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Abstract 

 

A computational methodology for analysis of spatial flexible multibody systems, 

considering the effects of the clearances and lubrication in the system spherical joints, 

is presented. The dry contact forces are evaluated through a Hertzian-based contact 

law, which includes a damping term representing the energy dissipation. The 

frictional forces are evaluated using a modified Coulomb’s friction law. In the case of 

lubricated joints, the resulting lubricant forces are derived from the corresponding 

Reynolds’ equation. An absolute nodal formulation is utilized in flexible body 

formulation. The generalized-α method is used to solve the resulting equations of 

motion. The effectiveness of the methodology is demonstrated by two numerical 

examples. 
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1. Introduction 

Ideal kinematic joints in any mechanical system allow relative motion between the 

components. Due to the manufacturing tolerances, wear or material deformations 

these joints are not perfect and inherently have some clearances. These clearances 

affect the dynamic response of the system and eventually lead to important deviations 

between the projected behavior of the mechanisms and their real outcome [1-4]. The 

contact-impact phenomenon associated with clearances directly affects the service life 

of a mechanism, since it is usually the cause of vibrations, noise and wear, resulting in 

an increase of maintenance costs [5-7]. The attenuation of the impact response and of 

the vibration characteristics in industrial machines is obtained by including treatment 

of joint clearances in their design. The presence and treatment of clearance in joints is 

a complex and important problem in the realistic modeling of multibody systems. This 

is a key issue due to the demand for the proper design of the real joints in many 

industrial applications [8-10]. 

The serious consequences of the joint clearances on the dynamic behavior of the 

mechanical systems, along with the subject of the clearance physical representation, 

have stimulated and attracted the attention of a large number of researchers over the 

last few years. Indeed, a number of theoretical and experimental works devoted to the 

dynamics research of multibody mechanical systems with realistic joints has been 

published recently [10]. Some of them focus upon the systems in which only one joint 

is modeled as a realistic joint. Liu et al. [11] developed a simple contact force 

formulation of the spherical clearance joints in multibody mechanical systems, using 

the distributed elastic forces to model the compliant of the surfaces in contact. Flores 

et al. [12] also presented a methodology to assess the influence of the spherical joint 

clearances in spatial multibody systems. Both of these approaches are only valid for 

the case of dry contact between the socket and ball. Flores et al. [13] extended their 

work to include a general methodology for modeling lubricated revolute joints in 

constrained rigid multibody systems. Based on neural network and genetic algorithms, 

Erkaya Uzmay [14, 15] investigated the influence of joint clearances on the 

mechanism path generation and transmission angle. In this case, the joint clearances 
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are modeled as a massless virtual link. The thermal effect of high temperature on 

mechanisms having joint clearances was studied by Bing and Ye [16]. They 

demonstrated that by increasing the combined clearance of the revolute joint, a 

favorable reduction of the friction torque between the bush and shaft can be obtained 

for normal operation conditions of a reheat-stop-valve mechanism. However, if the 

temperature of steam reaches to 650°C, the friction torque between the bush and the 

shaft becomes larger and the sticking phenomenon exists. In [17], a methodology, 

based on the Archard’s model, was presented for studying and quantifying the wear 

phenomenon in revolute joint clearances. The results of this study indicate that the 

wear phenomenon is not uniformly distributed around the joint surface, owing to the 

fact that the contact between the joint elements is wider and more frequent in some 

specific regions. 

One of the most important issues for the dynamics research on the multibody 

systems with joint clearances is how to model the contact-impact phenomenon. Many 

researchers have proposed different kinds of models such as Kelvin-Voigt model [5, 

6], the three modes model [18], the model based on the restitution coefficient and 

momentum method [19], but they all have their own disadvantages. For example, for 

the Kelvin-Voigt model it is difficult to quantify the parameters of the spring and 

damper elements and it inherently does not represent the nonlinear nature of the 

contact-impact process. While the model based on the restitution coefficient and 

momentum-based method assumes that no change in the realistic configuration 

between contacting bodies occurs during the period of contact-impact, which is not 

true for joint clearances. Lankarani and Nikravesh [20] developed a continuous 

contact force model with hysteresis damping for impact in multibody systems. The 

model uses the general trend of the Hertz contact law, in which a hysteresis damping 

function is incorporated with the intent to represent the energy dissipated during the 

impact. Based on this continuous contact model, Flores and Ambrósio [1] studied the 

dynamic characteristics of multibody systems with joint clearances. More recently, 

this continuous contact-impact model has also been successfully used to carry out the 

wheel-rail contact-impact dynamics research [21]. 
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It is important to note that all the above mentioned studies have been done based 

on the rigid body dynamics principle. The deformations associated with the flexibility 

of the bodies need to be studied while may lead to different dynamics characteristics, 

especially as far as the large deformations are concerned. Thus, some studies have 

included the influence of the flexibility of the bodies in the dynamic performance of 

multibody systems containing gaps in the joints. Dubowsky and Gardner [22] 

developed a dynamic model for an elastic linkage mechanism with clearance 

connections by Lagrangian approach. This model is quite comprehensive and 

complicated and needs to be simplified for possible numerical implementation. 

Dubowsky et al. [23] applied the perturbation method, treating the angular motion 

caused by clearances and elastic deformations as small quantities and neglecting the 

high order and high-frequency responses of the small variables. This method 

simplifies the dynamics equations, but is not suitable for the conditions of large elastic 

deformations or large clearances. Dubowsky and Moening [24] obtained a reduction 

in the impact force level by introducing flexibility of the bodies. They also observed a 

significant reduction of the acoustical noise produced by the impacts when the system 

incorporates flexible bodies. Kakizaki et al. [25] presented a model for spatial 

dynamics of robotic manipulators with flexible links and joint clearances, where the 

effect of the clearance is taken into account in controling the robotic system. Bauchau 

and his co-workers [26, 27] also established a systematic approach considering the 

flexibility of the bodies based on the finite element method and lubrication conditions. 

Liu and Lin [28] studied the dynamic performance of planar flexible mechanisms with 

revolute joint clearances based on the finite element method. The lubrication effect in 

joints was also considered in this study. Shiau et al. [29] presented a dynamic analysis 

of a 3-PRS series-parallel mechanism including flexibility of the bodies, clearances 

and friction. They demonstrated that the dynamic response of the system degrades as 

the joint clearances increase, and the joint contact forces increase with the joint 

clearances and friction coefficient. Thus, proper modeling of joint clearances in 

multibody systems is required to achieve better understanding of the dynamic 

performance of the machines and mechanisms. 
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Almost all of the aforementioned studies, on the dynamics performance of the 

flexible multibody system with joint clearances are based on the traditional finite 

element theory, in which the system is assumed to undergo small deformations and 

rotations. It has been demonstrated that the traditional finite element method can not 

describe the behavior of flexible multibody system with large deformation and 

rotation configuration with accuracy [30]. Shabana [31, 32] proposed a simple 

procedure, the absolute nodal coordinate formulation (ANCF), that employs the 

definition of the slopes to define the element coordinates instead of the infinitesimal 

and finite rotations. As the locations and deformations of the material points on the 

finite element are defined in the global coordinate system, using the element shape 

functions and the nodal coordinates, the mass matrix within the system equations 

remains constant and the centrifugal and Coriolis forces vanish [33]. Using the 

absolute nodal coordinate formulation, the beam, plate, and shell elements can be 

treated as isoparametric elements and used to describe the exact modeling of the body 

dynamics. In addition, the description of the joint constraints and forces becomes 

much simpler based on the ANCF. The ANCF has been considered a benchmark in 

flexible multibody dynamics development [34, 35], and has been used by several 

other authors in different contexts [36-38]. 

