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SUMMARY

Monitoring mining-induced seismicity (MIS) can help engineers understand the rock mass 

response to resource extraction. With a thorough understanding of ongoing geomechanical 

processes, engineers can operate mines, especially those mines with the propensity for rock-

bursting, more safely and efficiently. Unfortunately, processing MIS data usually requires 

significant effort from human analysts, which can result in substantial costs and time 

commitments. The problem is exacerbated for operations that produce copious amounts of 

MIS, such as mines with high-stress and/or extraction ratios. Recently, deep learning methods 

have shown the ability to significantly improve the quality of automated arrival-time picking 

on earthquake data recorded by regional seismic networks. However, relatively little has been 

published on applying these techniques to MIS. In this study, we compare the performance of 

a convolutional neural network (CNN) originally trained to pick arrival times on the Southern 

California Seismic Network (SCSN) to that of human analysts on coal-mine-related MIS. We 

perform comparisons on several coal-related MIS data sets recorded at various network scales, 

sampling rates and mines. We find that the Southern-California-trained CNN does not perform 

well on any of our data sets without retraining. However, applying the concept of transfer learning, 

we retrain the SCSN model with relatively little MIS data after which the CNN performs nearly 

as well as a human analyst. When retrained with data from a single analyst, the analyst-CNN 

pick time residual variance is lower than the variance observed between human analysts. We 

also compare the retrained CNN to a simpler, optimized picking algorithm, which falls short 

of the CNN’s performance. We conclude that CNNs can achieve a significant improvement 

in automated phase picking although some data set-specific training will usually be required. 

xik9@cdc.gov . 

Publisher's Disclaimer: Disclaimer
Publisher's Disclaimer: The findings and conclusions in this paper are those of the authors and do not necessarily represent the 
official position of the National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention. Mention of 
company names or products does not constitute endorsement by NIOSH.

Data Availability
The de-contextualized event waveforms and phase picks used in this study were compiled by Chambers (2020) and can be found on 
Harvard’s Dataverse at: https://doi.org/10.7910/DVN/5DGFJB. A simple python package for training and evaluating CNN and Baer 
models can be found at https://github.com/sjohnson5/CoalPick.

HHS Public Access
Author manuscript
Geophys J Int. Author manuscript; available in PMC 2022 January 01.

Published in final edited form as:
Geophys J Int. 2021 January 01; 224(1): 230–240.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://doi.org/10.7910/DVN/5DGFJB
https://github.com/sjohnson5/CoalPick


Moreover, initializing training with weights found from other, even very different, data sets can 

greatly reduce the amount of training data required to achieve a given performance threshold.

Keywords

Neural networks; fuzzy logic; Time-series analysis; Body waves; Induced seismicity

INTRODUCTION

Because seismic monitoring offers unique insight into the Earth’s response to mining, 

it has become standard practice in deep underground hardrock mines, especially those 

experiencing rockbursting (Mendecki et al. 2010). However, it is less common, especially 

in the United States, for underground coal mines to adopt seismic monitoring, largely due 

to two factors: (1) the unique challenges and complexities associated with coal mining 

and shallow depositional geology have made it difficult to translate the well-developed 

technology and processing techniques used in hardrock mining, and (2) it is difficult for coal 

mines, which tend to be much larger and mined more quickly than hardrock mines, to justify 

the significant cost of a traditional in-mine seismic monitoring system, especially if they do 

not experience damaging seismic events. Despite this, seismic monitoring of underground 

coal mines is useful for a number of reasons: documenting seismicity, evaluating mine 

design performance and in some cases, detecting potentially dangerous ground stability 

issues (Swanson et al. 2016).

The standard product of seismic monitoring is an earthquake catalogue—a listing of 

information about each discrete seismic event including origin time, location, magnitude and 

often other source parameters such as radiated energy or the moment tensor. Event locations 

are particularly important for accurately interpreting the geomechanical significance of the 

seismicity because location errors propagate to other source parameter estimates. For coal 

mining environments, the greatest source of location error typically stems from inaccurately 

modelling the complex, time-dependent velocity structure in which the events occur (Collins 

et al. 2014; Boltz et al. 2016; Czarny et al. 2016). Another significant source of error is 

associated with determining body wave arrival times, which are used in standard location 

procedures. Generally, phase arrival times are determined automatically and then reviewed 

by a trained analyst to reduce errors and improve event locations. However, if automated 

phase picking can be improved, perhaps to the point of human levels of accuracy, it would 

reduce the cost and time investment required to process the data, resulting in better risk 

management and safer mines.

