging, properties RI 6907 rare-earth, oxides additions, effect RI 6907 rare-earth silicide additions, effect_ RI 7091, 7153 scrap from junk automobile amount RI 7350
results OP 127-67 Steamflooding, secondary recovery by, pre- dicting results, computer program for IC 8432 Steel, annual data MY 1968 (v. I-II) barge transportation of IC 8431 consumable electrode vacuum arc melting of, heat flux during IC 8431 consumption B 630 copper-clad, copper removal from, by high-temperature oxidation B 630 imports and exports B 630 low-carbon, explosive forming of small hemispherical shapes from OFR 6-68 high energy-rate extrusion, effect on structure and properties RI 6757 maraging, properties RI 6907 rare-earth, oxides additions, effect RI 6907 rare-earth silicide additions, effect_ RI 7091, 7153 scrap from junk automobile amount RI 7350
results OP 127-67 Steamflooding, secondary recovery by, pre- dicting results, computer program for IC 8432 Steel, annual data MY 1968 (v. I-II) barge transportation of IC 8431 consumable electrode vacuum arc melting of, heat flux during IC 8431 consumption B 630 copper-clad, copper removal from, by high-temperature oxidation B 630 imports and exports B 630 low-carbon, explosive forming of small hemispherical shapes from OFR 6-68 high energy-rate extrusion, effect on structure and properties RI 6757 maraging, properties RI 6907 rare-earth, oxides additions, effect RI 6907 rare-earth silicide additions, effect_ RI 7091, 7153 scrap from junk automobile amount RI 7350
results OP 127-67 Steamflooding, secondary recovery by, pre- dicting results, computer program for IC 8432 Steel, annual data MY 1968 (v. I-II) barge transportation of IC 8431 consumable electrode vacuum arc melting of, heat flux during IC 8431 consumption B 630 copper-clad, copper removal from, by high-temperature oxidation B 630 imports and exports B 630 low-carbon, explosive forming of small hemispherical shapes from OFR 6-68 high energy-rate extrusion, effect on structure and properties RI 6757 maraging, properties RI 6907 rare-earth, oxides additions, effect RI 6907 rare-earth silicide additions, effect_ RI 7091, 7153 scrap from junk automobile amount RI 7350
results OP 127-67 Steamflooding, secondary recovery by, pre- dicting results, computer program for IC 8432 Steel, annual data MY 1968 (v. I-II) barge transportation of IC 8431 consumable electrode vacuum arc melting of, heat flux during RI 7035 consumption B 630 copper-clad, copper removal from, by high-temperature oxidation RI 6647 grades B 630 low-carbon, explosive forming of small hemispherical shapes from OF R 6-68 high energy-rate extrusion, effect on structure and properties RI 6757 maraging, properties OF 88-67 plain-carbon, rare-earth metals addi- tions, effect RI 6907 rare-earth, oxides additions, effect RI 6907 prices B 630 production B 630 production R 630 production B 630 production R 630 production
results OP 127-67 Steamflooding, secondary recovery by, pre- dicting results, computer program for IC 8432 Steel, annual data MY 1968 (v. I-II) barge transportation of IC 8431 consumable electrode vacuum arc melting of, heat flux during IC 8431 consumption B 630 copper-clad, copper removal from, by high-temperature oxidation RI 6647 grades B 630 imports and exports B 630 low-carbon, explosive forming of small hemispherical shapes from OFR 6-68 high energy-rate extrusion, effect on structure and properties RI 6757 maraging, properties RI 6907 rare-earth, oxides additions, effect RI 6907 rare-earth silicide additions, effect RI 7091, 7153 scrap, from junk automobile, amount RI 7107 precipitation hardening of, effect of
results OP 127-67 Steamflooding, secondary recovery by, pre- dicting results, computer program for IC 8432 Steel, annual data MY 1968 (v. I-II) barge transportation of IC 8431 consumable electrode vacuum arc melting of, heat flux during IC 8431 consumption B 630 copper-clad, copper removal from, by high-temperature oxidation RI 6647 grades B 630 low-carbon, explosive forming of small hemispherical shapes from OFR 6-68 high energy-rate extrusion, effect on structure and properties RI 6757 maraging, properties RI 6907 rare-earth oxides additions, effect RI 6907 prices B 630 production B 630 rare-earth silicide additions, effect RI 6907 prices B 630 production B 630 production R 630 production
results OP 127-67 Steamflooding, secondary recovery by, pre- dicting results, computer program for IC 8432 Steel, annual data MY 1968 (v. I-II) barge transportation of IC 8431 consumable electrode vacuum arc melting of, heat flux during IC 8431 consumption B 630 copper-clad, copper removal from, by high-temperature oxidation RI 6647 grades B 630 low-carbon, explosive forming of small hemispherical shapes from OFR 6-68 high energy-rate extrusion, effect on structure and properties RI 6757 maraging, properties RI 6907 rare-earth oxides additions, effect RI 6907 prices B 630 production B 630 rare-earth silicide additions, effect RI 6907 prices B 630 production B 630 production R 630 production
results OP 127-67 Steamflooding, secondary recovery by, pre- dicting results, computer program for IC 8432 Steel, annual data MY 1968 (v. I-II) barge transportation of IC 8431 consumable electrode vacuum arc melting of, heat flux during IC 8431 consumption B 630 copper-clad, copper removal from, by high-temperature oxidation RI 6647 grades B 630 low-carbon, explosive forming of small hemispherical shapes from OFR 6-68 high energy-rate extrusion, effect on structure and properties RI 6757 maraging, properties RI 6907 rare-earth oxides additions, effect RI 6907 prices B 630 production B 630 rare-earth silicide additions, effect RI 6907 prices B 630 production B 630 production R 630 production
results OP 127-67 Steamflooding, secondary recovery by, pre- dicting results, computer program for IC 8432 Steel, annual data MY 1968 (v. I-II) barge transportation of IC 8431 consumable electrode vacuum arc melting of, heat flux during RI 7035 consumption B 630 copper-clad, copper removal from, by high-temperature oxidation RI 6647 grades B 630 low-carbon, explosive forming of small hemispherical shapes from OFR 6-68 high energy-rate extrusion, effect on structure and properties RI 6757 maraging, properties RI 6757 maraging, properties RI 6907 rare-earth, oxides additions, effect RI 6907 prices B 630 production B 630 production B 630 rare-earth silicide additions, effect RI 6907 prices B 630 production B 630 production B 630 production B 630 production RI 6907 prices RI 6907 prices B 630 production B 630 production B 630 production B 630 production B 630 production RI 7107 prices RI 7107 precipitation hardening of, effect of cobalt additions RI 7121 separation, from copper-containing ferrous scrap, improved method OP 183-68
results OP 127-67 Steamflooding, secondary recovery by, pre- dicting results, computer program for IC 8432 Steel, annual data MY 1968 (v. I-II) barge transportation of IC 8431 consumable electrode vacuum arc melting of, heat flux during IC 8431 consumption B 630 copper-clad, copper removal from, by high-temperature oxidation RI 6647 grades B 630 low-carbon, explosive forming of small hemispherical shapes from OFR 6-68 high energy-rate extrusion, effect on structure and properties RI 6757 maraging, properties OF 88-67 plain-carbon, rare-earth metals addi- tions, effect RI 6907 rare-earth oxides additions, effect RI 6907 prices B 630 roduction B 630 roduction B 630 rare-earth silicide additions, effect RI 6907 prices B 630 remiaustenitic stainless, ferrite control in, effect of cobalt additions RI 7107 precipitation hardening of, effect of cobalt additions RI 7121 separation, from copper-containing ferrous scrap, improved method OP 183-68 stainless, hip energy-rate extrusion, effect
results OP 127-67 Steamflooding, secondary recovery by, pre- dicting results, computer program for IC 8432 Steel, annual data MY 1968 (v. I-II) barge transportation of IC 8431 consumable electrode vacuum arc melting of, heat flux during IC 8431 consumption B 630 copper-clad, copper removal from, by high-temperature oxidation RI 6647 grades B 630 low-carbon, explosive forming of small hemispherical shapes from OFR 6-68 high energy-rate extrusion, effect on structure and properties RI 6757 maraging, properties OF 88-67 plain-carbon, rare-earth metals addi- tions, effect RI 6907 rare-earth oxides additions, effect RI 6907 prices B 630 production B 630 rare-earth silicide additions, effect RI 6907 prices B 630 rare-earth silicide additions, effect RI 6907 prices B 630 remiaustenitic stainless, ferrite control in, effect of cobalt additions RI 7107 precipitation hardening of, effect of cobalt additions RI 7121 separation, from copper-containing ferrous scrap, improved method OP 183-68 stainless, hip energy-rate extrusion, effect
results OP 127-67 Steamflooding, secondary recovery by, pre- dicting results, computer program for IC 8432 Steel, annual data MY 1968 (v. I-II) barge transportation of IC 8431 consumable electrode vacuum arc melting of, heat flux during RI 7035 consumption B 630 copper-clad, copper removal from, by high-temperature oxidation RI 6647 grades B 630 low-carbon, explosive forming of small hemispherical shapes from OFR 6-68 high energy-rate extrusion, effect on structure and properties RI 6757 maraging, properties RI 6757 maraging, properties RI 6907 rare-earth, oxides additions, effect RI 6907 prices B 630 production B 630 production B 630 rare-earth silicide additions, effect RI 6907 prices B 630 production B 630 production B 630 production B 630 production RI 6907 prices RI 6907 prices B 630 production B 630 production B 630 production B 630 production B 630 production RI 7107 prices RI 7107 precipitation hardening of, effect of cobalt additions RI 7121 separation, from copper-containing ferrous scrap, improved method OP 183-68

- technology ______ B 630 uses ______ B 630 Steel industry, problems ______ B 630 Steel coupons, for corrosion-inhibitor test-ing, use _____ RI 6696
- 381

Carel managements of the start of the second s
Steel properties, enect of rare-earth sincide
Steel properties, effect of rare-earth silicide additions RI 7153 Steel scrap industry, in North Central
Steel scrap industry, in North Central
States, survey IC 8342
in Northwestern Plaine States survey IC 9244
in Northwestern Plains States, survey IC 8344 in South Central States, survey IC 8289
Stool window concern was in allow with the second
Steel window screen, use, in silver recovery from waste photographic solutions RI 7117.
from waste photographic solutions RI 7117.
Steel wool, use, in silver recovery from waste photographic solutions RI 7117
waste photographic solutions RI 7117
briquets, electric arc furnace
method OP 187-68
briquets, electric arc furnace method OP 187-68 prereduced iron ore powder, electric
arc furnace methods OP 187-68 oxygen, fuming in, causes RI 7047 oxygen-blowing, hard-burned quicklime behavior in, results RI 6901 soft-burned quicklime behavior in, re-
oxygen fuming in causes DI 7047
ovygen, luming in, causes NI (04)
bebowing, naru-burned quicklime
behavior in, results RI 6901
soft-burned quicklime behavior in, re-
refractories in, technology IC 8382 Stemming, effect, in explosive tests in mor-
Stemming, effect, in explosive tests in mor-
tar RI 6679
tar RI 6679 Steranes, isolation, from Green River oil shale OP 176-69
oil shale
Stocknile, national strategia minorale OP 60 66
Stockpile. national, strategic minerals OP 62-66 Stockpiling, coal, safety recommendations _ IC 8256
Stocktop had W Vn and anti-it-
Stockton bed, w. va., coal, carbonizing
Stockpilling, coal, safety recommendations _ IC 8256 Stockton bed, W. Va., coal, carbonizing properties RI 6899 Stolzite, magnetic susceptibility IC 8360, 8383 Stone, annual data MY 1968 (v. I-II) crushed and broken, consumption R 530
Stolzite, magnetic susceptibility IC 8360, 8383
Stone, annual data
grades B 630
Drices B 620
production B 630
production B 630 technology B 630 uses B 630 dimension, grades B 630
dimension gredes D 030
umension, grades
imports B 630
Lechnology B 630
D 000
Stone industry, problems B 630
Stone industry, problems B 630 Stope, backfilled, load-displacement meas-
imports B 630 technology B 630 Stone industry, problems B 630 Stope, backfilled, load-displacement meas- urements in, method RI 7038
Stopping mine method R1 7038
Stopping mine method R1 7038
Stopping mine method R1 7038
Stopping mine method R1 7038
Stopping mine method R1 7038
Stopping mine method R1 7038
Stoppings, mine, materials for, evalua- tion OP 101-67 Storage stability, aviation turbine fuels, determination, radioactive tracer technique RI 7325 gasoline, predicting, method_ OP 167-68, 182-69
Stoppings, mine, materials for, evalua- tion OP 101-67 Storage stability, aviation turbine fuels, determination, radioactive tracer technique RI 7325 gasoline, predicting, method_ OP 167-68, 182-69
Stoppings, mine, materials for, evalua- tion OP 101-67 Storage stability, aviation turbine fuels, determination, radioactive tracer technique RI 7325 gasoline, predicting, method OP 167-68, 182-69 oven test for RI 7197 rapid aging methods, tests RI 7084
Stoppings, mine, materials for, evalua- tion OP 101-67 Storage stability, aviation turbine fuels, determination, radioactive tracer technique RI 7325 gasoline, predicting, method OP 167-68, 182-69 oven test for RI 7197 rapid aging methods, tests RI 7084
Stoppings, mine, method RI 7038 Stoppings, mine, materials for, evalua- tion OP 101-67 Storage stability, aviation turbine fuels, determination, radioactive tracer technique RI 7325 gasoline, predicting, method OP 167-68, 182-69 oven test for RI 7197 rapid aging methods, tests RI 7084 storage test-oven test comparison OP 182-69 high-temperature fuels, study OP 96-66
Stoppings, mine, materials for, evalua- tion OP 101-67 Storage stability, aviation turbine fuels, determination, radioactive tracer technique RI 7325 gasoline, predicting, method OP 167-68, 182-69 oven test for RI 7197 rapid aging methods, tests RI 7084 storage test-oven test comparison_ OP 182-69 high-temperature fuels, study OP 96-66 tests OP 9-67
Stoppings, mine, materials for, evalua- tion OP 101-67 Storage stability, aviation turbine fuels, determination, radioactive tracer technique RI 7325 gasoline, predicting, method OP 167-68, 182-69 oven test for RI 7197 rapid aging methods, tests RI 7084 storage test-oven test comparison_ OP 182-69 high-temperature fuels, study OP 96-66 tests OP 9-67
Stoppings, mine, materials for, evalua- tion OP 101-67 Storage stability, aviation turbine fuels, determination, radioactive tracer technique RI 7325 gasoline, predicting, method OP 167-68, 182-69 oven test for RI 7197 rapid aging methods, tests RI 7084 storage test-oven test comparison_ OP 182-69 high-temperature fuels, study OP 96-66 tests OP 9-67
Stoppings, mine, method OP 101-67 Storage stability, aviation turbine fuels, determination, radioactive tracer technique RI 7325 gasoline, predicting, method OP 167-68, 182-69 oven test for RI 7197 rapid aging methods, tests RI 7084 storage test-oven test comparison_ OP 182-69 high-temperature fuels, study OP 96-66 tests OP 9-67
Stoppings, mine, method OP 101-67 Storage stability, aviation turbine fuels, determination, radioactive tracer technique RI 7325 gasoline, predicting, method OP 167-68, 182-69 oven test for RI 7197 rapid aging methods, tests RI 7084 storage test-oven test comparison_ OP 182-69 high-temperature fuels, study OP 96-66 tests OP 9-67
Stoppings, mine, method OP 101-67 Storage stability, aviation turbine fuels, determination, radioactive tracer technique RI 7325 gasoline, predicting, method OP 167-68, 182-69 oven test for RI 7197 rapid aging methods, tests RI 7084 storage test-oven test comparison_ OP 182-69 high-temperature fuels, study OP 96-66 tests OP 9-67
Stoppings, mine, materials for, evalua- tion OP 101-67 Storage stability, aviation turbine fuels, determination, radioactive tracer technique III 7325 gasoline, predicting, method_ OP 167-68, 182-69 oven test for III 7084 storage test-oven test comparison_ OP 182-69 high-temperature fuels, study OP 96-66 tests OP 96-67 hydrogenated distillate fuels III 6961 Strain, axial, in model mine pillars, meas- urement III 7038 around mine openings, measuring III 6666 gages for measuring, evaluation III 6666
Stoppings, mine, materials for, evalua- tion OP 101-67 Storage stability, aviation turbine fuels, determination, radioactive tracer technique III 7325 gasoline, predicting, method_ OP 167-68, 182-69 oven test for III 7084 storage test-oven test comparison_ OP 182-69 high-temperature fuels, study OP 96-66 tests OP 96-67 hydrogenated distillate fuels III 6961 Strain, axial, in model mine pillars, meas- urement III 7038 around mine openings, measuring III 6666 gages for measuring, evaluation III 6666
Stoppings, mine, materials for, evalua- tion OP 101-67 Storage stability, aviation turbine fuels, determination, radioactive tracer technique III 7325 gasoline, predicting, method_ OP 167-68, 182-69 oven test for III 7084 storage test-oven test comparison_ OP 182-69 high-temperature fuels, study OP 96-66 tests OP 96-67 hydrogenated distillate fuels III 6961 Strain, axial, in model mine pillars, meas- urement III 7038 around mine openings, measuring III 6666 gages for measuring, evaluation III 6666
Stoppings, mine, materials for, evaluation OP 101-67 Storage stability, aviation turbine fuels, determination, radioactive tracer technique RI 7325 gasoline, predicting, method OP 167-68, 182-69 oven test for RI 7084 storage test-oven test comparison. OP 162-66 high-temperature fuels, study OP 96-66 tests OP 9-67 hydrogenated distillate fuels RI 6961 Strain, axial, in model mine pillars, measuring RI 6703 in rock, analysis of OP 50-68 measuring, instrumentation for OP 50-68 methods OP 50-68
Stoppings, mine, method OP 101-67 Storage stability, aviation turbine fuels, determination, radioactive tracer technique RI 7325 gasoline, predicting, method OP 167-68, 182-69 oven test for RI 7197 rapid aging methods, tests RI 7084 storage test-oven test comparison OP 182-69 high-temperature fuels, study OP 96-66 tests OP 96-66 tests OP 96-66 Strain, axial, in model mine pillars, meas- urement RI 6703 in rock, analysis of RI 6653 measuring, instrumentation for OP 50-68 methods OP 50-68 Strain gages, evaluation RI 6653
Stoppings, mine, method OP 101-67 Storage stability, aviation turbine fuels, determination, radioactive tracer technique RI 7325 gasoline, predicting, method OP 167-68, 182-69 oven test for RI 7197 rapid aging methods, tests RI 7084 storage test-oven test comparison OP 182-69 high-temperature fuels, study OP 96-66 tests OP 96-66 tests OP 96-66 Strain, axial, in model mine pillars, meas- urement RI 6703 in rock, analysis of RI 6653 measuring, instrumentation for OP 50-68 methods OP 50-68 Strain gages, evaluation RI 6653
Stoppings, mine, materials for, evaluation RI 7038 Stoppings, mine, materials for, evaluation OP 101-67 Storage stability, aviation turbine fuels, determination, radioactive tracer RI 7325 gasoline, predicting, methodOP 167-68, 182-69 oven test for
Stoppings, mine, materials for, evaluation RI 7038 Stoppings, mine, materials for, evaluation OP 101-67 Storage stability, aviation turbine fuels, determination, radioactive tracer RI 7325 gasoline, predicting, methodOP 167-68, 182-69 oven test for
Stoppings, mine, materials for, evaluation OP 101-67 Storage stability, aviation turbine fuels, determination, radioactive tracer technique OP 101-67 storage stability, aviation turbine fuels, determination, radioactive tracer technique RI 7325 gasoline, predicting, method OP 167-68, 182-69 oven test for
Stoppings, mine, materials for, evaluation OP 101-67 Storage stability, aviation turbine fuels, determination, radioactive tracer technique RI 7325 gasoline, predicting, method. OP 167-68, 182-69 oven test for RI 7197 rapid aging methods, tests RI 7084 storage test-oven test comparison. OP 162-69 high-temperature fuels, study OP 96-66 tests OP 96-66 storain, axial, in model mine pillars, measurement RI 6961 strain, axial, in model mine pillars, measuring, evaluation RI 6663 measuring, instrumentation for OP 50-68 strain gages, evaluation RI 6653 field tests RI 6653 strain gages, in granite, determination RI 6653 strain pulses, in granite, determination RI 6700 Strain pulses, from cylindrical charges, or granite determination RI 6700 <t< td=""></t<>
Stoppings, mine, materials for, evaluation OP 101-67 Storage stability, aviation turbine fuels, determination, radioactive tracer technique RI 7325 gasoline, predicting, method. OP 167-68, 182-69 oven test for RI 7197 rapid aging methods, tests RI 7084 storage test-oven test comparison. OP 162-69 high-temperature fuels, study OP 96-66 tests OP 96-66 storain, axial, in model mine pillars, measurement RI 6961 strain, axial, in model mine pillars, measuring, evaluation RI 6663 measuring, instrumentation for OP 50-68 strain gages, evaluation RI 6653 field tests RI 6653 strain gages, in granite, determination RI 6653 strain pulses, in granite, determination RI 6700 Strain pulses, from cylindrical charges, or granite determination RI 6700 <t< td=""></t<>
Stoppings, mine, method OP 101-67 Storage stability, aviation turbine fuels, determination, radioactive tracer technique RI 7325 gasoline, predicting, method OP 167-68, 182-69 oven test for RI 7197 rapid aging methods, tests RI 7084 storage test-oven test comparison OP 182-69 high-temperature fuels, study OP 96-66 tests OP 9-67 hydrogenated distillate fuels RI 6961 Strain, axial, in model mine pillars, meas- urement RI 6703 in rock, analysis of OP 50-68 around mine openings, measuring RI 6653 measuring, instrumentation for OP 50-68 Strain gages, evaluation RI 6653 field tests RI 6653 Strain pulses, in granite, determination RI 6693 variations, determination RI 6700 Strain waves, from cylindrical charges, generation and propagation OP 116-67 in rock, from cylindrical explosive charge detonation, computer
Stoppings, mine, method OP 101-67 Storage stability, aviation turbine fuels, determination, radioactive tracer technique RI 7325 gasoline, predicting, method OP 167-68, 182-69 oven test for RI 7197 rapid aging methods, tests RI 7084 storage test-oven test comparison OP 182-69 high-temperature fuels, study OP 96-66 tests OP 96-66 tests OP 96-66 strain, axial, in model mine pillars, meas- urement RI 6703 in rock, analysis of RI 6666 gages for measuring, evaluation RI 6666 gages, for measuring, evaluation RI 6663 methods OP 50-68 strain gages, evaluation RI 6653 field tests RI 6653 Strain pulses, in granite, determination RI 66700 Strain waves, from cylindrical charges, generation and propagation OP 116-67 in rock, from cylindrical explosive charge detonation, computer model-field test comparison OP 41-68
Stoppings, mine, method OP 101-67 Storage stability, aviation turbine fuels, determination, radioactive tracer technique RI 7325 gasoline, predicting, method OP 167-68, 182-69 oven test for RI 7197 rapid aging methods, tests RI 7084 storage test-oven test comparison OP 182-69 high-temperature fuels, study OP 96-66 tests OP 96-66 tests OP 96-66 strain, axial, in model mine pillars, meas- urement RI 6703 in rock, analysis of RI 6666 gages for measuring, evaluation RI 6666 gages, for measuring, evaluation RI 6663 methods OP 50-68 strain gages, evaluation RI 6653 field tests RI 6653 Strain pulses, in granite, determination RI 66700 Strain waves, from cylindrical charges, generation and propagation OP 116-67 in rock, from cylindrical explosive charge detonation, computer model-field test comparison OP 41-68
Stoppings, mine, materials for, evaluation OP 101-67 Storage stability, aviation turbine fuels, determination, radioactive tracer technique OP 101-67 storage stability, aviation turbine fuels, determination, radioactive tracer RI 7325 gasoline, predicting, methodOP 167-68, 182-69 oven test for
Stoppings, mine, materials for, evaluation OP 101-67 Storage stability, aviation turbine fuels, determination, radioactive tracer technique OP 101-67 storage stability, aviation turbine fuels, determination, radioactive tracer RI 7325 gasoline, predicting, methodOP 167-68, 182-69 oven test for
Stoppings, mine, method OP 101-67 Storage stability, aviation turbine fuels, determination, radioactive tracer technique RI 7325 gasoline, predicting, method OP 167-68, 182-69 oven test for RI 7197 rapid aging methods, tests RI 7084 storage test-oven test comparison OP 182-69 high-temperature fuels, study OP 96-66 tests OP 96-66 tests RI 6961 Strain, axial, in model mine pillars, meas- urement RI 6703 in rock, analysis of RI 6653 measuring, instrumentation for OP 50-68 around mine openings, measuring RI 6653 field tests RI 6653 Strain gages, evaluation RI 6653 field tests RI 6653 Strain pulses, in granite, determination RI 66700 Strain waves, from cylindrical charges, generation and propagation RI 6700 Strain waves, from cylindrical explosive charge detonation, computer model-field test comparison OP 41-68 Stratified primitive area, Wyo., minerals survey GS 5-66
Stoppings, mine, method OP 101-67 Storage stability, aviation turbine fuels, determination, radioactive tracer technique RI 7325 gasoline, predicting, method OP 167-68, 182-69 oven test for RI 7197 rapid aging methods, tests RI 7084 storage test-oven test comparison OP 182-69 high-temperature fuels, study OP 96-66 tests OP 96-66 tests RI 6961 Strain, axial, in model mine pillars, meas- urement RI 6703 in rock, analysis of RI 6666 gages for measuring, evaluation RI 6656 methods RI 6653 field tests RI 6653 Strain gages, evaluation RI 6653 Strain gages, in granite, determination RI 6693 variations, determination RI 6693 variations, determination RI 6700 Strain waves, from cylindrical explosive charge detonation, computer model-field test comparison OP 41-68 Stratified primitive area, Wyo., minerals survey GS 5-66
Stoppings, mine, materials for, evalua- tionOP 101-67 Storage stability, aviation turbine fuels, determination, radioactive tracer techniqueRI 7325 gasoline, predicting, methodOP 167-68, 182-69 oven test forRI 7197 rapid aging methods, testsRI 7084 storage test-oven test comparisonOP 182-69 high-temperature fuels, studyOP 96-66 testsOP 96-66 testsRI 6961 Strain, axial, in model mine pillars, meas- urementRI 6703 in rock, analysis ofOP 50-68 around mine openings, measuringRI 6666 gages for measuring, evaluationRI 6653 field testsRI 6653 Strain gages, evaluationRI 6653 Strain gages, in granite, determinationRI 6653 Strain waves, from cylindrical charges, generation and propagationRI 6700 Straified primitive area, Wyo., minerals surveyGS 5-66 Stress, determination meas- urementsRI 6955
Stoppings, mine, materials for, evalua- tionOP 101-67 Storage stability, aviation turbine fuels, determination, radioactive tracer techniqueRI 7325 gasoline, predicting, method OP 167-68, 182-69 oven test forRI 7197 rapid aging methods, testsRI 7197 rapid aging methods, testsRI 7084 storage test-oven test comparison OP 182-69 high-temperature fuels, study OP 96-66 tests OP 96-66 tests RI 6961 Strain, axial, in model mine pillars, meas- urement RI 6703 in rock, analysis of RI 6703 in rock, analysis of RI 6653 measuring, instrumentation for OP 50-68 around mine openings, measuring RI 6653 field tests RI 6653 field tests RI 6653 strain gages, evaluation RI 6653 field tests RI 6653 strain gages, in granite, determination RI 6653 strain waves, from cylindrical charges, generation and propagation RI 6700 Strain waves, from cylindrical explosive charge detonation, computer model-field test comparison GS 5-66 Stratified primitive area, Wyo., minerals survey GS 5-66
Stoppings, mine, materials for, evalua- tionOP 101-67 Storage stability, aviation turbine fuels, determination, radioactive tracer techniqueRI 7325 gasoline, predicting, method OP 167-68, 182-69 oven test forRI 7197 rapid aging methods, testsRI 7197 rapid aging methods, testsRI 7084 storage test-oven test comparison OP 182-69 high-temperature fuels, study OP 96-66 tests OP 96-66 tests RI 6961 Strain, axial, in model mine pillars, meas- urement RI 6703 in rock, analysis of RI 6703 in rock, analysis of RI 6653 measuring, instrumentation for OP 50-68 around mine openings, measuring RI 6653 field tests RI 6653 field tests RI 6653 strain gages, evaluation RI 6653 field tests RI 6653 strain gages, in granite, determination RI 6653 strain waves, from cylindrical charges, generation and propagation RI 6700 Strain waves, from cylindrical explosive charge detonation, computer model-field test comparison GS 5-66 Stratified primitive area, Wyo., minerals survey GS 5-66
Stoppings, mine, materials for, evalua- tionOP 101-67 Storage stability, aviation turbine fuels, determination, radioactive tracer techniqueRI 7325 gasoline, predicting, methodOP 167-68, 182-69 oven test forRI 7084 storage test-oven test comparisonOP 182-69 high-temperature fuels, studyOP 96-66 testsOP 96-66 testsRI 6961 Strain, axial, in model mine pillars, meas- urementRI 6703 in rock, analysis ofRI 6666 gages for measuring, evaluationRI 6666 strain gages, evaluation forOP 50-68 methodsRI 6653 field testsRI 6653 Strain pulses, in granite, determinationRI 6653 Strain pulses, in granite, determinationRI 6653 Strain pulses, in granite, determinationRI 6653 Strain pulses, from cylindrical charges, generation and propagationOP 41-68 Stratified primitive area, Wyo, minerals surveyGS 5-66 Strasin determination meas- urementsGS 5-66 Strasin determination meas- urementsGS 5-66 Strasin determination meas- urements
Stoppings, mine, materials for, evalua- tionOP 101-67 Storage stability, aviation turbine fuels, determination, radioactive tracer techniqueRI 7325 gasoline, predicting, methodOP 167-68, 182-69 oven test forRI 7197 rapid aging methods, testsRI 7084 storage test-oven test comparisonOP 182-69 high-temperature fuels, studyOP 96-66 testsOP 96-66 testsRI 6961 Strain, axial, in model mine pillars, meas- urementRI 6703 in rock, analysis ofOP 50-68 around mine openings, measuringRI 6666 gages for measuring, evaluationRI 6653 field testsRI 6653 Strain gages, evaluationRI 6653 Strain gages, in granite, determinationRI 6653 Strain waves, from cylindrical charges, generation and propagationRI 6700 Straified primitive area, Wyo., minerals surveyGS 5-66 Stress, determination meas- urementsRI 6955

. .

Stress, determination, in anisotropic rock,
drill-hole deformation method _ OP 107-67
flatjack method RI 6887 from measurements of diametral de-
formation of drill hole RI 6732
in rock-burst-prone area RI 6997
overcore stress-relief technique RI 6997
three-component borehole-deforma- tion gage method, laboratory and
field tests RI 7015
in open-pit mine walls, estimating OP 121-67 in situ determination OP 121-67
in situ determination OP 121-67
in rock, analysis of OP 50-68 around mine openings, determination,
borehole stress-relief method RI 6675
boring machine-induced, theoretical so-
lution RI 7200 horizontal, isotropic-anisotropic rela-
tions \mathbf{R} \mathbf{R} \mathbf{R}
in deep mine, petrofabric study RI 7173 measuring, borehole deformation meth-
measuring, borehole deformation meth-
od KI 0800
methods OP 50-68
triaxial method RI 6860
od RI 6860 instrumentation for OP 50-68 methods OP 50-68 triaxial method RI 6860 near explosively anchored rock bolt
anchors, study RI 6890 near underground openings, sum-
mary OP 139-67
mary OP 139-67 under drill bit, study RI 6838
in rock disks, subjected to thermal shock RI 6823 initiation of core disking, requirements
for OP 27-69
for OP 27-69 internal, in circular opening, photoelastic
study RI 6812 rock, induced, by block caving, estima-
ting RI 6653
measuring RI 6666
measuring RI 6666 tensile, tangential, in circular tunnel,
from boring machine props RI 7200 in circular-tunnel walls, minimizing,
theoretical solution RI 7030
Stress analysis, concrete tunnel linings, di-
rect stiffness matrix method RI 7297
experimental, circular openings RI 6812 open-pit mine, in gravity-loaded rock RI 7002
Stress components, in rock medium, deter-
mining, from diametral-deforma-
tion drill-hole measurements RI 6732
Stress direction, rock, determination, by analysis of in situ failure OP 61-65
Stress distribution, in coal pillars, during
pillar mining, determination RI 6971 Stress ellipsoid, calculating, method
RI 6732; OP 107-67
determination, in rock-burst-prone area _ RI 6997
Stress relief cores, testing, anisotropic
elastic solution for RI 7143 Strip mines, abandoned, revegetation studies RI 7075 secondary backfilling of RI 6772
studies RI 7075
secondary backfilling of RI 6772
land renabilitation MISC
land rehabilitation problems IC 8304 Strip-mine spoil, neutralizing, fly ash for_ OP 73-67
Strip mining, coal, surface mine regula- tion, effect OP 79-69 Stromeyerite, magnetic susceptibility IC 8383 Strontium, annual data MY 1968 (v. I-II)
tion, effect OP 79-69
Strontium annual data MV 1968 (v LII)
consumption B 630
imports B 630 in coal ash, spectrochemical determina-
in coal ash, spectrochemical determina- tion RI 7281
in oilfield waters spectrometric detar-
mination, using plasma arc OP 17-67 prices B 630
prices B 630 production B 630
reserves B 630
technology B 630
technology B 630 uses B 630 Strontium carbonate, heat of formation RI 6822
Strontium carbonate, neat of formation KI 6822

.

;

.

Strontium industry, organization _____ B 630 problems B 630 Strontium sulfate, solubility, in oilfield Submerged combustion, recovery of man-ganese sulfate crystals from soluganese suitate crystals RI 6762 tion by ______ RI 6762 Subsea mineral resources, exploiting, technological gaps _____ OP 115-69 exploration for, technologic gaps ____ OP 115-69 Sudan, mineral industry, annual review MY 1968 (v. IV) Sugar Notch mine, Pa., anthracite, properties _____ RI 7086 washing characteristics _____ RI 6989 Sulfates, far-infrared spectroscopy ____ OP 102-69 recovery from brines and bitterns, pre-liminary process development _____ RI 6928 liminary process development ____ RI 6928 Sulfation, euxenite concentrate, study ____ RI 6577 Sulfatization, nickeliferrous laterite ____ RI 6644 Sulfides, chain, in Wasson, Tex., crude oil, identification ____ RI 6803 cyclic, in Wasson crude oil, identification RI 6803 in Wasson crude oil distillate, identi-faction ____ OP 120 65 fication _____ OP 139-65 synthesis, method _____ OP 139-65 far-infrared spectroscopy _____ OP 102-69 mass spectro mass spectra ______ RI 6698 metal, electrochemical preparation of, P 14-68 patent P 14-68 synthesis, methods RI 6796 use, in production of prereduced iron ore pellets ______ OP 34-69 Sulfite pulp, manufacture, trends and outlook ______ BPA 2-65 Sulfoxides, separation, from petroleum fractions, cation-exchange resin chromatography _____ OP 8-68 Sulfur, annual data ______ MY 1968 (v. I-II) barge transportation of ______ IC 8431 chemical-industry use, Calif. _____ IC 8244 consumption ______ B 630 Eastern United States ______ IC 8255 definition of terms ______ B 630 use, in production of prereduced iron definition of terms _____ B 630 elimination, in electrochemical reduc-tion of dibenzothiophene _____ OP 95-68 from salt domes, production _____ IC 8313 imports and exports ______ B 630 in coal, determination ______ RI 7124 X-ray fluorescence _____ OP 112-68 reduction, by stage crushing, survey OP 103-66 methods _____ OP 108-67 in furnace atmosphere, effect on iron-ore pellet induration ______ RI 7069 in steam coals, pyrite removal study _____ RI 7231 In steam coals, pyrite removal study _____ H1 7231 in U.S. coals ______ IC 8312 in U.S. crude oils, tabulation ______ R1 7059 literature review ______ OP 103-65 molten, ship transport, hazards _____ IC 8272 organic, in coal, determination __ B 638; IC 8301 pesticide diluent, use as _____ IC 8260 production ______ B 630 production ______ B 630 Eastern United States ______ IC 8255 pyritic, in coal, determination ____ B 638; IC 8301 removal from coal, by magnetic sepa-ration study ______ RI 7181 ration, study _________ reaction with lignite char, in carbon di-_ RI 7181 reaction with lignite char, in carbon di-sulfide production ______ BI 6591 recovery, from industrial gases _____ B 630 from molybdite, thermite reduction-hydrolysis method _____ B 630 removal from coal, processes _____ B 630 reserves _____ B 630 retention, in anthracite ash _____ BI 7160 in lignite ash _____ RI 7168 sulfate, in coal, determination __ B 638; IC 8301 technology _____ B 630 technology ______ B 630

1

Sulfur, use, in nonpyritic smelting of copper concentrates, technical feasibility_ RI 7119 Sulfur-38, in minerals, nuclear magnetic resonance spectroscopy _____ OP 88-68 resonance spectroscopy _____ OP 88-68 Sulfur compounds, catalyst poisoning by, tests ______ OP 8-65 flammability characteristics ______ B 627 in gas oil, identification ______ B 642 in naphthas, identification ______ B 642 in petroleum ______ OP 8-68 characterization studies ______ OP 8-66 identification ______ RI 6795, 6803, 6879; OP 27-65, 28-65, 139-65, 141-65, 89-66, 137-66, 45-67, 196-67, 58-69 reference compounds for ______ RI 6970 137-66, 45-67, 196-67, 58-69 reference compounds for RI 6970 literature survey _____ IC 8286; OP 103-65, 7-68, 122-69 mass spectra _____ RI 6741 origin _____ B 642 physical properties _____ OP 94-69 vapor pressures _____ OP 94-69 organic, correlations between mass spec-tra and molecular structures ____ RI 8698 tra and molecular structures ____ RI 6698 tra and molecular structures ____ RI 6698 gas-phase thermal reactions, bibliog-raphy ______ OFR 4-65 in petroleum, identification _____ OF 27-65 literature survey _____ OFR 15-67 mass spectra _____ RI 6671 thermal decomposition, bibliography OFR 4-65 valence force field for__OP 69-69, 142-69, 143-69 Sulfur content, coal _____ RI 7174 effect of stage crushing on _____ IC 8282 Sulfur content, coal ______ RI 7174 effect of stage crushing on _____ IC 8282 reducing, low-density cleaning, pre-dicted results _____ OP 180-67 tabulation _____ OP 108-67 lignite _____ IC 8376 Sulfur dioxide, dry-process removal, from flue gases, evaluation _____ OP 15-65 removal, alkalized alumina pilot plant for. design and operation _____ OP 44-69 for, design and operation _____ OP 44-69 alkalized alumina system, continu-ous pilot plant _____ OP 157-68 from flue gases, methods _____ OP 47-68 processes, cost evaluation _____ OP 52-66 from hot flue gases, alkalized alumina from hot flue gases, alkalized alumina absorbent ______ RI 7021 process development ______ RI 7021 from powerplant stack gases, cost estimate ______ OP 119-67 from stack gases, processes _____ OP 114-65 sorption rate, on alkalized alumina pellets RI 7275 effect of nitrogen oxides on _____ RI 7275 Sulfur dioxide leach process, manganese re-covery by, description ______ IC 8368 Sulfur dioxide-sulfuric acid leach, man-ganese recovery by ______ IC 8368 Sulfur distribution, in steel ingots, effect of BL 5001 rare-earth metal additions on ___ RI 7091 Sulfur industry, Eastern United States. study _____ IC 8255 organization _____ B 630 b of the second removal from flue gases, alkalized alumina process ______ OP 172-68 method ______ OP 163-69 Sulfur oxide processes, manganese recovery by, review ______ I Sulfur poisoning, fused-iron catalysts, fixed-IC 8368 bed reactors, constant-productivity test test ______ B 628 nitrided-iron catalysts, fixed-bed reactors, constant-productivity tests ______ B 628 Sulfur trioxide, in coal ash, determination RI 7240 Sulfuric acid, chemical-industry use, Calif. IC 8244 BPA 2.65 manufacture, trends and outlook _____ BPA 2-65

Sulfuric acid-ferrous sulfate leach, man-
ganese recovery by IC 8368 Sulfuric acid industry, Fastern United
States, study IC 8255
Sulfuric acid leach-electrolytic acid regen-
Sulvenite memotic succeptibility IC 8260 0200
eration, manganese recovery by IC 8368 Sulvanite, magnetic susceptibility IC 8360, 8383 Sunnyside coal, coking qualities, effect of
char-coke additions RI 7235
Utah, coking properties RI 6948
Sunnyside field, Utah, coal, potential car-
bonization vield RI 6990
Sunnyside No. 3 mine, Utah, longwall min-
ing in, results IC 8321 Sunshine No. 3 mine, Pa., coal, carbonizing
properties RI 7131
Superconductivity, in columbium-hafnium
system, effect of microstructure RI 7258
Surface area, anthracite, determination,
by carbon dioxide absorption
data OP 120-65 determination, from carbon dioxide iso-
therm OP 5-65
gas chromatographic method, com-
puter program for OP 64-68
Surface mines, land rehabilitation MISC.
Surface textures, rock specimens, meas- uring, method RI 7095 Surfactants, in gas wellbore water re-
Surfactants, in gas wellbore water re-
moval OP 204-67
moval OP 204-67 waterblock treatment by, in gas wells OP 30-66, 112-66
Surinam, mineral industry, annual review MY 1968 (v. IV)
Suspensions, gas-solids, circulating, power
requirements RI 7019
solid-in-gas, convective heat transfer in, study OP 8-66 Swaziland, mineral industry, annual review
MY 1968 (V. IV)
Sweden, coal, production and consumption_ IC 8380
mineral industry, annual review
MY 1968 (v. IV) Switzerland, mineral industry, annual review
MY 1968 (v. IV)
Sycamore Canyon primitive area, Ariz., minerals survey GS 6-66
minerals survey GS 6-66
Synthesis gas, from solid fuels, exchange- ability with pipeline natural gas RI 6629
unpurified, shift conversion of, study OP 158-68
Svrian Arab Republic, mineral
industry, annual review MY 1968 (v. IV)
System analysis, truck-shovel combina-
tions, for taconite mine OP 85-69 System simulation, mine-haulage, Monte
Carlo method OP 121-65
T
I
TZM alloy, corrosion properties, chemical
and galvanic RI 7169 Taconite, elastic moduli, at elevated tem- peratures RI 7269
Taconite, elastic moduli, at elevated tem-
peratures RI 7269 magnetic, production cost of iron ore
nagnetic, production cost of from ore nellets from, discounted cash
flow model
nonmagnetic, beneficiation characteristics RI 6991
flotation procedures, developing
UE 62-09. UZ-09

- flotation procedures, developing flotation procedures, developing P 82-69, 112-69 metallurgical evaluation ______ RI 6510 pilot plant flotation tests ______ RI 6719 potential resources, S. Dak., investigation IC 8278 roasting, with scrap iron as re-ductant ______ OP 124-69 selective flocculation-desliming flota-tion, tests ______ OP 82-69, 112-69 thermal shock response ______ RI 6823 Taconite mining, truck-shovel combina-tions for use in, system analysis OP 85-69

.

Taggart bed, Va., coal, caking properties, destroying, method RI 6605
Tailings, copper-mill, stabilization, chem-
ical-vegetative procedure for RI 7261 disposal, dams for, design principles IC 8410
mica, minerals from, selective flotation
method RI 7319
method RI 7319 Taiwan, mineral industry, annual review MY 1968 (v. IV)
MY 1968 (v. IV) Talc, annual data MY 1968 (v. I-II) beneficiation methods RI 7045
beneficiation methods RI 7045
chemical-industry use, Calif IC 8244 consumption B 630
definition RI 7045
exports and imports RI 7045 grades B 630; RI 7045 imports and exports B 630 marketing analysis RI 7045
imports and exports B 630; KI 7045
marketing analysis RI 7045
pesticide diluent, use as IC 8250
prices B 630 production B 630; RI 7045
properties RI 7045
reserves B 630 · BI 7045
sales RI 7045
specifications RI 7045 substitutes RI 7045
substitutes RI 7045 technology B 630
nrohlems B 630
Tale industry, organization B 630 problems B 630 Tantalite, flotation characteristics RI 7189 magnetic susceptibility IC 8360 Tantalium, annual data MY 1968 (v. I-II) chlorination kinetics, study RI 6649 consumption B 630 gradee B 630
magnetic susceptibility IC 8360
chlorination kinetics study RI 6649
consumption B 630
\mathbf{K}
imports and exports B 630 in euxenite concentrate, recovery, am-
monium sulfate fusion process RI 6906 in pegmatite dikes, investigation OFR 10-68
in pegmatite dikes, investigation OFR 10-68
prices B 630 production B 630
substitutes B 630
technology B 630
uses B 630 Tantalum alloys, fabricability_RI 6964, 7116, 7211
high-temperature oxidation resistance RI 7211
high-temperature properties RI 7116 high-temperature strength RI 7211
properties RI 6964
properties RI 6964 Tantalum carbide, heat and free energy of
formation RI 6861 heat capacity RI 6861
heat content and entropy RI 6861
heat of formation RI 6663
heat content and entropy RI 6861 heat of formation RI 6663 Tantalum-columbium-bearing alloy, from tin slags, production RI 6734
i antalum-nainium alloys, nign-temperature
properties RI 6777 Tantalum-hafnium-aluminum alloys, high-
temperature strength K1 7116
Tantalum-hafnium-tungsten alloys, high- temperature properties RI 6777
Tantalum-hafnium-tungsten-aluminum al- loys, high-temperature strength RI 7116
Tantalum - hafnium - tungsten - titanium alloys, high-temperature proper-
ties BI 6777
Tantalum-hafnium-zirconium alloys, high- temperature properties RI 6777
Tantalum industry, organization B 630
problems B 630
Tantalum minerals, magnetic susceptibility, determination IC 8360
determination IC 8360 Tantalum-tungsten alloys, high-tempera-
ture properties RI 6777 Tanzania, mineral industry, annual review
ranzania, minerar industry, annuar review

MY 1968 (v. IV) Tar, carbonized-lignite, properties _____ B 639 from coal carbonization, analyses _____ B 643

¢

(

¢

L)

Tar, from entrained-bed carbonization, RI 7141 ... B 633 gents from _____ RI 7115 liquid fuels from, hydrogenation process_ B 633 low-temperature, brown-coal, hydrogena-B 633 tion _____ B 633 low-temperature lignite, dealkylation of tar acids from ______ maleic anhydride from, production method ______ _ RI 6585 method phthalic anhydride from, production .__ RI 6916 method ____ ___ RI 6916 road, high-resolution mass spectrometry _____ OP 152-68 weathered, high-resolution mass spectrometry _____ OP 152-68 thermally cracked, analyses _____ RI 6625 Tar acids, from coal, analysis, techniques__ B 634 from low-temperature lignite tar, dealkylation ______ RI 6585 from low-temperature tar, from low-rank coals, carbon number distribution RI 6586 Tar composition, effect of coal carbon-

 Tar composition, effect of coal carbon-ization conditions on ______ OP 29-68

 Tar hydrogenation, high-pressure, technology, development ______ B 633

 vapor-phase, catalysts ______ B 633

 Tar oil, lignite, alcohol from, method ____ OP 32-68

 low-temperature, conversion to jet fuel___ RI 6655

 Tar vapors, thermal cracking of, at various

 temperatures, effect

 RI 7322

 Iar vapors, thermal cracking of, at various

 temperatures, effect
 RI 7322

 gas yields and composition
 RI 6625

 tar yields and composition
 RI 6625

 Tariff schedules, new, duty on fuels, review IC 8262
 Guty on minerals, review

 duty on minerals, review
 IC 8262

 Tatman Formation, oil shales, analyses___ OP 96-69
 Strotigraphy

 Tatman Formation, oil shales, analyses___OP 96-69

 stratigraphy
 OP 96-69

 Tatman Mountain, rock samples, lithology OP 96-69

 Tatonduk River, Alaska, red beds, re

 connaissance
 OFR 1-69

 Technical writing, in-house course, de

 scription
 OP 59-69

 instant tips
 OP 84-66

 Telephone and signaling devices, mine, fees
 S 9B

 Instant tips
 OF 84-66

 Telephone and signaling devices, mine, fees
 for testing, amendments
 S 9B

 Tellurium, annual data
 MY 1968 (v. I-II)

 consumption
 B 630; IC 8340

 distribution
 IC 8340

 grades
 B 630; IC 8340

 imports and exports
 B 630; IC 8340

 prices
 B 630; IC 8340

 production
 B 630; IC 8340

 production
 B 630; IC 8340

 properties
 IC 8340

 production
 B 630; IC 8340

 properties
 IC 8340

 strategic factors
 IC 8340

 substitutes
 IC 8340

 substitutes
 IC 8340

 supply
 IC 8340

 toxicology
 IC 8340

 uses
 B 630; IC 8340

 relurium industry, organization
 B 630; IC 8340

 relurium - yttrium - antimony compounds,
 B 630

 thermoelectric properties
 RI 7025

</tabul> thermoelectric properties _____ RI 7025 Temperature controller, thermolumines-cence studies, description OP 17-68 Temperature distribution, in arc-melted ingots _____ RI 7151 Tennantite, magnetic susceptibility _____ IC 8383 Tennessee, American Zinc Co., Young mine, sphalerite, mining methods and practices _____ IC 8269

3

Tennessee, Appalachian area, mineral resources GS 4-68 mineral resources potential _____ GS 4-68 mineral resources potential ______ GS 4-68 ball clay, as potential aluminum source IC 8335 Chattanooga Shale, uranium content, analytical data ______ RI 6932 clays, ceramic evaluation ______ TMR 1-69 coal, analyses ______ B 643; RI 6622, 6792, 6904, 7104, 7219 chlorine content ______ RI 6579 major ash constituents _____ RI 7240

 coal, analyses
 6904, 7104, 7219

 chlorine content
 RI 6579

 major ash constituents
 RI 7240

 phosphorus content
 RI 6579

 sodium content
 RI 6579

 sodium content
 RI 6579

 sulfur content, forms
 IC 8301

 coal ash, analyses
 RI 7240

 fusibility data
 B 643

 tar from, ana ysis
 B 643

 fuorspar deposits
 IC 8329

 fron and steel production
 IC 8329

 iron and steel production
 IC 8329

 iron and steel scrap industry, study
 IC 8329

 kaolin, as potential aluminum source
 IC 8335

 Knoxville and Knox County area, auto
 wrecking and scrap processing

 industries
 SP 1-67

 minerals, production, annual data
 MY 1968 (v. I-II, III)

 minerals, visiols guide ______ Sr 2-07 minerals, production, annual data MY 1968 (v. I-II, III) mineral industry, annual review MY 1968 (v. III) MY 1968 (v. III) occupational diseases, workmen's compen-sation laws on ______ B 623 oilfields, shallow ______ M 12 shales, ceramic evaluation ______ TMR 1-69 for lightweight aggregate, evaluation _ RI 7129 titanium mineral deposits, survey ______ IC 8290 Tenorite, magnetic susceptibility ______ IC 8383 Tensions, interfacial, measuring, tensiom-eter for ______ IC 8323 eter for _____ IC 8323 Tephroite, magnetic susceptibility _____ IC 8359 Terbium, cross-section measurements ___ OP 20-65 Terbium oxides, high-temperature heat contents and entropies ______ RI 6781 Terbium trichloride, heat of formation ____ RI 7046 Tertiary formation waters, oil-bearing, geochemistry Tertiary recovery, oil, from sandstone core, alcohol-kerosine slug injec-OP 174-67 core, alcohol-kerosine slug injec-tion method _____ OP 160-67 alcohol slug injection method ____ OP 160-67 Tetrabromoethane, removal from fine min-eral particles, by washing methods RI 6729 recovery from wash solution emulsions___ RI 6729 use, in heavy liquid cyclone concentra-tion of minerals _____ RI 6969 Tetrabromoethane-methylene bromide com-nerison in heavy-liquid avcione parison, in heavy-liquid cyclone use -----____ RI 7134 Tetrafluoromethane, thermodynamic properties _____ OP 45-66 Tetrafluoromethane-methane mixtures, compressed, thermodynamic properties _____ _ OP 201-67 Tetrafluoromethane-methane system, compressibility OP 152-67 gas-density measurements OP 152-67 Tetrahedral structures, X-ray diffraction data B 620 Tetrahedrite, magnetic susceptibility IC 8383 Tetrahydroalstonine, isolation, from Catharanthus lanceus OP 120-67 Tetralin, electrochemical reduction in ethylenediamine, effect of oper-ating variables _____ OP 135-65, 128-66 electrochemical reduction of _____ RI 7017 ultrasonic radiation of, chemical reaction RI 7027

2.2.5.5-Tetramethyl-3.4-dithiahexane, vibrational spectrum _____ OP 114-69 Tetramethylead, chemical thermodynamic properties _____ OP 32-65 infrared spectra _____ OP 32-65 vibrational assignment _____ OP 32-65 Tetramethylsilane, purification, method ____ RI 6633 purity, estimation _____ RI 6633 spectral data ______ RI 6633 Texas, Acme field, water-injection project RI 6603 Austin area, auto wrecking and scrap processing industries Caddo Conglomerate field, water-injection É SP 1-67 project Caughlin Strawn field, water-injection RI 6603 Caughin Strawn held, water-injection project _______ RI 6603 Clay County, water-injection projects __ RI 6603 Cliffside field, helium storage in _____ OP 112-67 well data ______ OFR 2-68 coal, sulfur content, forms ______ IC 8301 copper occurrences, in Permian for-mations ______ OFR 10-69 copper occurrences, in Permian for-mations OFR 10-69 crude oil, high-sulfur, composition B 642 low-sulfur, composition B 642 production RI 7059 sulfur content RI 7059 Dallas area, auto wrecking and scrap processing industries SP 1-67 East Bryson field, water-injection project RI 6603 east Texas counties, auto wrecking and scrap processing industries SP 1-67 Filis Gunsight field, water-injection project Ellis Gunsight field, water-injection proj-_ RI 6603 ect _____ Engle Strawn field, water-injection proj-Engle Strawn field, water-injection proj-ect ______ RI 6603 ferrous scrap industry, survey ______ IC 8289 Fort Worth area, auto wrecking and scrap processing industries _____ SP 1-67 gas-cap reservoir, conservation practices, engineering evaluation ______ M 13 engineering evaluation practices, engineering evaluation _____ M 13 heavy crude oil, production forecast ____ IC 8352 resource ____ IC 8352 thermal projects _____ IC 8352 heavy crude-oil reservoirs, survey ____ IC 8352 helium-bearing natural gases, analyses__ IC 8302 Jack County, water-injection projects ____ RI 6603 Joy Palo Pinto field, water-injection proj-ect _____ RI 6603 ect_____R lignite, entrainment carbonization of, re-**B** 639 sults __ ------lignite beds, evaluation, statistical tech-lignite tar oil, conversion to high-molec-ular-weight alcohols, method ____ OP 32_68 mercury, production, 1899-1960 _____ IC 8252 mercury mines, description _____ IC 8252 mercury prospects _____ IC 8252 mines, visitors' guide _____ SP 2_67 minerals, productions, annual data _____ MY 1968 (v. III) mineral industry, annual re-view _____ MY 1968 (v. III) Montague County, water-injection proj-ects _____ RI 6603 ects _______ RI 6603 occupational diseases, workmen's compen-sation laws on ______ B 623 offshore oil and gas operations ______ IC 8408 oil reservoirs, production-rate data _____ IC 8362 well-depth data ______ IC 8362 oilfields, shallow _____ M 12

Texas, petroleum-impregnated rocks, surface and shallow M 12 Richardson-Mueller field, water-injection salt domes, survey ______ IC 8313 silver, potential resources ______ OFR 22-69 Southwest Blue Grove field, water-injection project _____ RI 6603 tion project ______ RI 6603 Thornberry area, water-injection projects RI 6603 Tim O'Connor field, gas-cap reservoir study M 13 titanium mineral deposits, survey _____ IC 8290 Wasson crude oil, sulfur compounds in, identification _____ RI 6803; OP 139-65 thiols in, identification _____ OP 28-65 west, crude oil analyses _____ OP 28-65 Worsham-Steed field, water-injection project _____ RI 6603 project ______ RI 6603 Wise County, water-injection projects __ RI 6603 Texas lignite, entrainment carbonization of, Textile fibers, ignition hazards, in oxygen atmospheres, by static sparks ____ OP 64-65 Texture, identifying, from indentations, method, patent _____ P 19-69 B 639 method, patent _____ Thailand, mineral industry, an-nual review _____ MY 1968 (v. IV) Thallium, annual data _____ MY 1968 (v. I-II) B 630 grades B 630 in coal ash, spectrochemical determina-tion ______ B 630 prices ______ B 630 technology ______ B 630 toxicity ______ B 630 toxicity ______ B 630 uses ______ B 630 Thermal alteration, reservoir rocks, tests OP 104-68 Thermal balance, ingot-crucible systems, consumable-electrode arc melting, mathematical model ______ RI 7151 Thermal conductivity, oil shale, various grades _____ OP 162-68 grades _____ OP 168-68 rock, measurement, transient-line-source ___ method ______ RI 6604 Thermal crystallization, recovery of manganese sulfate crystals from solu-tion by Thermal diffusivity, oil shale, various _ RI 6762 grades _____ OP 168-68 Thermal environment, controlled, apparatus for, patent ______P 16-68 Thermal expansivity, rolled-zinc alloys, ef-fect of titanium additions ______ RI 6690 rolled zinc-copper alloys, effect of ti-tanium additions ______ RI 6690 Thermal oil recovery, carbon deposition for, laboratory tests ______ RI 6756 laboratory investigation ______ RI 7044 Thermal projects, heavy-oil reservoirs _____ IC 8428 Thermal shock, rock, study ______ OP 171-65 rock fragmentation by, laboratory study ______ OP 59-66 rock stress in, analysis ______ OP 59-66 Thermodynamics, nonlinear electromagnetic-fluid systems ______ RI 7066 Thermodynamic functions, equations for calculating, two-component system RI 7076 Thermodynamic properties, see specific element or Thermal environment, controlled, apparatus Thermodynamic properties, see specific element or compound compound Thermodynamic properties, fluids, equa-tions for calculating ______ RI 6924 Thermodynamic quantities, analytical fluid, at critical point, discon-tinuities ______ OP 131-68 Theta iron carbide, free energy of formation B 631 Thiaalkanes, valence force field for _____ OP 69-69 Thiacyclohexanes, synthesis, method _____ RI 6970 Thiacyclopentanes, synthesis, method _____ RI 6970 Thiacyclopentanes, synthesis, method _____ RI 6970 Thiaindans, in Wasson crude oil, identifi-cation _____ OP 137-66 OP 137-66

cation _____ OP 137-66 Thienothiophenes, in Wasson crude oil, identification _____ RI 6795 ï