In this paper, dynamic modeling and analysis of flexible spatial multibody 

systems with clearance and lubricated spherical joints is investigated. The absolute 

nodal coordinated-based spatial beam element is used to derive the equations of 

motion for the flexible multibody systems with spherical joint clearances. A 

continuous contact-impact model is used to evaluate the intra-joint contact-impact 

forces, in which the energy dissipation in the form of a hysteresis damping is 

considered. The frictional effect is included based on a modified Coulomb’s friction 

law. The lubrication effect in the spherical joint clearance is included by using the 

Reynolds’ equation. To dissipate the spurious high-frequency responses and to 

preserve the low-frequency responses, the generalized-α method is utilized in the 

simulations. The paper is organized as follows. In section 2 the spatial ANCF-based 

beam element is briefly revisited. Full description of the spatial joints with clearance 
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for the dry contact situation is presented in section 3. A model for the treatment of 

lubricated spherical joints is provided in section 4. Section 5 deals with the 

computational strategy for the assembly and solution of the equations of motion for 

the corresponding constrained flexible spatial multibody systems. Section 6 presents 

two numerical examples, namely a spatial double pendulum and a spatial four-bar 

mechanism, which incorporate ideal, clearance, and lubricated joints. To verify the 

validity of the model for the stiff systems, the results based on the absolute nodal 

coordinated-based model are compared with the results obtained by using the 

MSC.ADAMS software. Finally, in the last section the main conclusions from this 

study are drawn, in the light of the assumptions and procedures underpinning this 

research, and the perspectives for future research are then outlined. 

 

2. Spatial ANCF-based beam element 

The main purpose of this section is to look at the most fundamental aspects of the 

spatial ANCF-based beam element. The absolute nodal coordinate formulation has 

been developed for modeling dynamic systems of large-displacement and 

large-rotation problems in flexible multibody systems, because the conventional finite 

element method deals with the small-displacement problems. The first spatial beam 

type finite element developed in the context of the ANCF [39, 40] was parameterized 

as a volume. It has been shown that this element suffers from some numerical 

problems such as shear or Poisson locking effects and, nowadays, there are several 

implementations of this element that have enabled prevention of these problems [41, 

42]. However, the numerical problems associated with this element can be avoided or, 

at least, reduced by increasing the number of elements used to discrete the flexible 

part. In this work, the original element developed by Shabana and Yakoub [39] is 

used as the kinematic description. It is the same as that of others, its formulation is 

simpler, and only differs from the new elements in the formulation of the elastic 

forces. Furthermore, it is quite easy to extend this method to other type spatial beam 

elements. Figure 1 illustrates the ANCF-based spatial beam element. 
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Fig. 1. Spatial ANCF-based beam element. 

 

As it is observed in Fig. 1, there are two nodes i and j in the element. The nodal 

coordinates vector e includes the node position vector ri and rj, as well as the partial 

derivatives of the position vector (ri,x, ri,y, ri,z, rj,x, rj,y and rj,z) with respect to the three 

local coordinates or parameters of the element. Then the coordinate vector e can be 

expressed as, 

 , , , , , ,[  ] [ , , , , , , , ]T T
i j i i x i y i z j j x j y j z= =e e e r r r r r r r r  (1) 

Since for each node there are 12 nodal coordinates, then the coordinate vector e 

can also be expressed as, 

 

1 2 3 1 2 3 1 2 3
1 2 3 1 2 3

1 2 3 1 2 3 1 2 3

[ , , , , , , , , , , , , , , ,

     , , , , , , , , ] .

i i i i i i i i i
i i i j j j

j j j j j j j j j T

r r r r r r r r rr r r r r r
x x x y y y z z z

r r r r r r r r r
x x x y y y z z z

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂=
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

e
 (2) 

The position vector in the global coordinate framework XYZ of an arbitrary point 

of the element is given by, 

 = Ser  (3) 

in which S is the element shape function. Finally, by using Newton-Euler formulation, 

the element equations of motion can be written as, 

 e e e= −M e Q F&&  (4) 

where T
e v

dvρ= ∫M S S  compensates the element constant mass matrix (ρ is mass 
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density and v denotes the volume), Fe is the element elastic force vector which can be 

deducted by continuum mechanics approach [43], and Qe represents the element 

external generalized force vector. The interested reader in the details of the ANCF is 

referred to the works by Shabana [30-33, 39, 40]. 

 

3. Spherical joints with clearance: dry contact model 

In order to consider the contact-impact forces into the equations of motion for 

flexible multibody systems based on the ANCF, it is first necessary to develop a 

mathematical model for joints with clearance. Thus, let consider Fig. 2 in which the 

socket and the ball elements of a spherical joint clearance are shown. 
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Fig. 2. The socket and the ball of a spherical joint clearance in the ANCF-based framework. 

 

Based on the ANCF formulation, node i indicates the center of the socket, and 

the center of the ball is located at node j. The vectors n and t represent the normal and 

tangential directions to the contacting surfaces, respectively. From Fig. 2, the 

eccentricity vector, eij, which connects the centers of the socket and the ball, can be 

calculated as, 

 j i [ ]Tij x y ze e e= − =e r r  (5) 
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Thus, the magnitude of the eccentricity vector is given by, 

 2 2 2T
ij ij ij x y ze e e e= = + +e e  (6) 

The unit eccentricity vector n is aligned with the eccentricity vector, and, 

therefore, it can be written as, 

 ij

ije
=
e

n  (7) 

With reference to Fig. 2, the penetration depth due to the contact between the 

ball and the socket surfaces can be evaluated as, 

 ije cδ = −  (8) 

where c is the radial clearance given by c=Rs-Rb, in which Rs and Rb are the radius of 

the socket and the radius of the ball. In Fig. 2, points P and Q indicate the contact 

points on socket and ball surfaces, respectively. Then, the position of these contact 

points can be expressed as, 

 p i sR= +r r n  (9) 

 Q j bR= +r r n  (10) 

Since the contact between the socket and ball is an oblique eccentric collision, its 

contact-impact treatment involves both relative normal velocity and relative tangential 

velocity. The velocity of the contact points P and Q, expressed in terms of the global 

coordinate system, can be obtained simply by differentiating Eqs. (9) and (10) with 

respect to time, yielding, 

 p i sR= +r r n& & &  (11) 

 Q j bR= +r r n& & &  (12) 

Then, the relative normal velocity can be expressed as, 

 ( )Tn P Q⎡ ⎤= −⎣ ⎦v r r n n& &  (13) 

Similarly, the relative tangential velocity is given by, 

 ( )t P Q n= − −v r r v& &  (14) 
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Dividing the eccentricity eij by radial clearance c yields the eccentricity ratio ε 

expressed by, 

 ije
c

ε =  (15) 

By differentiating Eq. (6) with respect to time, and dividing the result by radial 

clearance, the time rate of change of the eccentricity ratio is expressed as, 

  ije
c

ε =
&

&  (16) 

It is known that modeling contact forces during an impact event plays a key role 

in the dynamic analysis of mechanical systems [44]. On the one hand, the contact 

force model must be computed by using a suitable constitutive law that takes into 

account material properties of the colliding bodies, geometric characteristics of the 

impacting surfaces and the impact velocity. On the other hand, the numerical method 

for the calculation of the contact forces should be stable in order to allow for the 

integration of the mechanical systems’ equations of motion. Various types of 

constitutive laws are suggested in the literature, being one of the more prominent 

proposed by Hertz [45]. However, this law is purely elastic in nature and can not 

explain the energy loss during the impact process. Lankarani and Nikravesh [20] 

overcame this difficulty by separating the normal contact force into elastic and 

dissipative components. Thus, in the present study, when impact between the socket 

and ball occurs, the normal contact forces are evaluated by using the continuous 

contact model proposed by Lankarani and Nikravesh [20], which can be written as, 

 
2

( )

3(1 )1
4

n e
n

cF K δδ
δ −

⎡ ⎤−= +⎢ ⎥
⎣ ⎦

&
&  (17) 

where ce is the restitution coefficient, ( )δ −&  represents the initial impact velocity, δ& 

denotes the relative penetration velocity, n is a specified nonlinear index, and the 

stiffness coefficient K for two spherical contacting bodies can be expressed by, 

 
1/2

4
3( )

b s

b s b s

R RK
R Rη η

⎡ ⎤
= ⎢ ⎥+ +⎣ ⎦

 (18) 
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in which ηb and ηs are the material parameters for ball and socket, respectively, and 

can be given by, 

 
21 k

k
k

v
E

η −= ,     (k=b,s) (19) 

vk and Ek represent the Poisson’s ratio and the material Young’s modulus associated 

with the ball and the socket. Then, the resulting contact forces are included in the 

equations of motion of the system as external generalized forces [46]. 

