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A adesão de microrganismos vaginais a células epiteliais e a sua associação 

com a Vaginose Bacteriana 

 
RESUMO: 

A vaginose bacteriana (VB) é um distúrbio da flora vaginal normal e um importante 

problema de saúde pública em mulheres de idade reprodutiva. A VB é caracterizada pela 

substituição de lactobacilos vaginais por microrganismos, predominantemente, 

anaeróbios. Desconhecendo-se a etiologia da VB, duas hipóteses tentam explicar esta 

condição: a hipótese polimicrobiana, que infere que a VB é causada por uma mistura de 

bactérias patogénicas, principalmente anaeróbias; e outra hipótese que aponta para a 

Gardnerella vaginalis como o verdadeiro agente causador da VB. No entanto o 

isolamento frequente desta espécie em mulheres aparentemente saudáveis lançou dúvidas 

sobre essa afirmação. Assim, num esforço para se compreender a etiologia desta doença, 

foram realizados ensaios de adesão in vitro para comparar a capacidade de adesão de 

vários isolados vaginais provenientes de exsudados vaginais de mulheres que foram 

diagnosticadas como tendo VB e de mulheres saudáveis. No total, foram caracterizados 

15 isolados vaginais quanto à sua capacidade de adesão inicial numa monocamada de 

células HeLa. Estes ensaios revelaram que os isolados de G. vaginalis apresentaram uma 

capacidade de adesão inicial mais forte do que os outros isolados analisados. Além disso, 

estirpes de G. vaginalis isoladas de pacientes com VB apresentaram uma maior 

capacidade de adesão inicial do que as estirpes de G. vaginalis que foram isoladas de 

mulheres saudáveis. Assim, a fim de compreender as diferenças verificadas, foi estudada 

a competição entre lactobacilos (Lactobacillus iners, Lactobacillus crispatus e 

Lactobacillus casei) e estirpes de G. vaginalis (não-patogénicas e patogénicas). Todos os 

ensaios de competição foram quantificados por microscopia de fluorescência, usando 

DAPI para contar as células totais e uma sonda de PNA-FISH para quantificar G. 

vaginalis. Os resultados mostraram que a adesão de L. iners não diminuiu na presença de 

estirpes patogénicas de G. vaginalis. Pelo contrário, o L. crispatus mostrou uma 

diminuição na capacidade de adesão às células epiteliais na presença de estirpes 

patogénicas de G. vaginalis. O L. crispatus mostrou, também, que tem uma grande 

capacidade de inibir a adesão de isolados patogénicos de G. vaginalis. Por sua vez, o L. 

casei foi o lactobacilos menos aderente de todos os utilizados no presente estudo. Como 

resultado, estes estudos de adesão ajudam a fornecer informações sobre a situação clínica 

na qual os lactobacilos vaginais indígenas podem interferir com a presença de G. 

vaginalis na microflora vaginal.  
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Adhesion of vaginal microorganisms to epithelial cells and its association 

with Bacterial Vaginosis 

ABSTRACT: 

Bacterial vaginosis (BV) is an unhealthy disturbance of the normal vaginal flora and an 

important public health problem in women in reproductive age. BV is characterized by 

the replacement of vaginal lactobacilli by predominantly anaerobic microorganisms. The 

lack of basic information about the etiology of BV has lead to the postulation of two 

hypotheses. The first is the polymicrobial hypothesis, which infers that BV is caused by a 

mixture of pathogenic bacteria, mainly anaerobes. The second is that a single pathogenic 

species, in many cases Gardnerella vaginalis is the causative agent of BV, but frequent 

isolation of this species from seemingly healthy women has cast doubt on this claim. So, 

in an effort to tease apart the aetiology of this disorder, in vitro adherence assays were 

performed to compare the initial adhesion, the first step of biofilm formation, of G. 

vaginalis relative to other microorganisms isolated from vaginal swabs from patients with 

BV and healthy women. In total, 15 unique vaginal isolates were characterized for their 

initial adhesion ability to a monolayer of the HeLa cells. These assays revealed that G. 

vaginalis isolates had a stronger initial adhesion capability than the other isolates 

recovered. Furthermore, G. vaginalis strains isolated from BV patients had stronger initial 

adhesion ability than G. vaginalis isolated from healthy women. In order to understand 

these differences, the competition between lactobacilli (Lactobacillus iners, Lactobacillus 

crispatus and Lactobacillus casei) and G. vaginalis strains (non-pathogenic and 

pathogenic) was studied. All competition assays were quantified by fluorescence 

microscopy, using DAPI for total cell count and PNA-FISH probe for G. vaginalis 

quantification. The results showed that L. iners did not decrease in presence of pathogenic 

G. vaginalis strains. In contrast, L. crispatus showed a decreased adherence capacity to 

epithelial cells in the presence of pathogenic G. vaginalis strains. Furthermore, the results 

showed that L. crispatus could be important for antagonizing the pathogenic strains of G. 

vaginalis. In turn, L. casei was the least adherent of the all lactobacilli used in this study. 

As a result, adherence studies help to provide insight into the clinical situation in which 

indigenous vaginal lactobacilli can interfere with G. vaginalis presence in vaginal 

microflora. 
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              Introduction 

 

Chapter 1 • 3 
 

1.1 Healthy vaginal microbiota 

The healthy vaginal ecosystem harbors a microbiota that is being increasingly 

recognized as protecting it from invading pathogens, including those that cause urinary 

tract infections and sexually transmitted diseases (Boris, 1998). The healthy vaginal flora 

is composed by Lactobacillus spp., particularly L. rhamnosus, L. crispatus, L. gasseri, L. 

jensenii, L. fermentum, L. plantarum, L. brevis, L. vaginalis, L. salivarius, L. delbrueckii, 

L. reuteri and L. iners  (Figure 1.1) (Cribby et al., 2008; Dover et al., 2008; Srinivasan et 

al., 2008). A diverse array of other microorganisms such as Staphylococcus, Ureaplasma, 

Corynebacterium, Streptococcus, Peptostreptococcus, Gardnerella, Bacteroides, 

Mycoplasma, Enterococcus, Escherichia, Veillonella, Bifidobacterium and Candida  can 

also be present, but in much lower numbers (Turovskiy et al., 2011; Zhou et al., 2004).  

 

Figure 1.1 – Gram stain of normal vaginal contents (original magnification, x400). Note predominance of 

Lactobacillus species (Livengood, 2009). 

 

The composition of vaginal floral is influenced by symbiotic relationship between 

vaginal lactobacilli and their human host, and it is modulated by the hormones 

(particularly estrogen) circulating in female's body, which stimulate the vaginal 

epithelium to produce glycogen (Hay, 2005). Changes in the vaginal microbiota occur 

during each menstrual cycle, with the high concentrations of estrogen increasing 

adherence of lactobacilli to vaginal epithelial cells (VEC). At menopause, with decrease 

in estrogen levels, there is a decrease in lactobacilli present in the vaginal tract (Cribby et 

al., 2008). Thus, these hormonal changes can affect the ability of lactobacilli to adhere to 

epithelial cells and colonize the vaginal tract (Cribby et al., 2008). The glycogen is 

metabolized to glucose and then to lactic acid by vaginal lactobacilli.  Lactic acid is 

largely responsible for the normal vaginal pH being acidic (< 4,5) (Donati et al., 2010; 

Turovskiy et al., 2011). The acidic environment of a healthy vagina is not permissive
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for over-growth of many potential pathogens and protects the vagina against Human 

immunodeficiency virus (HIV) (Aroutcheva et al., 2001a; Donati et al., 2010; Dover et 

al., 2008; Valore et al., 2006). An increase of the vaginal pH leads to the decrease of the 

Lactobacillus spp. that are associated with antimicrobial activity (Aroutcheva et al., 2001 

b; Donati et al., 2010). 

It has been postulated that Lactobacillus spp. are responsible to maintain the 

vaginal ecosystem in healthy condition by preventing overgrowth by pathogens and other 

opportunistic organisms by producing antimicrobials such as weak organic acids like 

lactic acid, hydrogen peroxide and bacteriocins (Dover et al., 2008).  

Eschenbach et al. (1989) were the first to postulate that hydrogen peroxide (H2O2) 

production by vaginal lactobacilli is critical for maintenance of healthy vaginal 

microbiota, because it creates an unacceptable environment for growth of anaerobes and a 

more difficult environment for HIV transmission. This study reported that H2O2 

producing lactobacilli were found in 96 % of healthy women and in only 6 % of patients 

with BV; non-hydrogen peroxide–producing lactobacilli were found in only 4 % of the 

normal vaginas and in 36 % of those with BV. The amount of H2O2 produced in the 

vaginal fluid of women with a healthy vaginal microflora was estimated to 1 – 15,5g.mL
-1

 

(Strus et al., 2006). H2O2 seems to add to the antimicrobial defense of the vaginal 

environment, but is probably not a crucial factor (Strus et al., 2006). Host factors can also 

work synergistically with the lactobacilli to inhibit growth of other bacteria (Zhou et al., 

2004). For example, myeloperoxidase and chloride ions enhance the toxicity of H2O2 

(Zhou et al., 2004).  

Bacteriocins are low-molecular-weight proteins or peptides, that inhibit a wide 

range of Gram-positive and, under certain conditions, Gram-negative bacteria 

(Aroutcheva et al., 2001 a). These antimicrobial compounds promote cell membrane 

permeabilization and ion efflux, thereby depleting the transmembrane potential within the 

bacteria cell (Machado, 2011). These bacteriocins can inhibit the growth of pathogens, 

such as G. vaginalis. However, one species of Lactobacillus can produce a bacteriocin 

that is able to inhibit the growth of other lactobacilli (Aroutcheva et al., 2001 a). 
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1.2 Bacterial vaginosis 

Bacterial vaginosis (BV) is characterized by the replacement of vaginal 

lactobacilli, such as, L. crispatus and L. jensenii by predominantly anaerobic 

microorganisms (Patterson et al., 2007; Sobel, 2000; Turovskiy et al., 2011). The 

exception is L. iners, a non-hydrogen peroxide producer, which is found commonly in the 

BV flora (Livengood, 2009). 

The most common symptom of BV is a vaginal discharge. It may look grayish 

white. Other sign of BV can be an odor that is usually described as “fishy”. This is caused 

by the production of amines (including putrescine, trimethylamine, and cadaverine) by 

the anaerobic bacteria (Spear et al., 2007; Zariffard et al., 2005). These amines volatilize 

increasingly with pH raise, so that patients often note a worsening of this symptom when 

vaginal alkalinity is enhanced, such as after sex (due to the presence of semen) and during 

menses (due to the presence of blood). Other symptom of BV is irritation (itching, 

burning and pain) (Livengood, 2009; Srinivasan et al., 2008). All patients with vaginal 

symptoms should be examined to confirm the diagnosis. Researches that have used 

routine screening to identify patients with BV have found that more than 50 % of affected 

individuals are asymptomatic (Livengood, 2009).  

BV poses a significant health risk because it predisposes women to serious 

disorders, such as pelvic inflammatory disease, low birth weight, chorioamnionitis, post-

partum endometritis and preterm delivery, which is a leading cause of infant death in the 

United States (Dover et al., 2008; Spear et al., 2007). It is thought that these problems 

arise when microorganisms associated with BV ascend from the lower reproductive tract 

(Zariffard et al., 2005). BV has also been associated with decrease success of in vitro 

fertilization procedures, and increasing risk of cystitis (Livengood, 2009).  

 The epidemiology of BV suggests a sexually transmissible agent, but this does 

not explain the high prevalence of BV in sexually inactive women (Zariffard et al., 2005). 

Several studies have treated the male partners of women with BV with clindamycin and 

nitroimidazole agents typically used for the treatment of BV (Aroutcheva et al., 2001 b; 

Kharsany et al., 1993). These studies all failed to demonstrate a decrease in recurrent BV 

among the women whose partners were treated. Thus, if BV is caused by a transmissible 

agent, it is unlikely to be a clindamycin or nitroimidazole susceptible anaerobe (Kharsany 

et al., 1993). In this sense, BV may also increase risk of acquiring sexually transmitted 
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diseases, such as HIV infection (Verstraelen et al., 2010). Studies show that genital tract 

secretions from women with BV induce HIV expression in infected cells (Spear et al., 

2007). The increased HIV expression appears to be due, at least in part, to activation 

through Toll-like receptors (TLR), specifically TLR2, that are express by dendritic cells 

(DC) (Zariffard et al., 2005). DC are suggested to be one of the first cells that take up 

HIV during sexual transmission. DC are important for antigen processing and 

presentation to the immune system. Studies reported that BV may substantially affect 

local DC antigen presenting function in women (Zariffard et al., 2005; Spear et al., 2007). 

However, further research is needed to elucidate how BV contributes to HIV acquisition 

and transmission (Zariffard et al., 2005; Spear et al., 2007). 

The lack of basic information about pathogenesis of BV has lead to the postulation 

of two competition models. It is not known whether the primary event initiating BV is the 

loss of key lactobacilli or acquisition of the complex bacterial communities found in this 

syndrome; these may be simultaneous processes (Figure 1.2) (Oakley et al., 2008; 

Srinivasan et al., 2008; Turovskiy et al., 2011). It is also possible that some other factor is 

the primary etiological agent, and that the changes in vaginal microbiota reflect 

downstream event in pathogenesis of BV. These doubts still remain due of the complexity 

of BV and the lack of reliable animal model for this condition (Srinivasan et al., 2008; 

Turovskiy et al., 2011). 

 

Figure 1.2 – Competition models for the pathogenesis of BV. At least two models exist to explain the 

pathogenesis of BV. The first model is the Lactobacillus depletion and suggests that there is a decrease in 

H2O2 producing lactobacilli as the primary event that allows for the overgrowth of facultative anaerobes 

resulting in BV. The second model is primary pathogen and suggests that the entry of facultative anaerobes 

causes the displacement of lactobacilli thereby resulting in BV (Srinivasan et al. 2008).  
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1.2.1 The diagnosis of BV  

Gardner and Dukes (1955) described the clinical findings of BV in 1181 patients 

as (i) vaginal squamous cells with a granular appearance and indistinct borders, (ii) 

“disagreeable” odor, (iii) an elevated pH of 5 to 5,5 and (iv) a thin, gray, adherent 

discharge. These findings were adjusted later and are now known as the Amsel criteria 

(Livengood, 2009; Turovskiy et al., 2011). The diagnosis of BV in clinical settings is 

usually based on the fulfilment of three of four clinical criteria described by Amsel and 

colleagues (1983). Amsel’s criteria include (i) elevated vaginal pH (> 4,5), (ii) presence 

of white adherent discharge and (iii) numerous exfoliated epithelial cells with bacteria 

(Gram-variable polymorphic rods) attached to their surface (clue cells) and (iv) has a 

characteristic fishy odor of the discharge especially when 10 % potassium hydroxide 

(KOH) is added (whiff test) (Amsel et al., 1983). 

Amsel criteria do not require a greater than normal volume of vaginal discharge; 

only a thinning of the consistency. A normal squamous cell has sharp, clear, linear edges, 

whereas a clue cell has granular, cloudy, rough edges (Figure 1.3) (Amsel et al., 1983; 

Livengood, 2009; Simoes et al., 2006). 

Later, investigators revealed that accuracy of the criteria could be enhanced if a 

vaginal pH ≥ 4,7 were used in place of a vaginal pH > 4,5 and if > 20 % of the vaginal 

squamous cells were clue cells (Eschenbach et al., 1988). 

 

Figure 1.3 – Clue cells in saline (original magnification, x400). Note the rough, cloudy, irregular borders 

that define the clue cell in cell 1. The cell 2 has stippling over the cytoplasm, but edges are sharp and linear, 

this is not a clue cell (Livengood, 2009). 

 

1 

2 
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Due to the fact that BV can be asymptomatic in about 30 – 50 % of women, 

microbiological diagnostic methods, such as Nugent’s scoring system (Nugent et al.,  

1991) are preferred in the scientific community (Schwiertz et al., 2006; Turovskiy et al., 

2011). In the Gram stain scoring system a greater density of Lactobacillus morphotypes 

lowers the score, while a greater density of Gardnerella vaginalis, Bacteroides 

morphotypes and other curved rods bacteria increases the score. Scores of 0 to 3 are 

considered normal, 4 to 6 are intermediate, and 7 to 10 are BV (Table 1.1) (Nugent et al., 

1991). The agreement of Gram stain score and diagnosis by the clinical criteria is 

imperfect. Gram stain is more sensitive, whereas the Amsel criteria are more specific. 

Overall the concordance between them is of 80 % to 90 % (Livengood, 2009; Nugent el 

al., 1991) 

Table 1.1 – Scheme for Grading Gram-stained Vaginal Contents (Nugent el al., 1991)
 a
 

Scoreb 
Lactobacillus 

Morphotypes 

Gardnerella and Bacteroides 

spp. Morphotypes 
Curved Gram-Variable Rods 

0 4+ 0 0 

1 3+ 1+ 1+ or 2+ 

2 2+ 2+ 3+ or 4+ 

3 1+ 3+ 
 

4 0 4+ 
 

a 
Morthotypes are scored as the average number seen per oil immersion field.