Thiols, far-infrared spectra, torsional	T
bands in OP 125-68	Ti
bands in OP 125-68 in crude oil, identification OP 28-65 in Wasson, Tex., crude oil, identification RI 6803	
mass spectra RI 6698	
Thiophenes, condensed, benzene rings in,	
mass spectra RI 6698 Thiophenes, condensed, benzene rings in, infrared vibrations RI 6911 mass spectra RI 6698, 6741	
Thorium, annual data MY 1968 (v. I-II) consumable-electrode arc melting of, method B 646	
Thorium, annual data MY 1968 (v. I-II) consumable electrode are melting of method B 646	T
consumption B 630	-
consumption B 630 electroreduction, from a fused-fluoride	T
electrolyte RI 6789	
grades B 630 imports and exports B 630 in euxenite concentrate, recovery, ammo-	
in euxenite concentrate, recovery, ammo- nium sulfate process RI 6906	T
prices B 630	
reserves B 630 technology B 630	Ti
uses B 630	Т
Thorium alloys, electrolytic, thorium metal	_
recovery from, vacuum distillation	
method RI 7265 Thorium-base alloys, preparing, by fused	
fluoride electrowinning, methods RI 6789	-
fluoride electrowinning, methods RI 6789 Thorium-chromium alloys, thorium recov- ery from vacuum distillation meth-	Т
od RI 7265	
od RI 7265 Thorium industry, organization B 630 problems B 630	
Thorium-manganese alloys, thorium re-	
covery from, vacuum distillation	
covery from, vacuum distillation method	
lation, from electrodeposited thor-	
ium-chromium alloys RI 7265 from electrodeposited thorium-man-	
from electrodeposited thorium-man-	
ganese alloys RI 7265 Thorium tetrafluoride-alkali fluoride molten	
systems, density and molar volume RI 6836	
Three Arch Rocks National Wildlife Ref- uge, Oreg., mineral appraisal GS 3-68	
Thulium, heat of solution RI 6902	
Thulium trichloride, heat of formation RI 6902	
Thulium-ytterbium separation, tertiary amine process RI 6809	
Tiller bed, Va., coal, float-and-sink data RI 6809 Tiller bed, Va., coal, float-and-sink data RI 6652 froth-flotation washability data RI 6652	
Timing marks, on motion picture film,	
Counting device for OP 184-68 Tin, annual data MY 1968 (v. I-II) catalyst, coal hydrogenation B 622 chemical industry use, Calif IC 8244	
Tin, annual data MY 1968 (v. I-II)	
chemical-industry use, Calif IC 8244	
consumption B bay	
grades B 630 high-purity, production, amalgam elec- trorefining method RI 7313	
trorefining method RI 7313	
imports B 630 in coal ash, spectrochemical determina-	
tion RI 7281	
prices B 630	
production B 630 reserves B 630	
secondary, sources B 630 stockpile accumulation, amount OP 62-66	
stockpile accumulation, amount OP 62-66	
technology B 630 uses B 630	
Tin Agreement, International B 630	т
Tin content, leaded red brass, reducing	•
effect TPR 18 Tin-copper alloys, electrodeposition, effects	Т
of ultrasonics in RI 6938	
Tin deposits. Alaska, diamond-drill data OFR 2-65	T
lode, investigation RI 6587, 6737 placer, Alaska, investigation RI 6737	Т
Tin-lead alloys, properties RI 6963	-
Tin-lead solders, shear strength, testing RI 6963	

I

-

Tin-lead solders, tensile strength, testing	RI	6963
Tin slags, columbium and tantalum ex- traction from, direct chlorination	70	6695
method columbium-tantalum-bearing alloy from,		6635
electric-arc furnace smelting Geomines, columbium and tantalum re-		
coveries from Malayan, columbium and tantalum recov-	RI	6734
eries from Tires, scrap, destructive distillation of, fea-	RI	6734
aibility	81	7302
products Titania, single - crystal whiskers, from	RI	1002
properties Titania-alumina-iron oxide-silica-magnesia system, slags, liquidus tempera-		
tures RI 70	83.	7232
tures RI 70 Titania-alumina-silica-calcia-magnesia sys-	,	
tem slags liquidus temperatures	кі	7081
Titanium, additions, to hot-rolled copper- zinc alloys, effect on expansion anisotropy to hot-rolled zinc, effect on expansion		
anisotropy	RI	6690
anisotropy	RI	6690
to vanadium alloys, effect to vanadium alloys, effect Titanium, annual data MY 1968 consumable electrode vacuum arc melting	RĪ	7262
Titanium, annual data MY 1968	(v.	I–II)
of, heat flux during	RI	7035
consumption	Ē	3 630
consumption crystalline, from sodium reduction of tita- nium chloride-sodium chloride		
nium chloride-sodium chloride		6813
electroslag-melted, properties_OP 159-68	5, T	18-68
uation 01	P 1'	72-67
electrosiag-metted, properties_OF 109-00 electrosiag melting of, process eval- uationOI electrowinning, from titanium dioxide, studyfrom titanium nitride, study from titanium tetrachloride, method C explosive forming of small bemispher-		
study	RI	6875
from titanium tetrachloride, method (\mathbf{p}	36-68
explosive forming of small hemispher- ical shapes from O extractive metallurgy of, methods, re		
ical shapes from	FR	6-68
VIEW (Jr 🗄	89-09
grades	1	B 630
grades high energy-rate extrusion, effect on structure and properties	RI	6757
imports and exports	1	B 630
in euxenite concentrate, recovery, ammo-	ът	600 <i>6</i>
nium sulfate process		0500
copper crucible inductoslag melting of, equipment for.	ĸı	7268
description liquid, vapor pressure RI 7271, (RI	7268
liquid, vapor pressure RI 7271, C	JP	3867
velopment (ΟP	75-69
nditen-salt electrorefining, process de- velopment offgrade, production, by magnesium re- duction of rutile	DI	6590
palladium deposits on, from aqueous elec-		
trolyte	RI	7016
platinum electrodeposition on, evalu- ation O	P 1	05-69
prices	1	B 630
production reserves		
technology	1	R 630
uses B 630; (vacuum-induction melting of, in water-	DP	58-67
vacuum-induction melting of, in water- cooled crucibles	٦P	90_67
Titanium alloys, electrowinning, from tita-		
nium dioxide, study Titanium-aluminum-vanadium alloy, high energy-rate extrusion, effect on	кI	0150
energy-rate extrusion, effect on structure and properties	PT	6757
Titanium-bearing minerals, mining and		
beneficiation methods	. IC	8290
Titanium chlorides, reaction rate with tita- nium-oxygen alloys, in molten so-		
dium chloride	RI	7005

Titanium-columbium alloys, properties ____ RI 6964 Titanium-copper-zinc alloys, semicontinu-ous-cast ingots, for rolling-slab use, study ______ RI 7089 Titanium deposits, N.C., investigations ____ NCMB Titanium diboride, electrodeposition of, on nickel alloy _____ OP 139-69 Titanium diboride-chromium diboride system, electrical properties _____ RI 6691 Titanium chloride, titanium from, electro____

 Titanium chloride, titanium from, electro-lytic processes
 OP 89-69

 reduction processes
 OP 89-69

 Titanium chlorination residues, beneficia-tion, preliminary study
 RI 7221

 Titanium dioxide, chemical-industry use, Calif.
 IC 8244

 titanium from, direct reduction methods
 OP 89-69

 titanium from, direct reduction methods
 OP 89-69

 titanium from, electrolytic method _____ RI 6875 Titanium electrowinning cell, diaphragm materials for, evaluation _____ OP 55-69 Titanium industry, organization _____ B 6300 problems _____ I Titanium ingots, slab-shaped, production, cold-**B** 630 mold electroslag method_OP 159-68, 178-68 Titanium-iron alloys, reaction rate, with titanium trichloride in molten so-dium chloride ______ RI 7039 Titanium-magnesium phase diagram ____ OP 156-68 Titanium metal, primary, production, technology ______O Titanium minerals, magnetic susceptibility, OP 34-68

 Intanium minerais, magnetic susceptionity, determination
 IC 8360

 processing methods
 OP 34-68

 reserves
 OP 33-68

 Titanium nitride, titanium from, electro-lytic method
 Itanium RI 6875

 Titanium-nitrogen alloys, electrorefining
 RI 6878

 tests RI 6878 Titanium oxide, in coal ash, determination RI 7240 spectrochemical method ______ RI 6985 Titanium-oxide alloys, electrorefining, oxy-gen content of anode, effect _____ RI 6588 Titanium-oxygen alloy system and titanium chlorides, in molten sodium chlor-ide reaction rates Titanium phosphide, molten-salt electro-____ **RI** 7005 lytic preparation of _____ OP 69-67 Titanium resources, U.S. _____ IC 8290 _ IC 8290 Titanium scrap, induction melting of, reclaiming, by sodium reduction of tita-nium chloride-sodium chloride _____ Titanium sponge, induction melting of, RI 7268 RI 6813 method .____ RI 7268 RI 7039 cracking, in inorganic acids _____ RI 6680 in inorganic salt solution _____ RI 6680 Titanium-zirconium-molybdenum alloys, corrosion properties_____ RI 7169 Togo, mineral industry, annual data MY 1968 (v. IV) phosphate deposits ______ RI 6935 Toluene, enthalpy of combustion _____ OP 72-69 Tomato plants, coal-washery refuse as mulch for, effect _____ OP 87-68 hydroponically grown, leonardite use in, effect _____ RI 7203 Top pressure, high-pressure experimental blast furnace, effect _____ OP 13-67 Torsional bands, in far-infrared spectra, thiols and amines _____ OP 125-68

Trace components, concentrating, ion-exchange resin-loaded papers, ____ OP 18-68 use Trace elements, hydrogen in helium, detecting chromatographic procedure ______in petroleum-related materials, auto-OP 150-68 mated X-ray determination ____ OP 29-66 tungsten, determination, 8-hydroxyin tungsten, determination, 8-hydroxy-quinoline method ______ RI 7072 Trace impurities, in inert gas systems, de-termination, patent _____ P 1-67 Trace metals, determination, in distillate fuel oils ______ OP 88-66 in high-purity tungsten, fluorescent X-ray spectrography _____ OP 49-66 preconcentration, dithizone extrac-tion method _____ OP 49-66 Tracers, gas, in underground gas storage, evaluation of ethylene _____ RI 6793 multiple, in waterflood projects, use, in tracing water flow_____ OP 15-66, 16-66 in 16-66 Transducer, differential-pressure, cali-bration methods _____ OP 182-67 piezoelectric, for sonic pulsing of rock, **RI 6810** use Transformer, linear variable differential, for measuring surface texture of RI 7095 rock Transport, pneumatic, solids, symposium_ IC 8314 Transvaal chromite, carbon reduction of, RI 6755 Traprock, dimension stone uses _____ RI 6755 Travelways, in tunnel construction, recom-mended safety rules _____ B 644 Trichloroethylene, flammability character-Triethylalumineborane, enthalpy of com-District Striethylalumineborane, enthalpy of combustion ______ OP 185-67 enthalpy of formation ______ OP 185-67 purification, method ______ RI 6633 purity, determination ______ RI 6633 Spectral data spectral data Trimethylamineborane, enthalpy of for-RI 6633 Trimethylamineporane, entitalpy of 101-mation OP 41-66 Trimethylsilyl ethers, of tertiary alco-hols, preparation _____ OP 36-66 Trinidad and Tobago, mineral in-dustry, annual review__ MY 1968 (v. IV) Trip lights, in coal mines, reflectors as substitute for _____ OP 36-69 Trip light-reflector comparison, for coalmine use, results ______ RI 7202 Triphenylcarbinol, hydrogenation under hydroformylation conditions, ki-

 Tripnenylcarbinot, nydrogenation under hydroformylation conditions, ki-netics
 OP 178-67

 Triphenylene, carbon shieldings, calcu-lated and observed
 OP 77-68

 Triphylite, magnetic susceptibility
 IC 8359

 Triphylite, and tata
 IC 86703; OP 107-65

 Truck, battery-powered, cost estimates
 RI 6918

 road tests
 IC 8618

 road tests
 RI 6918

 Truck-shovel combination, for taconite
 mine, evaluation, computer program for

 gram for<

ſ

Tubing, capillary, physical dimensions, measuring, methods RI 6949
Tucson, Ariz., mineral aggregate industry
Tucson, Ariz., mineral aggregate industry, effect of urbanization IC 8318
Tumbler test, coke, method B 638
and entropy RI 6782
Tumbler test, coke, method B 638 Tungstate, low-temperature heat capacity and entropy and entropy RI 6782 Tungsten, annual data MY 1968 (v. I-II) as automotive metal, supply situation OP 47-67 as methonoption callevet investigation DF 47-67
as automotive metal, supply situation OP 47-67
centrifugal casting, technique OP 104-66
chemical-industry use, Calif IC 8244
coating ceramic particles with study OP 87-65
as automotive metal, supply studion OF 47-67 as methanation catalyst, investigation RI 6974 centrifugal casting, technique OP 104-66 chemical-industry use, Calif IC 8244 chlorination kinetics, study OP 87-65 consumable-electrode melting of, method B 646 consumption B 630 consumption B 630
consumption B 630
consumption B 630 corrosion properties RI 6715 crevice corrosion, in mercuric chloride solution RI 6715
solution RI 6715 extraction from scheelite, chlorination
methods RI 6612
methods RI 6612 two-phase molten-salt technique RI 7106
extraction from scheelite-wolframite con- centrate, chlorination methods RI 6612
extraction from wolframite, two-phase molten-salt technique RI 7106
molten-salt technique RI 7106
filiform, use, in metal reinforcement, laboratory investigation RI 7130
grades B 630 high-density, vapor deposition of, effect
of process variables RI 6731
high-energy-rate extrusion, effect on
high-energy-rate extrusion, effect on structure and properties RI 6757 high sustained structure and properties RI 6757
high-purity, analytical methods, review_ IC 8397 interstitial impurities in, determina-
tion, methods IC 8397 metallic impurities in, determination,
metallic impurities in, determination,
methods IC 8397 nickel in, determination OP 60-65 trace elements in, determination, 8-hy-
trace elements in, determination, 8-hy-
droxyquinoline method RI 7072 vapor deposition of, on various sub-
strates, method
imports and exports B 630 mill shapes, from tungsten-powder billets,
high-energy-rate extrusion, meth-
od RI 6817
properties
trolyte RI 7016
platinum deposits on, from aqueous elec- trolyte RI 7016
Drices B 630
production B 630 recovery, from low-grade concentrates,
amine solvent extraction methods RI 6845
from tungsten ovide balide electrolyte BI 6749
repetitive electrowinning from scheelite, electrolyte life RI 6805
reserves B 630
secondary-recovery sources B 630 skull-cast, properties OP 104–66 stockpile accumulation, amount OP 62–66
stockpile accumulation, amount OP 62-66
substitutes B 630
trace metals in, dithizone extraction of OP 49-66
technology B 630 trace metals in, dithizone extraction of OP 49-66 fluorescent X-ray spectrography OP 49-66
uses B 630 vapor-deposited, effect of process vari- ables on RI 6731
ables on RI 6731
Tungsten alloys, corrosion properties, chem- ical and galvanic RI 7169
Tungsten allov scran rhenjum recovery
from method RI 7254
Tungsten boride, composition OP 74-66 crystallographic data OP 74-66 Tungsten carbide, electrodeposited, proper-
Tungsten carbide, electrodeposited, proper-
preparation, electrodeposition method, on-
timum conditions for RI 7247

ı

Ľ

€.

Tungsten-chromium-vanadium alloys, prop- erties RI 6929 Tungsten coatings, vapor-deposited, effect RI 6731 Tungsten-cobalt alloys, reactions with oxy- gen, at high temperatures RI 6998 Yapor deposition of, method RI 6996 Tungsten-cobalt system, study RI 6956 Tungsten-columbium alloys, properties RI 6956 Tungsten-columbium alloys, properties RI 6964 Tungsten ecovery from, amine solvent extraction method Tungsten filament, hot, for monitoring impurities in high-temperature gas systems OP 2-65 Tungsten hexacarbonyl, thermal decomposition, kinetics OP 121-68 Tungsten hexachloride, conversion of tung- sten oxychloride to, method RI 7152 purification, adsorption method RI 6984 fused-salt scrubbing method RI 6984 fungsten industry organization RI 6835 Tungsten industry organization RI 6835 Tungsten industry, organization RI 6835 Tungsten industry, organization RI 6835 Tungsten industry, organization RI 6825 Tungsten industry, organization RI 6825 Tungsten industry, organization RI 6825 Tungsten industry, organization
of process variables on RI 6731 Tungsten-cobait alloys, reactions with oxy- gen, at high temperatures RI 6998 vapor deposition of, method RI 6956 Tungsten-cobalt system, study RI 6956 Tungsten-columbium alloys, properties RI 6964 Tungsten concentrates, specifications B 630 tungsten recovery from, amine solvent extraction method RI 6845 Tungsten disulfide, crystallization, from molten slags, patent P 20-68 Tungsten haxacarbonyl, thermal decom- position, kinetics OP 2-65 Tungsten hexachloride, conversion of tung- sten oxychloride to, method RI 6984 distillation method RI 6984 distillation method RI 6984 tungsten whisker growth, hydrogen re- duction in vacuum furnace RI 6984 tungsten whisker growth, hydrogen re- duction in vacuum furnace RI 6835 Tungsten hexafluoride, vapor-deposited tungsten industry, organization B 630 problems B 630 Tungsten metal, impurities in, direct spec- trochemical analysis, methods, modi- fications RI 6632 spectrochemical analysis, methods, modi- fications RI 6632 Tungsten minerals, high-temperature two- phase extraction technique for RI 6632 Tungsten minerals, high-temperature two- phase extraction technique for RI 6632 Tungsten noychloride, conversion, to tung- sten hexachloride, conversion, to tung- sten hexachloride, by chlorination RI 7168 Tungsten noychloride, conversion, to tung- sten hexachloride, by chlorination RI 7152 Tungsten powder, electrowon, comparison, with hydrogen-reduced tungsten powder
of process variables on RI 6731 Tungsten-cobait alloys, reactions with oxy- gen, at high temperatures RI 6998 vapor deposition of, method RI 6956 Tungsten-cobalt system, study RI 6956 Tungsten-columbium alloys, properties RI 6964 Tungsten concentrates, specifications B 630 tungsten recovery from, amine solvent extraction method RI 6845 Tungsten disulfide, crystallization, from molten slags, patent P 20-68 Tungsten haxacarbonyl, thermal decom- position, kinetics OP 2-65 Tungsten hexachloride, conversion of tung- sten oxychloride to, method RI 6984 distillation method RI 6984 distillation method RI 6984 tungsten whisker growth, hydrogen re- duction in vacuum furnace RI 6984 tungsten whisker growth, hydrogen re- duction in vacuum furnace RI 6835 Tungsten hexafluoride, vapor-deposited tungsten industry, organization B 630 problems B 630 Tungsten metal, impurities in, direct spec- trochemical analysis, methods, modi- fications RI 6632 spectrochemical analysis, methods, modi- fications RI 6632 Tungsten minerals, high-temperature two- phase extraction technique for RI 6632 Tungsten minerals, high-temperature two- phase extraction technique for RI 6632 Tungsten noychloride, conversion, to tung- sten hexachloride, conversion, to tung- sten hexachloride, by chlorination RI 7168 Tungsten noychloride, conversion, to tung- sten hexachloride, by chlorination RI 7152 Tungsten powder, electrowon, comparison, with hydrogen-reduced tungsten powder
gen, at high temperatures RI 6998 vapor deposition of, method RI 6956 Tungsten-cobalt system, study RI 6956 Tungsten concentrates, specifications B 6964 Tungsten econcentrates, specifications B 6964 Tungsten disulfide, crystallization, from molten slags, patent P 20-68 Tungsten filament, hot, for monitoring im- purities in high-temperature gas systems OP 2-65 Tungsten hexacrbonyl, thermal decom- position, kinetics OP 2-65 Tungsten hexacrbonyl, thermal decom- position, kinetics OP 2-65 Tungsten hexachloride, conversion of tung- sten oxychloride to, method RI 7152 purification, adsorption method RI 6984 distillation method RI 6984 distillation method RI 6984 tungsten whisker growth, hydrogen re- duction in vacuum furnace RI 6984 tungsten hexafluoride, vapor-deposited tungsten industry, organization B 630 Tungsten metal, impurities in, direct spec- trochemical analysis, methods, modi- fications RI 6632 spectrochemical analysis, methods, modi- fications RI 6632 Tungsten metal, impurities in, direct spec- trochemical analysis, methods, modi- fications RI 6632 Tungsten metal, high-temperature two- phase extraction technique for RI 6632 Tungsten minerals, high-temperature two- phase extraction technique for RI 6632 Tungsten onlybdenum alloys, corrosion properties, chemical and galvanic RI 7169 vapor deposition of RI 6578 hydrogen-reduced, comparison, with hydrogen-reduced tungsten powder RI 6578 hydrogen-reduced, comparison, with elec- trowon tungsten powder RI 6578 hydrogen-reduced by chlorination RI 6578 hydrogen-reduced by chlorination RI 6578 hydrogen-reduced by chlorination RI 6578 hydrogen-reduced by tech- nique
Tungsten-cobalt phase diagram RI 6956 Tungsten-columbium alloys, properties RI 6956 Tungsten concentrates, specifications B 630 tungsten recovery from, amine solvent extraction method rungsten filament, hot, for monitoring impurities in high-temperature gas systems OP 2-65 Tungsten hexacarbonyl, thermal decomposition, kinetics OP 121-68 Tungsten hexacarbonyl, thermal decomposition, adsorption method RI 6984 distillation method RI 6984 distillation method RI 6984 fungsten hexacarbonyl, thermal decomposition, adsorption method RI 6984 distillation method RI 6984 fungsten whisker growth, hydrogen reduction in vacuum furnace RI 6984 tungsten from, hydrogen reduction in vacuum furnace RI 6835 Tungsten industry, organization B 630 problems D 90-69 Tungsten metal, impurities in, direct spectrochemical analysis, methods, modifications RI 6632 spectrochemical analysis, methods, modifications RI 6632 Tungsten minerals, high-temperature twophase extraction technique for RI 6632 Tungsten minerals, high-temperature twophase extraction technique for RI 6632 Tungsten minerals, high-
Tungsten-cobalt system, study RI 6956 Tungsten concentrates, specifications RI 6964 Tungsten recovery from, amine solvent extraction method molten slags, patent P 20-68 Tungsten filament, hot, for monitoring impurities in high-temperature gas systems purities in high-temperature gas systems position, kinetics OP 2-65 Tungsten hexacarbonyl, thermal decomposition, kinetics OP 121-68 Tungsten hexachloride, conversion of tungsten nexachloride, conversion of tungsten acknoride to, method RI 6984 fused-salt scrubbing method RI 6984 fused-salt scrubbing method RI 6984 tungsten whisker growth, hydrogen reduction in vacuum furnace RI 7118 ultrafine tungsten powder from, by hydrogen reduction RI 6835 Tungsten industry, organization B 630 problems B 630 Tungsten metal, impurities in, direct spectrochemical analysis, methods, modifications RI 6632 spectrochemical analysis, methods, modifications RI 6632 Tungsten metal, high-temperature two phase extraction technique for RI 7166 magnetic susceptibility, determination IC 8360 RI 6632 Tungsten oxychlori
Tungsten-cobalt system, study RI 6956 Tungsten concentrates, specifications RI 6964 Tungsten recovery from, amine solvent extraction method molten slags, patent P 20-68 Tungsten filament, hot, for monitoring impurities in high-temperature gas systems purities in high-temperature gas systems position, kinetics OP 2-65 Tungsten hexacarbonyl, thermal decomposition, kinetics OP 121-68 Tungsten hexachloride, conversion of tungsten nexachloride, conversion of tungsten acknoride to, method RI 6984 fused-salt scrubbing method RI 6984 fused-salt scrubbing method RI 6984 tungsten whisker growth, hydrogen reduction in vacuum furnace RI 7118 ultrafine tungsten powder from, by hydrogen reduction RI 6835 Tungsten industry, organization B 630 problems B 630 Tungsten metal, impurities in, direct spectrochemical analysis, methods, modifications RI 6632 spectrochemical analysis, methods, modifications RI 6632 Tungsten metal, high-temperature two phase extraction technique for RI 7166 magnetic susceptibility, determination IC 8360 RI 6632 Tungsten oxychlori
Tungsten-columbium alloys, properties RI 6964 Tungsten concentrates, specifications B 630 tungsten recovery from, amine solvent extraction method RI 6845 Tungsten disulfide, crystallization, from molten slags, patent P 20-68 Tungsten filament, hot, for monitoring im- purities in high-temperature gas systems OP 2-65 Tungsten hexacarbonyl, thermal decom- position, kinetics OP 121-68 Tungsten hexacarbonyl, thermal decom- position, adsorption method RI 6984 distillation method RI 6984 fused-salt scrubbing method RI 6984 zone refining method RI 6984 tungsten whisker growth, hydrogen re- duction in vacuum furnace RI 6885 Tungsten hexafluoride, vapor-deposited tungsten from, hydrogen reduc- tion method OP 90-69 Tungsten industry, organization B 630 problems B 630 Tungsten metal, impurities in, direct spec- trochemical determination RI 6632 Tungsten minerals, high-temperature two- phase extraction technique for RI 7166 magnetic susceptibility, determination IC 8360 Tungsten minerals, high-temperature two- phase extraction technique for RI 6632 Tungsten minerals, high-temperature two- phase extr
Tungsten concentrates, specifications B 630 tungsten recovery from, amine solvent RI 6845 Tungsten disulfide, crystallization, from molten slags, patent P 20-68 Tungsten filament, hot, for monitoring impurities in high-temperature gas systems OP 2-65 Tungsten hexacarbonyl, thermal decomposition, kinetics OP 121-68 Tungsten hexachloride, conversion of tungsten hexachloride, conversion of tungsten hexachloride, conversion of tungsten was desorption method RI 6984 purification, adsorption method RI 6984 distillation method RI 6984 zone refining method RI 6984 zone refining method RI 6984 zone refining method RI 6984 tungsten whisker growth, hydrogen reduction in vacuum furnace RI 7118 ultrafine tungsten powder from, by hydrogen reduction RI 6835 Tungsten industry, organization B 630 problems B 630 Tungsten metal, impurities in, direct spectrochemical analysis, methods, modifications RI 6632 Tungsten metal, impurities in, direct spectrochemical analysis, methods, modifications RI 6632 Tungsten industry, organization RI 6632 Tungsten oxychloride, conversion, to tungsten merals, high-temperat
Tungsten concentrates, specifications B 630 tungsten recovery from, amine solvent RI 6845 Tungsten disulfide, crystallization, from molten slags, patent P 20-68 Tungsten filament, hot, for monitoring impurities in high-temperature gas systems OP 2-65 Tungsten hexacarbonyl, thermal decomposition, kinetics OP 121-68 Tungsten hexachloride, conversion of tungsten hexachloride, conversion of tungsten hexachloride, conversion of tungsten was desorption method RI 6984 purification, adsorption method RI 6984 distillation method RI 6984 zone refining method RI 6984 zone refining method RI 6984 zone refining method RI 6984 tungsten whisker growth, hydrogen reduction in vacuum furnace RI 7118 ultrafine tungsten powder from, by hydrogen reduction RI 6835 Tungsten industry, organization B 630 problems B 630 Tungsten metal, impurities in, direct spectrochemical analysis, methods, modifications RI 6632 Tungsten metal, impurities in, direct spectrochemical analysis, methods, modifications RI 6632 Tungsten industry, organization RI 6632 Tungsten oxychloride, conversion, to tungsten merals, high-temperat
tungsten recovery from, amine solvent extraction method RI 6845 Tungsten disulfide, crystallization, from molten slags, patent P 20-68 Tungsten filament, hot, for monitoring im- purities in high-temperature gas systems OP 2-65 Tungsten hexachloride, conversion of tung- sten oxychloride to, method RI 7152 purification, adsorption method RI 6984 distillation method RI 6984 tungsten whisker growth, hydrogen re- duction in vacuum furnace RI 6984 tungsten whisker growth, hydrogen re- duction in vacuum furnace RI 6835 Tungsten hexafluoride, vapor-deposited tungsten from, hydrogen reduc- tion method B 630 problems B 630 problems B 630 Tungsten metal, impurities in, direct spec- trochemical determination RI 6632 Tungsten minerals, high-temperature two- phase extraction technique for RI 7106 Tungsten - molybdenum alloys, corrosion properties, chemical and galvanic RI 7169 vapor deposition of RI 6632 Tungsten oxychloride, conversion, to tung- sten hexachloride, by chlorination RI 7152 Tungsten oxychloride, conversion, to tung- sten hexachloride, by chlorination RI 7152 Tungsten oxychloride, conversion, to tung- sten hexachloride, by chlorination RI 7152 Tungsten oxychloride, conversion, to tung- sten hexachloride, by chlorination RI 7152 Tungsten oxychloride, conversion, to tung- sten hexachloride, by chlorination RI 7152 Tungsten oxychloride, conversion, to tung- sten hexachloride, by chlorination RI 7152 Tungsten oxychloride, conversion, to tung- sten hexachloride, by chlorination RI 6578 hydrogen-reduced, comparison, with elec- trowon tungsten powder RI 6578 submicron, preparation, by tungsten hex- achloride hydrogen reduction RI 6578 submicron, preparation, by tungsten hex- achloride hydrogen reduction RI 6578 submicron, preparation, by tungsten hex- achloride hydrogen reduction RI 6835
Tungsten Gistlinde, crystalization, from molten slags, patent P 20-68 Tungsten flament, hot, for monitoring impurities in high-temperature gas OP 2-65 Tungsten hexacarbonyl, thermal decomposition, kinetics OP 121-68 Tungsten hexacarbonyl, thermal decomposition, kinetics OP 121-68 Tungsten hexacarbonyl, thermal decomposition, kinetics OP 121-68 Tungsten hexacarbonyl, thermal decomposition purification, adsorption method RI 6984 Gistlilation method RI 6984 zone refining method RI 6984 tungsten whisker growth, hydrogen reduction in vacuum furnace RI 6835 Tungsten hexafluoride, vapor-deposited tungsten from, hydrogen reduction method RI 6835 Tungsten industry, organization RI 6632 B 630 Tungsten industry, organization RI 6632 B 630 Tungsten metal, impurities in, direct spectrochemical analysis, methods, modifications
Tungsten Gistlinde, crystalization, from molten slags, patent P 20-68 Tungsten flament, hot, for monitoring impurities in high-temperature gas OP 2-65 Tungsten hexacarbonyl, thermal decomposition, kinetics OP 121-68 Tungsten hexacarbonyl, thermal decomposition, kinetics OP 121-68 Tungsten hexacarbonyl, thermal decomposition, kinetics OP 121-68 Tungsten hexacarbonyl, thermal decomposition purification, adsorption method RI 6984 Gistlilation method RI 6984 zone refining method RI 6984 tungsten whisker growth, hydrogen reduction in vacuum furnace RI 6835 Tungsten hexafluoride, vapor-deposited tungsten from, hydrogen reduction method RI 6835 Tungsten industry, organization RI 6632 B 630 Tungsten industry, organization RI 6632 B 630 Tungsten metal, impurities in, direct spectrochemical analysis, methods, modifications
Tungsten filament, not, for monitoring im- purities in high-temperature gas systemsOP 2-65 Tungsten hexacarbonyl, thermal decom- position, kineticsOP 121-68 Tungsten hexachloride, conversion of tung- sten oxychloride to, methodRI 6984 distillation methodRI 6984 fused-salt scrubbing methodRI 6984 tungsten whisker growth, hydrogen re- duction in vacuum furnaceRI 6984 tungsten whisker growth, hydrogen re- duction in vacuum furnaceRI 7118 ultrafine tungsten powder from, by hydro- gen reductionRI 6835 Tungsten industry, organizationB 630 Trungsten industry, organizationB 630 Trungsten metal, impurities in, direct spec- trochemical analysis, methods, modi- fications
purities in high-temperature gas systems OP 2-65 Tungsten hexacarbonyl, thermal decom- position, kinetics OP 121-68 Tungsten hexachloride, conversion of tung- sten oxychloride to, method CP 121-68 Tungsten hexachloride, conversion of tung- get refining method RI 6984 tungsten whisker growth, hydrogen re- duction in vacuum furnace RI 7118 ultrafine tungsten powder from, by hydro- gen reduction CP 90-69 Tungsten hexafluoride, vapor-deposited tungsten industry, organization P 630 problems RI 6835 Tungsten method RI 6835 Tungsten industry, organization P 630 problems RI 6632 spectrochemical analysis, methods, modi- fications RI 6632 spectrochemical analysis, methods, modi- fications RI 6632 Tungsten susceptibility, determination RI 7166 magnetic susceptibility, determination RI 7169 vapor deposition of RI 7169 tungsten oxychloride, conversion, to tung- sten hexachloride, by chlorination RI 7152 Tungsten powder, electrowon, comparison, with hydrogen-reduced tungsten powder Sten hexachloride, by chlorination RI 6578 properties, evaluation RI 6578 hydrogen-reduced, comparison, with elec- trowon tungsten powder RI 6578 properties, evaluation RI 6578 properties, evaluation RI 6578 hydrogen-reduced, comparison, with elec- trowon tungsten powder RI 6578 submicron, preparation, by tungsten hex- achloride hydrogen reduction RI 6835 ultrafine, preparation, by tungsten hex- achloride hydrogen reduction RI 6835 ultrafine, preparation, freeze-dry tech- nique OP 86-65
position, kinetics OP 121-68 Tungsten hexachloride, conversion of tung- sten oxychloride to, method RI 6984 distillation method RI 6984 fused-salt scrubbing method RI 6984 tungsten whisker growth, hydrogen re- duction in vacuum furnace RI 7118 ultrafine tungsten powder from, by hydro- gen reduction RI 6835 Tungsten hexafluoride, vapor-deposited tungsten from, hydrogen reduc- tion method BI 6835 Tungsten industry, organization B 630 problems B 630 problems B 630 problems B 630 problems B 630 Tungsten metal, impurities in, direct spec- trochemical determination RI 6632 Spectrochemical analysis, methods, modi- fications RI 6632 Tungsten minerals, high-temperature two- phase extraction technique for RI 7169 magnetic susceptibility, determination RI 6853 Tungsten oxychloride, conversion, to tung- sten hexachloride, by chlorination RI 7152 Tungsten powder RI 6578 properties, evaluation RI 6578 properties, evaluation RI 6578 submicron, preparation, by tungsten hex- achloride hydrogen reduced tungsten powder RI 6578 submicron, preparation, by tungsten hex- achloride hydrogen reduced tungsten powder RI 6578 submicron, preparation, by tungsten hex- achloride hydrogen reduced tungsten powder RI 6578 submicron, preparation, freeze-dry tech- nique OP 86-65 Tungsten-powder billets, mill shapes from, low-density, high-energy-rate ex- trusion of, method RI 6817
position, kinetics OP 121-68 Tungsten hexachloride, conversion of tung- sten oxychloride to, method RI 6984 distillation method RI 6984 fused-salt scrubbing method RI 6984 tungsten whisker growth, hydrogen re- duction in vacuum furnace RI 7118 ultrafine tungsten powder from, by hydro- gen reduction RI 6835 Tungsten hexafluoride, vapor-deposited tungsten from, hydrogen reduc- tion method BI 6835 Tungsten industry, organization B 630 problems B 630 problems B 630 problems B 630 problems B 630 Tungsten metal, impurities in, direct spec- trochemical determination RI 6632 Spectrochemical analysis, methods, modi- fications RI 6632 Tungsten minerals, high-temperature two- phase extraction technique for RI 7169 magnetic susceptibility, determination RI 6853 Tungsten oxychloride, conversion, to tung- sten hexachloride, by chlorination RI 7152 Tungsten powder RI 6578 properties, evaluation RI 6578 properties, evaluation RI 6578 submicron, preparation, by tungsten hex- achloride hydrogen reduced tungsten powder RI 6578 submicron, preparation, by tungsten hex- achloride hydrogen reduced tungsten powder RI 6578 submicron, preparation, by tungsten hex- achloride hydrogen reduced tungsten powder RI 6578 submicron, preparation, freeze-dry tech- nique OP 86-65 Tungsten-powder billets, mill shapes from, low-density, high-energy-rate ex- trusion of, method RI 6817
position, kinetics OP 121-68 Tungsten hexachloride, conversion of tung- sten oxychloride to, method RI 6984 distillation method RI 6984 fused-salt scrubbing method RI 6984 tungsten whisker growth, hydrogen re- duction in vacuum furnace RI 7118 ultrafine tungsten powder from, by hydro- gen reduction RI 6835 Tungsten hexafluoride, vapor-deposited tungsten from, hydrogen reduc- tion method BI 6835 Tungsten industry, organization B 630 problems B 630 problems B 630 problems B 630 problems B 630 Tungsten metal, impurities in, direct spec- trochemical determination RI 6632 Spectrochemical analysis, methods, modi- fications RI 6632 Tungsten minerals, high-temperature two- phase extraction technique for RI 7169 magnetic susceptibility, determination RI 6853 Tungsten oxychloride, conversion, to tung- sten hexachloride, by chlorination RI 7152 Tungsten powder RI 6578 properties, evaluation RI 6578 properties, evaluation RI 6578 submicron, preparation, by tungsten hex- achloride hydrogen reduced tungsten powder RI 6578 submicron, preparation, by tungsten hex- achloride hydrogen reduced tungsten powder RI 6578 submicron, preparation, by tungsten hex- achloride hydrogen reduced tungsten powder RI 6578 submicron, preparation, freeze-dry tech- nique OP 86-65 Tungsten-powder billets, mill shapes from, low-density, high-energy-rate ex- trusion of, method RI 6817
sten oxychloride to, method RI 7152 purification, adsorption method RI 6984 distillation method RI 6984 fused-salt scrubbing method RI 6984 tungsten whisker growth, hydrogen re- duction in vacuum furnace RI 7118 ultrafine tungsten powder from, by hydro- gen reduction RI 6835 Tungsten hexafluoride, vapor-deposited tungsten from, hydrogen reduc- tion method B 630 problems B 630 Tungsten metal, impurities in, direct spec- trochemical determination B 630 Tungsten minerals, high-temperature two- phase extraction technique for RI 6632 Tungsten - molybdenum alloys, corrosion properties, chemical and galvanic RI 7169 vapor deposition of RI 66533 Tungsten oxychloride, conversion, to tung- sten hexachloride, by chlorination RI 7152 Tungsten powder, electrowon, comparison, with hydrogen-reduced tungsten powder RI 6578 properties, valuation RI 6578 properties, evaluation RI 6578 putation, preparation, by tungsten hex- achloride hydrogen reduction RI 6835 Tungsten-powder billets, mill shapes from, low-density, high-energy-rate ex- trusion of, method RI 6817
purification, adsorption method RI 6984 distillation method RI 6984 fused-salt scrubbing method RI 6984 zone refining method RI 6984 tungsten whisker growth, hydrogen reduction in vacuum furnace RI 7118 ultrafine tungsten powder from, by hydrogen reduction RI 6835 Tungsten hexafluoride, vapor-deposited RI 6835 Tungsten industry, organization B 630 problems B 630 problems B 630 Tungsten metal, impurities in, direct spectrochemical analysis, methods, modifications RI 6632 Tungsten minerals, high-temperature twophase extraction technique for RI 7166 magnetic susceptibility, determination IC 8360 Tungsten oxychloride, conversion, to tungsten hexachloride, by chlorination RI 7168 vapor deposition of RI 7169 vapor deposition of RI 6578 properties, chemical and galvanic RI 7169 vapor deposition of RI 6578 properties, evaluation RI 6578 properties, evaluation RI 6578 properties, evaluation RI 6578 hydrogen-reduced, comparison, with electrowon, preparation, by tungsten hexachlorid
distillation method RI 6984 fused-salt scrubbing method RI 6984 zone refining method RI 6984 tungsten whisker growth, hydrogen re- duction in vacuum furnace RI 7118 ultrafine tungsten powder from, by hydro- gen reduction RI 6835 Tungsten hexafluoride, vapor-deposited tungsten from, hydrogen reduc- tion method B 630 problems B 630 Tungsten industry, organization B 630 Tungsten metal, impurities in, direct spec- trochemical determination RI 6632 spectrochemical analysis, methods, modi- fications RI 6632 Tungsten minerals, high-temperature two- phase extraction technique for RI 7106 magnetic susceptibility, determination RI 6632 Tungsten onlybdenum alloys, corrosion properties, chemical and galvanic RI 7169 vapor deposition of RI 6853 Tungsten oxychloride, conversion, to tung- sten hexachloride, by chlorination RI 7152 Tungsten powder, electrowon, comparison, with hydrogen-reduced tungsten powder RI 6578 properties, evaluation RI 6578 properties, evaluation RI 6578 properties, evaluation RI 6578 submicron, preparation, by tungsten hex- achloride hydrogen reduction RI 6835 ultrafine, preparation, by tungsten hex- achloride hydrogen reduction RI 6835 Tungsten-powder billets, mill shapes from, low-density, high-energy-rate ex- trusion of, method RI 6817
zone refining method RI 6984 tungsten whisker growth, hydrogen re- duction in vacuum furnace RI 7118 ultrafine tungsten powder from, by hydro- gen reduction RI 6835 Tungsten hexafluoride, vapor-deposited tungsten from, hydrogen reduc- tion method OP 90-69 Tungsten industry, organization B 630 problems B 630 Tungsten metal, impurities in, direct spec- trochemical determination RI 6632 spectrochemical analysis, methods, modi- fications RI 6632 Tungsten minerals, high-temperature two- phase extraction technique for RI 6632 Tungsten - molybdenum alloys, corrosion properties, chemical and galvanic RI 7169 vapor deposition of RI 6853 Tungsten oxychloride, conversion, to tung- sten hexachloride, by chlorination properties, evaluation RI 6578 properties, evaluation RI 6578 properties, evaluation RI 6578 properties, evaluation RI 6578 submicron, preparation, by tungsten hex- achloride hydrogen reduction RI 6835 ultrafine, preparation, freeze-dry tech- nique OP 86-65 Tungsten-powder billets, mill shapes from, low-density, high-energy-rate ex- trusion of, method RI 6817
zone refining method RI 6984 tungsten whisker growth, hydrogen re- duction in vacuum furnace RI 7118 ultrafine tungsten powder from, by hydro- gen reduction RI 6835 Tungsten hexafluoride, vapor-deposited tungsten from, hydrogen reduc- tion method OP 90-69 Tungsten industry, organization B 630 problems B 630 Tungsten metal, impurities in, direct spec- trochemical determination RI 6632 spectrochemical analysis, methods, modi- fications RI 6632 Tungsten minerals, high-temperature two- phase extraction technique for RI 6632 Tungsten - molybdenum alloys, corrosion properties, chemical and galvanic RI 7169 vapor deposition of RI 6853 Tungsten oxychloride, conversion, to tung- sten hexachloride, by chlorination properties, evaluation RI 6578 properties, evaluation RI 6578 properties, evaluation RI 6578 properties, evaluation RI 6578 submicron, preparation, by tungsten hex- achloride hydrogen reduction RI 6835 ultrafine, preparation, freeze-dry tech- nique OP 86-65 Tungsten-powder billets, mill shapes from, low-density, high-energy-rate ex- trusion of, method RI 6817
duction in vacuum furnace RI 7118 ultrafine tungsten powder from, by hydro- gen reduction RI 6835 Tungsten hexafluoride, vapor-deposited tungsten from, hydrogen reduc- tion method B 630 problems B 630 Tungsten metal, impurities in, direct spec- trochemical determination RI 6632 spectrochemical analysis, methods, modi- fications RI 6632 Tungsten minerals, high-temperature two- phase extraction technique for RI 7106 magnetic susceptibility, determination RI 6632 Tungsten - molybdenum alloys, corrosion properties, chemical and galvanic RI 7169 vapor deposition of RI 6853 Tungsten oxychloride, conversion, to tung- sten hexachloride, by chlorination RI 7152 Tungsten powder, electrowon, comparison, with hydrogen-reduced tungsten powder RI 6578 properties, evaluation RI 6578 submicron, preparation, by tungsten hex- achloride hydrogen reduction RI 6835 Tungsten-powder jungsten hex- achloride hydrogen reduction RI 6835 Tungsten-powder billets, mill shapes from, low-density, high-energy-rate ex- trusion of, method RI 6817
duction in vacuum furnace RI 7118 ultrafine tungsten powder from, by hydro- gen reduction RI 6835 Tungsten hexafluoride, vapor-deposited tungsten from, hydrogen reduc- tion method B 630 problems B 630 Tungsten metal, impurities in, direct spec- trochemical determination RI 6632 spectrochemical analysis, methods, modi- fications RI 6632 Tungsten minerals, high-temperature two- phase extraction technique for RI 7106 magnetic susceptibility, determination RI 6632 Tungsten - molybdenum alloys, corrosion properties, chemical and galvanic RI 7169 vapor deposition of RI 6853 Tungsten oxychloride, conversion, to tung- sten hexachloride, by chlorination RI 7152 Tungsten powder, electrowon, comparison, with hydrogen-reduced tungsten powder RI 6578 properties, evaluation RI 6578 submicron, preparation, by tungsten hex- achloride hydrogen reduction RI 6835 Tungsten-powder jungsten hex- achloride hydrogen reduction RI 6835 Tungsten-powder billets, mill shapes from, low-density, high-energy-rate ex- trusion of, method RI 6817
ultrafine tungsten powder from, by hydro- gen reduction RI 6835 Tungsten hexafluoride, vapor-deposited tungsten from, hydrogen reduc- tion method B 630 problems B 630 Tungsten metal, impurities in, direct spec- trochemical determination RI 6632 spectrochemical analysis, methods, modi- fications RI 6632 Tungsten minerals, high-temperature two- phase extraction technique for RI 6632 Tungsten minerals, high-temperature two- phase extraction technique for RI 7106 magnetic susceptibility, determination IC 8360 Tungsten - molybdenum alloys, corrosion properties, chemical and galvanic RI 7169 vapor deposition of RI 6853 Tungsten powder, electrowon, comparison, with hydrogen-reduced tungsten powder RI 6578 properties, evaluation RI 6578 properties, evaluation RI 6578 submicron, preparation, by tungsten hex- achloride hydrogen reduction RI 6853 Tungsten powder RI 6578 submicron, preparation, by tungsten hex- achloride hydrogen reduction RI 6578 submicron, preparation, by tungsten hex- achloride hydrogen reduction RI 6835 ultrafine, preparation, freeze-dry tech- nique OP 86-65 Tungsten-powder billets, mill shapes from, low-density, high-energy-rate ex- trusion of, method RI 6817
gen reduction RI 6835 Tungsten hexafluoride, vapor-deposited tungsten from, hydrogen reduc- tion method OP 90-69 Tungsten industry, organization B 630 problems B 630 Tungsten metal, impurities in, direct spec- trochemical determination RI 6632 spectrochemical analysis, methods, modi- fications RI 6632 Tungsten minerals, high-temperature two- phase extraction technique for RI 6632 Tungsten - molybdenum alloys, corrosion properties, chemical and galvanic RI 7169 vapor deposition of RI 6853 Tungsten oxychloride, conversion, to tung- sten hexachloride, by chlorination RI 7152 Tungsten powder, electrowon, comparison, with hydrogen-reduced tungsten powder RI 6578 properties, evaluation RI 6578 submicron, preparation, by tungsten hex- achloride hydrogen reduction RI 6835 ultrafine, preparation, freeze-dry tech- nique OP 86-65 Tungsten-powder billets, mill shapes from, low-density, high-energy-rate ex- trusion of, method RI 6817
tion method OP 90-69 Tungsten industry, organization B 630 problems B 630 Tungsten metal, impurities in, direct spec- trochemical determination B 6632 spectrochemical analysis, methods, modi- fications RI 6632 Tungsten minerals, high-temperature two- phase extraction technique for RI 6632 Tungsten minerals, high-temperature two- phase extraction technique for RI 7106 magnetic susceptibility, determination IC 8360 Tungsten - molybeanum alloys, corrosion properties, chemical and galvanic RI 7169 vapor deposition of RI 6853 Tungsten powder, electrowon, comparison, with hydrogen-reduced tungsten powder RI 6578 properties, evaluation RI 6578 submicron, preparation, by tungsten hex- achloride hydrogen reduction RI 6835 ultrafine, preparation, freeze-dry tech- nique OP 86-65 Tungsten-powder billets, mill shapes from, low-density, high-energy-rate ex- trusion of, method RI 6817
tion method OP 90-69 Tungsten industry, organization B 630 problems B 630 Tungsten metal, impurities in, direct spec- trochemical determination B 6632 spectrochemical analysis, methods, modi- fications RI 6632 Tungsten minerals, high-temperature two- phase extraction technique for RI 6632 Tungsten minerals, high-temperature two- phase extraction technique for RI 7106 magnetic susceptibility, determination IC 8360 Tungsten - molybeanum alloys, corrosion properties, chemical and galvanic RI 7169 vapor deposition of RI 6853 Tungsten powder, electrowon, comparison, with hydrogen-reduced tungsten powder RI 6578 properties, evaluation RI 6578 submicron, preparation, by tungsten hex- achloride hydrogen reduction RI 6835 ultrafine, preparation, freeze-dry tech- nique OP 86-65 Tungsten-powder billets, mill shapes from, low-density, high-energy-rate ex- trusion of, method RI 6817
problems B 630 Tungsten metal, impurities in, direct spec- trochemical analysis, methods, modi- fications RI 6632 spectrochemical analysis, methods, modi- fications RI 6632 Tungsten minerals, high-temperature two- phase extraction technique for
problems B 630 Tungsten metal, impurities in, direct spec- trochemical analysis, methods, modi- fications RI 6632 spectrochemical analysis, methods, modi- fications RI 6632 Tungsten minerals, high-temperature two- phase extraction technique for
trochemical determination RI 6632 spectrochemical analysis, methods, modi- fications RI 6632 Tungsten minerals, high-temperature two- phase extraction technique for RI 7106 magnetic susceptibility, determination IC 8360 Tungsten - molybdenum alloys, corrosion properties, chemical and galvanic RI 7169 vapor deposition of RI 6853 Tungsten oxychloride, conversion, to tung- sten hexachloride, by chlorination RI 7152 Tungsten powder, electrowon, comparison, with hydrogen-reduced tungsten powder RI 6578 properties, evaluation RI 6578 submicron, preparation, by tungsten hex- achloride hydrogen reduction RI 6835 ultrafine, preparation, freeze-dry tech- nique OP 86-65 Tungsten-powder billets, mill shapes from, low-density, high-energy-rate ex- trusion of, method RI 6817
trochemical determination RI 6632 spectrochemical analysis, methods, modi- fications RI 6632 Tungsten minerals, high-temperature two- phase extraction technique for RI 7106 magnetic susceptibility, determination IC 8360 Tungsten - molybdenum alloys, corrosion properties, chemical and galvanic RI 7169 vapor deposition of RI 6853 Tungsten oxychloride, conversion, to tung- sten hexachloride, by chlorination RI 7152 Tungsten powder, electrowon, comparison, with hydrogen-reduced tungsten powder RI 6578 properties, evaluation RI 6578 submicron, preparation, by tungsten hex- achloride hydrogen reduction RI 6835 ultrafine, preparation, freeze-dry tech- nique OP 86-65 Tungsten-powder billets, mill shapes from, low-density, high-energy-rate ex- trusion of, method RI 6817
spectrochemical analysis, methods, modi- fications RI 6632 Tungsten minerals, high-temperature two- phase extraction technique for RI 7106 magnetic susceptibility, determination IC 8360 Tungsten - molybdenum alloys, corrosion properties, chemical and galvanic RI 7169 vapor deposition of RI 6853 Tungsten oxychloride, conversion, to tung- sten hexachloride, by chlorination RI 7152 Tungsten powder, electrowon, comparison, with hydrogen-reduced tungsten powder RI 6578 properties, evaluation RI 6578 submicron, preparation, by tungsten hex- achloride hydrogen reduction RI 6835 ultrafine, preparation, freeze-dry tech- nique OP 86-65 Tungsten-powder billets, mill shapes from, low-density, high-energy-rate ex- trusion of, method RI 6817
Tungsten minerals, high-temperature two- phase extraction technique for RI 7106 magnetic susceptibility, determination IC 8360 Tungsten - molybdenum alloys, corrosion properties, chemical and galvanic RI 7169 vapor deposition of RI 6853 Tungsten oxychloride, conversion, to tung- sten hexachloride, by chlorination RI 7152 Tungsten powder, electrowon, comparison, with hydrogen-reduced tungsten powder RI 6578 hydrogen-reduced, comparison, with elec- trowon tungsten powder RI 6578 submicron, preparation, by tungsten hex- achloride hydrogen reduction RI 6835 ultrafine, preparation, freeze-dry tech- nique OP 86-65 Tungsten-powder billets, mill shapes from, low-density, high-energy-rate ex- trusion of, method RI 6817
phase extraction technique for RI 7106 magnetic susceptibility, determination IC 8360 Tungsten - molybdenum alloys, corrosion properties, chemical and galvanic RI 7169 vapor deposition of RI 6853 Tungsten oxychloride, conversion, to tung- sten hexachloride, by chlorination RI 7152 Tungsten powder, electrowon, comparison, with hydrogen-reduced tungsten powder RI 6578 properties, evaluation RI 6578 hydrogen-reduced, comparison, with elec- trowon tungsten powder RI 6578 submicron, preparation, by tungsten hex- achloride hydrogen reduction RI 6835 ultrafine, preparation, freeze-dry tech- nique OP 86-65 Tungsten-powder billets, mill shapes from, low-density, high-energy-rate ex- trusion of, method RI 6817
magnetic susceptibility, determination IC 8360 Tungsten - molybdenum alloys, corrosion properties, chemical and galvanic RI 7169 vapor deposition of RI 6853 Tungsten oxychloride, conversion, to tung- sten hexachloride, by chlorination RI 7152 Tungsten powder, electrowon, comparison, with hydrogen-reduced tungsten powder RI 6578 properties, evaluation RI 6578 hydrogen-reduced, comparison, with elec- trowon tungsten powder RI 6578 submicron, preparation, by tungsten hex- achloride hydrogen reduction RI 6835 ultrafine, preparation, freeze-dry tech- nique OP 86-65 Tungsten-powder billets, mill shapes from, low-density, high-energy-rate ex- trusion of, method RI 6817
Tungsten - molybdenum alloys, corrosion properties, chemical and galvanic RI 7169 vapor deposition of
vapor deposition of RI 6853 Tungsten oxychloride, conversion, to tung- sten hexachloride, by chlorination RI 7152 Tungsten powder, electrowon, comparison, with hydrogen-reduced tungsten powder RI 6578 properties, evaluation RI 6578 hydrogen-reduced, comparison, with elec- trowon tungsten powder RI 6578 submicron, preparation, by tungsten hex- achloride hydrogen reduction RI 6835 ultrafine, preparation, freeze-dry tech- nique OP 86-65 Tungsten-powder billets, mill shapes from, low-density, high-energy-rate ex- trusion of, method RI 6817
Tungsten oxychloride, conversion, to tung- sten hexachloride, by chlorination RI 7152 Tungsten powder, electrowon, comparison, with hydrogen-reduced tungsten powder
sten hexachloride, by chlorination RI 7152 Tungsten powder, electrowon, comparison, with hydrogen-reduced tungsten powder RI 6578 properties, evaluation RI 6578 hydrogen-reduced, comparison, with elec- trowon tungsten powder RI 6578 submicron, preparation, by tungsten hex- achloride hydrogen reduction RI 6835 ultrafine, preparation, freeze-dry tech- nique OP 86-65 Tungsten-powder billets, mill shapes from, low-density, high-energy-rate ex- trusion of, method RI 6817
with hydrogen-reduced tungsten powder RI 6578 properties, evaluation RI 6578 hydrogen-reduced, comparison, with elec- trowon tungsten powder RI 6578 submicron, preparation, by tungsten hex- achloride hydrogen reduction RI 6835 ultrafine, preparation, freeze-dry tech- nique OP 86-65 Tungsten-powder billets, mill shapes from, low-density, high-energy-rate ex- trusion of, method RI 6817
powder RI 6578 properties, evaluation RI 6578 hydrogen-reduced, comparison, with elec- trowon tungsten powder RI 6578 submicron, preparation, by tungsten hex- achloride hydrogen reduction RI 6835 ultrafine, preparation, freeze-dry tech- nique OP 86-65 Tungsten-powder billets, mill shapes from, low-density, high-energy-rate ex- trusion of, method RI 6817
properties, evaluation RI 6578 hydrogen-reduced, comparison, with elec- trowon tungsten powder RI 6578 submicron, preparation, by tungsten hex- achloride hydrogen reduction RI 6835 ultrafine, preparation, freeze-dry tech- nique OP 86-65 Tungsten-powder billets, mill shapes from, low-density, high-energy-rate ex- trusion of, method RI 6817
hydrogen-reduced, comparison, with elec- trowon tungsten powder RI 6578 submicron, preparation, by tungsten hex- achloride hydrogen reduction RI 6835 ultrafine, preparation, freeze-dry tech- nique OP 86-65 Tungsten-powder billets, mill shapes from, low-density, high-energy-rate ex- trusion of, method RI 6817
submicron, preparation, by tungsten hex- achloride hydrogen reduction RI 6835 ultrafine, preparation, freeze-dry tech- nique OP 86-65 Tungsten-powder billets, mill shapes from, low-density, high-energy-rate ex- trusion of, method RI 6817
submicron, preparation, by tungsten hex- achloride hydrogen reduction RI 6835 ultrafine, preparation, freeze-dry tech- nique OP 86-65 Tungsten-powder billets, mill shapes from, low-density, high-energy-rate ex- trusion of, method RI 6817
ultrafine, preparation, freeze-dry tech- nique OP 86-65 Tungsten-powder billets, mill shapes from, low-density, high-energy-rate ex- trusion of, method RI 6817
nique OP 86-65 Tungsten-powder billets, mill shapes from, low-density, high-energy-rate ex- trusion of, method
trusion of, method RI 6817
trusion of, method RI 6817
trusion of, method RI 6817
proporties DT 2017
properties RI 6817 Tungsten-rhenium alloy, rhenium recovery
from, method RI 7254
Tungsten-rhenium alloy powders, ultra-
fine, preparation, freeze-dry tech-
nique OP 86-65 Tungsten sulfide catalyst, use, for methana-
tion of synthesis gas at high pres-
sure RI 7209
Tungsten-tantalum alloys, properties RI 6964 Tungsten trioxide, nickel in, determina-
Illugation triovido nickol in determine
tion OD as ar
tion OP 60-65
tion UP 60-65 Tungsten-vanadium alloys, properties RI 6929
tion
tion
tion
tion

•

.

.