It should be highlighted that the contact force model considered here that accounts 

for the energy dissipation is found to be satisfactory for general mechanical contacts. 

Shivaswamy [47] demonstrated experimentally that at low impact velocities, the 

energy dissipation due to the internal damping is the main contributor to energy loss. 

Moreover, the contact force model given by Eq. (17) is only valid for low impact 

velocities, that is, speeds that are at the most one order of magnitude lower than the 

elastic wave traveling velocity [48, 49]. Recently, Flores et al. [50] carried out a 

numerical and experimental investigation of multibody systems with joint clearances. 

They used the same contact-impact force laws as in the present study, being the 

correlation between the numerical and experimental results quite good. Nevertheless, 

other contact models are candidates to be used for the normal contact force and some 

more insight can be obtained from works that have been developed independently of 

that utilized here. In particular the interested reader can find in the works of Liu et al. 

[11], Kuwabara and Kono [51] and Ramirez et al. [52] good insights on the collision 

of spheres where the dissipative effects play an important role. 

It is known that frictional forces act when contacting bodies tend to slide relative 

each other. These forces are tangential to the surfaces of contact and are opposite to 

the sliding velocity. The tangential forces due to the friction phenomenon may be 

considered when the impact velocity has a relative tangential component, such as in 

the case of oblique eccentric collisions. Friction is a quite complex phenomenon 

which involves interaction between the surfaces of contacting bodies and may lead to 

different friction regimes such as sliding and stiction [53]. The most fundamental and 

simplest frictional force model is the Coulomb’s friction law [54]. This model 
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assumes that the frictional force between sliding bodies with respect to each other is 

proportional to the normal contact force. The constant of proportionality is called the 

friction coefficient. However, the definition of the Coulomb’s friction law poses 

numerical difficulties when the relative tangential velocity is in the vicinity of zero. 

Thus, in the present work in order to avoid numerical difficulties, the friction effect is 

included as a modified Coulomb’s friction law [55] as,  

 t f d nc c F= − t

t

vF
v

 (20) 

where cf is the friction coefficient, and dynamic correction coefficient cd is given by, 
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v v
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⎧ ≤
⎪

−⎪= ≤ ≤⎨ −⎪
⎪ ≥⎩

v

v
v

v

 (21) 

in which, v0 and v1 are given tolerances for the relative tangential velocity of the 

surfaces in contact. This dynamic correction factor effectively prevents that the 

frictional force changes direction for almost null values of the tangential velocity. 

Therefore, the great merit of the modified Coulomb’s law expressed by Eq. (20) is 

that it allows the numerical stabilization of the integration algorithm. This frictional 

force model does not account for other tribological phenomena like the adherence 

between the sliding contact surfaces. 

Figure 3 shows the frictional force and its components acting on the socket and 

the ball. The spatial friction force can be expressed in its Cartesian coordinates as, 

 [ ]Tt tx ty tzF F F=F  (22) 

Form Fig. 3, the position vector Rn can be written as, 

 [ ]Tn x y zR R R=R  (23) 

The direction of this vector can be determined by using the unit eccentricity vector n 

described earlier. Thus, if the frictional force is acting at a point P, it is necessary to 

transform it into the force acting at node k, taking into account the corresponding 
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moments that are generated in the process. With regard to Fig. 3, the three moments 

generated by the friction force and that are applied to the node k can be written as,  

 X ty z tz yM F R F R= −  (24) 

 Y tz x tx zM F R F R= −  (25) 

 Z tx y ty xM F R F R= −  (26) 

Finally, based on the formulation presented in [54], these frictional moments can 

be easily transformed into the generalized forces. 
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k

 
Fig. 3. Representation of the frictional force components. 

 

4. Spherical joints with clearance: lubricated model 

Generally, in order to avoid or at least minimize the ball-socket direct contact and 

extend spherical joint lifetime, lubricants are often used for any practical application. 

Therefore, proper modeling of lubricated spherical joints in multibody systems is 

necessary to achieve a better understanding of their dynamic performance. In this 

section, a mathematical model for spherical joints with clearance, taking into account 

the lubrication action, is presented. Figure 4 shows a spherical joint in which the 

space between the ball and socket wall is filled with a lubricant. The socket and ball 

centers are denoted by i and j, respectively. Furthermore, a spherical coordinate 

system is adopted to model the lubrication force components, as it can be observed in 
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Fig. 4. Thus, the position of an arbitrary point P located inside the joint boundaries 

can be determined by its spherical coordinates (r, θ, φ). Since lubrication force has to 

be evaluated by integrating the Reynolds’ equation and because the fluid lubricants 

can not support negative pressure, the pressure field is integrated only over the 

positive part by setting the pressure in the remaining portion equal to zero. This 

corresponds to Gümbel’s boundary conditions [57, 58]. In fact, complete or full film 

does not take into account the cavitation phenomenon and, consequently, contemplate 

the existence of negative pressures, but this case is not realized in many applications 

due to the fluid incapacity to sustain significant sub-ambient pressures [10]. 
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Fig. 4. Schematic representation of a lubricated spherical joint. 

 

For the case of lubricated spherical joints, the full general form of the isothermal 

Reynolds’ equation can be stated as [57, 58], 
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⎛ ⎞∂ ∂ ∂ ∂ ∂= + + + + +⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠

 (27) 

from which it is possible to obtain the following expressions, 

 2 sin cosx y
s sU R Rθ ω φ ω φ= − +  (28) 
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 2 cos cos sin cos sinx y z
s s sU R R Rφ ω φ θ ω φ θ ω θ= − − +  (29) 

 (1 sin cos sin sin cos )x y zh c ε θ φ ε θ φ ε θ= − − −  (30) 

where p denotes the lubricant pressure, r, θ  and φ are the spherical coordinates h is 

the lubricant thickness, µ is the dynamic lubricant viscosity, εx, εy and εz are the 

components of the eccentricity vector in the X, Y and Z directions, and ωx, ωy and ωz 

represent the angular velocity components in the X, Y and Z directions. 

Based on Eq. (15), the εx, εy and εz components can be evaluated by, 

 [ , , ]x y z Tε ε ε ε= =ε n  (31) 

As mention above, the boundary condition for the hemispherical socket lubricant 

pressure are defined by [58], 

 , , 0
2

p r π φ⎛ ⎞ =⎜ ⎟⎝ ⎠
 (32) 

Under the assumption of the pure squeeze condition, the lubrication force 

generated by the rotation motion can be neglected, and, consequently, the pressure 

field can be expressed as, 
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⎪
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&

&
 (33) 

Finally, the squeeze lubrication force can be obtained by integrating the pressure, 
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 (34) 

where µ is the dynamic lubricant viscosity, being the remaining parameters associated 

with the joint kinematics. As it can be seen in Fig. 4, when ε& is in the same direction 

as the unit eccentricity vector n, the lubrication force can be calculated according to 
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Eq. (34), while when ε& is in the opposite direction of the unit eccentricity vector n, 

the squeeze lubrication force is set to zero. 

As the fluid film thickness can become very thin, that is, the ball is very close to 

the socket surface, the squeeze force due to the lubricant evaluated from Eq. (34) 

becomes very large (since ε  is very close to 1). Consequently, the squeeze force will 

approach infinity, ultimately leading to simulation divergence. In order to solve this 

problem, a model that smoothes the transition between the lubricated and dry contact 

cases is considered, which is schematically represented in Fig. 5. This model, which 

combines the squeeze-film action and the dry contact effect, was first proposed in [59]. 

It should be noted that this approach ensures continuity in the joint reaction force 

when the squeeze force model is switched to dry contact force model. 

c
Eccentricitye0 e1

Force

Hybrid Force ModelSqueeze Force Dry impact Force

 
Fig. 5. Transition model between lubricated and dry contact models. 