 
Total score = lactobacilli + G. 

vaginalis and Bacteroides spp. + curved rods.  
b
 Quantification: 0, No morphotypes present; 1+, <1 morphotype present; 2+, 1 to 4 morphotypes present; 

3+, 5 to 30 morphotypes present; 4+, 30 or more morphotypes present. 

 

 

Gram stain scoring may be the most accurate approach, but requires a delay of 1 to 

2 days to confirm the diagnosis. On the other hand, it is relatively easy to determine the 

dominant bacterial morphotype while examining vaginal swabbing (wet prep) 

(Livengood, 2009; Nugent el al., 1991). Finally, the criteria used for the diagnosis of BV 

in routine clinical practice are often a matter of the user preference (Livengood, 2009). 
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1.2.2 The treatment of BV 

The treatment of BV has the goal to eradicate anaerobic microorganisms and 

providing the re-growth of Lactobacillus spp. producing H2O2 (Livengood, 2009). 

Nyirjesy and coworkers (2006) have revealed that re-growth of lactobacilli producing 

hydrogen is likely to occur. Healthy vaginal lactobacilli are active against several 

microorganisms including G. vaginalis (Dover et al., 2008). Aroutcheva and their 

coworkers (2001 a) reported that in 22 vaginal Lactobacillus strains, isolated from 

healthy women, 73 % showed to be active against G. vaginalis.  

The most common treatment for BV is the use of antibiotics, namely, with oral or 

vaginal metronidazole or with vaginal clindamycin (Swidsinski et al., 2008). Recent 

studies indicate a new antimicrobial agent for the treatment of BV, called tinidazole. It 

has a twice-longer serum half-life than metronidazole, and their side effects have been 

reported at half the frequency when compared with of metronidazole. Thus, tinidazole 

offers a well-tolerated, and it is highly competitive new option for treatment of BV, while 

requiring less than half as many doses as the currently recommended oral metronidazole 

regimen (Dover et al., 2008; Eriksson et al., 2005).  

However, antibiotics do not eradicate all vaginal pathogenic bacteria. Treatment of 

BV is only effective in 60 % cases, with a common recurrence rate of 30 – 40 % within 

6–12 months (Eriksson et al., 2005). Moreover, a recent trial reported that all G. vaginalis 

strains develop resistance to metronidazole in recurrent BV cases. In this sense, there is 

an interest in developing alternative therapies against BV that might be safer and more 

efficient than antibiotics. Such as more selective antimicrobials, probiotics and 

acidification procedure that will inhibit BV pathogenic bacteria without killing healthy 

lactobacilli. Some of these alternative therapies would also reduce the risk of infection’s 

reoccurrence by promoting healthy Lactobacillus spp. growth (Dover et al., 2008; Falagas 

et al., 2007; Wang et al., 2010). 

Probiotic Lactobacillus preparations are known to contain the specialized 

organisms that dominate the healthy vagina. Investigations are being conducted to isolate, 

store, and deliver them to patients in an effort to enhance the success of therapy. These 

efforts have been hindered by nuance involving both re-growth and establishment of 

dominance by these organisms (such as L. crispatus, L. rhamnosus, and L. reuteri) 

(Livengood, 2009).  
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Recently vaginal probiotic capsules were developed and these are particularly 

appealing, because of their ease of use and high satisfaction rates when are compared 

with creams, gels, and oral yogurt consumption (Wang et al., 2010). Researchers showed 

that probiotic prophylaxis with vaginal capsules (that contain 8 billion colony-forming 

units of L. rhamnosus, L. acidophilus, and Streptococcus thermophilus) is well tolerated 

and yields dramatic reductions in BV recurrence and G. vaginalis risk through eleven 

months after treatment in women with history of recurrent BV (Wang et al., 2010). 

 

1.2.3 The epidemiology of BV  

 Epidemiological studies show that the risk of BV is higher in black and non-

Hispanic woman (Figure 1.4) (Allsworth and Peipert, 2007). Other risk factors include: 

low socioeconomic status, antibiotic treatment of another condition, douching, young age 

of coitarche, new partner, a recent history of multiple partners and cigarette smoking 

(Turovskiy et al., 2011).  

Figure 1.4 – Prevalence of bacterial vaginosis in the United States of America by age stratified by race or 

ethnicity (Allsworth and Peipert, 2007). 

 

In Portugal, most doctors agree that BV is frequent (74 %) with a lower 
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Amsel’s scoring system (75 %), which is mainly based on the clinical observation of the 

aspect, odour and pH of the vaginal discharge. Although the first choice antimicrobial 

therapy is metronidazole (58 %), Henriques et al. (2012) found that doctors from different 

geographical regions do prescribe different antibiotic therapies. The centre region of 

Portugal was the only region where clindamycin prescriptions (49 %) were preferred to 

metronidazole (45 %). Finally, most Portuguese doctors involved in the study feel that 

BV relapses are not very frequent (62 %), in contrast with the results of studies reported 

from other parts of the world. In this study, the first covering all regions of Portugal, 

investigators showed that there are diverse perceptions regarding the prevalence of BV, as 

well as different diagnostic approaches and antimicrobial treatments used (Henriques et 

al., 2012). 

 

1.3 Gardnerella vaginalis  

In 1953, Leopold described G. vaginalis as a novel Haemophilus – like species 

associated with prostatitis and cervicitis. Two years later, Gardner and Dukes were the 

first to associate this microorganism with BV. Through the morphology of the bacterial 

cell, of the apparent negative reaction to Gram staining, and of the inability to grow on 

agar media in the lack of blood, researchers concluded that they were in the presence of a 

new species of Haemophilus, what they called a Haemophilus vaginalis, based on its 

origin (Greenwood and Pickett, 1980; Piot and Dyck, 1983). In 1980, taxonomic studies 

evaluating multiple criteria revealed the lack of genetic relationship between H. vaginalis 

and other established morphology and physiologically similar genera (Greenwood and 

Pickett, 1980). The main difference between the two types of bacterial cells was shown 

through the results of Gram staining. As a result, Greenwood and Pickett (1980) proposed 

the name of G. vaginalis (Figure 1.5), and this proposal was supported by Piot and Dyck 

(1983). 
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Figure 1.5 – G. vaginalis. Coloured Scanning Electron Micrograph (SEM) of a colony of G. vaginalis. 

Magnification: x30'000. Adapted from http://www.sciencephoto.com/media/11256/enlarge (2012). 

 

1.3.1 Structure and physiology of G. vaginalis 

G. vaginalis is a facultative anaerobic, but some rare anaerobic strains exist. Their 

growth is the best at 35 
o
C and is enhanced by carbon dioxide (CO2) (Spiegel, 1991). This 

bacterium is nonencapsulated, nonspore-forming, nonmotile, pleomorphic, and has also 

revealed fimbriae (pili) on their surface (Spiegel, 1991). Studies reported that the outer 

fibrillar coat was responsible for the attachment of G. vaginalis to exfoliated VEC (clue 

cells); on the order hand, pili were involved in the attachment of the pathogen to human 

red blood cells (Scott et al., 1989; Catlin 1992). 

G. vaginalis belongs to the Bifidobacteriaceae family, and is commonly described 

as a Gram-variable or Gram-uncertain microorganism. This means that reaction to Gram 

staining can vary from negative to positive, depending of the growth conditions (Catlin, 

1992; Turovskiy, et al., 2011). Thus, results of the antimicrobial susceptibility studies are 

consistent with the notion that G. vaginalis is neither typically Gram-positive nor 

typically Gram-negative, since antimicrobial agents regarded as specifically active against 

Gram-positive or Gram-negative organisms showed relatively poor activity (Kharsany et 

al., 1993). 

G. vaginalis is considering a fastidious microorganism and requires complex 

medium for growth.  Some different selective and semi-selective media have been used to 

http://www.sciencephoto.com/media/11256/enlarge
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isolate G. vaginalis from clinical specimens, such as medium Columbia Blood Agar 

(CBA) and agar medium Human Blood-Bilayer-Tween (HBT) (Catlin, 1992).  

 Biochemical tests revealed that G. vaginalis is catalase-negative, oxidase-

negative and β-glucosidade-negative. G. vaginalis exhibits α-glucosidase activity and β-

haemolysis on human blood (Catlin, 1992; Turovskiy, et al., 2011). 

 

1.3.2 The role of G. vaginalis in BV 

As briefly discussed in section 1.2 there are two main theories try to answer the 

BV riddle. In 1955, Gardner and Dukes related G. vaginalis with the syndrome 

nonspecific vaginits, currently known as BV. These investigators believed that G. 

vaginalis was the sole cause of BV, and began to fulfill Koch’s postulates (see Appendix 

A) for disease causation in a series of clinical experiments. Later studies demonstrated 

pitfalls in these experiments (Srinivasan et al., 2008). As G. vaginalis can be detected in 

30 – 50 % of women without BV (Fredricks et al., 2007), suggesting that G. vaginalis is 

not the sole etiological agent in BV. This is because Koch’s postulates demand that the 

etiological microbe should be found in every case of disease but should not be detected in 

subjects without disease that did not happen (Srinivasan et al. 2008).  

After more than half a century of research, the scientific community is still 

debating about the origin of this pathology. Through several studies it is thought that the 

G. vaginalis likely plays an important role in the pathogenesis of BV (Livengood, 2009; 

Patterson et al., 2010). Recently it has been described that some strains of G. vaginalis 

form thick biofilms (Patterson et al., 2010). 

 

1.3.2.1 Biofilm formation 

Microbial adhesion to host surfaces is a prerequisite for infection, as a potential 

pathogen must first adhere in order to avoid clearance by host defense mechanisms, such 

as the flow of vaginal secretions, the mucociliary escalator and the urine flow (Sobel et 

al., 1982; Harwich, et al., 2010). Adhesion to urogenital epithelial cells allows 

microorganisms to colonize, thereby minimizing contact of the bacteria with potentially 

deleterious extracellular enzymes and local antibodies and reducing their chances of 
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being flushed away in vaginal fluid or urine (Catlin, 1992). Several strains of G. vaginalis 

are known to form biofilms, after adhering to the vaginal epithelium (Harwich, et al., 

2010; Patterson et al., 2010).  

Biofilms are described as a community of bacteria that do not live as pure culture 

of dispersed single cells but instead accumulate at interfaces to form polymicrobial 

aggregates (Flemming and Wingender, 2010; O’Toole, et al., 2000). Biofilm formation 

and structure is affected by several conditions like: surface properties, nutrient 

availability, composition of the microbial community and hydrodynamics. Biofilms are 

dynamic and heterogeneous communities in constant evolution. Cells in a biofilm have 

different metabolic activities, depending on the special position inside the biofilm, and 

this can change over time (Sutherland, 2001; Trevors, 2011).  

Several bacterial pathogens form biofilms having complex interactions with 

components of the innate host defense system (O’Toole, et al. 2000).  There is evidence 

that BV is associated to biofilm formation and it has been suggested that this biofilm may 

be critical in pathogenesis (Catlin, 1992; Patterson et al., 2007).  

Many species have shown distinct steps in biofilm formation, which include 

(Figure 1.6): (a) the adhesion of planktonic bacteria cells to surface, in this case, to VEC, 

(b) binary division of attached cells, that is formation microcolonies, and finally (c) 

aggregation of single cell or cell flocs from the bulk fluid to the developing biofilm, 

resulting in extracellular polysaccharide matrix, that accounts for the majority ( 85 %) of 

the biofilm volume. Compounds such as extracellular polymeric substances (EPS), 

fimbriae, mating pili, can all function as extracelular matrix components (Leid, 2009). 

Initially, planktonic bacteria form a reversible attachment on the surface. After the 

initial attachment, other chemical and physical interactions transform the reversible 

attachment to enduring irreversible adsorption. After the irreversible attachment, bacteria 

produce EPS mainly composed of polysaccharides (Flemming and Wingender, 2010; 

O’Toole, et al. 2000; Leid, 2009). EPS can be considered as the primary component of 

biofilms. EPS immobilize biofilm cells and keep them in close proximity, thus allowing 

for intense interactions, including cell-cell communication. Cell-to-cell signaling, termed 

quorum sensing, has been shown to play an important role in virulence factors, biofilm 

differentiation, cell attachment and detachment (Leid, 2009). EPS may also have 
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functions like: adhesion (because allows the initial steps in the colonization of surfaces by 

planktonic cells and the long-term attachment of whole biofilms to surfaces); sorption of 

inorganic ions and organic compounds; retention of water; nutrient source; protective 

barrier (because it confers resistance to host defences during infection) and antibiotic 

resistance (by slowing down the diffusion of antibiotics into the biofilm) (Flemming and 

Wingender, 2010; O’Hanlon et al., 2011; O’Toole, et al. 2000). 

 

 

Figure 1.6 – Depiction of the dynamic nature steps of a biofilm community. The community starts to form 

when single cells called planktonic bacteria attach to surface. As those individual cells strongly adhere, and 

expand in number, they are surrounded by an extracellular matrix. As the community matures, partly by cell 

to cell communication (signaling), parts of the biofilm can disperse, migrate, or the community can continue 

to develop into a heterogeneous population of cells that are metabolically, physiologically and genetically 

distinct from one another. If appropriate attachment reservoirs are available downstream from the 

dispersion event, the entire cycle can start over again (Leid, 2009). 

 

G. vaginalis adherence to VEC increased with increasing acidity of the test 

medium, being greatest at pH 4 in phosphate-buffered saline (PBS) than at pH 5 to 6 in 

citrate-acetate-phosphate buffer. It is known that both VEC and bacteria carry net 

negative charges that create an electrostatic repulsive force. This is reduced at a lower pH, 

with the result that binding is increased. So, adherence in the vaginal microenvironment is 

also influenced by pH (Catlin, 1992). 

The ability for a strain to grow as a biofilm would likely confer resistance to 

mucosal immune defenses and antibiotic resistance (Figure 1.7), which could contribute 

to initial and recurrent colonization. Furthermore, lactobacilli normally associated with 
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the healthy vagina produce byproducts such as lactic acid and hydrogen peroxide that 

normally suppress the growth of anaerobes such as G. vaginalis, but biofilm formation 

leads to increased resistance to these byproducts. Therefore, biofilm formation may 

enable proliferation of G. vaginalis even in the presence of lactobacilli. Thus, biofilm 

formation is associated with increased antibiotic resistance (Flemming and Wingender, 

2010) and appears to play a role in treatment failure and recurrence in cases of BV 

(Patterson et al., 2010). 

Due to the fact that bacterial biofilm are not effectively cleared by the immune 

system, or completely killed by antibiotics, biofilm-related infections tend to be chronic 

and/or relapsing. BV tends to be a smoldering infection with a high rate of relapse or 

recurrence (Swidsinski et al., 2005).  

 

Figure 1.7 – Some of the most discussed hypothesis for biofilm resistance to antibiotics. Adapted from 

Lancet (2001), 358, 135–138. 

 

1.3.2.2 Biotypes of G. vaginalis 

Recent studies led by Harwich and their coworkers (2010) demonstrated that G. 

vaginalis strain isolated from a healthy patient had fundamental genomic differences, as 

compared with the genome of a G. vaginalis isolated from a patient with BV. Back in 



              Introduction 

 

Chapter 1 • 17 
 

1990, a research demonstrated that the lipase-positive isolates of G. vaginalis exhibited a 

stronger correlation with BV and women who acquired a new biotype were more likely to 

develop BV (Briselden and Hillier, 1990). 

 

In addition to lipase, the production of a cytolysin appears to be an important 

virulence factor of G. vaginalis. It was named vaginolysin (VYL), since it is a member of 

the cholesterol-dependent cytolysin (CDC) family (Zvirbliene et al., 2010). Similar 

cytolysins appear to contribute to virulence by making cellular contents more available as 

a substrate for bacterial growth. VYL is characterized as a pore-forming cytotoxin that 

utilizes the complement regulatory molecule CD59 to activate the epithelial p38-mitogen-

activated protein kinase pathway in human epithelial cells, leading to cell death (Gelber et 

al., 2008; Patterson et al., 2010). IgA antibodies against VYL have been linked to the 

mucosal immune response during BV, further supporting the role of VYL in BV 

pathogenesis (Patterson et al., 2010). VLY from G. vaginalis 5-1 (non-pathogenic strain) 

and G. vaginalis AMD (pathogenic strain) were 99 % identical at the amino acid level, 

differing at a single amino acid (T35A), this difference could be responsible for virulence 

of G. vaginalis AMD (Patterson et al., 2010; Zvirbliene et al., 2010). 

 

The research group of Patterson et al. (2010) has also been involved in 

determining other differences between isolates of G. vaginalis from healthy subjects and 

BV patients that may explain the outcome of colonization. They investigate whether the 

disparity in the sequences and expression of biofilm-associated protein (BAP) could 

translate into differences in biofilm forming activity. BAP are cell wall-anchored 

adhesions that can mediate both adherence to host cells, how intracellular adherence, 

which confers the biofilm formation capacity (Harwich et al., 2010; Patterson et al., 

2010). These investigators showed that gene sequences for AMD and 5-1 BAP were quite 

disparate. This was particularly noticeable in the repeat regions, the region of BAP 

proteins that generally mediates adherence. Researches also noted that G. vaginalis from 

a healthy individual isolate appeared to be coated in capsular structure, whereas the G. 

vaginalis isolated from a BV patient did not appear to express this structure (Figure 1.8) 

(Harwich et al., 2010). This may negatively impact the adherence to VEC, or biofilm 

formation (Harwich et al., 2010). 