389

r,

Tungstic oxide, extraction from wolframite, two-phase molten-salt technique RI 7106 impurities in, direct spectrochemical de-termination RI 6632 spectrochemical analysis, methods, modifications ______ RI 6632 Tungstite, magnetic susceptibility _____ IC 8360 Tunisia, mineral industry, annual review _____ MY 1968 (v. IV) phosphate deposits _____ RI 6935 Tunnels, circular, displacements in, calcu-lating, theoretical solution _____ RI 7030 stress in, calculating, theoretic solution RI 7030 diesel-exhaust air contamination in, study RI 7074 excavation requirements for, projection _____ OFR 7-68 gassy, special safety precautions _____ B 644 gassy noncoal mine, mobile diesel-powered transportation equipment for, list IC 8354 nongassy noncoal mines, mobile dieselpowered transportation equipment for, list IC 8363 petroleum products encountered in, recomommended safety rules _____ B 644 ommended salety lutes _____ Tunnel boring, in rock, linear cutter ap-Tunnel-boring machine, in circular tunnel, displacement developed by, esti-mating, theoretical solution _____ RI 7030 stress developed by, estimating, theo-**RI** 7030 props, stresses and displacements in-duced by ______ BI 7200 Tunnel linings, unreinforced concrete, struc-tural design data ______ RI 7297 Tunneling, dust control in, literature survey IC 8407 horizontal boring techniques for ______ B 644 Tunneling technology, historical summary IC 8375 present state of the art ______ IC 8375 Turbidity, neutralized mine water, as in-dicator of suspended solids conprops. dicator of suspended solids content, accuracy _____ OP 63-68 Turbine blades, erosion, by ash in power gas, thousand-hour test _____ RI 7255 new, coal-fired gas turbine, design _____ RI 6920 tests _____ RI 6920 Turkey, mine rescue training proposed OP 141 67 Turkey, mine rescue training, proposed_ OP 141-67 mineral industry, annual re-view _____ MY 1968 (v. IV) Tuxnedi National Wildlife Refuge, Alaska, mineral appraisal _____ GS 7-68 Twilight Industries, Inc., mine, Pa., coal, carbonizing properties _____ RI 7131 Tyuyamunite, magnetic susceptibility ____ IC 8360 11 Uganda, mineral industry, an-nual review ______ MY 1968 (v. IV) Ullmannite, magnetic susceptibility _____ IC 8351 Ultrasonics, in electrodeposition of copper alloys, from cyanide electrolytes, effect RI 6938 effects use, in creating emulsions, laboratory

- tests _____ RI 7296 Ultrasonic energy, effect on fluid flow in porous media _____ RI 6978
- effect on oil recovery, laboratory tests__ RI 7144 Ultrasonic irradiation, coal derivatives,
- chemical reactions ______ RI 7027 Ultrasonic pulse amplitude, use, in attenua-
- tion symmetry determination ____ RI 7335 Ultrasonic pulse measurement system,
- acoustical bench for, design and operation ______ RI 7164 automated, design and operation _____ OP 48-69
- ultrasonic pulse velocities, use, in elastic
- symmetry determination _____ RI 7333

Ultrasonic separation, fine particles in crushed sandstone, method ____ OP 111-66 Ultraviolet-visible spectroscopy, techniques.__ B 632 Umangite, magnetic susceptibility _____ IC 8383 Umber ore, low-grade, leach liquor auto-claving, kinetic analysis _____ RI 7166 manganese recovery from, sulfuric acidferrous sulfate process Uncompany primitive area, Colo., mineral **RI 6692** Cheompangre primitve area, colo, initial GS 8-68 Undecafluorocyclohexane, purification, method _______ RI 6633 purity, estimation ______ RI 6633 undecafluoromonochlorocyclohexane, purifi-action method ______ RI 6633 plex, visit to, impressions of __ OP 111-69 mineral industry, annual reminerai industry, annuai re-view ______ MY 1968 (v. IV) phosphate deposits ______ RI 6935 United Arab Republic, mineral industry, annual review MY 1968 (v. IV) phosphate deposits ______ RI 6935 United Kingdom, coal, production and con-sumption _____ IC 8380 United Kingdom, coal, production and con-sumption IC 8380 fly ash, production and utilization IC 8380 fly ash, production and utilization IC 8348 mineral industry, annual re-view MY 1968 (v. IV) Upper Freeport bed, Pa., coal, preparation characteristics RI 7324 United States, coal, sulfur content IC 8312 construction activity IC 8312 construction activity IC 8255 sulfur industry IC 8255 sulfur industry IC 8255 sulfur production IC 8255 sulfur acid industry IC 8255 sulfur acid industry IC 8255 energy consumption IC 8255 energy consumption IC 8255 helium-bearing natural gases, analyses IC 8302 industrial production index IC 8302 industrial production index ______ B 630 oilfields, shallow and surface ______ M 12 petroleum-impregnated rocks, surface and shallow ______ M 12 population ______ B 630 price indexes _____ B 630 total labor force _____ B 630 water resources U.S. Army Corps of Engineers, Littleville Dam, shaft-sinking methods and ___ B 630 costs IC 8273 Unsaturated hydrocarbons, flammability IC 8273 Unsymmetrical dimethylhydrazine, com-bustion characteristics OP 140 67 bustion characteristics _____ O Upper Clarion bed, Pa., coal, washing characteristics RI 7174 Upper Freeport bed, coal, sulfur content, effect of stage crushing on _____ IC 8282 sulfur reduction in, effect of stage crushing _____ OP 103-66 RI 7131 Pa., coal, carbonizing properties _____ RI 7131 float-and-sink data _____ RI 6652 froth-flotation washability data ____ RI 6652 mine sealing experiment _____ OP 68-68 washing characteristics ______ RI 7174 W. Va., coal, washing characteristics _____ RI 7004 Upper Kitanning bed, coal, sulfur content, effect of stage crushing on _____ IC 8282 sulfur reduction in, effect of stage

crushing _____ OP 103-66

٢

f

) E

Ì

Ć

)

Upper Kitanning bed, Pa., coal, caking
properties, destroying, method RI 6605
DI 6707 7004 7010
annual review MV 1969 (IV)
Upper Volta, mineral industry, annual review MY 1968 (v. IV) Upshur County, W. Va., coal, preparation
characteristics RI 7004 Uranium, annual data MY 1968 (v. 1-II) consumption B 630 imports B 630
Uranium, annual data MY 1968 (v. I-II)
imports B 630
nium sulfate process RI 6906
nium sulfate process RI 6906 mineralogy IC 8396 mining methods and costs IC 8280
prices B 630
production p ego
recovery, from copper waste dump leaching solutions, by solvent ex-
leaching solutions, by solvent ex-
traction OP 86-67 ion-exchange method OP 86-67, 48-68 from ion-exchange resins, improved
from ion-exchange resins, improved
from uranium mine waters, ion- exchange method OP 86-67
reserves B 630
reserves B 630 secondary, recovery methods B 630
strategic factors D coo
substitutes B 630 supply B 630 technology B 630 transportation regulations B 630
technology B 630
transportation regulations B 630
Uranium-carbon-oxygen system, phase rela-
solubility limits RI 6968
tions RI 6968 solubility limits RI 6968 Uranium chalcogenides, thermoelectric properties
Uranium compounds, depleted, thermoelec- tric properties RI 6638
Uranium concentrate, specifications B 630
Uranium concentrate, specifications B 630 Uranium deposit, assay data, statistical analysis RI 6645 Uranium fluoride, uranium metal reaction
Uranium fluoride, uranium metal reaction
rate with, in molten fluoride solu-
tions RI 6736 Uranium industry, hazards B 630
organization B 630
problems B 630
organization B 630 problems B 630 Uranium metal, high-purity, preparation, molten sodium chloride-uranium
molten sodium chloride-uranium tetrachloride electrolyte RI 6624
reaction rate, with uranium tetrafluoride,
in molten fluoride solutions RI 6736
Uranium mines, underground, radiation
Uranium minerals, mineralogy IC 8396
measurements IC 8413 Uranium minerals, mineralogy IC 8396 prospecting and exploring for, methods IC 8396
Uranium ore, markets IC 8396 Uranium reserves, Chattanooga Shale, in
Uranium reserves, Chattanooga Shale, in-
vestigation RI 6932 Uranium selenides, depleted, thermoelec
tric properties RI 6638 Uranium tailings, chemical stabilization of,
method RI 7288 Uranium tellurides, depleted, thermoelec-
tric properties RI 6638
tric properties RI 6638 Uranium tetrafluoride alkali fluoride molten
systems, density and molar volume RI 6836 Urbanization, effect on mineral aggregate
industry IC 8318, 8320
Urethane foam, use, in mines OP 61-67
application techniques RI 6837
fire hazard RI 6837; OP 61-67
health hazard OP 61-67
limitations RI 6837 safety recommendations RI 6837
Uruguay, mineral industry, an-
nual review MY 1968 (v. IV)

Utah, beryllium-bearing pegmatites, recon-
naissance IC 8298 beryllium deposits, investigation RI 6828
Castlegate field coal notential carboniza-
coal. analyses B 643: RI 6622, 6792.
6904, 6948, 6990, 7104, 7219
coal, analyses B 643; RI 6622, 6792, 6904, 6948, 6990, 7104, 7219 coking properties RI 6948 oxygen in, direct determination, meth-
00 NI 0100
major ash constituents RI 7240 phosphorus content RI 6579
potassium content RI 6579 potential carbonization yields RI 6990
sodium content RI 6990
sulfur content, forms IC 8301
coal ash, analyses RI 7240
fusibility data RI 7240 coal blends, coking properties RI 6948 coal carbonization, light oil from, analysis B 643
coal carbonization, light oil from, analysis B 643 light oil vield B 643
light oil yield B 643 tar from, analysis B 643
tar yield B 643 coal, reserves BPA 1–65
coal resources, steam-electric power-gen-
eration plant utilization potential IC 8326 Coalville field, coal, potential carboniza-
tion yield RI 6990 Crawford Mountains district, phosphate
Crawford Mountains district, phosphate
rock, resources RI 6934 crude oil, production RI 7059
sulfur content RI 7059 Emery field, coal, potential carbonization
vield RL 6990
Geneva coal, coking properties RI 6948
ferrous scrap industry, survey IC 8344 Geneva coal, coking properties RI 6948 germanium, in willemite, occurrence OP 59-67
Grand neid, coal, potential carbonization
yield RI 6990 Green River oil shale, technology, de-
velopments OP 132-68 Harmony coalfield, steam-electric plant utilization potential IC 8326
utilization potential IC 8326 heavy crude oil, production forecast IC 8352
resource IC 8352
heavy crude-oil reservoirs, survey IC 8263 helium-bearing natural gases, analyses_ IC 8302
High Uintas primitive area, mineral ap-
praisal GS 3-67 Huntington field, coal, potential carboni-
zation yield RI 6990 Kaiparowits coalfield, steam-electric plant
utilization potential IC 8326
Kaiparowits Plateau field, coal, potential carbonization yield RI 6990
Kanab coalfield, steam-electric plant utili-
zation potential IC 8326 Kolob coalfield, steam-electric plant utili-
Kolob Plateau field, coal, potential car- bonization yield RI 6990 mercury, production, 1881-1961 IC 8252 mercury mines; description IC 8252
bonization yield RI 6990
mercury, production, 1881-1961 IC 8252 mercury mines; description IC 8252
mercury occurrences IC 8252
mercury prospects IC 8252 mines, visitors' guide SP 2-67
mercury prospects IC 8252 mines, visitors' guide SP 2-67 minerals, production, annual data MY 1968 (v. I-II, III)
mineral industry, annual review
MY 1968 (v. III) Mount Pleasant field, coal, potential car- bonization yield RI 6990 natural gas, analysesIC 8241, 8316, 8356, 8395 occupational diseases, workmen's compen- sation laws on B 623 oil reservoirs, production-rate data IC 8362 well-depth data IC 8362 will-depth data IC 8362 will-depth data IC 8362 will-depth data IC 8362 will-depth data IC 8362 M 12
bonization yield RI 6990 natural gas, analysesIC 8241, 8316, 8356, 8395
occupational diseases, workmen's compen-
sation laws on B 623 oil reservoirs, production-rate data IC 8362
well-depth data IC 8362
oilfields, shallow M 12 petroleum-impregnated rocks, surface and
shallow M 12

Utah, phosphate resources, potential RI 6934 Provo-Orem area, auto wrecking and
scrap processing industries SP 1-67
silver, potential resources OP 22-69
Sunnyside coal, coking properties RI 6948
Sunnyside field, coal, potential carboniza-
tion yield
titanium mineral deposits, survey IC 8290
Uinta Mountains district, phosphate rock,
resources RI 6934
Vernal field, coal, potential carbonization
yields RI 6990
Wasatch Range district, phosphate rock,
resources RI 6934 water resources, steam-electric plant
water resources, steam-electric plant
utilization, potential IC 8326
Winterquarter-Spring Canyon field, coal,
potential carbonization yield RI 6990
Utility electricity, supply and demand IC 8402
V
Vacuum melting, gases evolved during,

Vacuum melting, gases evolved during, residual gas analysis of ______ RI 7293 Valence force field, alkanethiols ______ OP 69-69 dithiaalkanes ______ OP 142-69 dithiaalkanes ______ OP 69-69 dithiaalkanes ______ OP 69-69 thiophene OP 143-69 Van der Waals fluid, in two-phase region, thermodynamic properties, tabulation thermodynamic properties, at critical RI 6950 point ______ OP 4-66 Vanadate, ferrous, heat of formation _____ RI 6618 Vanadinite, magnetic susceptibility___IC 8360, 8383 Vanadium, addition to columbium-base alloys, effect ______ RI 6988 annual data _____ MY 1968 (v. I-II) RI 6988 consumption corrosion properties, chemical and gal-___ B 630 electron-beam purification of, carbon additions, effect ______ RI 7014 metallic additions, effect _____ RI 7014 nitrogen content ______ RI 7014 electrorefined, boron additions to, effect on mechanical properties ______ RI 7113 boron-carbon additions to, effect on response to heat treatment _____ RI 7113 boron in, strain-aging effect _____ RI 7222 carbon in, strain-aging effect interstitial impurities in, correlation ... RI 7222 with yield behavior _____ RI 6716 low-temperature mechanical proper-ties, effects of interstitial im-purities of a statement of the statemen purities on _____ OP 92-69 mechanical properties, effect of intermechanical properties, effect of inter-stitial impurities on ______ RI 6637 nitrogen in, strain-aging effect ______ RI 7222 oxygen in, strain-aging effect ______ RI 7222 tensile properties, effect of carbon on _ RI 6716 effect of nitrogen on ______ RI 6716 twinning in, effects of interstitial im-purities on ______ OP 92-69 prorts _____ B 630 exports _____ B 630 grades B 630 grades B 630 high-purity, metallothermic reduction of vanadium trichloride RI 7145 preparation, by molten-salt electro-refining OP 137-65 two-cycle molten-salt electrorefin-inc OP 24-68 ing ____ ---using molten sodium bromide-potas-sium bromide-vanadium dibromide RI 6631 electrolyte in coal ash, spectrochemical determination _____ RI 7281

Vanadium, in petroleum fractions, plasma arc determination, method ____ OP 46-66 interstitial impurities in, interaction of molybdenum additions with ____ RI 7262 interaction of titanium additions with RI 7262 palladium deposits on, from aqueous elec-trolyte ______ B 630 production ______ B 630 recovery, from vanadium scrap, molten-salt electrorefining method ______ RI 7036 reserves ______ B 630 В 630 reserves _____. stress-corrosion cracking, in organic and inorganic acids ______ RI 6680 in inorganic salt solutions _____ RI 6680 technology _____ B 630 thermodynamic properties _____ RI 6727 Uses B 630 Vanadium alloys, corrosion properties, chemical and galvanic RI 6715 molybdenum additions to, effect RI 7262 properties RI 6929 titanium additions to, effect RI 7262 Vanadium bromides thermodynamic prop-Vanadium bromides, thermodynamic prop-_ RI 6727 erties Vanadium carbides, thermodynamic properties _____ RI 6727 Vanadium-carbon alloys, properties _____ RI 6628 Vanadium-carbon phase diagram _____ RI 6628 Vanadium chlorides, thermodynamic prop-_____ **RI 6727** erties _____ RI 6727 Vanadium-chromium alloys, fabrication ___ RI 6929 properties Vanadium-chromium-tungsten alloys, fabri-___ RI 6929 cation _____ RI 6929 properties _____ RI 6929 Vanadium compounds, thermodynamic properties ______ RI 6727 Vanadium dichloride-potassium chloridelithium chloride electrolyte, vana-_ RI 7036 dium from Vanadium fluorides, thermodynamic prop-Vanadium industry, organization ______ B 630 problems ______ B 630 Vanadium industry, organization ______ B 630 Vanadium iodides, thermodynamic proper-_____ B 630 ties Vanadium metal, electrorefining in molten bromide electrolyte RI 6727 _____ RI 6631 purification, by electron-beam melting RI 7145 Vanadium minerals, magnetic susceptibility, determination _____ IC B360 Vanadium nitr de, thermodynamic properties ______ RI 6727 Vanadium-nitrogen alloys, properties _____ RI 6727 Vanadium oxide, production, from calcium vanadate precipitate, methods ____ RI 7058 thermodynamic properties thermodynamic properties _____ RI 6727 Vanadium-oxygen alloys, properties _____ RI 6637 Vanadium scrap, molten-salt electrorefining Vanadium-tantalum alloys, properties _____ RI 7036 Vanadium-tantalum alloys, properties _____ RI 6964 Vanadium trichloride, heat of formation___ RI 7096 preparation _____ RI 7145 Vanadium-tungsten alloys, fabrication ____ RI 6929 RI 7036 properties Vapors, combustible, flammability char-_____ RI 6929 acteristics ______ OP 170-68 flammability limits _____ B 627 hydrocarbon fuel-air, hot-gas ignition temperature _____ RI 6857 Vapor-air mixtures, upper flammability limits, effect of temperature ___ OP 75-67 Vapor deposition, boron, by hydrogen re-duction of boron trichloride _____ RI 7150

E

E

ĺ

I

E) E

Ł

L

ē

Vapor deposition, rhenium, by thermochemical
reduction of hexafluoride, method RI 6915
tungsten-molybdenum alloys, by hydro- gen reduction of hexafluorides RI 6853
Vapor-liquid equilibria data, equations for
calculating RI 7076 Vapor plating, tungsten, process, materials
Vapor plating, tungsten, process, materials
and method RI 6731 Vapor pressure, carbon dioxide, at ice point RI 6791
low and intermediate range, measuring,
gage for OP 36-65 measuring, modified Knudsen effusion ap
measuring, modified Knudsen effusion ap-
organic nitrogen compounds OP 165-68
paratus for RI 6849 organic nitrogen compounds OP 165-68 silver, measuring, torsion-effusion ap-
paratus RI 6682 Vapor pressure detector, for liquid elu-
Vapor pressure detector, for liquid elu-
tion chromatography, descrip- tion OP 123-68
Vonce and in fuel tenks deverability
vapor space, in fuel tanks, nammability, during fuel loading OP 56-67 Vapor spectra, infrared, techniques B 632 ultraviolet, techniques B 632 Variances, calculating, new method RI 6900 Vor boobing Low method
Vapor spectra, infrared, techniques B 632
Variances calculating now method PI 6000
Vacicacinne, iuw-erade conner nre, describ=
tion IC 8341
tion IC 8341 Vegetable oil, conjugation, by decompo-
sition of iron tricarbonyl com-
plex, with carbon monoxide OP 10-67 hydroformylation of fatty alcohols
hydroformylation of, fatty alcohols from OP 56-69
fatty aldehydes from OP 56-69 Vehicle, battery-powered, operating char
Vehicle, battery-powered, operating char-
acteristics RI 6918
description RI 6918 Vehicle emissions, effect of fuel composi-
tion on OP 63-69 Velocity, acoustic, oil-reservoir rock OP 82-65
Velocity, acoustic, oil-reservoir rock OP 82-65 longitudinal, in rock, correlations of
variations in OP 172-69
variations in OP 172-69 Venango First sand, Pa., core samples, den-
variations in OP 172-69 Venango First sand, Pa., core samples, den-
variations in OP 172-69 Venango First sand, Pa., core samples, den-
variations in OP 172-69 Venango First sand, Pa., core samples, den-
variations in OP 172-69 Venango First sand, Pa., core samples, den-
variations in OP 172-69 Venango First sand, Pa., core samples, den-
variations in OP 172-69 Venango First sand, Pa., core samples, den-
variations in OP 172-69 Venango First sand, Pa., core samples, den- sity and porosity data IC 8330 Venango Second sand, Pa., core samples, density and porosity data IC 8330 Venango Third sand, Pa., core samples, density and porosity data IC 8330 steam injection pilot tests IC 8330 steam injection pilot tests OP 21-69 Venezuela, crude oil, production RI 7059 sulfur content RI 7059
variations in OP 172-69 Venango First sand, Pa., core samples, den- sity and porosity data IC 8330 Venango Second sand, Pa., core samples, density and porosity data IC 8330 Venango Third sand, Pa., core samples, density and porosity data IC 8330 steam injection pilot tests IC 8330 steam injection pilot tests OP 21-69 Venezuela, crude oil, production RI 7059 sulfur content RI 7059
variations in OP 172-69 Venango First sand, Pa., core samples, den- sity and porosity data IC 8330 Venango Second sand, Pa., core samples, density and porosity data IC 8330 Venango Third sand, Pa., core samples, density and porosity data IC 8330 steam injection pilot tests OP 21-69 Venezuela, crude oil, production RI 7059 sulfur content RI 7059 mineral industry, annual re- view MY 1968 (v. IV) Ventana primitive area, Calif., mineral
variations in OP 172-69 Venango First sand, Pa., core samples, den- sity and porosity data IC 8330 Venango Second sand, Pa., core samples, density and porosity data IC 8330 Venango Third sand, Pa., core samples, density and porosity data IC 8330 steam injection pilot tests OP 21-69 Venezuela, crude oil, production RI 7059 sulfur content RI 7059 mineral industry, annual re- view MY 1968 (v. IV) Ventana primitive area, Calif., mineral appraisal GS 11-67
variations in OP 172-69 Venango First sand, Pa., core samples, den- sity and porosity data IC 8330 Venango Second sand, Pa., core samples, density and porosity data IC 8330 Venango Third sand, Pa., core samples, density and porosity data IC 8330 steam injection pilot tests IC 8330 steam injection pilot tests OP 21-69 Venezuela, crude oil, production RI 7059 sulfur content RI 7059 mineral industry, annual re- view MY 1968 (v. IV) Ventana primitive area, Calif., mineral appraisal GS 11-67 Ventilation, coal-mine, with bleeder-entry system, effect of barometric fluctu-
variations in OP 172-69 Venango First sand, Pa., core samples, den- sity and porosity data IC 8330 Venango Second sand, Pa., core samples, density and porosity data IC 8330 Venango Third sand, Pa., core samples, density and porosity data IC 8330 steam injection pilot tests IC 8330 steam injection pilot tests OP 21-69 Venezuela, crude oil, production RI 7059 sulfur content RI 7059 mineral industry, annual re- view MY 1968 (v. IV) Ventana primitive area, Calif., mineral appraisal GS 11-67 Ventilation, coal-mine, with bleeder-entry system, effect of barometric fluctu-
variations in OP 172-69 Venango First sand, Pa., core samples, den- sity and porosity data IC 8330 Venango Second sand, Pa., core samples, density and porosity data IC 8330 Venango Third sand, Pa., core samples, density and porosity data IC 8330 steam injection pilot tests OP 21-69 Venezuela, crude oil, production RI 7059 sulfur content RI 7059 mineral industry, annual re- view MY 1968 (v. IV) Ventana primitive area, Calif., mineral appraisal GS 11-67 Ventilation, coal-mine, with bleeder-entry system, effect of barometric fluctu- ations on RI 6786 control of respirable mine dust by, studies TPR 19
variations in OP 172-69 Venango First sand, Pa., core samples, den- sity and porosity data IC 8330 Venango Second sand, Pa., core samples, density and porosity data IC 8330 Venango Third sand, Pa., core samples, density and porosity data IC 8330 steam injection pilot tests IT 7059 sulfur content RI 7059 mineral industry, annual re- view MY 1968 (v. IV) Ventana primitive area, Calif., mineral appraisal GS 11-67 Ventilation, coal-mine, with bleeder-entry system, effect of barometric fluctu- ations on RI 6786 control of respirable mine dust by, studies TPR 19 face, improving, construction methods
variations in OP 172-69 Venango First sand, Pa., core samples, den- sity and porosity data IC 8330 Venango Second sand, Pa., core samples, density and porosity data IC 8330 Venango Third sand, Pa., core samples, density and porosity data IC 8330 steam injection pilot tests OP 21-69 Venezuela, crude oil, production RI 7059 sulfur content RI 7059 mineral industry, annual re- view MY 1968 (v. IV) Ventana primitive area, Calif., mineral appraisal GS 11-67 Ventilation, coal-mine, with bleeder-entry system, effect of barometric fluctu- ations on RI 6786 control of respirable mine dust by, studies TPR 19 face, improving, construction methods for stoppings and overcasts OP 120-66 in underground bituminous coal mines,
variations in OP 172-69 Venango First sand, Pa., core samples, den- sity and porosity data IC 8330 Venango Second sand, Pa., core samples, density and porosity data IC 8330 Venango Third sand, Pa., core samples, density and porosity data IC 8330 steam injection pilot tests OP 21-69 Venezuela, crude oil, production RI 7059 sulfur content RI 7059 mineral industry, annual re- view MY 1968 (v. IV) Ventana primitive area, Calif., mineral appraisal GS 11-67 Ventilation, coal-mine, with bleeder-entry system, effect of barometric fluctu- ations on RI 6786 control of respirable mine dust by, studies TPR 19 face, improving, construction methods for stoppings and overcasts OP 120-66 in underground bituminous coal mines, iute line-brattice systems. per-
variations in OP 172-69 Venango First sand, Pa., core samples, den- sity and porosity data IC 8330 Venango Second sand, Pa., core samples, density and porosity data IC 8330 Venango Third sand, Pa., core samples, density and porosity data IC 8330 steam injection pilot tests OP 21-69 Venezuela, crude oil, production RI 7059 sulfur content RI 7059 mineral industry, annual re- view MY 1968 (v. IV) Ventana primitive area, Calif., mineral appraisal GS 11-67 Ventilation, coal-mine, with bleeder-entry system, effect of barometric fluctu- ations on RI 6786 control of respirable mine dust by, studies TPR 19 face, improving, construction methods for stoppings and overcasts OP 120-66 in underground bituminous coal mines, iute line-brattice systems. per-
variations in OP 172-69 Venango First sand, Pa., core samples, den- sity and porosity data IC 8330 Venango Second sand, Pa., core samples, density and porosity data IC 8330 Venango Third sand, Pa., core samples, density and porosity data IC 8330 steam injection pilot tests OP 21-69 Venezuela, crude oil, production RI 7059 sulfur content MY 1968 (v. IV) Ventana primitive area, Calif., mineral appraisal GS 11-67 Ventilation, coal-mine, with bleeder-entry system, effect of barometric fluctu- ations on RI 6786 control of respirable mine dust by, studies TPR 19 face, improving, construction methods for stoppings and overcasts OP 120-66 in underground bituminous coal mines, jute line-brattice systems, per- formance tests RI 6725 in underground coal mines, efficiency, study RI 7223
variations in OP 172-69 Venango First sand, Pa., core samples, den- sity and porosity data IC 8330 Venango Second sand, Pa., core samples, density and porosity data IC 8330 Venango Third sand, Pa., core samples, density and porosity data IC 8330 steam injection pilot tests OP 21-69 Venezuela, crude oil, production RI 7059 sulfur content MY 1968 (v. IV) Ventana primitive area, Calif., mineral appraisal GS 11-67 Ventilation, coal-mine, with bleeder-entry system, effect of barometric fluctu- ations on RI 6786 control of respirable mine dust by, studies TPR 19 face, improving, construction methods for stoppings and overcasts OP 120-66 in underground bituminous coal mines, jute line-brattice systems, per- formance tests RI 6725 in underground coal mines, efficiency, study RI 7223 line brattice method, efficiency, tests OP 50-67
variations in OP 172-69 Venango First sand, Pa., core samples, den- sity and porosity data IC 8330 Venango Second sand, Pa., core samples, density and porosity data IC 8330 Venango Third sand, Pa., core samples, density and porosity data IC 8330 steam injection pilot tests OP 21-69 Venezuela, crude oil, production RI 7059 sulfur content RI 7059 mineral industry, annual re- view MY 1968 (v. IV) Ventana primitive area, Calif., mineral appraisal GS 11-67 Ventilation, coal-mine, with bleeder-entry system, effect of barometric fluctu- ations on RI 6786 control of respirable mine dust by, studies TPR 19 face, improving, construction methods for stoppings and overcasts OP 120-66 in underground bituminous coal mines, jute line-brattice systems, per- formance tests RI 6725 in underground coal mines, efficiency, study RI 7223 line brattice method, efficiency, tests OP 50-67 in shaft-sinking operations, safety recom-
variations in OP 172-69 Venango First sand, Pa., core samples, den- sity and porosity data IC 8330 Venango Second sand, Pa., core samples, density and porosity data IC 8330 Venango Third sand, Pa., core samples, density and porosity data IC 8330 steam injection pilot tests OP 21-69 Venezuela, crude oil, production RI 7059 sulfur content RI 7059 mineral industry, annual re- view MY 1968 (v. IV) Ventana primitive area, Calif., mineral appraisal GS 11-67 Ventilation, coal-mine, with bleeder-entry system, effect of barometric fluctu- ations on RI 6786 control of respirable mine dust by, studies TPR 19 face, improving, construction methods for stoppings and overcasts OP 120-66 in underground bituminous coal mines, jute line-brattice systems, per- formance tests RI 6725 in underground coal mines, efficiency, study RI 7223 line brattice method, efficiency, tests OP 50-67 in shaft-sinking operations, safety recom- mendations IC 8365
variations in OP 172-69 Venango First sand, Pa., core samples, den- sity and porosity data IC 8330 Venango Second sand, Pa., core samples, density and porosity data IC 8330 Venango Third sand, Pa., core samples, density and porosity data IC 8330 steam injection pilot tests OP 21-69 Venezuela, crude oil, production RI 7059 sulfur content MY 1968 (v. IV) Ventana primitive area, Calif., mineral appraisal GS 11-67 Ventilation, coal-mine, with bleeder-entry system, effect of barometric fluctu- ations on RI 6786 control of respirable mine dust by, studies TPR 19 face, improving, construction methods for stoppings and overcasts OP 120-66 in underground bituminous coal mines, jute line-brattice systems, per- formance tests RI 6725 in underground coal mines, efficiency, study RI 7223 line brattice method, efficiency, tests OP 50-67 in shaft-sinking operations, safety recom- mendations IC 8365 in tunneling, recommended safety rules B 644
variations in OP 172-69 Venango First sand, Pa., core samples, den- sity and porosity data IC 8330 Venango Second sand, Pa., core samples, density and porosity data IC 8330 Venango Third sand, Pa., core samples, density and porosity data IC 8330 steam injection pilot tests OP 21-69 Venezuela, crude oil, production RI 7059 sulfur content RI 7059 mineral industry, annual re- view MY 1968 (v. IV) Ventana primitive area, Calif., mineral appraisal GS 11-67 Ventilation, coal-mine, with bleeder-entry system, effect of barometric fluctu- ations on RI 6786 control of respirable mine dust by, studies TPR 19 face, improving, construction methods for stoppings and overcasts OP 120-66 in underground bituminous coal mines, jute line-brattice systems, per- formance tests RI 6725 in underground coal mines, efficiency, study RI 7223 line brattice method, efficiency, tests OP 50-67 in shaft-sinking operations, safety recom- mendations IC 8365 in tunneling, recommended safety rules B 644 longwall gob areas, vertical boreholes for assisting TPR 13
variations in OP 172-69 Venango First sand, Pa., core samples, den- sity and porosity data IC 8330 Venango Second sand, Pa., core samples, density and porosity data IC 8330 Venango Third sand, Pa., core samples, density and porosity data IC 8330 steam injection pilot tests OP 21-69 Venezuela, crude oil, production RI 7059 sulfur content MY 1968 (v. IV) Ventana primitive area, Calif., mineral appraisal GS 11-67 Ventilation, coal-mine, with bleeder-entry system, effect of barometric fluctu- ations on RI 6786 control of respirable mine dust by, studies TPR 19 face, improving, construction methods for stoppings and overcasts OP 120-66 in underground bituminous coal mines, jute line-brattice systems, per- formance tests RI 6725 in underground coal mines, efficiency, tests OP 50-67 in shaft-sinking operations, safety rules B 644 longwall gob areas, vertical boreholes for assisting TPR 13 mine beeder entries. effect during
variations in OP 172-69 Venango First sand, Pa., core samples, den- sity and porosity data IC 8330 Venango Second sand, Pa., core samples, density and porosity data IC 8330 Venango Third sand, Pa., core samples, density and porosity data IC 8330 steam injection pilot tests OP 21-69 Venezuela, crude oil, production RI 7059 sulfur content MY 1968 (v. IV) Ventana primitive area, Calif., mineral appraisal GS 11-67 Ventilation, coal-mine, with bleeder-entry system, effect of barometric fluctu- ations on RI 6786 control of respirable mine dust by, studies TPR 19 face, improving, construction methods for stoppings and overcasts OP 120-66 in underground bituminous coal mines, jute line-brattice systems, per- formance tests RI 6725 in underground coal mines, efficiency, tests OP 50-67 in shaft-sinking operations, safety recom- mendations IC 8365 in tunneling, recommended safety rules B 644 longwall gob areas, vertical boreholes for assisting TPR 13 mine, bleeder entries, effect, during atmospheric pressure changes_ OP 111-68
variations in OP 172-69 Venango First sand, Pa., core samples, den- sity and porosity data IC 8330 Venango Second sand, Pa., core samples, density and porosity data IC 8330 Venango Third sand, Pa., core samples, density and porosity data IC 8330 steam injection pilot tests OP 21-69 Venezuela, crude oil, production RI 7059 sulfur content MY 1968 (v. IV) Ventana primitive area, Calif., mineral appraisal GS 11-67 Ventilation, coal-mine, with bleeder-entry system, effect of barometric fluctu- ations on RI 6786 control of respirable mine dust by, studies TPR 19 face, improving, construction methods for stoppings and overcasts OP 120-66 in underground bituminous coal mines, jute line-brattice systems, per- formance tests RI 6725 in underground coal mines, efficiency, tests OP 50-67 in shaft-sinking operations, safety recom- mendations IC 8365 in tunneling, recommended safety rules B 644 longwall gob areas, vertical boreholes for assisting TPR 13 mine, bleeder entries, effect, during atmospheric pressure changes_ OP 111-68
variations in OP 172-69 Venango First sand, Pa., core samples, den- sity and porosity data IC 8330 Venango Second sand, Pa., core samples, density and porosity data IC 8330 Venango Third sand, Pa., core samples, density and porosity data IC 8330 steam injection pilot tests OP 21-69 Venezuela, crude oil, production RI 7059 sulfur content MY 1968 (v. IV) Ventana primitive area, Calif., mineral appraisal GS 11-67 Ventilation, coal-mine, with bleeder-entry system, effect of barometric fluctu- ations on RI 6786 control of respirable mine dust by, studies TPR 19 face, improving, construction methods for stoppings and overcasts OP 120-66 in underground bituminous coal mines, jute line-brattice systems, per- formance tests RI 6725 in underground coal mines, efficiency, study RI 7223 line brattice method, efficiency, tests OP 50-67 in shaft-sinking operations, safety recom- mendations IC 8365 in tunneling, recommended safety rules B 644 longwall gob areas, vertical boreholes for assisting TPR 13 mine, bleeder entries, effect, during atmospheric pressure changes_ OP 111-68 tunnel, effective, calculating RI 7074 Ventilation research, discussion OF 53-66 Ventilation structures, in mines, mate-
<pre>variations in OP 172-69 Venango First sand, Pa., core samples, den- sity and porosity data IC 8330 Venango Second sand, Pa., core samples, density and porosity data IC 8330 venango Third sand, Pa., core samples, density and porosity data IC 8330 steam injection pilot tests OP 21-69 Venezuela, crude oil, production RI 7059 sulfur content RI 7059 mineral industry, annual re- view MY 1968 (v. IV) Ventana primitive area, Calif., mineral appraisal GS 11-67 Ventilation, coal-mine, with bleeder-entry system, effect of barometric fluctu- ations on RI 6786 control of respirable mine dust by, studies TPR 19 face, improving, construction methods for stoppings and overcasts OP 120-66 in underground bituminous coal mines, jute line-brattice systems, per- formance tests RI 6725 in underground coal mines, efficiency, tests OP 50-67 in shaft-sinking operations, safety recom- mendations IC 8365 in tunneling, recommended safety rules B 644 longwall gob areas, vertical boreholes for assisting TPR 13 mine, bleeder entries, effect, during atmospheric pressure changes. OP 111-68 tunnel, effective, calculating RI 7074 Ventilation research, discussion OF 53-66 Ventilation structures, in mines, mate- rials for, evaluation OF 101-67</pre>
variations in OP 172-69 Venango First sand, Pa., core samples, den- sity and porosity data IC 8330 Venango Second sand, Pa., core samples, density and porosity data IC 8330 Venango Third sand, Pa., core samples, density and porosity data IC 8330 steam injection pilot tests OP 21-69 Venezuela, crude oil, production RI 7059 sulfur content RI 7059 mineral industry, annual re- view MY 1968 (v. IV) Ventana primitive area, Calif., mineral appraisal GS 11-67 Ventilation, coal-mine, with bleeder-entry system, effect of barometric fluctu- ations on RI 6786 control of respirable mine dust by, studies TPR 19 face, improving, construction methods for stoppings and overcasts OP 120-66 in underground bituminous coal mines, jute line-brattice systems, per- formance tests RI 6725 in underground coal mines, efficiency, study RI 6725 in underground coal mines, efficiency, study RI 7223 line brattice method, efficiency, tests OP 50-67 in shaft-sinking operations, safety recom- mendations IC 8365 in tunneling, recommended safety rules B 644 longwall gob areas, vertical boreholes for assisting TPR 13 mine, bleeder entries, effect, during atmospheric pressure changes. OP 111-68 tunnel, effective, calculating RI 7074 Ventilation research, discussion OP 53-66 Ventilation structures, in mines, mate- rials for, evaluation OP 101-67 Ventilation systems, bleeder, in coal mines,
<pre>variations in OP 172-69 Venango First sand, Pa., core samples, den- sity and porosity data IC 8330 Venango Second sand, Pa., core samples, density and porosity data IC 8330 venango Third sand, Pa., core samples, density and porosity data IC 8330 steam injection pilot tests OP 21-69 Venezuela, crude oil, production RI 7059 sulfur content RI 7059 mineral industry, annual re- view MY 1968 (v. IV) Ventana primitive area, Calif., mineral appraisal GS 11-67 Ventilation, coal-mine, with bleeder-entry system, effect of barometric fluctu- ations on RI 6786 control of respirable mine dust by, studies TPR 19 face, improving, construction methods for stoppings and overcasts OP 120-66 in underground bituminous coal mines, jute line-brattice systems, per- formance tests RI 6725 in underground coal mines, efficiency, tests OP 50-67 in shaft-sinking operations, safety recom- mendations IC 8365 in tunneling, recommended safety rules B 644 longwall gob areas, vertical boreholes for assisting TPR 13 mine, bleeder entries, effect, during atmospheric pressure changes. OP 111-68 tunnel, effective, calculating RI 7074 Ventilation research, discussion OF 53-66 Ventilation structures, in mines, mate- rials for, evaluation OF 101-67</pre>

1

Ventilation systems, mine face, friction and shock losses, determination RI 7085
Ventilation tubing, flexible, for coal mine face ventilations systems, friction
shock losses RI 7085
Vermiculite, annual data MY 1968 (v. I-II)
consumption B 630
prices B 630
production B 630
reserves B 630
uses B 630
losses RI 7085 shock losses RI 7085 Vermiculite, annual data MY 1968 (v. I-II) consumption B 630 prices B 630 production B 630 reserves B 630 technology B 630 vermiculite industry, organization B 630 problems B 630 Vermont, mines, visitors' guide SP 2-67 minerals, production, annual data RI 7085
Vermont, mines, visitors' guide SP 2-67
minerals, production, annual data MY 1968 (v. I-II, III) mineral industry, annual review MY 1968 (v. III)
mineral industry, annual review MY 1968 (v. III)
Vernal field, Utah, coal, potential carbon- ization yield RI 6990 Vibrations, blasting, damage criteria, recommendations OP 121-66 safe level, measuring, method OP 132-66
Vibrations blasting demage criteria
recommendations
safe level, measuring, method OP 132-66 quarry-blasting, effect of explosive charge
weight on RI 6774
weight on RI 6774 Vibration-damping capacity, manganese-cop- per alloys B 624
Vibration-damping properties, magnesium,
effect of crystal orientation RI 6642 Vibration levels, transmission, across pre-
split fracture plane, tests RI 6695 Vibrators, use, in compaction of mine hy-
draulic backfills RI 6922
draulic backfills RI 6922 Vietnam, North, mineral indus- try, annual review MY 1968 (v. IV)
nual review MY 1968 (v IV)
Virgin Islands, mineral industry, annual review MY 1968 (v. III)
occupational diseases, workmen's compen- sation laws on B 623
Virginia, Appalachian area, mineral re-
sources GS 4-68 mineral resources potential GS 4-68 Buchanan County, coal, preparation char-
acteristics RI 6740 Clinton hematitic sandstone deposits, study RI 6966 coal, analyses B 643: RI 6622, 6792,
study RI 6966
coal, analyses B 643; RI 6622, 6792,
6904, 7104, 7219 chlorine content oxygen in, direct determination, method RI 6753
oxygen in, direct determination, method RI 6753
phosphorus content RI 6579 potassium content RI 6579
sodium content RI 6579
sulfur content forms IC 8301
coal ash, analyses RI 7240
fusibility data RI 7240
sulfur content, forms
light oil yield B 643 tar from, analysis B 643
tar vield B 643
tar yield B 643 eastern counties, clays, analyses VNR 1-67 hematitic sandstone deposits, study RI 6966 ilmenite deposits, survey IC 8290 iron ore resources, low-grade RI 6966 minas visitors' guide
hematitic sandstone deposits, study RI 6966
timenite deposits, survey IC 8290
mines, visitors' guide SP 2-67
minerals, production, annual data
MY 1968 (v. I-II, III) mineral industry, annual review
MY 1968 (v. III) natural gas, analyses
Norfolk-Portsmouth area, auto wrecking and scrap processing industries _ SP 1-67
occupational diseases, workmen's compen- sation laws on
sation laws on B 623

393

.

Virginia, Pocahontas No. 3 bed, methane
absorption-desorption study RI 6750
southwestern counties, clay, analyses VNR shale, analyses VNR titanium mineral deposits, survey IC 8290
shale, analyses VNR
Virial coefficients, estimating, from experi-
mental data, polynomial method,
reliability IC 8437
reliability IC 8437 Viscosimeter, capillary-tube, nonuniformity of bore, correction for RI 6979
of bore, correction for RI 6979
coiled-capillary, absolute viscosity de-
terminations OP 91-68 steady-state laminar-flow boundary
conditions for RI 6995
gas, physical parameters, determination.
methods RI 6949 Viscosity, gases, at high temperature, esti
mating, nomograph for OP 163-67
computing, in capillary-tube gas vis-
cosimeter OP 185-69 Viscosity-control agents, in drilling fluid,
Viscosity-control agents, in drilling fluid,
leonardite and leonardite products RI 7043 Visual aids, effectiveness, in safety-train-
ing courses OP 54-66 Vitrains, coal, infrared spectra, effect of
Vitrains, coal, infrared spectra, effect of
associated water on OP 116-68 X-ray scattering intensities B 648 electrochemical reduction of RI 7017 electrochemically reduced, structure RI 7017
electrochemical reduction of RI 7017
electrochemically reduced, structure RI 7017
alactron irradiated electron naramag.
electron spin resonance study OP 147-68 electron spin resonance OP 148-68 lithium-ethylenediamine reduction of B 615
electron spin resonance
low-volatile bituminous coal, electro-
chemical - reduction product, study OP 131-66
study OP 131-66
pyridine extracts from, mass spectro-
metric analysis OP 141-68 thin-section, visible spectra OP 51-65 Vitrinite, in coal, absorption and refraction
Vitrinite, in coal, absorption and refraction
indexesB 641
reflectance determination B 641
X-ray scattering intensities B 648 optical properties, determination, re-
flectance technique OP 97-65
flectance technique OP 97-65 Volatile matter, in coal, determination, meth- od B 638
od B 638 Volborthite, magnetic susceptibility IC 8360
Volume determination, closed containers,
Volume determination, closed containers, method OP 1-68
Vortex cone, for continuous prerenning of
hot metal, tests RI 6686
Vortex magnetohydrodynamic generator, open-cycle, design
w
Wanamia mine Da anthrasita properties DI 7096
Wanamie mine, Pa., anthracite, properties RI 7086 washing characteristics RI 6989 Washing approach No. 1 RI 6989
Washaki basin sarabala Na 1 sara

washing characteristics RI 0505
Washaki basin corehole No. 1, core
assays OFR 13-69
core lithology OFR 13-69
Washer slimes, phosphate rock, disposal,
pond settling method, cost esti-
mates IC 8404
Washery refuse, crushed, use, in dewater-
ing coal flotation tailing RI 7110
Washing characteristics, coal
RI 6665, 6707, 7004, 7174
Pa RI 7174
Washington, beryllium resources, investiga-
tion RI 7148
coal, analyses B 643; RI 6622, 6792
major ash constituents RI 7240
phosphorus content RI 6579
potassium content RI 6579
sodium content RI 6579
sulfur content, forms IC 8301
coal ash, analyses RI 7240
fusibility data RI 7240
-

.

Washington, coal carbonization, light oil from, analysis B 643
tar from, analysis B 643 tar yield B 643 coal reserves BPA 1-65 Copalis National Wildlife Refuge, min- eral annraisal GS 1-68
Copalis National Wildlife Refuge, min-
Electric Decke National Wildlife Defuge
mercury, production, 1916-61 IC 8252
mercury mines, description 10 8252 mercury occurrences IC 8252
mineral appraisal GS 1-68 mercury, production, 1916-61 IC 8252 mercury mines, description IC 8252 mercury occurrences IC 8252 mines, visitors' guide SP 2-67 minerals, production, annual data MY 1968 (v. I-II, III)
mineral industry, annual review
mineral transportation costs IC 8381 occupational diseases, workmen's compen- sation laws on B 623 Quillayute Needles National Wildlife Refuse mineral companying
sation laws on B 623 Quillavute Needles National Wildlife
Refuge, mineral appraisal GS 1-68 Roslyn-Cle Elum field, coal, analyses RI 6623
float-and-sink tests RI 6623 grindability tests RI 6623
coal ash, analyses RI 6623 Roslyn No. 5 bed, coal, hydraulic pitch
mining RI 6685
mining RI 6685 solid wastes, coal-mine, disposal methods IC 8430 titanium mineral deposits, survey IC 8290
Zircon resources 10 8268 Washington County, Pa., coal, carbonizing
properties RI 7131 Wasson crude oil, alkyl arvl sulfides in,
thiaindans in identification OP 137-66
thienothiophenes in, identification RI 6795 Wasson crude-oil distillate, cyclic sulfides
in, identification OP 139-65
Wasson crude oil fractions, separation, gel permeation chromatographic
techniques OP 77-69 Wastes, combustible, cylindrical incinerator
combustible radioactive incinerating.
problems OP 141-69 incineration of, bibliography OP 8-67 radioactive, uranium tailings pile, chem-
ICAL Stabilization of KI (200
solid, municipal incinerator residues, com-
position RI 7204 phosphate slimes, disposal, cost esti- mates IC 8404
solid mineral, rehabilitating, new ap- proaches OP 14-69
wood, entrainment drying and carboniza-
tion, tests RI 7282 Waste disposal, by incineration, princi-
Waste disposal, by incineration, princi- ples OP 104-69 Waste ore dumps, copper-mine, leaching
solutions, uranium recovery from OP 48-68 Waste solutions, mineral processing, alu- mina extraction from, solvent
extraction method OP 118-68 Water, connate, in sandstone, immobility OP 137-67
fresh, petroleum-refinery intake, Calif IC 8270
from petroleum-bearing formations, chemistry OP 46-68
grades
spectra OP 116-68 mine, limestone neutralization process for RI 7191 mineral industry requirements,
present use $IC 8285 8288$
projected use IC 8285, 8288 petroleum and natural gas industry re- quirements present use IC 8284
quirements, present use IC 8284 projected use IC 8284 prices B 630

-

.

.

, . .

Water, requirements and uses, Mont IC 8305 reserves B 630
secondary, sources B 630
technology B 630 turbid, chemical coagulation of, fly ash
turbid, chemical coagulation of, fly ash
use in RI 6869 mineral industry uses IC 8276; OP 43-67 waste, organic-contaminant removal
waste, organic-contaminant removal
from, with activated carbon ad-
sorbent RI 6884 with coal adsorbent RI 6884
with fly ash adsorbent RI 6884
removal of refractory organic con- taminants from OP 75-65
taminants from OP 75-65 Water-anthracite mixtures, mechanical sep-
aration of, method RI 7012 Water clarification, fly ash as chemical
Water coning, in oil wells, overcoming, treat-
ment and operation method, patent P 9-68 Water conservation B 630
petroleum refineries IC 8270
petroleum refineries IC 8270 Water-drive reservoir, efficiency of gas dis-
placement from, laboratory inves- tigations BL 6735
tigations RI 6735 Water flow, in reservoirs, tracing, materials
for OP 15-66, 16-66 Water-gas shift reaction, in ozonizer dis-
charge, effect OP 138-69
charge, effect OP 138-69 Water injection, secondary recovery of oil
Water-injection well, selective plugging
of, field tests OP 38-66 in secondary recovery, field study RI 6733 Water pump, coal-fired, exploratory study RI 6858
Water pump, coal-fired, exploratory study RI 6858
water requirements, mineral industry.
N. Mex. IC 8276 Wyo IC 8328
national B 630 Water resources, Government programs B 630
DTODIETDS B 630
Water seepage, irrigation canals, reducing,
Water seepage, irrigation canals, reducing, chemical methods, tests RI 6584 Water sensitivity, oil reservoir, laboratory
and neid tests RI 7052
factant method OP 204-67
factant method OP 204-67 treatment OP 102-65 mechanism of, description OP 112-65 removal, alcohol-surfactant method,
removal, alcohol-surfactant method.
field tests OP 112-66 foam method, field tests OP 30-66
method, field tests RI 6688
laboratory tests RI 6688
Waterflood, five-spot, three-phase flow, pre- dicting, computer techniques for_ RI 7011
Kane oilfield, predicted and field per-
formance OP 124-66 low-permeability sandstone oil reservoir,
results RI 7161 Ludlow oilfield, performance predic- tion OP 154-67
tion OP 154-67
peripheral, performance, factors af- fecting, evaluation OP 17-69
fecting, evaluation OP 17-69 pilot, field performance OP 37-65
secondary recovery by, theoretical and field performance RI 6917
Waterflood performance, predicting,
quick graphical method OP 137-68 Waterflood projects, Neb RI 7056
flow behavior in, tracer selection for
tracer selection for rules OP 16 66
tracer selection for, rules selection for for to-out
OP 15-66, 16-66 tracer selection for, rules OP 16-66 Waterflooding, calculating performance, DE CECO
feasibility study RI 7032
Waterflooding, calculating performance, computer techniques for RI 6760 feasibility study RI 7032 optimum gas saturation in, calculating, method OP 143-68

1

۶ż

by _____ RI 6683, 6943, 7049

Waterflooding, sea-water use in, effect RI 6658 water-injection profile changes, by selecwater-injection profile changes, by selec-tive plugging, field study _____ RI 6733 water-injection wells, selective plugging, effects _____ OP 38-66 Waterflow, in mines, research program___ OP 30-67 in mine backfill, factors influencing, study RI 7034 Waterglass, use, in copper embrittlement thermal treatment ____ RI 7218 Wax beads, fly ash removal with, fluid-OFR 17-68 ized-bed method _____ OI Waynesburg bed, Pa., coal, carbonizing properties RI 7131 Weather, effect on sound transmission, ex-Weather, effect on sound transmission, ex-plosive shots ______ RI 6921 Webster County, W. Va., coal, carbonizing properties ______ RI 7236 preparation characteristics _____ RI 6825 West Kentucky coalfields, surface mine Webster No. 2 mine, W. Va., coal, washing characteristics Weight-percent to atomic percent con-version, slide rule for _____ O Weir sand, W. Va., core samples, density and porosity data OP 79-69 _____ RI 6825 OFR 4-68 _ IC 8330 Weld County, Colo., coal industry in, anal-_____ RI 6726 ysis ___ Welding, in shaft-sinking operations, recwell log analyses, Flat Lake oilfield ... OP 144-68 Wellbores, enlarging, chemical methods, laboratory and field tests OP 35-68 Wellmore Coal Corp. mine, Va., coal, wash-ing characteristics ______ RI 6740 West coast, petroleum-coke industry _____ IC 8259 zircon resources West Lebanon experimental mine, Pa., bi-IC 8268 tuminous coal, hydraulic mining RI 7090 tests ____ West Texas, crude oil, production _______ sulfur content RI 7059 ___ RI 7059 West Virginia, Alma bed, coal, carbonizing properties ______RI 6615, 6899 Appalachian area, mineral resources ____ GS 4-68 mineral resources potential _____ __ GS 4-68 oil-producing formations, rotary coring operations ______ RI 7238; OFR 3-69 oil reservoirs, gas drive, predicted recovery ______ RI 7049 investigations _____ OP 111-65, 162-65, **RI 7049** 123-66, 189-67 waterflooding, feasibility study _____ RI 7032 predicted recovery _____ RI 7049 Barbour County, coal, preparation characteristics _____ RI 6707 Beckley bed, coal, carbonizing properties RI 6615 Berea sand, core samples, density and porosity data Berea Stray sand, core samples, density IC 8330 and porosity data _____ IC 8330 Bergoo No. 1 mine, coal, washing characteristics Bergoo No. 3 mine, coal, washing char-RI 6825 acteristics ______ RI 6825 Big Eagle bed, coal, carbonizing char-acterisitcs ______ RI 6872 Big Injun sand, core analyses _____ RI 7032 core samples, density and porosity data IC 8330 Big Lime sand, core samples, density and porosity data Bonds Creek oilfield, secondary-recovery IC 8330 methods Buffalo Creek bed, coal, carbonizing propmethods RI 6798 erties _ RI 6899 Cedar Grove bed, coal, carbonizing properties ___. _ RI 6899 Chilton bed, coal, carbonizing properties RI 6615, 6899 Clarion bed, coal, washing characteristics RI 7216

West Virginia, Clay County, coal, preparation
west virginia, Clay County, coal, preparation characteristics
coal. analyses B 643 RI 6622 6792
6904, 7104, 7219
chlorine content Ri 6579 major ash constituents RI 7240 oxygen in, determination, method RI 6753
major asn constituents RI 7240
phosphorus content RI 6579
potassium content RI 6579
scdium content RI 6579
sulfur content, forms IC 8301 coal ash, analyses RI 7240
fusibility data
coal carbonization, light oil from, analysis B 643
light oil yield B 643 tar from, analysis B 643
tar yield B 643
tar yield B 643 Coalburg bed, coal, carbonizing charac- teristics RI 6872, 6899
teristics RI 6872, 6899
washing characteristics RI 7216 Cogar & Avis No. 1 mine, coal, washing
characteristics RI 6825 Consolidation Coal Co., Arkwright mine,
Consolidation Coal Co., Arkwright mine,
coal, gasification tests RI 6721 Cow Run sand, core samples, density and
porosity data IC 8330
porosity data IC 8330 Crichton No. 5 mine, coal, washing char-
acteristics RI 6825
crude oil, production RI 7059 sulfur content RI 7059
Douglas bed, coal, carbonizing properties RI 6615
Douglas bed, coal, carbonizing properties RI 6615 Eagle bed, coal, carbonizing properties
RI 6615, 6872, 6899
Fayette County, coal, carbonizing prop- erties RI 6872
preparation characteristics RI 6665
Fire Creek bed, coal, carbonizing proper-
ties RI 6615, 6872
washing characteristics RI 6825 First Cow Run sand, core samples, den-
sity and porosity data IC 8330
Fourth sand, core samples, density and
Given Run No. 1 mine, coal, washing characteristics RI 6825
characteristics RI 6825
Gordon sand, core analyses RI 7032 core samples, density and porosity data IC 8330
Gordon Stray sand, core analyses RI 7032
core samples density and porosity data IC 9330
Greenbrier County, coal, carbonizing properties RI 6872 Greenbrier Group, lithologies_OP 122-66, 105-67 petrography OP 122-66 reservoirs OP 122-66
Greenbrier Group lithologies OP 122,66, 105,67
petrography OP 122-66
reservoirs OP 122-66
Greenbrier Limestone, composition IC 8369
Greenbrier Limestone, composition IC 8369 potential physical and chemical uses IC 8369 underground mining, cost estimates IC 8369
underground mining methods IC 8369 heavy crude-oil reservoirs, survey IC 8263
heavy crude-oil reservoirs, survey IC 8263
Hurst No. 7 mine, coal, washing charac- teristics RI 6825
Iager bed, coal, washing characteristics RI 6825 Johnny Gun No. 1 mine, coal, washing
Johnny Gun No. 1 mine, coal, washing
characteristics RI 6825 Keener sand, core samples, density and
porosity data IC 8330
Kessler Peerless No. 5 mine, coal, wash-
ing characteristics RI 6825 Klee mine, coal, washing characteristics RI 6825
limestone, consumption IC 8369
markets IC 8369
Lower Cedar Grove bed, coal, carbonizing
properties RI 6899 Lower Eagle bed, coal, carbonizing prop-
erties RI 6872
Lower Kitanning bed, coal, washing char-
acteristics RI 6825, 7216 Loyalhanna sand, core samples, density
and porosity data IC 8330

1

.

West Virginia, Mary No. 1 mine, coal, wash-
ing characteristics RI 6825
ing characteristics RI 6825 mines, visitors' guide SP 2-67 minerals, production, annual data
MI 1968 (V. 1-11, 111) mineral industry, annual review
MY 1968 (v. III) Monongalia County, changes in coal
production, social and economic
effects OFR 26-69 natural gas, analysesIC 8241, 8316, 8356, 8395
Nicholas County, coal, carponizing prop-
erties RI 7236 No. 2 Gas bed, coal, carbonizing proper- ties RI 6615 6899
ties RI 6615, 6899 No. 5 Block bed, coal, carbonizing prop-
erties RI 6899 occupational diseases, workmen's compen- sation laws on B 623
oilfields, shallow M 12
oilfields, shallow M 12 Payne No. 3 mine, coal, washing charac- teristics RI 6825
Peerless bed, coal, washing character-
Pittsburgh bed, coal, methane absorption-
desorption study RI 6750
washing characteristics RI 7216 Pocahontas No. 3 bed, coal, carbonizing
properties RI 6615 Pocahontas No. 4 bed, coal, carbonizing
properties RI 6615 Pocahontas No. 6 bed, coal, carbonizing
Powellton bed, coal, carbonizing proper-
Powellton bed, coal, carbonizing proper- ties RI 6615, 6872 Randolph County, coal, carbonizing prop-
Randolph County, coal, carbonizing prop- erties RI 7236
preparation characteristics RI 6874 Redstone bed, coal, washing character-
istics RI 7216 Second Cow Run sand, core samples,
density and porosity data IC 8330 Sewell bed, coal, carbonizing properties
DI 2215 6979
washing characteristics RI 6825 Smithfield oilfield, waterflooding, feasi- bility study RI 7032 Squaw sand, core samples, density and
bility study RI 7032
porosity data IC 8330
porosity data IC 8330 Stockton bed, coal, carbonizing properties RI 6899
Sycamore-Millstone oilfield, secondary- recovery potential RI 7049
recovery potential RI 7049 Upper Kitanning bed, coal, washing char- acteristics RI 7216
Upshur County, coal, preparation char- acteristics RI 7004
Webster County, coal, carbonizing prop-
erties RI 7236 preparation characteristics RI 6825
Webster No. 2 mine, coal, washing char-
acteristics RI 6825 Weir sand, core samples, density and po-
rosity data IC 8330 western, limestone resources IC 8369
Winifrede bed, coal, carbonizing proper- ties RI 6615, 6899
West Virginia Mine Safety Association.
description OP 161-65 Westvaco trona mine, Wyo., stress distri-
bution RI 6675 Wettability, crude oil-brine-rock systems, detormination method
determination, method OP 41-68 Wetting agents, effect on drilling effi-
ciency OP 183-69

Ţ

I

E

l

1 100

Whitneyite, magnetic susceptibility IC 8383
Wichita Mountains National Wildlife Ref-
uge. Okla., Charons Garden Unit.
mineral appraisal GS 6-68 Wilderness Act, primitive areas, mineral
Wilderness Act, primitive areas, mineral
appraisal GS 1-66 through 6-66, 8-68
provisions and application, discussion OP 140-67
wildlife refuges mineral appraisal GS 5-67
through GS 9-67 1-68 through 7 68 0 69
through 13-68, 1-69 through 13-69
through 13-68, 1-69 through 13-69 Wilkinson mine, W. Va., coal, preparation
Characteristics KI 68/4
Willemite, germanium occurrence in OP 59-67
magnetic susceptibility IC 8383
Williston basin, carbonate reservoirs,
Williston basin, carbonate reservoirs, heterogeneous, log and core
analysis results, comparison OP 144-68
crude oils, processing characteristics _ RI 7183
geology B 629 Montana oilfields B 629 N. Dak., nitrogen gas reserves RI 6848
Montana oilfields B 629
N. Dak., nitrogen gas reserves RI 6848
North Dakota oliheids B 629
South Dakota oilfield B 629
Williston basin oilfields, drilling and comple-
tion practices B 629
tion practices B 629 exploration and development B 629 production problems and practices B 629 Wilmorton brings analysis
production problems and practices B 629
Wilmington brines, analysis RI 6658
Wilmington crude oil, cyclic sulfides in,
identification OP 89–66
Wilmington brines, analysis RI 6658 Wilmington crude oil, cyclic sulfides in, identification OP 89-66 Wind rate, high-pressure experimental
blast furnace OP 13-67 Winifrede bed, W. Va., coal, carbonizing properties RI 6615, 6899, 7236
Winifrede bed, W. Va., coal, carbonizing
properties RI 6615, 6899, 7236
washing characteristics RI 6665
Winterquarter-Spring Canyon field, Utah,
coal, potential carbonization yield RI 6990
Wire, drawing, novel gripping device for, method, patent P 4-69 Wire size, effect, in negative electrical dis-
method, patent P 4-69
Wire size, effect, in negative electrical dis-
charge at high temperature OP 68-69
Wisconsin, ferrous scrap industry, survey IC 8342
glacial lake clays pellet binder uses
Gogebic range, iron ore, metallurgical evaluation RI 6895 Gravel Island National Wildlife Refuge,
Gogebic range, iron ore, metallurgical
evaluation RI 6895
Gravel Island National Wildlife Refuge,
Green Bay National Wildlife Refuge,
mineral appraisal GS 5-68 mines, visitors' guide SP 2-67
mines, visitors guide SP 2-67
mines, visitors' guide SP 2-67 minerals, production, annual data MY 1968 (v. I-II, III)
MY 1968 (V. 1-11, 111)
mineral industry, annual review
MY 1968 (v. III)
occupational diseases, workmen's compen-
Sation laws on B 623
occupational diseases, workmen's compen- sation laws on B 623 Wolfeite, magnetic susceptibility IC 8359 Wolframite, magnetic susceptibilityIC 8359, 8360
wollramite, magnetic susceptibility_10 8359, 8360
tungstic oxide extraction from, two-phase
molten halide-silicate technique RI 7106
Wolframite concentrate, scandium recovery
from, technique RI 6580
Wolframite-scheelite concentrate, tungsten
Wolframite-scheelite concentrate, tungsten extraction from, chlorination meth-
Wolframite-scheelite concentrate, tungsten extraction from, chlorination meth- ods RI 6612 Wollastonite, annual data MY 1968 (v. I-II) chemical-industry use, in California IC 8244 glass-crystal transformation, heat of RI 6784
Wolframite-scheelite concentrate, tungsten extraction from, chlorination meth- ods RI 6612 Wollastonite, annual data MY 1968 (v. I-II) chemical-industry use, in California IC 8244 glass-crystal transformation, heat of RI 6784 Wood, as fuel, properties and calorific
Wolframite-scheelite concentrate, tungsten extraction from, chlorination meth- ods
Wolframite-scheelite concentrate, tungsten extraction from, chlorination meth- ods RI 6612 Wollastonite, annual data MY 1968 (v. I-II) chemical-industry use, in California IC 8244 glass-crystal transformation, heat of RI 6784 Wood, as fuel, properties and calorific value OP 158-67 Wood waste, entrainment drying and car-
Wolframite-scheelite concentrate, tungsten extraction from, chlorination meth- ods
Wolframite-scheelite concentrate, tungsten extraction from, chlorination meth- ods
Wolframite-scheelite concentrate, tungsten extraction from, chlorination meth- ods
Wolframite-scheelite concentrate, tungsten extraction from, chlorination meth- ods RI 6612 Wollastonite, annual data MY 1968 (v. I-II) chemical-industry use, in California IC 8244 glass-crystal transformation, heat of RI 6784 Wood, as fuel, properties and calorific value OP 158-67 Wood waste, entrainment drying and car- bonization, tests RI 7282 Workmen's compensation, occupational dis- eases, laws, by States B 623 World economy, minerals in MY 1968 (v. IV)
Wolframite-scheelite concentrate, tungsten extraction from, chlorination meth- ods RI 6612 Wollastonite, annual data MY 1968 (v. I-II) chemical-industry use, in California IC 8244 glass-crystal transformation, heat of RI 6784 Wood, as fuel, properties and calorific value OP 158-67 Wood waste, entrainment drying and car- bonization, tests RI 7282 Workmen's compensation, occupational dis- eases, laws, by States B 623 World economy, minerals in MY 1968 (v. IV) Wulfenite, magnetic susceptibilityIC 8360, 8383
Wolframite-scheelite concentrate, tungsten extraction from, chlorination meth- ods
Wolframite-scheelite concentrate, tungsten extraction from, chlorination meth- ods
Wolframite-scheelite concentrate, tungsten extraction from, chlorination meth- ods

.