 
Mathematically, the transition force model can be written as, 

 0
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0 0

0

 
( )

 

 

squeeze ij

ij ij
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F if e c
c e e e c

F F F if c e c e
e e

F if e c e

⎧ ≤
⎪ + − −⎪= + ≤ ≤ +⎨
⎪
⎪ ≥ +⎩

 (35) 

where e0 and e1 are given eccentricity tolerances. The values of these parameters must 

be chosen carefully, since they depend strongly on the clearance size. It should be 

noted that the clearance used for the squeeze-film model is not c, but it is c+e1 instead. 
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5. Computational strategy to solve the equations of motion 

This section deals with the computational strategy for the numerical solutions of 

the equations of motion of spatial flexible multibody systems including spherical 

joints with clearance and lubrication. As it has already been mentioned, based on the 

ANCF, the assembly of the elements can be carried out by traditional finite element 

method. The element nodal coordinates e can be easily transformed into the flexible 

multibody system generalized coordinates q. Thus, based on the previous works on 

ANCF, the equations of motions for constrained flexible multibody systems can be 

expressed in a compact form as [33, 43], 

 ( ) ( )
( , )

T

t
⎧ + + =
⎨

=⎩
qMq Φ λ F q Q q
Φ q 0

&&  (36) 

where M is the system mass matrix, Φ(q,t) is the vector that contains the system 

constraint equations corresponding to ideal or perfect joints, qΦ  is the derivative 

matrix of constraint equations with respect to the system generalized coordinates q, 

vector λ  is Lagrangian multipliers associated with the constraints, and Q(q) denotes 

the system external generalized forces. In the present study, vector Q(q) includes the 

distributed gravitational force as well as the contact-impact force, and F(q) contains 

the system elastic force vector.  

It should be highlighted that the process of solving the equations of motion in the 

case of flexible bodies differs from the case in which the bodies are considered as 

rigid and with joint clearances. This is due to the fact that in the above equations of 

motion for flexible multibody systems with joint clearances, the spurious 

high-frequency responses are stimulated, which is mainly caused by the continuous 

high-frequency contact-impact forces. In addition, the spurious high-frequency 

response is also a product of the finite element discretization. The convergence for the 

solution of the high-frequency modes is poor if the spurious high-frequency responses 

could not be damped out. As a consequence, the high-frequency responses produce 

artificially extreme large impact forces, which in turn lead to the divergence of the 

simulation. Therefore, it is desirable for an algorithm to have a controllable numerical 
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dissipation in the high-frequency range, that is, the low-frequency responses should be 

well-preserved and the high-frequency responses should be damped in a controllable 

way. Thus, according to the generalized-α method, it is possible to write [60], 

 1 1 0 0(1 ) + =(1 )  , m n m n f n f nα α α α+ +− − + =a a q q a q&& && && (37) 

 2
1 1

1= (( ) )
2n n n n nh h β β+ ++ + − +q q q a a&  (38) 

 1 1= ((1 ) )n n n nh γ γ+ ++ − +q q a a& &  (39) 

where n denotes the nth iteration, β, γ, αf and αm are the algorithm parameters. In 

order to make the generalized-α algorithm second-order accurate, to dissipate the 

spurious high- frequency responses and to well-preserve the low-frequency responses, 

the parameters in the algorithm can be determined by the following relations, 
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in which [ ]0 1σ ∈ , σ=1 will lead to an energy-preserving algorithm and σ=0, the 

maximum energy will be dissipated by the algorithm [60]. Arnold and Brüls [61] 

proposed a computational scheme based on the generalized-α  method for constrained 

mechanical systems. In the present study, and based on Arnold and Brüls’ work, the 

Broyden-Newton [62] approach is introduced to the iteration process. The 

corresponding entire computational scheme is illustrated in the flowchart of Fig. 6. In 

the process the following relations are utilized, 
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which can make 

 ˆ ˆ,β γ∂ ∂= =
∂ ∂
q qI I
q q
&& &  (46) 

satisfied. Here, the variable tol is the integration error tolerance, J is the system 

Jacobian matrix, and G is given by, 
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The Jacobian matrix, after some fundamental mathematical operations, can be 

written as, 
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Fig. 6. The numerical iteration procedure for the generalized-α  method. 
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As observed from the flowchart of Fig. 6, it is not necessary to evaluate the 

Jacobian matrix and the partial derivation term in each iteration because of the 

introduction of the Broyden-Newton iteration. In addition, the most cumbersome task 

is the evaluation of the tangent matrix of the elastic force. Therefore, with the intent to 

improve computation efficiency in simulation, the invariant matrix method [63] can 

be employed.  

g=9.81 m/s2
Y

X  
Fig. 7. Initial configuration of single pendulum. 

 

It is important to mention that there are other alternative and robust methods to 

deal with the nonlinear dynamic problem, especially when large deformations and 

long time simulations are considered, as it has been proposed by Bathe [64]. In fact, 

for long time simulations the generalized-α  method with large step can lead to some 

numerical problems, such as the divergence of the system’s solution. In order to better 

understand the main implications of the issue a simple pendulum is considered as an 

application example to compare the generalized-α  and the Bathe methods. Figure 7 

shows the initial configuration of the simple pendulum which is acted by a uniform 

distributed gravitational force [65]. The length of the pendulum is 1 m and the cross 

section is a square with 0.02 m each side width. The Young’s elasticity modulus and 

Poisson’s ratio are 6e7Pa and 0.3, respectively. The material density is equal to 

6000Kg/m3. Furthermore, the arm pendulum is discretized by 5 ANCF-based elements. 

A long time simulation equal to 20s was performed for both methods. In addition, 4 

different time steps and 4 different values of the σ-parameter of the generalized-α  

method were considered in the analysis, being the admissible integration error equal 

to 1e-6. The simulations were performed on a PC with an Intel Pentium 1.5 GHz 

processor and 1GB RAM. Table 2 shows the total CPU time in seconds. The 

outcomes of the numerical simulations are listed in Tab. 1, from which it can be 
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observed how important is the choice of the method utilized, as well as the selection 

of the σ-parameter in the case of the generalized-α  method, mainly for long time 

simulations and large time steps. In general, the generalized-α  method is more 

efficient from computational point of view, because the Newton iterative approach 

has to be carried out twice in the Bathe’s scheme. Nevertheless, the Bathe’s scheme is 

more robust, stable and quite interesting for long time simulations since larger time 

steps can be used. The interested reader in the details of Bathe’s scheme is referred to 

references [64, 66, 67]. However, when a multibody system includes joints with 

clearance, small time steps have to be used, and special attention should be paid to 

detect the precise instant of contact [68]. Take, for instance, a system in which before 

the first impact, not only the bodies move slowly relative to each other but also the 

complete system is moving with an almost constant velocity. In this phase, the step 

size of the integration algorithm may become relatively large, being the global motion 

of the system characterized by relatively large translational and rotational 

displacements during a single time step. Therefore, if the numerical integration is not 

handled properly, the first impact between the colliding bodies may be observed with 

a high penetration depth, and, consequently, the calculated contact forces becomes 

artificially large. Then, smaller time steps must be considered, which increases the 

computation time, and, therefore, the generalized-α  method is more efficient for these 

cases. Furthermore, the influence of the value of the algorithm σ-parameter on the 

outcomes is not significant since for small integration time steps this effect can be 

neglected.  

Tab 1: Total computation time for the Bathe and generalized-α  methods expressed in 

seconds. 