 



Introduction 

 

18 • Chapter 1 

 

 

Figure 1.8 – Transmission Electron Microscopy (TEM) of G. vaginalis strains. The left panel is G. 

vaginalis 5-1 (non-pathogenic strain) while the panel on the right is G. vaginalis AMD (pathogenic strain). 

When the strains were grown in the presence of 10 % human serum, a capsule-like material was present on 

G. vaginalis 5-1, but undetectable on G. vaginalis AMD (Harwich et al., 2010). 

 

Harwich et al. (2010) analyzed the ability of the two G. vaginalis strains to adhere 

to vaginal epithelial cell (ME-180 cells). While equal amounts of the two strains were 

added to epithelial cells monolayers, adherence of strain AMD from a BV isolated was 

much more pronounced relatively to that of the non-BV isolated strain 5-1. It was also 

observed that strain AMD was more aggregative than was strain 5-1 (Figure 1.9). This 

suggests that the capability of BV isolates to bind to and adhere to vaginal epithelium 

may be higher than non-BV isolates, and that BV-isolates tend to produce more biofilm 

growth than do non-BV isolates of G. vaginalis, which would reasonably be consistent 

with greater virulence (Harwich et al., 2010). 

 

Figure 1.9 – Adherence of G. vaginalis to cultured vaginal epithelium. Equal amounts of the indicated 

strains of G. vaginalis (green) were added to epithelial cells (red). The cells were stained with BacLight 

green and Vybrant Red stains respectively. Adherence was analyzed by confocal microscopy following 

incubation and extensive washing with 1x PBS (Harwich et al. 2010). 
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1.3.2.3 Virulence of G. vaginalis and Host defense 

The dynamic relationship between host defense and microbial virulence in 

infectious diseases indicates that it is insufficient to view virulence attributes as a 

collection of substances that do some harm to host cells. Microorganisms may enhance 

their virulence by producing factors that act against host defense factors or in response to 

them (Larsen, 1994; Witkin et al., 2007). 

The presence of an extensive resident microflora represents another measure of 

effectively protecting the host’s mucosal surfaces. Thus, colonization by pathogens in the 

presence of a resident flora requires successful strategies that enable invading microbes to 

successfully compete for nutritional and spatial resources and displace commensal 

organisms from the microbial niche. In addition to their ability to attract professional 

immune cells, the epithelial body surfaces themselves provide effective innate 

antimicrobial defense (Turovskiy et al., 2011; Witkin et al., 2007).  

Lactobacillus spp. that are part of the resident microflora, are believed to interfere 

with pathogens by different mechanisms. The first is the competitive exclusion of 

genitourinary pathogens from receptors present on the surface of the genitourinary 

epithelium. Second, lactobacilli coaggregate with some uropathogenic bacteria, a process 

that, when linked to the production of antimicrobial compounds, such as lactic acid, 

hydrogen peroxide and bacteriocin-like substances would result in inhibition of the 

growth of the uropathogenic bacteria, as G. vaginalis (Harwich et al., 2010). Clearly, 

microorganisms that normally associate with the host as normal commensal flora have 

been given little attention as toxin producers. But the production of toxic substances with 

subtle effects on the host physiology or immunity will play a role in the virulence of these 

microorganisms (Larsen, 1994). 

 

1.3.3.4 Additional virulence factors of G. vaginalis 

  Additional virulence factors produced by G. vaginalis include sialidase and 

prolidase (Pleckaityte  et al., 2012; Santiago et al., 2011), which are two hydrolytic 

enzymes that may have a role in degrading several key mucosal protective factors, such 

as mucins, as well as contributing to exfoliation and detachment of vaginal epithelial cells 

(Cauci et al., 2008). 
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In sum, there is a strong evidence that G. vaginalis does possess innate pathogenic 

potential (Eren et al., 2011; Yeoman et al., 2010). Other BV-associated anaerobes might 

have virulence factors that have not yet been described, or they may be more pathogenic 

in the presence of other species. It is also likely that the primary aetiological agent of BV, 

if there is one, varies on a case by-case basis. However, Patterson et al., (2010) suggests 

that, due to its collection of virulence factors, it is likely that G. vaginalis has a 

pathogenic capacity, and could be the key agent in certain cases of BV. 

 

1.4 The role of other anaerobes in BV 

Recent studies demonstrate the occurrence other anaerobe microorganisms 

associated with BV (Table 1.2). Mobiluncus spp. and Atopobium vagiane have been also 

reported as microorganisms associated with BV, although they are not found in every 

cases of BV (Livengood, 2009; Srinivasan et al., 2008; Turovskiy et al., 2011). 

Table 1.2 – Detailed composition of the anaerobe microorganisms associated with BV in vaginal microflora 

of 515 vaginal swab samples (Verhelst, et al. 2005) 

Species associated with BV 

Gardnerella vaginalis 

Peptoniphilus sp. 
a
 

Aerococcus christensenii 

Atopobium vaginae 

Dialister sp. 

Actinomyces neuii 

Bacteroides ureolyticus 

Finegoldia magna 
a
 

Prevotella bivia 

Varibaculum cambriense 

Mycoplasma hominis 

Anaerococcus tetradius 
a
 

Anaerococcus vaginalis 
a
 

Gemella morbillorium 
a
 

Mobiluncus curtisii 

Prevotella ruminicola 

Prevotella sp. 

 

 

a 
Formerly known as Peptostreptococcus. 
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Mobiluncus spp., a highly motile curved bacillus, is found only when BV is 

present, but in only 50 % of cases of BV (Hillier et al., 1991). A. vaginae is a Gram-

positive anaerobe which is found in the flora of over 95 % of BV cases, but also occurs in 

the vagina of healthy women (Ferris et al., 2007; Livengood, 2009). Thus, BV flora can 

include mixtures of multiple genera of Gram-positive and Gram-negative microorganisms 

(Figure 1.10). 

 

Figure 1.10 – Microscopic image (1000 ×) of Gram-stained vaginal smears illustrating the case of BV 

(Verhelst et al., 2005). 

 

1.4.1 Mobiluncus spp. 

Mobiluncus spp. are anaerobic bacteria. These anaerobic curved rods have been 

given the genus name Mobiluncus, and two species, M. curtisii and M. mulier. The two 

species can be differentiated by cell morphology and biochemical reactions. The most 

useful aspects that are used for differentiation are: β-galactosidase activity; hippurate 

hydrolysis and metronidazole susceptibility (Hallén, et al., 1988). 

M. curtisi microorganisms are referred to as short form Gram-variable, comma-

shaped, resistant to metronidazole, and have positive results in all these differential 

biochemical tests. In contrast, M. mulieris microorganisms are referred to as long forms, 

Gram-negative, curved, sensitive to metronidazole, and have negative results in 

biochemical reactions. Additional problem is the fastidious nature of the Mobiluncus spp. 

which complicates their isolation and subsequent cultivation (Hillier et al., 1991). 

Mobiluncus spp. is detected by traditional methods, as: Nugent’s scoring system (Nugent 

et al., 1991). 
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Many questions remain concerning the ecology of Mobiluncus spp., including the 

factors responsible for vaginal colonization and the clinical manifestations of vaginal 

colonization with these microorganisms (Hillier et al., 1991). There seems to be an 

association between Mobiluncus with black race, unemployment, and low income 

suggests the need to assess further the role of behavior or risk factors among low 

socioeconomic status women as risk factors for colonization by this bacterium (Hillier et 

al., 1991). Hallén and their coworkers (1988) have reported that Mobiluncus can be 

recovered from up to 53 % of the rectal specimens from women with BV (Hallén, et al., 

1988; Hillier et al., 1991). 

 

1.4.2 Atopobium vaginae 

A. vagianae has been increasingly identified with the advent of molecular 

technical. The genus Atopobium was proposed in 1992 to accommodate bacterial isolates 

previously classified as Lactobacillus minitus, Lactobacillus imae and Streptococcus 

parvulus (Polatti, 2012; Santiago et al., 2012; Rodriguez et al., 1999). Gram stain 

appearance is that of a small Gram-positive cocco-bacillus. Members of the genus are 

known to produce large amounts of lactic acid. On this basis, some species belonging to 

the genus Atopobium were originally identified as Lactobacillus spp. (Rodriguez et al., 

1999). Differences between bacteriologic methods could explain this discrepancy. It may 

be that some identification systems do not correctly separate anaerobic lactobacilli and 

streptococci from A. vaginae. This bacterium, when detected with molecular techniques, 

are present in 86,4 % of BV samples (Verhelst et al., 2004; Verhelst et al., 2005).  

A potentially important observation is that A. vaginae appears to be highly 

metronidazole resistant (Ferris et al., 2004). Ferris and their coworkers (2004) showed 

that A. vaginae strains were susceptible to clindamycin, cephalosporins carbapenems, 

ampicillin and linezolid and were moderately susceptible to the quinolones. It is 

interesting to speculate that this microorganism could possibly contribute to BV treatment 

failures or relapses which are common (Backer et al., 2006; Santiago et al., 2012). 

The bacterium A. vaginae is a strict anaerobe. Its clinical significance is unknown 

but it has been isolated from a tubovarium abcess. Investigators suggest that A. vaginae 
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may be an important component of the complex bacterial ecology that constitutes 

abnormal vaginal flora.  

 Prospective treatment studies are needed to determine whether or not A. vaginae 

and other metronidazole resistant microorganisms such as M. curtisii might play such a 

role in BV (Backer et al., 2006; Polatti, 2012). 
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2.1 Introduction  

The vaginal microflora constitutes a complex environment, composed of several 

microbiological species in variable quantities and proportions (Donders et al., 2005). 

Studies reported that Gardnerella vaginalis, Streptococcus agalactiae, 

Peptostreptococcus spp., Bacteroides spp., Prevotella spp., Mobiluncus spp., Escherichia 

coli and opportunistic pathogens such as Staphylococcus epidermidis and Enterococcus 

faecalis can be present in vaginal microflora of women with BV. However, some of these 

microorganisms can also be present in women with asymptomatic vaginal infections 

(Allsworth and Peipert, 2011; White et al., 2011). 

In order to better understand the etiology of BV, Alves et al. (2012), Harwich et 

al. (2010) and Patterson et al. (2010) isolated microorganisms from vaginal swabs from 

healthy women and BV patients (Table 2.1).  

In United States, Patterson et al. (2010) isolated G. vaginalis strain 5-1 from a 

woman without BV and strain 101 from a woman with BV as diagnosed by the Nugent 

Gram stain scoring system. Both G. vaginalis strains were collected from swabs 

specimens at Brigham and Women´s Hospital, Boston, MA. Strain AMD was isolated 

from a woman diagnosed with BV on Amsel criteria at Virginia Commonwealth 

University (VCU) Women´s Health Clinic, Richmond by Harwich et al. (2010). They 

were interested in determining if different strains of G. vaginalis had different virulence 

potential. To expand this study, Alves et al. (2012) isolated more strains from different 

microorganisms (Table 2.1). In all vaginal specimens taken from women who were 

diagnosed with BV or were otherwise healthy, BV status was determined using the Amsel 

criteria and were collected in a gynecology private practice clinic from the Oporto region. 

Portuguese isolates were obtained by using selective growth media; testing for catalase 

and oxidase reactions; polymerase chain reaction (PCR) for BV-specific pathogens, Gram 

stain and, finally, by DNA sequencing technique performed by Eurofins MWG Operon, 

Germany. 
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Table 2.1 – Composition of the vaginal microflora isolate from vaginal swabs from healthy women and 

from women with BV (Alves et al., 2012; Harwich et al., 2010; Patterson et al., 2010) 

Species Strain * BV diagnosis Reference 

Bifidobacterium breve UM031 No Alves et al., 2012 

Enterococcus faecalis UM035 Yes Alves et al., 2012 

    

Gardnerella vaginalis 

5-1 No Patterson et al., 2010 

UM016 No Alves et al., 2012 

AMD Yes Harwich et al., 2010 

101 Yes Patterson et al., 2010 

UM034 Yes Alves et al., 2012 

UM035 Yes Alves et al., 2012 

    

Gemella haemolysans UM034 Yes Alves et al., 2012 

Klebsiella pneumoniae UM034 Yes Alves et al., 2012 

Lactobacillus gasseri UM022 No Alves et al., 2012 

Propionibacterium acnes UM034 Yes Alves et al., 2012 

Staphylococcus epidermidis UM016 No Alves et al., 2012 

Streptococcus agalactiae UM035 Yes Alves et al., 2012 

Streptococcus salivarius UM031 No Alves et al., 2012 

* According to Alves et al. (2012) the name attributed to the strain corresponds to the code of vaginal 

swabs, which means that the same vaginal swab yielded more than one isolate. 

 

G. vaginalis characteristics have already been discussed in the section 1.3 of 

Chapter 1. Thus, the next sections present the main characteristics of microorganisms 

isolated from vaginal samples of Portuguese women. 
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2.1.1 Bacteria isolated from women without BV 

 

Bifidobacterium breve 

Bifidobacteria are generally characterized as Gram-positive, non-spore forming, 

non-motile, catalase-negative anaerobes (Charteris et al., 1997). The possible contribution 

of the potentially beneficial Bifidobacterium genus to the vaginal bacterial microbiota 

may have been underestimated due to confusion with the more commonly detected G. 

vaginalis. Such confusion may be the result of similar phenotypic and molecular traits 

used for identification (Burton et al., 2003). B. breve is probably the most common 

bifidobacterium in infants but remains in the gut throughout adulthood. It is a lactic acid-

producing bacterium found in the small and large intestines (Thorsen et al., 1998). 

 

Lactobacillus gasseri 

Lactobacillus species are the most often found inhabitants of vaginal ecosystem of 

fertile women. Lactobacillus gasseri is an anaerobic, Gram-positive bacterium that falls 

into the category of lactic acid producer bacteria (Boris and Barbés, 2000). It is also a rod 

shaped and of the non-spore-forming type and typically found in the gastrointestinal tracts 

of humans due to its largely fermentative function. This bacterium is very important, 

because provides fewer complications in the digestive system, it is the best choice to 

ferment meat. L. gasseri decrease the ability of pathogens like Staphylococcus aureus to 

grow in meat (Arihara et al., 1998). Studies observed that the lactic acid and the hydrogen 

peroxide produced by L. gasseri had a very strong effect on the pathogen S. aureus (Otero 

and Nader-Macías, 2006). Recently, its function as a probiotic has been the area of major 

interest (Petricevic et al., 2012).  

 

Staphylococcus epidermidis 

Although Staphylococcus epidermidis normally colonizes the skin and nose, some 

studies reported that it can also be present in vaginal flora (John et al., 2003; Verhelst et 

al., 2005). These bacteria are common opportunistic pathogens and typically, cause 

infections and diseases when illness or injury occurs (John et al., 2003; Wang et al., 

2007). S. epidermidis belongs to the coagulase-negative staphylococci (CoNS), which are 

distinguished from coagulase-positive staphylococci, such as S. aureus, by their lack of 

the enzyme coagulase. As part of the human epithelial microflora, S. epidermidis usually 
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has a benign relationship with its host. Furthermore, it has been proposed that S. 

epidermidis may have a probiotic function by preventing colonization of the host by more 

severe pathogens (John et al., 2003; Wang et al., 2007). Despite that, S. epidermidis is 

often associated with nosocomial infections (Otto, 2009). 

 

Streptococcus salivarius 

Streptococcus salivarius is a facultative Gram-positive cocci. S. salivarius is a 

member of the viridians group of streptococci, commensals of the human upper 

respiratory, gastrointestinal and female genitourinary tract, but most prevalent in the oral 

cavity and possessing an excellent potential for use as a probiotic targeting the oral cavity 

(Conte et al., 2006). S. salivarius may exert their protective effect through in situ 

production of the antibiotic enocin (Sanders and Sanders, 1982). It is reported to have 

very low pathogenic potential (Sanders and Sanders, 1982). 

 

2.1.2 Bacteria isolated from women with BV 

 

Enterococcus faecalis 

Enterococcus faecalis is a Gram-positive, facultative anaerobic, coccus which 

occurs isolated, in pairs or short chains. It is a normal inhabitant of the intestinal tract and 

female genital tract. E. faecalis is an opportunistic bacterium that has become one of the 

most troublesome hospital pathogens. E. faecalis is also catalase-negative, non-spore 

forming, and is usually nonmotile (Thorsen et al., 1998; Pál et al., 2005). In most cases, 

they cause no infection, however, in some people, enterococci can cause serious 

infections, especially those found in the urinary tract (UTIs), wounds, and blood. 

Vancomycin is often the antibiotic used to treat enterococcal infections, but even this is 

becoming ineffective as new resistant strains are found (Thorsen et al., 1998; Pál et al., 

2005). 

 

Gemella haemolysans 

Gemella haemolysans was first described in 1938 and it had been classified for a 

long time in the Streptococcus or Nesseria group due to its molecular resemblance, so its 

identification is difficult (Gatibelza et al., 2009; Malik et al., 2010). G. haemolysans is a 
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facultative, anaerobic, Gram-positive coccus with a low virulence, which is catalase and 

oxidase negative. G. haemolysans is commensal organism of the human genitourinary, 

gastrointestinal and upper respiratory tracts, and oral cavity (Gatibeleza et al., 2009). 