-

1

1 1 1

Wustite, high-temperature reduction of,
with carbon monoxide, kinetics RI 6712, 6832
with hydrogen-nitrogen mixture, ki- netics RI 6712
netics RI 6712 reduction, activation-energy variations, investigation RI 6699
investigation RI 6699 in carbon monoxide, effect of alkali and alkaline earth metals on OP 5-68
wyoming, Beckwith Hills district, phos-
phate rock, resources RI 6934 beryllium-bearing pegmatites, reconnais-
cement industry, water requirements IC 8298
sance IC 8298 cement industry, water requirements IC 8298 coal, analyses IE 643; RI 6622, 6792, 6904, 7104, 7219 major ash constituents IE 7240 oxygen in, direct determination, meth-
major ash constituents RI 7240 oxygen in, direct determination, meth-
phosphorus content BI 6579
phosphorus content RI 6579 sodium content RI 6579 sulfur content IC 8301 coal ash, analyses RI 7240 fusibility data RI 7240 coal carbonization, light oil from, analysis B 643
sulfur content forms IC 8301
coal ash, analyses RI 7240
fusibility data RI 7240
light oil yield B 643 tar from, analysis B 643
tar from, analysis B 643
tar yield
crude oil, production RI 7059
sulfur content RI 7059 ferrous scrap industry, survey IC 8344 Gebo field, reservoir-oil analyses OFR 4-67
Gebo field, reservoir-oil analyses OFR 4-67
Green River Formation oil shale, lith-
Green River Formation oil shale, lith-
ology RI 7172 Green River oil shale, explosive-frac-
curing experiment OP 122-67
technology, development OP 132-68 Green River oil-shale formation, data OP 133-65 heavy crude oil, production forecast IC 8352
Green River oil-shale formation, data OP 133-65
resource IC 8352
resource IC 8352 thermal projects IC 8352
heavy crude-oil reservoirs, survey IC 8263 helium-bearing natural gases, analyses IC 8302
ilmenite deposits, survey IC 8290 iron and steel industry, potential, survey IC 8315 iron-ore deposits, investigation IC 8316 iron-ore industry, water requirements IC 8328
iron and steel industry, potential, survey IC 8315 iron-ore deposits, investigation IC 8315
iron-ore industry, water requirements IC 8328
irrightion water requirements IC 8315
mercury occurrences IC 8252
mines, visitors' guide SP 2-67
mercury occurrences IC 8252 mines, visitors' guide SP 2-67 minerals, production, annual data MY 1968 (v. I-II, III) mineral industry, annual review
MY 1968 (v. III)
mineral industry, water requirements IC 8328 miscellaneous mineral production, water
requirements IC 8328 natural gas, analysesIC 8241, 8316, 8356, 8395
natural gas processing, water require-
ments IC 8328 oil reservoirs, production-rate data IC 8362 well-depth data IC 8362
oil shale, experimental in situ retorting TPR 16
oilfields shallow M 12
petroleum and natural gas production, water requirements IC 8328
petroleum-impregnated rocks, surface and
petroleum refining, water requirements IC 8328
petroleum refining, water requirements IC 8328 phosphate resources, economic potential RI 6934 phosphate rock deposits, investigation RI 6934
phosphate rock industry, water require-
phosphate rock industry, water require- ments IC 8328 public water supplies IC 8328

.

.

Wyoming, Salt River Range district,
phosphate rock, resources RI 6934
sand and gravel industry, water require-
Snake River Range district phosphate
rock, resources RI 6934
sodium carbonate industry, water re-
rock, resources RI 6934 sodium carbonate industry, water re- quirements IC 8328 steam-electric powerplants, water re-
steam-electric powerplants, water re-
quirements IC 8328 Stratified primitive area, mineral ap
Stratined primitive area, mineral ap-
praisal GS 5-66 Sublette Range district, phosphate rock,
Subjecte Mange district, phosphate rock,
resources RI 6934 taconite, beneficiation, tests IC 8315
Tatman Formation, oil shales, analysis OP 96-69
ratinan ronnation, on shales, analysis OF 90-09
stratigraphy OF 90-09
Termon Mountain woold appendice 134h
stratigraphy OP 96-69 Tatman Mountain, rock samples, lith-
ology OP 96-69
ology OP 96-69 titanium mineral deposits, survey IC 8290
ology OP 96-69 titanium mineral deposits, survey IC 8290 uranium industry, water reouirements IC 8328
ology OP 96-69 titanium mineral deposits, survey IC 8290 uranium industry, water reouirements IC 8328
ology OP 96-69 titanium mineral deposits, survey IC 8290 uranium industry, water requirements_ IC 8328 water, cost IC 8328 water potential IC 8328
ology OP 96-69 titanium mineral deposits, survey IC 8290 uranium industry, water requirements_ IC 8328 water, cost IC 8328 water potential IC 8328 Westvaco trona mine, stress distribution RI 6675
ology OP 96-69 titanium mineral deposits, survey IC 8290 uranium industry, water requirements IC 8328 water, cost IC 8328 water potential IC 8328 Westvaco trona mine, stress distribution RI 6675 Wind River Range district, phosphate
ology OP 96-69 titanium mineral deposits, survey IC 8290 uranium industry, water requirements IC 8328 water, cost IC 8328 water potential IC 8328 Westvaco trona mine, stress distribution RI 6675 Wind River Range district, phosphate
ology OP 96-69 titanium mineral deposits, survey IC 8290 uranium industry, water requirements IC 8328 water, cost IC 8328 water potential IC 8328 Westvaco trona mine, stress distribution RI 6675 Wind River Range district, phosphate rock, resources RI 6934 Wyoming corehole No. 1 oil yields OP 38-69
ology OP 96-69 titanium mineral deposits, survey IC 8290 uranium industry, water requirements IC 8328 water, cost IC 8328 water potential IC 8328 Westvaco trona mine, stress distribution RI 6675 Wind River Range district, phosphate rock, resources RI 6934 Wyoming corehole No. 1 oil yields OP 38-69 Wyoming basin, Northern anthracite field,
ology OP 96-69 titanium mineral deposits, survey IC 8290 uranium industry, water requirements IC 8328 water, cost IC 8328 water potential IC 8328 Westvaco trona mine, stress distribution RI 6675 Wind River Range district, phosphate rock, resources RI 6934 Wyoming corehole No. 1 oil yields OP 38-69 Wyoming basin, Northern anthracite field, Pa., mine maps. microfilmed, cata-
ology OP 96-69 titanium mineral deposits, survey IC 8290 uranium industry, water requirements IC 8328 water, cost IC 8328 water potential IC 8328 Westvaco trona mine, stress distribution RI 6675 Wind River Range district, phosphate rock, resources RI 6934 Wyoming corehole No. 1 oil yields OP 38-69 Wyoming basin, Northern anthracite field, Pa., mine maps. microfilmed, cata-
ology OP 96-69 titanium mineral deposits, survey IC 8290 uranium industry, water requirements IC 8328 water, cost IC 8328 water potential IC 8328 Westvaco trona mine, stress distribution RI 6675 Wind River Range district, phosphate rock, resources RI 6934 Wyoming corehole No. 1 oil yields OP 38-69 Wyoming basin, Northern anthracite field, Pa., mine maps, microfilmed, cata- log IC 8379 Wyoming Corehole No. 1, borehole logs RI 7172
ology OP 96-69 titanium mineral deposits, survey IC 8290 uranium industry, water requirements IC 8328 water, cost IC 8328 water potential IC 8328 Westvaco trona mine, stress distribution RI 6675 Wind River Range district, phosphate rock, resources RI 6934 Wyoming corehole No. 1 oil yields OP 38-69 Wyoming basin, Northern anthracite field, Pa., mine maps, microfilmed, cata- log IC 8379 Wyoming Corehole No. 1, borehole logs RI 7172 in situ shale oil production, potential OP 38-69
ology OP 96-69 titanium mineral deposits, survey IC 8290 uranium industry, water requirements IC 8328 water, cost IC 8328 water potential IC 8328 Westvaco trona mine, stress distribution RI 6675 Wind River Range district, phosphate rock, resources RI 6934 Wyoming corehole No. 1 oil yields OP 38-69 Wyoming basin, Northern anthracite field, Pa., mine maps, microfilmed, cata- log IC 8379 Wyoming Corehole No. 1, borehole logs RI 7172

whoming conner .	v. va., coal, carbonizing		
properties		RI	6615
p			

x

X-ray absorption and emission, literature
survey OP 100-66 X-ray analysis, energy-dispersion, using
X-ray analysis, energy-dispersion, using
radioactive sources, evaluation OP 31-68
X-ray analytical methods, automatic UP 29-66
X-ray analyzers, isotopic, for low-grade sil-
ver ores, laboratory study TPR 6 portable, applications OP 31-68
X-ray ash meter, ash content of coal, con-
tinuous determination RI 7107
continuous-recording, evaluation RI 7101
X-ray detectors, in isotopic analyzers,
eas proportional type, evalua-
tion OP 134-67
scintillation type evaluation OP 134-67
semiconductor type, evaluation OP 134-67
semiconductor type, evaluation OP 134-67 pulse amplitude shifts, measurement OP 14-66 X-ray diffraction, alicyclic molecules, study B 620
X-ray diffraction, alicyclic molecules, study B 620
aromatic molecules, study B 620
rare-earth sesquioxides RI 6616
tetrahedral structures, study B 620
aromatic molecules, study B 620 rare-earth sesquioxides RI 6616 tetrahedral structures, study B 620 X-ray diffraction data, discrete aver B 620
A-FAV diffraction data discrete aver-
A-FAV diffraction data discrete aver-
X-ray diffraction data, discrete aver- aging, multichannel analyzer method OP 150-69 X-ray diffraction profiles, correction, for
X-ray diffraction data, discrete aver- aging, multichannel analyzer method OP 150-69 X-ray diffraction profiles, correction, for instrumental broadening in
X-ray diffraction data, discrete aver- aging, multichannel analyzer method OP 150-69 X-ray diffraction profiles, correction, for instrumental broadening in
 X-ray diffraction data, discrete aver- aging, multichannel analyzer method OP 150-69 X-ray diffraction profiles, correction, for instrumental broadening in transmission geometry, method OP 32-69 X-ray fluorescent analysis, impurities in
 X-ray diffraction data, discrete aver- aging, multichannel analyzer method OP 150-69 X-ray diffraction profiles, correction, for instrumental broadening in transmission geometry, method OP 32-69 X-ray fluorescent analysis, impurities in beryllium and beryllium oxide OP 195-68 mineral matter in coal
 X-ray diffraction data, discrete aver- aging, multichannel analyzer method OP 150-69 X-ray diffraction profiles, correction, for instrumental broadening in transmission geometry, method OP 32-69 X-ray fluorescent analysis, impurities in beryllium and beryllium oxide OP 195-68 mineral matter in coal OP 112-68
 X-ray diffraction data, discrete aver- aging, multichannel analyzer method OP 150-69 X-ray diffraction profiles, correction, for instrumental broadening in transmission geometry, method OP 32-69 X-ray fluorescent analysis, impurities in beryllium and beryllium oxide OP 195-68 mineral matter in coal RI 7124 sulfur in coal OP 112-68 X-ray scattering intensities, carbonaceous
 X-ray diffraction data, discrete aver- aging, multichannel analyzer method OP 150-69 X-ray diffraction profiles, correction, for instrumental broadening in transmission geometry, method OP 32-69 X-ray fluorescent analysis, impurities in beryllium and beryllium oxide OP 195-68 mineral matter in coal RI 7124 sulfur in coal OP 112-68 X-ray scattering intensities, carbonaceous materials B 648
 X-ray diffraction data, discrete aver- aging, multichannel analyzer method OP 150-69 X-ray diffraction profiles, correction, for instrumental broadening in transmission geometry, method OP 32-69 X-ray fluorescent analysis, impurities in beryllium and beryllium oxide OP 195-68 mineral matter in coal RI 7124 sulfur in coal OP 112-68 X-ray scattering intensities, carbonaceous materials B 648 coals B 648
 X-ray diffraction data, discrete aver- aging, multichannel analyzer method OP 150-69 X-ray diffraction profiles, correction, for instrumental broadening in transmission geometry, method OP 32-69 X-ray fluorescent analysis, impurities in beryllium and beryllium oxide OP 195-68 mineral matter in coal OP 112-68 X-ray scattering intensities, carbonaceous materials B 648 coals coals B 648
 X-ray diffraction data, discrete aver- aging, multichannel analyzer methodOP 150-69 X-ray diffraction profiles, correction, for instrumental broadening in transmission geometry, method OP 32-69 X-ray fluorescent analysis, impurities in beryllium and beryllium oxideOP 195-68 mineral matter in coalRI 7124 sulfur in coalRI 712-68 X-ray scattering intensities, carbonaceous materialsB 648 coalsB 648 paracrystalline substances, correction ofOP 175-67
 X-ray diffraction data, discrete aver- aging, multichannel analyzer method OP 150-69 X-ray diffraction profiles, correction, for instrumental broadening in transmission geometry, method OP 32-69 X-ray fluorescent analysis, impurities in beryllium and beryllium oxide OP 195-68 mineral matter in coal RI 7124 sulfur in coal OP 112-68 X-ray scattering intensities, carbonaceous materials B 648 paracrystalline substances, correction of OP 175-67 X-ray spectra, long-wavelength, fluores-
 X-ray diffraction data, discrete aver- aging, multichannel analyzer method OP 150-69 X-ray diffraction profiles, correction, for instrumental broadening in transmission geometry, method OP 32-69 X-ray fluorescent analysis, impurities in beryllium and beryllium oxide OP 195-68 mineral matter in coal RI 7124 sulfur in coal OP 112-68 X-ray scattering intensities, carbonaceous materials B 648 paracrystalline substances, correction of OP 175-67 X-ray spectra, long-wavelength, fluores- cent excitation of, study OP 53-67
 X-ray diffraction data, discrete averaging, multichannel analyzer methodOP 150-69 X-ray diffraction profiles, correction, for instrumental broadening in transmission geometry, method OP 32-69 X-ray fluorescent analysis, impurities in beryllium and beryllium oxideOP 195-68 mineral matter in coalOP 112-68 X-ray scattering intensities, carbonaceous materialsB 648 coalsB 648 paracrystalline substances, correction ofOP 175-67 X-ray spectra, long-wavelength, fluorescent excitation of, studyOP 53-67 X-ray spectral lines, low-energy, primary
 X-ray diffraction data, discrete aver- aging, multichannel analyzer method OP 150-69 X-ray diffraction profiles, correction, for instrumental broadening in transmission geometry, method OP 32-69 X-ray fluorescent analysis, impurities in beryllium and beryllium oxide OP 195-68 mineral matter in coal RI 7124 sulfur in coal OP 112-68 X-ray scattering intensities, carbonaceous materials B 648 paracrystalline substances, correction of OP 175-67 X-ray spectra, long-wavelength, fluores- cent excitation of, study OP 53-67

X-ray	spectrograph	y, ion-exc	hange	resin-	<u>.</u>

X-ray spectrography, ion-exchange resin-loaded paper disks, use _____OP 18-66
 literature survey _____OP 100-66, 56-68
 spectral-line shifts, effect of ambient temperature changes, investiga-tion _____OP 90-65
 X-ray transition tables, common analyzing crystals ______IC 8400
 X-ray tube vacuum spectrograph, de-mountable for light-element analysis, design and operation___ OP 53-67
 Xanthate-galena system, infrared spectros-copy studies ______RI 6816
 Xenon, thermophysical properties ______ IC 8317

Yeasts, yields, from coal-derived substrates OP 77-66, 126-66, 202-67 Yemen, mineral industry, annual review MY 1968 (v. IV) Young mine, American Zinc Co., Tenn. Ytterbium, heat of solution ______ RI 6902 in coal ash, spectrochemical determina-RI 7281 tron-beam melting, tests _____ RI 6661 consumption ______ B 630 cross-section measurements ______ OP 20-65 electron-beam melting, tests ______ RI 6661 electrorefining, lithium chloride-yttrium chloride electrolyte ______ RI 7018 electrowinning, from oxide ______ RI 7146 in coal ash spectrochemical determinaelectrowinning, 1rom oxide in coal ash, spectrochemical determina-RI 7281 tion _____ RI 7281 in euxenite, activation analysis _____ OP 70-67 in euxenite, activation analysis _____ OP 70-67 preparation, electrodeposition-vacuum distillation method _____ OP 174-68 from alloys, vacuum distillation method RI 7308 production _____ B 630 technology _____ B 630 Vttrium alloy, vacuum distillation of yttrium from _____ RI 7308 Yttrium antimonide, thermoelectric prop-erties _____ RI 7025 _ RI 7025 erties _____ RI 7025 Yttrium - antimony - tellurium compounds, thermoelectric properties _____ RI 7025 Yttrium-arsenic-tellurium compounds, ther-moelectric properties _____ RI 7025 Yttrium arsenide, thermoelectric properties RI 7025 Yttrium fluoride-alkali fluoride molten systems, density and molar volume__ RI 6836 Yttrium fluoride-potassium fluoride system, phase diagram _____ RI 7246 Yttrium industry, organization _____ B 630 problems _____ B 630 Problems B 630 Yttrium metal, high-temperature electro-winning of, method _____ OP 47-66 solid, reaction rate, with molten lithium fluoride _____ RI 7008 Yttrium metal-lithium fluoride reaction _____

 Yttrium metal-lithium fluoride reaction rate
 RI 7008

 Yttrium-nickel alloys, high-temperature corrosion of, studies
 RI 6800

 Yttrium oxide, use, in electroslag melting of molybdenum
 OP 172-67

 Yttrium oxide compacts, fabrication, method
 OP 113-66

 Yttrium-rare earth elements, extraction and separation, with dodecyl phosphoric acid-kerosine solvent
 RI 6601

. .

7,

;

z

Zaca-Wigmore experimental road test.

-

.

1 1

3 (3

Zaca-Wigmore experimental road test,
asphalts used in, inverse gas-
liquid chromatography of OP 181-68
Zambia, mineral industry, annual review
MY 1968 (v. IV)
Zeta potential control, coal preparation
applications OP 18-68 Zinc, annual data MY 1968 (v. I-II) chemical-industry use, in California IC 8244 consumption B 630
chemical industry use in California IC 9944
chemical-industry use, in Cantornia 10 8244
consumption B 630 electrodeposited, surface structure of,
effect of solution additives on OP 148-69
grades R 620
high nurity production amalgam electro-
refining method RI 7313
spectrochemical analytical methods
grades B 630 high-purity, production, amalgam electro- refining method RI 7313 spectrochemical analytical methods comparison OP 33-68 imports and exports B 630 in coal ash, spectrochemical determina- tion RI 7251
imports and exports
in coal ash, spectrochemical determina-
tion RI 7281
tion RI 7281 in liquid aluminum-zinc alloys, activity,
determination isoniestic tech.
nique OP 153-69
iron-contaminated, refining, contrifuga-
tion method RI 6889
filtration method RI 6889
nique OP 153-69 iron-contaminated, refining, contrifuga- tion method RI 6889 filtration method RI 6889 molten, use, in reclaiming cobalt from
cemented-carbide scrap OP 149-69
cemented-carbide scrap OP 149-69 in reclaiming refractory carbides from cemented-carbide scrap OP 149-69
from cemented-carbide scrap OP 149–69
precipitation, from caustic leach solu-
tions, by carbonization RI 6576
by hydrolysis RI 6576
by sulfur addition RI_6576
precipitation, from caustic leach solu- tions, by carbonization RI 6576 by hydrolysis RI 6576 by sulfur addition RI 6576 prices B 630 production, Pacific Northwest IC 8327 recovery from caustic solutions, electro- lutical
production, Pacific Northwest IC 8327
recovery from caustic solutions, electro-
lytical RI 6576 from die-cast scrap. patent P 16-66
from die-cast scrap, patent P 10-00
reserves B 630 rolled, thermal expansion anisotropy, ef-
fort of titanium on RI 6690
fect of titanium on RI 6690 scrap, from junk automobile, amount RI 7350
scrap, from junc automobile, amount fri 1000
substitutes B 630
technology B 630
Zine alloys, semicontinuous-cast ingots for
secondary, sources B 630 substitutes B 630 technology B 630 Zinc alloys, semicontinuous-cast ingots for rolling-slab use, evaluation RI 7089
Zinc-aluminum alloys, activity of zinc in,
determination, isopiestic tech-
determination, isoplestic tech- nique OP 153-69
ticles from, separating, tech-
Zinc-base alloys, intermediate-phase par- ticles from, separating, tech- nique OP 123-69 Zinc chloride, vapor pressure RI 7022 Zinc chloride-stannous chloride system, wapor pressures RI 7022
Zinc chloride, vapor pressure RI 7022
Zinc chloride-stannous chloride system,
Zinc-copper alloys, electrodeposition, effects
Zinc-copper alloys, electrodeposition, effects
of ultrasonics in RI 0938
rolled, thermal expansion anisotropy, er-
fect of titanium on RI 6690
rolling temperatures, effect on proper-
ties OP 107-68 Zinc-copper deposit, southeastern Alas-
Zinc-copper deposit, southeastern Alas-
ka, sampling OFR 12-67
,

Zinc-copper-titanium alloy, semicontinuous-
cast ingots, for rolling slab use, study RI 7089
study RI 7089 varied extrusion temperatures, effect on RI 7220
Zinc-ferrite-magnetite pseudobinary sys- tem, spinel structure, study RI 6754
tem, spinel structure, study RI 6754
thermodynamic properties RI 6754 Zinc industry, organization B 630
problems B 630 Zinc-iron-oxygen system, thermodynamic
properties, at elevated tempera-
tures RI 6769
tures RI 6769 Zinc-iron-sulfur oxygen system, stability diagram RI 6769
Zing load sinter compley electric smelting
Zinc miners, attitudes, studying RI 6969 Zinc miners, attitudes, studying OFR 9-69 Zinc miners' wives, attitudes, studying OFR 9-69 Zinc minerals, magnetic susceptibility IC 8383 oxidized, caustic soda leaching of, ex- perimental RI 6576
Zinc miners' wives, attitudes, studying OFR 9-69
oxidized caustic soda leaching of. ex-
perimental RI 6576
Zinc ore, mining methods and practices IC 8269 oxidized, caustic-soda leaching, experi-
montal RI 6576
potential sources, evaluation IC 8325 reserves, evaluation IC 8325 silver production from IC 8266; OP 123-67
silver production fromIC 8266; OP 123-67
Zinc oxide-ferric oxide-magnetite system, thermodynamic properties, high-
temperature RI 6754 Zinc retorts, horizontal siliceous, fabrica-
Zinc retorts, horizontal siliceous, fabrica- tion RI 7215
new methods for, laboratory tests RI 7215
failure of, causes RI 7215
tory tests RI 7215
manufacture, process control, labora- tory tests RI 7215 Zinc scrap, die-cast, refining, low-cost flux methods RI 7315
Zinc spelter, recovery, from complex lead-
zinc sinter, electric-furnace sm e lt-
ing, investigation RI 6999 Zinc sulfate, anhydrous, entropy RI 6669 heat of formation RI 6617
heat of formation RI 6617
low-temperature heat capacity RI 6669 Zinc sulfide, entropy RI 6708
high-temperature heat content RI 6708
Zinc sulfide-potassium ethyl xanthate re- action products, infrared study OP 187–67
Zincite, magnetic susceptibility IC 8383
Zinkenite, magnetic susceptibility IC 8383
Zincite, magnetic susceptibility IC 8383 Zinkenite, magnetic susceptibility IC 8383 Zircon, consumption IC 8268 hafnium-enriched feed solutions from,
DEODUCTION RI DAUZ
magnetic susceptibility IC 8268
imports and exports IC 8268 magnetic susceptibility IC 8360 mining and milling methods IC 8268
production, domestic IC 8268 refractory uses IC 8268 resources OFR 3-68 Zircon deposits, sampling methods IC 8268 Zircon resources, domestic IC 8268
resources OFR 3-68
Zircon resources, domestic IC 8268
ZIFCONIA, QIE, IOF NIPR-ENERV-FALE EX-
trusion of refractories
rence, study OP 53-65 single-crystal whiskers, from fused-salt
Daths, growth RI 000(
properties RI 6667
Zirconium, additions to columbium-base alloys, effect RI 6988 annual data MY 1968 (v. I-II)
annual data MY 1968 (v. I-II)
arc-cast, ultrasonic testing techniques B 646 consumable-electrode arc melting of B 646
consumable-electrode arc melting of B 646 consumable-electrode vacuum arc melt-
ing, neat nux during R1 7035 consumption B 630
ing, heat flux during RI 7035 consumption B 630 grades B 630 imports and exports B 630
imports and exports B 630
_

.

Zirconium, in coal ash, spectrochemical
determination RI 7281
liquid, vapor pressure RI 7063
nonconsumable-electrode vacuum arc
melting of, heat flux during RI 7035
palladium deposits on, from aqueous elec-
trolyte RI 7016
prices B 630
production B 630
reserves B 630
substitutes B 630
technology B 630
uses B 630
vacuum-induction melting of, in water- cooled crucibles OP 39-67
Zirconium alloys, production, consumable-
electrode arc-melting process B 646
Zirconium boride-aluminum oxide joins.

- electrode arc-melting process _____ B 646 Zirconium boride-aluminum oxide joins, vacuum-hot-press method _____ RI 7225 Zirconium carbide, hyperstoichiometric, electrical resistivity, at elevated temperatures _____ RI 7289 Zirconium carbide-aluminum oxide joins, vacuum-hot-press method _____ RI 7225 Zirconium carbide fibers, preparation meth-od, patent _____ P 5-68

:

Zirconium carbide-zirconium boride joins, vacuum-hot-press method RI 7225 Zirconium carbide-zirconium nitride joins,
vacuum-hot-press method RI 7225 Zirconium-columbium alloys, properties RI 6964
Zirconium dioxide, monoclinic to tetragonal transformation, mechanism RI_6619
Zirconium industry, organization B 630 problems B 630 Zirconium-magnesium alloy system, liquidus
determination BI 6673
Zirconium metal, ductile, production IC 8268 exports IC 8268
prices IC 8268 Zirconium minerals, magnetic susceptibility IC 8360 Zirconium nitride-aluminum oxide joins,
vacum-hot-press method RI 7225 Zirconium nitride-zirconium boride joins,
vacuum-hot-press method RI 7225 Zirconjum oxide-calcium oxide system.
cubic field, determination OFR 6-67 Zirconium oxide-magnesium oxide system,
phase relations OP 82-67
Zirconium-tantalum alloys, properties RI 6964 Zone melting, organic compounds, induc-

tion heating technique _____ OP 108-68

.

 Aase, J. H.
 RI 7055

 and Leonhard, G. E.
 RI 7206; OP 102-68

 Abel, W. T.; Bailey, D. M., Salgado, P. G.,
 and

 and
 P 1-67

Abel, w. 1.; Balley, D. H., Salgado, F. G., and _____ P 1-67 _____ Bluman, D. E., and O'Leary, J. P. OP 1-65 _____ Spencer, J. D., and Balley, D. M.___ OP 2-65 Abernetby, R. F., and Gibson, F. H. _____ RI 6753, 7054, 7184 _____ Gibson, F. H., and Frederic, W. H. RI 6579 _____ Peterson, M. J., and Gibson, F. H. ____ RI 7240, 7281

7281

and Walters, J. G. __OP 3-65, 40-67, 103-69 am, B. M. _____ IC 8417* Abraham, B. M. Abraham, D. J.; Maloney, E. M., with

Abraham, B. M. Abraham, D. J.; Maloney, E. M., With others, and OP 120-67 Acherman, W. L., Carter, J. P., Kenahan, C. B., and Schlain, David ______ RI 6715 Carter, J. P., and Schlain, David ______ RI 7169 Adair, R. B., and Browning, J. S. _____ RI 7159, 7263; OP 131-67, P 2-67 RI 6617 OP 132-66

 and King, E. G.
 RI 6617

 Browning, J. S., and ... RI 6830; OP 13-66

 Adami, L. H.; Barany, R., and RI 6687, 6873

 and Conway, K. C.

 and King, E. G.

 RI 6617

 RI 6617

 and Conway, K. C.

 RI 6687, 6873

 Adami, L. H.; Barany, R., and RI 6687, 6873

 and Conway, K. C.

 RI 6617

 RI 6849

 RI 6849

 RI 6849

 RI 6849

 RI 6849

Adams, J. W., and Fish, G. E., Jr. _____ GS 4-68* Adams, L. M.; Patterson, J. C., Jr., Henderlong, P. R., and _____ OP 167-69

Adams, R. L. P 3-67 Adams, R. P., and Beall, R. A. OFR 4-68 Copeland, M. I., Deardorff, D. K., and Lincoln, R. L. RI 7137 Deardorff, D. K., Copeland, M. I., RI 6983

 Schwartz, F. G., Ward, C. C. and __ RI 7197;

 OP 167-68, 182-69

 Alley, J. K., and Johnson, R. C.

 Johnson, R. C., and

 Johnson, R. C., and

 RI 6575, 6667

 Johnson, R. C., with others, and

 Johnson, R. C., with others, and

 RI 6575, 6667

 Miller, J. L.

 Miller, J. L.

 Miller, J. L., Jr., McCormick,

 G. R., and

 OP 100-67

 Amsler, R. L.; Bienstock, Daniel, Bauer,

 E. R., Jr., and

 OP 7-66; P 2-68

 Anable, W. E.

 and Beall, R. A.

 RI 6661

 Manble, W. E.

 RI 7063

Author of chapter.

Anable; W. E., Koch, R. K., Beall, R. A., RI 7125 Anders, D. E.; Anderson, P. C., with __ OP 38-67

Anderson, R. R., with others, and ____OP 38-67 Anders, D. E.; Anderson, P. C., with others, and _____OP 176-69 _____Hills, I. R., with others, and _____OP 48-66 Anderson, C. F.; Lundquist, R. G., and _____RI 7329 Anderson, E. E.; Heising, L. F., Daellen-bach, C. B., and ______RI 6991 Anderson, F. G., and Beatty, R. L. _____ IC 8407 ______Tomb, T. F., and Jacobson, Murray RI 7105 Anderson, H. C.; Corey, R. C., Johnson, H. C., and ______OP 8-67 Anderson, K. F.; Weaver, L. K., and _____ M 13 Anderson, R. F.; Weaver, D. E., and Robinson, W. E. _____OP 176-69 Anderson, R. B., Bayer, J., and Hofer, L. J. E. _____OP 5-65, 6-65, 101-66 ______ Hofer, L. J. E., Bayer, James, and KATT F. S. Kells, D. F., and RI 6750

RI 6750

and _ and R Karn, F. S., Kelly, R. E., and Schultz, B 628

J. F. B 628 - Karn, F. S., and Shultz, J. F. OP 8-65 - Karn, F. S. Shultz, J. F., and ___ OP 77-65,

78 - 65 Shultz, J. F., Karn, F. S., and _____ RI 6941. 6974

Angell, J. K. IC 8417= Archer, F. G., and Eilerts, C. K._. OP 132-67, 133-67 Aresco, S. J., and Janus, J. B. RI 6904, 7104, 7219

- Janus, J. B., and Walker, F. E. ____ RI 6622, 67**9**Ź

Armantrout, C.; Copeland, M.; with others, RI 6636

Arndt, H. H., Averitt, Paul, Dowd, James,

Frendzel, D. J., and Gallo, P. A. GS 4-68* Arndt, R. H.; Stroud, R. B., with others, and B 645 Arthur, C. E., and Armstrong, F. E. _____ RI 6684 Asai, G.; Beall, R. A., Roberson, A. H., and__ B 646*

 Asai, G.; Beall, R. A., Roberson, A. H., and ______ B 646*

 Paulson, D. L., and _______ RI 7289

 Ashizawa, R. Y.; Robertson, H. F., Aguilar, Eduardo, and ______ MY 1968 (v. III)*

 Ashley, B. E. _______ MY 1968 (v. IV)*

 and Wessel, F. W. ______ MY 1968 (v. IV)*

 Atchison, T. C.: Duvall, W. I., Fogelson, D. E., and ______ OP 116-67

 Atkinson, C. H. ______ OP 10-65, 130-68, 39-69

 Gevertz, Harry, with others, and OP 49-67

 Smith, Sam, and ______ OP 37-67

 - Smith, Sam, and _____ OP 37-67 - and Ward, D. C. ____ OP 102-66, 167-67

- Ward, D. C. Watkins, J. W., and _____ OP 92-66

 Ausmus, S. L., and Beall, R. A. __ OP 159-68, 178-68

 Calvert, E. D., with others, and ____ B 646*

 Wood, F. W., and Beall, R. A. ____ B 646*

 Auvil, J. H., Jr.; Hobbs, R. G., and ____ MY 1968

 (v III)*

 Averitt, Paul; Arndt, H. H., with others, and _____ GS 4-68*

B

Babcock, C. O RI 7092, 7298
Babitzke, H. R., and Croeni, J. G RI 7116
Babitzke, n. K., and Croeni, J. G RI 110
and Kato, H RI 6964
Oden, L. L., and Kellv, H. J RI 7211
Siemens, R. E., and Kato, H RI 6777
Yoda, Renpei, Kato, H., and RI 6988
Bachman, G. O GS 5-67
and Stotelmeyer, R. B GS 6-67
Badda, Frank: Price, G. C., and
Baer, F. W.; Wood, R. E., with others, and RI 6896
Bailey, D. M., Abel, W. T., and Salgado,
P. G P 1–67
Babcock, C. O. RI 7092, 7298 Babitzke, H. R., and Croeni, J. G. RI 7116 and Kato, H. RI 6964 Oden, L. L., and Kellv, H. J. RI 7211 Siemens, R. E., and Kato, H. RI 6777 Yoda, Renpei, Kato, H., and RI 6988 Bachman, G. O. GS 5-67 and Stotelmeyer, R. B. GS 6-67 Badda, Frank: Price, G. C., and RI 6685 Baer, F. W.: Wood, R. E., with others, and RI 6896 Bailey, D. M., Abel, W. T., and Salgado, P. G. P. G. P 1-67 Abel, W. T., Spencer, J. D., and OP 2-65
Baker, A. F., Brady, G. A., and Eckerd,
J. W RI 6788
Deurbrouck, A. W., and Palo-
witch, E. R OP_103-66
and Miller, K. J OP 18-68
Eckerd, J. W RI 6945
Sanner, W. S., Tenney, R. F., and
Baker, B. A., and Eilerts, C. K OP 110-66
Baker, D. H., Jr OP 69-67, 75-69
Abel, W. T., Spencer, J. D., and OP 2-65 Baker, A. F., Brady, G. A., and Eckerd, J. W
RI 6742, 6805, 7106; P 13-68
Heinen, H. J., and RI 6834
——— Heinen, H. J., Barber, C. L., and
RI 6590; P 9–67
—— Heinen, H. J., Gomes, J. M., and P 14-68
Baker, E. C
Baker, J. I.; Hee, Olman, and MY 1968 (v. I-II)*
Ball, C. G IC 8304*
Ball, J. S
Smith, H. M., and OP 170-69
Ball Associates. Ltd M 12
Ballance, R. C., Capp, J. P., and Burchinal.
J. C RI 6869
Ballard, L. N.; Calhoun, W. A., and P 1-66
Powell, H. E., and IC 8359, 8360, 8383
Banister, D'Arcy OFR 22-69*
and Knostman, R. W IC 8427
Banks, D. G
RI 6590; P 9–67
others and RI 6939
Elger, G. W., Moser, K. W., and RI 6802
Elger, G. W., Moser, K. W., and RI 6802 Holmes, W. T. II, Brown, L. L.,
and RI 7081
Holmon W T II with others and RI 7083
and RI 7081 Holmes, W. T. II, with others, and RI 7083
Baptist, U. C RI 7052; UP 170-07
Land, U. S., and OF 60-00
Baptist. O. C RI 7052; OP 170-67 Land, C. S., and OP 85-65 White, E. J., and RI 6804; OP 200-67
Barany, R RI 6618, 6784
Barany, R RI 6618, 6784 and Adami, L. H RI 6687, 6873
King, E. G., with others, and RI 6962
King, E. G., with others, and
Barber, C. L.; Heinen, H. J., Baker, D. H.,
Barber, C. L.; Heinen, H. J., Baker. D. H., Jr. and RI 6590: P 9-67
Jr., and RI 0390; F 9-07 Barenberg, E. J IC 8348*
Jr., and RI 0390; F 9-07 Barenberg, E. J IC 8348*
Jr., and RI 0390; F 9-07 Barenberg, E. J IC 8348*
Jr., and RI 0390; F 9-07 Barenberg, E. J IC 8348*
Jr., and IC 8390; F 9-6(Barenberg, E. J IC 8348* Barieau, R. E RI 6924, 6950; IC 8245, 8388, OP 12-65, 4-66, 119-66, 131-68, 191-68 Briggs, T. C. and RI 7136
Jr., and IC 8390; F 9-6(Barenberg, E. J IC 8348* Barieau, R. E RI 6924, 6950; IC 8245, 8388, OP 12-65, 4-66, 119-66, 131-68, 191-68 Briggs, T. C., and RI 7136 Briggs, T. C., Dalton, B. J., and RI 7287
Jr., and RI 6390; F 5-67 Barenberg, E. J IC 8348* Barieau, R. E RI 6924, 6950; IC 8245, 8388, OP 12-65, 4-66, 119-66, 131-68, 191-68 Briggs, T. C., and RI 7136 Briggs, T. C., Dalton, B. J., and RI 7287 and Dalton B. J RI 6900, 7020
Jr., and IC 6390; F 5-67 Barenberg, E. J IC 8348* Barieau, R. E RI 6924, 6950; IC 8245, 8388, OP 12-65, 4-66, 119-66, 131-68, 191-68 Briggs, T. C., and RI 7136 Briggs, T. C., Dalton, B. J., and RI 7287 and Dalton, B. J RI 6900, 7020 Dalton, B. J., and RI 7076, 7312; OP 155-69
Jr., and RI 6390; F 5-67 Barenberg, E. J IC 8348* Barieau, R. E RI 6924, 6950; IC 8245, 8388, OP 12-65, 4-66, 119-66, 131-68, 191-68 Briggs, T. C., and RI 7136 Briggs, T. C., Dalton, B. J., and RI 7287 and Dalton B. J RI 6900, 7020

		Tully,		
* Auth	or of	chapter.		

Barnard, P. G RI 6907 Dunham, J. T., Pease, L. E. D., Jr.,
And RI 6690 Meumeier, L. A., Dunham, J. T., and RI 7089 Starliper, A. G., and Kenworthy, D. 140, 60
and
H OP 149-69
Barr, V. L.; Wang, K. P., and UP 105-05 Barrett, M. A RI 7267
Barry, A. J OP 12-65, 13-65
H. OP 149-69 Barr, V. L.; Wang, K. P., and OP 149-69 Barrett, M. A. RI 7267 Barrett, M. A. RI 7267 Barry, A. J. OP 12-65, 13-65 and McCormick, J. A. OP 12-65, 13-66 Nair, O. B., and Miller, J. S. CP 5-66 Nair, O. B., and Miller, J. S. CP 171-67 Puddiph
Oitto, R. H., Jr., and Sporcic, Rudolph OP 171-67
Rudolph OP 171-67 Zona, A., Gilley, J. L., and Oitto, R. H., Jr. RI 6971 Barstow, W.; Copeland, M., with others, and RI 6636 Barthowisk Alphonse and Kuchta J. M. OP 139-66
Barstow, W.; Copeland, M., with others,
Bartkowiak, Alphonse, and Kuchta, J. M. OP 139-66
Bartkowiak, Alphonse, and Kuchta, J. M. OP 139-66 Kuchta, J. M., with others, and OP 163-68 Kuchta, J. M., Zabetakis, M. G., PL 6554. OP 94 65
F. R., and RI 7082
Barton, W. R IC 8348*, 8391
Baskett, K. R.; Johnston, K. H., and IC 8311
Basso, J. A.; Woolf, P. L., with others, and BI 6678
Bates, R. C OP 126-69
P 1-68 Corp. E. L. and RI 6893: P 6-68
Bates, R. C. OP 126-69 and Corp, E. L. P 1-68 Corp, E. L., and RI 6693; P 6-68 and Wayment, W. R. RI 7034 Batty, J. V., Agey, W. W., and Andrew, B. F. B. F. RI 7094
B. F RI 7094 Gibbs, H. L., and Poston, A. M., Jr. RI 6855 Huiatt, J. L., Andrew, B. F., and RI 7135 Bauer, D. J RI 6809
Huiatt, J. L., Andrew, B. F., and _ RI 7135 Bauer, D. J RI 6809
Eisle, J. G., and
and Lindstrom, R. E RI 7123; P 5-67, 2-69: OP 171-68
Lindstrom, R. E., and Higbie, K. B. RI 7100 Shaw V. F. and
R. L., and P 2-68; OP 7-66 —— McCrea, D. H., Field, J. H.,
and OP 157-68
B. K., and RI 7058
Bayazeed, Abdo F.; Cook, Alton B., with others and BI 7278: OP 25-66 46-67
Johnson, F. Sam, Dutcher, Har-
and OP 157-68 Bauerle, L. C.; Chindgren, C. J., Shibler, B. K., and RI 7058 Bayazeed, Abdo F.; Cook, Alton B., with others, and RI 7278; OP 25-66, 46-67 Johnson, F. Sam, Dutcher, Har- old, and OP 117-69 Bayer, James; Anderson, R. B., Hofer, L. J. E., and OP 5-65, 6-65, 101-66 OP 41-67
L. J. E., and OP 5-65, 6-65, 101-66 and Ergun, Sabri OP 41-67
Ergun, Sabri, Van Buren, Wayne and OP 175-67
 Ergun, Sabri, Van Buren, Wayne, and Hofer, L. J. E., Anderson, R. B., and
Beall, R. A B 646*
and others B 646 Adams, R. P., and OFR 4-68
Adams, R. P., and OFR 4-68 Anable, W. E., and RI 6661 Assai, G., and Roberson, A. H. B 646*
Ausmus, S. L., and
Ausmus, S. L., and OP 159-68, 178-68 Ausmus, S. L., Wood, F. W., and B 646* Borg, J. O., and Wood, F. W. B 646*
 Borg, J. U., and Wood, F. W B 646* Calvert, E. D., and B 646*; OP 104-66 Calvert, E. D., Clites, P. G., and Dunham, J. T OP 172-67 Caputo, F., and Hayes, E. T B 646* Clites, P. G., and B 646*; RI 7035, 7268 Koch, R. K., Anable, W. E., and RI 7125 Koch, R. K., with others, and RI 7271;
Caputo, F., and Hayes, E. T. B 646*
——— Koch, R. K., with others, and RI 7271; OP 38-67

ł

ţ

1;

Beauregard, L. F.; Boten, J. B. 020 Beck, R. H.; Devine, J. F., with others, and ______ RI 6695, 6774 Becker, R. M. _____ RI 6598, 6627, 6768, 7143, 7177; OP 71-67 RI 6965 and Hooker, V. E. Beckering, Willis, Frost, C. M., and Fowkes, W. W. Beckert, A. J.; Kloos, E. J., Schutz, R. H., RI 6965 _ RI 6787 .___ RI 7192 and _____ RI 7192 _____ Watson, H. A., with others, and ____ IC 8292 Beckman, J. A., Wolfson, D. E., with others,

 Bennett, D. J.; Wollson, D. E., with others, and
 RI 7302

 Bennett, H. J.
 IC 8344

 —
 Everett, F. D., and
 IC 8325

 Johnson, E. E., and
 IC 8374

 Bennett, P. E.; Browning, J. S., and
 RI 6668

 —
 Browning, J. S., Millsaps, F. W.,

 Browning, J. S., Millsaps, F. W.,
 RI 6589

 RI 6589 and _____ Bennetts, J. P.; Kleespies, E. K., Henrie, T. A., and _____ TPR 9 Bensko, J.; Woo, W. G., with others, and OP 26-69 Berber, J. S., and Little, L. R. _____ RI 6585 Berk, A. A. .___ OP 6-66 Berkowitz, N.; Chakrabartty, S. L., Wood, J. C., and _____ IC 8376* Berman, Martin, and Ergun, Sabri _____ RI 7124; IC 8400; OP 112-68, 150-69 ____ Ergun, Sabri, and _____ P 5-69 Bernstein, N.; Fine, M. M., and _____ OP 35-66 _____ Reuss, J. L., and Woolf, P. L. ____ OP 55-67 Berté V. C. Mover, F. T. with others Berté, V. C.; Moyer, F. T., with others, and IC 8287 Bieniewski, C. L. MY 1968 (v. I-II)* Bieniewski, C. L., and Henkes, W. C. - and Henkes, W. C. _____ MY 1968

1

1

٩

Ĵ.

E

).

 Bienstock, D., Amsler, R. L., and Bauer,

 E. R., Jr.

 Demeter, J. J., and

 P 2-68; OP 7-66

 Demeter, J. J., with others, and

 Bienstock, D., BI 7160

 Demeter, J. J., with others, and

 RI 7160

 Demeter, J. J., with others, and

 Feldmann, H. F., Simons, W. H.,

 and

 Feldmann, H. F., with others,

 and

 OP 135-68

 Field, J. H., and

 P 4-65

 Field, J. H., Katell, S., and Plants,

 K. D.

 Field, J. H., and Myers, J. G.

 P 4-65

 Field, J. H., and Myers, J. G.

 Ruppel, T. C., Mossbauer, P. F.,

 and

 OP 138-69

 Thalimer, J. R., with others, and OP 47-69

 and OP 138-69 Thalimer, J. R., with others, and OP 47-69 Biggs, Paul; Harstead, J. N., Blasko, D. P., BI 7056 and RI 7056 Bilbrey, J. H., Jr.; Rosenbaum, J. B., and OP 58-67 Biospherics Research, Inc. OFR 12-69 Birge, G. W., Lynch, J. H., Jr., and Wolf-son, D. E. RI 6814 Wolfson, D. E., Wilson, J. E., and Lynch, J. H., Jr. RI 6615 Bishko, Donald, Dunn, J. R., and Wal-lace, W. A. OFR 25-69 Bivins, Doris, and Ergun, Sabri OF 19-68 Blade, O. C. PPS 58-62 RI 7056 and

 Bivins, Doris, and Ergun, Sabri
 OP 19-68

 Blade, O. C.
 PPS 58-62

 Blake, H. E., Jr., Fursman, O. C., Fugate, A. D.,
 and Banning, L. H.

 RI 6939
 Risson and State and S

 MY 1968 (v. III)*

 Blaustein, B. D.; Friedman, S., with others, and

 OP 52-65

 — Fu, Y. C., and OP 168-67, 11-69, 84-69

 and Metlin, S. J.

 OP 17-65

 Blickensderfer, Robert

 Henry, J. L., with others, and

 Campbell, T. T., Mussler, R. E., and

 Ferrante, M. J., Schaller, J. L., and IR 7145

 Ferrante, M. J., Schaller, J. L., and IR 7152

 Henderson, A. W., Yee, D. H., and RI 7524

 Heilderson, A. W., Yee, D. H., and RI 6849

 Hill, S. D., Adams, Arnold, and _-- RI 6849 - Landsberg, A. - Landsberg, A., Campbell, T. T., RI 6649 and _____ OP 87-65 Mrazek, R. V., Knapp, S. B., -- OP 121-68 and ____ and _____ OP 121-68 Mrazek, R. V., with others, and ____ RI 7096 Nash, B. D., Campbell, T. T., and __ RI 7112 - Skirvin, F. A., Campbell, T. T., and __

Tress, J. E., Campbell, T. T., and __ RI 6835 Blomster, R. N.; Maloney, E. M., with others, and _____ OP Bloom, P. A.; Williams, F. E., Fillo, P. V., OP 120-67

and ______ NMNR Bloss, F. D. _____ OP 18-65

Bloss, F. D. Blue, D. D.; Couch, D. E., with others, and —— Merrill, C. C., Wong, M. M., and __ RI 7221

(v.III)*

^{*} Author of chapter.

 Bluman, D. E.
 OP 8-66

 Abel, W. T., O'Leary, J. P., and OP 1-65

 Galli, A. F., Coates, N. H., Spencer,

 J. D., and Rosenecker, C. N.

 Gibson, H. G., Fasching, G. E.,

 and

 and
 P 12-68

 Boley, C. C., and Kube, W. R.
 OP 133-66, 113-67

 Boley, C. C., and Landers, W. S.
 RI 7282

 Landers, W. S., Gomez, Manuel, and RI 6948

 Landers, W. S., with others, and _____ RI 6608

 Warfield, R. S., and

 RI 7321

 Warfield, R. S., Landers, W. S.,

 and

 RI 6767; OFR 7-66

 Boley, D. W.; Higgins, R. V., Leighton,

 A. J., and

 A. J., and

 Johnson, H. R., and Overbey, W. K.,

 Jr.

 RI 6683

 Jr. ______ RI 6683 Bolmer, R. L. ______ RI 6666 Bolmer, R. L. Bolsaitis, Pedro, and Sullivan, P. M. ___ Ol Bonner, Norman; Gevertz, Harry, with others, and ____ C Boone, W. J., Jr.; Wood, R. E., with others, and OP 153-69 OP 49-67

 Brantiey, r. D., Davis, D. G., H. 201, L. 201, T. 201, and (v. III)* Bremner, P. R.; Porter, Bernard, Meaker, R. E., and ______ RI 7246 Brennan, R. J.; Malenka, W. T., and _____ RI 6745 Bridges, D. W.; Churchward, P. E., and ___ RI 6845 Dringer, D. W.; Churchward, P. E., and __ RI 6845 Briggs, J. C., and Barieau, R. E. _____ RI 7136 _____ Dalton, B. J., and Barieau, R. E. ____ RI 7287 _____ Broadhead, K. G., and Heady, H. OP 19-65 _____ and Shanks, D. E. _____ OP 70-67 - Shanks, D. E., and Heady, H. H. _ OP 20-65, 10~66 Brobst, D. A., and Hobbs, R. G. _____ GS 4-68*

 Brock, S. M.; Zeller, F. A., with others, and ______OFR 21-69, 26-69

 Broderick, G. N.
 IC 8401

 Hall, F. P., and ______IC 8402

 Brooks, D. B.
 OP 81-68, 154-68, 74-69, 127-69

 Colby, D. S., and _______IC 8402

 Graham, Annette, and ______OP 113-69

 and Lloyd, B. S.

 Potter, G. M., and Martin, D. A.

 RI 7316

 Brown, C. L.

 OP 72-67

 Brown, D. M.; Zeller, F. A., with others, and ______OFR 21-69, 26-69

 Brown, C. L.
 OF 12-01

 Brown, D. M.; Zeller, F. A., with others, and
 OFR 21-69, 28-69

 Brown, J.; Campbell, W. J., and
 OP 56-68

 Brown, J. D.
 RI 6648; OP 11-66, 12-66

 Burkhalter, P. G., Myklebust,
 R. L., and

 Campbell, W. J., Thatcher, J. W.,
 and

 and
 OP 100-66

 and
 OP 100-66

 Brown, L. L.; Holmes, W. T. II, Banning,
 I. H., and

 L. H., and
 RI 7083

 Brown, R. E., and Hickerson, R. A.
 P 4-68

 Brown, R. R., and Block, F. E.
 RI 7083

 Brown, R. R., and Block, F. E.
 RI 6612

 Brown, R. R., and Block, F. E.
 RI 6612

 Browning, J. S.
 OP 22-65, 151-69

 and Adair, R. B.
 CP 22-65, 151-69

 Adair, R. B., and_RI 7159, 7263; OP 131-67

 Browning, J. S.
 OP 22-65, 151-69

 and Adair, R. B.
 P 2-67

 Adair, R. B., and_RI 7159, 7263; OP 131-67

 and Bennett, P. E.
 RI 6668

 Eddy, W. H., Hardemon, J. E., and_RI 6953,

 6982, 7319

 Hollenbeck, R. P., McVay, T. L., and_RI 8953,

 Millsaps, F. W., and Bennett, P. E. RI 6589

 Rampacek, C., McVay, T. L., and_P 14-67

 Sullivan, G. V., Saunders, S. J., and RI 7251

 Tippin, R. B., and _________ RI 6969, 7134;

 OP 149-65, 91-66, 145-67

 Sullivan, G. V., Saunders, S. J., and RI 7251

 Tippin, R. B., and McVay, T. L.

 Rampacek, C., McVay, T. L., and C 6929

 Brownlow, A. D.; Champlin, J. B. F.,

 Thomas, R. D., and _________ OP 46-68

 and Paone, James, Morrell, R. J.

 Paone, James, Morrell, R. J. and _________ RI 6926

 Bruce, W. E.
 OP 152-69

 Paone, James, Worrell, R. J. and ___________ RI 6880

 Bruszak, A. E.; Singer, J. M., Grumer, J.,

 and Paone, James, Virciglio, P. R., and RI 6880

 Bruszak, A. E.; Singer, J. M., Grumer, J.,

 and Group, James, Morrell, R. J. and Morris, Bureau of Mines__CMS; SP 1-68, 3-68; OFR 10-69, 13 - 69Area Mineral Resource Offices staff SP 2-67 Coal Research _____ IC 8390 Coal Research staff _____ IC 8357

Division of Bituminous Coal staff __ B 630*

Activities staff MY 1968 (v. IV)*

Division of International

Ē

Ì

Brock, S. M.; Zeller, F. A., with others,

* Author of chapter.

Bureau of Mines, Explosives Research Con
buteau of Mines, Explosives Research Cen-
Bureau of Mines, Explosives Research Cen- ter staff IC 8254
8272, 8308, 8349, 8387 ——— Geological Survey and GS 4-68; OP 144-65 ——— Health and Safety Activity staff IC 8365
Geological Survey and _GS 4-68; OP 144-65
——— Health and Safety Activity staff IC 8365
Health and Safety Activity staff.
Washington, D. C., and Health and Safety District A staff B 644
Safety District A staff B 644
 Laramie Petroleum Research Center staff OFR 2-66, 15-69 Mineral Resource Evaluation staff IC 8396
atoff OED 9 66 15 60
Stan 1 D
Mineral Resource Evaluation staff IC 8396
——— Mineral Resource offices, petroleum
Mineral Resource offices, petroleum staff IC 8352, 8362 Office of the Director of Coal Re-
Office of the Director of Coal Re-
Search staff B 638 Office of Mineral Reports B 638 Office of Mineral Reports MISC Petroleum Research staff IC 8364 Twin Cities Mining Research Center staff OP 126-68 Bureau of Mines field staff IC 8252, 8277, 8306, 8335, 8397, 8421; SP 1-67; OFR 2_68, 22_69, OP 23_65
Office of Mineral Perceta MISC
Betroleum Begenreh steff
Fetroleum Research stan
Twin Cities Mining Research
Center staff OP 126-68
Bureau of Mines field staff IC 8331
Bureau of Mines staff IC 8252, 8277, 8306.
8235 9307 9491 SD 1 67.
OFR 2-08, 22-09; OF 23-09
Thrush, P. W., and SP 2-68
OFR 2-68, 553, 5421, SF 1-67, OFR 2-68, 503, 5421, SF 2-68, 507 Thrush, P. W., and Burfield, D. W.; Suttle, E. T., Emerson, D. E., and D. S., Murphy, J. N., Hanna, N. E., and Van Dolah, R. W. Burgin, Lorraine, and Henkes, W. C. MY 1968 (v. 111)*
D. E., and OP 87-66
Burgess, D. S., Murphy, J. N., Hanna, N. E.,
and Van Dolah R W RI 7196
Burgin Lorphice and Manhan W. C.
burgin, horraine, and menkes, w. C.
Burkhalter, P. GRI 6681; TPR 6; OP 52-69, 76-69
Burkhalter, P. GRI 6681; TPR 6; OP 52-69, 76-69
Burnett, E. S., and Mullins, P. V R16824 Burnett, E. S., and Mullins, P. V R16824 Burnett, E. S.
R. L OP 14-66
and Campbell, W. J OP 134-67
Burnett E S and Mullins P V RI 6824
Burwell, E. L OP 16-66
Campbell, G. G., with others, and
R1 6942; OP 106-66
——— and Howell, W. D OP 24-65
Johnson, H. R., and RI 6756
Busch R A · Nicholson D E and BI 7198
Bush A T and Course T TH CO 4 Co
Butten A D To and Steerey J. W GS 4-68*
Butler, A. P., Jr., and Stansfield, R. G GS 4-68*
Butler, A. P., Jr., and Sweeney, J. w GS 4-68* Butler, A. P., Jr., and Stansfield, R. G GS 4-68* Butler, M. O.; Good, P. C., Yerkes, L. A.,
Butler, A. P., Jr., and Sweeney, J. W GS 4-68* Butler, A. P., Jr., and Stansfield, R. G GS 4-68* Butler, M. O.; Good, P. C., Yerkes, L. A., and RI 6785
Bush, A. L., and Sweeney, J. W GS 4-68* Butler, A. P., Jr., and Stansfield, R. G GS 4-68* Butler, M. O.; Good, P. C., Yerkes, L. A., and RI 6785 Buttermore, P. M IC 8284
Campbell, G. G., with others, and RI 6942; OP 106-66 and Howell, W. D
Butler, A. P., Jr., and Sweeney, J. W GS 4-68* Butler, A. P., Jr., and Stansfield, R. G GS 4-68* Butler, M. O.; Good, P. C., Yerkes, L. A., and RI 6785 Buttermore, P. M IC 8284
Bush, A. L., and Sweeney, J. W GS 4-68* Butler, A. P., Jr., and Stansfield, R. G GS 4-68* Butler, M. O.; Good, P. C., Yerkes, L. A., and RI 6785 Buttermore, P. M IC 8284 C
c
c
c
c
c
c
C Cadigan, R. A.; Manger, G. E., Gates, G. L., and OP 95-69 Caldwell, H. S., Jr.; Makar, H. V., Dun- ning, B. W., Jr., and RI 7199 Calbour, W. A., and Ballard, L. N. P 1-66
C Cadigan, R. A.; Manger, G. E., Gates, G. L., and OP 95-69 Caldwell, H. S., Jr.; Makar, H. V., Dun- ning, B. W., Jr., and RI 7199 Calbour, W. A., and Ballard, L. N. P 1-66
C Cadigan, R. A.; Manger, G. E., Gates, G. L., and OP 95-69 Caldwell, H. S., Jr.; Makar, H. V., Dun- ning, B. W., Jr., and RI 7199 Calbour, W. A., and Ballard, L. N. P 1-66
C Cadigan, R. A.; Manger, G. E., Gates, G. L., and OP 95-69 Caldwell, H. S., Jr.; Makar, H. V., Dun- ning, B. W., Jr., and RI 7199 Calhoun, W. A., and Ballard, L. N P 1-66 Hill, T. E., Jr., and RI 6914, 6944 Calkins, J. A.; Becraft, G. E., with others,
C Cadigan, R. A.; Manger, G. E., Gates, G. L., and OP 95-69 Caldwell, H. S., Jr.; Makar, H. V., Dun- ning, B. W., Jr., and RI 7199 Calbour, W. A., and Ballard, L. N. P 1-66

Call, R. D.; Halstead, P. N., Hubbard, S. J.,

- Calvert, E. D.; Anable, W. E., and ______ RI 7097 Calvert, E. D.; Anable, W. E., and _____ RI 7293 ______ Ausmus, S. L., O'Hare, S. A., and Roberson, A. H. _____ B 646*; OP 104-66 _____ Beall, R. A. _____ B 646*; OP 104-66

- Beall, R. A., with others, and __ OP 172-67 Clites, P. G., and ____ B 646* Koch, R. K., with others, and RI 7271; OP 38-67
- Campbell, G. G., Burwell, E. L., Sterner, T. E., and Core, L. L.-RI 6942; OP 106-66
- Sterner, T. E., and OP 21-69 Campbell, R. E., and Sullivan, T. A. ____ RI 6624

1

J

]

Ì

) Ì

 Campbell, T. T.; Landsberg, A., and ____ OP 86-65

 _______ Landsberg, A., Block, F. E., and OP 87-65

 _______ Mussler, R. E., and Block, F. E., OP 17-66

 _______ Nash, B. D., Block, F. E., and _______ RI 7112

 _______ Skirvin, F. A., Block, F. E., and _______ RI 6984

 _______ Tress, J. E., Block, F. E., and _______ RI 6835

 Campbell, W. J.