Integration time step 0.001 0.004 0.01 0.05 

Bathe scheme 3995.8 1029.5 667.3 248.2 

Generalized-α  

σ =1.0 2004.8 527.37 Not converge 

σ =0.8 2058.1 512.5 349.8 Not converge 

σ =0.5 2042.5 518.9 376.9 152.19 
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σ=0.2 2055.2 517.1 391.5 187.17 

6. Results and discussion 

6.1. Spatial double pendulum 

In order to examine the effectiveness of the formulation presented in this work, a 

double pendulum with the initial configuration shown in Fig. 8 is studied here. The 

double pendulum is made up of three bodies, the ground body and two arms. The two 

arms are modeled as flexible bodies. One perfect spherical joint connects the first arm 

to the ground, while a spherical joint clearance exists between the two arms, resulting 

in a spatial multibody system with nine rigid body degrees of freedom. The system is 

released from the initial position with null velocities and under the action of gravity 

acting in the negative Y direction. Thus, the heights of centers of mass of all bodies 

dominate the total potential system energy and control the dynamic behavior of the 

system. The gravitational acceleration of 9.81 m/s2 is used in the study. The link 

lengths are OA=0.3 m and AB=0.3 m. The cross section of the spatial beam element is 

a square with 0.01 m each side width. The material Poisson’s Ratio is 0.3 and the 

coefficient of restitution of the contacting bodies is equal to 0.9. The spherical joint 

with clearance is characterized by a socket and ball radii equal to 0.02 and 0.018 m, 

respectively. For the case of lubricated spherical joint, the dynamic lubricant viscosity 

is chosen as 400 cP. The restitution coefficient ce is set as 0.9 and the specified 

nonlinear index n is set as 1.5. 
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Fig. 8. Spatial double pendulum modeled by two flexible bodies and two spherical joints. 

A total simulation time equal to 2 s is considered. The simulations are carried out 

by using different models and with different elements and, consequently, different 

values of the material Young’s modulus. For the material Young’s modulus 

E=2.07e11Pa, the material density ρ is set as 7800Kg/m3, while for E=6e7Pa, ρ=6000 

Kg/m3. The system with E=2.07e11Pa is named here as stiff system, since its behavior 

is similar to that of a rigid body. In order to study the influence of the spherical joint 

model (dry and lubricated formulations) on the global performance of the double 

pendulum, kinematic and dynamic characteristics are presented and discussed in what 

follows. The results are compared to those obtained with a simulation in which all 

joints are considered to be ideal or perfect. Finally, with the intent to validate this 

approach, the same double pendulum is simulated using the commercial 

MSC.ADAMS software, and the global results are analyzed and discussed. 

 

  

(a) 6 elements and E=2.07e11 Pa. (b) 6 elements and E=6e7 Pa. 

  

(c) 10 elements and E=6e7 Pa. (d) E=2.07e11 Pa and E=6e7 Pa. 

Fig. 9. Influence of the joint model, number of elements used in the flexible body 
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discretization and material Young’s modulus on the X displacement of point B. 

Figure 9 shows the displacement in X direction of point B for different joint 

models, for different number of elements used in the flexible body discretization and 

for two different values of Young’s modulus. By observing the results plotted in Figs. 

9a and 9b, it can be concluded that the system’s response is not affected by the joint 

model, being the displacement of point B equal for the case of perfect joint and for the 

case of joint clearance. Another conclusion is that the number of elements used does 

not influence the displacement of point B, as Figs. 9b and 9c shown. However, when 

the system is modeled with the Young’s modulus equal to E=6e7Pa, its amplitude 

response is larger than for the case of E=2.07e11Pa. These differences are clearly 

visible in the plots of Fig. 9d. It should mentioned that the system’s behavior for the 

case of E=2.07e11Pa is similar to that when the system is modeled with rigid bodies. 

 

  

(a) E=2.07e11 Pa. (b) E=2.07e11 Pa. 

  
(c) E=6e7 Pa. (d) E=6e7 Pa. 

Fig. 10. Influence of the number of elements used in the flexible body discretization on the 

normal contact force. 
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The influence of the number of elements used in the flexible body discretization 

on the normal contact force can be observed in the plots of Fig. 10, which represent 

the evolution of the contact force with time and for two different values of the 

Young’s modulus. By analyzing the results of Fig. 10, it can be concluded that the 

higher number of elements produces contact forces with lower magnitudes. This 

observation can be explained as with fewer elements (more system flexibility), the 

relative deformations are greater. Consequently, the contact forces are also greater, as 

the force is a function that directly depends on the deformations. The same conclusion 

can be drawn from the plots of Fig. 11, where the contact force versus penetration is 

plotted for the first impact. In this figure, it is also possible to observe the energy 

dissipation during the impact process as the area inside the hysteresis contact 

force-deformation region. 

 

 
Fig. 11. Normal impact force evolution for the first impact (E=2.07e11Pa). 

 

Figure 12 presents the plots of the transverse displacement of point B for different 

number of elements used in the flexible body discretization and for different joint 

models. It can be observed that for the point B, transverse displacements for the 

system with joint clearance are larger than for system with perfect joint. Furthermore, 

the transverse displacements for the flexible system are much larger than the 

transverse displacements for the stiff system. In addition, the effect of the Young’s 

modulus is also visible in the outcomes plotted in Fig. 12. 
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(a) E=2.07e11 Pa. (b) E=6e7 Pa. 

Fig.12. Transverse displacement of point B for different number of elements used in the 

flexible body discretization and for different joint models. 

 

For the case of spherical joint clearance model, the ball center trajectories relative 

to the socket center are illustrated in Fig. 13. With the intent to keep the figures clear 

and readable, only data relative to the first 0.03s of simulation are plotted. It should be 

noted that radius of the ball shown in Figs. 13a and 13b is equal to the clearance size 

used this example. By analyzing Fig. 13, it can be concluded that the penetration 

depth for the flexible system is larger than the penetration depth for the stiff system. It 

is also possible to observe the different modes of motion between the ball and socket, 

namely, the free flight motion, impact with rebound, and continuous contact. In the 

free flight motion, the ball moves freely inside the socket boundaries, that is, the ball 

and the socket are not in contact, hence, there is no joint reaction force. In the impact 

mode, which occurs at the termination of the free flight motion, impact forces are 

applied to the system. This mode is characterized by an abrupt discontinuity in the 

kinematic and dynamic responses, and a significant exchange of momentum occurs 

between the two impacting bodies. At the termination of the impact mode, the ball can 

enter either in free flight or in the following mode. In the continuous contact or 

following mode, the ball and the socket are in permanent contact and a rolling or 

sliding motion relative to each other exists. This mode ends when the ball and socket 

separate from each other and the ball enters in free flight mode [12].  
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(a) 6 elements and E=2.07e11 Pa. (b) 10 elements and E=6e7 Pa. 

Fig. 13. Ball center trajectories for the spherical clearance joint model. 

 

 

  

(a) 6 elements and E=2.07e11 Pa. (b) 6 elements and E=2.07e11 Pa. 

  

(c) 10 elements and E=6e7 Pa. (d) 10 elements and E=6e7 Pa. 

Fig. 14. Animation sequence of the double pendulum for stiff and flexible cases. 
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Figure 14 shows the global trajectory described by point B for the spherical 

clearance model and considering the stiff and flexible situations. From Figs. 14a and 

14c, it can be observed that trajectory of point B is smoother for the stiff case 

compared with the one for the flexible case. The sequence simulation is enlarged in 

Figs. 14b and 14d, from which the detail impact process between the socket and the 

ball surfaces can be observed. 

The above results were obtained using the spherical clearance model without 

taking into account the lubrication effect. Thus, in what follows, the spherical 

lubrication model presented in section 4 and summarized in Eq. (35), is considered in 

the dynamic simulation of the double pendulum. In Fig. 15 the main differences in the 

displacement and velocity in X direction of point B for dry and lubricated models is 

presented. Since the value of clearance is low, the differences at the displacements 

level are not significant. However, the velocities for the dry clearance case present 

some peaks associated with the contacts that occur between the ball and socket 

surfaces. Obviously, for the lubricated model, the velocities are smoother and closer 

to the perfect joint response due to the damping effect of the lubricant. The same 

conclusions can be drawn from Fig. 16 in which the transverse displacement of point 

B is plotted. In fact, the dry impact force produces larger transverse displacements 

than those obtained with perfect kinematic joints.  

 

  

(a) Displacement. (b) Velocity. 

Fig. 15. Displacement and velocity in the X direction of the point B (E=6e7Pa). 
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(a) 6 elements and E=2.07e11 Pa. (b) 10 elements and E=6e7 Pa 

Fig. 16. Transverse displacement of point B for different joint models. 