However, as an opportunistic pathogen, G. haemolysans is able to cause severe systemic 

infections including endocarditis, spondylodiscitis, meningitis, endophthamitis, thoracic 

empyema, and septicemia (Anil et al., 2007; Gatibelza et al., 2009). Gemella spp. is 

generally resistant to vancomycin, teicoplanin, erythromycin and tetracycline (Gatibelza 

et al., 2009; Malik et al., 2010). 

 

Klebsiella pneumonia 

Klebsiella pneumoniae is the most frequent cause of nosocomial respiratory tract 

infections and the second most common cause of Gram-negative bacteraemia and UTIs 

(Ahmad et al., 2012). K. pneumoniae is nonmotile and rod-shaped and is able to 

overcome innate host immunity through several means. K. pneumoniae possess a 

polysaccharide capsule, which is the main determinant of their pathogenicity. The capsule 

is composed of complex acidic polysaccharides. Its massive layer protects the bacterium 

from phagocytosis by polymorph nuclear granulocytes. In addition, the capsule prevents 

bacterial death caused by bactericidal serum factors (Thorsen et al., 1998). K. 

pneumoniae is naturally resistant to ampicillin, amoxicillin and carbenicillin (Ahmad et 

al., 2012). 

 

Propionibacterium acnes 

Propionibacterium acnes is a slow growing Gram-positive anaerobe, usually 

pleomorphic, bacillus, which has been considered as a commensal bacterium with low 

pathogenic potential. However, it has the ability to act as an opportunistic pathogen. P. 

acnes is part of the microflora of the skin, the oral, and the intestinal mucous membranes 

and can be also present in vaginal flora (Csukás et al., 2004; Verhelst et al., 2005). They 

may cause several infections, as acne vulgaris, orbital or dental abscess, sinusitis, 

hepatitis, endocarditis, osteomyelitis and sepsis. Furthermore, several reports indicate that 

P. acnes may also be the etiological agent of ophthalmic infections (Csukás et al., 2004). 

P. acnes has also been involved in postoperative disorders and opportunistic infections in 

immunosuppressed hosts (Nakamura et al., 2003). P. acnes is usually susceptible to a 
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wide range of common antibiotics, although some, particularly in acne patients, have 

been found to be resistant to clindamycin, erythromycin and tetracyclines. Despite their 

susceptibility, they are sometimes remarkably difficult to eradicate, and long courses of 

antimicrobial treatment are often recommended (Bayston et al., 2007). 

 

Streptococcus agalactiae  

 Streptococcus agalactiae is known to cause various infections in adults, but 

clinical interest in these bacteria mainly relates to their ability to cause serious neonatal 

illness, especially meningitis and sepsis. Although neonates born by caesarian section 

have presented with S. agalactiae infection, indicating ascending transmission of the 

microorganism from the vagina of their mothers, in the majority of cases the neonate 

acquires the infection during labour through contact with the vaginal secretions of the 

mother colonized by S. agalactiae (Pasnik et al., 2006). It is well known that S. 

agalactiae colonizes the female genital tract but it is unclear if this bacterium can cause 

true infection of the vagina (Brimil et al., 2006). Studies have concluded that invasive 

infections caused by S. agalactiae are not uncommon and that they pose a major problem 

not only in pregnant women and neonates but also in non-pregnant adults, especially the 

elderly and patients with chronic diseases (Brimil et al., 2006; Konto-Ghiorghi et al., 

2009). Despite adequate antibiotic therapy for this invasive disease often results in high 

mortality even in recent years (Brimil et al., 2006). The capsule of S. agalactiae has long 

been recognized as one of the most important virulence factors. S. agalactiae is resistant 

to tetracycline, gentamicin, amikacin and erythromycin and it is susceptible to penicillin 

(Gao et al., 2012; Thorsen et al., 1998; Pál et al., 2005). 
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2.2 Aim  

The aim of the work described in this chapter is to characterize the various 

microorganisms isolated from the genital tract in women with or without the clinical 

diagnosis of BV and to get the relationship between the absorbance and the number of 

viable cells for each isolate. With the data obtained from the calibration curves of the 

various vaginal isolates, it is possible to know which cell concentration correspondent the 

absorbance of the bacteria inocula. This data is crucial for the experiments described in 

the following chapters. 

 

2.3 Materials and Methods 

2. 3.1 Strains and culture conditions 

Bacterial strains used in this study were isolated from vagina flora of the healthy 

women and BV-diagnosed women, and the source of the strains, is listed in Table 2.1. In 

addition to the microorganisms isolated from vaginal swab samples, we also included 

some reference Lactobacillus spp. strains. The Lactobacillus species studied were 

Lactobacillus casei reference strain CECT 5275 (obtained from the Colección Española 

de Cultivos Tipo), Lactobacillus iners reference strain ATCC 55195 (obtained from 

American Type of Culture Collection) and Lactobacillus crispatus reference strain 

VCUVAHMP00053 (obtained d from VCU Women´s Health Clinic, Richmond, USA). 

Once in the laboratory, all clinical isolates were properly stored at -80 ºC (stock 

collection) and at -20 ºC. All bacteria except B. breve and L. casei were maintained in 

Columbia blood agar (CBA – Liofilchem) with 5 % defibrinated horse blood added; this 

medium was prepared according to the manufacturer’s instructions. B. breve was 

maintained in Bromocresol Purple Starch Agar medium which is composed by Peptone 

from Meat Peptic Digest 7,5 g.L
-1

 (Merck), Tryptone 7,5 g.L
-1

 (Liofilchem), Corn Starch 

from Potato 1 g.L
-1

 (Pancreatic), Dipotassium Phosphate 4 g.L
-1

 (Pancreatic), 

Monopotassium Phosphate 1 g.L
-1

 (Pancreatic), Sodium chloride 5 g.L
-1

 (ProLabo), Agar 

12 g.L
-1

, Starch soluble 10 g.L
-1

 (FisherScientific) and Bromocresol Purple 0,0096 g.L
-1

 

(Acros-organics). After preparing the medium, it was sterilized by autoclaving at 121 °C 

for 15 minutes. Finally, after cooling, Nalidixic Acid 30 µg.mL
-1

 (Applichem) was added. 

L. casei was maintained in De Man-Rogosa-Sharpe (MRS – Liofilchem) medium plus the 

addition of agar (Liofilchem) and it was also prepared according to the manufacturer’s 
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instructions. All isolates were cultured in supplemented Brain heart infusion broth [sBHI; 

brain heart infusion broth (Oxoid) containing 2 % (w/w) gelatin (Oxoid), 0,5 % yeast 

extract (Liofilchem), 0,1 % starch (FisherScientific), and 0,1 % glucose (Liofilchem)] 

(Patterson et al., 2010). All cultures were grown at 37 ºC under anaerobic conditions, 

using the Anaerogen pack system (Oxoid). 

 

2.3.2 Correlation between viable cells and optical density  

Bacteria inoculums were incubated for 48 h at 37 ºC, under anaerobic conditions. 

Growth was analyzed using a 96-well plate (Orange Scientific) by ELISA 96-well plate 

reader with a 600 nm filter (Tecan Sunrise). Dilutions were performed with the same 

culture medium, to cover the range of absorption measurements of interest. Dilutions 

(usually up to 10
-8

) of the inoculum were performed in NaCl (0,9 %) and plated, for 

colony forming unit (CFU) count. CFUs were determined using the micro drop technique, 

in which droplets (20 μL) of each dilution were placed on agar plates and allowed to dry. 

Subsequently, the plates were incubated at 37 °C in anaerobic conditions for a suitable 

period of time (typically 48 hours) to enable the counting of colonies.  

 

2.4 Results and discussion  

Calibration curves reflect the relationship between absorbance and the number of 

viable cells and allow the quantification of the number of cells present in a cell 

suspension by reading the respective value of absorbance. The graphs relating the 

calibration curves obtained of the microorganisms used in this study are presented in 

Figure 2.1. 
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B. breve E. faecalis 

 

  

G. vaginalis G. haemolysans 

  

  

  

K. pneumoniae L. gasseri 

Figure 2.1 – Calibration curves of all bacteria isolates. 
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P. acnes S. epidermidis 

 

  

S. agalactiae S. salivarius 

 

  

L. casei L. iners 

Figure 2.1 – Calibration curves of all bacteria isolates (continued). 
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L. crispatus 

Figure 2.1 – Calibration curves of all bacteria isolates (continued). 

 

The relationship between absorbance and CFU is different for each species of 

bacteria studied, which can be due to the size and number of cell varies with phase of 

growth. Therefore it is important to have the cells in known physiological state of growth, 

in this case in stationary phase. So, growth curves of microorganisms allow the 

identification of the growth phase in which the microorganism is in function the 

incubation time.  

The size of the organism, the preparation of the suspension, and other factors all 

influence the absorbance readings. There are several factors that can affect this curve 

(e.g., quality of lamp output, size of slit, condition of filter, condition of detector, 

microorganism characteristics). Despite the inherent inaccuracy of the method, if the 

procedure is adequately controlled and calibrated, the estimation of microbial numbers by 

optical density is sufficiently accurate for use in preparing inocula for further studies. The 

method offers the overwhelming advantages of being rapid, low cost and non-destructive 

(Sutton, 2011). 

Although six different strains of G. vaginalis were studied (see Table 2.1), only 

one calibration curve was performed, because the size of cells is identical. However, there 

were calibration curves of the different Lactobacillus species. This is because, the various 

Lactobacillus species used in this study differed in phenotypic characteristics, namely in 

structure (L. casei, L. crispatus and L. gasseri are rod shaped and L. iners is curved 

shaped) and size of bacteria.  
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So, the determination of calibration curves was necessary for all species of 

microorganisms, because data about the relationship between CFU and absorbance were 

necessary to be able to study the initial adhesion of each microorganism to epithelial 

cells, which will be described in next chapter.  



 

 
 

 

 

 

 

 

CHAPTER 3  

Adherence of vaginal 

microorganisms to epithelial 

cells



 

 

 



Adherence of vaginal microorganisms to epithelial cells 

 

Chapter 3 • 41 
 

3.1 Introduction 

The interaction between vaginal species and mucosal cells is believed to be one of 

the critical events in the initial development of BV. Thus, studies on the bacterial 

adhesion to epithelial cells are important to understand the phenomena involved in the 

interactions between microorganisms and human tissue (Dunne, 2002; Patterson et al., 

2010). However, little is known on how different species of bacteria implicated in BV 

interact with the vaginal epithelial surface (Swidsinski et al., 2005). 

 

3.1.1 Role of bacterial adhesion in BV 

Bacterial adhesion to epithelial cells is one of the characteristics that allow 

microorganisms to colonize specific tracts of the host. The specific attachment of bacteria 

to epithelial cells surface (Figure 3.1) is well documented (Catlin, 1992; Swidsinski et al. 

2005), and it is known that it can lead to the biofilm formation in BV. Initial adhesion is 

studied both in pathogens and in commensal bacteria that are usually present in vaginal 

flora (Zárate and Nader-Macias, 2007). Some studies have shown that the high adhesion 

capacity of certain microorganisms indicates that they can compete for nutrients with a 

higher efficiency than the non-adherent bacteria (Atassi et al., 2006; Otero and Nader-

Macías, 2007). 

The healthy vaginal flora is mainly composed by Lactobacillus strains, which 

possess high adherence ability (Atassi et al., 2006). This capacity to adhere to vaginal 

epithelium is an advantage for prevention of adherence and colonization of pathogenic 

bacteria (Duary et al., 2011). Despite this, adhesion to vaginal epithelial cells also allows 

pathogens, as G. vaginalis to colonize, thereby minimizing contact of the bacteria with 

potentially deleterious extracellular enzymes and local antibodies and reducing their 

chances of being flushed away in vaginal fluid or urine (Atassi et al., 2006; Catlin, 1992). 
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Figure 3.1 – A biofilm can be histologically detected on the vaginal epithelial surface in patients with BV. 

Original magnifications: left panel, x100 (a); right panel, x250 (b). Note the desquamation of surface 

epithelial cells containing the biofilm that can be detected as ‘‘clue cells’’ in the vaginal smear (arrows). 

Adapted from Swidsinski et al., 2005. 

 

Researchers are now interested in the determination of the possible interactions of 

adhesion of various vaginal bacteria to vaginal epithelium (Marrs et al., 2012). 

Characteristics of cellular interaction differ for a given microorganism or host tissue. The 

molecular basis of this specificity varies widely, and a microorganism may possess more 

than one type of adhesion (Bibel et al., 1987; Marrs et al., 2012). 

 

 

3.1.2 Bacterium–host cell interaction 

As stated above, microbial adherence to vaginal cells is the initial step in the 

development of BV. Specific interaction between microbial surface ligands or adhesins 

and host receptors influence the distribution of microbes in the sites of infection. These 

interactions include the mechanisms of adhesion of bacteria to tissue cultured cells, and 

the events that occur after the bacteria associate with the host cell, such as the capacity to 

invade these cells (Albert et al., 2000; Dunne, 2002). 

 Pathogenic microorganisms and those that are part of the normal microbiota have 

shown to posses macromolecules in their surface that participate in their adhesion to 

epithelial cells (Otero and Nader-Macías, 2007). 

The process of bacterial attachment to an available epithelial surface and the 

subsequent development of a biofilm is dictated by a number of variables, including the 

  

(a) (b) 
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bacteria species, surface composition, environmental factors, and essential gene products. 

Adhesion to living or devitalized tissue is accomplished through specific molecular 

(lectin, ligand, or adhesion) docking mechanism. In the most basic form, bacterial 

adhesion (as a process distinct from, but integral in biofilm formation) can be divided into 

two stages: the primary or docking stage and the secondary or locking phase (Dunne, 

2002). 

 

Docking: Primary Bacterial adhesion 

Primary adhesion constitutes the serendipitous meeting between epithelial surface 

and a planktonic microorganism. This stage is reversible and is dictated by a number of 

physiochemical variables that defines the interaction between the bacterial cell surface 

and the conditioned surface of interest (An et al., 2000; Dunne, 2002). First, the 

microorganism must be brought into close approximation of the vaginal epithelium, 

propelled either randomly (for example, by a stream of fluid flowing over a vaginal 

epithelium) or in a directed fashion via hemotaxis and motility. Once the microorganism 

reaches critical proximity to a surface (usually 1 nm), the final determination of adhesion 

depends on the net sum of attractive or repulsive forces generated between the two 

surfaces. These interaction forces, involving a bacterium and epithelial cells, can be non-

specific and include electrostatic forces, van der Waals forces, hydrodynamic and 

hydrophobic forces (Dunne, 2002). The hydrophobic effect is said to be non-specific 

because any hydrophobin adhesion will interact any hydrophobic receptor. However, the 

specificity determinants of the hydrophobic effect are poorly understood (An et al., 

2002). 

 

Locking: Secondary Bacterial adhesion 

The second stage of adhesion is the anchoring or locking phase and employs 

molecularly mediated binding between specific adhesins and the epithelial surface (An et 

al., 2000; Boland et al., 2000; Dunne, 2002). At this point, loosely bound microorganisms 

consolidate the adhesion process by producing exopolysaccharides that complex with 

receptor-specific ligands located on pili, fimbriae, and fibrillae, or both. At the end of the 

second stage, adhesion becomes irreversible in the absence of physical or chemical 
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intervention, and the microorganism is attached firmly to the surface. Interestingly, the 

presence of one species of microorganism on a surface can promote of the adhesion of 

another. All bacteria produce multiple adhesins, and some are regulated at the 

transcriptional level, permitting organisms to switch from sessile to planktonic forms 

under different environmental influences (An et al., 2000; Dunne, 2002). 

One of the critical steps in these adherence studies is the culture of epithelial cells 

from woman, which requires some specific techniques, since these cells are very difficult 

to obtain and maintain. 

  

3.1.3 Epithelial cells  

In order to understand the phenomena of adherence of vaginal microorganisms to 

epithelial cells it is necessary to use in vitro models. The use of vaginal epithelial cell 

lines is a key factor to understand BV, due to the lack of a tractable animal model for BV, 

which has thwarted efforts to understand the etiology of this common and important 

health concern of women. 

The ability to manipulate and maintain cells in vitro is a critical phase of cells 

culture. This process includes several steps as: cryopreservation, culture maintenance and 

prevention and detection of external contamination (Henriques, 2005). 

 

Cryopreservation 

 Cryopreservation is a determinant step, since it is necessary to keep and maintain 

cells stored so that they can repeatedly be used from the same “starting” state. The cell 

response to the cryopreservation depends on the method of freezing, mainly the cooling 

rate. If extracellular ice is formed it rises to a chemical potential difference across cell 

membranes, driving water out of the cell by osmosis (Freshney, 2005; Henriques, 2005). 

However, the plasma membrane has a finite permeability to water, the magnitude of 

which determines the rate of water efflux and the corresponding time scale of cell 

dehydration. Consequently, if the rate of cooling is sufficiently slow to allow the 

intracellular solution to equilibrate with its external environment by expelling water 

through the cell membrane, the cell will dehydrate extensively with decreasing 
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temperature. On the other hand, if the cooling rate is fast compared with the rate of water 

efflux, low temperatures are reached before significant dehydration can occur. In this 

situation, the cell remains largely deformed, but there is a very high probability of ice 

formation in the cell, as the intracellular solution is in a super cooled non-equilibrium 

state (Freshney, 2005; Henriques, 2005; Karlsson and Toner, 2000). The effect of cooling 

rate on the cell survival is presented schematically in Figure 3.2. 