Over the past few decades, many automatic picking techniques have been developed for 

estimating body wave arrival times. Commonly used methods are based on detecting 

changes in observed energy, polarization, or other statistical properties of the recorded time-

series (e.g. Baer & Kradolfer 1987; Withers et al. 1998; Baillard et al. 2013). Such picking 

methods are effective but require extensive network-specific tuning procedures (Nippress et 
al. 2010; Vassallo et al. 2012). Even when tuned, these picking methods typically fall short 

of human-level accuracy.
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Several studies have also explored the use of relatively simplistic neural networks for phase-

picking tasks (e.g. Dai & McBeth 1995; Dai & McBeth 1997; Gentili & Michelini 2006). 

However, recent advancements in computing capabilities, neural network architecture, 

training techniques and, most importantly, the availability of high-quality neural network 

software has enabled a new wave of advances. For example, recent studies have reported 

dramatic improvements in automatic P-arrival picking using convolutional neural networks 

(CNN, Kong et al. 2018; Bergen et al. 2019). CNNs are advantageous for image recognition 

and time-series tasks because they provide some degree of invariance to shifting and 

distortion (LeCun & Bendgio 1995). There are two types of phase-picking CNNs mentioned 

in the literature: regressors, which return a single scalar indicating pick time for each trace, 

and transformers, which return a characteristic function (CF) with a similar shape as the 

input. An example of a scalar CNN was developed by Ross et al. (2018a). The model 

operates on vertical-channel waveforms and returns the index of the picked P arrival. This 

model was trained on approximately 4.8 million P arrivals. The reported standard deviation 

of the difference between model and analyst picks (pick time residuals) was only 0.023 

s or 2–3 samples after using the outer fence method to remove outliers. In contrast, Zhu 

& Beroza (2018) designed a transformer CNN which uses three-component traces and 

returns arrays indicating the probability of each sample belonging to three categories: P- 

and S-phase arrivals and noise. P- and S-arrival times are then selected as the maximum of 

a phase likelihood array if some threshold is exceeded. This model was trained on about 

880 000 traces with picks for both P- and S-arrival times and the pick-time residuals had 

a standard deviation of 0.052 s 5–6 samples after excluding residuals higher than 0.5 s. 

Woollam et al. (2019) also created a CNN which outputs a similar CF indicating phase 

arrival probabilities. Although a fair comparison is difficult since Woollam et al. (2019) used 

residuals from a location procedure for assessing model performance rather than directly 

calculating analyst pick-time residuals, they demonstrated that reasonable results could be 

obtained by training the CNN on far less data than the other two studies (11 000 phase 

picks).

CNNs have also been developed for performing tasks other than arrival-time picking, for 

example determining first motions (Ross et al. 2018a), associating arrival-time picks into 

events (Ross et al. 2019), detecting and classifying body wave phase labels (Ross et al. 
2018b), calculating magnitudes (Mousavi & Beroza 2019) and even detecting and locating 

events based only on waveforms (Perol et al. 2018). Although most studies focus on regional 

or global seismicity, several applications of CNNs have been applied to mining-induced 

seismicity (MIS) including:

1. Huang et al. (2018) trained a CNN to detect and locate events in an underground 

Chinese phosphate mine.

2. Wilkins et al. (2020) trained a CNN to identify induced events at an underground 

Australian coal while minimizing false detections related to operational noise.

3. Lin et al. (2019) used a CNN to classify signal types (blast, event and noise) 

originating in a Chinese copper mine.

However, little work has been published on applying CNN phase pickers to MIS. In this 

study, we assess the performance of a publicly accessible CNN P-phase picker (Ross et 
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al. 2018a) on several seismic networks of different scales and instrument compositions 

monitoring active longwall coal mines. We quantify the performance of the original CNN 

on the MIS data in order to determine how well the model transfers to data sets which 

are very different from the model’s training data. In one sense, we expect the model to 

require data set specific tuning just like any other automatic phase picker. However, since 

deep-learning models are much more complex than traditional picking algorithms, we find 

it intriguing that perhaps the model has internalized some invariant phase picking concepts, 

just as a human analyst would. If this is the case, the model would be able to adequately pick 

P-arrival times on any seismic data set. After quantifying the original model’s transferability, 

we then explore improving the model’s performance through retraining the CNN for each 

data set utilizing the original weights as a starting point. Using the same training data set, 

we also optimize a simple P-arrival-time picker, a slightly modified version of the Baer 

and Kradolfer picking algorithm (Baer & Kradolfer 1987) included in the ObsPy Python 

package (Krischer et al. 2015), and compare its performance with the other models.