 

Figure 17 shows the plots for the eccentricity variable when dry and lubricated 

spherical joint models are utilized. It can be observed that, for the case of lubrication 

model, the magnitude of eccentricity is smaller than for the dry situation. This is due 

to the fact that in the lubrication model, there is no direct contact-impact between the 

ball and socket walls because of the presence of the lubricant. The same phenomenon 

can be observed in Fig. 18, which presents the ball center trajectories inside the socket 

boundaries. Again, with the intent to keep the figures clear and readable, only data 

relative to the first 1.0s of simulation are plotted. It should be highlighted that this 

phenomenon associated with the presence of the lubricant is a benefit from the 

mechanical system performance point of view and parts life. 

 

  

(a) 6 elements and E=2.07e11 Pa. (b) 10 elements and E=6e7 Pa 

Fig. 17. Eccentricity for different spherical clearance joint models. 
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(a) 6 elements and E=2.07e11 Pa. (b) 10 elements and E=6e7 Pa 

Fig. 18. Ball center trajectories for the spherical lubricated joint model. 

 

Finally, in order to validate the approach presented in this paper, the same double 

pendulum was simulated using the MSC.ADAMS software for the stiff case 

(E=2.07e11 Pa). The option to simulate the stiff case only is due to the fact that this 

software is a multi-rigid-body package. Figure 19 shows the ADAMS model of the 

double pendulum system, in which the spherical joint clearance is modeled by a two 

massless spheres and corresponding constraints and contact-impact condition are set. 

One of the balls has 0.02 m of radius and is connected to the arm OA, the other ball 

with a radius 0.018 m is linked to arm AB, such that the two balls together compose a 

spherical joint clearance. In order to keep the analysis simple and short, only the 

results for the displacement of point B in the X direction are plotted, as it is illustrated 

in Fig. 20. The observed correlation validates the methodology presented in this study. 

Two Massless Balls

 

Fig. 19. MSC.ADAMS double pendulum model with a spherical joint clearance. 
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(a) Model with perfect joint. (b) Model with joint clearance. 

Fig. 20. Displacement of point B in the X direction for different joint models. 

 

6.2. Spatial four-bar mechanism 

In this section, a spatial four bar mechanism is used as an illustrative example to 

demonstrate how the spherical joint clearance models affect the behavior of the 

mechanism. Figure 21 represents the initial configuration of the four bar mechanism 

and includes the main geometric definitions. The kinematic joints of this multibody 

system include two ideal three-dimensional revolute joints, connecting the ground to 

the links OA and BH, and one perfect spherical joint that connects the links AB and 

BH. A spherical joint, with a given clearance, interconnects the links OA and AB. 

Therefore, this four bar mechanism has a total of five rigid body degrees of freedom. 

The system is driven by a variable torque applied to the crank arm OA.  

The spherical joint modeled with clearance is characterized by the socket and ball 

radii equal to 0.030 and 0.029 m, respectively. The material Poisson’s ratio is set to 

0.3 and the coefficient of restitution of the contacting bodies is equal to 0.9. The 

specified nonlinear index n is set as 1.5. For the case of lubricated spherical joint, the 

dynamic lubricant viscosity is chosen as 400 cP.  The mechanism consists of four 

bodies, being three of them modeled as rigid. The links OA and BH are considered 

rigid with their mass centers located at mid points G and F, respectively. The inertia 

properties of each rigid link body are set as Iη1=Iη2=3.12×10-5 Kg·m2 and 

Iζ1=Iζ2=Iξ1=Iξ2=8.93×10-4 Kg·m2. The link AB is modeled as a flexible body discretized 

by five elements, and the cross section of the spatial beam element is squared shape 
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with 0.02 m side width.  

In order to study the influence of the spherical clearance model in the global 

behavior of the spatial four bar mechanism, some kinematic and dynamic 

characteristics, corresponding to the first four seconds of the simulation, are presented 

and discussed in what follows. The results are compared to those obtained with a 

simulation in which all kinematic joints are considered to be ideal or perfect. The 

simulations are carried out by using different joint models and with different material 

properties. For the material Young’s modulus E=2.07e11Pa, the material density ρ is 

set as 7800Kg/m3, while for E=6e7Pa, ρ=6500 Kg/m3. As in the previous example, 

here the system with E=2.07e11Pa is named as stiff system. 
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Fig. 21. Spatial four-bar mechanism which includes a spherical joint clearance. 

 

Figure 22 presents the evolution of displacement and velocity of point B in the Y 

direction obtained in the simulations. These results are for different joint models and 

for the stiff case. In general, there are no significant differences in the displacement 

curves, as it can be observed in Fig. 22a. In sharp contrast, the velocity profiles 

indicate visible differences, namely in regard to the joint clearance model. Due to the 

impact between the ball and socket the velocity presents jumps clearly associated with 

those impacts. However, when the joint is modeled as a lubricated joint, the results are 

comparable to those obtained with a perfect kinematic joint. This is due to the fact 

that the lubricant acts as a dissipater or damper, avoiding the direct contact-impact 

between the ball and socket surfaces.  
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(a) Displacement. (b) Velocity. 

Fig. 22. Displacement and velocity in the Y direction of the point B (E=2.07e11Pa). 

 

The evolution of the contact and lubrication forces over the simulations is 

presented in the diagrams of Fig. 23, from which the precise instants where the large 

and sudden peak forces occur can be observed. Furthermore, it can be drawn that for 

the dry contact situation the magnitude of the joint reaction forces are greater than for 

the lubricated case, as it would be expected. 
 

  

(a) Dry model. (b) Lubricated model. 

Fig. 23. Joint reaction forces produced at the spherical joint clearance. 

 

Figure 24 shows the influence of the joint model on the displacement and velocity 

of the point B in the Y direction for the flexible system case. As it can be seen, the 

joint model clearly influences the system response, mainly for the dry joint clearance 

model. In a similar way to the stiff case, the system performance with lubricated joint 

is closer to that of the perfect joint.  
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(a) Displacement. (b) Velocity. 

Fig. 24. Displacement and velocity in the Y direction of the point B (E=6e7Pa). 

 

Figure 25 shows the plots for the eccentricity variable when a dry clearance and 

lubricated spherical model are used. It can be observed that the eccentricities for the 

lubricated model are smaller than those obtained by dry contact model. The effect of 

Young’s modulus is also visible in Fig. 25. The same phenomenon can be seen in Figs. 

26 and 27 which present the ball center trajectories inside the socket boundaries. For 

Fig. 26, with the intent to keep the figures clear and readable, only data relative to the 

first 0.3s of simulation are plotted, while for Fig.27 only data relative to the first 1s of 

simulation are plotted. In order to keep the figures clear and readable, only data 

relative to the first instants of simulation are plotted. For the lubricated joint model, 

the ball center moves closer to its center than for the dry contact model due to the 

presence of the lubricant. 

  

(a) E=2.07e11 Pa. (b) E=6e7 Pa 

Fig. 25. Eccentricity for difference spherical clearance joint models. 
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(a) E=2.07e11 Pa. (b) E=6e7 Pa 

Fig. 26. Ball center trajectories for the spherical joint clearance model. 

 

  

(a) E=2.07e11 Pa. (b) E=6e7 Pa 

Fig. 27. Ball center trajectories for the spherical lubricated joint model. 

 

Finally, in a similar way to the previous example, the spatial four bar mechanism 

was simulated in the commercial MSC.ADAMS software for different situations. 

Similar to the first example, Figure 28 shows the ADAMS model of the spatial four 

bar mechanism, in which the spherical joint clearance is modeled by a two massless 

balls and corresponding constraints and contact-impact condition are set. In order to 

keep the analysis simple and short, only the outcomes for displacement of point B in 

the Y direction are plotted, as it is illustrated in Fig. 29. The correlation observed 

allows to validate the methodology presented in the present work. 
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Two Massless Balls

 

Fig. 28. MSC.ADAMS four bar mechanism model with a spherical joint clearance. 

 

  
(a) Model with perfect joint. (b) Model with joint clearance. 

Fig. 29. Displacement of point B in the X direction for different model. 