 

 

Figure 3.2 – Effect of cooling rate on cell survival. Adapted from Palsson and Bhatia (2004). 

 

So, it can be established an optimum cooling rate at which the two mechanisms of 

damage are balanced, and the probability of cell survival reaches a maximum (Karlsson 

and Toner, 2000). Usually, during the freezing process a permeant cryoprotective additive 

such as dimethyl sulfoxide (DMSO) is used. The freezing process includes several steps, 

as keeping the cells at -20 ºC, decreasing the temperature to - 80ºC and storing at - 136 ºC 

in liquid nitrogen.  

 

Cell maintenance  

The in vitro cell maintenance depends on the medium in which cells are grown, 

which provides inorganic salts and other nutrients. The tissue culture media can include: 

basal medium components such as sodium chloride (adjusts osmotic pressure), inorganic 
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Slow cooling  

< -10ºC  

Rapid cooling  
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salts (provide electrolyte balance similar to blood), sodium bicarbonate (provides 

buffering capacity), D-glucose (as source of energy, carbon), amino acids (as source of 

nitrogen for protein synthesis), vitamins (cofactors in various intracellular biochemical 

reactions) and phenol red (as a visual pH indicator); serum (that provides cell growth, 

attachment factors, hormones and carrier proteins); growth factors, hormones (that 

stimulate growth function); and antibiotics (used to prevent contamination by 

microorganisms) (Freshney, 2005; Henriques, 2005). 

The most common commercially available media are: BME (basal medium 

Eagle’s), EMEM (minimum essential medium with Earl’s salts), DMEM (Dulbecco’s 

modified Eagle’s medium) and RPMI 1640 (created by Roswell Park Memorial Institute). 

The selection of the optimal medium to be used depends on the culture type (Henriques, 

2005). 

The serum used in medium preparation is a fraction of whole blood. Plasma is the 

non cellular fraction of the blood, whereas serum is the liquid that remains after plasma is 

allowed to clot. Serum is typically added to culture medium in a proportion of 

approximately 1 to 20 % by volume. Despite of the advantages, the use of serum has 

some disadvantages, that is: the chemically constituents that are note defined or may vary; 

the extensive testing necessary before use; the lack of reproducibility; the difficulty of 

standardization of experimental and production protocols; the risk of contamination; the 

availability and costs; and may contain growth and metabolism inhibitors (Freshney, 

2005; Henriques, 2005).  

  If cells grow adhered to the bottom of a T-flask it will be necessary to detach 

them. For that, chemical or physical processes can be used. Among the latter, scrapping is 

commonly used when the adhesion is not tight. Sometimes chemical detachment is 

needed and it can be done with digestion enzymes. The enzyme digestion can be 

performed using different enzymes depending on the tissue type. Examples of enzymes 

are: trypsin, collagenase, elastase and papain, but the most common is trypsin (Doyle and 

Griffiths, 2000).  
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Contamination  

Maintenance of cells in physiological, nutrient-rich environment provides an ideal 

medium for the growth of microorganisms that are contaminants. Sterile culture 

techniques and the use of antibiotics are designed to prevent contaminations; 

nevertheless, microbial contaminants are routinely encountered. Included in these 

microbial contaminants are: bacteria, fungi, yeasts (that can be detected by an increase in 

the medium turbidity and a changing in the color of the medium) and mycoplasma (that is 

the most difficult contaminant to detect). The detection of mycoplasm includes techniques 

as staining, culture, DNA probes and co-cultivation (Doyle and Griffiths, 2000). 

 

3.1.4 Aim 

The aim of the work described in this chapter is to analyze the adherence, to 

epithelial cells, of microorganisms isolated from the genital tract of women with or 

without clinical diagnosis of BV, as well as, of Lactobacillus strains previously selected. 

Most studies of bacterial adhesion to host cells have been done mostly with G. 

vaginalis (Scott et al., 1989; Catlin, 1992; Harwich et al., 2010; Patterson et al., 2010). 

However, there are few studies of adherence of G. vaginalis isolated from a BV patient 

and from a healthy woman to epithelium (Harwich et al., 2010; Patterson et al., 2010), 

and there are not studies of adherence of Portuguese vaginal isolates, such as: B. breve; E. 

faecalis; G. haemolysans; K. pneumonia; L. gasseri, P. acnes; S. epidermidis; S. 

agalactiae and S. salivarius. 

 

3.2 Materials and Methods 

3.2.1 Strains and culture conditions 

The 15 vaginal microorganisms, used in this study, were isolated from vagina 

flora of the healthy women and BV-diagnosed women. Microorganisms isolated were: B. 

breve; E. faecalis; G. vaginalis; G. haemolysans; K. pneumonia; L. gasseri, P. acnes; S. 

epidermidis; S. agalactiae and S. salivarius and the source of the strains, is listed in Table 

2.1. In addition to the microorganisms isolated from vaginal swabs, some reference 

Lactobacillus spp. strains were also included, namely L. casei CECT 5275, L. iners 
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ATCC 55195 and L. crispatus VCUVAHMP00053. All isolates except L. casei were 

cultured in sBHI broth (see section 2.3.1). L. casei was cultured in MRS broth (see 

section 2.3.1). All cultures were grown at 37 ºC, during 48 h under anaerobic conditions, 

using the Anaerogen pack system (Oxoid). All isolates were grown in appropriate media 

and were collected by centrifugation at 7 000 rpm for 10 min. The culture medium was 

discarded, and the bacteria were washed once with PBS (composed by 16 g.L
-1

 of NaCl; 

0,4 g.L
-1

 of KCl; 1,62 g.L
-1

 of Na2HP  
 .2H2O and 0,4 g.L

-1
 of KH2PO4). After this, 

bacterial suspension was calibrated for appropriate optical density, using a 96-well tissue 

culture plates (Orange Scientific) by ELISA 96-well plate reader with a 600 nm filter 

(Tecan Sunrise). So, the absorbance value was adjusted in accordance with the calibration 

curve (Figure 2.1) of each microorganism. Thereafter, bacterial suspension was 

centrifuged again and the absorbance value was again confirmed. The PBS was discarded, 

and the bacteria were resuspended in D-MEM medium. Finally, bacterial suspensions 

were prepared for epithelial cells’ infection. 

 

3.2.2 Cell line and culture conditions 

Human cervical HeLa cells, kindly provided by the Instituto Gulbenkian de 

Ciência, were cultured at 37 ºC, in 5 % CO2 (Shel Lab CO2 series incubator), in D-MEM 

(Sigma-Aldrich) supplemented with 15 % Fetal Bovine Serum (FBS) (Sigma-Aldrich) 

and 1 IU penicillin/streptomycin mL
-1

 (Sigma-Aldrich).  

After being slowly defrosted, cells were added to a falcon tube containing 5 mL of 

medium and were centrifuged for 6 min at 1000 rpm. The pellet was resuspended in 2 mL 

of medium and then the suspension was added to a T-flask (25 cm
2
) containing 3 mL of 

fresh medium. The flask was maintained in a CO2 incubator (Shel Lab CO2 series 

incubator) at 37 ºC until 80 % of confluence was obtained. At this point, the medium was 

removed and the cells were washed once with 2 mL of PBS (Sigma-Aldrich). After 

discarding the PBS, 1 mL of trypsin (Sigma-Aldrich) was added and the cells were kept 

for 10 minutes at 37 ºC until they were detached from the flask. To stop the trypsin 

activity, 3 mL of D-MEM medium were added to the flask. Cells were enumerated in a 

Neubauer chamber and were then diluted in 5 mL of medium to 1×10
6
 cells.mL

-1
. The 

new flasks were incubated in 5 % of CO2 and 37 ºC. The trypsinization was repeated to 

prepare new flasks – to maintain the cells, or to prepare cells for adhesion assays. In the 
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latter, after detachment, 2×10
5
 cells.mL

-1
 were added to a 24-well tissue culture plates 

(Orange Scientific containing circular glass lamellas (12 mm  , thickness 0,13 – 0,16 

mm, Marienfeld, Germany) in the bottom. The well plate was incubated for 48 h or until a 

monolayer of cells has been formed. After reaching confluence, the growth medium of 

epithelial cells was discharged and circular glass lamellas were washed one time with 500 

μL of PBS (Sigma-Aldrich) and were ready to be used in the adhesion assays. 

 

3.2.3 Adhesion assay 

To perform the adhesion assay, 250 μL of the microbial cells suspension (10
8 

CFU.mL
-1

 of G. vaginalis strain 5-1, AMD and 101; and 10
9
 CFU.mL

-1
 to the reference 

strains: L. casei, L. iners and L. crispatus) were added to each well of 24-well plate, 

which had a circular glass lamella with a monolayer of HeLa cells in the bottom. After 

10, 15, 20 or 30 minutes of incubation of bacteria (at 37 ºC, in 5 % CO2), each well of 24-

well plate was washed once with 500 μL of PBS (Sigma-Aldrich). In order to assess the 

influence of washing the cells in bacterial adhesion quantification a replicate well was 

used, in the same conditions as described above, without the washing step. After this, 

each circular glass lamella was removed from the 24-well plate, and transferred to a 

surface coated with absorbent paper.  

 

Fixing bacteria and epithelial cells 

For fixing the bacteria and epithelial cells to the circular glass lamellas, 45 μL of 

methanol 100 % were added and lamellas were left at room temperature for 30 minutes. 

After this, 45 μL of paraformaldehyde 4 % was added and lamellas were left at room 

temperature for 10 minutes. Then, the excess of paraformaldehyde 4 % was removed with 

the help of tweezers. Finally, 45 μL of ethanol 50 % was added to each lamella and these 

were left at room temperature overnight or until dry. 
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Cell enumeration  

The circular glass lamellas were taken to the microscope room, and 20 μL of blue-

fluorescent DAPI nucleic acid stain (referring to a concentration of 2,5 µg.mL
-1

) was 

added immediately before adherence visualization using a fluorescence microscope 

(Olympus BX51), using DAPI filter (λexcitation = 365-370 nm). The images were captured 

with a video camera that was coupled to the microscope and connected to a computer, 

using Cell – Imaging Software for Life Sciences Microscopy. Twenty fields were 

randomly counted in each sample. Thereafter, it was counted the number of bacteria 

adhered to epithelial cells and also eukaryotic cells per image, using the ImageJ Software. 

Results were expressed as bacteria per HeLa cells. Adherence assays were repeated three 

times on separate days, with three fields of view assessed each time. 

 

3.2.4 Statistical analysis 

 The data were statistically analyzed using SPSS (Statistical Package for the Social 

Sciences – version 18). Results are expressed as the mean ± standard error of the mean 

(SD). Student’s t-test was used for statistical comparison. In some cases, Tukey’s test was 

also used, after analysis of variance (ANOVA). In both tests, P-value of 0.05 was 

considered statistically significant. 

 

3.3 Results and discussion  

3.3.1 HeLa cells 

Some of the commonly used non-polarized cell-lines for studying the bacteria –

host interaction are HeLa cells derived from human cervical epithelial carcinoma (Figure 

3.3). The continuous or immortal cell lines can arise spontaneously or by transformation 

either by treatment with carcinogenic chemicals or as a result of exposure to DNA tumor 

viruses (Doyle and Griffiths, 2000).  
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(a) (b) 

Figure 3.3 – HeLa cells. Original magnifications: left panel, x100 (a); right panel, x400 (b). HeLa cells 

attachment in T-flask surface (a); HeLa cells fixed in circular glass lamella (b). 

 

Cultured cells, which represent a single cell type, can be grown in defined media 

under reproducible conditions. Nevertheless, there are certain limitations which may 

affect interpretation of experimental data. During the process of immortalization, cell 

lines lose many traits of the original tissue from which they were derived (An et al., 

2000). One feature that can be lost in this process is tissue-specific surface molecules that 

normally function as receptors for bacterial adhesions (Freshney, 2005). This may explain 

the fact that many bacterial pathogens that are highly specific for a particular tissue of the 

host are frequently able to adhere to cultured cells derived from tissue that they do not 

normally infect (An et al., 2000). Another problem is that most cultured cells exhibit 

changes in their normal morphology. A further limitation of cultured cells as 

representatives of human mucosal surfaces is that mucosal surfaces, in vivo, are coated by 

mucus and bathed in solutions that are difficult to mimic in an in vitro system (Doyle and 

Griffiths, 2000; Freshney, 2005). Furthermore, real tissues consist of multiple cell types, 

not of a single cell type as seen in most tissue culture models. In spite of the numerous 

limitations of existing cell lines, these have been extremely useful when investigating 

bacterium – host cell interaction, and, if their limitations are kept in mind, cultured cells 

will continue to be invaluable models (An et al., 2000; Doyle and Griffiths, 2000). 
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3.3.2 Kinetics of initial adhesion of Lactobacillus spp. to epithelial cells 

 As the ability of bacteria to adhere to host cells is an important factor for 

colonization in different host (Kaewsrichan et al., 2006), the adhesiveness of lactobacilli 

to host epithelial cells was investigated. At present, little is known about the mechanisms 

by which lactobacilli from healthy vaginas adhere to vaginal epithelial cells (Atassi et al., 

2006; Boris et al., 1998). In recent years, the role of lactobacilli has been recognized in 

maintenance of homeostasis within dynamic ecosystems such as the vagina. Loss of 

vaginal lactobacilli may predispose women to the acquisition of genitourinary infections 

(Srinivasan and Fredricks, 2008). For this reason, the prophylactic use of Lactobacillus 

may be an effective means of restoring the normal microbiota in the vagina, and thus 

preventing infections. The characteristics needed for a Lactobacillus strain to serve 

effectively as a prophylactic agent include avid adherence to vaginal epithelial cells, 

interference with the adhesion of other pathogens and the production of molecules 

capable of inhibiting the growth of pathogens (Srinivasan and Fredricks, 2008). 

 In this study, several critical parameters that could affect the outcome of 

adherence assays were evaluated in order to provide insights into which steps on this 

process are affected by variations in experimental conditions. In order to understand the 

kinetics of the adhesion of Lactobacillus to epithelial cells, four time points (10, 15, 20 

and 30 minutes) were analyzed. The results of the adherence of L. iners, L. crispatus and 

L. casei to HeLa cells are showed in Figure 3.4. The values of adhesion of lactobacilli to 

epithelial cells are showed in two conditions: with and without washing with PBS. 

Since bacterial binding to epithelial cell surfaces is not only mediated by bacterial 

fimbriae but also by hydrophobic interactions between bacteria and various host cells 

(Bos et al., 1999; Brauner et al., 1990), the washing step can influence this process. It has 

been suggested that, since the adhesion method would always be affected by the air-liquid 

interface in the washing and drying processes, this method evaluates the retention of cells 

rather than adhesion, i.e. the ability to adhere to a surface and to resist shear forces that 

exist in natural environments (Albert et al., 2000; Bos et al., 1999). However, the effect 

of the air-liquid interface varies and is dependent on the substratum properties, cell 

surface properties and the velocity of the passing air-bubble. It has been demonstrated 

that the passage of an air-liquid interface through a lawn of adherent bacteria can detach 

some of the cells, although this effect is attenuated in the presence of a more hydrophilic 

substrate or with more rapid washing of adherent cells (Bos et al., 1999; Brauner et al., 
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1990). In this chapter, the washing procedure, when applied, was performed carefully in 

order to minimize formation air-liquid interface.  

  

  

 

 

Figure 3.4 – Quantification of initial adhesion of L. iners, L. crispatus, and L. casei to epithelial cells: 

under the conditions of no washing with PBS (darker line) after 10, 15, 20 and 30 minutes of incubation 

with bacteria; and washing with PBS (lighter line) after 10, 15, 20 and 30 minutes of incubation with 

bacteria. *Significantly different values between washing and no washing of the cells with PBS after 

incubation with bacteria (P<0.05). 

 

Lactobacillus colonization and adhesion within the vaginal tract have remained 

poorly characterized, in part due to our poor knowledge of the adhesive surface 

components expressed by lactobacilli (Duary et al., 2011). Chauviere and their coworkers 

(1992) reported previously that not all strains of Lactobacillus developed adhesiveness to 

Caco2 cells, thereby, indicating that this property is highly strain specific (Duary et al., 

2011). The involvement of carbohydrates and lipoteichoic acids in the adherence of 

lactobacilli to genital epithelia has also been reported (Boris et al., 1998; Granato et al., 
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1999; Neeser et al., 2000). Furthermore, regular structures on the outside of lactobacilli 

are known as S-layer and they have been associated on the adhesion events. S-layer 

proteins of lactobacilli have a molecular mass between 40 and 55 KDa, and are, in 

general, non-glycosylated. Nevertheless, the functions of S-layers in Lactobacillus spp. 

have remained poorly characterized (Frece et al., 2005). Overall, our various results 

suggest that lactobacilli adhere to host tissues via mechanisms that could vary in different 

species. 

 

Our results demonstrated that certain strains of lactobacilli, including L. iners and 

L. crispatus adhered in large numbers to the epithelial cells, whereas L. casei bound 

significantly less. In this present study, L. casei was used as negative control, because it is 

not a common colonizer bacterium in the vagina epithelium (Ingrassia et al., 2005). 