 _______ OP 56-68

 _______ Brown, J. D., and Thatcher,

 J. W.

 _______ J. W.

 _______ DP 100-66

 _______ Burkhalter, P. G., and ______ OP 100-66

 _______ Spano, E. F., and Green, T. E.

 _______ Thatcher, J. W., and ______ RI 6689; OP 53-67

 Cannaday, F. X.

 Cargill, R. W.; Nabors, W. M., with Cargill, R. W.; Nabors, W. M., with others, and _____ OP 106-65 _____ Smith, Jack, with others, and _____ RI 6920 Carillo, F. V., McComb, M. A., and Hale, W. N. MY 1968 (v. III)* Carleton, D. A. _____ MY 1968 (v. IV)* _____ Shekarchi, E., Slatick, E. R., and Woodmansee, W. C. ____ MY 1968 (v. IV)* Carmichael, V. M. _____ IC 8376* Carosella, J. M.; Rose, M. J., with others, and ______ IC 8376* Carpenter, H. C.; Burwell, E. L., Sohns. Carrosella, J. M.; Rose, M. J., with others, and _______ IC 8376* Carpenter, H. C.; Burwell, E. L., Sohns, H. W., and ______ TPR 16 ______ and Cottingham, P. L. ____ OP 20-66, 61-66 Cottingham, P. L., and ____ OP 91-67, 20-68 ______ Lekas, M. A., and _____ OP 91-65 ______ Lombard, D. B., and _____ OP 91-65 ______ Ruark, J. R., Sohns, H. W., and _____ RI 7303 ______ and Sohns, H. W. _____ OP 180-68 ______ Sohns, H. W., and _____ OP 82-66 ______ Tihen, S. S., and Sohns, H. W. OP 161-19 ______ Tihen, S. S., Sohns, H. W., and _____ OP 162-68 Carpenter, L., Lewis, R. W., and Hazen, K. A. ______ OP 107-66 ______ Nishi, J. M., and Fehler, R. H. OP 195-68 Carrales, M., Jr.; Dietzman, W. D., Jirik, C. J., and ______ IC 8263 ______ Park, W. G., Wood, S. O., Jr., and IC 8428 Carrillo, F. V., McComb, M. A., and Petersen, N. W.______ MY 1968 (v. III)* Carroll, A. J., Miller, J. E., Emerson, D. E., and ______ RI 6674 Carter. Claire: Cobb. E. H., with others, and ______ Carter, Claire; Cobb, E. H., with others, RI 6674 Carter, Claire; Cobb, E. H., with others, and _______GS 7-68 Carter, J. P.; Acherman, W. L., Schlain, David, and _______RI 7169 _______Acherman, W. L., with others, and RI 6715 _______ Kenahan, C. B., and Schlain, David RI 6680 Castagno, J. L.; Collins, A. G., Marcy, V. M., and ______ OP 54-69 Cato, R. J., Gilbert, W. H., and Kuchta, J. M. _______ OP 75-67 _______ Kuchta, J. M., and ____ RI 6857; OP 118-69 Cattoir. F. R.: Cumings. R. E., Sullivan,

- Cattoir, F. R.; Cumings, R. E., Sullivan,
 - T. A., and _____ RI 6850

[•] Author of chapter. † Editor.

Cattoir, F. R.; Lei, K. P. V., Sullivan, T. A.,

 Cattor, r. R.; Lei, K. P. V., Sullivan, T. A.,

 and

 and Sullivan, T. A.

 RI 6972

 Bullivan, T. A., and

 Sullivan, T. A., and

 RI 6631

 Sullivan, T. A., Barton, B. E., and RI 7082

 Caum, J. W., and Smith, H. M.

 OP 135-67

 Cavallaro, J. A., and Deurbrouck, A. W.

 BU 2022

 BU 2022

 Caum, J. W., and Smith, H. M. ______OP 135-67 Cavallaro, J. A., and Deurbrouck, A. W. RI 6652, 6821 Cazell, G. F. _____OP 25-65 Cervik, Joseph _____TPR 10; OP 114-67, 114-68 ______Hadden, J. D., and ______TPR 11 ______LaScola, J. C., and ______TPR 11 ______Perkins, J. H., and ______TPR 14 Chakrabartty, S. L., Wood, J. C., and Berk-owitz, N. ______IC 8376* Chamberlain, C. E.; Mihok, E. A., and __ OP 67-68 _______Mihok, E. A., Deul, Maurice, and Selmeczi, J. G. ______RI 7191 Chambers, D. H., and Maynard, A. W. _____RI 7313 _______Sullivan, P. M.; and Kupper, L. L. RI 7178 Champlin, J. B. F., and Thomas, R. D. OP 111-66 _______RI 6696 Chang, Ta-C. L.; Karr, Clarence, Jr., with others, and _______RI 6696 Chase, J. O.; Ellis, C. F., Hurn, R. W., and _______OFR 5-69 _______Hurn, R. W., Fleming, R. D., and OP 72-65 Chastain, S. J.; Ivey, K. H., and _______P 9-69 Chen, T. S., and Marovelli, R. L. _______RI 6823 ________Marovelli, R. L., Veith, K. F., and OP 171-65, 59-66 Cherry, C. W.; Lipper, H. W., and _______ IC 8373 Childers, E. E.; Estep, P. A., with others, OP 171-65, 59-66 Cherry, C. W.; Lipper, H. W., and _____ IC 8373 Childers, E. E.; Estep, P. A., with others, and _____ OP 44-65, 32-66 Childers, M. S.; Schrecengost, H. A., and __ IC 8258 Chin, Edmond; Kenahan, C. B., Schlain, David, and _____ RI 6938 Chindgren, C. J. _____ P 1-65 _____ Bauerle, L. C., and Shibler, B. K. __ RI 7058 Christos, Theodore _____ OP 25-65 _____ Miron, Yael, James, Harry, and Perlee, Henry _____ OP 149-67 RI 6744 and __ -----Ciemmons, B. H.; Dean, K. C., Nichols, I. L., and ______ OP 78-67 Chirton, H. E.; Gower, H. D., with others, and ______ GS 1-66 Clifton, R. A., Jr., Huggins, C. W., and Shell, H. R. ______ OP 21-66 ______ and Johnson, R. C. ______ P 5-68 Clites, P. G. ______ B 646*; CP 39-67 ______ and Beall, R. A. ____ B 646*; RI 7035, 7268 ______ Beall, R. A., with others and ____ OP 172-67 ______ and Calvert, E. D. ______ B 646* Coates, N. H. ______ IC 8314* Coates, N. H. _____ IC 8314* - Smith, J., with others, and OP 127-66

• Author of chapter.

Cobb, E. H., Wanek, A. A., Grantz, Arthur, and Carter, Claire _____ GS 7-68 Cochran, A. A.; Coleman, R. E., Powell, H. E., and _____ OP 187-67 _____ Donaldson, J. G., Hoertel, F. W., and _____ OP 3-68 _____ OP 3-68 _____ RI 7150
 Donaldson, J. G., Stephenson, J. B.,

 and
 RI 7150

 —
 and Falke, W. L.
 RI 6859; OP 5-67

 —
 Falke, W. L., and
 RI 6738

 Cochran, N. P.
 IC 8376*

 Cochran, William
 IC 8435; MY 1968 (v. III)*

 Coffman, J. S.
 OFR 22-69*

 —
 and Service, A. L.
 RI 6934

 Cohen, D. J.; Litchfield, E. L., Hay, M. H.,
 and
 RI 7061
 and Colburn, L. W.; Bur, T. E., with others, ____ RI 7061 ----- Karr, Clarence, Jr., with others, and B 637; RI 6837; OP 51-66, 29-68 Conant, L. C., and Stansfield, R. G. _____ GS 4-68* Conn, J. W.; Nagy, John, Verakis, H. C., and ______ RI 7279 Conn, J. W.; Nagy, Jonn, Veranis, RI 7279 and ______ RI 7279 Conrad, S. G.; Danielson, V. A. and _____ MY 1968 (v. III)* (v. III)* Consad Research Corp. _____ OFR 17-69 Conway, K. C.; Adami, L. H., and _____ OFR 17-69 Cook, A. B., and Johnson, F. S. _____ RI 6763 ______ Johnson, F. S., Spencer, G. B., and Bayazeed, A. F. _____ OP 25-66, 46-67 ______ Johnson, F. S., Spencer, G. B., Bayazeed, A. F., and Walker, C. J. RI 7278 Cook, Bobby; Crowder, G. A., and _____ OP 166-67 Cook, E. B.; Singer, J. M., Grumer, J., and RI 6931 ______ Singer, J. M., with others, and _____ RI 6958

(Ĩ Ì 5

D

Dinneen, G. U., with others, and OP 132-68 Haines, W. E., Dinneen, G. U., and OP 4-68

- McDonald, F. R., and _____ RI 6911

Cook, G. L.; McDonald, F. R., Decora, A. W., and _____ OP 164-68 _____ Robinson, C. J., and _____ OP 175-69 Cooley, A. M.; Sondreal, E. A., Ellman, R. C., and _____ RI 6891 Coolidge, A. S.; Lorenz, P. B., and _____ OP 94-65 Cooper, A. R.; Nagy, John, Dorsett, H. G., Jr., and _____ BI 6597 7208

Cooper, A. R.; Nagy, John, Dorsett, H. G., Jr., and _______RI 6597, 7208 Cooper, F. D. ______ IC 8394 ______ and Wang, K. L. ______ OFR 1-67, 8-68 Cooper, J. C.; Forshey, D. R., Doyak, W. J., and ______ OP 158-69 ______ Forshey, D. R., with others, and OP 81-69 ______ Mason, C. M., Uraco, J. L., and _____ RI 7149 Cooper, J. D. _____ B 630*

Cooper, J. D. Cooper, J. L.; Guereca, R. A., with others .__ B 630*

and Copeland, M. I.; Adams, R. P., with others, RI 7137

Corry, J. A. OP 31-65 Corgan, J. A. OP 31-65 Cornwall, H. R., Vhay, J. S., and Frend-zel, D. J. OP 26-66 — OP 103-68 — OP 20-66 61-66 — OP 20-66 61-66 — OP 20-66 61-66 20-68

Carpenter, H. C., and ____ OP 20-66, 61-66
 Couch, D. E.; Leone, O. Q., and _____ R16878
 Leone, O. Q., Knudson, H., and__ OP 36-68
 Leone, O. Q., Lang, R. S., and Blue, D. D.
 OP 55-69
 Ways, M. M. and

- Wong, M. M., and _____ OP 166-69 - Wong, M. M., O'Keefe, D. A., and OP 10-69

Coulehan, B. A.; Lang, H. W., with others,

_____ RI 7241 and _____ Coulehan, R. T.; Leary, R. J., with others,

_____ RI 7091 Tucker, H. A., Wilson, W. G., and RI 7091 Tucker, H. A., Wilson, W. G., and RI 7153 Cox, D. P., and Edgerton, C. D., Jr. ---- GS 4-68* Cramer, S. D., Kenahan, C. B., Andrews, R. J. Kenahan, C. B., Andrews,

R. L., and Schlain, David RI 7016

and Schlain, David _____ OP 105-69 Crane, S. R.; George, D. R., with others,

and _____ OP 118-68 Crittenden, M. D., Jr., Wallace, C. A., and Sheridan, M. J. _____ GS 3-67 Crocker, Laird; George, D. R., Riley,

J. M., and _____ RI 6928 • Author of chapter. † Editor.

F

Ъj

C

1

 Croeni, J. G.; Babitzke, H. R., and ______ RI 7116

 _______ and Howe, J. S., Jr. ____P 7-68; OP 27-66

 _______ Howe, J. S., and Armantrout,

 C. E.

 _______ OFR 6-68

 _______ Howe, J. S., and Haruo, Kato ______ RI 6757,

 _______ Howe, J. S., and Haruo, Kato ______ RI 6757,

 Howe, J. S., and Haruo, Kato
 RI 6757,

 6817

 Crosby, R. L., and Desy, D. H.
 RI 6765

 Crosby, R. L., and Desy, D. H.
 RI 6765

 and Fowler, K. A.
 RI 6673

 and Holman, J. L.
 RI 6866

 Cross, T. S.; Melton, N. M., and OP 192-67, 37-68

 Crowder, D. F.
 GS 1-67; OP 165-67

 and Cook, Bobby
 OP 166-67

 Gorin, G., Kruse, F. H., and Scott,
 D. W.

 D. W.
 OP 14-67, 125-68

 Crowell, D. C., Dean, G. W., and Loomis,
 A. G.

 A. G.
 RI 6735

 Cruikshank, M. J.
 OP 155-68, 154-69

 Band Collins, I. J.
 OP 106-69

 Wang, F. H., and
 OP 1106-69

 Wang, F. H., and
 OP 106-69

 Wang, F. H., and
 OP 108-66

 Cuffe, S. T.; Gerstle, R. W., with others,
 and

 and Nyasnowski, P. N.
 IC 8403

 and Nyasnowski, P. N.
 IC 8411

 Csamer, R. P., and McGee, J. P.
 OP 108-66

 Cuffe, S. T.; Gerstle, R. W., with others,
 and

 and Nyasnowski, P. N.
 IC 8411

 Csamer, R. P., and McGee, J. P.
 OP 108-66

 6817 - Van Dorcn, K. R., with others, Van Doren, K. R., with others, and
 Cummins, J. J.; Hills, I. R., with others, and
 OP 185-69
 OP 48-66
 And Robinson, W. E.
 OP 145-69
 Robinson, W. E., Dinneen, G. U., and
 OP 122-65
 Cupps, C. Q., and Fry, J.
 RI 6909: OFR 2-67 through 4-67

Curth, E. A. _____ RI 6980

D

- O'Neill. J. F., and Arhenholz, H. W. IC 8329 and White, D. H., Jr. IC 8406 Dannenberg, R. O.; Matzick, Arthur, with others, and _____ B 635 - and Maurice, J. M. _____ RI 6841

Dannenberg, R. O. and Potter, G. M. RI 7117 Rosenbaum, J. B., George, D. R., and OP 57-67
Darnell, R. P.; Meeves, H. C., and IC 8370 Davis, E. G., Brantley, F. E., and Wright, E. C. Brantley, F. E., and Wright,
B., George, D. R., and OP 57-67 Darnell, R. P.; Meeves, H. C., and IC 8370 Davis, E. G., Brantley, F. E., and Wright, IC 8370
Davis, R. T.; Stahl, R. W., and IC 8361 Davis, T. C., and Morris, J. C RI 6633 and Petersen, J. C OP 20-67, 76-67, 2-68
Dawes, R. E. Dean, G. W.; Crowell, D. C., Loomis, A. G., and Dearline D. C. and RI 6735
Petersen, J. C., and Haines, W. E. OP 28-66 Dawes, R. E. RI 7311 Dean, G. W.; Crowell, D. C., Loomis, A. G., and RI 7311 Donaldson, E. C., and
 Nichols, I. L., and Clemmons, B. H. OP 78-67 Rosenbaum, J. B., and OP 136-69 and Sterner, J. W RI 7350
Dean, R. E.; Friedman, S., with others, and Deardorff, D. K. P 4-69
Adams, R. P., with others, and RI (13) Copeland, M. I., and Adams, R. P. RI 6983 Copeland, M. L. Oden, L. L. and
Kato, H RI 6594 Siemens, R. E., Oden, L. L., and RI 7258 Deaton, W. M OP 79-67 and Kirkland' C. G P 2-65
DeBeauchamp, R. L IC 8412
DeCarlo, J. A.; Doherty, J. D., and OP 62-67 Perry, Harry, and OP 108-67 and Sheridan, E. T IC 8251 Sheridan, E. T., and Murphy, Z. E. IC 8312
Decker, W. A.; Johnson, G. E., with others, and BI 6994: OP 90-67 12-68
Decora, A. W.; McDonald, F. R., Cook, G. L., and OP 164-68 Decomp H W C
Della f, G. L B 550 ⁻ ; M1 1966 (V. 1-11) ⁻ Della cate, D. T.; Young, W. E., and IC 8280 Della Donne C. L. Sternberg, H. W.
Wender, I., and OP 95-68 Sternberg, H. W., with others, and RI 7017; OP 128-66 7160
Forney, A. J., and Bienstock, D R1 7100
Youngblood, A. J., Field, J. H., and Bienstock, D RI 7033 Demski, R. J.; Forney, A. J., with others, D. 2000
and RI 6609 Iapalucci, T. L., Bienstock, D., and RI 7260 Denny, M. V.; Drake, A. A., Jr., Hamlin,
H. P., and OP 134-66 Johnson, S. S., LeVan, D. C., and VNR DePrater, B. L.; Good, W. D., and OP 40-66
Desy, D. H RI 7228 Crosby, R. L., and RI 7266
Fincher, L. C., and OP 156-68

^{*} Author of chapter.

and OP 122-65 Stanfield, K. E., Cook, G. L., and Sohns, H. W. _____ OP 132-68 Dixon, J. D. Dobransky, Paul; Hawk, C. O., with others, and Dockter, Leroy, Belter, J. W., and Ellman, __ RI 7297 Ĺ RI 6655 and ______ - George, L. C., Visnapuu, Aarne, and OP 57-69, 65-69 DT 7907

 George, L. C., Visnapuu, Aarne, and

 OP 57-69, 65-69

 George, L. C., with others, and ... RI 7307

 Jensen, J. W., and Myers, C. W. RI 6800

 Neumeier, L. A., and Jensen, J. W. RI 6998

 Doherty, J. D., and DeCarlo, J. A. OP 62-67

 Dolezal, H.; Dean, K. C., Havens, R., and OP 14-69

 Perkins, E. C., Kirby, D. E., and

 Lang, R. S.

 Pomingues, L. P.,; Furlong, L. R., and OP 73-65

 Donaldson, E. C., and Dean, G. W.

 Ri Riggs, C. H.

 Pondalson, J. G.

 Thomas, R. D., and Lorenz, P. B. OP 41-69

 Donaldson, J. G.

 Hoertel, F. W., and Cochran, A. A. OP 3-68

 And Kenworthy, H.

 Ri 6915

 Hoertel, F. W., and Cochran, A. A. OP 3-68

 And Kenworthy, H.

 Ri 6853

 Stephenson, J. B., and Cochran, RI 7150

Donaldson, W. F.; Ergun, Sabri, Smith, R. W., Jr., and ______ B 620 Donath, E. E. _____ IC 8314* Dooley, J. E.; Coleman, H. J., Hirsch, D. E., and _____ OP 77-69 Dormer K B D. E., and ______ OP 77-69 Dorman, K. R. ______ RI 7249 ______ Poad, M. E., and Serbousek, M. O. RI 7114 ______ Serbousek, M. O., and ______ RI 7274 Dorr, J. Van N. II, and Sweeney, J. W. ____ GS 4-68° Dorrence, S. M., and Petersen, J. C. _____ OP 157-69 Dorsett, H. G., Jr. _____ OP 151-67 ______ and Nagy, John _____ RI 7132 ______ Nagy, John, Cooper, A. R. and _____ RI 6597, 7208 7208 Dowg, James, Anne, _____ GS 4-05 Doyak, W. J.; Forshey, D. R., Cooper, J. C., and _____ OP 158-69 Doyle, H. N.; Kingery, D. S., with others, and _____ TPR 19 Drake, A. A., Jr., Denny, M. V., and Hamlin, H. P. _____ OP 134-66 Driscoll, T. J., Jr., and Norman, L. D., Jr. RI 7025 Duda, J. R., Overbey, W. K., Jr., and John-others, and Dunham, J. T.; Beall, R. A., with others, ____ IC 8292 OP 172-67 and and Ol Neumeier, L. A., Barnard, P. G., RI 7089 and Pease, L. E. D., Jr., and Barnard, Pease, L. E. D., M., and P. G. Dunn, J. R.; Bishko, Donald, Wallace, W. A., and Dunning, B. W., Jr.; Makar, H. V., and OP 165-69 Makar, H. V., Caldwell, H. S., Jr., RI 7199 Makar, H. V., Caldwell, H. S., Jr., and RI 7199 Durelli, A. J., Obert, Leonard, and Parks, V. J. OP 27-69 Durie, R. A.; Friedel, R. A., Shewchyk, Y., and OP 70-68 Shewchyk, Y., and Friedel, R. A. OP 116-68 Dutcher, Harold; Johnson, F. S., Bay-azeed, A. F., and OP 117-69 Dutton C. E. GS 5-68

 azeed, A. F., and
 OP 117-69

 Dutton, C. E.
 GS 5-68

 Duvall, J. J., and Jensen, H. B.
 OP 42-69

 Duvall, W. I.
 OP 38-65

 Atchinson, T. C., and Fogelson,
 D.

 D. E.
 OP 116-67

 Blake, Wilson
 RI 7030, 7200

 Blake, Wilson, and
 OP 177-69

 Devine, J. F., with others, and
 RI 6695, 6774

 — Herz, Norman, and _____ GS 4–68* - Newman, W. L., Stansfield, R. G., 6774 and _____ GS 4-68*

1

}

3

1

3 Į]

* Author of chapter.

and _____ OP 39-66 E

 Eakin, J. L.
 RI 6660

 and Eckard, W. E.
 OP 30-66

 Eckard, W. E., Heath, L. J., and OP 44-68

 and Miller, J. S.
 OP 1-67, 82-68

 Miller, J. S., and
 OP 102-65

 Miller, J. S., and Eckard, W. E.

 RI 6688; OP 112-66

 Millar, J. S. with others, and ______ RI 7277

 RI 6688; OP 112-66

 RI 6688; OP 112-66

 Miller, J. S., with others, and ______ RI 7277

 Smith, R. V., and Miller, J. S. ____ OP 41-65

 Earl, K. M.; Murphy, F. M., and ______ OFR 10-67

 Eaton, G. P.; Ratte, J. C., with others, and GS 2-69

 Eaton, W. L., and Gait, G. B. _______ IC 8379

 Eccleston, B. H.; Ellis, C. F., Kendall,

 R. F., and _______ OP 43-65

 Foster, N. G., with others, and ______ RI 6671

 Kendall, R. F., and _______ OP 80-68, 63-69

 Eckard, W. E. _______ OP 104-68

 Stone, R. K., and _______ OP 80-68, 63-69

 Eckard, W. E. _______ OP 104-68

 Eakin, J. L., and _______ OP 44-68

 Eakin, J. L., and Heath, L. J. _____ OP 44-68

 Eckerd, J. W. _______ OP 31-69

 Baker, A. F., Brady, G. A., and _______ RI 6788

 K1 6688; UF 11Z-bb

 Eckerd, J. W.
 OP 31-69

 Baker, A. F., Brady, G. A., and ___ RI 6788

 Baker, W. F., with others, and ___ RI 6945

 Brady, G. A., Griffiths, H. H., and RI 7012

 Husack, Raiph, Brady, G. A., and RI 6881

 McKeever, R. E., Woolf, P. L., and

 Sanner, W. S.

 Ramsey, J. W., Brady, G. A., and __ RI 6657

 Ramsey, J. W., Brady, G. A., and __ RI 6657

 Ramsey, J. W., with others, and __ RI 6657

 Gayle, J. B., Shotts, R. Q., and __ RI 6620

 Edgerton, C. D., Jr. ___ IC 8270; MY 1968 (v. 111)*

 Cox, D. P., and

 Kemnitzer, W. J., and

 Meyer, R. F., and

 GS 4-68*

 Meyer, R. F., and

 GS 4-68*

 Meyer, R. F., and

 GS 4-68*

 Edlund, V. E.; Fuller, H. C., and _____ GS 4-68* Edlund, V. E.; Fuller, H. C., and _____ RI 6794 Effinger, A. W., and Wasson, J. A. _____ IC 8432 Egleson, G. C.; Collins, A. G., and _____ OP 75-67 Ehlers, E. G.; McCormick, G. R., and ____ OP 138-67 Eilerts, C. K. _____ OP 135-68 s, C. K. _____ OP 135-66 - Archer, F. G., and _____ OP 132-67, 133-67 - Baker, P. A. ____ Eilerts, C. K. __

 Archer, F. G., and _____ OF 132-67, 153-67

 Baker, B. A., and _____ OP 110-66

 Ham, J. D., and _____ OP 26-67

 and Sumner, E. F. ____ OP 136-67, 133-68

 Sumner, E. F., and Potts, N. L. OP 42-65

 Eilertsen, D. E. _____ B 630*; MY 1968 (v. II)*

 Eilertsen, N. A.; Espenshade, G. H., and GS 4-68*

 Herz, Norman, and _____ GS 4-68*

Paine, R. S., and _____ IC 8273

Eisle, J. G., and Bauer, D. J. _____ RI 6601 El-Sabban, M. Z.; Scott, D. W., and ____ OP 69-69. 142 - 69IC 8304⁴ Elger, G. W., Banning, L. H., and Moser, K. W. Hunter, W. L., and Armantrout, RI 6802 C. E. Elkins, D. A.; Dean, K. C., Hussey, S. J., RI 7210 Elkins, D. A.; Dean, K. C., Hussey, S. J., and RI 6656 and Placek, P. L. OP 73-69 Placek, P. L., and Dean, K. C. RI 6946 and Schack, C. H. IC 8438 Ellickson, M. L.; Horino, F. G., Hoskins, J. R., and RI 7095 Ellis, C. F., Chase, J. O., and Hurn, R. W. OFR 5-69 Dimitriades, Basil, Seizinger, D. E., and OP 179-69 Kendall, R. F., and Eccleston, B. H. C. OP 43-65
 Kendall, R. F., and Eccleston,

 B. H.
 OP 43-65

 Ellman, R. C.
 OP 30-68

 and Belter, J. W.
 P 5-66

 Be'ter, J. W., and Dockter, Leroy
 RI 6677, 7037; IC 8376*

 Dockter, Leroy, Belter, J. W., and RI 7010
 RI 7010

 Odenbaugh, M. L., and
 RI 7043

 Sondreal, E. A., Cooley, A. M., and RI 6891
 Emerson, D. E.

 Sondreal, E. A., Cooley, A. M., and RI 6891

 Emerson, D. E.
 IC 8417*

 Miller, J. E., Carroll, A. J., and ____ RI 6674

 Seitz, C. A., and _____ OP 1-68

 Stroud, Lowell, and Meyer, T. O. OP 31-66

 Stroud, Lowell, Meyer, T. O., and RI 6936

 Suttle, E. T. Burfield, D. W.,

 ord

 Engelmann, W. H., Tertenow, O., and Serini,

 A. A.

 RI 7048

 Engle, C. F., and Capp, J. P.

 OP 48-67

 Ergun, Sabri

 B 648: OP 68-68, 83-68, 32-69

 and Alexander, L. E.

 OP 117-67

 Bayer, James, and

 Bayer, James, and Van Buren,

 Wavne

 OP 175-67

 Wavne _____ OP 175-67 and Bean, E. H. _____ RI 7181 and Berman, Martin
 Berman, Martin, and
 RI 7124; IC 8400; OP 112-68, 150-69 Bivins, Doris and _____ OP 19-68 Donaldson, W. F., and Smith, R. W., McCartney, J. T., O'Donnell, H. J., and ______ RI 7231; OP 51-67 McCartney, J. T., Yazinsky, Y. B., and _____ OP 97-65 - and Mentser, Morris ____ OP 52-67, 157-67 - Townsend, J. R., and _____ OP 127-68 - Yasinsky, J. B., and _____ OP 167-65 - Yasinsky, J. B., and Townsend, - OP 152 67 OP 97-65 J. R. _____ OP 153-67 Ericksen, G. E., and Thomson, R. D. ___ GS 4-68* Erickson, E. E.; Pilney, J. P., and ____ OFR 17-68

* Author of chapter.

 Faber, J. H.
 OP 189-68

 Capp, J. P., and Spencer, J. D.
 IC 8348†

 McGee, J. P., Hamilton, G. M.,
 and

 and
 OP 117-66

 Spencer, J. D., Joyce, T. J., and
 IC 8314

 Faleck, Zvgmunt
 IC 8348*

 Faleck, Zvgmunt
 IC 8348*

 Faleck, Zvgmunt
 IC 8348*

 Faleck, Zvgmunt
 IC 8348*

 Falvey, A. E., and Henkes, W. C.
 MY 1968 (v. III)*

 Fanelli, L. L.; Harper, W. B., and
 IC 8314*

 Farber, Eduard
 IC 8417*

 Farley, K. R., and Peterson, H. E.
 RI 6820

 Farnsworth, J. F.; Macdonald, S., and
 IC 8314*

 Farnsworth, S. F., and
 IC 8314*

 Farsovert, R. F., and
 IC 8314*

 Farsovert, R. F., and
 IC 8314*

 Gibson, H. G., Bluman, D. E., and P 12-68
 Shale, C. C., Holden, J. H., and ... RI 7041

 Fehler, R. H.; Carpenter, L., Nishi,
 J. M., and
 OP 195-68

 Feitler, S. A.
 IC 8310*

 Fischer, R. P., and
 GS 4-68*

 Shale, C. C., Holden, J. H., and ... RI 7041

 Fehler, R. H.; Carpenter, L., Nishi,
 J. M., and

 J. M., and
 GS 4-68*

٢

٢

) E

١

E

Bienstock, D. _____ OP 135-68 Ferber, B. I. _____ OP 33-66, 109-66 _____ Schutz, R. H., Kloos, E. J., and ____ IC 8281

	Fergus, A. J., and Sullivan, G. V RI 7189 Sullivan, G. V., and Workentine,
	G. F. KI (188 Ferrante M. J. Block F. E. Fugate A. D.
	and Skirvin, F. A RI 7254
	Ferrero, E. P.; McKinney, C. M., Wenger, W. J., and
	Fester, J. 1., and Robinson, W. E OP $34-66$ Field, J. H OP $109-69$ P $4-65$
	 Bienstock, D., Myers, J. G., and RI 7021 Bienstock, D., with others, and OP 15-65 Denstock, D., with others, and CP 15-65
	Fester, J. I., and Robinson, W. E. OP 34-66 Field, J. H. OP 109-69 and Bienstock, D. OP 109-69 Bienstock, D., Myers, J. G., and RI 7021 Bienstock, D., with others, and OP 15-65 Demeter, J. J., with others, and RI 7033 and Forney, A. J. OP 63-67 Forney, A. J., Gasior, S., and P 6-69 Forney, A. J., with others, and RI 6609, 6797 Gasior, S. J., Forney, A. J., and RI 6605; OP 55-65; P 7-67 Johnson, G. E., Forney, A. J., and P 11-69
1	Johnson, G. E., Forney, A. J., and P 11-69 Johnson, G. E., Kunka, L. M., and OP 75-65 Johnson, G. E., with others, and
: I	RI 6884, 6994; UP 90-67, 12-68
	and OP 157-68 Perry, Harry, and OP 180-67, 27-68 Fillo, P. V.; Dodge, F. C. W., and GS 10-67 Pearson, R. C., Hayes, P. T., and GS 11-67 Williams, F. E., Bloom, P. A., and NMNR Fincher J. C. and Dear D. W. A., and NMNR
	 Pearson, R. C., Hayes, P. T., and GS 11-67 Williams, F. E., Bloom, P. A., and _ NMNR Fincher, L. C., and Desv, D. HOP 156-68
	Findeis, A. F.; Smelley, A. G., Brantley, F. E., and OP 78-66 Fine M. M. OP 110-69
	and Bernstein, N
	and Leonhard, G. E
	 Melcher, N. B., and Melcher, N. B., Woolf, P. L., and P 12-66 and Prasky, Charles R 6764
	 Williams, F. E., Bloom, P. A., andNMNR Fincher, L. C., and Desy, D. HOP 156-68 Findeis, A. F.; Smelley, A. G., Brantley, F. E., andOP 110-69 and Bernstein, NOP 35-66 and Heising, L. FOP 99-68 Leak, V. G., andOP 183-68, 162-69 and Leonhard, G. EIC 8376* and Melcher, N. B., andOP 46-65 Melcher, N. B., woolf, P. L., and P 12-66 And Prasky, Charles RI 6764 Reuss, J. L., and RI 7290; OP 22-68, 34-69
	Schluter, R. B., and RI 7069
	Finger, L. W.; Blake, R. L., with others, and Finke, H. L.; Good, W. D., with others, and OP 2-69 Hossenlopp, I. A., and Berg, W. T. OP 47-65 Messerly, J. F., and Todd, S. S. OP 48-65 Messerly, J. F., Todd, S. S., and OP 64-66, Messerly, J. F., Todd, S. S., and OP 64-66,
	Messerly, J. F., and Berg, W. I. OF 47-35 Messerly, J. F., and Jord, S. S. OP 48-65 Messerly, J. F., Todd, S. S., and OP 64-66,
	Messerly, J. F., with others, and OP 98-67
	J. H GS 2-67 Fischer, R. L.; Fogelson, D. E., D'Andrea, D. V., and RI 6679, 6702
-	Finnell, T. L., Bowles, C. G., and Soule, J. H. Fischer, R. L.; Fogelson, D. E., D'Andrea, D. V., and RI 6679, 6702 Fischer, R. P., and Feitler, S. A GS 4-68* Luedke, R. G., Sheridan, M. J., and Raabe, R. G GS 8-68 Fischer, W. G.; Morgan, T. A., Sturgis, W. J., and RI 6675
4	Fischer, W. G.; Morgan, T. A., Sturgis, W. J., and Fischler, F.; Kovalik, M. J., with others,
l V	and RI 7235
	Fish, G. E., Jr RI 6966 Adams, J. W., and GS 4-68* Stansfield, R. G., Feitler, S. A., and GS 4-68*
	Withington, C. F., and GS 4-68* Wright, W. B., with others, and GS 4-68* Fisher, F. S.; Ketner, K. B., with others,
-	Fisher, F. S.; Ketner, K. B., with others, and GS 5-66

Fisher, L. R.; Collins, A. G., and _____ OP 13-69 Fleck, D. C.; Kesterke, D. G., Henrie, T. A., and ______ RI 6789 Fleming, R. D., Dimitriades, Basil, and Hurn, R. W. _____ OP 49-65 _____ Hurn, R. W., Chase, J. O., and __ OP 72-65 _____ Hurn, R. W., Dimitriades, Basil, and _____ OP 179-67 Van Dolah, R. W., Mason, C. M., and ______ RI 7195 ----- Van Dolah, R. W., with others, and RI 6773 Fortney, D. R.; Berber, J. S., Rice, R. L., and ______ OP 147-67

 Forthey, D. R.; Berber, J. S., Rice, R. L.;

 and

 Foster, H. L.; Jolly, J. H., and

 OP 194-67

 Foster, N. G.

 RI 6741

 Hermstra, R. J., and

 Hirsch, D. E., Kendall, R. F., and

 Eccleston, B. H

 RI 6671

 Eccleston, B. H. _____ RI 6671 Thompson, C. J., with others, and _ RI 6879; OP 90-66 Fowkes, R. S., and Wallace, J. J. _____ RI 7090

 Fowkes, R. S., and Wallace, J. J.
 RI 7090

 and Wanchek, G. A.
 RI 7283

 Fowkes, W. W.; Beckering, Willis, Frost,
 RI 7283

 —
 Freeman, P. G., and
 RI 7203

 —
 Freeman, P. G., and
 RI 7176

 —
 Paulson, L. E.; and
 RI 7176

 —
 Youngs, R. W., and
 OP 99-66

 Fowler, K. A.; Crosby, R. L., and
 RI 6673

 Fox, M. B.; Klyce, D. F., and
 MY 1968 (v. 111)*

 Fraas, Foster
 RI 6639, 6722, 7292

 Frances, Angelo; Kawenski, E. M., with
 others, and

 Others, and
 RI 6710

 Franklin, T. W.; Feld, I. L., Lampkin, W. M., and Frederic, W. H.; Abernathy, R. F., Gibson, OP 31-67 P 10-68

F. H., and _____ RI 6579

.

[&]quot; Author of chapter.

- and GS 4-68* Cornwall, H. R., Vhay, J. S., and GS 4-68* Maxwell, C. H., Stansfield, R. G., GS 4-68* Maxwell, C. H., Stansheid, R. G., and G. Jr., Stansheid, R. G., Jr., and G. Jr., GS 4-68*
 Friedel, R. A. and Shewchyk, Y. OP 70-68
 Durie, R. A., and Shewchyk, Y. OP 70-68
 Durie, R. A., Shewchyk, Y. and OP 116-68
 and Gibson, H. L. OP 27-67, 72-68
 Karn, F. S., Sharkey, A. G., Jr., and Gibson, H. L. OP 27-67, 72-68
 Kessler, Theodore, Sharkey, A. G., Jr., and Gibson, Tru-man, Cop 92-67, 72-68
 Retcofsky, H. L., Hoffman, J. M., Jr., and Gibson, J. A. B 640
 Retcofsky, H. L., Sharkey, A. G., Ir, and Gibson, J. A., and Gibson, Jr., Sharkey, A. G., Jr., and Gibson, J. A., and Gibson, J. A., Gibson, J. A., and Gibson, J. A., Gibson, J. A., and Gibson, J. A., Gibson, J. A., Jr., and Gibson, J. A., and Gibson, J. A., Gibson, J. A., And Gibson, J. A., Gibson, J. A., Jr., and Gibson, J. A., And Gibson, J. A., And Gibson, J. A., Gibson, J. A., And Gibson, J. A., An and _____ __ GS 4-68* and - Retcofsky, H. L., Sharkey, A. Jr., and - Retcofsky, H. L., Stark, J. M., and OP 78-68, 148-68 - and Sharkey, A. G., Jr. _ RI 7122; OP 25-67 - Sharkey, A. G., Jr., Shultz, J. L., and B 634; RI 6868; OP 126-65, 127-65, 34-67, 35-67 and Retcofsky, H. L., Sharkey, A. G., Sharkey, A. G., Jr., with others

 Sharkey, A. G., Jr., with others

 and

 OP 110-68

 Shultz, J. L., Sharkey, A. G., Jr., and

 and

 Shultz, J. L., with others, and ____ OP 131-65

 Shultz, J. L., with others, and ____ OP 152-68

 Friedman, S., and Hiteshue, R. W. _____ P 7-69

 Kaufman, M. L., Blaustein, B. D., Dean, R. E., and Wender, I. _____ OP 52-65

 Hawk, C. O., with others, and ____ OP 87-68

 Lewis, P. S., Graves, R. D., and

 Hiteshue, R. W. _____ RI 7209

 Lewis, P. S., and Hiteshue, R. W. OP 32-68

 Hawk, S. O., with others, and ____ OP 38-68

 Kaufman, J. A., with others, and ____ OP 38-68

 Friedman, Sidney, and Kaufman, M. L. __ OP 36-66

 Kaufman, M. L., and Wender, I. ______ OP 188-67

 _ OP 110-68 and Irving Kaufman, M. L., Wender, Irving, OP 188-67
 Ratinital, Ji. L., Hensel, C., OP 83-67

 and

 Frohne, Karl-Heinz

 Schrider, L. A., and Romeo, M. K. RI 7272

 Frommer, D. W.

 OP 84-67, 82-69, 111-69, 112-69

 and Colombo, A. F.

 Colombo, A. F., Sorensen, R. T.,

 and
 Colombo, A. F., Sofensen, L. 2, and ______OP 30-65 ______Heising, L. F., and ______RI 6650, 6895 _______Sorensen, R. T., and _______RI 6719, 6976 Frost, C. M.: Beckering, Willis, Fowkes, W. W., and _______RI 6787 Fry, J.; Cupps, C. Q., and _______RI 6909; OFR 2-67 through 4-67 * Author of chapter.
- Fu, Y. C., and Blaustein, B. D. _____ OP 168-67 11-69, 84-69
- Greenfield, Harold, Metlin, S. J., and Wender, Irving _____ OP 178-67 Fugate, A. D.; Blake, H. E., Jr., with
- Fugate, A. D.; Blake, H. E., Jr., with others, and
 RI 6939

 Ferrante, M. J., with others, and __ RI 7254

 Koch, R. K., Blake, H. E., Jr., and RI 6877

 Fukubayashi, H., O'Keefe, T. J., Ken-worthy, H., and Higley, L. W. __ OP 148-69

 Fulkerson, F. B.

 and Gray, J. J. ______ IC 8267

 and Robertson, H. F.

 Stroud, R. B., with others, and _____ B 645

 Fulkermann, John

 Fullermann, Richard; Schreck, A. E., Johnson, E. E., and ______ GS 4-68*

 Fuller, H. C.

 RI 6762

 Jonnson, E. E., and
 GS 4-66

 Fuller, H. C.
 RI 6762

 and Edund, V. E.
 RI 6794

 Furlong, L. R., and Dominques, L. P.
 OP 113-66

 Hyde, G. R., Domingues, L. P.,
 and

 and
 OP 73-65

 Hyde, G. R., Domingues, L. F.,

 and
 OP 73-65

 Furno, A. L., Imhof, A. C., and Kuchta,
 OP 85-68

 J. M.
 OP 85-68

 Kuchta, J. M., with others, and __ OP 163-68

 Fursman, O. C., Blake, H. E., Jr., and

 Mauser, J. E.

 Blake, H. E., Jr., with others, and RI 6939

 Good, P. C., and

 Hunter, W. L., and

 RI 6734

 Furukawa, G. T.; Westrum, E. F., Mc

 Cullough, J. P., and

E

E

f 1 ŧ

Ĺ

£.

Gabler, R. C., Jr., and Peterson, M. J. -- OP 33-68 Gair, J. E.; Steven, T. A., with others,

 Gair, J. E.; Steven, T. A., with others, and
 GS 3-69

 Gait, G. B.; Eaton, W. L., and
 IC 8379

 Gall, R. L., and Spencer, J. D.
 OP 37-66

 Gallagher, J. J.; Goldberg, S. A., Orning,
 A. A., and

 A. A., and
 OP 55-68

 Young, W. H., and
 MY 1968 (v. 1-11)*

 Gallagher, J. L.
 MY 1968 (v. 1-11)*

 Gallagher, J. L.
 MY 1968 (v. 1-11)*

 Galli, A. F.; Bluman, D. E., with others,
 and

 RI
 7057

 and ______ RI 7057 _____ Coates, N. H., and ______ RI 6856 Gallo, P. A.; Arndt, H. H., with others, Gallo, P. A.; Arndt, H. H., with others, and ______ GS 4-68* Gambs, G. C. ______ IC 8348* Gardner, P. M.; Anderson, P. C., with others, and ______ OP 176-69 Gardner, R. D., and Pincus, H. J. _____ OP 162-68 Gardner, T. E., and Taylor, A. R., Jr. ____ OP 146-69 ______ Taylor, A. R., Jr., and _____ RI 6664, 6925, 7040 Garland, T. M. ______ RI 6664, 6925, 7040 Garland, T. M. ______ RI 66733; OP 38-66 Garvey, J. R. ______ RI 6733; OP 38-66 Garvey, J. R. ______ RI 6733; OP 38-66 Garvey, J. R. ______ OP 55-65, 114-66, 6-67 ______ Grain, C. F., and ______ RI 6619 Gasior, S. J., and Forney, A. J. ______ P 6-67 ______ Forney, A. J., and Field, J. H. _____ RI 6605; OP 55-65; P 7-67 ______ Forney, A. J., with others, and _____ RI 6797 Gaskill, D. L.; Ratte, J. C., with others, and GS 2-69 Gates, G. L., and Caraway, W. H. ______ RI 6602; Gates, G. L., and Caraway, W. H. ______ RI 6602, 6658, 6960, 7013 - Manger, G. E., Cadigan, R. A., and Gayle, J. B., Eddy, W. H., and Shotts, R. Q. RI 6620 —— Gomez, Manuel, Taylor, A. R., Jr., RI 6607 _OP 95-69

_____ RI 6607 and _____ Gomez, Manuel, Walters, J. G.,

and _____ RI 7024, 7093 Gayman, Wendell _____ OP 56-65

 Gealy, E. J.
 MY 1968 (v. IV)*

 and Doughman, A. J.
 MY 1968 (v. IV)*

 and Kimbell, C. L.
 MY 1968 (v. IV)*

 and Kimbell, C. L.
 MY 1968 (v. IV)*

 and Kimbell, C. L.
 OP 57-65, 85-67

 Gee, K. H., Mahan, W. M., and Ostrowski,
 DP 11-67

 Geer, M. R.
 OP 11-67

 Jacobsen, P. S., and Sokaski, M.
 RI 7098; IC 8430

 Jacobsen, P. S., and Sokaski, M.
 RI 7010

 Perry, Harry, with others, and
 BPA 1-65

 Gentile, C. R.
 MY 1968 (v. IV)*

 Perry, Harry, with others, and
 BPA 1-65

 Geological Survey and Bureau of Mines
 GP 144-65

 George, D. R., and Riley, J. M.
 OP 11-68

 George, D. R., and Riley, J. M. _____ P 11-68 _____ Riley, J. M., and Crocker, Laird __ RI 6928 _____ Riley, J. M., and Ross, J. R. _____ P 8-69; OP 86-68 OP 86-68 Rosenbaum, J. B., Dannenberg, R. O., and ______OP 57-67 and Ross, J. R., and Prater, J. D. ____OP 48-68 ______Tame, K. E., Crane, S. R., and Higbie, K. B. _____OP 118-68 George, L. C., Doerr, R. M., and Visnapuu, Aarne ______OP 57-69, 65-69 ______Jensen, J. W., and Doerr, R. M. _____ RI 7022 ______Visnapuu, A., Marek, B. C., and Doerr, R. M. ______ RI 7307 Gerard, J. A.; Hill, T. E., Jr., with others, and _______ RI 7245 Gerstle, R. W., Cuffe, S. T., Orning, A. A., and Schwartz, C. H.
Gevertz, Harry, Lemon, R. F., Hollis, W. T., Lekas, M. A., Ward, D. C., Atkinson, C. H., and Bonner, Norman **RI** 7245 OP 58-65 OP 49-67 Norman Norman OP 49-67 Gibbs, H. L.; Batty, J. V., Poston, A. M., Jr., and Gibbs, L. W., Gross, J. R., and Pfleider, E. P. OP 85-69 Gibson, F. C.; Bowser, M. L., with others, and a construction of the second seco ... OP 9-66 and Ribovich, John, Watson, R. W., Ribovicn, John, H. W., Murphy, J. N., and RI 6746, 6903 Watson, R. W., Ribovich, John, and RI 6753, RI 6753, and _____ 01 6753, Gibson, F. H.; Abernethy, R. F., and ____ RI 6753, 7054, 7184
 Abernethy, R. F., Frederic, W. H.,
 and
 RI 6579

 Abernethy, R. F., Peterson, M. J.,
 and
 RI 7240, 7281

 Gibson, H. G., Dwyer, H. A., Peskin, R. L.,
 and Spencer, J. D.
 OP 39-66

 and Fasching, G. E.,
 IC 8314*

 Fasching, G. E., and Bluman, D. E. P 12-68
 Gibson, H. L.; Friedel, R. A., and
 OP 23-67

 Gifford, T. J.; Ergun, Sabri, and
 OP 80-69
 Gilbert, H. L.; Beall, R. A., with others, and B 646*

 Gilbert, W. H.; Cato, R. J., Kuchta, J. M.,
 and
 OP 75-67

 Gilkey, M. M., and Stotelmeyer, R. B.
 IC 8276,
 Abernethy, R. F., Frederic, W. H., 8328 Gilley, J. L.; Barry, A. J., with others, and RI 6971 Sporcic, Rudolph, and Zona, Anthony _____ OP 59-65 Ginsberg, H. H., Schlesinger, M. D., and Hiteshue, R. W. _____ P 8-67 Girard, Roselle; Netzeband, F. F., and _____ MY 1968 (v. III)*

Glaenzer, J. A.; Walters, J. G., Ortuglio, C., and B643 Walters, J. G., Shultz, J. L., and RI 6973 Gleason, D. S.; Skidmore, D. R., Severson, D. E., and IC 8376* Glover, T. O. MY 1968 (v. 111)* Gnagy, W. L. RI 6587*, 6737* Berryhill, R. V., Mulligan, J. J., and OFR 1-65 Mulligan, J. J., Havens, Rich-ard*, and OFR 7-65* Goetzinger, J. W.; Whisman, M. L., Ward, C. C., and RI 7325 Goff, A. J.; Strimbeck, D. C., with others, and RI 7295

 Gomes, J. M., Baker, D. H., Jr., and Uchida, Kenji
 P 13-68

 Heinen, H. J., Baker, D. H., Jr., and P 14-68

 Uchida, Kenji, and Baker, D. H., Jr.

 Jr.

 and Wong, M. M.

 RI 6742, 6805, 7106

 and Wong, M. M.

 RI 7247

 Gomez, Manuel, Gayle, J. B., and Taylor, A. R., Jr.

 Koch, G. S., Jr., and

 Landers, W. S., Boley, C. C., and

 RI 6693

 Landers, W. S., shultz, J. L., and Sharkey, A. G., Jr.

 RI 6586

 Landers, W. S., and Wagner, E. O. RI 7141

 Landers, W. S., Wagner, E. O.,

 and

 Sharkey, A. G., Jr.

 B 639

 Landers, W. S., Wagner, E. O.,

 B 639

 and ______ B 639 - Landers, W. S., with others, and _ RI 6608 - and Meyer, W. L. _____ RI 7237 - Walters, J. G., and Gayle, J. B. ____ RI 7024, 7093 7093 Good, P. C., Butler, M. O., and Yerkes, L. A. RI 6785 and Fursman, O. C. _____ RI 7140 and Gruzensky, W. G. _____ RI 7264 _____ and Tress, J. E. _____ RI 7213
 and Tress, J. E.
 RI 7213

 Good, W. D.
 OP 86-69

 and DePrater, B. L.
 OP 40-66

 Finke, H. L., Messerly, J. F.,
 Guthrie, G. B., Harrison, R. H.,

 and Douslin, D. R.
 OP 2-69

 and Månsson, M.
 OP 72-69

 Smith, N. K., and
 OP 184-67, 185-67

 Good, William
 OP 178-69

Glaenzer, J. A.; Walters, J. G., Ortuglio, C., B 643

- Gower, H. D., Vedder, J. G., Clifton, H. E., and Post, E. V. OP 32-65

GS 1-66 Graham, Annette, and Brooks, D. B. ... OP 113-69 Grahl, J. L., and Janssen, Kent _____ IC 8376*

* Author of chapter.

6 y 1

È

1

),

Grain, C. F and Garvie, R. C Grant, R. L Hanna, N. E., and Van Dolah, R W	٦Ē	82-67
Grant, R. L.		8324
Hanna, N. E., and Van Dolah,		0021
R. W	RI	0011
R. W. Murphy, J. N., and Bowser, M. L. Grantz, Arthur; Cobb, E. H., with others,	RI	6921
Grantz, Arthur; Cobb, E. H., with others, and		7-68
Graves, R. D.; Friedman, Sam, with others,		
	_ D T	7209
Kawa, Walter, Hiteshue, R. W., and RI 6829; (nΡ	13 66
Grav. J. J.; Fulkerson, F. B., and	ίc	8267
Gray, J. J.; Fulkerson, F. B., and Kingston, G. A., and McComb, M.	A.	
MY 1968 —— Petersen, N. S., and Kingston, G. A.	(v.	III)*
Green J H S Harrison D J Kypas-	10	8381
Green, J. H. S., Harrison, D. J., Kynas- ton, W., and Scott, D. W O Green, T. E RI 7072; OP 60-69 Campbell, W. J., Spano, E. F.,	P 1	14-69
Green, T. E RI 7072; OP 60-6	5, 1	36-68
Campbell, W. J., Spano, E. F.,	סר	18-66
	ΰ₽	49-66
Law, S. L., and TPR 7; O	P 1	19-69
Spano, E. F., and)P	83-66
Greene, R. U.; walker, G. W., Pattee, E. C. and	GS	4-66
 Campbell, W. J., Spano, E. F., and Hubbard, G. L., and Law, S. L., and Spano, E. F., and Greene, R. C.; Walker, G. W., Pattee, E. C., and Greenfield, Harold; Fu, Y. C., with others, and Greninger, N. B.; Singer, J. M., Grumer, J., and 	00	
and0	P 1	78–67
Greninger, N. B.; Singer, J. M., Grumer, J.,	DT	7252
and Gresseth E. W. ()P	61-65
Gresseth, E. W	RI	7173
Griffin, R. E., and Marovelli, R. L. Griffith. F. E., Magnuson, M. O., and Kim-	RI	6913
Griffith, F. E., Magnuson, M. U., and Kim-	Ρī	6779
Griffith, R. F	RI	6758
Griffith, R. F 0	FR	3-68
Griffiths, H. H.: Brady, G. A., and	RI	7086
Brady, G. A., Eckerd, J. W., and	-RI	7012
Groff S I.	IC .	4-00* 8376*
Son, L. E Kube, W. R., Elder, J. E., and C Kube, W. R., Elder, J. E., and C Wagner, R. J., and Wittmaier,	IC -	8376*
Kube, W. R., Elder, J. E., and ()P	49-68
A. J ()P	87-67
A. J. Grose, L. T., Hileman, D. H., and Ward, A. E. Gross, J. R.; Gibbs, L. W., Pfleider, E. P.,		
A. E.	IC	8326
and)P	85-69
Grout, J. C	ĪC	8423
Groves, R. D.; Dean, K. C., and May, S. L.	ŖI	7182
Grout, J. C. Groves, R. D.; Dean, K. C., and May, S. L. Grube, A. F. Grube, J. Joseph	(ע. קו	1V)* 62_65
and Harris, M. E.	RI	6629
Grumer, Joseph (and Harris, M. E. Singer, J. M., Bruszak, A. E., and _	RI	6761,
		7103
Singer, J. M., Cook, E. B., and Singer, J. M., Greninger, N. B., and	RI	7959
	RI	6954
		6958
and Strasser, Alexander C)P (63-65
Gruzensky, W. G.: Good, P. C., and	RI	6740
Town, J. W., Sanker, P. E., and Guereca, R. A.; Miller, J. E., with others,	1+1	0149
and	RI	6979
and Richardson, H. P., Cummins, D.,		
and Richardson, H. P., Gordon, J. L.,) P (91 68
Richardson, H. P., Gordon, J. L.,	m 7	00.10
and Miller, J. E.	RI	694 9
Richardson, H. P., Gordon, J. L., Walker, J. D., and Cooper, J. L.	IC	8317
———— Richardson, H. P., and Walker,	•••	0011
	RI	6995

 Gueraca, R. A., Richardson, H. P., with others, and ______OP 182-67, 92-68

 ______Van Doren, K. R., Richardson, H. P., Cummins, D., and ______OP 185-69

 Guest, P. G. ______OP 64-65

 Guild, P. W.; Wright, W. B., with others, and _______GS 4-68*

 Gustavson, S. A. ______MY 1968 (v. III)*

 Guthrie, Boyd; Matzick, Arthur, with others, and ________B 635

- Guthrie, Boyd; Matzick, Arthur, with others, and ______ B 635 Guthrie, G. B.; Good, W. D., with others, and ______ OP 2-69 ______ Messerly, J. F., Todd, S. S. and ____ OP 99-67 ______ Messerly, J. F., with others, and OP 98-67 Gutowsky, H. S.; Retcofsky, H. L., Frankel, E. N., and _____ OP 31-67 Gwynn, T. A. IC 8304*
- Gwynn, T. A. _____ IC 8304*

H

- Haas, L. A., and Khalafalla, S. E. RI 7207 Khalafalla, S. E., Kilau, H. W., and RI 7301 Khalafalla, S. E., and Weston, P. L., Jr. _____ RI 7064 _____ and Schultz, C. W. _____ RI 6682 Habberstad, J. L., Osen, Lars, with others, and Hadden, J. D., and Cervik, Joseph _____ and Sainato, Albert _____ RI 6613 TPR 11 TPR 12

 and Sainato, Albert
 TPR 12

 Haines, W. E.
 OP 65-65

 Cook, G. L., and Dinneen, G. U.
 OP 4-68

 Davis, T. C., Petersen, J. C., and OP 28-66

 Latham, D. R., and
 OP 88-65

 Morris, J. C., and OP 103-65

 Morris, J. C., Latham, D. R., and
 OP 103-65
- 122 69
- Okuno, I., Latham, D. R., and __ OP 109-65,

- Plancher, Henry, Morris, J. C.,
 OP 108-68

 Hale, J. H.; Smith, H. M., and
 RI 6846

 Hale, W. N.
 IC 8305; MY 1968 (v. I-II)*

 Carrillo, F. V., McComb, M. A., and
 MY 1968 (v. III)*
- McComb, M. A., and McIlroy, Paul MY 1968 (v. III)*
- Petersen, N. S., and _____ BPA 2-65, 3-65
- Hall, A. W. IC 8314* IC 8314* Stewart, R. F., and _ OP 144-67 Hall, F. P., and Broderick, G. N. _____ IC 8402
- Hall, H. J. __ IC 8314* Halstead, P. N., Call, R. D., and Hubbard,
- S. J. ______ RI 7097 Ham, J. D., and Eilerts, C. K. _____ OP 26-67
- Ham, W. E.; McMahan, A. B., and MY 1968 (v. III)*

E)

E ł E

Ĺ Ľ F

- Hamilton, G. M.; McGee, J. P., Faber, J. H., and Hamke, J. R., Marchant, L. C., and Cupps,

- Hamke, J. M., Marchand, Z. C., B 629 C. Q. B 629 Hamlin, H. P.; Drake, A. A., Jr., Denny, M. V., and OP 134-66 Knechtel, M. M., Hosterman, J. W., MNR and _____ MNR O'Neill, B. J., Jr., with others, and ____ PTG Sweeney, J. W., and ____ RI 6574, 6614 Hanna, N. E.; Burgess, D. S., with others, and

- R. W. _____ RI 6815

Author of chapter.