DATA

The data sets used in this study were collected by five different seismic networks monitoring 

underground longwall coal mines in the United States. Four of the networks (data sets A–D) 

were deployed and operated by the National Institute for Occupational Safety and Health 

(NIOSH). No geographic references are made to these operations as the mines wish to 

remain anonymous. The fifth network (data set E) is operated by the University of Utah.

Data sets A and B

Data sets A and B were derived from two separate temporary surface deployments at the 

same mine, consisting of 5-Hz, three-component MagSeis ZLand geophones sampling at 

500 sps with a gain setting of 30 dB (Fig. 1). The geophones were centred over an active 

longwall for approximately one month in each deployment. The first deployment consisted 

of 11 stations covering approximately 0.15 km2 and detected 12 499 seismic events with 

local magnitudes ranging from around −1.5 to 1.5. The second deployment consisted of 16 

stations covering approximately 1.2 km2 and detected 20 792 events with local magnitudes 

in a similar range. In both cases, we used ObsPy’s sta/lta detector, coincidence filter, and 

Baer picker for event detection, association and initial phase picking.

Due to the large volume of data, only 1251 events (10 per cent of the total) from data set 

A were manually processed by a single analyst, resulting in 12 527 P-arrival picks that 

were used as a training data set. The test data set consisted of an additional 100 events (50 

from each data set) that were each manually processed by four individuals, including the 

analyst which processed the training data. Multiple analysts processed the same events in 

order quantify analyst variability. The test sets featured 514–542 P-picks for data set A and 

677–738 P-picks for data set B, depending on the analyst.

Data set C

Data set C was collected by a dense microseismic network of both in mine and surface 

sensors. The surface stations were 4.5-Hz geophones sampling at 1000 sps, and the 
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underground stations were 14-Hz, three-component geophones sampling at 5000 sps. 

The network operated for approximately 5 yr and recorded events associated with the 

mining of four longwall panels. Over 210 000 seismic triggers were recorded during the 

network lifetime, although many of the triggers were caused by noise associated with mine 

operations rather than induced seismicity.

For this study, we used analyst-processed events detected during an arbitrarily selected 

month. During this time period, the network consisted of 8 underground and 11 surface 

stations covering 5.5 km2 (Fig. 2). There were 2345 events, located with 23 942 manual 

P-wave picks, that occurred during this time with local magnitudes ranging from −1 to 3. 

There were some quality issues identified with the manual processing, which was performed 

by a third party, but these were not significant enough to merit reprocessing. There were 

5986 randomly selected traces (about 25 per cent of the total) that were used as the test set, 

and the rest were used for training.

Data set D

Data set D consists of two years of data collected by a local surface network surrounding 

a longwall coal mine (Fig. 3). The 130-km2 network consists of 6 three-component 

Guralp 6TD broad-band seismometers sampling at 250 sps and three stations with a three-

component EpiSensor accelerometer and a vertical L4 1-Hz geophone, each sampling at 

100 sps. The Earthworm software suite (Friberg et al. 2010) was used to collect and store 

continuous data, detect seismic events and calculate preliminary locations and magnitudes. 

The data set includes 5808 MIS events, located with 31 987 manual P-wave picks, with 

moment magnitudes ranging from −1 to 2. Approximately 25 per cent (7997 randomly 

selected traces) of the picked traces were used for testing, and the rest were used for training.

Data set E

Data set E includes 1929 events located by the University of Utah Seismograph Stations 

(UUSS) that originated in the coal mining regions of Utah between 2012 October 01 and 

2019 December 04 (Fig. 4). These events have local magnitudes ranging from 0.4 to 3.3. 

Mines have produced coal in these regions for over a century, and the associated seismicity 

has been extensively studied (e.g. Arabasz & Pechmann 2001; Arabasz et al. 2005). In order 

to follow the methodology of Ross et al. (2018a), we only used manually reviewed phase 

picks with source–receiver distances less than 120 km, resulting in 16 924 P arrivals on 

high-gain (EHZ and HHZ) channels. Approximately 25 per cent (4231 arrivals) of the data 

were used for testing, and the remaining 12 693 arrivals were used for training.

