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Identification of genes and the signal transduction  pathways involved 

in the regulation of acetic acid-induced programmed  cell death 

 

Abstract 

After many years of research, S. cerevisiae was accepted as a powerful model 

that allows increasing our comprehension about the underlying mechanisms of 

apoptosis in more complex and less accessible organisms. So, to better understand 

these apoptotic mechanisms we performed a functional analysis, at whole-genome 

scale, with the Euroscarf mutants collection. This analysis reveled 2159 resistant 

mutants and 391 mutants more sensitive to acetic acid induced cell death than the 

parental strain BY4741. The results obtained contribute to further characterize acetic 

acid-induced programmed cell death (PCD), and provide information on new putative 

targets for its control. 

Most of the studies on apoptosis in yeast have been centered in the identification 

of apoptotic markers, however less is known about the signal transduction pathways that 

induce apoptosis. Cells possess a network of signal transduction pathways, which allow 

them to respond to different stimulus, implying several changes in genetic expression. 

Sfl1p is a transcription factor (TF) involved in repression of flocculation-related genes, 

and activation of stress responsive genes. We studied, cell death induced by acetic acid 

in yeast strains deleted in SFL1 and in genes potentially regulated by Sfl1p (AQY2, 

FMP42, FMP45, SUC2, HSP30, HSP104, NNF2, FLO1 FLO8, YMR173W-a, YJR11W e 

YCR006C). The results obtained suggest that Sfl1p and the genes under its regulation, 

share a role in the mediation of acetic acid-induced apoptosis. Slf1p harbors 3 domains 

characteristic of the c-myc oncoprotein, a transcription factor with an important role in 

apoptosis induction and often found mutated in cancer cells. Our results showing that 

Sfl1p is also involved in the regulation of apoptosis in yeast suggest that these domains 

can have a conserved function in apoptosis regulation across kingdoms. 

We also studied the involvement of genes regulated by Rlm1p on cell death 

induced by acetic acid. This TF coordinates an adaptive transcriptional response to the 

stress induced in the cell wall. Our results show that the genes that confer stability to the 

cell wall, confers sensitivity to acetic acid, when mutated. On the other hand, the genes 

involved in the cell wall formation, confers resistance, when mutated. 
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Identificação de genes e vias de tradução de sinal envolvido na morte 

celular programada induzida por ácido acético 

 

Resumo  

Depois de muitos anos de pesquisa, a S. cerevisiae foi aceite como um poderoso 

modelo que permitiu aumentar a compreensão dos mecanismos subjacentes à 

apoptose, em organismos mais complexos e menos acessíveis. Assim, para melhor 

compreensão dos mecanismos apoptóticos, realizámos uma análise funcional, à escala 

do genoma, com a coleção de mutantes da EUROSCARF. Esta análise revelou 2159 

mutantes resistentes e 391 mutantes mais sensíveis à morte induzida por ácido acético 

do que a estirpe parental BY4741. Os resultados obtidos contribuem para uma melhor 

caraterização da PCD induzida por ácido acético e fornecem informação sobre 

hipotéticos alvos para o seu controlo.  

A maioria dos estudos sobre apoptose em levedura têm-se centrado na 

identificação de marcadores apoptóticos, no entanto pouco é conhecido sobre as vias 

de transdução de sinais que induzem apoptose. As células possuem uma rede de vias 

de transdução de sinais que lhes permitem responder a diferentes estímulos, 

implicando grandes mudanças na sua expressão genética. Sfl1p é um fator de 

transcrição (FT) envolvido na repressão de genes relacionados com a floculação e na 

ativação de genes de resposta ao stress. Estudamos os genes potencialmente 

regulados pelo Sfl1p na presença de ácido acético (AQY2, FMP42, FMP45, SUC2, 

HSP30, HSP104, NNF2, FLO1 FLO8, YMR173W-a, YJR11W e YCR006C). Os 

resultados obtidos indicam que Sfl1p, e os seus genes alvo têm um papel na regulação 

na apoptose induzida por ácido acético. A proteína Slf1 contém 3 domínios 

característicos da oncoproteína c-myc, um fator de transcrição com um papel 

importante na indução de apoptose e muitas vezes alterado em células cancerígenas. 