TPR 19 and Harrison, D. J.; Green, J. H. S., with others, and _____OP 114-69 Harrison, J. E., Reynolds, M. W., Klein-kipf., M. D., and Pattee, E. C. ____ GS 1-69 Harrison, L. H. _____ OP 170-65 Harrison, R. H. _____ OP 44-66 _____ and Douslin, D. R. _____ OP 45-66 _____ Douslin, D. R., Moore, R. T., and OP 152-67, 108-69 108-69 Good, W. D., with others, and ____ OP 2-69 _____ Moore, R. T., and Douslin, D. R. OP 200-67 _____ Moore, R. T., Douslin, D. R., and OFR 14-69 Harstead, J. N., Blasko, D. P., and Biggs, Harstead, J. N., Blasko, D. P., and Biggs, Paul RI 7056 Hartner, F. E.; Walker, F. E., and IIC 8301 Hartwell, J. W. MY 1968 (v. I-II)* Hosterman, J. W., with others, and GS 4-68* Havens, D. E. IC 8417* Havens, Richard, and Dean, K. C. IIC 8417* Havens, Richard, and Dean, K. C. RI 7288 Dean, K. C., Dolezal, H., and IIC 0P 14-69 Dean, K. C., Harper, K. T., and IIC 7261 Mulligan, J. J., Gnagy, W. L.*, and OFR 7-65 Mulligan, J. J., Gnagy, W. L.*, and ______OFR 7-65 Haver, F. P., Uchida, K., and Wong, M. M. RI 7185 Hawk, C. O., Friedman, Sam, McCullough, E. B., and Hiteshue, R. W. _____ OP 87-68 and Hiteshue, R. W. _____ B 622 Schlesinger, M. D., Dobransky, Paul. and Hiteshue, R. W. _____ RI 6655 Hawkins, M. E., and Jirik, C. J. _____ IC 8313 Hay, J. E.; Bowser, M. L., with others, and OP 9-66

1

1

]

1 J

 Hayes, W. P., and Neilson, H. P.
 RI 6918

 Hazen, K. A.; Carpenter, L., Lewis, R.
 W., and
 OP 107-66

 Hazen, S. W., Jr.
 B 621; RI 6955

 and Meyer, W. L.
 RI 6778, 6867

 Headrick, A. F.; Nazaruk, Stanley, Rosa,
 Carl, and
 P 16-69

 Headrick, A. F.; Nazaruk, Stanley, Rosa,
 Carl, and
 P 16-69

 Heady, H. H.
 OFR 7-67

 Broadhead, K. G., and
 OP 19-65

 Heady, H. H.
 OFR 7-67

 Broadhead, K. G., Shanks, D. E.,
 and

 and
 OP 20-65, 10-66

 Whitehead, A. B., and
 OP 42-68

 Whitehead, A. B., and
 OP 97-66

 Heath, L. J.
 OP 97-66

 Heath, L. J.
 OP 97-65

 Heath, R. V., and
 OP 2-67

 Huff, R. V., and
 OP 2-67

 Huff, R. V., and
 OP 2-67

 Huff, R. V., and
 OP 2-67

 Hedgepeth, C. H.
 IC 84178; OP 88-69

 and Baker, J. I.
 MY 1968 (v. I-II)*

 Heemstra, R. J.; Dwiggins, C. W., with
 others, and

 others, and
 Miggins, C. W., with

 others, and
 Miggins, C. W., with

 </t

 Heemstra, R. J.; Dwiggins, C. W., with others, and _______ RI 7273

 ________ and Foster, N. G. ______ OP 46-66

 _______ and Johansen, R. T. ______ RI 6912

 Heide, H. E., and Mulligan, J. L. ______ OFR 2-65

 Heinen, H. J., and Baker, D. H., Jr. _____ RI 6834

 _______ Baker, D. H., Jr., and Gomes, J. M. P 14-68

 _______ Barber, C. L., and Baker, D. H. Jr. RI 6590;

 and Porter, Bernard
 RI 7250

 Heising, L. F., Daellenbach, C. B., and
 Anderson, E. E.
 RI 6991

 Fine, M. M., and
 OP 99-68

 and Frommer, D. W.
 RI 6650, 6895

 Helm, R. V.
 OP 159-69

 and Petersen, J. C.
 OP 97-68

 Henderlong, P. R.; Patterson, J. C., Jr.,
 Adams, L. M., and
 OP 97-68

 Henderson, A. W., Rhoads, S. C., and
 Brown, R. R.
 RI 7152

 Henkes, W. C.
 MY 1969 (v. I-II)*

 Bieniewski, C. L., and ...
 MY 1968 (v. III)*

 Brauch, E. F., and ...
 MY 1968 (v. III)*

 Burgin, Lorraine, and...
 MY 1968 (v. III)*

 Hileman, D. H., and ...
 MY 1968 (v. III)*

 Smith, M. C., and ...
 MY 1968 (v. III)*

 Hileman, D. H., and ...
 MY 1968 (v. III)*

 Smith, M. C., and ...
 MY 1968 (v. III)*

 Hileman, D. H., and ...
 MY 1968 (v. III)*

 Hileman, D. H., and ...
 MY 1968 (v. III)*

 Hileman, D. H., and ...
 MY 1968 (v. III)*

 Hileman, D. H., and ...
 MY 1968 (v. III)*

 Hileman, D. H., and ...
 MY 1968 (v. III)*

 Hileman, J. J., Johnson, P. W., Amey, E. B.
 RI 7299
 P9-67 and Porter, Bernard ____ RI 7250

 Interpose
 Jr.
 Jr.
 IC 8368

 Peters, F. A., Johnson, P. W., and
 RI 7156

 Mirby, R. C.
 RI 7156

 Peters, F. A., with others, and ...
 RI 6927

 Henrie, T. A.
 OP 89-69

 Kesterke, D. G., Fleck, D. C., and RI 6789

 Kleepies, E. K., Bennetts, J. P.,

 and

 and _____ TPR 9 Kleespies, E. K., and _____ RI 6875, 7039 Kleespies, E. K., Jackson, J., Jr., RI 7005 Morrice, E., Snedd, E. S., and ____ RI 7146 Morrice, E., with others, and ____ OP 5-69 Porter, Bernard, Meaker, R. E., and _____ RI 6736, 7008 Scheiner, B. J., Lindstrom, R. E., and _____ TPR 2, 8 Shedd, E. S., Marchant, J. D., and RI 6882

^{*} Author of chapter.

Henry, J. L., and Kelly, H. J. OP 68-65
Henry, J. L., and Kelly, H. J. OP 68-65 ————————————————————————————————————
(v. III)* Herz, Norman, and Eilertsen, N. A GS 4-68* Hess, Harold; Mulligan, J. J., and OFR 8-65 Hess, S. D OP 69-65 Hessevick, R. E.; Blake, R. L., with others, OP 126 co
Hester, J. A. OP 136-66 Hester, J. A. IC 8348* Hewlett, R. F. RI 6634 Heyl, A. V.; Wedow, Helmuth, Jr., Sweeney, J. W., and
Hibbard, W. R., Jr OP 88-67, 148-67 Hickain, W. M.; T. Kessler, with others,
Hickerson, R. A.; Brown, R. E., and P 4-68 Hickman, R. C. and Lynch, V. J RI 6932
Hiegel, J. M.; Wong, M. M., Martinez, G. RI 6818 M., and RI 7100 — George, D. R., with others, and OP 118-68 — George, D. R., with others, and OP 118-68 — George, D. R., with others, and OP 181-67 _ and Stamper, J. W. OP 34-68 Higgins, R. V., Boley, D. W., and Leighton, A. J. RI 6760, 7006; OP 137-68 _ and Lechtenberg, J. H. OP 57-69 _ and Leighton, A. J. RI 7011, 7111; OP 3-69 OP 3-69
 George, D. R., with others, and OP 118-68 Peters, F. A., Kirby, R. C., and OP 181-67 and Stamper, J. W. George 34-68
Higgins, R. V., Boley, D. W., and Leighton, A. J. RI 6760, 7006; OP 137-68 RI 6760, 7006; OP 57-69
Higgins, R. W.; Hopkins, R. L., with others, and RI 6796, 6970 Higley, L. W.; Fukubayashi, H., with RI 6796, 6970
Holman, J. L., Cole, E. R., and Ken-
worthy, H. TPR 18 Hileman, D. H.; Grose, L. T., Ward, A. E., and IC 8326
and IC 8326 and Henkes, W. C MY 1968 (v. III)* Hill, F. C.; Kintz, G. M., and OP 54-66 Hill, S. D., Adams, Arnold, and Block, F. E. RI 6849 Hill, T. E., Jr., and Calhoun, W. A RI 6914 Calhoun, W. A., and RI 6944
Kenworthy, H., Ritchey, R. A., and Gerard, J. A. Hille, J. B. Howell, W. D. and OP 128-69
 Kenworthy, H., Ritchey, R. A., and Gerard, J. A. Hille, J. B.: Howell, W. D., and OP 128-69 Hillier, L. V. Hills, I. R., Whitehead, E. V., Anders, D. E., Cummins, J. J., and Robin- son, W. E. GS 7-67
Hilpert, L. SGS 7-67 Hirsch, D. E.; Coleman, H. J., Dooley, J. E., andOP 77-69 Foster, N. G., with others, and RI 6671 Hiser, A. L.; Berber, J. S., with others, RI 6916
Foster, N. G., with others, and RI 6671 Hiser, A. L.; Berber, J. S., with others,
and RI 6916 Hiteshue, R. W OP 89-67 Friedman S and P 7-69
Hiteshue, R. W. OP 89-67 Friedman, S., and P 7-69 Friedman, Sam, Lewis, P. S., andOP 32-68 Friedman, Sam, with others, and RI 7209 Ginsberg, H. H., Schlesinger, M. D., and P 8-67 Horde C. O. and
and P 8-67 — Hawk, C. O., and B 622 — Hawk, C. O., with others, and RI 6655; OP 87-68
Kawa, Walter, Graves, R. D., and _ RI 6829; OP 43-66
Lewis, P. S., Friedman, Sam, and OP 14-68 Mima, J. A., with others, and OP 38-68 Schlesinger, M. D., and P 17-66 Zeilinger, J. E., with others, and RI 6858 • Author of chapter.

.

.

,

njeimstad, K. E.; Bur, I. K., Incwis-
Hjelmstad, K. E.; Bur, T. R., McWil- liams, J. R., and OP 40-69 Bur, T. R., Thill, R. E., andRI 7333, 7335 Hobbs, R. G., and Auvil, J. H., Jr MY 1968
Hobbs, R. G., and Auvil, J. H., Jr MY 1968
(v. III)*
Brobst, D. A., and GS 4-68* Kinkel, A. A., Jr., Feitler, S. A.,
Kinkel, A. A., Jr., Feitler, S. A.,
Parker R L and GS 4-68*
Wedow, Helmuth, Jr., and GS 4-68*
Hoertel, F. W RI 6731; OP 90-69
Kinkel, A. A., Jr., Feitler, S. A., and GS 4-68* — Parker, R. L., and GS 4-68* — Thayer, T. P., and GS 4-68* — Wedow, Helmuth, Jr., and GS 4-68* — Wedow, Helmuth, Jr., and GS 4-68* — Wedow, Helmuth, Jr., and GS 4-68* — Moertel, F. W. RI 6731; OP 90-69 — and Donaldson, J. G. RI 6915 — Donaldson, J. G., Cochran, A. A., and Band — OP 3-63
and OP_3-68
Hofer, L. J. E B 631
Anderson, R. B., and OP 7-65
Donatoson, N. B., end OP 3-68 Hofer, L. J. E. B 631 Anderson, R. B., and OP 7-65 Generation Generation Anderson, R. B., Bayer, J., and OP 5-65, 101-66 Generation Generation Bayer, James, and Anderson, R. B. RI 6750 Hoffert, F. D., and Stotler, H. H. IC 8314* Hoffman, C. A.; Emerson, D. E., and Suttle, E. T. OP 105-68 Purer, Al, Smith, D. R., and OP 39-68 Hoffman, J. M., Jr.; Retcofsky, H. L., Friedel, R. A., and Friedel, R. A., and OP 77-68 Holden, J. H.; Huff, W. R., and IC 8314* Huff, W. R., Phillips, J. A., and OP 68-69 Shale, C. C., Fasching, G. E., and _ RI 7041 Hollenbeck, R. P. IC 8339 Browning, J. S., and McVay, T. L. KNR and Smith, W. E. RI 7129, 7244; TMR 1-69 TMR 1-69
6-65, 101-66 Reven James and Anderson P. P. B. 6750
Hoffert F D and Stotler H H IC 8314*
Hoffman, C. A.: Emerson, D. E., and
Suttle, E. T OP 105-68
Purer, Al, Smith, D. R., and OP 39-68
Hoffman, J. M., Jr.; Retcoisky, H. L.,
Holden J. H. Huff W. R. and JC 8314*
Huff, W. R., Phillips, J. A., and RI 6706
Shale, C. C., and OP 68-69
Shale, C. C., Fasching, G. E., and _ RI 7041
Hollenbeck, R. P IC 8389
and Smith, W. E. MY 1968 $(\mathbf{y}, \mathbf{HI})^{\bullet}$
and Tyrrell, M. E RI 7129, 7244:
TMR 1-69
Hollis, W. T.; Gevertz, Harry, with
Holman J L : Crosby R J and RI 6966
Hollis, W. T.; Gevertz, Harry, with others, and OP 49-67 Holman, J. L.; Crosby, R. L., and RI 6866 Higley, L. W., with others, and TPR 18
Higley, L. W., with others, and TPR 18
Higley, L. W., with others, and TPR 18
Higley, L. W., with others, and TPR 18
Higley, L. W., with others, and TPR 18
Higley, L. W., with others, and TPR 18
Higley, L. W., with others, and TPR 18
Higley, L. W., with others, and TPR 18
Higley, L. W., with others, and TPR 18
Higley, L. W., with others, and TPR 18
Higley, L. W., with others, and TPR 18
Higley, L. W., with others, and TPR 18
Higley, L. W., with others, and TPR 18
Higley, L. W., with others, and TPR 18
Higley, L. W., with others, and TPR 18
Higley, L. W., with others, and
Higley, L. W., with others, and
Higley, L. W., with others, and
Higley, L. W., with others, and TPR 18 Neumeier, L. A., and RI 6956 Holmes, G. H., Jr. IC 8288 Holmes, R. W., and Van Sant, Joel OFR 9-68 Holmes, W. T., II, Banning, L. H., and Brown, L. L. RI 7081 Banning, L. H., Brown, L. L., and Thompson, G. G. and Stickney, W. A. RI 7083 Holt, D. C.; Kauffman, A. J., Jr., and IC 8268 Holtz, J. C., and Dalzell, R. W. Holum, Kenneth IC 8348* Hoomme, V. E., and Wong, M. M. Hooker, V. E.; Becker, R. M., and Mood, R. A.; Oitto, R. H., with others, and RI 7202 Hooker, V. E.; Becker, R. M., and Hooker, V. E.; Coleman, H. J., with others, and P1 6263 Hopkins, R. L.; Coleman, H. J., with others, and Johnson, C. F. Nicholls, H. R., and Hopkins, R. L.; Coleman, H. J., with others, and RI 6593 Hopkins, R. W., Coleman, H. J., Thompson, C. J., and Rall, H. TRI 6796, 6706
Higley, L. W., with others, and TPR 18 Neumeier, L. A., and RI 6956 Holmes, G. H., Jr. IC 8288 Holmes, R. W., and Van Sant, Joel OFR 9-68 Holmes, W. T., II, Banning, L. H., and Brown, L. L. Banning, L. H., Brown, L. L., and Thompson, G. G. and Stickney, W. A. RI 7083 Holt, D. C.; Kauffman, A. J., Jr., and IC 8268 Holtz, J. C., and Dalzell, R. W. Holum, Kenneth IC 8348* Homme, V. E., and Wong, M. M. Hooker, V. E.; Becker, R. M., and Hooker, V. E.; Becker, R. M., and Hooker, V. E.; Becker, R. M., and Mood, R. A.; Oitto, R. H., with others, and RI 7202 Hooker, V. E.; Becker, R. M., and Band Johnson, C. F. RI 6803 Hopkins, R. L.; Coleman, H. J., with others, and RI 6693 Hopkins, R. W., Coleman, H. J., Thompson, C. J., and Rall, H. TRI 6796, 6970
Higley, L. W., with others, and TPR 18 Neumeier, L. A., and RI 6956 Holmes, G. H., Jr. IC 8288 Holmes, R. W., and Van Sant, Joel OFR 9-68 Holmes, W. T., II, Banning, L. H., and Brown, L. L. Banning, L. H., Brown, L. L., and Thompson, G. G. and Stickney, W. A. RI 7083 Holt, D. C.; Kauffman, A. J., Jr., and IC 8268 Holtz, J. C., and Dalzell, R. W. Holum, Kenneth IC 8348* Homme, V. E., and Wong, M. M. Hooker, V. E.; Becker, R. M., and Hooker, V. E.; Becker, R. M., and Hooker, V. E.; Becker, R. M., and Mood, R. A.; Oitto, R. H., with others, and RI 7202 Hooker, V. E.; Becker, R. M., and Band Johnson, C. F. RI 6803 Hopkins, R. L.; Coleman, H. J., with others, and RI 6693 Hopkins, R. W., Coleman, H. J., Thompson, C. J., and Rall, H. TRI 6796, 6970
Higley, L. W., with others, and TPR 18 Neumeier, L. A., and RI 6956 Holmes, G. H., Jr. IC 8288 Holmes, R. W., and Van Sant, Joel OFR 9-68 Holmes, W. T., II, Banning, L. H., and Brown, L. L. Banning, L. H., Brown, L. L., and Thompson, G. G. and Stickney, W. A. RI 7083 Holt, D. C.; Kauffman, A. J., Jr., and IC 8268 Holtz, J. C., and Dalzell, R. W. Holum, Kenneth IC 8348* Homme, V. E., and Wong, M. M. Hooker, V. E.; Becker, R. M., and Hooker, V. E.; Becker, R. M., and Hooker, V. E.; Becker, R. M., and Mood, R. A.; Oitto, R. H., with others, and RI 7202 Hooker, V. E.; Becker, R. M., and Band Johnson, C. F. RI 6803 Hopkins, R. L.; Coleman, H. J., with others, and RI 6693 Hopkins, R. W., Coleman, H. J., Thompson, C. J., and Rall, H. TRI 6796, 6970
Higley, L. W., with others, and

ŧ

ì

ŧ) ŧ

ŧ

ŧ •

- Horino, F. G. ______ RI 7155 —_____ Hoskins, J. R., and ______ RI 7171, 7234 —_____ Hoskins, J. R., and Ellickson, M. L. RI 7095 Hornbaker, A. L.; McIntyre, G. T., and ____ MY 1968 (v. III)* Hoskins, J. R., and Horino, F. G. ____ RI 7171, 7234 —____ Horino, F. G., Ellickson, M. L., and RI 7095

Hossenlopp, I. A.; Finke, H. L., Berg, W. T., andOP 47-65 Scott, D. W., with others, and OP 110-67 Hosterman, J. W.; Knechtel, M. M., Hamlin, H. P., andMNR Patterson, S. H., Sweeney, J. W., and Hartwell, J. WGS 4-68* Hough, L. W.; Jones, O. W., andY 1968 (v. 111)* Howard, T. EP 10-67; OP 119-68 and Padan, J. WOP 64-67 Howe, J. S., Jr.; Croeni, J. G., andP 7-68; OP 27-66 Croeni, J. C., Armantrout, C. E.,
W T and OP 47_65
Coatt D W with others and OP 110 67
Scott, D. W., with others, and OF 110-01
Hosterman, J. W.; Knechtel, M. M., Hamlin,
H. P., and MNR
Patterson S. H., Sweeney, J. W.,
and Hostroll I W CS 4.89
Hough, L. W.; Jones, O. W., andMI 1908 (V. 111)*
Howard, T. E P 10-67; OP 119-68
and Padan, J. W
$\frac{1}{1} = \frac{1}{1} = \frac{1}$
OP 27-66
Croeni, J. C., Armantrout, C. E.,
and OFB 6-68 Croeni, J. G., Kato, Haro, and BI 6757
Craopi I C Kata Haro and RI 6757
6817
Howell, W. D.,; Armstrong, F. E., and OF 3-66
———— Armstrong, F. E., Fletcher, G. E.,
APD 9-65
Durweil, E. L. and OF 24-00
Howell, W. D.,; Armstrong, F. E., and OP 3-66 Armstrong, F. E., Fletcher, G. E., and OP 24-65 Burwell, E. L. and OP 24-65 Miller, J. S., and OP 122-67 Miller, J. S., with others, and RI 7277 Harms M H
——— Miller, J. S., and OP 122-67
Miller, J. S., with others, and RI 7277
Hower M H
Howes, M. H
Hubbard, A. B RI 6676
Hubbard, G. L., and Green, T. E OP 49-66
Hubbard S L Halstood D N Call B D
Hubbard, S. J.; Haistead, F. M., Call, R. D.,
and K1 7097
Hubbard, W. N.; Scott, D. W., with
others, and OP 110-67
Hudr I In $OP = 67 - 7 - 67$
$\frac{1100}{10}$
and Deurbrouck, A. W.
Deurbrouck, A. W., and RI 6006
Huff, L. C., Santos, Elmer, and Raabe, R. G. GS 6-66
Huff, R. V.: Heath, L. J., and OP 2-67, 118-67
Walker C. J. and RI 6793
Hun, W. R OF 10-03, 4-09
and Heath, L. J UP 35-68
— — and Holden, J. H IC 8314*
Holden, J. H., and Phillips, J. A RI 6706
Hugging C W Clifton R A Jr Shell
Hubbard, S. J.; Halstead, P. N., Call, R. D., and RI 7097 Hubbard, W. N.; Scott, D. W., with others, and OP 110-67 Hudy, J., Jr. OP 6-67, 7-67 — and Deurbrouck, A. W. RI 7101 — Deurbrouck, A. W., and RI 6606 Huff, L. C., Santos, Elmer, and Raabe, R. G. GS 6-66 Huff, R. V.; Heath, L. J., and OP 2-67, 118-67 — Walker, C. J., and OP 70-65, 4-69 — and Holden, J. H. OP 35-68 — and Holden, J. H. C 8314* — Holden, J. H., and Phillips, J. A. RI 6706 Huggins, C. W.,; Clifton, R. A., Jr., Shell, OP 91 66
Huggins, C. W.,; Clifton, R. A., Jr., Shell, H. R., and
Huggins, C. W.,; Clifton, R. A., Jr., Shell, H. R., and ————————————————————————————————————
Huggins, C. W.,; Clifton, R. A., Jr., Shell, H. R., and and Shell, H. R. OP 71-65 Hughes, W. F. R. R. R. OF 7066
Huggins, C. W.,; Clifton, R. A., Jr., Shell, H. R., and and Shell, H. R OP 21-66 Hughes, W. F RI 7066 Thaimer, J. R. with others, and OP 47-69
Huggins, C. W.,; Clifton, R. A., Jr., Shell, H. R., and OP 21-66 and Shell, H. R. OP 71-65 Hughes, W. F. RI 7066 Huight I. V. and Addrew Huight I. V. and Addrew
Huggins, C. W.,; Clifton, R. A., Jr., Shell, H. R., and and Shell, H. R. OP 71-65 Hughes, W. F. Thalimer, J. R., with others, and OP 47-69 Huiatt, J. L., Batty, J. V., and Andrew,
Huggins, C. W.,; Clifton, R. A., Jr., Shell, H. R., and op 21-66 and Shell, H. R. OP 71-65 Hughes, W. F. Thalimer, J. R., with others, and OP 47-69 Huiatt, J. L., Batty, J. V., and Andrew, B. F. RI 7135
Huggins, C. W.,; Clifton, R. A., Jr., Shell, H. R., and OP 21-66 and Shell, H. R. OP 71-65 Hughes, W. F. Thalimer, J. R., with others, and OP 47-69 Huiatt, J. L., Batty, J. V., and Andrew, B. F. Hultz, J. A.; Smith, J. F., Orning, A. A.,
Huggins, C. W.,; Clifton, R. A., Jr., Shell, H. R., and OP 21-66 and Shell, H. R. OP 71-65 Hughes, W. F. RI 7066 Thalimer, J. R., with others, and OP 47-69 Huiatt, J. L., Batty, J. V., and Andrew, B. F. Hultz, J. A.; Smith, J. F., Orning, A. A., RI 7108
Huggins, C. W.,; Clifton, R. A., Jr., Shell, H. R., and and Shell, H. R. OP 21-66 Hughes, W. F. RI 7066 Huiatt, J. L., Batty, J. V., and Andrew, B. F. RI 7135 Hultz, J. A.; Smith, J. F., Orning, A. A., and Hunter W. L.: Elser, G. W. Armantrout
Huggins, C. W.,; Clifton, R. A., Jr., Shell, H. R., and and Shell, H. R. OP 71-65 Hughes, W. F. RI 7066 Thalimer, J. R., with others, and OP 47-69 Huiatt, J. L., Batty, J. V., and Andrew, B. F. RI 7135 Hultz, J. A.; Smith, J. F., Orning, A. A., and RI 7108 Hunter, W. L.; Elger, G. W., Armantrout,
Huggins, C. W.,; Clifton, R. A., Jr., Shell, OP 21-66 H. R., and OP 71-66 and Shell, H. R. OP 71-66 Hughes, W. F. RI 7066 Thalimer, J. R., with others, and OP 47-69 Huiatt, J. L., Batty, J. V., and Andrew, B. F. RI 7135 Hultz, J. A.; Smith, J. F., Orning, A. A., and Hunter, W. L.; Elger, G. W., Armantrout, C. E., and RI 7210
Huggins, C. W.,; Clifton, R. A., Jr., Shell, OP 21-66 H. R., and OP 71-65 Hughes, W. F. RI 7066 Thalimer, J. R., with others, and OP 47-69 Huiatt, J. L., Batty, J. V., and Andrew, B. F. RI 7135 Hultz, J. A.; Smith, J. F., Orning, A. A., and Hunter, W. L.; Elger, G. W., Armantrout, C. E., and — RI 7210 — RI 6734
Huggins, C. W.,; Clifton, R. A., Jr., Shell, H. R., and and Shell, H. R. OP 71-66 Hughes, W. F. Thalimer, J. R., with others, and OP 47-69 Huiatt, J. L., Batty, J. V., and Andrew, B. F. RI 7135 Hultz, J. A.; Smith, J. F., Orning, A. A., and Hunter, W. L.; Elger, G. W., Armantrout, C. E., and — and Fursman, O. C. RI 6755
H. R., and OP 21-66 and Shell, H. R. OP 71-65 Hughes, W. F. RI 7066 — Thalimer, J. R., with others, and OP 47-69 Huiatt, J. L., Batty, J. V., and Andrew, B. F. RI 7135 Hultz, J. A.; Smith, J. F., Orning, A. A., and RI 7135 Hunter, W. L.; Elger, G. W., Armantrout, C. E., and RI 7210 — and Fursman, O. C. RI 6734 — and Paulson, D. L. RI 6734 — RI 70-69, 160-69
H. R., and OP 21-66 and Shell, H. R. OP 71-65 Hughes, W. F. RI 7066 — Thalimer, J. R., with others, and OP 47-69 Huiatt, J. L., Batty, J. V., and Andrew, B. F. RI 7135 Hultz, J. A.; Smith, J. F., Orning, A. A., and RI 7135 Hunter, W. L.; Elger, G. W., Armantrout, C. E., and RI 7210 — and Fursman, O. C. RI 6734 — and Paulson, D. L. RI 6734 Hunter, R. W. OP 182-68, 129-69, 160-69
H. R., and and Shell, H. R
H. R., and OP 21-66 and Shell, H. R. OP 71-65 Hughes, W. F. RI 7066 — Thalimer, J. R., with others, and OP 47-69 Huiatt, J. L., Batty, J. V., and Andrew, B. F. RI 7135 Hultz, J. A.; Smith, J. F., Orning, A. A., and RI 7135 Hunter, W. L.; Elger, G. W., Armantrout, C. E., and RI 7108 Hunter, W. L.; Elger, G. W., Armantrout, C. E., and RI 7210 — and Fursman, O. C. RI 6735 Hurn, R. W. OP 182-68, 129-69, 160-69 — Chase, J. O., and Fleming, R. D. OP 72-65 — Dimitriades, Basil, and Fleming, R. D. OF 179-67 — Ellis, C. F., Chase, J. O., and _ OFR 5-69 — Fleming, R. D., Dimitriades, Basil,
H. R., and OP 21-66 and Shell, H. R. OP 71-65 Hughes, W. F. RI 7066 — Thalimer, J. R., with others, and OP 47-69 Huiatt, J. L., Batty, J. V., and Andrew, B. F. RI 7135 Hultz, J. A.; Smith, J. F., Orning, A. A., and RI 7135 Hunter, W. L.; Elger, G. W., Armantrout, C. E., and RI 7108 Hunter, W. L.; Elger, G. W., Armantrout, C. E., and RI 7210 — and Fursman, O. C. RI 6735 Hurn, R. W. OP 182-68, 129-69, 160-69 — Chase, J. O., and Fleming, R. D. OP 72-65 — Dimitriades, Basil, and Fleming, R. D. OF 179-67 — Ellis, C. F., Chase, J. O., and — OFR 5-69 — Fleming, R. D., Dimitriades, Basil,
H. R., and OP 21-66 and Shell, H. R. OP 71-65 Hughes, W. F. RI 7066 — Thalimer, J. R., with others, and OP 47-69 Huiatt, J. L., Batty, J. V., and Andrew, B. F. RI 7135 Hultz, J. A.; Smith, J. F., Orning, A. A., and RI 7135 Hunter, W. L.; Elger, G. W., Armantrout, C. E., and RI 7108 Hunter, W. L.; Elger, G. W., Armantrout, C. E., and RI 7210 — and Fursman, O. C. RI 6735 Hurn, R. W. OP 182-68, 129-69, 160-69 — Chase, J. O., and Fleming, R. D. OP 72-65 — Dimitriades, Basil, and Fleming, R. D. OF 179-67 — Ellis, C. F., Chase, J. O., and _ OFR 5-69 — Fleming, R. D., Dimitriades, Basil,
H. R., and OP 21-66 and Shell, H. R OP 71-65 Hughes, W. F RI 7066 Thalimer, J. R., with others, and OP 47-69 Huiatt, J. L., Batty, J. V., and Andrew, B. F RI 7135 Hultz, J. A.; Smith, J. F., Orning, A. A., and Marshall, W. F OP 182-68, 129-69, 160-69 OF 179-67 R. D OF 182-68, 129-69, 160-69 OF 179-67 Ellis, C. F., Chase, J. O., and OF 49-65 OP 49-65 OP 71-68, 116-69
H. R., and OP 21-66 and Shell, H. R OP 71-66 Hughes, W. F RI 7066 Thalimer, J. R., with others, and OP 47-69 Huiatt, J. L., Batty, J. V., and Andrew, B. F RI 7135 Hultz, J. A.; Smith, J. F., Orning, A. A., and RI 7136 Hunter, W. L.; Elger, G. W., Armantrout, C. E., and RI 7108 Hunter, W. L.; Elger, G. W., Armantrout, C. E., and RI 7108 Hunter, W. L.; Elger, G. W., Armantrout, C. E., and RI 7210 and Fursman, O. C RI 6734 and Paulson, D. L RI 6755 Hurn, R. W OP 182-68, 129-69, 160-69 Chase, J. O., and Fleming, R. D. OP 72-65 Dimitriades, Basil, and Fleming, R. D OFR 5-69 Fleming, R. D., Dimitriades, Basil, and OP 49-65 Marshall, W. F OP 71-68, 116-69
H. R., and OP 21-66 and Shell, H. R OP 71-65 Hughes, W. F RI 7066 Thalimer, J. R., with others, and OP 47-69 Huiatt, J. L., Batty, J. V., and Andrew, B. F RI 7135 Hultz, J. A.; Smith, J. F., Orning, A. A., and RI 7136 Hunter, W. L.; Elger, G. W., Armantrout, C. E., and RI 7108 Hunter, W. L.; Elger, G. W., Armantrout, C. E., and Paulson, D. L RI 6734 and Fursman, O. C RI 6734 and Fursman, O. C RI 6755 Hurn, R. W OP 182-68, 129-69, 160-69 Chase, J. O., and Fleming, R. D. OP 72-65 Dimitriades, Basil, and Fleming, R. D OP 179-67 Ellis, C. F., Chase, J. O., and OFR 5-69 Fleming, R. D., Dimitriades, Basil, and OP 49-65 and Marshall, W. F OP 71-68, 116-69 Marshall, W. F., and OP 50-66
H. R., and OP 21-66 and Shell, H. R OP 71-65 Hughes, W. F RI 7066 Thalimer, J. R., with others, and OP 47-69 Huiatt, J. L., Batty, J. V., and Andrew, B. F RI 7135 Hultz, J. A.; Smith, J. F., Orning, A. A., and RI 7136 Hunter, W. L.; Elger, G. W., Armantrout, C. E., and RI 7108 Hunter, W. L.; Elger, G. W., Armantrout, C. E., and Paulson, D. L RI 6734 and Fursman, O. C RI 6734 and Fursman, O. C RI 6755 Hurn, R. W OP 182-68, 129-69, 160-69 Chase, J. O., and Fleming, R. D. OP 72-65 Dimitriades, Basil, and Fleming, R. D OP 179-67 Ellis, C. F., Chase, J. O., and OFR 5-69 Fleming, R. D., Dimitriades, Basil, and OP 49-65 and Marshall, W. F OP 71-68, 116-69 Marshall, W. F., and OP 50-66
H. R., and OP 21-66 and Shell, H. R OP 71-65 Hughes, W. F RI 7066 Thalimer, J. R., with others, and OP 47-69 Huiatt, J. L., Batty, J. V., and Andrew, B. F RI 7135 Hultz, J. A.; Smith, J. F., Orning, A. A., and RI 7108 Hunter, W. L.; Elger, G. W., Armantrout, C. E., and RI 7108 Hunter, W. L.; Elger, G. W., Armantrout, C. E., and RI 7210 and Fursman, O. C RI 6734 and Fursman, O. C RI 6735 Hurn, R. W OP 182-68, 129-69, 160-69 Chase, J. O., and Fleming, R. D. OP 72-65 Dimitriades, Basil, and Fleming, R. D OP 179-67 Ellis, C. F., Chase, J. O., and OFR 5-69 Fleming, R. D., Dimitriades, Basil, and OP 49-65 and Marshall, W. F OP 71-68, 116-69 Marshall, W. F., and OP 50-66 Husack, Raloh, Brady, G. A., and Eckerd,
H. R., and OP 21-66 and Shell, H. R OP 71-65 Hughes, W. F RI 7066 Thalimer, J. R., with others, and OP 47-69 Huiatt, J. L., Batty, J. V., and Andrew, B. F RI 7135 Hultz, J. A.; Smith, J. F., Orning, A. A., and RI 7108 Hunter, W. L.; Elger, G. W., Armantrout, C. E., and RI 7108 Hunter, W. L.; Elger, G. W., Armantrout, C. E., and RI 7210 and Fursman, O. C RI 6734 and Fursman, O. C RI 6735 Hurn, R. W OP 182-68, 129-69, 160-69 Chase, J. O., and Fleming, R. D. OP 72-65 Dimitriades, Basil, and Fleming, R. D OP 179-67 Ellis, C. F., Chase, J. O., and OFR 5-69 Fleming, R. D., Dimitriades, Basil, and OP 49-65 and Marshall, W. F OP 71-68, 116-69 Marshall, W. F., and OP 50-66 Husack, Raloh, Brady, G. A., and Eckerd,
H. R., and OP 21-66 and Shell, H. R OP 71-66 Hughes, W. F RI 7066 Thalimer, J. R., with others, and OP 47-69 Huiatt, J. L., Batty, J. V., and Andrew, B. F RI 7135 Hultz, J. A.; Smith, J. F., Orning, A. A., and M RI 7108 Hunter, W. L.; Elger, G. W., Armantrout, C. E., and RI 7108 Hunter, W. L.; Elger, G. W., Armantrout, C. E., and RI 7210 and Fursman, O. C RI 6734 and Paulson, D. L RI 6755 Hurn, R. W OP 182-68, 129-69, 160-69 Chase, J. O., and Fleming, R. D. OP 72-65 Dimitriades, Basil, and Fleming, R. D OF 179-67 Ellis, C. F., Chase, J. O., and OFR 5-69 Fleming, R. D., Dimitriades, Basil, and OP 49-65 and Marshall, W. F OP 71-68, 116-69 Marshall, W. F., and OP 50-66 Husack, Ralph, Brady, G. A., and Eckerd, J. W RI 6881 Husser, S. J.; Dean, K. C., Elkins, D. A.,
H. R., and OP 21-66 and Shell, H. R OP 71-66 Hughes, W. F RI 7066 Thalimer, J. R., with others, and OP 47-69 Huiatt, J. L., Batty, J. V., and Andrew, B. F RI 7135 Hultz, J. A.; Smith, J. F., Orning, A. A., and M RI 7108 Hunter, W. L.; Elger, G. W., Armantrout, C. E., and RI 7108 Hunter, W. L.; Elger, G. W., Armantrout, C. E., and RI 7210 and Fursman, O. C RI 6734 and Paulson, D. L RI 6755 Hurn, R. W OP 182-68, 129-69, 160-69 Chase, J. O., and Fleming, R. D. OP 72-65 Dimitriades, Basil, and Fleming, R. D OF 179-67 Ellis, C. F., Chase, J. O., and OFR 5-69 Fleming, R. D., Dimitriades, Basil, and OP 49-65 and Marshall, W. F OP 71-68, 116-69 Marshall, W. F., and OP 50-66 Husack, Ralph, Brady, G. A., and Eckerd, J. W RI 6881 Husser, S. J.; Dean, K. C., Elkins, D. A.,
H. R., and OP 21-66 and Shell, H. R OP 71-66 Hughes, W. F RI 7066 Thalimer, J. R., with others, and OP 47-69 Huiatt, J. L., Batty, J. V., and Andrew, B. F RI 7135 Hultz, J. A.; Smith, J. F., Orning, A. A., and M RI 7108 Hunter, W. L.; Elger, G. W., Armantrout, C. E., and RI 7108 Hunter, W. L.; Elger, G. W., Armantrout, C. E., and RI 7210 and Fursman, O. C RI 6734 and Paulson, D. L RI 6755 Hurn, R. W OP 182-68, 129-69, 160-69 Chase, J. O., and Fleming, R. D. OP 72-65 Dimitriades, Basil, and Fleming, R. D OF 179-67 Ellis, C. F., Chase, J. O., and OFR 5-69 Fleming, R. D., Dimitriades, Basil, and OP 49-65 and Marshall, W. F OP 71-68, 116-69 Marshall, W. F., and OP 50-66 Husack, Ralph, Brady, G. A., and Eckerd, J. W RI 6881 Husser, S. J.; Dean, K. C., Elkins, D. A.,
H. R., and OP 21-66 and Shell, H. R OP 71-65 Hughes, W. F RI 7066 Thalimer, J. R., with others, and OP 47-69 Huiatt, J. L., Batty, J. V., and Andrew, B. F RI 7135 Hultz, J. A.; Smith, J. F., Orning, A. A., and RI 7108 Hunter, W. L.; Elger, G. W., Armantrout, C. E., and RI 7108 Hunter, W. L.; Elger, G. W., Armantrout, RI 7210 and Fursman, O. C RI 6734 and Paulson, D. L RI 6755 Hurn, R. W OP 182-68, 129-69, 160-69 Chase, J. O., and Fleming, R. D. OP 72-65 Dimitriades, Basil, and Fleming, R. D OF 179-67 Ellis, C. F., Chase, J. O., and OFR 5-69 Fleming, R. D., Dimitriades, Basil, and OP 49-65 and Marshall, W. F OP 71-68, 116-69 Marshall, W. F., and OP 106-68 and Selzinger, D. E OP 50-66 Husack, Ralph, Brady, G. A., and Eckerd, J. W RI 6681 Hussey, S. J.; Dean, K. C., Elkins, D. A., and RI 6656 Huvos, J. B MY 1968 (v. IV)*
H. R., and OP 21-66 and Shell, H. R OP 71-65 Hughes, W. F RI 7066 Thalimer, J. R., with others, and OP 47-69 Huiatt, J. L., Batty, J. V., and Andrew, B. F RI 7135 Hultz, J. A.; Smith, J. F., Orning, A. A., and RI 7108 Hunter, W. L.; Elger, G. W., Armantrout, C. E., and RI 7108 Hunter, W. L.; Elger, G. W., Armantrout, RI 7210 and Fursman, O. C RI 6734 and Paulson, D. L RI 6755 Hurn, R. W OP 182-68, 129-69, 160-69 Chase, J. O., and Fleming, R. D. OP 72-65 Dimitriades, Basil, and Fleming, R. D OF 179-67 Ellis, C. F., Chase, J. O., and OFR 5-69 Fleming, R. D., Dimitriades, Basil, and OP 49-65 and Marshall, W. F OP 71-68, 116-69 Marshall, W. F., and OP 106-68 and Selzinger, D. E OP 50-66 Husack, Ralph, Brady, G. A., and Eckerd, J. W RI 6681 Hussey, S. J.; Dean, K. C., Elkins, D. A., and RI 6656 Huvos, J. B MY 1968 (v. IV)*
H. R., and OP 21-66 and Shell, H. R OP 71-65 Hughes, W. F RI 7066 Thalimer, J. R., with others, and OP 47-69 Huiatt, J. L., Batty, J. V., and Andrew, B. F RI 7135 Hultz, J. A.; Smith, J. F., Orning, A. A., and RI 7108 Hunter, W. L.; Elger, G. W., Armantrout, C. E., and RI 7108 Hurn, R. W OP 182-68, 129-69, 160-69 Chase, J. O., and Fleming, R. D. OP 72-65 Dimitriades, Basil, and Fleming, R. D OP 182-68, 129-69, 160-69 R. D OP 179-67 Ellis, C. F., Chase, J. O., and OFR 5-69 Fleming, R. D., Dimitriades, Basil, and OP 49-65 and Marshall, W. F OP 71-68, 116-69 Marshall, W. F OP 70-68 RI 6881 Husack, Ralph, Brady, G. A., and Eckerd, J. W RI 6881 Hussey, S. J.; Dean, K. C., Elkins, D. A., and RI 6656 Huvos, J. B MY 1968 (v. IV)*
H. R., and OP 21-66 and Shell, H. R OP 71-65 Hughes, W. F RI 7066 Thalimer, J. R., with others, and OP 47-69 Huiatt, J. L., Batty, J. V., and Andrew, B. F RI 7135 Hultz, J. A.; Smith, J. F., Orning, A. A., and RI 7108 Hunter, W. L.; Elger, G. W., Armantrout, C. E., and RI 7108 Hunter, W. L.; Elger, G. W., Armantrout, C. E., and RI 7108 Hunter, W. L.; Elger, G. W., Armantrout, C. E., and RI 7210 and Fursman, O. C RI 6734 and Paulson, D. L RI 6755 Hurn, R. W OP 182-68, 129-69, 160-69 Chase, J. O., and Fleming, R. D. OP 72-65 Dimitriades, Basil, and Fleming, R. D OP 179-67 Ellis, C. F., Chase, J. O., and OFR 5-69 Fleming, R. D., Dimitriades, Basil, and OP 49-65 and Marshall, W. F OP 71-68, 116-69 Marshall, W. F., and OP 106-68 and Selzinger, D. E OP 50-66 Husack, Ralph, Brady, G. A., and Eckerd, J. W RI 6881 Hussey, S. J.; Dean, K. C., Elkins, D. A., and RI 6656 Huvos, J. B MY 1968 (v. IV)* Michalski, Bernadette, and Sondemayer, R. V.,
H. R., and OP 21-66 and Shell, H. R OP 71-65 Hughes, W. F RI 7066 Thalimer, J. R., with others, and OP 47-69 Huiatt, J. L., Batty, J. V., and Andrew, B. F RI 7135 Hultz, J. A.; Smith, J. F., Orning, A. A., and RI 7108 Hunter, W. L.; Elger, G. W., Armantrout, C. E., and RI 7108 Hurn, R. W OP 182-68, 129-69, 160-69 Chase, J. O., and Fleming, R. D. OP 72-65 Dimitriades, Basil, and Fleming, R. D OF 182-68, 129-69, 160-69 Chase, J. O., and Fleming, R. D. OF 72-65 Dimitriades, Basil, and Fleming, R. D OF 49-65 OF 49-65 Arshall, W. F. and OP 106-68 OP 50-66 Husaek, Ralph, Brady, G. A., and Eckerd, J. W RI 6881 Hussey, S. J.; Dean, K. C., Elkins, D. A., and MY 1968 (v. IV)* Michalski, Bernadette, and Sondemayer, R. V., and MY 1968 (v. IV)*
H. R., and OP 21-66 and Shell, H. R OP 71-65 Hughes, W. F RI 7066 Thalimer, J. R., with others, and OP 47-69 Huiatt, J. L., Batty, J. V., and Andrew, B. F RI 7135 Hultz, J. A.; Smith, J. F., Orning, A. A., and RI 7108 Hunter, W. L.; Elger, G. W., Armantrout, C. E., and RI 7108 Hunter, W. L.; Elger, G. W., Armantrout, C. E., and RI 7108 Hunter, W. L.; Elger, G. W., Armantrout, C. E., and RI 7210 and Fursman, O. C RI 6734 and Paulson, D. L RI 6755 Hurn, R. W OP 182-68, 129-69, 160-69 Chase, J. O., and Fleming, R. D. OP 72-65 Dimitriades, Basil, and Fleming, R. D OP 179-67 Ellis, C. F., Chase, J. O., and OFR 5-69 Fleming, R. D., Dimitriades, Basil, and OP 49-65 and OP 50-66 Husack, Ralph, Brady, G. A., and Eckerd, J. W RI 6881 Hussey, S. J.; Dean, K. C., Elkins, D. A., and RI 6881 Hussey, S. J.; Dean, K. C., Elkins, D. A., and RI 6656 Huvos, J. B MY 1968 (v. IV)* Michalski, Bernadette, and Sondemayer, B. V.,

Anthon	~*	chapter.

Ĵ

 Iapalucci, T. L., Demski, R. J., and Bienstock, D.
 RI 7260

 Icke, P. W.
 MY 1968 (v. I-II)*

 Illig, E. G.; Morris, J. P., Riott, J. P., and
 OP 67-66

 Morris, J. P., with others, and
 OP 67-66

 Morris, J. P., with others, and
 OP 67-66

 Imhof, A. C.; Furno, A. L., Kuchta, J. M., and
 OP 85-68

 Inman, E. R.; Miller, J. S., with others, and
 RI 7277

 Irani, M. C.
 MY 1968 (v. III)*

 Iverson, H. G.; Keith, G. H., and
 RI 7222

 and Leitch, H.
 RI 7162; OP 197-67

 Leitch, H., Clemmer, J. B., and
 RI 6724

 Mathews, D. R., and Winston, J. S. RI 7113

 and Singleton, E. L.
 RI 6905

 Ivey, K. H.
 P 11-67

 and Chastain, S. J.
 P 9-69

 Miller, J. L., Jr., and
 P 17-68

 Nichols, E. F., Shell, H. R., and
 P 17-69

 and Shell, H. R.
 P 12-67

 Shell, H. R., and
 B 47

Jirik, C. J.; Dietzman, W. D., Garrales, M.,
Jirik, C. J.; Dietzman, W. D., Garrales, M., Jr., and IC 8263 Hawkins, M. E., and IC 8313 Weaver, L. K., Pierce, H. F., and IC 8408 Joe, C. J.; Adami, L. H., and RI 7167 Johansen, R. T.; Davis, J. W., and OP 196-68 Heemstra, R. J., and RI 6912 Johnson, C. F.; Hooker, V. E., and RI 7224 Johnson, D. R.; Smith, J. W., and OP 143-67, 144-69
Weaver, L. K., Pierce, H. F., and IC 8408
Joe, C. J.; Adami, L. H., and RI 7167
Johansen, R. T.; Davis, J. W., and OP 196-68
Johnson C. F. Hooker V. F. and RI 7224
Johnson, D. R.; Smith, J. W., and OP 143-67.
144-69
Johnson, E. E IC 8275 and Bennett, H. J IC 8374
and Bennett, H. J IC 8374 Schreck, A. E., Fullenbaum, Rich-
ard, and
Schletk, R. E., Fultenbadin, Rith ard, and GS 4-68* Johnson, E. L. GS 6-68 Johnson, F. S., Bayazeed, A. F., and Dutcher, Harold Dutcher, Harold OP 117-69 Cook, A. B., and RI 6763 Cook, A. B., with others, and RI 7278;
Johnson, F. S., Bayazeed, A. F., and
Dutcher, Harold UP 117-69 Cook A B and DI 6763
Cook, A. B., with others, and RI 7278:
OP 25-66, 46-67 Johnson, G. A
Johnson, G. A MY 1968 (v. III)*
Johnson, G. E. P 10-69
Decker, W. A., Forney, A. J., and Field I H RI 6994 DP 90-67 12-68
Forney, A. J., and Field, J. H P 11-69
Kunka, L. M., Forney, A. J., and
Field, J. H KI 0884
 Kunka, L. M., Forney, A. J., and Field, J. H. RI 6884 Johnson, H. C.; Corey, R. C., Anderson, H. C., and OP 8-67 Johnson, H. R.; Boley, D. W., Overbey, W. K., Jr., and RI 6683 and Burwell, E. L. RI 6756 Duda, J. R., Overbey, W. K., Jr., and RI 6943 Duda, J. R., Schrider L. A., and OP 37-65 Schrider, L. A., Duda, J. R., and RI 6917; OP 124-66
Johnson, H. R.; Boley, D. W., Overbey,
W. K., Jr., and RI 6683
and Burwell, E. L BI 0/30
and RI 6943
Duda, J. R., Schrider L. A., and OP 37-65
Schrider, L. A., Duda, J. R., and RI 6917;
OP 124-66 Johnson, H. S., Jr.; Johnson, R. C., and MY 1968
Johnson, Leslie OP 91-67 Johnson, P. M., Lincoln, R. L., and McClure,
Johnson, P. M., Lincoln, R. L., and McClure, F. R. RI 7142
Johnson, P. M., Elleoni, R. L., and Mconte, RI 7142 Johnson, P. W.; Henn, J. J., with others, and
and RI 7156, 7299
and Peters, F. A RI 7068; 1C 8426
Peters, F. A., with others, and RI 6927
Johnson, R. C
and Alley, J. K RI 6575, 6667
- Alley J. H., and $-$ Alley J. K. Warwick, W. H. and
Shell, H. R P 8-66
Clifton, R. A., Jr., and P 5-68
and Johnson, H. S., JrMYB 1968 (v. 111)*
Lohnson R E Vogely W. A., and OP 153-65
Johnson, S. S., Denny, M. V., and LeVan,
D, C,VMR
and Tyrrell, M. E TMR; UP 1-09
Johnson, I. B RI 7161
and Baskett, K. R IC 8311
Jolly, J. H., and Foster, H. L OP 194-67
and Myklebust, R. L OF 05-08
Peters, F. A., with others, and RI 6927 Johnson, R. C. OFR 2-69 and Alley, J. K. OFR 2-69 Alley, J. K. RI 6575, 6667 Alley, J. H., and P 4-67 Alley, J. K., Warwick, W. H., and Anley, J. K., Jr., and P 5-68 And Johnson, H. S., JrMYB 1968 (v. III)* and Shell, H. R P 12-69 Johnson, R. E.; Vogely, W. A., and OP 153-65 Johnson, S. S., Denny, M. V., and LeVan, D. C VMR and Tyrrell, M. E NI; OP 1-69 Johnston, K. H RI 7230; OFR \$-67 Johnston, K. H IC 8311 Jolly, J. H., and Foster, H. L OP 194-67 Jones, B. D.; Keith, G. H., Rowe, E. A., and and
Jones, C. K IC 8417*
Jones, H. F.; Perry, Harry, with others,
Jones, C. K. Jones, H. F.; Perry, Harry, with others, and Jones, N. L.; Moyer, F. T., and Jones, N. L.; Moyer, F. T., and Karry, With others, and Jones, N. L.; Moyer, F. T., and Karry, With others, and Karry, Karry, With others, and Karry, Karry, Karry
Moyer, F. T., with others, and the to offer
GGrð
Jones, O. W., and Hough, L. WMY 1968 (v. III)*

Jones, P. R., and Katell, Sidney IC 8334, 8393, 8399; OP 138-69 Katell, S., and Smith, H. M. OP 76-65 Joyce, F. E., Jr. RI 6644 Joyce, T. J.; Spencer, J. D., Faber, J. H., and IC 8314 Junk, N. M.; Sadwin, L. D., and RI 6770 Jurdy, J., Jr. RI 7154 Jurdy, J., Jr. _____ RI 7154 Kalman, H. S. IC 8367 Kane, A. S. IC 8376* Kane, A. S. IC 8376* Kaplan, R. L.; Purer, A., Smith, D. R., and OP 19-69, 135-69 Karn, F. S.; Anderson, R. B., Shultz, J. F., and OP 8-65 Martin Strategies, A. G., Jr. OP 8-65 Martin Strategies, A. G., Jr. OP 8-65 Martin Strategies, A. G., Jr. OP 139-68 Schultz, J. F., and Anderson, R. B. OP 77-65, 78-65 Shultz, J. F., Anderson, R. B., and RI 6941, 6974 OP 79-65
Comberiati, J. R., Estep, P. A., and Mapstone, J. O., Jr. _____ OP 29-68
Comberiati, J. R., McCaskill, K. E., and Estep, P. A. _____ RI 6839; OP 51-66
Estep, P. A., and ______ OP 84-63
Estep, P. A., Chang, Ta-C. L., and Comberiati, J. R. ______ B 637
Estep, P. A., and Kovach, J. J. ____ OP 28-67, 13-68 13 - 68 Estep, P. A., Kovach, J. J., and ... OP 21-68
 Estep, P. A., with others, and ... OP 44-65, 32_66
 and Kovach, J. J.,
 OP 102-69

 McCaskill, K. B., and Warner,
 W. C.

 and Schultz, H. D.
 OP 88-68, 51-69

 Katell, Sidney
 OP 52-66, 93-67, 172-68, 91-69

 Bienstock, D., with others, and
 OP 15-65

 Jones, P. R., and
 IC 8334, 8393, 8399, 8499, 00 138-68
 ----- Jones, P. R., and ---- IC 8334, 8393, 8399, 8420; OP 138-68 and Morel, W. C. ----- IC 8265, 8297, 8346, 8386, 8415 ----- Wellman, Paul, and ------ OP 119-67 ----- Wellman, Paul, and ----- IC 8314*, 8366 Kato, H.; Armantrout, C. E., and ----- IC 8314*, 8366 Babitzke, H. R., and ----- RI 6964 ----- Babitzke, H. R., Siemens, R. E., and RI 6777 ----- Copeland, M., with others, and ---- RI 6636 ----- Groeni, J. G., Howe, J. S., and ---- RI 6757, 6817 6817 Deardorff. D. K., with others, and RI 6597 Lincoln, R., Copeland, M., and __ OP 92-65 Lowery, R. R., Croeni, J. G., and__ RI 6765 Romans, P. A., Paasche, O. G., and ______ OP 123-65 Irving ____ Irving Friedman, Sidney, Wender, Ir-

ving, and _____ OP 188-67

1

)

D

行うにつな

• Author of chapter.