METHODOLOGY

We evaluated three models for automatic picking of P-wave arrival times for each data set: 

(1) base CNN: the CNN model and weights published by Ross et al. (2018a), (2) retrained 

CNN: the same CNN after retraining for each data set, and (3) trained Baer: the Baer picking 

algorithm whose parameters have been optimized for each data set.
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Pre-processing

First, vertical-channel data were extracted from each station-event pair in the five data 

sets. Stations in data set D had two vertical channels, one from an L4 geophone and the 

other from an accelerometer so the channel on which the analyst made the P-arrival pick 

was selected. Next, all waveforms recorded by networks with heterogeneous sampling rates 

were downsampled to the network’s lowest sampling rate. For data set C, the underground 

stations were downsampled from 5000 to 1000 Hz, and for data set D, the 250-Hz broad-

band channels were downsampled to 100 Hz. The waveforms were downsampled rather than 

upsampled to accommodate the fixed 400 sample window required by the CNN. If the data 

were upsampled, too much of the initial impulse of the P arrival was often lost and the 

model performance would degrade sharply.

Due to data storage limitations, only triggered waveforms for data set C were archived. 

These triggered waveforms generally only had a very small number of samples available 

before the P trigger, especially after downsampling, which is problematic for many picking 

algorithms. For the waveforms that did not have at least 251 samples of pre-pick data, the 

available pre-pick data were repeated and prepended to the waveform until the 251 sample 

requirement was met. 15 traces were dropped because they did not contain at least 25 

samples of pre-pick data. Alternately, we tried zero padding these waveforms, but it resulted 

in spurious picks on the first non-zero data point. This process was unique to data set C 

because there were no gaps or missing data in the other data sets.

Like Ross et al. (2018a), we applied a 1–20 Hz bandpass filter to data set E to remove 

low-frequency noise unrelated to MIS. A 0.5-Hz high-pass filter was applied on data set D 

rather than the bandpass filter because many of the events had significant energy above the 

20-Hz band. The other data sets were not filtered as they consisted of high-frequency (5 

Hz+) geophone data.

CNN training

For each data set, the base CNN model was retrained, using the Southern California Seismic 

Network (SCSN) model’s weights as a starting point. The input arrays for training were 

created through the following procedure, based on that described by Ross et al. (2018a). 

First, the manually processed traces were sliced into 400-sample segments. In order to 

prevent the model from simply learning where the pick index begins, the data segments were 

randomly shifted such that the centre of the window was within ± 50 samples of the manual 

pick. This process was repeated for each trace five times in order to artificially increase the 

training set size. Next, each trace segment was normalized by the maximum of its absolute 

value. The input used to train the CNN is a 2-D array composed of the traces (the data) and 

a 1-D array of integers, which indicate the index of the manual pick (the target). All of the 

CNN’s layers were allowed to update during training using the Huber loss function (Huber 

1964) and Adam optimizer (Kingma & Ba 2014) as implemented by the TensorFlow library 

(Abadi et al. 2016). Training occurred for up to 25 epochs (complete passes over the training 

data) but was terminated early if the validation mean absolute error did not decrease for 

five consecutive epochs. The weights producing the lowest absolute mean validation error 
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throughout the entire training process were kept rather than the final weights, which may 

have started to overfit the training data.

Baer picker training

We used the same training data (including the same pre-processing) to optimize a Baer 

picker (Baer & Kradolfer 1987). The optimization used the differential evolution optimizer 

from the SciPy Python package (Storn & Price 1997) to minimize the inverse of the fitness 

function described by Vassallo et al. (2012). The Baer picker tended to pick later than 

the human analyst, which is common in automated picking algorithms, so we added an 

optimizable bias parameter to the Baer algorithm to allow all of the picks to shift by a 

constant value.

Model evaluation

The base and trained CNN, and trained Baer models were evaluated using the test data for 

each of the five data sets. For the test data, the traces were segmented into 400-sample 

windows and the analyst pick index was shifted using the same process described above. 