Os nossos resultados sugerem que estes domínios podem ter uma função conservada 

na regulação da apoptose em leveduras. 

Estudámos também o envolvimento dos genes regulados pelo Rlm1p, na morte 

celular induzida por ácido acético. Este FT coordena uma resposta de transcrição 

adaptativa, ao stress provocado na parede celular. Os nossos resultados mostram que 

os genes que conferem estabilidade à parede celular, quando mutados, conferem 

sensibilidade ao acido acético. Por outro lado, os genes envolvidos na formação da 

parede celular, quando mutados, conferem resistência.  
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1.1. Cell death 

Cell death plays an important role in the maintenance of tissue 

homeostasis and in the development of organisms (Judah et al., 1965). There 

are different types of cell death, and their classification has undergone 

significant evolution. The first descriptions of programmed cell death (PCD) 

mechanisms date back to the mid-1960s, but the term was first used by 

Lockshin and Williams to describe a type of cell death that was not accidental 

(Lockshin and Williams, 1965). In 1972, Kerr and coworkers implemented the 

term apoptosis to define a new pattern of cell death, a genetically controlled 

sequence of steps that lead to specific morphological and biochemical changes 

(Kerr et al., 1972). Apoptosis was later considered a synonym of PCD and cell 

death classified into apoptosis and necrosis. For a long time, necrosis has been 

considered an accidental cell death mechanism. It is now clear that necrosis 

can occur in a regulated manner, and that necrotic cell death has a prominent 

role in multiple physiological and pathological settings. The term ‘necroptosis’ 

has recently been used as a synonym of regulated necrosis. However, since 

necrosis may also be regulated and other forms of cell death exist, this 

classification was abandoned. Recently, the Nomenclature Committee on Cell 

Death proposed a functional classification of cell death which includes extrinsic 

apoptosis, caspase-dependent or -independent intrinsic apoptosis, regulated 

necrosis, autophagic cell death and mitotic catastrophe (Galluzzi et al, 2012). 

 

1.2. Apoptosis 

Apoptosis is the best characterized form of programmed cell death. It was 

originally defined based on morphological and biochemical features found in 

mammalian cells. The morphological appearance includes chromatin 

condensation, nuclear fragmentation and cell shrinkage. Biochemical features 

include high molecular weight DNA fragmentation, phosphatidyl serine 

externalization and proteolytic cleavage of a number of intracellular substrates 

(Cohen et a.l, 1994; Martin and Green, 1995). The process of apoptosis 

ensures the quick removal of cells without rupture of the plasma membrane, 
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thus preventing inflammation (Ballard and Holt, 1968; Bertolaccini and Olivero, 

2002). Several diseases associated with severe human pathologies (cancer and 

neurodegenerative disorders) can be linked to poor regulation of apoptosis. In 

human adults, 50 to 70 billion cells are eradicated by this process every day 

(Matsuyama et al., 1999), and therefore it is not surprising that apoptosis de-

regulation can contribute to several diseases. The identification of components 

of the different apoptotic pathways and understanding the mechanisms 

underlying their regulation is critical to the development of new strategies of 

prevention and treatment against those diseases.  

Apoptosis is mediated by intrinsic and extrinsic mechanisms (Hengartner, 

2000). The extrinsic pathway or death receptor pathway (such as TNF receptor-

1) is defined as mitochondria-independent, although mitochondria can be 

involved in the amplification of the death signal. This pathway involves the 

activation of receptors in the plasma membrane through binding of ligands that 

trigger a proteolytic process. The second mechanism, the intrinsic or 

mitochondrial pathway, involves the permeabilization of the mitochondrial outer 

membrane allowing the release of proapoptotic proteins into the cytosol. The 

two pathways differ in the initiator caspases that transmit the signal, but later 

converge at the level of activation of the same caspases. These proteases are 

responsible for morphological and biochemical alteration typical of apoptosis, 

and for the rapid clearance of the dying cell (Leist and Jäättelä, 2001; Riedl and 

Salvesen, 2007; Ow et al., 2008). 