Kawa, Walter, Graves, R. D., and Hiteshue, R. W RI 6829; OP 43- Zeilinger, J. E., with others, and RI 68 Kawenski, E. M., and Mitchell, D. W OP 101- Mitchell, D. W., Bercik, G. R., and Frances, Angelo
Titoshuo D UZ DI 4000 OD 15
nitesnue, R. W KI 6829: OP 43-
Zeilinger, J. E., with others, and RI 68
Kawenski, E. M., and Mitchell, D. W. OP 101-
Mitchell, D. W. Bercik G. R. and
Frances Angelo DI 67
Frances, Angelo RI 67 Mitchell, D. W., with others, and P 15-
Minchen, D. W., with others, and r 10-
Murphy, E. M., Mitchell, D. W.,
and OP 3-
——— Nagy, John, and OP 120-
Nagy, John, Mitchell, D. W., and RI 65
Kealy, C. D., and Soderberg, R. L IC 84
Murphy, E. M., Mitchell, D. W., and OP 3-
and GS 5-
Kees, J. M.: Loria, E. A., and RI 67
Keith, G. H. RI 79
and Iverson, H. G. RI 79
Jones B D and Rowa E A BI 65
Ioria E A Roma E A and PI 60
and Mathema D P OP 09
Mothema D B Leeis E A and DL 60
Weller I E. Hauss J. R. Loria, E. A., and _ RI 60
Kelley, J. E.; Harris, H. M., Kelly, H. J.,
and RI 67
Sumner, D. H., and Kelly, H. J RI 72
Kelly, F. J IC 82
Reley, 3. E., Harris, H. M., Kelly, H. J., RI 67 and RI 72 Sumner, D. H., and Kelly, H. J. RI 72 Kelly, F. J. IC 82 Kelly, H. J.; Babitzke, H. R., Oden, L. L., and RI 72
and RI 72
HATTIS, D. M., Kelley, J. P., 800 KI 66
and RI 72 — Harris, H. M., Kelley, J. E., and RI 66 — Harris, H. M., with others, and RI 66 — Henry, J. L., and OP 68 — Henry, J. L., Russell, J. H., and RI 73
Henry, J. L. and OP 68-
Henry J L Russell J H and BI 73
- Honry I I with others and DI 60
Kellow I E Summer D H and DI 70
Deige I I Hornie H M and DI C
Paige, J. L., Harris, H. M., and RI 66
Henry, J. L., Russen, J. H., and RI 73 Henry, J. L., with others, and RI 63 Kelley, J. E., Sumner, D. H., and RI 72 Paige, J. I., Harris, H. M., and RI 72 Russell, J. H., and RI 72 Kelly, R. E.; Anderson, R. B., with others, ard
Town, J. W., Sanker, P. E., and RI 72
Kelly, K. E.; Anderson, K. B., with others,
and B 6
and B 6 Kemnitzer, W. J., and Edgerton, C. D., Jr. IC 82 Kenahan, C. B.; Acherman, W. L., with
Kenahan, C. B.; Acherman, W. L., with
Address, and
Andrews, R. L., Schlain, David, and RI 70
Carter, J. P., Schlain, David, and RI 66
Cramer, S. D., with others, and RI 70
and Schlain, David OP 81-
Schlein David and Chin Edmond BI 69
Smith, G. R., with others, and OP 125-
Smith, G. R., with others, and OP 125-
and Sullivan, P. M
and Sullivan, P. M OP 44- Sullivan, P. M. Rupper, J. A., and
and Sullivan, P. M OP 44- Sullivan, P. M. Rupper, J. A., and
and Sullivan, P. M OP 44- Sullivan, P. M. Rupper, J. A., and
and Sullivan, P. M OP 44- Sullivan, P. M. Rupper, J. A., and
and Sullivan, P. M OP 44- Sullivan, P. M. Rupper, J. A., and
and Sullivan, P. M
and Sullivan, P. M. OP 44- Sullivan, P. M., Rupper, J. A., and Spano, E. F. Kendall, R. F. OP 12-67, 173- and Eccleston, B. H. RI 66 Ellis, C. F., Eccleston, B. H., and OP 43- Foster, N. G., with others, and RI 66
and Sullivan, P. M
 and Sullivan, P. M. Mupper, J. A., and Sullivan, P. M., Rupper, J. A., and Spano, E. F. RI 72 Kendall, R. F. OP 12-67, 173- and Eccleston, B. H. RI 66 Ellis, C. F., Eccleston, B. H., and OP 43. Foster, N. G., with others, and P 45. Hopkins, R. L., with others, and P 58. Kennedy, R. E.; Scott, G. S., with others,
 and Sullivan, P. M. Mupper, J. A., and Sullivan, P. M., Rupper, J. A., and Spano, E. F. RI 72 Kendall, R. F. OP 12-67, 173- and Eccleston, B. H. RI 66 Ellis, C. F., Eccleston, B. H., and OP 43. Foster, N. G., with others, and P 45. Hopkins, R. L., with others, and P 58. Kennedy, R. E.; Scott, G. S., with others,
 and Sullivan, P. M
And Sullivan, P. M
 and Sullivan, P. M. Rupper, J. A., and Spano, E. F
 and Sullivan, P. M. Rupper, J. A., and Spano, E. F RI 72 Kendall, R. F OP 12-67, 173- and Eccleston, B. H OP 12-67, 173- and Eccleston, B. H RI 66 Ellis, C. F., Eccleston, B. H., and OP 43. Foster, N. G., with others, and RI 66 Hopkins, R. L., with others, and RI 66 Kennedy, R. E.; Scott, G. S., with others, and RI 66 Kenny, R. F.; Forney, A. J., with others, and RI 66 Kenworthy, H.; Barnard, P. G., Star- liper, A. G., and OP 149- Benner, R. L., and RI 6754, 67 Donaldson, J. G., and RI 67
 and Sullivan, P. M
 and Sullivan, P. M
 and Sullivan, P. M., Rupper, J. A., and Spano, E. F RI 72 Kendall, R. F OP 12-67, 173- and Eccleston, B. H OP 12-67, 173- Ellis, C. F., Eccleston, B. H., and OP 43. Foster, N. G., with others, and RI 66 Hopkins, R. L., with others, and RI 66 Kennedy, R. E.; Scott, G. S., with others, and RI 66 Kenny, R. F.; Forney, A. J., with others, and RI 66 Kenworthy, H.; Barnard, P. G., Starliper, A. G., and OP 149- Benner, R. L., and OP 149- Benner, R. L., and RI 6754, 67 Donaldson, J. G., and RI 66 Higley, L. W., with others, and OP 148-
 and Sullivan, P. M., Rupper, J. A., and Spano, E. F RI 72 Kendall, R. F OP 12-67, 173- and Eccleston, B. H OP 12-67, 173- Ellis, C. F., Eccleston, B. H., and OP 43. Foster, N. G., with others, and RI 66 Hopkins, R. L., with others, and RI 66 Kennedy, R. E.; Scott, G. S., with others, and RI 66 Kenny, R. F.; Forney, A. J., with others, and RI 66 Kenworthy, H.; Barnard, P. G., Starliper, A. G., and OP 149- Benner, R. L., and OP 149- Benner, R. L., and RI 6754, 67 Donaldson, J. G., and RI 66 Higley, L. W., with others, and OP 148-
and Sullivan, P. M., Rupper, J. A., and Spano, E. F OP 12-67, 173- and Eccleston, B. H OP 12-67, 173- Ellis, C. F., Eccleston, B. H., and OP 43. Foster, N. G., with others, and RI 66 Hopkins, R. L., with others, and RI 66 Kennedy, R. E.; Scott, G. S., with others, and RI 66 Kenny, R. F.; Forney, A. J., with others, and RI 66 Kenworthy, H.; Barnard, P. G., Star- liper, A. G., and OP 149- Benner, R. L., and OP 149- Benner, R. L., and RI 67 Jonaldson, J. G., and RI 67 Fukubayashi, H., with others, and OP 148- Migley, L. W., with others, and RI 73
 and Sullivan, P. M., Rupper, J. A., and Spano, E. F
 and Sullivan, P. M
 and Sullivan, P. M OP 44 Sullivan, P. M., Rupper, J. A., and Spano, E. F RI 72 Kendall, R. F OP 12-67, 173- and Eccleston, B. H OP 12-67, 173- and Eccleston, B. H OP 12-67, 173- Ellis, C. F., Eccleston, B. H., and OP 43- Foster, N. G., with others, and RI 66 Hopkins, R. L., with others, and RI 66 Kennedy, R. E.; Scott, G. S., with others, and RI 66 Kenny, R. F.; Forney, A. J., with others, and RI 66 Kenworthy, H.; Barnard, P. G., Starliper, A. G., and OP 149- Benner, R. L., and OP 149- Benner, R. L., and RI 6754, 67 Jonaldson, J. G., and RI 67 Fukubayashi, H., with others, and PI 48- Higley, L. W., with others, and RI 71 Hill, T. E., Jr., with others, and RI 7118, 73 Waters, R. F., and RI 67
 and Sullivan, P. M OP 44 Sullivan, P. M., Rupper, J. A., and Spano, E. F RI 72 Kendall, R. F OP 12-67, 173- and Eccleston, B. H OP 12-67, 173- and Eccleston, B. H OP 12-67, 173- Ellis, C. F., Eccleston, B. H., and OP 43- Foster, N. G., with others, and RI 66 Hopkins, R. L., with others, and RI 66 Kennedy, R. E.; Scott, G. S., with others, and RI 66 Kenny, R. F.; Forney, A. J., with others, and RI 66 Kenworthy, H.; Barnard, P. G., Starliper, A. G., and OP 149- Benner, R. L., and OP 149- Benner, R. L., and RI 6754, 67 Jonaldson, J. G., and RI 67 Fukubayashi, H., with others, and PI 48- Higley, L. W., with others, and RI 71 Hill, T. E., Jr., with others, and RI 7118, 73 Waters, R. F., and RI 67
 and Sullivan, P. M OP 44
and Sullivan, P. M. Rupper, J. A., and Spano, E. F RI 72 Kendall, R. F OP 12-67, 173 and Eccleston, B. H OP 12-67, 173 Ellis, C. F., Eccleston, B. H., and OP 43 Foster, N. G., with others, and RI 66 Hopkins, R. L., with others, and RI 66 Hopkins, R. L., with others, and RI 66 Kennedy, R. E.; Scott, G. S., with others, and RI 67 Kenworthy, H.; Barnard, P. G., Star- liper, A. G., and RI 67 Kenworthy, H.; Barnard, P. G., Star- liper, A. G., and OP 149 Benner, R. L., and RI 6754, 67 Donaldson, J. G., and RI 6754, 67 Hill, T. E., Jr., with others, and TR Hill, T. E., Jr., with others, and RI 73 Maters, R. F., and RI 7118, 73 Waters, R. F., and RI 616 Kerns, W. H.

[·] Author of chapter.

)

Kessler, Theodore, Friedel, R. A., and Sharkey, A. G., Jr. ______ RI 6951 _____ Raymond, R., and Sharkey, A. G., Jr. _____ OP 141-68 _____ and Sharkey, A. G., Jr. _____ OP 73-68 _____ Sharkey, A. G., Jr., and Friedel, D A 400 P 141-68

 Raymond, R., and Sharkey, A. G., Jr., OP 141-68

 Sharkey, A. G., Jr., and Friedel,

 R. A.

 Sharkey, A. G., Jr., and Friedel,

 R. A.

 W. M., and Sweeney, G. G.

 Friedel, R. A.

 Sharkey, A. G., Jr., Shultz, J. L.,

 Friedel, R. A.

 Friedel, R. A.

 OP 110-68

 Shultz, J. L., with others, and ... OP 110-68

 Kesterke, D. G., Fleck, D. C., and Henrie,

 T. A.

 Ketner, K. B., Keefer, W. R., Fisher, F. S.,

 Smith, D. L., and Raabe, R. G. __GS 5-66

 Key, W. W.

 Haas, L. A., Weston, P. L., Jr., and RI 7064

 Hansen, J. P., Rushton, T. N., and RI 7064

 Hansen, J. P., Rushton, T. N., and RI 6712

 Kilau, H. W., and Haas, L. A.

 Kilau, H. W., and Rushton, T. N.

 and Weston, P. L., Jr.

 OF 65-68

 Kimball, A. L.

 OF 1650

 Kimball, A. L.

 OF 61-69, 6-69

 Kimball, A. L.

 OF 65-68

 Kimball, A. L.

 OF 61-69, 6-69

 Kimball, A. L.

 OF 61-69, 6-69

 Kimball, C. L., Gealy, E. J., and ... MY 1968 (v. IV)*

- and
 RI 7212

 Wong, M. M., and
 OP 53-68

 Kirby, J. G., and Moore, B. M.
 MY 1968 (v. I-II)*
- Kirby, R. C.

- 6730
- Peters, F. A., with others, and ____ RI 6927

 Kirkland, C. G.; Deaton, W. M., and _____ P 2-65

 Kleespies, E. K., Bennetts, J. P., and Henrie,

 T. A.

 TPR 9

 and Henrie, T. A., _____ RI 6875, 7039

 Jackson, J., Jr., and Henrie, T. A. RI 7005

Kleinkopf, M. D.; Harrison, J. E., with others, and GS 1-69 Klemic, Harry; Steven, T. A., with others,

 Klemic, Harry; Steven, T. A., with others, and
 GS 3-69

 Klinger, F. L.
 GS 3-69

 Minger, F. L.
 MY 1968 (v. IV)*

 and
 OP 76-66

 Sonnek, A. A., and Marshall, J. D. RI 6847

 Sonnek, A. A., and Marshall, J. D. RI 6847

 Beckert, A. J., and Schutz, R. H... RI 6600

 Kloos, E. J.,
 OP 161-69

 Beckert, A. J., and Schutz, R. H... RI 7192

 and Lamonica, J. A.
 RI 6865

 Schutz, R. H., and
 IC 8436

 Schutz, R. H., Ferber, B. I., and
 IC 8281

 Spinetti, L.., and Raymond, L. D.
 IC 8291, 8296

 Spinetti, L., and Raymond, L. D. IC 8291, 8296 Klyce, D. F. ______MY 1968 (v. III)* and Fox, M. B. ______MY 1968 (v. III)* Knapp, S. B.; Mrazek, R. V., Block, F. E., and ______OP 121-68 Knechtel, M. M., Hamlin, H. P., and Hoster-man, J. W. ______MNR Knipe, E. E., and Lewis, H. M. ____OFR 8-69, 9-69 Lewis, H. M., and ______MNR Knostman, R. W. ______IC 8427 Knudson, H.: Leone, O. Q., Couch, D., and OP 36-68 Koch, G. S., Jr., and Gomez, Manuel ______ RI 6833 _______ Banister, D'Arcy, and _______ IC 8427 Knudson, H.: Leone, O. Q., Couch, D., and OP 36-68 Koch, G. S., Jr., and Gomez, Manuel ______ RI 6897, 6898, _______ 6919; OP 94-67 _______ Link, R. F., Yabe, N. M., and ______ RI 6876 ence, Jr., and _____ OP 21-68 Estep, P. A., with others, and ____ OP 32-66 - Karr, Clarence, Jr., and _____ OP 102-69 - Karr, Clarence, Jr., Estep, P. A., and _____ OP 28-67, 13-68 Kovalik, M. J., and Wolfson, D. E. _____ RI 7050 Wolfson, D. E., Fischler, F., and Mafrica, L. ______ RI 7235 Krempasky, G. T. ______ OFR 22-69" ______ Ageton, R. W., Rice, W. L., and _____ RI 7305 ______ Oudenhoven, M. S., and ______ RI 6812 Krickich, Joseph ______ MY 1968 (v. 111)* Krickich, Joseph ______ OP 23 65 55 66 Krickovic, Stephen _____ OP 83-65, 55-66 Krug, M. P.; Romans, R. A., and _____ OP 74-66 Kruse, F. H.; Crowder, G. A., with others, and _____ OP 32-65 _____ and Scott, D. W. _____ OP 56-66 Kubala, T. A.; Litchfield, E. L., with others, and _____ RI 7009

* Author of chapter.

 Kube, W. R.: Boley, C. C., and OP 133-66, 113-67

 and Elder, J. L.
 IC 8376

 Elder, J. L., and
 IC 8304

 Gronhovd, G. H., and Elder, J. E. OP 49-68

 Sondreal, E. A., Elder, J. L., and RI 7158;

 IC 8304*

 Kuchta, J. M.; Bartkowiak, A., and OP 139-66

 Bartkowiak, A., and

 Zabetakis, M. G.

 RI 6654; OP 84-65

 and Cato, R. J.

 RI 6657; OP 118-69

 Cato, R. J., Gilbert, W. H., and ____ OP 75-67

 Forshey, D. R., with others, and OP 81-69

 Gruno, A. L., Bartkowiak, A.,

 and Martindill, G. H.

 OP 57-66, 56-67

 Litchfield, E. L., and

 OP 57-66, 56-67

 Litchfield, E. L., and

 OP 75-65

 Johnson, G. E., with others, and ______ OP 75-65

 Johnson, G. E., with others, and ______ NI 6884

 Kupper, L. L.: Chambers, D. H., and Sullivan, P. M.

 van. P. M.

 Litchquegrane, G. J.

 OP 44-69

 Thalimer, J. R., with others, and OP 44-69

 Thalimer, J. R., with others, and OP 46-69

 Kushner, H. D.; Lago, Armando, with others, and
 OFR 7-68

 Kusler, D. J.
 MY 1968 (v. III)*

 and Corre, H. A.
 IC 8369

 Kutter, H. K.
 RI 7317

 Kynaston, W.; Green, J. H. S., with
 OF 114 60

others, and _____ OP 114-69

L

Lago, A. M. OFR 7-69 Williams, P. D., Nisselson, Har-
Williams, P. D., Nisselson, Har-
old, and Kushner, H. D OFR 7-68
Lahiri, A. IC 8376 Lamonica, J. A.; Jacobson, M., and TPR 17
Lamonica. J. A.; Jacobson, M., and TPR 17
Kloos, E. J., and RI 6865
Lamont, W. E., Spruiell, C. E., Jr., and
Lamonte Kloos, E. J., and RI 6865 Lamont, W. E., Spruiell, C. E., Jr., and Feld, I. L. RI 6966* Lampkin, W. M.; Feld, I. L., Franklin, T.
Lampkin, W. M.; Feid, I. L., Franklin, T.
W., and P 10-68
Land, U. S UP 142-68, 143-68
Landara W S
Danuers, W. S 10 8304*; P 13-69
Group Manual D. C. C. and
Land, C. S. OP 142-68, 143-68
Gomez, Manuel, Boyd, C. K., and RI 6990
Gomez, Manuel, and Wagner, E. O B 639;
RI 7141
Gomez, Manuel, with others, and RI 6586
Wagner, E. O., Gomez, Manuel,
Boley, C. C., and Goodman, J. B. RI 6608
Warfield, R. S., Boley, C. C., and RI 6767;
OP 7-66
Landis, E. K.; Brantley, F. E., Cureton,
W. R., and
Landis, E. R.; Ratte, J. C., with others, and GS 2-69
Langsperg. Arne P 13-67
and Block, F. E RI 6649
and Campbell, T. T OP 86-65
Lang, H. W.: Freedman, R. W., and RI 7179
Freedman, R. W., Jacobson, M., and RI 7180
O'Noll W E Caulaban D A and
O'Neill, W. E., Coulehan, B. A., and
Freedman, R. W RI 7241
Sippel, A. J. III, and Freedman,

ŧ

Ì

Ĩ

R. W. _____ RI 7310

Lang, R. S.; Couch, D. E., with others, and ______ OP 55-69 _____ Dolezal, H., with others, and _____ RI 6599 _____ Merrill, C. C., and _____ RI 6576 Morris, J. C., Haines, W. E., and __ OP 7-68, 122-69
Okuno, I., and Haines, W. E., and __ OP 89-65
Okuno, I., Haines, W. E., and OP 89-65
Okuno, I., Haines, W. E., and OP 109-65, OP 8-68
Law, S. L., and Green, T. E. ___ TPR 7; OP 119-69
Leaf, C. G. ____ MYB 1968 (v. III)*
Leak, V. G., and Fine, M. M. __ OP 183-68, 162-69
Leary, R. J. ____ RI 6647; MY 1968 (v. III)*
Coulehan, R. T., Tucker, H. A., and Wilson, W. G. ____ RI 7091
and Woolf, P. L. ____ RI 6647; MY 1968 (v. III)*
Lechtenberg, J. H.; Higgins, R. V., and OP 57-69
Lee, F. S., and Campbell, W. J. ____ OP 90-65
Lees, A. S. _____ RI 64, R. A., and Koh-man, T. P. _____ OP 90-65
Lees, A. S. ______ MY 1968 (v. III)*
Lefelhocz, J. F., Friedel, R. A., and Koh-man, T. P. ______ OP 75-68
Lehmbeck, W. L.; Canney, F. C., Williams, F. E., and ______ GS 4-87
______ Mallory, W. W., with others, and _____ GS 4-87
______ and Sullivan, T. A. _____ RI 7036; OP 24-68
Leighton, A. J.; Higgins, R. V., and Sullivan, 7111; OP 3-69
______ Higgins, R. V., Bogley, D. W., and _____ RI 6760, 7006; OP 137-68
Leiler, G. E.; Smith, G. A., Jr. ______ RI 7162; Leiler, G. E.; Smith, G. A., Jr. _____ IC 8417* Leitch, H.; Iverson, H. G., and _____ RI 7162;

 Leitch, H.; Iverson, H. G., and OP 197-67

 OP 197-67

 Iverson, H. G., and Clemmer, J. B. RI 6744

 Lekas, M. A., and Carpenter, H. C. OP 91-65

 Gevertz, Harry, with others, and OP 49-67

 Lemon, R. F.; Gevertz, Harry, with others, and OP 49-67

 Lempel, M. J.

 Lense, A. H.; Jenkins, R. L., and OP 49-67

 Leo, G. M.; Cannaday, F. X., and IC 8343

 Leone, O. Q., and Couch, D. E.

 Couch, D. E., with others, and OP 55-69

 Knudson, H., and Couch, D.

 Mattman, F. S.

 Leonhard, G. E.; Aase, J. H., and RI 6588

 Leonhard, G. E.; Aase, J. H., and RI 7206;

 OP 102-68

 OP 102-68

 Lesure, F. G., Feitler, S. A., and Stans
 OP 197-67 Lesure, F. G., Feitler, S. A., and Stans-Letson, B. B., and Taylor, A. R., Jr. ____ RI 6583 _____ Taylor, A. R., Jr., Smith, D. F., and RI 6724 * Author of chapter.

1

1

8

1

1

J

Le Van, D. C.; Johnson, S. S., Denny, M. V., VNR Lewis, H. M., and Knipe, E. E. _____OFR 9-69; OP 50-69
 Knipe, E. E., and
 OF 869

 Lewis, J. R.
 MY 1968 (v. I)*

 Lewis, P. S., Friedman, Sam, and Hite Shue, R. W.

 Shue, R. W.
 OP 14-68

 Friedman, Sam, Hiteshue, R. A.,
 OP 20 cs
 OFR 8-69 and _____ OP 32-68 - Friedman, Sam, with others, and ___ RI 7209 - Mima, J. A., with others, and ___ OP 38-68 - Shale, C. C., Simpson, D. G., and OP 163-69 - Zeilinger, J. E., with others, and __ RI 6858 Lewis, R. W.; Carpenter, L., Hazen, K. OP 107-66 A., and _____ OP 107-66 Li, T. C., and Pense, R. A. ____ MY 1968 (v. IV)* Liberatore, A. J.; McGee, J. P., with others, and ______ RI 7255 ______ Strimbeck, D. C., with others, and RI 7295 Liebman, I., Corry, J., and Perlee, H. E.__ OP 103-68, 184 - 68Lindelof, L.; Woo, W. G., with others, and _______ OP 26-69 Linden, H. R. ______ IC 8314* Lindquist, R. V. ______ RI 6582, 6593 Lindstrom, R. E.; Bauer, D. J., and _____ RI 6582, 6593 ______ Scheiner, B. J., Higbie, K. B., and _____ RI 7123; ______ Scheiner, B. J., Henrie, T. A., and _____ TPR 2, 8 ______ Shaw, V. E., and _____ RI 7100 ______ Scheiner, B. J., Henrie, T. A., and _____ RI 6906 ______ Minget, J. O. ______ P 9-66 ______ Winget, J. O., and _____ RI 7175; OP 186-69 Link, R. F., and Koch, G. S., Jr. ______ RI 6897 ______ Yabe, N. N., and Koch, G. S., Jr. ______ RI 6876 Linville, Bill ______ OP 59-69, 130-69 Lipschutz M. E.; Brown, J. D., and ____ OP 59-69, 130-69 Lipschutz M. E.; Brown, J. D., and ____ OP 21-65 Litchfield, E. L. _____ OP 93-65, 60-69 ______ and Hay, M. H. ______ RI 6840 ______ Hay, M. H., and Cohen, D. J. _____ RI 7061 ______ Hay, M. H., and Monroe, J. S. ______ RI 7099 ______ Hay, M. H., and Monroe, J. S. ______ RI 7099 ______ and Kuchta, J. M. ______ OP 131-69 ______ Weiss, M. L., and ______ OP 194-68 Little, L. R.; Berber, J. S., and ______ RI 6886 Little, L. R.; Berber, J. S., and _______ RI 6886 Little, L. R.; Berber, J. S., and _______ RI 6886 Little, L. R.; Berber, J. S., and _______ CS 4-68* ______ Brooks, D. B., and ______ OP 194-68 Kaufman, Alvin, Nadler, Mildred, and _______ OP 204-68 and _____ IC 8314* and _____ IC 8285 _____ Vogely, W. A., and _____ OP 204-68 Locke, C. D. _____ OP 190-67 _____ Schrider, L. A., and Romeo, OP 190 69 IC 8285 ----- OP 120-68 М. К. __

Look, A. D.; Pynnonen, R. O., and ______ IC 8347 Loomis, A. G.; Crowell, D. C., Dean, G. W., and ______ RI 6735 Loomis, R. F. ______ IC 8314* Lorenz, P. B. ______ OP 180-69 ______ and Coolidge, A. S. _____ OP 94-65 ______ OP 41-69 Lorenz, W. C. _____ MY 1968 (v. I-II)* Loria, E. A., and Kees, J. M. _____ RI 6771 ______ Keith, G. H., and Rowe, E. A. _____ RI 6776 ______ Mathews, D. R., Keith, G. H., and RI 6637 Lowery, R. R., Croeni, J. G., and Kato, H. RI 6726, 7109 Lowry, H. H.; Woolf, P. L., and _____ OP 186-67 Lucas, H. G. _____ RI 6716 ______ P14-69 Lucas, H. G. Lucake, R. G.; Fischer, R. P., with others, _ P 14-69 and Lukins, T. C.; Moyer, F. T., Redmon, D. E., _ GS 8-68 Lukins, T. C.; Moyer, F. T., Redmon, D. E., and _______ IC 8336, 8337 Lundquist, R. G., and Anderson, C. F. _____ RI 7829 Luttrell, G. W., and Stansfield, R. G. _____ GS 4-68* Luxner, J. V. _____ RI 7223 Lynch, J. H., Jr.; Birge, G. W., Wolfson, D. E., and ______ RI 6814 ______ Birge, G. W., with others, and _____ RI 6814 ______ Birge, G. W., with others, and _____ RI 6814 ______ Wolfson, D. E., and ______ RI 68172 ______ Wolfson, D. E., Ortuglio, C., and ____ RI 6899 Lynch, R. L.; Berber, J. S., Rice, R. L., and ______ OP 192-68 Lynch, V. J.; Hickman, R. C., and _____ RI 6932

MacCartney, J. C., and Whaite, R. H IC 8409 Macdonald, S., and Farnsworth, J. F IC 8314* MacPherson, J. L.; Oppelt, W. H., with
others, and RI 6721 Madson, Dick; Paone, James, and RI 6776 Paone, James, Bruce, William E.,
and RI 7300 Mafrica, Lee P 10-66 — Kovalik, M. J., with others, and RI 7235 — Naugle, B. W., with others, and RI 6625
Magnuson, M. O.; Griffith, F. E., Kimball, R. L., and and Kimball, R. L. Bill, R. L. RI 7075 Murphy, E. M., with others, and RI 7214
Magnusson, P. C.; Beall, R. A., Wood, F. W., and B 646* Mah, A. D. RI 6663, 6727, 7217 Pankratz, L. B., Weller, W. W., and D 5005
Mahan, W. M.; Gee, K. H., Ostrowski,
E. J., and OP 11-67 — Melcher, N. B., and P 6-65 — Woolf, P. L., with others, and RI 6678 Makar, H. V., and Dunning, B. W., Jr. OF 165-69
Malar, In. V., In., B. W., Jr., and Caldwell, H. S., Jr. RI 7199 Malenka, W. T. RI 7120
and Brennan, R. J RI 6745 Mallory, W. W., Post, E. V., Ruane, P. J.,
Lehmbeck, W. L., and Stotelmeyer, R. B GS 3-66 Malone, Kevin, Blasko, D. P., and Williams, J. A MY 1968 (v. III)*
Maloney, E. M., Farnsworth, N. R., Blom- ster, R. N., Abraham, D. J., and
Sharkey, A. G., Jr. OP 120-67 Maloney, R. P. RI 6892; OFR 3-66, 4-66, 16-68, 11-69, 16-69
and Thomas, B. I OFR 5-66

Manger, G. E., Cadigan, R. A., and Gates, G. L. OP 95-69 and Wertman, W. T. OP 137-67 Mansson, M.; Good, W. D., and OP 41-66 Manula, C. B., and Venkataramani, Rajaraman OFR 13-68

 Mapstone, J. O.; Karr, Clarence, Jr., with others, and ______ OP 29-68

 Ramsey, J. W., with others, and _____ RI 6864

 Marano, C. L.; Reiness, C. G., and _____ RI 6864

 Marchant, L. C.

 Hamke, J. R., Cupps, C. Q., and _____ B 629

 Shedd, E. S., and Henrie, T. A. _____ RI 6884

 Marchant, L. C.

 Shedd, E. S., and Henrie, T. A. _____ RI 6848

 Marchant, L. C.

 Planke, J. R., Cupps, C. Q., and _____ B 629

 Shedd, E. S., Henrie, T. A. _____ RI 6882

 Marchant, E. J., Roberts, D. K., and OP 153-68

 Marcy, V. M.; Collins, A. G., Castagno, J. L., and ______ OP 54-69

 Marek, B. C.; George, L. C., with others, and _______ RI 7307

 Mapstone, J. O.; Karr, Clarence, Jr., with Griffin, R. E., and ______ 759-66 _____ and Veith, K. F. _____ RI 6604 Marshall, J. D.; Klingman, C. L., Sonnek, A. A., and _____ Marsnall, J. D.; Kingman, C. L., Sonnek, A. A., and Wood, R. E., with others, and _____ RI 6847 Marshall, W. E.; Melcher, N. B., Woolf, P. W., and _____ OP 13-67 Marshall, W. F., and Hurn, R. W. _____ OP 106-68 Hurn, R. W., and _____ OP 71-68, 116-69 Martin, D. A.; Brooks, P. T., Potter, G. M., and _____ RI 7316 and ______ RI 7316 Martin, J. A.; Arundale, J. C., and _____ MY 1968 III)* Martin, J. W., and Stewart, R. F. Martindill, G. H.; Forshey, D. R., with ___ RI 7193 Martindill, G. H.; Forshey, D. R., with others, and ______ OP 81-69 ______ Kuchta, J. M., and _____ OP 95-67 ______ Kuchta, J. M., with others, and OP 163-68 ______ Perlee, H. E., Scott, G. S., and _____ RI 6766 ______ Perlee, H. E., Zabetakis, M. G., and RI 6748 Martinez, G. M.; Wong, M. M., Hiegel, J. M., and ______ RI 6818 Mason, C. M., Forshey, D. R., and Perzak, F. J. P. _____ OP 6-68 _____ Forshey, D. R., Ruhe, T. C., and ____ RI 7187; OP 15-69 _____ and Richardson P. A. ____ RI 7318: 10 8371 .___ RI_7318; IC 8371 - and Richardson, P. A. ... RI 7318; - Richardson, P. A., and Van Dolah, R. W. R. H. RI 7127 Uraco, J. L., and Cooper, J. C. RI 7129 Van Dolah, R. W., Forshey, D. R., and 700 and Van Dolah, R. W., and Ribovich, _ RI 7195 OP 95-65 John Van Dolah, R. W., and Weiss, M. L. Nan Dolah, R. W., with others, and RI 6773 RI 6773

 Mathews, D. R., and Iverson, H. G. ______ RI 6929

 Iverson, H. G., Winston, J. S., and RI 7113

 Keith, G. H., and ______ OP 92-69

 Keith, G. H., and Loría, E. A. _____ RI 6637

 Mathias A. J.

 Plana Rowe, E. A.

 RI 6628

Mathias, A. J. _____ RI 6937 _____ and Redmon, D. E. _____ RI 6739 Matzick, Arthur, Dannenberg, R. O., Ruark,

J. R., Phillips, J. E., Lankford, J. D., and Guthrie, Boyd _____ B 635

Maurice, J. M.; Dannenberg, R. O., and ____ RI 6841 Mauser, J. E._____ OFR 11-68 _____ Fursman, O. C., Blake, H. E., Jr., and _____ RI 7079 MY 1968 (v. III) * May, J. T.; Rosenbaum, J. B., Riley, J. M., and ______ OP 137-69 May, S. L.; Dean, K. C., and Groves, R. D. RI 7182 and Engel, G. T. ______ RI 6635 Maynard, A. W.; Chambers, D. H., and _____ RI 7313 McCann, C. R., and Orning, A. A. ______ RI 7239 McCartney, J. T., and Ergun, Sabri ______ B 641; Product of the second - O'Donnell, H. J., and Ergun, Sabri RI 7231; OP 51-67 RI 7231; OP 51-67 — Yasinsky, Y. B., and Ergun, S. _ OP 97-65 McCaskill, K. B.; Karr, Clarence, Jr., Warner, W. C., and — OP 80-65 Karr, Clarence, Jr., with others, and _____ RI 6837; OP 51-66 McCawley, F. X.; Schlain, David, Wyche, Charles, and _____ OP 139-69 — Wyche, Charlie, and _____ OP 98-66 — Wyche, Charlie, and Schlain, David _____ OP 120-69 — Wyche, Charlie, Schlain, David, and P 22-68 McClure, E. R.; Johnson, P. M., Lincoln, R. L., and McComb, M. A.; Carrillo, F. V., McComb, M. A.; Carrillo, F. V., Hale, W. N., and Carrillo, F. V., Petersen, N. S. and N. S., and _____ MY 1968 (v. III)* Gray, J. J., Kingston,

 Gray, J. J., Kingston,

 Gray, J. J., Kingston,

 G. A., and

 Hale, W. N., McIlroy,

 Paul, and

 OP 116-66

 and Ehlers, E. G.

 OP 116-66

 and Ehlers, E. G.

 OP 100-67

 McCormick, J. A.

 Barry, A. J., and

 OP 5-66

 McCrea, D. H., Field, J. H., and Bauer,

 E. R., Jr.

 G. J., and

 G. J., and

 OP 44-69

 McCullough, E. B.; Hawk, C. O., with

 McCullough, E. D., Harry, C. C., McCullough, J. P.; Scott, D. W., with others, and ______ OP 110-67 ______ and Waddington, Guy ______ OP 18-69 ______ Westrum, E. F., Furukawa, G. T., __ OP 87-68
 and
 OP 24-69

 McDonald, F. R., and Cook, G. L.
 RI 6911

 —
 Decora, A. W., and Cook, G. L.____ OP 164-68

 —
 Ramsey, J. W., Petersen, J. C., and _____ OP 10 50

 and
 OP 10-68

 Retcofsky, H. L., and
 OP 79-68

 McGee, J. P.; Csamer, R. P., and
 OP 108-66

 Hamilton, G. M., and Faber, J. H. OP 117-66
 OP 107-66

 Liberatore, A. J., Strimbeck, D. C.,
 and Goff, G. B.

 Perry, Harry. Strimbeck
 Docald
 Perry, Harry, Strimbeck, Donald, and _____ OP 6-69, 45-69 Smith, Jack, with others, and ____ RI 6920; OP 127-66 - Strimbeck, D. C., Smith, Jack, OP 136-65 and __ Strimbeck, D. C., with others, and RI 7295 • Author of chapter. 423

) ()

4

F

().

6

McGinnis, E. L.; Gentile, C. R., and McGrain, Preston; Riley, H. L., MY 1968 (v. IV)* and _____ MY 1968 (v. III)* McIlroy, Paul; Hale, W. N., McComb, M. A., and __ MY 1968 (v. III)* " MY 1968 (v. III)* McComb, M. A., and ___ MY 1968 (v. III)* McIntyre, G. T., and Hornbaker, A. L., ______ MY 1968 (v. III)* ______ Kuklis, Andrew, and ______ OFR 24-69 McKeever, R. E., Eckerd, J. W., with others, and ______ OF 191-67 ______ Ferrero, E. P., and Wenger, W. J. RI 6819 ______ and Shelton, E. M. _____ RI 6752, 7059 McKnight, E. T.; Merrill, C. W., with others, and ______ IC 8257 McMahan, A. B., and Ham, W. E. ______ MY 1968 (v. III)* N. E. MY 1968 (v. III)* IC 8225 McMahon, A. D. _____ IC 8225 McNair, M. B.; Moyer, F. T., and ____ IC 8433, 8419 _____ Moyer, F. T., with others, and _____ IC 8287 8355 McVey, J. R. P 16-68 and Doebbling, R. D. OP 145-68 McVay, T. L.; Browning, J. S., Tippin, R. B., and RI 6729 Hollenbeck, R. P., Browning, J. S., and REMEMBER Corl. Browning, J. S., KNR P 16-68 Aulenbeck, N. L., L., KNK and Rampacek, Carl, Browning, J. S., P 14-67
 Rampacek, Carl, Browning, J. S.,

 and
 P 14-67

 McWilliams, J. R.
 OP 118-66

 Bur, T. R., Hjelmstad, K. E., and OP 40-69

 Thill, R. E., Bur, T. R., and
 RI 7164

 Willard, R. J., and
 OP 25-69, 99-69

 Meadows, Paul; Parrish, Frank, Jr., and RI 6603
 Meaker, R. E.; Porter, Bernard, and

 Porter, Bernard, Bremner, P. R.,
 and

 And
 RI 7246
 and Porter, Bernard, Henrie, T. A., and RI 6736, 7008 Melton, N. M., and Cross, T. S. __ OP 192-67, 37-68 Mendelssohn, K. _____ IC 8417* Mentser, Morris; Ergun, Sabri, and ____ OP 52-67, 157-67 47-67, 132-69 47-67, 132-69 ——— McKnight, E. T., Kiilsgaard, T. H., and Ryan, J. P. _____ IC 8257 —— and Pennington, J. W. _____ OP 97-67 Merrill, R. H. ______ RI 7015; OP 190-68 —______ Long, A. E., Wisecarver, D. W., and ______ OP 58-66 —______ and Wisecarver, D. W. _____ OP 121-67 Merritts, W. H. _____ OP 99-65 Merwin, R. W. _____ TPR 1, 3

Messerly, J. F.; Finke, H. L., Todd, S. S., and ______ OP 48-65 Good, W. D., with others, and _____ OP 2-69 Guthrie, G. B., Jr., Todd, S. S., and Finke, H. L. _____ OP 98-67 Scott, D. W., with others, and ____ OP 110-67 Todd, S. S., and Finke, H. L. _____ OP 100-65, 101-65, 64-66 Todd, S. S., and Guthrie, G. B.,
 Todd, S. S., and Guthrie, G. B.,
 OP 99-67

 Metlin, S. J.; Blaustein, B. D., and
 OP 17-65

 Frankel, E. N., and
 OP 10-67

 Frankel, E. N., with others, and OP 56-69

 Fu, Y. C., with others, and OP 178-67

 Meyer, A. V. C.; Devine, J. F., with others, and sweeney, J. W.

 GS 4-68*

 Meyer, R. F., and Edgerton, C. D., Jr. GS 4-68*

 Lowell, and
 OP 31-66

 and Sweeney, J. W.
 GS 4-68*

 Meyer, T. O.; Emerson, D. E., Stroud,
 Lowell, and
 OP 31-66

 —
 Purer, Al, Stroud, Lowell, and... OP 119-65
 OP 31-66

 —
 Stroud, Lowell, Emerson, D. E., and RI 6936

 Meyer, W. L.; Gomez, Manuel, and
 RI 6778, 6867

 Michalopoulos, Constantine, and Van
 Tassel, R. C.

 Tassel, R. C.
 OFR 23-69

 Michalski, Bernadette
 MY 1968 (v. IV)*

 Huvos, J. B., Sonde mayer, R. V., and Polta, H. J.

 michelson, R. W., and Polta, H. J.
 OP 133-69

 Michelson, R. W., and Polta, H. J.
 OP 67-68

 —
 and Chamberlain, C. E.
 OP 67-68

 —
 Deul, Maurice, and
 RI 6987

 —
 Deul, Maurice, Chamberlain, C. E.,
 and Selmeczi, J. G.

 Miller, J. E.
 IC 8350

 Miller, J. E. IC 8350 — IC 8350 Ampian, S. G. OP 100-67

 _________ and Ivey, K. H. _______ P 17-68

 Miller, J. S.; Barry, A. J., Nair, O. B., and IC 8424

 _________ oP 102-65

 ________ Eakin, J. L., and ______ OP 102-65

 _______ Eakin, J. L., and ______ OP 1-67, 82-68

 _______ Eakin, J. L., Eckard, W. E., and

 _______ RI 6658; OP 112-66

 _______ Eakin, J. L., Smith, R. V., and ______ OP 41-65

 _______ and Howell, W. D.

 _______ Howell, W. D., Eakin, J. L., and

 _______ Inman, E. R.

 _______ RI 7277

 Miller, K. J.: Baker, A. F., and _______ OP 18-68

 ________ and Deurbrouck, A. W.

 _______ RI 7102

 Miller, N. L.; Weems, G. W., and _______ RI 7232

 Miller, R. D.; Moore, B. J., Shrewsbury,

 R. D., and
 IC 8302

 and Ivey, K. H. P 17-68 R. D., and _____ IC 8302 and Norrell, G. P. _____ IC 8241 Miller, V. R., Schwaneke, A. E., and Jensen, J. W. R. 6963

 Miller, W. C.
 B 630*

 Miller, W. T.; Harris, A. T., Jr., and
 IC 8248

 Mills, G. A.
 OP 181-69

 Millsaps, F. W., and Browning, J. S.
 P 13-66

 Browning, J. S., Bennett, P. E., and RI 6589

 Milton Charles, Smith L W. and
 OP 20-66

 Milton, Charles: Smith. J. W., and _ ___ OP 80-66 Mima, J. A., Lewis, P. S., Friedman, Sam, and Hiteshue, R. W. _____ OP 38-68 Minard, J. P. _____ GS 9-67 Minnick, L. J. _____ IC 8348*

* Author of chapter.

 Miron, Yael; Christos, Theodore, with others, and
 OP 149-67

 Perlee, H. E., with others, and __ OP 51-68

 Miska, W. S.
 IC 8382; OFR 4-69

 Mitchell, D. W.; Kawenski, E. M., and_ OP 101-67

 Murphy, E. M., with others, and_ RI 6710

 and Murphy, E. M., Kawenski, E. M., and

 OP 61-67

 Murphy, E. M., Kawenski, E. M., and

- Murphy, E. M., Kawenski, E. M.,

 and
 OP 3-67

 Murphy, E. M., Kawenski, E. M.,

 Nagy, J., and Williams, R. P.
 P 15-69

 Murphy, E. M., and Nagy, John ______ RI 6837

 Murphy, E. M., Smith, A. F., and

 Polack, S. P.
 _____________ RI 7053

 Magy, John, and
 ___________ OP 103-67

 Nagy, John, Kawenski, E. M., and RI 6581

 Oitto, R. H., with others, and _______ RI 7202

 Mitko, F. C.

 Mitko, F. C.

 Moebs, N. N.

 OP 65-66, 66-68

 Mohilner, D. M.; Sternberg, H. W., with

 others, and OP 135-65, 85-66, 4-67, 107-69

 Monroe, J. S.; Litchfield, E. L., Hay, M. H.,

 and

 And OP 135-65, 85-66, 4-67, 107-69

- D. R. Harrison, R. H., Douslin, D. R., 0P 200-67
- and OP 200-67 Moore, W. H.; Wood, S. O., Jr., and _____ MY 1968
- (v. III)* Morandi, J. R., and Jensen, H. B. _____ OP 66-66,

- ----- Murphy. J. E., Wong, M. M., and .__ RI 7265 ----- Shedd, E. S., and Henrie, T. A. __ RI 7266 ----- Shedd, E. S., Wong, M. M., and Harris, T. A. _____ OP 5-69
- Morris, A. L. IC 8417* Morris, J. C.: Davis, T. C., and RI 6633 and Haines, W. E. OP 103-65 Lanum, W. J., and OP 94-69 Latham, D. R., and Haines, W. E. OP 7-68,
- 122-69
- Plancher, Henry, Haines, W. E.,
- Morris, J. P.; Buehl, R. C., Royer, M. B., and RI 7183 Morris, J. P.; Buehl, R. C., Royer, M. B., RI 6596
- and ______ RI 6596 Foerster. E. F., Schultz, C. W., and Zellar. G. R. _____ RI 6723 Riott, J. P., and Illig. E. G. ____ OP 67-66 Riott, J. P., Illig. E. G., and Jeffer-

son, R. H. _____ RI 7047

Morris, R. A., and Pierce, C. I. _____ OFR 5-65 Morrison, W. E. _____ OP 104-65, 68-66 ______ and Readling, C. L. _____ IC 8384 _____ Vogely, W. A., and ____ OP 205-68, 206-68 Moschetti, A. C.; Dimitroff, A. Z., and ____ IC 8253 Moser, K. W.; Elger, G. W., Banning, L. H., and RI 6802

 Moser, R. W., L.g., G. W., L.g., C. M., M. B.
 RI 6802

 and
 Stock, D., and
 OP 138-69

 Moulds, D. E.
 B 630*; MY 1968 (v. I-II)*

 Moyer, F. T.
 MY 1968 (v. I-II, III)*

 and Berté, V. C.
 IC 8369

 Moyer, F. T., Jones, N. L., McNair, M. B.,
 and Berté, V. C.

 and Berté, V. C.
 IC 8287

 Jones, N. L., McNair, M. B., and
 Bradley, N. B.

 Bradley, N. B.
 IC 8355

 and McNair, M. B.
 IC 8336,

 Redmon, D. E., and Lukins, T. C.
 IC 8336,

 RI 6802
 Redmon, D. E., and Walker, D. K. IC 8378

 Mrazek, R. V.; King, E. G., Richardson,

 D. W., and

 Richardson, D. W., Poppleton, H. O.,

 and Block, F. E.

 Richardson, D. W., Poppleton, H. O.,

 and Block, F. E.

 RI 7096

 Mulligan, John J.

 Berryhill, R. V., Gnagy, W. L.,

 and
 and ______ OFR 1-65 - and Gnagy, W. L.* _____ RI 6737 - Gnagy, W. L.,* and Havens, Rich-

 Gnagy, W. L.,* and Havens, Richard*
 OFR 7-65

 Heide, H. E., and
 OFR 2-65

 and Hess, Harold
 OFR 8-65

 Warfield, R. S., and Wells, R. R. OFR 9-67

 Mullins, P. V., and Burnett, E. S. __ RI 6791, 6824

 Munneke, D. L.; Stiles, R. E., and ______ RI 6852

 Murphy, E. J.

 Pete, Jr., and Nagy, John _____ RI 7214

 Mitchell, D. W., and Kawenski,

 E. M.

 OP 3-67

 - Mitchell, D. W., Nagy, John, and RI 6837 - Mitchell, D. W., with others, and - RI 7053; P 15-69 P 15-69
 Myers, J. W., with others, and ____ RI 6758

 Murphy, F. M., and Earl, K. M. ____ OFR 10-67

 Murphy, J. E., Morrice, E., and Henrie,

 T. A.

 Morrice, E., and Wong, M. M.

 RI 7186

 Morrice, E., and Wong, M. M.

 OP 174-68
 Murphy, J. N.; Bowser, M. L., with others, and ______ OP 9-66 Burgess, D. S., with others, and ___ RI 7196 Grant, R. L., Bowser, M. L., and __ RI 6921 Van Dolah, R. W., Gibson, F. C.,
 Van
 Jolan, R. W., Gibson, F. C., and
 RI 6746, 6903

 Murphy, W. I. R.; Tişot, P. R., and ____ OP 143-65
 OP 143-65

 Murphy. Z. E.
 OP 105-65

 DeCarlo, J. A., Sheridan, E. T., and IC 8312
 Mussler, R. E.; Campbell, T. T., Block, F. E., and ______ OP 17-66 Mutchler, P. H. ______ OP 18-68 Myers, C. W.; Doerr, R. M., Jensen, J. W., RI 6800 and __ Myers, J. G.; Bienstock, D., Field, J. H., Myers, J. G., ______ and ______ Myers, J. W., Pfeiffer, J. J., Murphy, E. M., and Griffith, F. E. ______ RI 6758 Myklebust, R. L.; Burkhalter, P. G. Brown, J. D., and _____ OP 14-66

1

t

ł

• Author of chapter.

Nabors, W. N.; Smith, Jack, Goff, G. B., and IC 8314* Smith, Jack, with others, and IC 8314* Strimbeck, D. C., Cargill, R. W., and Smith, J. OP 106-65 Nadler, Mildred; Kaufman, Alvin, Lloyd, B. S. and IC 8285

B. S., and Nagy, John, Conn, J. W., and Verakis, IC 8285

- H. C. Cooper, A. R., and Dorsett, H. G., __RI 7279
- Jr. _____ RI 7208 Dorsett, H. G., Jr., and _____ RI 7208 Dorsett, H. G., Jr., and _____ RI 7132 Dorsett, H. G., Jr., and Cooper,
- . RI 6591
- E. M. Mitchell, D. W., Murphy, E. M.,

- 122_69 Newman, L. L., and Ode, W. H. OP 158-67 _ _ _ .
- Newman, W. L., Stansfield, R. G., and Eilertsen, N. A. _____ GS 4-68* Nicholls, E. F., Ivev, K. H., and Shell, H. R. P 17-69
- Nicholls, H. R.; Bur, T. R., with others. and RI 6888 and Duvall, W. I. _____ RI 6806, 6843
- and Hooker, V. E. _____ RI 6693 Nichols, D. T.; Ferrero, E. P., and _____ IC 8293 Nichols, E. F.; Ivey, K. H., Shell, H. R.,
- OFR 3-65
- Nicholson, D. E., and Busch, R. A. _____ RI 7198
- Wayment, W. R.
 RI 6922

 Wayment, W. R., and
 OP 158-65

 Nishi, J. M.; Carpenter, L., Fehler,
 RI H., and

 R. H., and
 OP 195-68
- Nisselson, Harold: Lago, Armando, with OFR 7-68
- others, and _____O Norman. L. D., Jr.; Henn, J. J., Kirby,
- Norman. L. D., Jr., Henn, C. C., IC 8368 R. C., and ______ IC 8368 Norman. L. D., Jr. _____ RI 6638, 6851 _____ Driscoll. T. J., Jr., and _____ RI 7025 Norrell, G. P.; Miller, R. D., and _____ IC 8241

Nothdurft, R. R., and Schwaneke, A. E. __ RI 6642; OP 29-67, 25-68 Nunnelley, J. R. _____ IC 8417* Nyasnowsky, P. N.; Crump, L. H., and ____ IC 8411

0

-
Ubert, Leonard RI 6703; OP 107-65, 121-66, 139-67
121-66, 139-67
Durelli, A. J., Parks, V. J., and OP 27-69
and Duvall, W. I OP 50-68
and Stephenson, D. E OP 108-65
Ode, W. H
Odan I I , Babitaka H P Kally H I
and RI 7211
Deardorff, D. K., with others, and RI 6594
and Francoeur, P. E RI 7294
and Siemens, R. E OP 57-68
121-66, 139-67 121-66, 139-67 mail Durelli, A. J., Parks, V. J., and OP 27-69 and Duvall, W. I. OP 50-68 and Stephenson, D. E. OP 108-65 Ode, W. H. OP 159-67 OP 158-67 Oden, L. L.; Babitzke, H. R., Kelly, H. J., and OP 158-67 Oden, L. L.; Babitzke, H. R., Kelly, H. J., and OP 158-67 Oden, L. L.; Babitzke, H. R., Kelly, H. J., and OP 5768 and Francoeur, P. E. And Francoeur, P. E. OP 57-68 Siemens, R. E., Deardorff, D. K., and OF 57-68 Odd colspan="2">Odd
odenbaugh, M. L., and Ellman, R. C RI 7258 Odenbaugh, M. L., and Ellman, R. C RI 7048 O'Donneil, H. J.; McCartney, J. T., Ergun, Sabri, and RI 7231; OP 51-67 O'Hare, S. A.; Calvert, E. D., with others, and B 646*
O'Donnell H. J. McCartney J. T. Ergun
Sabri, and RI 7231: OP 51-67
O'Hare, S. A.; Calvert, E. D., with others,
O'Hare, S. A.; Calvert, E. D., with others, and B 646* Oitto, R. H., Jr RI 6626; P 14-66 Barry, A. J., Sporcic, Rudolph, and OP 171-67 Barry, A. J., with others, and OP 171-67 Barry, A. J., with others, and RI 6971 Mitchell, D. W., Hood, R. A., and Stears, J. H RI 7202 and O'Rourke, Alex OP 36-69 OP 61-69
Oitto, R. H., Jr RI 6626; P 14-66
Barry, A. J., Sporele, Rudolph,
= - Rarry A I with others and RI 6971
——— Mitchell D. W., Hood, R. A., and
Stears, J. H RI 7202
and O'Rourke, Alex OP 36-69
and Zona, A OP 61-69
and Zona, A OP 61-69 O'Keefe, D. A.; Wong, M. M., Couch, OP 10 60
O'Keefe, D. E., and D. E., and O'Keefe, T. J.; Fukubayashi, H., with others, and Okuno, I., Latham, D. R., and Haines, W. E. OP 109-65; 8-68
others and OP 148-69
Okuno, I., Latham, D. R., and Haines, W. E.
OP 109-65; 8-68
\rightarrow Latham D B. Haines, W. B.
and OP 89-65 O'Leary, J. P.; Abel, W. T., Bluman, D. E., and OIson, I. J., and Fogelson, D. E OP 1-65 Olson, K. S MY 1968 (v. I-II, III)* O'Neill, R. J., Jr., Lapham, D. M., Jaron, M. Jaron, M. S.
O'Leary, J. P.; Abel, W. I., Bluman, D. E.,
Olson J. J. and Fogelson D. F. OP 147-69
Olson, K. S MY 1968 (v. I-II, III)*
O'Neill, R. J., Jr., Lapham, D. M., Jaron,
M. G., Socolow, A. A., Thomson,
O'Neill, J. F. M. G., Sonlow, A. A., Thomson, R. D., and Hamlin, H. P. IC 8261, 8264 — Danielson, V. A., Ahrenholz, H. W., and IC 8329
U'Neill, J. F IC 8261, 8264
and IC 9320
Neathery, T. L., with others, and RI 7045
O'Neill, W. E.: Davis, R. F., and RI 6790
Lang, Helen W., with others, and RI 7241
Oppelt, W. H., Perry. Harry, MacPherson,
J. L., and Vitt, E. J RI 6721
Orning, A. A.: Gerstle, R. W., with
others, and OP 58-65 Goldberg, S. A., Gallagher, J. J.,
Goldberg, S. A., Gallagher, J. J.,
and OP 55-68
McCann, C. R., and RI 7239
Pibelin, A. P., Weintraub, Murray, and
and Schwartz, C. H OP 104-67
and Schwartz, C. H. and Smith, J. F. OP 110-65
Smith J F Hultz J A and RI 7108
Smith. J. F., Hultz, J. A., and RI 7108 Weintraub, Murray, Schwartz, C.
H. and RI 6908
H. and RI 6908 O'Rourke, Alex: Oitto, Richard, and OP 36-69
Ortuglio, C.; Naugle, B. W., with others,
and
and
* Author of chapter.

Ortuglio, C., Walters, J. G., and ______ RI 6709 Walters, J. G., Glaenzer, J., and _____ B 643 Wolfson, D. E., and _____ RI 7131, 7236 Wolfson, D. E., Lynch, J. H., and ____ RI 6899 Osborn, A. G., and Douslin, D. R. _____ OP 69-66, 165-68, 97-69 165–68, 97–69 OP 36–65

 Ossorri, A. G., and Douslin, D. R.
 165-68, 97-69

 ______ Douslin, D. R., and ______ OP 36-65

 Osen, Lars, Habberstad, J. L., Parsons, E.

 W., and Rodriguez, E. R.

 M. and Parsons, E. W.

 and Parsons, E. W.

 Parsons, E. W., and _______ RI 6595, 6704, 7087, 7220: OFR 5-68; P 18-68

 Ostrowski, E. J.; Gee, K. H., Mahan, W. M., and _______ OP 11-67

 Oudenhoven, M. S., and Krempasky, G. T. RI 6812

 ______ and Osen, Lars _______ OP 11-67

 Oudenhoven, M. S., and Krempasky, G. T. RI 6812

 _______ and Osen, Lars _______ OP 122-66, 105-67

 _______ owitz, C. M., and _______ OP 61-68

 Overbey, W. K., Jr. _______ OP 122-66, 105-67

 _______ Boley, D. W., Johnson, H. R., and RI 6683

 _______ Duda, J. R., Johnson, H. R., and RI 6683

 _______ Duda, J. R., Johnson, H. R., and RI 6683

 _______ Duda, J. R., Johnson, H. R., and RI 6683

 _______ Duda, J. R., Johnson, H. R., and RI 6683

 _______ Duda, J. R., Johnson, H. R., and RI 6683

 ________ Duda, J. R., Johnson, H. R., and RI 6683

 ________ Duda, J. R., Johnson, H. R., and C. RI 6943

 ________ and Rough, R. L. ______ OP 26-68, 122-68

 ________ and Whieldon, C. E., Jr., and ________ OP 162-65, 504 c5

OP 162-65. - Whieldon, C. E., Jr., and _----163-65, 94-66

Paasche, O. G.; Romans, P. A., Kato, H., and Pace, N. A.; Shell, H. R., Nichols, E. F., OP 123-65

P

P 9-65 Padan, J. W. _____ P 9-65 Padan, J. W. _____ OP 113-65 _____ Howard. T. E., and _____ OP 64-67 Paige, J. I., Harris, H. M., and Kelly, H. J. RI 6651

 Paine, R. S., and Eilertsen, N. A.
 IC 8273

 Paialich, Walter
 IC 8342

 Palowitch, E. R.
 OP 30-67

 Baker, A. F., Deurbrouck, A. W.,
 and

 and Deurbrouck, A. W.,
 OP 103-66

 —
 and Deurbrouck, A. W.,
 OP 103-66

 —
 and Deurbrouck, A. W., and IC 8282; OP 90-68

 Deurbrouck, A. W., and IC 8282; OP 90-68

 Panek, L. A.
 RI 6732; OP 106-67, 107-67

 Pankratz, L. B.
 RI 6592, 6781, 7073, 7201

 —
 and King, E. G.
 RI 6708, 6862

 —
 King, E. G., with others, and
 RI 6708, 6862

 —
 Mah, A. D., with others, and
 RI 7026

 —
 Mah, A. D., with others, and
 RI 7001, 7280

 —
 Weller, W. W., and King, E. G.
 RI 6861

 Paone, James; Bruce, W. E., and Morrell, R. J.
 IC 8392

 —
 Bruce, W. E., and Morrell, R. J.
 IC 8392

 —
 Bruce, W. E., and Morrell, R. J.
 RI 6776

 —
 Madson, Dick, and Bruce, William
 RI 7300

 —
 RI 6780
 RI 7300

 Paine, R. S., and Eilertsen, N. A. IC 8273 RI 7300 - and Tandanand, Sathit _____ RI 6838; OP 148-65, 70-66 Woo, W. G., with others, and ____ OP 26-69 Paprocki, Antoni _____ IC 8348* Park, W. G., and Dietzman, W. D. ____ MY 1968 (v. III)* - Wood. S. O., Jr., and Carrales, M., Jr. _____ IC 8428 Parker, J. G. _____ B 630*; MY 1968 (v. I-II)* Parker, R. L., and Hobbs, R. G. _____ GS 4-68* Parks, V. J.; Durelli, A. J., Obert, Leon-

Į

Ē

ſ

Ē .

ard, and _____ OP 27-69 Parrish, Frank, Jr., and Meadows, Paul RI 6603

 Parsons, Edward W., and Osen, Lars ... RI 6595, 6704, 7087, 7220; OFR 5-68; P 18-68

 Osen, Lars, and RI 6842

 Osen, Lars, with others, and RI 6842

 Pasini, Joseph III P 18-69

 Fasching, G. E., and OP 134-68

 and Overby, W. K., Jr. OP 134-69

 Pierce, C. I., and RI 6783

 Rennick, G. E., and OP 160-67

 Pattee, E. C.; Becraft, G. E., with others, and GS 2-66

 rattee, E. C.; Becrait, G. E., with others, and ______ GS 2-66
Harrison, J. E., with others, and __ GS 1-69
Van Noy, R. M., and Weldin, R. D. RI 7146
Walker, G. W., Greene, R. C., and GS 4-66
Patterson, J. C., Jr., Henderlong, P. R., and Adams, L. M. _____ OP 167-69
Patterson, S. H.; Hosterman, J. W., with others and Patterson, S. H.; Hosterman, J. W., with others, and ______ GS 4-68* ______ GS 4-68* Paulson, D. L., and Asai, Gene ______ GS 4-68* ______ Henry, J. L., with others, and _____ RI 6968 ______ Hunter, W. L., and _____ RI 6968 ______ RI 7176 ______ Gronhovd, G. H., Harak, A. E., and IC 8376* Pavelka, Edwin; Donaldson, E. C., and ____ IC 8323 Payne, S. L.; Schultz, C. W. Riazance, N., and

 Payne, S. L.; Schultz, C. W. Riazance, N., and
 RI 6807

 Pearce, F. J.; Woolf, P. L., with others, and RI 6678

 Pearson, A. S.
 IC 8348*

 Pearson, C. A.; Collins, A. G., Thompson, D. R., and
 OP 46-68

 Collins, A. G., Zelinski, W. P., and RI 6959; OP 18-67

 OP
 184_68

 Martindill, G. H., and Zabetakis, M. G. RI 6748

 Scott, G. S., and Martindill, G. H.
 RI 6766

 Perry, Harry
 IC 8314*; OP 114-65

 and DeCarlo, J. A.
 OP 108-67

 Esfandiary, M. S., and
 IC 8279

 and Field, J. H.
 OP 180-67, 27-68

 Geer, M. R., Gentile, C. R., and
 Jones, H. F.

 McGee, James, and Strimbeck,
 Donald

 Donald
 OP 6-69

)) McGee. James, and Strimoeck, Donald ______ OP 6-69, 45-69 Murphy. Z. E., and _____ IC 8376* Oppelt, W. H., with others, and __ RI 6721 R. E. _____ P 7-65 J Perry, R. E. Perzak, F. J. P.; Mason, C. M., Forshey, D. R., and _____ OP 6-68 Van Dolah, R. W., with others, and RI 6773

• Author of chapter.

1

 Peskin, R. L.
 IC 8314*

 Gibson, H. G., with others, and ___ OP 39-66

 Peters, F. A.; Henn, J. J., with others, and ____ RI 7156, 7299

 Johnson, P. W., and ____ RI 7068; IC 8426

 Johnson, P. W., Henn, J. J., and Kirby, R. C.

 Johnson, P. W., and Kirby, R. C. ___ RI 6927

 Johnson, P. W., and Kirby, R. C. ___ RI 6573,
 Johnson, P. W., and Kirby, R. C. __ RI 6573, 6730
 Kirby, R. C., and Higbie, K. B. OP 181-67
 Petersen, J. C. ______OP 15-68
 Davis, T. C., and __ OP 20-67, 76-67, 2-68
 Dorrence, S. M., and _____OP 97-68
 Dorrence, S. M., and _____OP 97-68
 Ramsey, J. W., McDonald, F. R., and _____OP 97-68
 Petersen, N. S.; Carrillo, F. V., McComb, M. A., and _____OP 10-68
 Peterson, R. S.; Carrillo, F. V., McComb, M. A., and ______BPA 2-65, 3-65
 Service, A. L., and ______BPA 2-65, 3-65
 Service, A. L., and _______RI 6935
 Peterson, H. E.; Farley, K. R., and ______RI 6820
 Peterson, M. J.; Abernathy, R. F., Gibson, F. H., and _______RI 6632; OP 33-68
 Zink, J. B., Washington, W. D., and RI 6985
 Peterson, R. E.; Prasky, Charles, and OP 124-69
 Petkof, Benjamin ______ B630*; MY 1968 (v. I-II)*
 Peterfer, J. J.; Myers, J. W., with others, and _______OP 85_60 6730 and RI 6758 Pfleider, E. P. Gibbs, L. W., Gross, J. R., and OP 85-69 Philleo, R. E. IC 8348* Phillips, Glenn IC 8304* Phillips, J. A.; Huff, W. R., Helden, J. H., and RI 6706 Phillips, J. E.; Matzick, Arthur, with others, and B 635 Plancher, Henry, Morris, J. C., and Haines, W. E. _____ OP 108-68 Plants, K D.; Bienstock, D., with

 Plants, R. D.; Blenswork, D., with

 others, and

 OP 15-65

 — Katell, Sidnev, and

 Wilson, M. W., and

 OP 158-68

 Poad, M. E.: Dorman, K. R., Serbousek,

 M. O., and

 Polack, S. P.