P-wave arrival time predictions from each model were compared to the picks made by the 

human analyst. Pick time residuals were calculated, and the same four descriptive statistics 

used by Ross et al. (2018a) were used to summarize the residual distributions: the 75th 

percentile of the absolute value of the pick time residuals (Q|75|), the 90th percentile of the 

absolute value of the residuals (Q|90|), the mean (μ) and the standard deviation (σ) of the 

residuals. Extreme outliers were included in the percentile calculations but removed using 

the outer fence method before determining the mean and standard deviation. Outlier removal 

was necessary because, in some cases, analyst and model picks were made on different 

events included in the input data. While associating phase picks with the correct events is 

critical for locating seismic sources, it falls outside the scope of this study.

RESULTS

Table 1 shows the number of phase picks used to train and test each data set, and the time 

required for each using the CPUs of an engineering workstation with 8 CPUs and 64 GBs 

of RAM. The Baer model optimization was performed on a single CPU thread with no 

attempt to implement concurrency and, consequently, the optimization time could probably 

be improved significantly with additional effort. Fig. 5 shows sample waveforms and phase 

picks from each data set.

Analyst variability

In order to estimate variability among human analysts, the test data from data sets A and B 

were processed by three analysts in addition to the standard analyst who originally processed 

the training data. Although the sample size is small, these can be used as an approximation 

of human-level performance for data sets A and B. Table 2 shows the various statistics for 

each analyst combination, and Fig. 6 shows the combined residual distribution.
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Data set A

Fig. 7 shows histograms of the model-analyst pick residuals for data set A. The trained Baer 

model outperforms performs the base CNN model but falls short of the trained CNN model. 

The trained Baer and trained CNN evaluation statistics fall below the human variability 

measurements in all metrics. Effectively, this means uniformly applying the automated 

pickers results in lower pick time residuals than when multiple human analysts make P 
picks.

Data set B

The trained CNN model’s weights and trained Baer model’s parameters from data set A 

were used on data set B rather than retraining both models, because the networks were 

similar and located close together. Fig. 8 shows the residuals between each model and the 

analyst picks. For both the trained Baer and trained CNN models, the results are comparable 

to those of data set A, demonstrating that these models transfer well to this nearby network 

without retraining. Interestingly, although the trained CNN model was trained on data set A, 

it performs better on data set B for all metrics.

Data set C

Fig. 9 shows the residuals for data set C. The residuals in samples are higher, but due 

to the higher sampling rates in this data set (1000 sps), the temporal residuals are not as 

stark. Moreover, the waveforms recorded by this network, particularly for the underground 

stations, tended to be noisier and more difficult to pick. As mentioned previously, there were 

also some minor quality issues identified in the manually processed data. Around 15 per cent 

of the picks were 10 samples or greater away from the true P-wave arrival. The trained CNN 

clearly outperforms the Baer picker when presented with these challenges.

Data set D

Fig. 10 shows the pick residuals for data set D. In this case, the base CNN performs better 

than it did in the other data sets. This could be due to the sensors and network spacing 

being closer to those of the SCSN, although this was not the case for data set E. As with the 

other data sets, the trained CNN significantly outperformed the trained Baer model on this 

network.

Data set E

Fig. 11 shows the pick residuals for data set E. The trained CNN falls significantly short 

of the performance reported of the trained CNNs for the other data sets. We re-examined a 

subset of events and found no obvious quality issues (as were found for data set C). Possible 

reasons for both models’ poor performance are covered in the Discussion section.

DISCUSSION

The trained CNN performed better than the trained Baer model on all data sets. Both 

models performed within levels of measured human variance for all but one of the evaluation 

metrics for data sets A and B. From an operational sense, both models probably perform 
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‘well enough’ to produce meaningful event locations. For example, when using picks from 

either model to locate events, 75 per cent of the events from data sets A and B locate 

within 16 m of the location resulting from manual P-arrival picking. It would be interesting 

to include many more optimized picking algorithms, trained on the same input data in the 

comparison.

Model transferability

The base CNN did not perform adequately for any of the data sets but was greatly improved 

through retraining. In order to quantify the benefits gleaned by transfer learning, and to 

determine how much data are required to adequately retrain the CNN starting with the SCSN 

weights, we explored several training restrictions using a variable number of seismic traces 

for training on data set A (Fig. 12). We found the following:

1. The improvements in training drop off sharply for both the Baer and the CNN 

around 200 traces and the improvements start to level off around 5000 traces, 

although minor improvements probably continue past the largest test data set of 

10 000 traces.

2. We see no benefits to only allowing the outer (non-convolutional) layers to 

update during training.

3. A CNN with no starting weights achieves the same mean absolute error as the 

Baer picker once the test data set reaches about 5000 traces.