 

7. Conclusions 

In this paper, a general and comprehensive methodology for the dynamic 

modeling and analysis of spatial flexible systems with clearances and lubricated joints 

has been presented. The absolute nodal coordinate method is used to formulate the 

dynamics of flexible multibody systems. The equations of motion incorporate the 

contact-impact forces due to the collisions of the bodies that constitute the joint 

clearances, as well as the lubrication forces produced when the fluid lubricant action 

is considered. In the joint model with clearance, the intra-joint contact forces are 

evaluated according to a modified Hertzian-based contact law, which includes a 

damping term to account for the energy dissipation. The friction phenomenon is 
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included through a modified Coulomb’s friction law. In the case of lubricated joints, 

the resulting lubrication forces are derived by employing the corresponding Reynolds’ 

equation. Furthermore, suitable models for spherical joint clearances for dry and 

lubricated cases are embedded into the multibody systems equations of motion. The 

generalized-α method is used to solve the system equations of motion with constant 

system mass matrix based on the absolute nodal coordinate method. To improve 

computation efficiency, the invariant matrix method is used.  

The effectiveness of the approach presented here is demonstrated throughout the 

dynamic simulation of two spatial multibody systems that include perfect, clearance 

and lubricated joints, namely, an open-loop system, the spatial double pendulum, and 

a closed-loop system, the spatial four bar mechanism. The influence of the flexibility 

of bodies and the joint models is investigated, as the main contribution of the paper, 

not studied literature. In general, the results evidence that the contact forces obtained 

by using the relative flexible system model are smaller than those obtained with rigid 

system model. In addition, results demonstrate that the direct ball-socket impact can 

be avoided when a fluid lubricant is introduced in the joint. This leads to a 

performance of the system with lubricated joint closer to the perfect joint case. In 

order to verify and validate the methodology presented in this paper, some results are 

compared to those obtained by using the MSC.ADAMS software, but only for the 

stiff system case. The simulation results indicate that the methodology for modeling 

and dynamics analysis of spatial flexible multibody systems with spherical joint 

clearance and lubrication condition based on the absolute nodal coordinate method is 

valid and effective. 

Acknowledgments 

We would like to thank Prof. Daniel García-Vallejo from University of Seville, 

Spain, and Dr. Johannes Gerstmayr from Johannes Kepler University of Linz, Austria, 

for their great help with the ANCF method. Finally, we would also like to 

acknowledge the anonymous reviewers for their insightful comments and suggestions 

on an earlier draft of this paper. 



 39 

References 
[1] Flores P, Ambrósio J. Revolute joints with clearance in multibody systems. 

Computers and Structures 2004;82: 1359-1369. 
[2] Liu C-S, Zhang K, Yang R. The FEM analysis and approximate model for 

cylindrical joints with clearances. Mechanism and Machine Theory 
2007;42:183-197. 

[3] Crowthera AR, Singha R, Zhangb N, Chapman C. Impulsive response of an 
automatic transmission system with multiple clearances: Formulation, simulation 
and experiment. Journal of Sound and Vibration 2007;306: 444-466. 

[4] Bouzidane A, Thomas M. An electrorheological hydrostatic journal bearing for 
controlling rotor vibration. Computers and Structures 2008;86:463-472. 

[5] Dubowsky A, Freudenstein F. Dynamic analysis of mechanical systems with 
clearances, part 1: formulation of dynamic model. Journal of Engineering for 
Industry 1971;93(1):305-309. 

[6] Dubowsky S, Freudenstein F. Dynamic analysis of mechanical systems with 
clearances, part 2: Dynamics Response. Journal of Engineering for Industry 
1971;93(1):310-316. 

[7] Miedema B, Mansour WM. Mechanical Joints with Clearance: a Three-Mode 
Model. Journal of Engineering for Industry 1976;98(4):1319-1323. 

[8] Turvey GJ, Wang P. An FE analysis of the stresses in pultruded GRP single-bolt 
tension joints and their implications for joint design. Computers and Structures 
2008;86:1014–1021. 

[9] Srivastava N, Haque I. Clearance and friction-induced dynamics of chain CVT 
drives. Multibody System Dynamics 2008;19(3):255-280. 

[10] Flores P, Ambrósio J, Claro JCP, Lankarani HM, Kinematics and Dynamics of 
Multibody Systems with Imperfect Joints: Models and Case Studies. Berlin: 
Spinger; 2008. 

[11] Liu C-S, Zhang K, Yang L. Normal force-displacement relationship of spherical 
joints with clearances. Journal of Computational and Nonlinear Dynamics 
2006;1(2):160-167.  

[12] Flores P, Ambrósio J, Claro JCP, Lankarani HM. Dynamics of multibody 
systems with spherical clearance joints. Journal of Computational and Nonlinear 
Dynamics 2006;1(3):240-247. 

[13] Flores P, Ambrósio J, Claro JCP, Lankarani HM, Koshy CS. Lubricated revolute 
joints in rigid multibody systems. Nonlinear Dynamics 2009 (Available online 8 
August 2008) doi: 10.1007/s11071-008-9399-2. 

[14] Erkaya S. Uzmay I. A neural-genetic (NN–GA) approach for optimising 
mechanisms having joints with clearance. Multibody System Dynamics 
2008;20(1):69-83. 

[15] Erkaya S. Uzmay I. Determining link parameters using genetic algorithm in 
mechanisms with joint clearance. Mechanism and Machine Theory 2009;44(1): 
222-234. 



 40 

[16] Bing S, Ye J. Dynamic analysis of the reheat-stop-valve mechanism with 
revolute clearance joint in consideration of thermal effect. Mechanism and 
Machine Theory 2008;43(12):1625–1638. 

[17] Flores, P. Modeling and simulation of wear in revolute clearance joints in 
multibody systems. Mechanism and Machine Theory 2009 (Available online 21 
September 2008) doi:10.1016/j.mechmachtheory.2008.08.003.  

[18] Miedema B, Mansour WM. Mechanical joints with clearance: a three-mode 
model. Journal of Engineering for Industry 1976;98(4):1319-1323. 

[19] Hunt KH, Crossley FR. Coefficient of restitution interpreted as damping in 
vibroimpact. Journal of Applied Mechanics 1975;7:440-445. 

[20] Lankarani HM, Nikravesh PE. A contact force model with hysteresis damping 
for impact analysis of multibody systems. Journal of Mechanical Design 
1990;112:369-376. 

[21] Pombo JC, Ambrósio JAC. Application of a wheel–rail contact model to railway 
dynamics in small radius curved tracks. Multibody System Dynamics 
2008;19:91-114. 

[22] Dubowsky S, Gardner TN. Design and analysis of multilink flexible mechanisms 
with multiple clearance connections. Journal of Engineering for Industry 
1977;99:88-96. 

[23] Dubowsky S, Deck JF, Costello H. The dynamic modeling of flexible spatial 
machine systems with clearance connections. Journal of Mechanisms, 
Transmissions and Automation in Design 1987;109:87-94. 

[24] Dubowsky S, Moening MF. An Experimental and Analytical Study of Impact 
Forces in Elastic Mechanical Systems with Clearances. Mechanism and Machine 
Theory 1978;13:451-465. 

[25] Kakizaki T, Deck JF, Dubowsky S. Modeling the Spatial Dynamics of Robotic 
Manipulators with Flexible Links and Joint Clearances. Journal of Mechanical 
Design 1993;115:839-84714. 

[26] Bauchau OA, Bottasso CL. Contact Conditions for Cylindrical, Prismatic, and 
Screw Joints in Flexible Multibody Systems. Multibody System Dynamics 
2001;5:251-278. 

[27] Bauchau OA, Rodriguez J. Modelling of Joints with Clearance in Flexible 
Multibody Systems. International Journal of Solids and Structures 
2002;39:41-63. 

[28] Liu TS, Lin YS. Dynamic analysis of flexible linkages with lubricated joints. 
Journal of Sound and Vibration 1990;141(2):193-205. 

[29] Shiau T-N, Tsai Y-J, Tsai M-S. Nonlinear dynamic analysis of a parallel 
mechanism with consideration of joint effects. Mechanism and Machine Theory 
2008;43:491-505. 

[30] Shabana AA. Flexible Multibody Dynamics Review of Past and Recent 
Developments. Multibody System Dynamics 1997;1:189-222. 