 OP 112-67

 OP 158-68

 Polack, S. P. OP 116-65 ——— Mitchell, D. W., with others, and RI 7053 Polta, H. J.: Michelson, R. W., and ____ OP 133-69 Poppleton, H. O.; Mrazek, R. V., with RI 7096 others, and _____ RI 7096

Popoff, C. C. IC 8283 and Service, A. L. RI 6611 Porter, Bernard; Heinen, H. J., and RI 7250 and Meaker, R. E. RI 6836 Meaker, R. E., and Bremner, P. R. RI 7246 RI 6736,
7008 Post, E. V.; Gower, H. D., with others, and GS 1-66 ——— Mallory, W. W., with others, and GS 3-66 Poston, A. M., Jr.; Batty, J. V., Gibbs,
Poston, A. M., Jr.; Batty, J. V., Gibbs, H. L., and RI 6855 Potter, G. M TPR 20 Brooks, P. T., Martin, D. A., and RI 7316 Dannenberg, R. O., and RI 7117 Patte
Potts, N. L.; Eilerts, C. K., Sumner, OP 42-65 E. F., and OP 46-69 mail Jensen, H. B. OP 123-68 Powell, H. E. RI 6643: IC 8351
Powell, H. E. RI 6643; IC 8351
and OP 187-67 Prasky, Charles; Fine, M. M., and II 6764 and Peterson, R. E. OP 124-69 and Swanson, W. S. RI 7242 Prater, J. D.; George, D. R., Ross, J. R.,
and OP 48-68 Praushtz, J. M.; Tsonopoulos, C., and OP 184-69 Pressler, J. W.; Pense, R. A., and MY 1968 (v, IV)* Price, G. C., and Badda, Frank RI 6685 Prokopovitsh, A. S OP 117-65 Purglisse I. M. Duygell, W. L. and BI 6700
Starfield, A. M., and OP 41-68 Pung, K. G.; Roepke, W. W., and OP 124-68 Purer, Al OP 118-65 Hoffman, C. A., and Smith, D. R. OP 39-68 OP 19-69,
135-69 Seitz, C. A., Klingman, C. L., and OP 76-66 Stroud, Lowell, and Meyer, T. O. OP 119-65 Pursglove, Joseph, Jr. IC 8348* Pynnonen, R. O. Mathematical Look, A. D. IC 8347

-
0
-

r, J. A.; Friedel, K. A., and	
 Friedel, R. A., Retcofsky, H. L., and	B 640
Retcofsky, H. L., Friedel, R. A.,	
and OP	33-67

R

- Raabe, R. G., Fischer, R. P., with others,
- and ______ GS 8-68 Huff, L. C., Santos, Elmer, and ____ GS 6-66 Ketner, K. B. with others, and ____ GS 5-66
- Ratte, J. C., with others, and GS 2-69 Rahfuse, R. V.; Berber, J. S., and RI 7115
- ____ RI 7115 Berber, J. S., Wainwright, H. W.,
- and _____ OP 14-65 Rall, H. T.; Coleman, H. J., with others, and _____ RI 6802; OP 27-65, 28-65, 89-66
- Hopkins, R. L., with others, and __ RI 6795,
 - 6796, 6970 Thompson, C. J., with others, and __ RI 6879; OP 139-65, 140-65, 141-65, 90-66, 137-66,
- 45-67, 196-67
- OP 72-66 Rampacek, Carl ____
- Stanczyk, M. H., and RI 6808

 Ramsey, J. W.
 OP 120-65

 Brady, G. A., and Eckerd, J. W.
 RI 6657

 Mapstone, J. O., Brady, G. A., and
 Eckerd, J. W.

 RI 6864
 RI 6864

 McDonald, F. R., and Petersen,
 OP 10.68
 OP 10-68 J. C. Rand, L. H.; Kerr, J. R., Vallely, J. L., and Rapid Excavation Committee IC 8255 Rapid Excavation Committee ______OFR 12-68 Ratte, J. C., Landis, E. R., Gaskill, D. L., Raabe, R. G., and Eaton, G. P. ____ GS 2-69 Raymond, L. D.; Kloos, E. J., Spinetti, L., and _____ RI 7077; IC 8291, 8296 Raymond, Raphael; Kessler, T., Sharkey, A. G. Jr., and OP 141 69 OFR 12-68

 Raymond, Raphael; Kessler, T., Sharkey,
 A. G., Jr., and
 OP 141-68

 — Reggel, L., Wender, I., and _____ OP 166-68

 Readling, C. L., Morrison, W. E., and _____ B 615

 Reading, C. L., Morrison, W. E., and _____ C 8384

 Redmon, D. E.
 OP 121-65

 — Mathias, A. J., and ______ OP 121-65

 — Mathias, A. J., and ______ RI 6739

 — Moyer, F. T., Lukins, T. C., and

 IC 83368, 8337

 — Moyer, F. T., Walker, D. K., and ____ GS 4-68*

 Reggel, Leslie, Zahn, Charles, Wender,

 Irving, and Raymond, Raphael

 Ivender, I., and Raymond, R. _____ OP 166-68

 Reichl, E. H.

 IC 8376*

 Reichl, E. H. IC 8376* Reid, R. R., Gresseth, E. W., and _____ R1 7173 Reiness, C. G., and Marano, C. L. _____ R1 7602 Rennick, G. E., and Pasini, J. III _____ OP 160-67 Friedel, R. A., Queiser, J. A., and ___ B 640
 Hoffman, J. M., Jr., and Friedel, R. A. OP 77-68 and McDonald, F. R. OP 79-68 Queiser, J. A., and Friedel, R. A. OP 33-67 Reuss, J. L.; Bernstein, N., Woolf, P. L., OP 55-67 and ______ Sharkey, A. G., Jr., and Friedel, R. A. OP 147-68 Stark, J. M., and Friedel, R. A. OP 78-68, 148-68 Reuss, J. L.; Bernstein, N. Woolf, P. L., and ______ Reynolds, M. W.; Harrison, J. E., with OP 55-67
 Reynolds, M. W., Harrison, J. E., With

 others, and

 Bhoads, S. C.; Henderson, A. W., Brown,

 R. R., and

 R. R., and
 and _____ RI 6807 Ribovich, John —— Mason, C. M., Van Dolah, R. W., __ OP 20-69 and OP 95-65 - Watson, R. W., and Gibson, F. C. OP 109-68 - Watson, R. W., Gibson, F. C., and OP 52-68

.

) €

5

E

É

- Richardson, D. W.; King, E. G., Mrazek, R. V., and ______ RI 7305
 - Mrazek, R. V., with others, and ____ RI 7096

[·] Author of chapter.

Richardson, H. P., Cummins, D., and
Richardson, H. P., Cummins, D., and Guereca, R OP 91-68 Gordon, J. L., Cummins, David, and Guereca, R. A OP 182-67, 92-68
Gordon, J. L., Cummins, David,
and Guereca, R. A OP 182-67, 92-68
Guereca, K. A., Walker, L. M., and KI 5995
Guereca, R. A., with others, and RI 6949;
IC 8317 Miller I. E. with others and DI 6070
Cumming D and OP 195.60
Richardson P A · Hanna N E and IC 8249
Meson C. M. and RI 7318
Cummins, D., and OP 185-69 Richardson, P. A.; Hanna, N. E., and IC 8249 Mason, C. M., and RI 7318 Hanna, N. E., Van Dolah, R. W., and RI 6815 Mason, C. M., and IC 8371 Mason, C. M., Van Dolah, R. W., and RI 7127
and RI 6815
Mason, C. M., and IC 8371
Mason, C. M., Van Dolah, R. W.,
and RI 7127
Riggs, C. H.; Donaldson, E. C., and P 9-68
Heath, L. J., and R1 6870
and Instruction RI 7127 Riggs, C. H.; Donaldson, E. C., and P 9-68 Heath, L. J., and RI 6870 Riley, H. L., and McGrain, Preston MV 1968 (r. 111)*
MY 1968 (v. III)* ————————————————————————————————————
Pilor I M Coorde D P and D 11 69
miley, J. M., George, D. R., and r 11-00
George D R Ross J R and P 8-69
George, D. R., Ross, J. R., and P 8-69; OP 86-68
Rosenbaum, J. B., May, J. T., and OP 137-69
 Rosenbaum, J. B., May, J. T., and OP 137-69 Riott, J. P.; Morris, J. P.; Illig, E. G., and OP 67-66 Morris, J. P., with others, and RI 7047 Risbeck, J. S.; Neumeier, L. A., and RI 7229;
and OP 67-66
Morris, J. P., with others, and RI 7047
Risbeck, J. S.; Neumeier, L. A., and RI 7229;
OP 107-68, 123-69
Ritchey, R. A.; Hill, T. E., Jr., with others,
and \mathcal{R}_{1} \mathcal{R}_{2} $\mathcal{R}_$
Robb, W. A.; Smith, J. W., and UF 81-00
Roberson, A. H., and Deall, R. A D 646
Colvert E D with others and B 646*
Roberts D K · White E J Marchant
OP 107-68, 123-69 Ritchey, R. A.; Hill, T. E., Jr., with others, and
Robertson, H. F., Aguilar, Eduardo, and
Ashizawa, R. Y MY 1968 (v. III)*
Fulkerson, F. B., and III 1000 IC 8289 Robinson, C. J., and Cook, G. L. OP 175-69 Robinson, W. E.; Anderson, P. C., with
Robinson, C. J., and Cook, G. L OP 175-69
Robinson, W. E.; Anderson, P. C., with
others, and OP 176-69 Cummins, J. J., and OP 145-69 Cummins, J. J., and Dinneen,
Cummins, J. J., and Dinnear
G. U OP 122-65
and Dinneen G U OP 40-68
Fester, J. I., and OP 34-66 Hills, I. R., with others, and OP 48-66
Hills, I R., with others, and OP 48-66
Roche, J. M
Roche, J. M OFR 22-69* Becraft, G. E., with others, and GS 2-66
Rock, R. L
Rodriguez, E. R.; Osen, Lars, with others,
and
Roepke, W. W., and Pung, K. G OP 124-68
Rogers, M. P IC 8429
Rohrer, W. L., and Smith, J. W OP 96-69
Rohwedder, W. K.: Frankel, E. N., with
others, and OP 56-69 Romanowitz, C. M.; Cruickshank, M. J.,
Romanowitz, C. M.; Cruickshank, M. J.,
Overall, M. P., and OP 61-68
Romans, R. A., and Krug, M. P UP 74-66
——— Paasche, O. G., and Kato, H OP 123-65
Romeo, M. K.; Frohne, K-H., Schrider,
L. A., and RI 7272
L. A., and RI 7272 Locke, C. D., Schrider, L. A., and OP 120-68
Rosa, Carl: Nazaruk, Stanley, Headrick,
A. F., and P 16-69 Rose, M. J., Carosella, J. M., Corrick, J. D.,
Rose M. J. Carosella, J. M., Corrick, J. D.,
and Sutton, J. A IC 8376*
and Sutton, J. A IC 8376*

^{*} Author of chapter.

j

 Rosenbaum, J. B.
 OP 70-69, 71-69

 Bilbrey, J. H., Jr.
 OP 58-67

 Dannenberg, R. O., and George,
 OF 57-67

 May, J. T., and Riley, J. M.
 OP 136-69

 Rosenecker, C. N.; Bluman, D. E., with
 others, and

 others, N. H., and Lucas, H. G.
 RI 7057

 Coates, N. H., and Lucas, H. G.
 RI 7019

 Ross, J. R.; George, D. R., and
 OP 86-67

 OP 86-67
 OP 86-67

 OF 86-67 — George, D. R., Prater, J. D., and OP 48-68 — George, D. R., Riley, J. M., and ____ P 8-69; OP 86-68 OP 86-68 and Schack, C. H. _____ RI 6580 s, R. S. _____ OP 8417

 and Schack, C. H.
 RI 6580

 Ross, R. S.
 IC 8417*

 Rothschild, G. R.
 IC 8417*

 Rough, R. L.
 RI 7238; OFR 3-69

 Overbey, W. K., Jr., and_OP 26-68, 122-68

 Rennick, G. E., and
 RI 6670

 Rowe, E. A.; Keith, G. H., Jones, B. D., and RI 6576

 Loria, E. A., Keith, G. H., and
 RI 6716

 Mathews, D. R., and
 RI 6628

 Rowe, V. R.; Singer, J. M., with others, and RI 6958

 Royer, M. B.; Buehl, R. C., Morris, J. P., and

 and

 Ruane, P. J.; Mallory, W. W., with others.

 Ruane, P. J.; Mallory, W. W., with others, and ______ GS Ruark, J. R.; Matzick, Arthur, with others, _ GS 3-66 and _____ B 635 Sohns, H. W., and Carpenter, H. C. RI 7303 B 635 Ruhe, T. C.; Forshey, D. R., Mason, C. M.,
 Rule, A. R.; Colombo, A. F., and
 RI 7187; OP 15-69

 Rule, A. R.; Colombo, A. F., and
 RI 7306

 Ruppel, T. C., Mossbauer, P. F., and
 RI 7326

 Rupper, T. C., Mossoauer, P. F., and Bienstock, D.
 OP 138-69

 Ruppert, J. A.; Kenahan, C. B., with others, and
 RI 7204

 Montagna, D., and
 RI 7315

 and Sullivan, P. M.
 RI 6889; P 16-66

 Ruschak, J. D.; Tartaron, F. X., and
 RI 6901

 Rushton, T. N.; Hansen, J. P., Khalafalla, S. E., and
 RI 6712

 Rushton, T. N.; Hansen, J. P., Khalafalla,
 RI 6712

 S. E., and
 RI 6627

 Hansen, J. P., Schultz, C. W., and
 RI 6827

 mand Khalafalla, S. E.
 RI 7080

 Khalafalla, S. E., Schultz, C. W., and
 RI 7080

 Manage and Khalafalla, S. E., Schultz, C. W., and
 RI 7080

 Manage and State and S .

And Kelly, H. J. RI 7028 Russell, P. L. OP 67-67 Ryan, J. P. MY 1968 (v. I-II)* Rynearson, G. A. MY 1968 (v. IV)*

S

Sadwin, L. D., and Duvall, W. I OP 124-65
and Junk, N. M. RI 6701
Junk, N. M., and Duvall, W. I RI 6770
Sainato, Albert; Hadden, J. D., and TPR 12
Sainsbury, C. L., and Sweeney, J. W GS 4-68*
St. Clair, H. W RI 6975, 7031, 7128
Salgado, P. G.; Bailey, D. M., Abel, W. T.,
and P 1-67
Salsbury, M. H
Meeves, H. C., with others, and IC 8298
Saltzman, R. D IC 8314*
Sanders, C. W.; Town, J. W., with others,
and RI 6930
Sands, Paul, Sokaski, Michael, and Geer,
M. R RI 7067
Sandwith, C. J P 19-69

Sanker, P. E., Town, J. W., and ______ RI 7205 ______ Town, J. W., Gruzensky, W. G., and RI 6749 ______ Town, J. W., Kelly, H. J., and _____ RI 7275 ______ Town, J. W., White, J. C., and _____ RI 6993 ______ Town, J. W., with others, and _____ RI 6923 Sanner, W. S. _____ RI 6989, 7170; OFR 6-66; OP 126 50 OP 168-69 Baker, A. F., with others, and _____ RI 6945 ______ Eckerd, J. W., with others, and _____ RI 6945 ______ Naugle, B. W., and Wolfson, D. E. RI 7322 Santos, Elmer; Huff, L. C., Raabe, R. G., Santos, Elmer; Hun, L. C., Manuel, M. GS 6-66 Saunders, S. J.; Sullivan, G. V., Browning, J. S., and RI 7251 Sawyer, W. K.; Wallace, W. E., Pierce, C. I., and RI 7259 Sax, J.; Feldman, H. F., with others, and OP 135-68 Schack, C. H., and Clemmons, B. H. IC 8266; OP 123-67 IC 8438 Cr 123-57 — Elkins, D. A., and _____ IC 8438 — Ross, J. R., and _____ RI 6580 Schaefer, S. C.; Spencer, R. N., Mauser, J. E., and _____ RI 6999 Schaller, J. L.; Ferrante, M. J., Block, F. E., and _____ RI 7145] RI 7145 Schreck, A. E., Johnson, E. E., and Fullen-Schrieck, A. E., Jonnson, E. E., and Fullen-baum, Richard _____ GS 4-68* _____ and Reed, A. H., Jr. _____ GS 4-68* Schrider, L. A. _____ OP 151-68 _____ Duda, J. R., and Johnson, H. R. _ RI 6917: OP 124-66 - Duda, J. R.. Johnson, H. R., and _ OP 37-65 - Frohne, K.-H., Romeo, M. K., and _ RI 7272 - Locke, C. D., Romeo, M. K., and OP 120-68 - Hass, L. A., and _____ RI 6682

Schwartz, C. H.; Gerstle, R. W.,

 Schwartz, C. H.; Gerstle, R. W., with others, and
 OP 58-65

 Orning, A. A., and
 OP 104-67

 Orning, A. A., Smith, John F., and
 OP 110-65

 Weintraub, Murray, Orning, A. A., and
 RI 6908

 Schwartz, F. G., Allbright, C. S., and Ward, C. C.
 RI 7197; OP 167-68, 182-69

 Allbright, C. S., Ward, C. C., and RI 6961, 7084

 and Ward, C. C.
 0P 125-66

 Schwarz, Hans
 IC 8314*

 Scott, D. W.
 OP 143-69

 Hubbard, W. N., Messerly, J. F.,
 Todd, S. S., Douslin, D. R.,

 McCullough, J. P., and Wad dington, G.

 officiency, G. A., and ...
 OP 14-67, 125-68

 Crowder, G. A., and ...
 OP 69-69, 142-69

 Crowder, G. A., with others, and OP 32-65
 Or crowder, G. A., with others, and OP 114-67, 125-68

 Crowder, G. A., with others, and OP 142-69
 Green, J. H. S., with others, and OP 114-69

 Kruse, F. H., and
 OP 69-69, 142-69

 Scott, Dennis
 IC 8304*

 Scott, Dennis
 IC 8304*

 Scott, F. E.; Davis, R. F., with others, and IC 8354

 Scott, F. H.: Hay, J. E., and
 OP 66-65

 Scott, G. S., Kennedy, R. E., Spolan, Irving,

 and Zabetakis. M. G.
 IC 8348*

 Seabright, John
 IC 8348*

 Seibel, C. W.
 IC 8348*

 Seibel, C. W.
 IC 8417*

 Seitz, C. A., and Churchwell, S. E.
 OP 193-67

 and Emerson, D. E.
 OP 1-68

 Purer, Al, and Klingman, C. L.
 OP 142-67

 7084 - and Ward, C. C. OP 125-66 - Sonnek, A. S., with others, and ___ RI 6600 Seizinger, D. E. _____ OP 142-67 - Dimitriades, Basil, Ellis, C. F., and _____ OP 179-69 _____ Hurn, R. W., and _____ OP 50-66 Selim, A. A.; Engelmann, W. H., Terichow, Serbousek, M. O., and Dorman, K. R. _____ RI 7274 _____ Dorman, K. R., Poad. M. E., and ___ RI 7114 Severson, D. E.; Skidmore, D. R., Gleason,

D. S., and _____ IC 8376* Service, A. L. _____ RI 6801 _____ Coffman, J. S., and _____ RI 6934 _____ and Petersen, N. S. _____ RI 6935 _____ Popoff, C. C., and _____ RI 6611 Shafer, H. E., Jr. _____ IC 8348* (

) {

)

ſ

Þ

[•] Author of chapter.

Shale, C. C IC 8353; P 20-69; OP 125-65, 183-67 and Fasching, G. E RI 7276
Holden, J. H. and Fasching, G. E. RI 7401 ————————————————————————————————————
Shale, C. C IC 8353; P 20-69; OP 125-65, 183-67 and Fasching, G. E. RI 7276 and Holden, J. H. OP 68-69 Holden, J. H., and Fasching, G. E. RI 7401 Simpson, D. G., and Lewis, P. G. OP 163-69 Shanks, D. E.; Broadhead, K. G., and OP 70-67 Broadhead, K. G., Heady, H. H., andOP 20-65, 10-66 Shannon, S. S.; Meeves, H. C., with others, andOP 125-67, 126-67 Friedel, R. A., and RI 7122; OP 25-67
and IC 8298
Sharkey, A. G., Jr OP 125-67, 126-67 —— Friedel, R. A., and RI 7122; OP 25-67 —— Gomez, Manuel, with others, and RI 6586 —— Karn, F. S., and OP 139-68 —— Karn, F. S., Friedel, R. A., and OP 27-67,
Karn, F. S., and OP 139-68 Karn, F. S., Friedel, R. A., and OP 27-67, 72-68
72-68 72-68 OP 73-68 Messler, Theodore, Friedel, R. A., and
and
Retcofsky, H. L., Friedel, R. A., and OP 147-68
and OP 147-68 Shultz, J. L., and OP 36-67 Schultz, J. L., and Friedel, R. A B 634; RI 6868; OP 126-65, 127-65.
101-00, 04-01, 00-01 Shulte I I E-indal D A and DI 7000
Friedel. R. A OP 110-68 Shultz, J. L., with others, and OP 152-68
and Lindstrom, R. E RI 6906 Shea, G. B OP 127-67
Shea. G. B. OP 127-67 Shedd. E. S., Marchant, J. D., and Henrie, T. A. T. A. RI 6882 Marchant, J. D., Henrie, T. A., and RI 6894 Morrice, E., Henrie, T. A., and RI 7146 Morrice, E., with others, and OP 5-69 Sheffer, H. W.
Morrice, E., Henrie, T. A., and RI 7146 Morrice, E., with others, and OP 5-69
Sheffer, H. W
Sheffer, H. W
$(\mathbf{v}, 1\mathbf{v})^{T}$
Shell, H. R.: Cliffon, R. A., Jr., Huggins, OP 21-66 C. W., and OP 71-65 Huezins, C. W. OP 71-65 and Ivev, K. H. B 647 Ivey, K. H., and P 12-67 Johnson, R. C., and P 12-67 Johnson, R. C., and P 12-69 Johnson, R. C., with others, and P 12-69 Michols, E. F., Ivey, K. H., and P 17-69 Pace N A and Nichols E F P 9-65
Ivey, K. H., and P 12-67 Ivey, K. H., Nichols, E. F., and OFR 3-65
Johnson, R. C., and
 Nichols, E. F., Ivey, K. H., and P 17-69 Pace, N. A., and Nichols, E. F P 9-65 Shelton, E. M.; McKinney, C. M., and RI 6752, 7059
Shelton, E. M.; McKinney, C. M., and RI 6752. 7059
Shelton, J. E. B 630* Sheridan, E. T. B 630* DeCarlo, J. A., Murphy, Z. E., and IC 8312
Sheridan, M. J. Crittenden, M. D., Jr., Wallace, C. A., and Fischer, R. P., with others, and GS 8-63 GS 8-63
C. A., and GS 3-87 Fischer, R. P., with others, and GS 8-68
Steven, T. A., with others, and GS 3-69 Shewchyk, Y.; Durie, R. A., Friedel, R. A., and OP 116-68
Friedel, R. A., Durie, R. A., and OP 70-68 Shibler, B. K.; Chindgren, C. J., Bauerle,
L. C., and RI 7058 Shields, J. J. I. IC 8320
Shirley, L. E.; Lesure, F. G., and GS 4-68* * Author of chapter.

 Shotts, R. Q.
 OFR 20-69

 Gayle, J. B., Eddy, W. H., and ... RI 6620

 and Riley, H. L.

 IC 8295

 Shoub, E. P.

 OP 129-65, 130-65

 Morgis, G. G., Beauregard, L. P., and B 623

 Shrewsbury, R. D.; Moore, B. J., and ... IC 8316, 9205

 8356, 8395 ___ IC 8302
 Moore, B. J., Miller, R. D., and ___ IC 8302

 Shultz, J. F.; Anderson, R. B., Karn, F. S.,

 and _____ OP 8-65

 Anderson, R. B., with others, and ____ B 628

 Karn, F. S., and Anderson, R. B. ____ RI 6941,
 6974 - Karn, F. S., Anderson, R. B., and OP 77-65, 78-65 Shultz, J. L., Friedel, R. A., and Sharkey, A. G., Jr. _____ RI 7000; OP 131-65 _____ Gomez, Manuel, with others, and __ RI 6586 126-66 Simons, W. H.; Feldmann, H. F., Bienstock, D., and _____ RI 7257; OP 177-67, 33-69 -----Feldmann, H. F., with others
 reigmann, H. F., with others
 OP 135-68

 and
 OP 135-68

 Thalimer, J. R., with others, and OP 47-69

 Simpson, D. G.; Shale, C. C., Lewis,

 P. G., and

 Sinclair, H. W.

 RI 7309

 Singer, J. M.

 OP 93-68

 OP 105-69

 Singer, J. M.

 OP 93-68

 OP 7135-69

 Cook, E. B., and Grumer, J.
 RI 6931

 Cook, E. B., Harris, M. E., Rowe,
 V. R., and Grumer, Joseph
 RI 6958

 Greninger, N. B., and Grumer, J.
 RI 7252

 Hanna. N. R., Van Dolah, R. W.,
 and Grumer, Joseph
 RI 6954

 Karn. F. S., and
 OP 140-68

 Singleton. E. L.; Iverson, H. G., and
 RI 6905

 Kirby D. E., and Sullivan. T. A.
 RI 7212

 Sippel, A. J. III: Lang, H. W., Freedman,
 RI 7310

R.

Smelley, A. G., Brantley, F. E., and Findeis, A. F. Smith, A. F.; Mitchell, D. W., with others, OP 78-66

 and
 RI 7053

 Smith, C. S.
 P 19-68

 Smith, D. F.; Taylor, A. R., Jr., Letson,

 B. B., and
 RI 6724

 Smith, D. K.
 IC 8348*

 Smith, D. K. Smith, D. L.; Ketner, K. B., with others, ___ GS 5-66 and _____ GS 5-66 Smith, D. R.; Purer, Al, Hoffman, C. A., and _____ OP 39-68 _____ Purer, A., Kaplan, R. L., and ____ OP 19-69, 135-69 Smith, Don, Devlin, J. P., and Scott, D. W. OP 28-68 Smith, E. B., and Jensen, H. B. _____ OP 132-65, 195-67 Smith, G. A., Jr., and Leiler, G. E. IC. 8417* Smith, G. R., Kenahan, C. B., Andrews, R. L., and Schlain, David _____ OP 125-69 Smith, H. M. _____ B 642; IC 8286; OP 16-68, 20 69 106 69

 R. L., and Schlain, David
 OP 125-69

 Smith, H. M.
 B 642; IC 8286; OP 16-68,

 62-68, 186-68

 and Ball, J. S.
 OP 170-69

 Caum, J. W., and
 OP 135-67

 and Hale, J. H.
 P170-69

 Jones, T. S., and
 OP 76-65

 Smith, J. F., Hultz, J. A., and Orning,
 RI 7108

 Orning, A. A., Schwartz, H., and OP 110-65

 Smith, J. W.
 RI 7248; OP 79-66, 169-69

 and Harbaugh, J. W.
 RI 7168

 and Johnson, D. R.
 OP 80-66

 and Robb, W. A.
 OP 81-66

 Rohrer, W. L., and
 OP 81-66

 and Stanfield, K. E.
 OP 133-65

 Stanfield, K. E., Trudell, L. G. op 81-66

 Thomas, H. E., and Trudell, L. G. OP 34-68

 and Trudell, L. G.
 OP 38-69

 Trudell, L. G., and Dana, G. F.
 RI 7071

 Trudell, L. G., and Stanfield, K. E. RI 7172

 and Trudell, L. G., and Stanfield, K. E. RI 7172

 and Young, N. B.
 RI 6920

 Nabors, W. N., and Goff, G. B.
 RI 6920

 Nabors, W. N., and Goff, G. B.
 RI 6920

 Nabors, W. N., with others, and OP 106-65
 Strimbeck, D. C., Coates, N. H.,

 Strimbeck, D. C., McGee, J. P., and OP 136-65 Smith, M. C., and Henkes, W. C. _____ MY 1968 (v. III)* Smith, N. K., and Good, W. D. _____ OP 184-67, 185 - 67Smith, N. K.; Good, W. D., and ___ _ OP 72-69 Smith, R. V.; Eakin, J. L., Miller, J. S., Smith, R. W., Jr., and Cook, E. B. _____ OP 41-65 Smith, R. W., Jr., and Cook, E. B. _____ RI 6672 _____ Ergun, Sabri, Donaldson, W. F., and B 620 Smith, Sam, and Atkinson, C. H. _____ OP 37-67 Smith, W. E.; Hollenbeck, R. P., and ____ MY 1968 (w) U1)* ----- OP_41-65 (v. III)* Smith, W. J.; Zeller, F. A., with others, and _____ OFR 21-69, 26-69 and _____ OFR 21-69 Snavely, P. D., Jr.; Weisenborn, A. F., and GS 1-68 through 3-68 Snyder, M. J. IC 8348^e Snyder, R. E.; Jewell, D. M., and IIC 8348^e Socolow, A. A.; O'Neill, B. J., Jr., with others, and IIII and IIIII and PTG and _____ PTG Soderberg, R. L.; Kealy, C. D., and _____ IC 8410

Sohns, H. W. OP 59-68 Burwell, E. L., Carpenter, H. C., and TPR 16 Carpenter, H. C., and OP 82-66 Carpenter, H. C., and OP 180-68 and OP 180-68 Dinneen, G. U., with others, and OP 132-68 Ruark, J. R., Carpenter, H. C., and RI 7303 Then, S. S., Carpenter, H. C., and OP 168-68

- Stanfield, K. E.
 OP 128-67

 _____ Dinneen, G. U., with others, and OP 132-68

 _____ Smith, J. W., and _____ OP 133-65

 _____ Smith, J. W., and Trudell, L. G. ____ RI 7051

 _____ Smith, J. W., Trudell, L. G. and ___ RI 7172

 Stansfield P. G. Postandabl W. H. J. G. 2000 CS 4000

 Stansfield, R. G.; Bergendahl, M. H., and GS 4-68* - Butler, A. P., Jr., and _____ GS 4-68* - Conant, L. C., and _____ GS 4-68*

f

- Fish, G. E., Jr., and Feitler, S. A. GS 4-63*

[·] Author of chapter.

 Stansfield, R. G.; French, A. E., and _____ GS 4-68*

 ______ Lesure, F. G., Feitler, S. A., and GS 4-68*

 ______ Luttrell, G. W., and ______ GS 4-68*

 ______ Maxwell, C. H., Frendzel, R. G., and ______ GS 4-68*

 ______ Newman, W. L., Eilertsen, N. A., and GS 4-68*

 and _____ GS 4-68* Wedow, Helmuth, Jr., and _____ GS 4-68* Starfield, A. M., and Pugliese, J. M. ___ OP 41-68 Stark, J. M.; Retcofsky, H. L., Friedel, R. A., and ... OP 78-68 Retcofsky, H. L., Friedel, R. A.,

 and
 OP 148-68

 Starliper, A. G.; Barnard, P. G., Ken-worthy, H., and
 OP 149-69

 and Kenworthy, H.
 RI 7118, 7130

 Stears, J. H.
 RI 6646

 Oitto, R. H., with others, and _____ RI 6616

 Stearbar
 RI 6616

 Stecura, Stephan ______ RI 6616 Stephenson, D. E.; Duvall, W. I., and __ OP 39-65 _____ Obert, Leonard, and _____ OP 108-65 Stephenson, J. B.; Donaldson, J. G., Coch-Sterner, J. W.; Dean, K. C., and _____ RI 7350 OP 106-66 and Wertman, W. T. Steven, T. A., Schmitt, L. J., Jr., Sheridan, M. J., Williams, F. E., Gair, J. E., ___ RI 7044 and Klemic, Harry _____ GS 3-69 Stevens, R. F., Jr. ___ B 630*; MY 1968 (v. I-II)* _____ Cole, J. W., and _____ MY 1968 (v. I-II)* - Konchesky, J. L., and ______ RI 7284 - Martin, J. W., and _____ RI 7193 - Wender, Irving, Zahn, Charles, and IC 8377 Steyert, W. A. I Holmes, W. T. II, and ____ RI 7232 Stickney, W. A.; Holmes, W. T. II, and ____ RI 7232 Town, J. W., with others, and ____ RI 6923 Stone, R. K., and Eccleston, B. H. ____ OP 80-68, 63-69 Storch, H. H.; Wu, W. R. K., and _____ B 633 Stotelmeyer, R. B.; Bachman, G. O., and __ GS 6-67 Gilkey, M. M., and _____ IC 8276, 8328 _____ Mallory, W. W., with others, and __ GS 3-66 Stotler, H. H.; Hoffert, F. D., and _____ IC 8314* Strasser, Alexander; Grumer, Joseph, and OP 63-65 -Liebman, I., and Harris, S. R. ... OP 96-68 Strebig, K. C., Schultz, C. W., and Selim, A. A. _____ OP 183-69 Strimbeck, D. C., and Faber, J. H. _____ OP 86-66 _____ Liberatore, A. J., Goff, G. B., and

McGee, J. P. _____ RI 7295

* Author of chapter.

1 3

1 3

Ĩ

J

4

Strimbeck, D. C., McGee, J. P., with others,

45-69 — Smith, Jack, and McGee, J. P. _ OP 136-65 — Smith, Jack, with others, and ____ RI 6920; OP 127-66 robridge, T. R. _____ IC 8417*

Strobridge, T. R. Stroud, Lowell; Emerson, D. E., Meyer,

 Stroud, Lowell; Emerson, D. E., Meyer, T. O., and
 OP 31-66

 Meyer, T. O., and Emerson, D. E. ... RI 6936

 Purer, Al, Meyer, T. O., and
 OP 119-65

 Tully, P. C., and
 IC 8398

 Stroud, R. B., Arndt, R. H., Fulkerson, F. B., and Diamond, W. G.
 B 645

 Sturgis, W. J.; Morgan, T. A., Fischer, W. G., and
 RI 6675, 6705, 6902, 7046

 Studer, Pete, Jr.; Murphy, E. M., with others, and
 RI 7214

. RI 7214

others, and Sullivan, E. E.; Town, J. W., with others, _ RI 6930

RI 6930 Sullivan, G. V., Browning, J. S., and Saun-ders, S. J. Fergus, A. J., and RI 7251 Fergus, A. J., Workentine, G. F., RI 7188 _ RI 7189

and Sumner, E. F.; Eilerts, C. K., and ____ OP 136-67, 133-68

Eilerts, C. K., Potts, N. L., and __ OP 42-65 Sunset, P. H.; Harris, H. M., with others,

Surineik, D. J.: Nagy, John, and ______ RI 6967 Surineik. D. J.: Nagy, John, and ______ RI 6811 Suttle, E. T., Emerson, D. E., and Bur-field, D. W. _____ OP 87-66 _____ Emerson, D. E., and Hoffman,

Emerson, D. E., and Homman, C. A. OP 105-68 Sutton, J. A., and Corrick, J. D. P 16-67 Corrick, J. D., and RI 6714, 7126 Rose, M. J., with others, and IC 8376* Swanson, D. A.; Walker, G. W., and GS 9-68, 10-68 Swanson, W. S.; Prasky, Charles, and II 7242 Sweeney, G. G.; Kessler, T., with others, and II C 74-68

 Sweeney, G. G.; Kessler, T., With others, and
 OP 74-68

 Sweeney, J. W.
 MY 1968 (v. I-II)*

 Bush, A. L., and
 GS 4-68*

 Dorr, J. Van N. II, and
 GS 4-68*

 Griffitts, W. R., and
 GS 4-68*

 Hosterman, J. W., with others, and GS 4-68*

 Larrabee, D. M., and
 GS 4-68*

 Mever. R. F. and
 GS 4-68*

 Sweeney, J. W.; Sainsbury, C. L., and ___ GS 4-68*

 Wan Alstyne, R. E., and _____ GS 4-68*

 Wedow, Helmuth, Jr., and _____ GS 4-68*

 Wedow, Helmuth, Jr., Heyl, A. V.,

--- GS 4-68* and GS 4-08" Wright, W. B., with others, and __ GS 4-68" Sweetwood, C. W.; Kimbell, C. L., and ___ MY 1968 and

(v. IV) Sylvester, R. D. _____ SP 1-66, 1-69

T

 Tade, M. D.
 OP 112-67

 Tame, K. E.; George, D. R., with others, and
 OP 118-68

 Tandanand, Sathit; Paone, James, and
 RI 6838; OP 148-65, 70-66

 Taquard, A. H.
 OP 129-68, 22-69

 Tarman, P. B., and Lee, B. S.
 IC 8314*

 Tartaron, F. X.
 RI 6686; P 18-66

 and Ruschak, J. D.
 RI 6666; P 18-66

 Tucker, H. A., with others, and OP 187-68

 Tavenner, W. H., and Schimmel, J. T.
 RI 6759

 Taylor, A. R., Jr.
 OP 138-65

 and Gardner, T. E.
 RI 6664

 Gardner, T. E., and
 OP 146-69

 Manuel Gavle, J. B., and.
 RI 6607

- Gomez, Manuel, Gayle, J. B., and __ RI 6607
- Letson, B. B., and Smith, D. F. _____ RI 6583 Letson, B. B., and Smith, D. F. _____ RI 6724 Taylor, C. E. _____ IC 8417* Tenney, R. F.; Baker, A. F., with others,

- Taylor, U. E.

 Tenney, R. F.; Baker, A. F., with otners, and

 RI 6945

 Terichow, O.; Engelmann, W. H., Selim, A. A., and

 and Larson, W. C.

 RI 6951

 Tesch, W. J., Jr.; Utter, Stephen, and

 RI 6951

 Tesch, W. J., Jr.; Utter, Stephen, and

 RI 6653

 Thalimer, J. R., Kurtzrock, R. C., Simons, W. H., Bienstock, D., and Hughes, W. F.

 OP 47-69

 Thatcher, J. W.

 and Campbell, W. J.

 RI 66689; OP 53-67

 Campbell, W. J., Brown, J. D., and OP 100-66, 105-66

 D. and Hubbs, R. G.

 OP 49-69
- Thaver, T. P., and Hobbs, R. G. _____ GS 4-68* Thill, R. A., and Bur, T. R. _____ OP 48-69 _____ Bur, T. R., Hjelmstad, K. E., and __ RI 7333,
- McWilliams, R. J., and Bur, T. R. RI 7164

 Vickers, B. L., and

 Willard, R. J., and Bur, T. R. OP 172-69

 Thomas. B. I.

 Maloney, R. P., and

 OFR 9-65, 10-65

 Thomas, C. R.; Koch, R. K., with others, and
- and .____ RI 7271
- Thomas, H. E.; Smith, J. W., Trudell,
- L. G., and _____ . OP 94-68 L. G., and _____ OP 94-68 as, R. D. _____ OP 88-66, 196-68, 49-69 - Champlin, J. B. F., and _____ OP 111-66 - Champlin, J. B. F., Brownlow, -----Thomas, R. D. _____
- RI 6926
- A. D., and Donaldson, E. C., Lorenz, P. B.,
- and OP 41-69 Thomas, W. E.; Bowser, M. L., and _____ RI 7270 Thompson, C. J., Coleman, H. J., Hop-kins, R. L., and Rall, H. T. __OP 139-65, 140-65, 141-65, 137-66, 45-67, 196-67
- Coleman, H. J., Rall, H. T., and Foster, N. G. OP 90-66 Coleman, H. J., with others and RI 6803; OP 27-65, 28-65, 89-66

Foster, N. G., Coleman, H. J., and Rall, H. T. _____ RI 6879

- Hopkins, R. L., with others, and _____RI 6795, 6796, 6970; OP 58-69
 Thompson, D. R.; Champlin, J. B. F., and _____RI 6696
 Collins, A. G., Pearson, C. A., and OP 46-68
 Thompson, G. G.; Holmes, W. T. II, with others, and ______RI 7083
 Thomson, R. D.; Erickson, G. E., and _____ GS 4-68*
 ______ Frendzel, D. J., and Edgerton, C. D., Jr. ______ GS 4-68*
 ______ O'Neill, B. J., Jr., with others, and ______ GS 4-68*
 ______ O'Neill, B. J., Jr., with others, and ______ OFR 22-69
 Thrush, P. W., and Bureau of Mines Staff SP 2-68
 Tihen, S. S., Carpenter, H. C., and Sohns, H. W. ______ OP 168-68
 ______ Carpenter, H. C., Sohns, H. W., and _______ OP 168-68
 Tillinghast, J. A. ______ RI 6591, 7107, 7121, 7285
 Tippin, R. B., and Browning, J. S. _____ RI 6969, 7134; OP 149-65, 91-66, 145-67
 ______ Browning, J. S., McVay, T. L., and RI 6729
 Tisot, P. R. ______ OP 161-67
 ______ and Murphy, W. I. R. ______ OP 143-65
 Todd, S. S.; Finke, H. L., Messerly, J. F., and _______ OP 48-65
 ______ Messerly, J. F., Finke, H. L. and OP 100-65, 101-65 64-66

- and OP 48-65 Messerly, J. F., Finke, H. L. and OP 100-65, <u>1</u>01-65, 64-66
- Messerly, J. F., Guthrie, G. B.,
- and _____ OP 99-67 _____ Messerly, J. F., with others, and ___ OP 98-67 _____ Scott, D. W., with others, and ___ OP 110-67 Tomb, T. F.: Anderson, F. G., Jacobson, _____ Murray, and _____ RI 7105

- Townsend, J. R., and Dirgun, Sant 1. J. 1971
 Ergun, S., Yasinsky, J. B., and OP 153-67
 Trauger, D. B. IC 8417*
 Tress, J. E., Campbell, T. T., and Block, F. E. RI 6835
 Good, P. C. and RI 7213
 Trudell, L. G.; Smith, J. W., and OP 38-69
 Smith, J. W., Dana, G. F., and ..., RI 7071
 Smith, J. W., Stanfield, K. E., and RI 7071
 Smith, J. W., Thomas, H. E., and OP 94-68
 Stanfield, K. E., Smith, J. W., and RI 7051
 Tsonopoulos, C., and Prauznitz, J. M. OP 184-69
 Tucker, H. A., Coulehan, R. T., and Wilson, W. G. RI 7153
 Leary, R. J., with others, and RI 7091
 Tartaron, F. X., Goldstein, H. L., and Kociscin, J. J. OP 187-68
 Tully, P. C.: Barieeu, R. E., and ..., IC 8319
 DeVaney, W. E., and Meeks, J. C., Jr. RI 7091

 Tully, P. C.: Barleru, R. E., and Meeks, J. C., Jr.

 Jr.

 and Estes. J. M.

 RI 7099

 Fistes. J. M., and

 Rhodes, H. L., and

 IC 8322

 and Stroud. Lowell

 Tyrrell, M. E.: Hollenbeck, R. P., and _____ RI 7129

 Hollenbeck, R. P., and _____ VNR

 Johnson, S. S., and

b (

) ł D

ť€

- Johnson, S. S., and _____ VNR and Liles, K. J. _____ RI 7215
- 11

Uchida, Kenji; Gomez, J. M., Baker, D. H., Jr., and ____ RI 6742, 6805, 7106; P 13-68

[•] Author of chapter.

Uchida, Kenji, Haver, F. P., and Wong, M. M. RI 7185

M. M. Uraco, J. L.; Mason, C. M., Cooper, J. C., and _____ RI 7149

and _____ RI 7149 Utter, Stephen, and Tesch, W. J., Jr. ____ RI 6653 v

Vallely, J. L.; Kerr, J. R., Rand, L. H.,

1

•

C

IC 8255 and

Van Alstine, R. E., and Sweeney, J. W. GS 4-68* Van Buren, Wayne; Ergun, S., Bayer, James, and ______ OP 175-67 Vance, R. W. ______ IC 8417* Van Dolah, R. W. ______ OP 145-65, 146-65, 147-65, 162-67, 128-68, 23-69 ______ Burgess, D. S., with others, and ___ RI 7196 _____ Gibson, F. C., and Murphy, J. N. ___ RI 6746, 6903

6903 Grant, R. L., Hanna, N. E., and ____ RI 6947 Hanna, N. E., Richardson, P. A.,

Hanna, N. E., Richardson, P. A., and ______ RI 6815 Mason, C. M., and Forshey, D. R. ____ RI 6815 Mason, C. M., Perzak, J. F. P., Hay, J. E., and Forshey, D. R. ______ RI 6773 Mason, C. M., Ribovich, John, and OP 95-65 Mason, C. M., Richardson, P. A., and

Mason, C. M., Richardson, I. M., and RI 7127 Mason, C. M., Weiss, M. L., and RI 6799 Singer, J. M., with others, and RI 6799 Guereca, R. A., Richardson, H. RI 6954 Van Doren, K. R. C., Richardson, H. P., and Cummins, D. OP 185-69 Van Meter, Robin OP 150-65 Van Meter, Robin OP 150-65 Van Noy, R. M., Pattee, E. C., Weldin, R. D., and RI 7148 Van Sant, Joel; Holmes, R. W., and OFR 9-68 Van Tassel, R. C.; Michalopoulos, Con-stantine, and OFR 23-69 Vaughn, J. A. Richardson, B 630*

Vaughn, J. A. Vedder, J. G.; Gower, H. D., with others, and Weith, K. F.; Marovelli, R. L., and _____ RI 6604 Marovelli, R. L., Chen, T. S., and _____ OP 171-65, 59-66

 Weith, R. F., Marovelli, R. L., and _______ OP 171-65, 59-66

 Marovelli, R. L., Chen, T. S., and _______ OP 171-65, 59-66

 Venkataramani, Rajaraman; Manula, C. B., and _______ OFR 13-68

 Verakis, Harry C.; Nagy, John, Conn, John W., and _______ RI 7279

 Vhay, J. S.; Cornwall, H. R., Frendzel, D. J., and _______ GS 4-68*

 Vickers, B. L., and Thill, R. E. ______ OP 173-69

 Virciglio, P. R.; Paone, James, Bruce, W. E., and ______ RI 6880

 Visnapuu, Aarne; George, L. C., Doerr, R. M., and ______ OP 57-69, 65-69

 _______ George, L. C., with others, and _____ RI 7307

 _______ and Jensen, J. W. ______ OP 151-65, 152-65, 146-67, 160-68, 198-68 through 203-68, 67-69

 _______ and Johnson, R. E. ______ OP 205-68, 206-68

 _______ and Lloyd, B. S. ______ OP 205-68, 206-68

Waddell, G. C. RI 6747; OP 154-65; P 17-67 Waddington, Guy: McCullough, J. P., and OP 18-69 Scott, D. W., with others, and OP 110-67 Wagner, E. O.; Gomez, Manuel, Landers, W. S., and RI 7141 Landers, W. S., Gomez, Manuel, and B 639 Landers, W. S., with others, and RI 6608

· Author of chapter.

Wagner, R. J. _ IC 8304*

Wagner, R. J. Gronhovd, G. H., Wittmaier, A. J., and Wainwright, H. W.; Berber, J. S., Rah-fuse, R. V., and Berber, J. S., with others, and _____ RI 6916 Walker, C. J.; Cook, Alton B., with others, and BER 7278 RI 7278

and and Huff, R. V. Walker, D. K.; Mcyer, F. T., Redmon, D. E., RI 6793

 walker, D. K.; Dicyer, F. T., Redmon, D. E., and
 IC 8378

 Walker, F. E.; Aresco, S. J., Janus, J. B., and
 RI 6622, 6792

 _______and Hartner, F. E.
 IC 8301

 Walker, G. W., Greene, R. C., and Pattee, E. C.
 GS 9.69 10.69

 GS 9.69 10.69

and Swanson, D. A. _____ GS 9-68, 10-68 Walker, J. B., Jr.; Duzy, A. F., and _____ IC 8304 Walker, J. D.; Guereca, R. A., with others,

. IC 8317 and _ RI 6995

Walker, L. M.; Guereca, R. A., Richardson, H. P., and Wallace, C. A.; Crittenden, M. D., Jr.,

Wallace, C. A.; Crittenden, M. D., Jr., Sheridan, M. J., and _____ GS 3-67 Wallace, J. J.; Fowkes, R. S., and _____ RI 7090 Wallace, W. A.; Bishko, Donald, Dunn, J. R. and _____ OFR 25-69

J. R., and ______ OFR 25-69 Wallace, W. E., Pierce, C. I., and Sawyer, W. K. ______ RI 7259 Walters, J. G.; Abernathy, R. F., and ____ OP 3-65,

40-67, 103-69 - Gomez, Manual, Gayle, J. B., and __ RI 7024, 7093

 and Ortuglio, C.
 RI 6709

 Ortuglio, C., and
 RI 6709

 Ortuglio, C., and Glaenzer, J.
 RI 6871

 Ortuglio, C., and Glaenzer, J.
 B 643

 Wolfson, D. E., with others, and __ RI 7302
 Wancheck, G. A.; Fowkes, R. S., and ___ RI 7283

 Wangk A. A.; Cobb E. H. with others
 RI 7283

Wanek, A. A.; Cobb, E. H., with others,

GS 7-68 and _____ ---------Wang, F. H., and Cruickshank, M. J. ___ OP 115-69

- Wang, K. P. _____ MY 1968 (v. IV)* _____ and Barr, V. L. _____ OP 155-65 _____ Lansche, A. R., and ____ MY 1968 (v. IV)* _____ Lansche, A. M., Pense, R. A., and __ MY 1968
- (v. IV)*

Ward, A. E.; Grose, L. T., Hileman, D. H., _ IC 8326 and Ward, C. C.; Allbright, C. S., Schwartz,

F. G., and ______ RI 6961, 7084 Schwartz, F. G., and ______ OP 125-66 Schwartz, F. G., Allbright, C. S., and ______ RI 7197; OP 167-68, 182-69 Whisman, M. L., and _____ OP 164-65,

96-66, 9-67

Whisman, M. L., Goetzinger, J. W., RI 7325

and _____ RI 7325 D. C. _____ OP 156-65 D. C. _____ OP 156-65
 Atkinson, C. H., and ____ OP 102-66, 167-67
 Atkinson, C. H., and Watkins, J. W. _____ OP 92-66 Ward, D. C. _____

- Gevertz, Harry, with others, and OP 49-67

 Ware, G. C.
 B 630*

 Warfield, R. S.
 OFR 11-67

 — and Boley, C. C.
 RI 7321

 — Landers, W. S., and Boley, C. C.
 RI 6767;
 OFR 7-66

- Mulligan, J. J., Wells, R. R., and OFR 9-67 - and Wells, R. R. _____ OFR 12-67

Warner, W. C.; Estep, P. A., with others, OP 44-65 and - Karr, Clarence, Jr., McCaskill, K. B., and _____ OP 80-65 Wartman, F. S.; Leone, O. Q., and _____ RI 6588 Warwick, W. H.; Johnson, R. C., with others, . RI 6588 109 - 68and ______ RI 6799 Weissenborn, A. E., and Snavely, P. D., Jr. GS 1-68 through 3-68 Weldin, R. D.; Becraft, G. E., with others, GS 2 66

 Weldin, R. D.; Becrait, G. E., with others, and
 GS 2-66

 Pattee, E. C., Van Noy, R. M., and RI 7148

 Weller, W. W.
 RI 6669, 6782

 Mah, A. D., with others, and
 RI 6962

 Pankratz, L. B., and
 RI 7026

 Pankratz, L. B., King, E. G., and_ RI 6861

 Wellman, Paul, and Katell, Sidney
 IC 8314*, 8366

 8366 Wells, J. R. _____ B 630*; MY 1968 (v. I-II)* Wells, R. R.; Mulligan, J. J., Warfield, R. S., and _____ OFR 9-67 Warfield, R. S., and _____ OFR 12-67 Warfield, R. S., and _____ OFR 12-67 Wen, C. Y. IC 8314* Wender, I.; Frankel, E. N., with others, and _____ OP 56-69 Friedman, Sidney, Kaufman, Friedman, Stoney, Edulman,
 M. L., and ______ OP 188-67
 Friedman, S., with others, and ____ OP 52-65
 Fu, Y. C., with others, and _____ OP 178-67
 Kaufman, M. L. Elistense, Stateman, S - Kaufman, M. L., Friedman, Sid-OP 83-67 ney, and _____ OP 83-67 Reggel, L., Raymond, R., and __ OP 166-68 - Reggel, Leslie, with others, and ____ B 615

 wender, I.; Silverman, M. F., Gordon, J. R., and _______OP 77-66, 126-66

 Sternberg, H. W., with others, and RI 7017; OP 135-65, 85-66, 128-66, 131-66, 4-67, 107-69

 _____Zahn, Charles, and Stewart, R. F. IC 8377

 Wenger, W. J.; McKinney, C. M., Ferrero, E. P., and ________RI 6819

 _____And Morris, J. C. ________RI 6819

 ______And Morris, J. C. ________RI 7183

 Wertman, W. T.; Manger, G. E., and ______ RI 7044

 Wertz, J. B. ________ OFR 8-66, 14-67

 West, J. M. ________ MY 1968 (v. IV)*

 _______Ashley, B. E., and _______ MY 1968 (v. IV)*

 Westerstrom, Leonard ________ MY 1968 (v. I-II)*

 Westerstrom, Leonard ________ MY 1968 (v. I-II)*

 Weston, P. L., and Fine, M. M. ________ RI 6876

 _______Foerster, E. F. , and _______ OF 5-68

 Westrum, E. F., Furukawa, G. T., and McCullough, J. P. ________ OP 24-69

 Whaite, R. H. _________ OP 129-66, 138-66

 __________ and Evans, D. M. ________ OP 129-66, 138-66

 __________ and Evans, D. M. ________ OP 129-66, 138-66

 __________ and Evans, D. M. _________ OP 24-69

 Whieldon, C. E., Jr. _________ OP 129-66, 138-66

 _________ and Evans, D. M. ________ OP 24-69

 Whaite, R. H. ___________ OP 129-66, 138-66

 ___________ and Evans, D. M. _________ OP 24-69

 Whieldon, C. E., Jr. __________ OP 129-66, 126-66

 163-65, 94-66, 126-66

 and Pierce, C. L.

 IC 8250

 oFR 13-67

 Whisman, M. L.

 OFR 13-67

 Whisman, M. L.

 OF 95-66

 and Dimitriades. Basil

 OF 95-66

 and Ward, C. C. RI 7325

 and Ward, C. C.

 OP 96-66, 9-67

 White, D. H., Jr.: Danielson, V. A., and _____ IC 8406

 and Hershey, R. E.

 MY 1968 (v. III)*

 White, E. J., and Baptist, O. C.

 Marchant, L. C., and Roberts,

 D. K.

 OP 153-68

 Marchant, L. C., and Roberts,

 D. K.
 OP 153-68

 White, J. C.; Town, J. W., Sanker, P. E.,
 and
 RI 6993

 Whitehead, A. B., and Heady, H. H.
 OP 42-68

 —
 Piper, B. C., and Heady, H. H.
 OP 97-66

 Whitehead, E. V.; Anderson, P. C., with
 others, and
 OP 176-69

 —
 Hills, I. R., with others, and
 OP 48-66

 Whitman, R. A.
 B 630*; MY 1968 (v. IV)*

 Willard, Robert J.
 OP 9-69, 66-69

 —
 and McWilliams, J. R.
 OP 25-69, 99-69

 Willcox, K. W.; Dwiggins, C. W., with
 others, and
 OP 172-69
 others, and ______ RI 7273 Williams, F. E. _____ IC 8307, 8318; OFR 11-65 ______ Canney, F. C., Lehmbeck, W. L., GS 4-67 Canney, F. C., Lehmbeck, W. L., and GS 4-67 Fillo, P. V., and Bloom, P. A. _____NMNR Steven, T. A., with others, and _____GS 3-69 and Zinkl. A. E. _____OP 165-65 Williams, J. A.; Malone, Kevin, Blasko, D. P., and _____ OP 165-65 Williams, L. R. ______B 630*; NCNR Williams, L. R. ______B 630*; NCNR Williams, L. B. SCNR -______Boyle, J. R., and ______ B 630*; NCNR Williams, P. D.; Lago, Armando, with others, and _______ OFR 7-68 Williams, R. P.; Mitchell, D. W., with others, and _______ P 15-69 others, and _____ P 15-69 Wilson, D. A., and Sullivan, P. M. _____ RI 7042 RI 7042 Wilson, J. E.; Birge, G. W., with others, and _____ RI 6615

Wender, I.; Silverman, M. P., Gordon, J. N., and _____ OP 77-66, 126-66 _____ Sternberg, H. W., Delle Donne,

€ Ð ¢ D ŧ D :(D

Wilson, M. W., and Plants, K. D. _____ OP 158-68 Wilson, W. G.; Leary, R. J., with others,

Wilson, W. G.; Leary, R. J., with outers, and ______ RI 7091 — Tucker, H. A., Coulehan, R. T., and RI 7153 Winget, J. O., and Lindstrom, R. E. ____ RI 7175; OP 186-69

Morrice, E., with others, and ____ 005; 0F 174-08 Murphy, J. E., Morrice, E., and ____ 0F 5-69 Woo, W. G., Bensko, J., Lindelof, L., and Baopa L

 Woo, W. G., Bensko, J., Lindelof, L., and Paone, J.
 OP 26-69

 Wood, F. W.
 RI 7151

 Ausmus, S. L., Beall, R. A., and _____ B 646*

 and Beall, R. A., Borg, J. O., and _____ B 646*

 Beall, R. A., Borg, J. O., and _____ B 646*

 Beall, R. A., Magnusson, P. C., and _____ B 646*

 Beall, R. A., with others, and ______ B 646*

 witz, N., and Mitt, S. L., Berkowitz, N., and ______ IC 8376*

 Wood, R. E.
 RI 7190

 Wood, R. E. _____ RI 7190 _____ Boone, W. J., Jr., Marshall, J. D., and Baer, F. W. _____ RI 6896 Wood, S. O., Jr., and Moore. W. H. _____ MY 1968 (v. III)* _____ Park, W. G., Carrales, M., Jr., and IC 8428 Woodmansee, W. C. _____ MY 1968 (v. IV)* _____ Carleton, D. A., with others, and ____ MY 1968 (v. IV)* (v. IV) Woolf, P. L.

- and OP 13-67 Pearce, F. J., Mahan, W. M., and Basso, J. A. RI 6678 Workentine, G. F.: Fergus, A. J., Sullivan, G. V., and RI 7188

* Author of chapter.

Ð

۲ -1 Wright, E. C.; Davis, E. G., Brantley, F. E.,

RI 7152

Yerkes, L. A.; Good, P. C., Butler, M. O.,
and RI 6785
Yoda, R., Babitzke, H. R., and Kato, H RI 6988
Yopes, P. F OP 168-65, 130-67
York, H. F MY 1968 (v. III)*
Young, E. F IC 8417*
Young, N. B.; Smith, J. W., and RI 7286; OP 11-68
Young, R. W., and Fowkes, W. W OP 99-66
Young, W. E IC 8303
and Delicate, D. T IC 8280
Young, W. H IC 8345
and Anderson, R. L OP 169-65
— and Gallagher, J. J MY 1968 (v. I-II)*
Youngblood, A. J.; Demeter, J. J., with
others and RI 7033

others, and _____ K1 7033

Z

 Zabetakis, M. G.
 OP 54-67, 170-68

 Hanna, N. E., and
 RI 7147

 Kuchta, J. M., Bartowiak, A.,
 and

 Itebman, Israel, with others,
 and

 OP 57-66, 56-67

 Perlee, H. E., Martindill, G. H., and RI 6748

 Scott, G. S., with others, and
 RI 6659

 Zaffarano, R. F.
 OP 177-68

 and Lankford, J. D.
 B 630*

 Zahn, Charles; Reggel, Leslie, with others,
 and

 Wender, Irving, Stewart, R. F.,
 B 615

 and ______ RI 6723 Zeller, F. A., Smith, W. J., Brock, S. M., and Brown, D. M. _____ OFR 21-69, 26-69 Zelonka, J. R.; Davis, R. F., with others, and ______ Zimmer, F. V. IC 8354 Zink, J. B., Washington, W. D., and Peter-RI 6985 RI 6985 IC 8354

☆ U.S. GOVERNMENT PRINTING OFFICE : 1970 0-397-444

L ł • . ł $\left| \right|$ ł. L ł. ł. ł ł l ł . • ł. ł ł ł.