For an operator of a similar (local) network deployed in/around a coal mine, the first finding 

has practical significance; with only 5000 manually processed traces, a CNN model can be 

trained to pick P-arrival times with acceptable performance. Admittedly, there will still need 

to be human review of phase picks, particularly on events with high location residuals whose 

traces tend to contain multiple events, but the analyst workload would be greatly reduced 

compared to fully manual processing workflows.

The poor performance of the base model on all data sets is not surprising considering the 

significant differences between the MIS data sets and tectonic seismicity recorded by the 

SCSN, and certainly does not represent a deficiency of the original work. However, the 

CNNs failure to extrapolate to new types of seismicity and networks clearly demonstrates 

the CNN has not internalized the general task of phase picking as a human analyst might. 

Interestingly, the base model performed the worst for data set E (UUSS). This is unexpected 

considering that, of all the data sets examined in this study, UUSS is the most like SCSN 

in terms of instrumentation type, station spacing and source–receiver distance. However, 

coal mine seismicity from this area recorded at regional distances produces very distinct 

waveforms compared to typical tectonic earthquakes. For instance, coal seismicity tends 

to be much shallower and have smaller stress drops resulting in waveforms which are 

deficient in higher frequencies (Stein 2016). Comparing the effect of waveform frequency 

on model performance across all data sets is difficult given that the sampling frequencies are 

different between data sets. However, since the models are provided only with waveforms, 

they have no concept of absolute sampling rate so a relative sampling frequency can be 

assumed. Imposing a sampling frequency of 100 Hz on each data set does show a strong 
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relation between dominant relative frequency of a smoothed amplitude spectra and the 

absolute value of the base-model residuals (Fig. 13). This effect is likely due to two factors. 

First, the base CNN was trained mainly on waveforms with higher relative frequencies, so 

the model would expectedly perform worse when presented with lower relative frequency 

waveforms. Second, lower relative frequency waveforms are more emergent and thus 

harder to unambiguously pick. Frequency-related picking difficulty may explain why, even 

after training, the models performed worse on the data sets with lower dominant relative 

frequencies (data sets C and E) than those with higher dominant relative frequencies.

After retraining the base CNN, we attempted to quantify the performance degradation for 

picking on the original SCSN test data. If little or no degradation occurred, it would mean 

creating a general picker, one that would perform well on a wide variety of network and 

event types, could be possible with this CNN architecture. When using the CNN trained on 

data sets A and C, the pick time residuals for the SCSN data had standard deviations around 

200 per cent and 120 per cent higher than the base CNN, while the standard deviation 

using the CNN trained on data set D was only around 30 per cent higher. Unfortunately, the 

degradations indicate that the CNN is somewhat network/training data dependent and cannot 

be generally applied without some retraining. However, as evidenced from the excellent 

transferability from data sets A to B, it may be possible to generate a small number of 

trained models to select from based on network and waveform characteristics.

Processing improvements

The original motivation for this research was to process the entirety of the data sets A and 

B deployments (36 012 events in total). We used less than 1 per cent of the data in order to 

train, test and evaluate the different models. We then processed the remaining events with 

the trained CNN from data set A in conjunction with a simple moving window scheme, 

which took around 5 d. Had a human analyst processed the same amount of data it would 

have taken approximately two years, assuming a 40-hr work week. Fig. 14 shows maps 

of the locations of all the events in data set A, using the picks made by an unoptimized 

Baer picker (the previous processing method) and using the picks made by the trained 

CNN. Clearly, the increase in pick quality had a significant impact on location accuracy and 

interpretability of seismicity.

Future work

Expanding this type of study to include additional picking algorithms, including CNN 

pickers which return CFs, and perhaps combining various pickers in concert, would be an 

interesting line of future research. A high-quality, open-source package which facilitates 

these types of studies through a unified Application Programming Interface would be a boon 

to both network operators and seismology researchers. A larger, more statistically rigorous 

effort to quantify the variability between human analysts accounting for network geometry 

and type, phase and experience levels would provide important benchmarks for assessing the 

performance of future automated phase-picking, detection and classification models.
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In the near future, we expect neural network-based models will adequately perform the 

simpler tasks currently performed by seismic analysts. However, analysts will still be needed 

to provide over-sight, quality assurance and to process particularly unusual signals.