Nevertheless, L. casei is major members of the indigenous bacterial flora in the 

gastrointestinal tract of humans and animals. Thus, our results showed that L. casei did 

not have statistical differences (p>0.05) between levels of adherent cells regardless of the 

exposure times to the epithelial cells. 

  

L. iners is widely present in healthy women as well as those suffering from BV, 

suggesting that it is an important indigenous species of the vagina. Nevertheless, this 

microorganism is fastidious and not easy to work in vitro (Saunders et al., 2007). Females 

with BV have loss of many Lactobacillus spp., except L. iners (Srinivasan and Fredricks, 

2008). It has been suggested that a factor that may contribute to L. iners to host cell 

adhesion is a highly expressed and secreted CDC proteins (Macklaim et al., 2011). The 

CDC proteins use cholesterol in host cell membranes as a receptor for binding. On 

binding, a conformational change in the protein causes cell lysis by forming large pores in 

membrane. Thus, L. iners may exhibit specialized adaptation mechanism to be vaginal 

environment (Macklaim et al., 2011). Therefore, a recent study showed the ability of L. 

iners to adhere to VEC (Macklaim et al., 2011). Nonetheless, the present study is the first 

to examine the adherence of L. iners to HeLa cells. In the present case, when no washing 

step was used, a great number of adherent bacterial cells were generally obtained. 

Furthermore, without washing, there was no difference (p>0.05) between levels of 

adherent cells regardless of the exposure times to the epithelial cells, except to t=15 and 

t=20 min (p<0.05). In other hand, using washing, there were some statistical differences 

between levels of adherent bacteria to epithelial cells, L. iners had differences statistical 
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(p<0.05) between t=10 and t=30 min and t=15 and t=30 min. Thus, significant differences 

were not found between t=20 and t=30 min. In this sense, the adherence of L. iners to 

epithelial cells remains constantly after 20 min of exposure. However, quantification 

studies of adherence of L. iners have not been reported, thereby impeding a comparison 

with the present study.  

 

L. crispatus was chosen in this study because this specie has been reported as 

prevalent among women with Lactobacillus-predominant healthy vaginal flora in North 

America, Europe and Asia. L. crispatus is one of the predominant H2O2 producing 

species, is under development as a probiotic for the treatment of BV (Antonio and Hillier, 

2003). Studies showed that L. crispatus have a collagen-binding surface component, 

identified as the S-layer protein CbsA (Antikainen et al., 2002; Toba et al., 1995). CbsA 

of L. crispatus exhibits affinity for collagens of the epithelial cells (Antikainen et al., 

2002). Our results showed that L. crispatus had differences statistical (p<0.05) in 

bacterial adherence to epithelial cells between t=10 and t=30 min; t=15 and t= 30 min and 

t=20 and t=30 min, using washing process. Zárate and Nader-Macías (2006) reported that 

L. crispatus showed the capability to adhere to VEC, when this bacterium was exposure 

for 60 min. However, these researchers (Zárate and Nader-Macías, 2006) used a filter an 

8-µm pore size membrane to remove all non-adherent bacteria, instead of the washing 

process. Finally, the results suggest that L. crispatus has adhesive properties as well as a 

quickly initial adhesion to epithelial cells. 

 

3.3.3 Kinetics of initial adhesion of G. vaginalis to epithelial cells 

 Studies showed that G. vaginalis have strong adherence to vaginal epithelial cells 

and a propensity to form a dense biofilm; these findings suggest a key role for G. 

vaginalis in BV pathogenesis (Patterson et al., 2010). Additional virulence factors 

produced by G. vaginalis include sialidase and prolidase, which are two hydrolytic 

enzymes that may have a role in degrading several key mucosal protective factors, such 

as mucins, as well as contributing to exfoliation and detachment of vaginal epithelial 

cells. In sum, there is strong evidence that G. vaginalis possess innate pathogenic 

potential (Scott et al., 1989). In order to understand the ability of G. vaginalis to adhere to 

epithelial cells, several strains were used: G. vaginalis AMD (pathogenic isolate), G. 
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vaginalis 101 (pathogenic isolate) and G. vaginalis 5-1 (non-pathogenic isolate). 

Adherence was assayed by fluorescence microscopy, and results are showed in Figure 

3.5.  

 In a time-course assay, Patterson et al. (2010) showed that adherence of G. 

vaginalis to epithelial cells did not increase after 15 minutes of contact. Furthermore, 

after 30 minutes of incubation with the bacteria, the cell lines began to exhibit 

cytopathogenic changes. Therefore, in this study, bacteria were incubated for up to 30 

minutes, in a 24-well plate with circular glass lamellas in the bottom, in order to 

understand the kinetics of the adhesion of G. vaginalis to epithelial cells. 

 

  

 

 
 

 

Figure 3.5 – Quantification of initial adhesion of G. vaginalis AMD (BV isolate), G. vaginalis 101 (BV 

isolate), and G. vaginalis 5-1 (non-BV isolate) to epithelial cells: under the conditions of no washing with 

PBS (darker line) after 10, 15, 20 and 30 minutes of incubation with bacteria; and washing with PBS 

(lighter line) after 10, 15, 20 and 30 minutes of incubation with bacteria. *Significantly different values 

between washing and no washing of the cells with PBS after incubation with bacteria (P<0.05). 
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 Overall, the results of bacterial adhesion after the washing step showed a lower 

standard deviation than there was not any washing step. So, the washing step must occur 

to discriminate effectively adherent from merely deposited cells, in order to accurately 

quantify and compare among different experimental conditions the number of adherent 

cells to epithelial surface. When comparing washing and no washing, it was found that 

adhesion levels determinate by both procedures were different for each time of exposure 

evaluated. So, the difference is most noted for G. vaginalis strain AMD, that showed 

significantly different values (p<0.05) between washing and no washing for each time.  

 While equal amounts of the three strains were added to HeLa cells monolayer, 

adherence of strain AMD and 101 (pathogenic isolates) was more pronounced relative to 

that of non-BV isolate strain 5-1. However, there was an exception, with washing 

procedure after incubation of bacteria, being the number of G. vaginalis AMD per HeLa 

cells was approximate the number obtained with G. vaginalis 5-1, under the same 

conditions. Nevertheless, it was observed that strain AMD and 101 were more 

aggregative than strain 5-1. This confirms that the capability of BV isolates to bind to and 

adhere to vaginal epithelium may be higher than non-BV isolates, as previous suggested 

(Patterson et al., 2010). Furthermore, without washing, there was no difference between 

levels of adherent cells, regardless of the exposure times to the epithelial cells, except to 

G. vaginalis AMD that had differences statistical (p<0.05) between t=10 and t=30 min; 

between t=15 and t=20 min and between t=15 and t=30 min. In other hand, using 

washing, there were some statistical differences between levels of adherent bacteria to the 

epithelial cells, this is because G. vaginalis 101 had statistical differences (p<0.05) 

between t=10 and t=15 min and t=10 and t=20 min and between t=10 and t=30 min. In 

this case, G. vaginalis AMD and 5-1 did not have statistical differences (p>0.05) between 

levels of adherent cells regardless of the exposure times to the epithelial cells.  

 In general, it was concluded that there were no significant changes in adhesion of 

bacteria (Lactobacillus spp. and G. vaginalis) to the epithelial cells up to 30 minutes. 

 

3.3.4 Adhesion of Portuguese vaginal isolates to epithelial cells 

 Other BV-associated anaerobes might have virulence factors that have not yet 

been described, or they may be more pathogenic in the presence of other species. 

Therefore the ability of BV-associated anaerobes to adhere to epithelial cells was 
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analyzed. This study did not include all the bacterial species that have been found to be 

associated with cases of BV. BV is a polymicrobial disorder, and the diversity of species 

associated with this disorder continues to increase as detection methods (Patterson et al., 

2010). Because of the large number of candidates, and because many bacteria found to be 

associated with BV are unculturable, this study focused instead on a relatively small 

number isolated Portuguese species (Alves et al., 2012).  

 Portuguese vaginal isolates were added to each circular glass lamella at 10
8 

CFU.mL
-1

 for only time, that was 30 minutes, in conditions and procedure previously 

optimized (see section 3.2). This time of incubation of bacteria to epithelial cells was also 

previously optimized (see section 3.3.2 and 3.3.3). Adherence of bacteria to epithelial 

cells was assayed by fluorescence microscopy, and results are showed in Table 3.1.  

When comparing washing and no washing, it was found that the level of 

adherence reached using both procedures was significantly different (p<0.05) for L. 

gasseri UM022 and G. vaginalis UM016. So, as presented in Table 3.1, the adhesion to 

epithelial cells was major when the step of washing was not performed. In this sense, the 

ability of L. gasseri UM022 and G. vaginalis UM016 to resist to shear forces (air-liquid 

interface), that exist in natural environments (mimic through the washing step), was lower 

than other Portuguese vaginalis isolates analyzed in this studied.  
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Table 3.1 – Quantification of initial adhesion of vaginal isolates of Portuguese women to epithelial cells 

(HeLa cells): under the conditions of no washing with PBS and washing with PBS after 30 minutes of 

incubation of bacteria 

   Bacteria/HeLa Cell 

Bacteria Without washing with PBS With washing with PBS 

B. breve UM031 0,91 ± 0,27 0,63 ± 0,06 

E. faecalis UM035 0,55 ± 0,09 0,42 ± 0,06 

G. vaginalis UM016 3,45 ± 0,11* 2,76 ± 0,37*  

G. vaginalis UM034 9,23 ± 2,53 7,74 ± 1,37 

G. vaginalis UM035 18,28 ± 5,57 15,72 ± 1,13 

G. haemolysans UM034 1,19 ± 0,43 0,80 ± 0,43 

K. pnemoniae UM034 0,40 ± 0,08 0,32 ± 0,10 

L. gasseri UM022 1,61 ± 0,67*  0,44 ± 0,18*  

P. acnes UM034 0,32 ± 0,12 0,15 ± 0,08 

S. epidermidis UM016 0,50 ± 0,09 0,34 ± 0,09 

S. agalactiae UM035 2,76 ± 0,42 2,01 ± 0,49 

S. salivarius UM031 0,46 ± 0,25 0,20 ± 0,09 

Each value shown is the mean ± SD from three experiments. * Significantly different values between 

washing and no washing of the cells with PBS after incubation with bacteria. 

 

The results obtained (Table 3.1) showed that G. vaginalis isolates had a higher 

adherence to epithelial cells when compared with other bacteria isolated from a vaginal 

swab. Because, G. vaginalis strains were able to adhere to, and form a biofilm on 

(Swidsinski et al., 2005) women epithelium, it is plausible that it is an initial colonizer 

that paves the way for additional species with low innate pathogenic potential to become 

established in the vagina. G. vaginalis strains UM034 and UM035 isolated from patients 

diagnosed with BV showed a greater adherence than G. vaginalis UM016 isolated from a 

healthy patient (Figure 3.6). G. vaginalis tended to form clumps of bacteria adhered to 

cells. This data confirm results of previous studies that have shown that G. vaginalis 

adheres to McCoy cells and human red blood cells (Scott et al., 1989). The adherence of 

G. vaginalis to McCoy cells appeared to be mediated by an outer fibrillar coat while 

adherence to red cells appeared to be mediated by fimbriae (Scott et al., 1989). Moreover, 

our results showed that there are differences on the number of bacteria per HeLa cell 

between each G. vaginalis strain isolate, which can be due to the fact that these bacteria 

were isolated from different Portuguese women. Thus, to understand these differences in 
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the number of bacteria adhered to epithelial cells it would be necessary to study the genes 

and proteins expressed in these bacteria, using transcriptomics and proteomics analysis. 

 

 

  
G. vaginalis UM016 G. vaginalis UM034 

 

 
G. vaginalis UM035 

 

Figure 3.6 – Adherence of G. vaginalis to epithelial cells. Original magnifications: x1000. Bacteria were 

grown anaerobically in sBHI at 37 ºC for 48 h. Bacteria cultures were standardized to ensure equal 

numbers, and add to vaginal epithelial cells. After incubation for 30 min, non-adherent bacteria were 

removed by washing with PBS. 

 

E. faecalis, G. haemolysans, K. pnemoniae, P. acnes and S. agalactiae were 

isolated from women diagnosed with BV. These bacteria showed a lower adhesion to 

epithelial cells than G. vaginalis strains (Table 3.1). However, S. agalactiae was the 

bacteria that had a greater ability to adhere to epithelial cells after the G. vaginalis. 

Studies have concluded that invasive infections caused by S. agalactiae are not 

uncommon and that they pose a major problem not only in pregnant women and neonates 

but also in non-pregnant adults, especially the elderly and patients with chronic diseases 

(Brimil et al., 2006; Konto-Ghiorghi et al., 2009). In this case, this S. agalactiae strain 

was isolated from a non-pregnant woman, but with a chronic disease (not disclosed). 
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Most bacterial pathogens have long filamentous structures known as pili or fimbriae, 

which are often involved in the initial adhesion of bacteria to host tissues but also in 

bacteria – bacteria interactions, resulting in biofilm formation. S. agalactiae showed to 

encode a pilin. One of the accessory pilins is responsible for the adhesive property of the 

pilus (Konto-Ghiorghi et al., 2009). As a result, studies reported that S. agalactiae has 

ability to adhere to intestinal human epithelial cells (Konto-Ghiorghi et al., 2009). Also, 

other researches showed that K. pnemoniae has capability to adhere to VEC (Osset et al., 

2001) and that E. faecalis has ability to adhere to Caco-2 and to urinary tract epithelial 

cells (Pruzzo et al., 2002). Nevertheless, we were not found studies of adherence ability 

of the G. haemolysans and P. acnes to VEC, but these bacteria were recently isolated 

from vaginal samples (Verhelst et al., 2005).  

 

B. breve, L. gasseri, S. epidermidis and S. salivarius were isolated from healthy 

Portuguese women. These bacteria showed a lower adhesion to epithelial cells (Table 

3.1). Studies reported that B. breve has ability to adhere to human enterocyte-like Caco-2 

cells (Bernet et al., 1993). Also, Atassi and their coworkers (2006) showed the ability of 

L. gasseri isolated from vaginal samples to adhere to HeLa cells. Although S. epidermidis 

adhere to skin epithelial cells (Vuong et al., 2004), some studies reported that it can also 

be present in vaginal microflora (John et al., 2003; Verhelst et al., 2005). So, S. 

epidermidis usually has a benign relationship with its host (Wang et al., 2007). Finally, 

Weerkamp and McBride (1980) showed that S. salivarius have ability to adhere to human 

buccal epithelial cells, but this bacterium is also present in female genitourinary tract 

(Conte et al., 2006). 

 

Summarizing, these assays revealed that G. vaginalis isolates had a stronger initial 

adhesion capability than the other isolates recovered, the weakest initial adhesion being 

observed with P. acnes. The majority of the infective microorganisms involved in the 

pathogenesis of urinary infection have their origin in the intestinal tract (Osset et al., 

2001). In women, these fecal microorganisms successively colonize the perineum, the 

vagina, and the periurethral and ascend until they reach the bladder (Cribby et al., 2008; 

Osset et al., 2001). In this sense, over 50 microbial species have been recovered from the 

vaginal tract (Cribby et al., 2008; Oakley et al., 2008). Thus, the microbiota of the lower 

female genital tract is a dynamic, complex example of microbial colonization, the 

regulation of which is not fully understood. 
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4.1 Introduction  

Lactobacillus adhesion to vaginal epithelium is a critical step in the colonization 

and is suggested as one of the mechanisms by which they could protect the vagina from 

pathogens (Atassi et al., 2006). This can occur by their competition for the surface 

receptors of the genitourinary epithelium (Boris and Barbes, 2000). Bacterial adhesion to 

mucosal surfaces includes interactions that take place between specific adhesins of the 

bacterial surface and receptors of host tissues (Otero and Nader-Macías, 2007).  

Recent studies have shown that there are limitations in the use of antibiotic in BV 

treatment, especially during pregnancy and in their inability to remove biofilms (Saunders 

et al., 2007). In this sense, it is important that alternative therapies, as probiotic 

applications can be considered in BV treatment. The term ‘probiotic’ is defined as a 

viable mono – or – mixed culture of microorganisms, applied to animals or humans, 

which beneficially affects the host by improving the properties of the indigenous 

microbial communities (Kaewsrichan et al., 2006).  

The regulatory roles attributed to lactobacilli in the vaginal microbiota have 

attracted interest because of potential therapeutic applications. The ability of lactobacilli 

to produce antimicrobial compounds, such as lactic acid, H2O2 and bacteriocin-like 

substances, can result in inhibition of growth of the pathogens (Atassi et al., 2006; Botis 

et al., 1998). Antonio et al. (2005) reported that Lactobacillus strains isolated from the 

vaginas of healthy women develop antagonistic activities against vaginosis-associated G. 

vaginalis. Therefore, it is important to study the ability of lactobacilli to inhibit the 

adhesion of uropathogens to epithelial cells, in order to obtain probiotics for BV 

treatment. However, little is known about the mechanisms by which lactobacilli adhere to 

VEC, although the variety of surface structures in these bacteria implies that a spectrum 

of adherence mechanisms may exist (Boris et al., 1998; Boris and Barbes, 2000) as 

described in chapter 3. 