[31] Shabana AA. An absolute Nodal Coordinates Formulation for the Large Rotation 
and Deformation Analysis of Flexible Bodies. In: Report No. MBS96-1-UIC, 



 41 

University of Illinois at Chicago; 1996. 
[32] Shabana AA. Definition of the Slopes and Absolute Nodal Coordinate 

Formulation. Multibody System Dynamics 1997;1:339-348. 
[33] Shabana AA. Dynamics of Multibody Systems. 3rd ed. Cambridge New York: 

University Press; 2005. 
[34] Eberhard P, Schiehlen W. Computational Dynamics of Multibody Systems 

History, Formalisms, and Applications. Journal of Computational and Nonlinear 
Dynamics 2006;1:3-12. 

[35] Yoo WS, Dmitrochenko O, Yu D. Review of Finite Elements Using Absolute 
Nodal Coordinates for Large-Deformation Problems and Matching Physical 
Experiments. In: ASME 2005 International Design Engineering Technical 
Conferences and Computers and Information in Engineering Conference, 
California, Long Beach, DETC2005-84720. 

[36] García-Vallejo D, Mikkola AM, Escalona JS. A new locking-free shear 
deformable finite element based on absolute nodal coordinates. Nonlinear 
Dynamics 2007;50:249-264. 

[37] Gerstmayr J, Matikainen MK, Mikkola AM. A geometrically exact beam 
element based on the absolute nodal coordinate formulation. Multibody System 
Dynamics 2008;20(4): 359-384. 

[38] Dmitrochenko O, Mikkola AM. Two simple triangular plate elements based on 
the absolute nodal coordinate formulation. Journal of Computational and 
Nonlinear Dynamics 2008;3:0410121-0410128. 

[39] Shabana AA, Yakoub RY. Three-dimensional absolute nodal coordinate 
formulation for beam elements: theory. Journal of Mechanical Design 
2001;123:606-613. 

[40] Yakoub RY, Shabana AA. Three dimensional absolute nodal coordinate 
formulation for beam elements: implementation and applications. Journal of 
Mechanical Design 2001;123:614-621. 

[41] Schwab AL, Meijaard JP. Comparison of three-dimensional flexible beam 
elements for dynamic analysis: finite element method and absolute nodal 
coordinate formulation. In: ASME 2005 International Design Engineering 
Technical Conferences and Computers and Information in Engineering 
Conference, California, Long Beach, DETC2005-85104. 

[42] Sugiyama H, Gerstmayr J, Shabana AA. Cross-section deformation in the 
absolute nodal coordinate formulation. In: ASME 2005 International Design 
Engineering Technical Conferences and Computers and Information in 
Engineering Conference, California, Long Beach, DETC2005-84524. 

[43] Shabana AA. Computational Continuum Mechanics. New York: Cambridge 
University Press; 2008. 

[44] Flores P, Ambrósio J, Claro, JCP; Lankarani, HM. Influence of the 
contact-impact force model on the dynamic response of multi-body systems. 
Multibody System Dynamics 2006;220(1)21-34. 

[45] Hertz H. On the contact of solids, 1881. On the contact of rigid elastic solids and 



 42 

on hardness, 1882. Translated by D.E. Jones and G.A. Schott, Miscellaneous 
Papers, MacMillan and Co. Ltd., London (1896) 146-183. 

[46] Nikravesh PE. Computer Aided Analysis of Mechanical Systems, Prentice Hall, 
Englewood Cliffs, New Jersey, 1988. 

[47] Shivaswamy S. Modeling Contact Forces and Energy Dissipation During Impact 
in Multibody Mechanical Systems, Ph.D. Dissertation, Wichita State University, 
Wichita, USA, 1997. 

[48] Shivaswamy S, Lankarani HM. Impact analysis of plates using quasi-static 
approach. Journal of Mechanical Design 1997;119(3):376-381. 

[49] Schiehlen W, Seifried R. Three Approaches for Elastodynamic Contact in 
Multibody Systems. Multibody System Dynamics 2004;12(1):1-16. 

[50] Flores P, Koshy CS, Lankarani HM, Ambrosio J, Claro JCP. Numerical and 
experimental analysis of planar multibody systems with revolute clearance joints, 
Proceedings of ECCOMAS Multibody Dynamics 2007, International Conference 
on Advances in Computational Multibody Dynamics 2007, C.L. Bottasso, P. 
Masarati, L. Trainelli (eds.), Milano, Italy, 25–28 June 2007, 17p. 

[51] Kuwabara G, Kono K. Restitution coefficient in a collision between two spheres, 
Japanese Journal of Applied Physics 1987;26(8):1230–1233. 

[52] Ramirez R, Poschel T, Brilliantov N, Schwager T. Coefficient of restitution of 
colliding viscolelastic spheres, Physical Review E 1999;60(4):4465–4472. 

[53] Ahmed S, Lankarani H.M., Pereira MFOS, Frictional impact analysis in open 
loop multibody mechanical system. Journal of Mechanical Design 
1999;121(1):119- 127. 

[54] Greenwood DT. Principles of Dynamics, Prentice Hall, Englewood Cliffs, New 
Jersey, 1965. 

[55] Ambrósio JAC. Impact of Rigid and Flexible Multibody Systems: Deformation 
Description and Contact Models. In: Schiehlen W, Valásek M (Eds.), 
Proceedings of the NATO-ASI on Virtual Non-linear Multibody Systems, Vol. II, 
2002:15-33. 

[56] Sopanen JT, Mikkola AM. Description of Elastic Forces in Absolute Nodal 
Coordinate Formulation. Nonlinear Dynamics 2003;34:53-74. 

[57] Goenka PK. Effect of Surface Ellipticity on Dynamically Loaded Spherical and 
Cylindrical Joints and Bearings. PhD Dissertation, Cornell University, Ithaca, 
New York, 1980. 

[58] Pinkus O, Sternlicht SA. Theory of Hydrodynamic Lubrication. New York: 
McGraw-Hill; 1961. 

[59] Flores P, Ambrósio J, Claro JP. Dynamic Analysis for Planar Multibody 
Mechanical Systems with Lubricated Joints. Multibody System Dynamics 
2004;12:47-74. 

[60] Chung J, Hulbert G. A time integration algorithm for structural dynamics with 
improved numerical dissipation: The generalized-a method. Journal of Applied 
Mechanics 1993;60 :371-375. 

[61] Arnold M, Brüls O. Convergence of the generalized-a scheme for constrained 



 43 

mechanical systems. Multibody System Dynamics 2007;18(2):185-202. 
[62] Broyden CG. A class of methods for solving nonlinear simultaneous equations, 

Mathematics of Computation 1965;19(92):577-593. 
[63] García-Vallejo D, Mayo J, Escalona JL. Efficient evaluation of the elastic forces 

and the Jacobian in the absolute nodal coordinate formulation. Nonlinear 
Dynamics 2004;35:313-329. 

[64] Bathe KJ. Conserving energy and momentum in nonlinear dynamics: A simple 
implicit time integration scheme. Computers and Structures 2007; 85: 437-445. 

[65] Zhang Y, Tian Q, Chen L, Yang J. Simulation of a viscoelastic flexible 
multibody system using absolute nodal coordinate and fractional derivative 
methods. Multibody System Dynamics 2008 (Available online 28 November 
2008) doi: 10.1007/s11044-008-9139-x. 

[66] Bathe KJ, Baig MMI. On a composite implicit integration procedure for 
nonlinear dynamics. Computers and Structures 2005; 83: 2513-24. 

[67] Bathe KJ. On reliable finite element methods for extreme loading conditions. 
Ibrahimbegovic A, Kozar I, (eds.). Extreme man-made and natural hazards in 
dynamics of structures. Springer Verlag, 2007:71-102. 

[68] Flores, P., Ambrósio, J., On the contact detection for contact analysis in 
multibody systems, Proceedings XXII ICTAM, 22nd International Congress of 
Theoretical and Applied Mechanics, Adelaide Convention Centre, Adelaide, 
Australia, August 25-29, 2008, 2p. 

 