 

1.2.1. The extrinsic apoptotic pathway 

The extrinsic pathway involves the activation of receptors in the 

membrane through binding of ligands that trigger a proteolytic cascade 

responsible for the characteristic morphological features of apoptosis. Surface 

death receptors (DR) are characterized by the presence of an intracellular death 

domain (DD), a stretch of approximately 80 amino acids (Boldin et al., 1995; 

Chinnaiyan et al., 1995). To date, six human DD-containing receptors have 

been identified: TNF-R1 (p55/p60 TNF-R), CD95 (Fas, APO- 1), death receptor 



Introduction 

5 
 

3 (DR3, TRAMP), TRAIL-R1 (DR4), TRAIL-R2 (DR5), and DR6 (TNFRSF21). 

These receptors are activated by their respective ligands: TNF, CD95L 

(FasL/APO-1L), TL1A, TRAIL (Apo2L) (Friesen et al., 1996). The DD plays a 

crucial role in signaling induced by these receptors, as it enables the 

recruitment of proteins that themselves contain DDs (Ashkenazi and Dixit, 

1999).  

The most prominent and decisive integrators of death receptor signaling 

are the proteins known as Fas-associated DD (FADD or MORT1) and TNFR-

associated DD (TRADD) (Ashkenazi and Dixit, 1998; Yeh et al., 1998). FADD 

and TRADD do not exert any enzymatic function, but form a bridge between 

proteins, in this case between receptor and signaling effector proteins. These 

have their own DD and are recruited to the DD of the activated death receptors. 

These adapter proteins also have a death-effector domain (DED), with which 

the DED of procaspase-8 can interact to form the Death Inducing Signaling 

Complex (DISC). The DISC is formed by FADD and caspase-8. Homotypic 

interaction of the DEDs of FADD and caspase-8 (Caspase-8 is present in the 

cytosol as a proenzyme) results in dimerization of caspase- 8, inducing a 

conformational change that allows caspase-8 to become enzymatically active. It 

then proteolytically activates the downstream effector caspase-3 (Leist and 

Jäättelä, 2001). The process leading to the activation of caspase-8 it is identical 

to that of caspase-10. This pathway is illustrated Figure 1. 

The proteolysis of effector caspase substrates is responsible for the 

characteristic biochemical and morphological hallmarks of apoptosis, 

proteolysis of vital cellular proteins, including structural components, but also of 

other proteins such as the inhibitor of caspase-activated DNAse, and cleavage 

of nuclear DNA (Ding and Yin, 2004).  
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Figure 1  - Schematic representation the extrinsic apoptotic pathway. Binding of CD95 or 

TRAIL to their respective receptors leads to receptor trimerization and formation of DISC. The 

FADD is recruited to the DISC where the DD of both interact. Subsequently, procaspases -8 

and -10 are recruited to interact with FADD via the DEDs. cFLIP can compete with caspase-8 

for binding to FADD. DISC-activated caspase-8 and -10 starts a caspase cascade by cleavage 

of caspase-3, and also initiate the mitochondrial apoptosis pathway (adapted from Kantari 

and Walczak, 2011). 

 

DISC can be inhibited by the antiapoptotic factor FLICE-like inhibitory 

protein (cFLIP), a caspase-8 inhibitor, leading to inactivation of DISC 

(Hengartner, 1997; Lawen, 2003). cFLIP is structurally similar to caspase-8 and 

-10, and contains two N-terminal DEDs. However, unlike cysteine proteases, it 

lacks a cysteine in what otherwise would be its active center, and thus cFLIP 

lacks enzymatic activity as a protease. Three different splice variants of cFLIP 

may exert apotosis inhibitory effects: cFLIPL, cFLIPS, and cFLIPR (Irmler el al, 

1997; Van Parijs et al, 1999). 

 

1.2.2. The intrinsic apoptotic pathway  

The intrinsic pathway is activated mainly by non-receptor stimuli, such as 

DNA damage, endoplasmic reticulum stress, metabolic stress, UV radiation or 
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growth-factor deprivation. As mentioned, the central event in the intrinsic 

pathway is mitochondrial outer membrane permeabilization (MOMP), which 

allows the release of proapoptotic proteins from the mitochondrial 

intermembrane space into the cytosol, such as cytochrome c (cyt c), Apoptosis-

inducing factor (AIF), Second Mitochondria-derived Activator of 

Caspases/Direct Inhibitor of Apoptosis Protein (IAP)-Binding Protein With Low 

Pi (Smac/Diablo) and High Temperature Requirement protein A2 (HtrA2/Omi) 

(Gulbins et al., 2003). In the cytosol, cyt c binds to apoptotic protease-activating 

factor-1 (Apaf-1) and ATP/dATP, forming a large complex known as the 

apoptosome, a molecular platform which promotes the proteolytic maturation of 

caspase-9 (Cain et al., 2002). When caspase-9 is activated, it activates 

caspases-3 and -7. These are subject to a number of controls, for example from 

proteins that bind and inactivate caspases (Inhibitors of Apoptosis, IAPS). 