 

 

4.1.1 Aim 

The aim of the work described in this chapter is to assess the ability of three 

distinct Lactobacillus strains to compete against G. vaginalis adhering to human cervix 
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epithelial cells. The purpose of this study is to investigate the differences of virulence of 

commensal and pathogenic G. vaginalis in the presence of lactobacilli. In this sense, 

competition adhesion assays will be performed in order to determine the inhibitory effect 

of different Lactobacillus strains on the adhesion of G. vaginalis strains to HeLa cells.  

 

4.2 Materials and Methods 

4.2.1 Strains and culture conditions 

The 4 vaginal microorganisms, used in this study, were isolated from the vagina 

flora of healthy women and BV-diagnosed women. Microorganisms isolated were: G. 

vaginalis strains 5-1 and 101 (American isolates) and UM016 and UM035 (Portuguese 

isolates); the source of the strains is listed in Table 2.1. In addition to the microorganisms 

isolated from vaginal swab, some reference Lactobacillus spp. strains were also included, 

namely L. casei CECT 5275, L. iners ATCC 55195 and L. crispatus VCUVAHMP00053. 

All isolates except L. casei were cultured in sBHI broth (see section 2.3.1). L. casei was 

cultured in MRS broth (see section 2.3.1). All cultures were grown at 37 ºC, during 48 h 

under anaerobic conditions, using the Anaerogen pack system (Oxoid). All isolates were 

grown in appropriate media and were collected by centrifugation at 7 000 rpm for 10 min. 

The culture medium was discarded, and the bacteria were washed once with PBS, 

composed by 16 g.L
-1

 of NaCl; 0,4 g.L
-1

 of KCl; 1,62 g.L
-1

 of Na2HP  
 .2H2O and 0,4 

g.L
-1

 of KH2PO4). After this, bacterial suspension was calibrated for appropriate optical 

density, using a 96-well tissue culture plates (Orange Scientific) by ELISA 96-well plate 

reader (Tecan Sunrise) with a 600 nm filter. The absorbance value was adjusted in 

accordance with the calibration curve (Figure 2.1) of each microorganism. Thereafter, 

bacterial suspension was centrifuged again and the absorbance value was again 

confirmed. The PBS was discarded, and the bacteria were resuspended in D-MEM 

medium. Finally, bacterial suspensions were prepared for epithelial cells' infection. 

 

4.2.2 Cell line and culture conditions 

Human cervical HeLa cells were cultured at 37ºC, in 5% CO2 (Shel Lab CO2 

series incubator) in D-MEM (Sigma-Aldrich) supplemented with 15 % FBS (Sigma-

Aldrich) and 1 IU penicillin/streptomycin mL
-1

 (Sigma-Aldrich). After being slowly 

defrosted, cells were added to a falcon tube containing 5 mL of medium and were 
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centrifuged for 6 min at 1000 rpm. The pellet was resuspended in 2 mL of medium and 

then the suspension was added to a T-flask (25 cm
2
) containing 3 mL of fresh medium. 

The flask was maintained in a CO2 incubator (Shel Lab CO2 series incubator) at 37 ºC 

until 80 % of confluence was obtained. At this point, the medium was removed and the 

cells were washed once with 2 mL of PBS (Sigma-Aldrich). After discarding the PBS, 1 

mL of trypsin (Sigma-Aldrich) was added and the cells were kept for 10 minutes at 37 ºC 

until they were detached from the flask. To stop the trypsin activity 3 mL of D-MEM 

medium were added to the flask.  Cells were enumerated in a Neubauer chamber and 

were then diluted in 5 mL of medium to 1×10
6
 cells.mL

-1
. The new flasks were incubated 

in 5 % of CO2 and 37 ºC. The trypsinization was repeated to prepare new flasks to 

maintain the cells, or to prepare cells for adhesion assays. In the latter, after detachment, 

2×10
5
 cells.mL

-1
 were added to a 24-well tissue culture plates (Orange Scientific) 

containing circular glass lamellas (12 mm  , thickness 0,13 – 0,16 mm, Marienfeld, 

Germany) in the bottom. The well plate was incubated for 48 h or until a monolayer of 

cells has been formed. After reaching confluence, the growth medium of epithelial cells 

was discharged and circular glass were washed one time with 500 μL of PBS (Sigma-

Aldrich) and were ready to be used in the adhesion assays. 

 

4.2.3 Adhesion assay 

To perform the competition adhesion assay, 300 μL of the microbial cells with 2 

different concentrations: high level of bacteria - 10
9 

CFU.mL
-1

 and low level of bacteria - 

10
3
 CFU.mL

-1
 and their controls (Figure 4.1) were added together in a ratio 1:1 (i.e., 150 

μL of lactobacilli and 150 μL of G. vaginalis) to each well of 24-well plate, which had a 

circular glass lamella with a monolayer of HeLa cells in the bottom. After 30 minutes of 

incubation of bacteria (at 37 ºC, in 5 % CO2), each well of 24-well plate was washed once 

with 500 μL of PBS (Sigma-Aldrich). This adhesion time was previously optimized (see 

chapter 3). After this, the circular glass lamellas were removed from the 24-well plate, 

and transferred to a surface coated with absorbent paper.  
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Figure 4.1 – Representative diagram of a competition adhesion assay. In the diagram are showed various 

combinations of concentrations of lactobacilli and G. vaginalis incubated in a 24-well plate. A low level of 

concentration of microbial cells suspension corresponds to 10
3
 CFU.mL

-1
 and a high level of concentration 

of microbial cells suspension corresponds to 10
9
 CFU.mL

-1
.  

 

 

Fixing bacteria and epithelial cells 

For fixing the bacteria and epithelial cells to the circular glass lamellas, 45 μL of 

methanol 100 % were added and lamellas were left at room temperature for 30 minutes. 

After this, 45 μL of paraformaldehyde 4 % was added and lamellas were left at room 

temperature for 10 minutes. Then, the excess of paraformaldehyde 4 % was removed with 

the help of tweezers. Finally, 45 μL of ethanol 50 % was added to each lamella and these 

were left at room temperature overnight or until dry. After this, the circular glass lamellas 

were placed in Petri dishes previously covered with aluminum and with absorbent paper 

inside (Cerqueira et al., 2008).  

 

 

PNA FISH (Peptide nucleic acid fluorescence in situ hybridization) 

After performing the fixing of bacteria and epithelial cells to circular glass 

lamella, 10 μL of the PNA probe (Gard162 Probe) was added (Machado et al., 

submitted), in order to label G. vaginalis. Then, another slide (22×22 mm, JMGS) was 

placed over the circular glass lamella and both were placed in Petri dishes, previously 

covered with aluminum and with absorbent paper inside. Hybridization was performed in 

the oven at 60 °C (temperature more suitable for the probe used) for 90 minutes. At the 

same time, 5 mL of a washing solution (Table 4.1) were added to each well of the 6-well 

     High level of Lactobacillus spp. vs Low level of 

G. vaginalis  

      Low level of Lactobacillus spp. vs High level of 

G. vaginalis  

     Low level of Lactobacillus spp. vs Low level of G. 

vaginalis 

     High level of Lactobacillus spp. vs High level of 

G. vaginalis 

    Control of high level of Lactobacillus spp. 

    Control of low level of Lactobacillus spp. 

    Control of low level of G. vaginalis  

    Control of high level of G. vaginalis 
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plate. The washing solution was prepared the day before the experience. After the 

incubation period, the slide that was placed over the circular glass lamella was removed 

from de Petri dishe. After this, the circular glass lamellas were placed in the washing 

solution in a 6-well plate and left at 60 ºC for 30 minutes. Then, the circular glass 

lamellas were removed from 6-well plate, and were left to air-dry, in the dark-inside the 

incubator for 10 minutes. This procedure was performed in the dark. 

 

Table 4.1 – Composition of the washing solution 

Compounds of washing solution Quantity for 500 mL 

5 mM Tris Base 0,303 g 

15 mM NaCl 0,438 g 

1% (V/V) Triton-x 500 μL 

 

 

Cell enumeration  

The circular glass lamellas were taken to the microscope room, and 20 μL, 

referring to a concentration of 2,5 µg.mL
-1

, of blue-fluorescent DAPI nucleic acid stain 

was added immediately before adherence visualization, using fluorescence microscope 

(Olympus BX51), using DAPI filter (λexcitation = 365-370 nm) and a magnification of 1000 

times. The images were captured with a video camera that was coupled to the microscope 

and connected to a computer, using Cell – Imaging Software for Life, Sciences 

Microscopy. Twenty fields were randomly counted in each sample. Thereafter, it was 

counted the number of bacteria adhered to epithelial cells, using the ImageJ Software. 

Eukaryotic cells were also counted per field of view. All adhesion assays were quantified 

by fluorescence microscopy, using DAPI for total cell count and PNA-FISH probe for G. 

vaginalis quantification (using TRICT filter, λexcitation = 530-550 nm). Results for the four 

conditions of concentrations were expressed as the average number of G. vaginalis and 

Lactobacillus spp. per HeLa cell. The number of G. vaginalis was compared with 

respective control values (i.e. microbial cells without lactobacilli) and the number of 

Lactobacillus spp. was also compared with control values (microbial cells without G. 

vaginalis). The control values were taken as 100 % of adhesion and the inhibition of G. 

vaginalis and Lactobacillus spp. adherence was calculated by subtracting each adhesion 
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percentage from their correspondent control value. Adherence assays were repeated three 

times on separate days, with three fields of view assessed each time. 

 

4.2.4 Statistical analysis 

 The results are expressed as the mean of three independent experiments. 

Significant differences between mean values were determined by Tukey’s test after 

analysis of variance (ANOVA) with SPSS (Statistical Package for the Social Sciences – 

version 18). A P-value of 0.05 was considered statistically significant.  

 

4.3 Results and discussion  

The vaginal ecosystem harbors a microbiota that is being increasingly recognized 

as protecting it from invading pathogens. Lactobacilli play a major role in maintaining the 

urogenital health by preventing the overgrowth and invasion of pathogenic bacteria by 

competing with other microorganisms for nutrients (Atassi et al., 2006; Boris and Barbes, 

2000). G. vaginalis was used in this study, because it has been described as the most 

prevalent pathogenic bacteria in patients diagnosed with BV (Harwich, 2010; Patterson et 

al., 2010). Nevertheless, frequent isolation of this species from seemingly healthy women 

has cast doubt on this claim. Recent studies of the biofilm-forming potential and cytotoxic 

activity of G. vaginalis have renewed interest in the virulence potential of this 

microorganism (Patterson et al., 2007; Patterson et al., 2010). In this sense, we designed 

an adhesion assay to analyze the competition between lactobacilli and G. vaginalis 

(commensal and pathogenic isolates) for initial adhesion to epithelial cells. 

 

4.3.1 Competition between lactobacilli and American isolates of G. vaginalis for 

initial adhesion to epithelial cells 

Our study aims to understand the differences between G. vaginalis present in 

healthy women and in women with BV, based on the analyzing of the effect of 

lactobacilli on the attachment of G. vaginalis to HeLa cells, under conditions of 

competition. For this, four different concentration of Lactobacillus spp. mixed with G. 

vaginalis were used to study the ability of lactobacilli to block the adherence of G. 

vaginalis 5-1 (healthy isolate) and G. vaginalis 101 (pathogenic isolate) to HeLa cells by 
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competition, i.e. lactobacilli and G. vaginalis were incubated together in a monolayer of 

HeLa cells.  

In order to understand the interaction between lactobacilli and G. vaginalis under 

competition conditions we tested the situation that would mimic a healthy vaginal 

microflora. In this sense, a high concentration of lactobacilli (10
9 

CFU.mL
-1

) and a low 

concentration of G. vaginalis (10
3 

CFU.mL
-1

) were used. The concentration of lactobacilli 

used, in this case, represents a normal situation in a vaginal flora constituted by 10
7
-10

8
 

CFU of lactobacilli per gram of fluid (Osset et al., 2001). Moreover, in a healthy vaginal 

microflora there is a low concentration of anaerobes, as G. vaginalis, so the low level of 

G. vaginalis was used for mimic this situation. Results of adherence of high level of 

Lactobacillus spp. and low level of G. vaginalis strains to epithelial cells are showed in 

Figure 4.2. 

According to Fredricks and their coworkers (2005), L. iners was the only 

lactobacilli in patients with BV according to the Amsel criteria. The fastidious L. iners 

may exhibit specialized adaptation mechanisms to the vaginal environment (Macklaim et 

al., 2011). The detection of L. iners in women with and recovering from BV has led to the 

suggestion that is not protective against disease. However, unlike other microorganisms 

they seem to be easily displaced by pathogens and infectious conditions, the ability of L. 

iners to persist may prove it to be important in recovery of the microbiota, post-disease 

resolution (Macklaim et al., 2011). Nevertheless, our results showed that there were no 

significant differences (p>0.05) in adherence of G. vaginalis strains, comparing with the 

control value in the presence of L. iners (Figure 4.2). Thus, it was necessary to do more 

experiments in order to understand the competition of between L. iners and G. vaginalis 

in adhesion to epithelial cells. 

Women with BV have lost many Lactobacillus species (except L. iners) and 

acquired a variety of anaerobic and facultative bacteria (Swidsinski et al., 2005).  The 

depletion of the normal genital microbial communities, such as L. crispatus can be caused 

by the competition with uropathogens (Antonio and Hillier, 2003). In this sense, it could 

be expected that L. crispatus in the presence of a pathogenic strain would have a greater 

decrease of adhesion to epithelial cell than in the presence of a non-pathogenic G. 

vaginalis. Nonetheless, this fact was not observed (Figure 4.2). When L. crispatus was 

mixed with G. vaginalis 5-1 (healthy isolate) and G. vaginalis 101 (pathogenic isolate) 
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we observed a greater adherence of L. crispatus in presence of G. vaginalis 101 in 

comparison with G. vaginalis 5-1 (p<0.05). Conversely, no statistical differences were 

found in the adhesion levels of L. iners, when competing with both G. vaginalis strains 

(p>0.05).  

 

  

  

  
Figure 4.2 – Adhesion average of G. vaginalis 5-1 (healthy isolate) and G. vaginalis 101 (pathogenic 

isolate) to epithelial cells at high level of concentration of Lactobacillus spp. and low level of concentration 

of G. vaginalis strains, under the condition of competition. The control values were taken as 100 % of 

adhesion. The inhibition % of bacteria adherence was calculated by subtracting each adhesion percentage 

from their correspondent control value. *Values that are significantly different from the control value (P< 

0.05). 
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To determine if the competition with G. vaginalis was specific for vaginal 

lactobacilli, we also included L. casei in all these studies, as a non-sense control, since 

this lactobacilli strain is not a common colonizer of the vagina epithelium (Ingrassia et 

al., 2005). However, L. casei was still able to inhibit adherence of G. vaginalis strains to 

epithelial cells, as represented in Figure 4.2. This was somewhat surprising as there have 

been some published literature indicating that not all lactobacilli can antagonistically act 

against G. vaginalis (Atassi et al., 2006; Osset et al., 2001). 

 

In order to further test our experimental design, we performed a similar 

experiment, were we used high concentrations of G. vaginalis against low concentrations 

of lactobacilli, in order to mimic BV. Results of adherence of low level of Lactobacillus 

spp. and high level of G. vaginalis strains are showed in Figure 4.3.  

In this situation, our results showed that there were significant differences 

(p<0.05) in the adhesion of G. vaginalis 101 (pathogenic isolate) to HeLa cells when 

compared with adhesion of G. vaginalis 5-1 (healthy isolate), in the presence of a low 

concentration of L. iners (Figure 4.3). So, the adherence of G. vaginalis 101 was greater 

to epithelial cells than the adherence of G. vaginalis 5-1. Researchers reported that L. 

iners is widely present in healthy females as well as those suffering from BV, suggesting 

that it is an important indigenous species of the vagina (Macklaim et al., 2011; Zozaya-

Hinchliffe et al., 2010). Recent quantification of bacterial numbers in these different 

stages of vaginal health has shown that the abundance of L. iners remains relatively 

constant, despite the fluctuating environmental conditions (Macklaim et al., 2011; 

Zozaya-Hinchliffe et al., 2010). This remarkable ability to survive under a range of 

conditions suggests that, rather than L. iners being somehow associated with an aberrant 

microbiota, it may be an important member of the host’s defenses by being a persistent 

lactobacilli involved in restoration and maintenance of the normal microbiota. However, 

there were no significant differences (p>0.05) in the adherence of L. iners to epithelial 

cells, under conditions of competition with G. vaginalis strains (non-pathogenic and 

pathogenic), probably due to the use of a low concentration of this lactobacilli in this 

experience. Nevertheless, significant differences (p<0.05) were found in adherence of L. 

iners in comparison to the control, as represented in Figure 4.3. 
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Figure 4.3 – Adhesion average of G. vaginalis 5-1 (healthy isolate) and G. vaginalis 101 (pathogenic 

isolate) to epithelial cells at low level of concentration of Lactobacillus spp. and high level of concentration 

of G. vaginalis strains, under the condition of competition. The control values were taken as 100 % of 

adhesion. The inhibition % of bacteria adherence was calculated by subtracting each adhesion percentage 

from their correspondent control value. *Values that are significantly different from the control value (P< 

0.05). 
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Nevertheless, there were no significant differences (p>0.05) in adherence of L. crispatus 

to epithelial cells, under conditions of competition with G. vaginalis strains, as 

represented in Figure 4.3.  