CONCLUSIONS

We have shown that a CNN trained on millions of regionally recorded earthquake traces to 

estimate P-wave arrival times does not adequately transfer to networks of different scales 

monitoring MIS in other geographical regions. However, the CNN can be retrained to 

effectively pick MIS recorded by local networks of varying sampling rates and instrument 

types using a surprisingly small amount of training data. Initializing training with the SCSN 

model weights greatly improves the resulting model’s performance compared to training 

from scratch for a given training data set size. Applying the CNN on a regional MIS data set 

yielded limited success, likely due to differences in waveform frequency content.

We also demonstrated that the retrained CNN is superior to the Baer picking algorithm 

optimized on the same training data. Properly tuning any phase picker to a specific data 

set, however, remains an important consideration. Both the optimized Baer picker and 

the trained CNN model exhibit less variance in pick time residuals than the variance 

observed between human analysts. The application of improved phase picking models has 

the potential to reduce the time, cost and manual intervention required to extract actionable 

information from MIS. This will make it easier for ground-control experts at mines to 

understand the rock mass response to mining and more effectively detect and address certain 

types of stability issues.
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Figure 1. 
Plan-view plot of data sets A and B. Triangles represent the locations of nodes, and 

rectangles outline longwall panels. The shading denotes the number of events that occurred 

within a 400-m2 area.
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Figure 2. 
Plan-view plot of data set C. Triangles indicate the location of surface sensors, while 

inverted triangles demarcate underground sensors. The rectangles outline the longwall 

panels, and shading denotes the number of events that occurred within a 1050-m2 area.

Johnson et al. Page 15

Geophys J Int. Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Plan-view plot of data set D. Black triangles represent the locations of sensors, and 

rectangles outline the longwall panels. The shading denotes the number of events that 

occurred within a 11 500-m2 area.
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Figure 4. 
Plan-view plot of data set E. Black triangles mark the locations of UUSS sensors. The dark 

lines delineate the coal mining regions. The inset shows the region’s location within a map 

of the state of Utah, USA.
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Figure 5. 
Zoomed-in sample traces from each data set showing picks from each model/analyst.
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Figure 6. 
Summation of residuals between each analyst pair for the test sets of data sets A and B. 

Residual statistics of mean (μ), standard deviation (σ) and 75th and 90th percentiles of the 

absolute value of the residuals (Q|75| and Q|90|), are shown in samples.
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Figure 7. 
Comparison of each model pick to the analyst’s picks for the data set A test set. Statistics are 

shown in samples. Residual statistics of mean (μ), standard deviation (σ) and 75th and 90th 

percentiles of the absolute value of the residuals (Q|75| and Q|90|), are shown in samples.
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Figure 8. 
Comparison of each model pick to the analyst’s picks for the data set B test set. Statistics are 

shown in samples. Residual statistics of mean (μ), standard deviation (σ) and 75th and 90th 

percentiles of the absolute value of the residuals (Q|75| and Q|90|), are shown in samples.
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Figure 9. 
Comparison of each model pick to the analyst’s picks for the data set C test set. Statistics are 

shown in samples. Residual statistics of mean (μ), standard deviation (σ) and 75th and 90th 

percentiles of the absolute value of the residuals (Q|75| and Q|90|), are shown in samples.
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Figure 10. 
Comparison of each model’s picks to the analyst’s picks for the data set D test set. Statistics 

are shown in samples. Residual statistics of mean (μ), standard deviation (σ) and 75th and 

90th percentiles of the absolute value of the residuals (Q|75| and Q|90|), are shown in samples.
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Figure 11. 
Comparison of each model’s picks to the analyst’s picks for the data set E test set. Statistics 

are shown in samples. Residual statistics of mean (μ), standard deviation (σ) and 75th and 

90th percentiles of the absolute value of the residuals (Q|75| and Q|90|), are shown in samples.
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Figure 12. 
Mean absolute error of pick time residuals for various models trained on differing numbers 

of traces for data set A. Baer is the trained Baer picker, CNN is the base CNN (which starts 

with the SCSN weights), CNN (empty) starts with random weights, and CNN (last) is the 

base CNN but only the last three layers of the network are allowed to update during training.
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Figure 13. 
Dominant frequency, assuming a nominal sampling rate of 100 Hz versus the absolute value 

of the base model residuals. A one-bin Kernel Density Estimate is shown for each data set.
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Figure 14. 
The entirety of data set A: (top) shows the events located using picks made by the original, 

unoptimized Baer picker, and (bottom) shows the events located using picks made by the 

trained model.
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