 

A difference experimental setup was performed, in order to simulate the 

interactions that occur in the woman vaginal epithelium after antimicrobial therapy. The 

most common treatment for BV is the use of antibiotics, specifically, with oral or vaginal 

metronidazole or with vaginal clindamycin. However, antibiotics do not eradicate all 

vaginal pathogenic bacteria. Furthermore, antibiotics can also kill healthy Lactobacillus 

spp. in vaginal flora. This is a problem because healthy vaginal lactobacilli are active 

against several pathogens including G. vaginalis (Dover et al., 2008). After antibiotic 

therapy, the bacterial load on the vaginal epithelium can be drastically reduced. To 

simulate this situation, we tested adhesion with low concentration of bacteria. 

Our results showed that there were significant differences (p<0.05) in the 

adherence of L. iners to epithelial cells in the presence of G. vaginalis strains, in 

comparison to the control (Figure 4.4). In this situation, we found a lower number of L. 

iners adhered to epithelial cells. However, significant differences (p>0.05) were not 

found in adherence of G. vaginalis strains in the presence of L. iners, compared to the 

control. 

When L. crispatus was mixed with G. vaginalis 101 (pathogenic isolate), the 

results showed that there were significant differences (p<0.05) in the adhesion of L. 

crispatus and G. vaginalis isolated from a BV patient, comparing with the respective 

control value, as represented in Figure 4.4. Conversely, no differences (p>0.05) were 

found in adherence of G. vaginalis 101 in the presence of L. casei, compared to the 

control. Nevertheless, as the number of bacteria adhered to epithelial cells was very low, 

it is still necessary to do more experiences in order to understand the competitive initial 

adhesion of lactobacilli against G. vaginalis to epithelial cells.  

Thus, our results (Figure 4.4) showed that some significant differences (p<0.05) 

were only found in adherence of lactobacilli and of G. vaginalis to epithelial cells, 

comparing to the control value, as described above. So, significant differences (p>0.05) 

were not found in the adherence of lactobacilli under competition conditions, in this 
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experimental set-up. The same was found between G. vaginalis 5-1 (healthy isolate) and 

G. vaginalis 101 (pathogenic isolate) when these bacteria were mixed with lactobacilli. 

Therefore, as the number of bacteria adhered to the epithelial cells was very low, the 

method that was used might not be sensitive enough to detect the possible antagonistic 

effect between Lactobacilli spp. and G. vaginalis. 

 

  

  

  
Figure 4.4 – Adhesion average of G. vaginalis 5-1 (healthy isolate) and G. vaginalis 101 (pathogenic 

isolate) to epithelial cells at low level of concentration of Lactobacillus spp. and low level of concentration 

of G. vaginalis strains, under the condition of competition. The control values were taken as 100 % of 

adhesion. The inhibition % of bacteria adherence was calculated by subtracting each adhesion percentage 

from their correspondent control value. *Values that are significantly different from the control value (P< 

0.05). 
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 To overcome the limitation of the experimental technique used, we decided to 

saturate the system the use of low concentrations of bacteria. So, we performed a final 

experiment, where we used a high concentration of both species (Figure 4.5).  

 

  

  

  
Figure 4.5 – Adhesion average of G. vaginalis 5-1 (healthy isolate) and G. vaginalis 101 (pathogenic 

isolate) to epithelial cells at high level of concentration of Lactobacillus spp. and high level of 

concentration of G. vaginalis strains, under the condition of competition. The control values were taken as 

100 % of adhesion. The inhibition % of bacteria adherence was calculated by subtracting each adhesion 

percentage from their correspondent control value. *Values that are significantly different from the control 

value (P<0.05). 
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1 (healthy isolate) and G. vaginalis 101 (pathogenic isolate) (Figure 4.5). While there was 

no inhibition of L. iners in the presence of G. vaginalis 101, in the presence of G. 

vaginalis 5-1 L. iners had 37,1 % lower adhesion levels, as compared to the control. 

Conversely, when G. vaginalis 101 was used with L. iners, it was found that G. vaginalis 

101 did not have ability to decrease the adherence of L. iners to epithelial cells. In the 

other hand, G. vaginalis is greatly affected by the adherence of L. iners to epithelial cells. 

The inhibition of G. vaginalis strains was about 89 % compared to the respective control 

in the presence of L. iners. These results validate the studies of Saunders and their 

coworkers (2007) that showed that L. iners was able to reduce the viability of G. 

vaginalis. L. iners may exhibit specialized adaptation mechanisms to the vaginal 

environment. The cause of a greater adherence  of L. iners to epithelial cells can be due to 

L. iners genome that encodes an open reading frame with significant primary sequence 

similarity to VLY (68,4 % similarity), the CDC from G. vaginalis (Macklaim et al., 2011; 

Rampersaud et al., 2011). These proteins are typically found in pathogenic bacteria but 

are not found in other lactobacilli. However, further analysis of the functional 

characteristics associated with the L. iners genome would uncover desirable 

characteristics of a microbe that could contribute to the maintenance, and potentially 

restoration, of a healthy and stable vaginal microbiota (Macklaim et al., 2011; 

Rampersaud et al., 2011). 

In addition, our results showed that there were significant differences (p<0.05) in 

adherence of L. crispatus to HeLa cells against G. vaginalis 5-1 (healthy isolate) and G. 

vaginalis 101 (pathogenic isolate). While the inhibition of L. crispatus was 27,58 % 

compared to control in the presence of G. vaginalis 5-1, the inhibition of L. crispatus was 

84,36 % compared to control in the presence of G. vaginalis 101, as represented in Figure 

4.5. This result validates that a depletion of the normal genital microbial communities, 

especially of lactobacilli can be caused by the competition with uropathogens (Antonio 

and Hillier, 2003). Therefore, the results revealed that a large reduction in adherence of 

G. vaginalis was observed when these bacteria were added together with L. crispatus to 

epithelial cells. When indigenous lactobacilli compete against pathogenic bacteria, it 

could be possibly that lactobacilli exclude the colonization of pathogenic bacteria by 

occupying (by steric hindrance) their potential binding sites in the mucosa (Kaewsrichan 

et al., 2006; Zárate and Nader-Macias). Our findings are consistent with previous reports 

of Atassi and their coworkers (2006) that reported that Lactobacillus strains isolated from 
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the vaginas of healthy women develop antagonistic activities against vaginosis-associated 

G. vaginalis. Moreover, mechanism by which Lactobacillus spp. antagonizes G. 

vaginalis, showing that the killing activity results from antimicrobial compounds 

producing (H2O2, lactic acid and bacteriocins) by these lactobacilli. However, not all 

lactobacilli express these properties with the same intensity; on the contrary, there are 

important differences among strains (Osset et al., 2001). In this sense, studies of 

production of antimicrobial substances by lactobacilli could be necessary in order to 

assess the capacity of Lactobacillus spp. to inhibit the growth of uropathogens and block 

their adhesion to VEC (Osset et al., 2001; Saunders et al., 2007).  

 

This work clearly demonstrates differences in competitive initial adhesion 

between lactobacilli and G. vaginalis strains against epithelial cells that could impact the 

ability of G. vaginalis to cause disease. However, the limitation of this present study is 

the restricted number of G. vaginalis strains studied. In this sense, the precise role for G. 

vaginalis in BV pathogenesis is still unclear. Further studies of other virulence properties, 

such as cytotoxicity of G. vaginalis strains and their ability to form biofilm are required to 

understand their role in BV. 

 

4.3.2 Competitive between lactobacilli and Portuguese isolates of G. vaginalis for 

initial adhesion to epithelial cells 

To see the impact of G. vaginalis strains recently isolated from Portuguese 

women, the competitive adhesion assays were performed in order to confirm the results 

described in the previous section. In this sense, studies were performed using a high 

concentration of lactobacilli and a high concentration of G. vaginalis, for Portuguese 

isolates of G. vaginalis.   

Our results showed that there were significant differences (p<0.05) in adherence 

of L. iners to epithelial cells against G. vaginalis UM016 (healthy isolate) and G. 

vaginalis UM035 (pathogenic isolate) (Figure 4.6). While the inhibition of L. iners was 

1,02 % compared to control in the presence of G. vaginalis UM035, the inhibition of L. 

iners was 58,34 % compared to control in the presence of G. vaginalis UM016, as 

represented in Figure 4.6. Furthermore, our results showed that the adherence of G. 
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vaginalis strains to epithelial cells was greatly affected when we used of L. iners. 

Nevertheless, the adherence of G. vaginalis UM035 was greater comparing with G. 

vaginalis UM016. 

 

  

  

  
Figure 4.6 – Adhesion average of G. vaginalis UM016 (healthy isolate) and G. vaginalis UM035 

(pathogenic isolate) to epithelial cells at high level of concentration of Lactobacillus spp. and high level of 

concentration of G. vaginalis strains, under the condition of competition. The control values were taken as 

100 % of adhesion. The inhibition % of bacteria adherence was calculated by subtracting each adhesion 

percentage from their correspondent control value. *Values that are significantly different from the control 

value (P< 0.05). 
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isolate). While the inhibition of L. crispatus was 33,3 %, compared to the control, in the 

presence of G. vaginalis UM016, the inhibition of L. crispatus was 69,11 %, compared to 

the control, in the presence of G. vaginalis UM035, as represented in Figure 4.6. 

Therefore, the results revealed that a large reduction in adherence of G. vaginalis was 

observed when these bacteria were added together with L. crispatus to epithelial cells. 

The degree of competition is determined by the affinity of adhesion on the respective 

bacterial surfaces for the specific receptors that they are competing for; or their relative 

positions in the case of steric hindrance (Lee et al., 2003). The results suggest that L. 

crispatus used in the present study could prevent colonization of the urogenital tract by 

relevant pathogens such as G. vaginalis through interference mechanisms (competition).  

These results support the results obtained previously (see Figure 4.5) with 

American isolates of G. vaginalis strains. So, the vaginal lactobacilli interfered to 

different extents with the adherence of genitourinary pathogens.  

The evaluation of a greater number of uropathogenic strains should be needed in 

order to confirm the higher virulence potential of G. vaginalis isolated from BV.  Finally, 

the data suggest a probiotic potential of these lactobacilli, mainly L. crispatus, as anti-

infective agents in the vagina and encourage further in vivo studies, such as clinical trials 

designed to test their capacity to prevent and manage urogenital tract infections in 

females (Zárate and Nader-Macias, 2006). 



 

82 • Chapter 4 

 



 

 
 

 

 

 
 

 

 

 

 

 

 

 

 

CHAPTER 5  

 Conclusions and suggestions for 

future work 
  



 

 

 
 



 

Chapter 5 • 85 
 

The main goal of this dissertation was to understand the role of G. vaginalis in the 

aetiology of Bacterial Vaginosis (BV). To achieve this, we compared the ability of 

vaginal isolates from patients with BV and healthy women to adhere to epithelial HeLa 

cells. The role of lactobacilli in the inhibition of adhesion to epithelial cells was also 

tested using commensal or pathogenic Gardnerella vaginalis. 

The main conclusions drawn from the results are that G. vaginalis isolates had a 

stronger initial adhesion capability than the other isolates recovered, the weakest initial 

adhesion being observed with P. acnes. Moreover, G. vaginalis strains isolated from BV 

patients had stronger initial adhesion ability than the G. vaginalis isolated from healthy 

women. It was concluded that adherence of the G. vaginalis to epithelial cells is a critical 

step during the stage of vaginal colonization. 

After analyzing the influence of lactobacilli in the adhesion of commensal and 

pathogenic G. vaginalis to epithelial cells, we concluded that the lactobacilli used in this 

study, mainly L. crispatus, might protect the vaginal epithelium through interference 

mechanisms, specially in the presence of the pathogenic G. vaginalis strains. 

Furthermore, L. iners did not decrease the ability to adhere to epithelial cells in the 

presence of G. vaginalis isolated from BV patients. Thus, L. iners seems to be somehow 

associated with an aberrant microbiota. 

 

The first consideration about future work is the suggestion to use more clinical 

strains of G. vaginalis isolated from a healthy patients and women with BV.  A larger 

array of samples would help confirming the results and understanding strain variations.  

Another point to consider is the use of cell lines related with vaginal epithelium, as ME-

180 epithelial cells, or primary explants, in order to mimic more closely the in vivo 

conditions. Other consideration about future work is the proposal to study the ability of 

vaginal lactobacilli, from Portuguese vaginal flora, to adhere to vaginal epitelial cells 

(VEC) in competition with G. vaginalis strains (non-pathogenic and pathogenic). Also, 

the selection of anaerobic lactobacilli which produce inhibitory compounds against 

vaginal pathogens could be interesting to obtain probiotics, in order to restore the normal 

microbial communities in the vaginal ecosystem. Thus, studies of production of 

antimicrobial substances by lactobacilli could be necessary in order to assess the capacity 

of Lactobacillus spp. to inhibit the growth of uropathogens and block their adhesion to 
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VEC. Also very interesting would be to characterize the differences in gene and protein 

expression between isolates of G. vaginalis from healthy women vs women with BV. 

This characterization could be based on transcriptomic and proteomic analysis of these 

isolates and virulence studies. The genomic and proteomic characterization of G. 

vaginalis strains would clarify the presence of certain virulence factors. Moreover, further 

studies of other virulence properties, such as cytotoxicity of G. vaginalis strains and their 

ability to form biofilms should be performed to understand their role in BV. Possibly, 

from the results obtained it would be possible to design new therapies for this infection, 

so common in women of childbearing age. 
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Appendix A – Koch’s postulate 

 

Table A.1 – Koch’s postulates (Srinivasan and Fredricks, 2008) 

- The etiologic microbe should be found in every case of disease 

- The etiologic microbe should not be found in subjects without disease (specificity) 

- The etiologic microbe should be isolated in pure culture on lifeless media and be capable 

of causing the characteristic disease anew upon inoculation in a susceptible host 

- The etiologic microbe should be reisolated from the experimentally inoculated host. 

 

 

Appendix B – Kinetics of HeLa cells growth 

As a growth curve of cells allows the identification of the growth phase in which 

the cells are in the function of the incubation time, the growth curve of the HeLa cells was 

performed as represented in Figure B.1 

 

 

Figure B.1 – Growth curve of Hela cells. 

 

Through the data of growth curve (Figure B.1) were calculated the specific growth 

rate, the doubling time and the number of the generations of HeLa cells. These data are 

showed in Table B.1. 

 

Table B.1 – Values of the specific growth rate, of the doubling time and the number of generations of the 

HeLa cells. 

Specific growth rate (h
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Appendix C – Competition between lactobacilli and American isolates of G. 

vaginalis (5-1 and 101) for initial adhesion to epithelial cells 

While figures obtained in the adhesion assay are not to representative, since they 

represent only a field of view of circular glass lamella, figures of competition between 

lactobacilli and G. vaginalis strains 5-1 (non-pathogenic) and 101 (pathogenic), both with 

high levels of concentration (10
9 

CFU. mL) are showed below. 

 

In Figure C.1 is showed the adherence of high level of L. iners vs high level of G. 

vaginalis strains to epithelial HeLa cells. It is noted a greater adherence of L. iners in 

presence of G. vaginalis 101.  

 

  

L. iners and G. vaginalis 5-1 G. vaginalis 5-1 
 

  

L. iners and G. vaginalis 101 G. vaginalis 101 

Figure C.1 – Adherence of high level of L. iners vs high level of G. vaginalis strains to epithelial HeLa 

cells. Original magnifications: x1000. Bacteria and HeLa cells were quantified by fluorescence microscopy, 

using DAPI (blue) for total cell count and PNA-FISH probe (Gard162 Probe) (red) for G. vaginalis 

quantification. 
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In Figure C.2 is showed the adherence of high level of L. crispatus versus high 

level of G. vaginalis strains to epithelial HeLa cells.  

 

 

  

L. crispatus and G. vaginalis 5-1 G. vaginalis 5-1 
 

 

  

L. crispatus and G. vaginalis 101 G. vaginalis 101 

Figure C.2 – Adherence of high level of L. crispatus vs high level of G. vaginalis strains to epithelial HeLa 

cells. Original magnifications: x1000. Bacteria and HeLa cells were quantified by fluorescence microscopy, 

using DAPI (blue) for total cell count and PNA-FISH probe (Gard162 Probe) (red) for G. vaginalis 

quantification. 
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Finally, in Figure C.3 is showed the adherence of high level of L. casei versus 

high level of G. vaginalis strains to epithelial HeLa cells.  

 

  

L. casei and G. vaginalis 5-1 G. vaginalis 5-1 
 

  

L. casei and G. vaginalis 101 L. casei and G. vaginalis 101 

 

Figure C.3 – Adherence of high level of L. casei vs high level of G. vaginalis strains to epithelial HeLa 

cells. Original magnifications: x1000. Bacteria and HeLa cells were quantified by fluorescence microscopy, 

using DAPI (blue) for total cell count and PNA-FISH probe (Gard162 Probe) (red) for G. vaginalis 

quantification. 
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