Smac/DIABLO and HtrA2/Omi relieve caspase inhibition.  

 

Figure 2 - Schematic representation, of two signaling pathways leading to apoptosis 

(extrinsic and intrinsic pathways) in mammalian cells (Reed and Green, 2011). 

 

The intrinsic and extrinsic pathways are not completely independent; in 

some cells activation of caspase 8 results in activation of the mitochondrial 
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pathway (figure 2). In this case, among other things, caspase 8 cleaves the 

BH3-only protein BID, generating a truncated fragment known as truncated BID 

(tBID) that can permeabilize the mitochondrion resulting in MOMP (Favaloro et 

al., 2012). 

 

1.2.2.1. The BCL-2 family 

BCL-2 (B-cell leukemia/lymphoma-2) was the first protein of this family to 

be discovered and thus lends its name to the entire protein family. Since then, 

all the proteins of the family that have been discovered are related to BCL-2 by 

sequence homology, containing at least one BCL-2 homology (BH) domain in 

their structure as well as an involvement in apoptosis control (Tsujimoto, 1998). 

This family contains proteins that induce or prevent MOMP and consequently 

apoptosis. It is sub-divided into anti-apoptotic proteins (which contain all four BH 

domains (BCL-2, BCL-XL, BCL-W, MCL-1, and A1)), pro-apoptotic multidomain 

proteins (BAX and BAK) and pro-apoptotic BH3-only proteins (BID, PUMA, 

NOXA, BIM, BAD, and BIK), represented in figure 4 (these are called BH3-only 

proteins because of  Bcl-2 homology regions, they share only the third) 

(Fletcher and Huang, 2006; Willis et al, 2007; Youle and Strasser, 2008; 

Brenner and Mak, 2009). 

 

 

 

 

 

 

 

Figure 3 - Bcl-2 family members 

can be subdivided into three categories 

according to their function and structure: 

anti-apoptotic, such as BCL-2, BCL-XL, 

BCL-W, MCL-1, and A1 (BFL-1); pro-

apoptotic, such as BAX, BAK, and BOK 

(Mtd); and the BH3-only proteins, Bid, 

Bad, and Bim (Gross A. et al, 1999). 



Introduction 

9 
 

Pro-apoptotic proteins, BAX and BAK, are essential effectors of apoptotic 

signaling in the mitochondrion, when their activated form induces MOMP, which 

allows the release of IMS proteins (Mcdonnell et al., 1999). The main steps for 

BAX activation are translocation to the mitochondrion, conformational change, 

insertion into the mitochondrial membrane, oligomerization and pore formation. 

To date, two models describing the interaction between BCL-2 proteins that 

lead to BAX and BAK activation have been reported: in the indirect model, BAX 

and BAK are sequestered and held inactive by anti-apoptotic BCL-2 proteins. 

The binding of pro-apoptotic BH3-only proteins to these anti-apoptotic BCL-2 

proteins triggers the release of BAX and BAK. The direct model proposes that 

BAX and BAK are activated by direct binding of pro-apoptotic BH3-only 

proteins, called activators, such as BID, BIM or PUMA (Willis et al., 2007; 

Brenner and Mak, 2009). BID is activated by proteolytic cleavage to generate t-

BID, which translocates to mitochondria (Mcdonnell et al., 1999; Yin, 2006; 

Zaltsman et al., 2010).  BIM and BAD are activated by dephosphorylation, 

whereas PUMA and NOXA are transcriptionally regulated by p53 (Youle and 

Strasser, 2008). Studies using models of combined deletion of BAX and BAK 

show that there is no MOMP in the absence of both proteins. 

Expression of the anti-apoptotic BCL-2 family proteins allows the cell to 

survive a wide variety of attacks that might induce apoptosis. These proteins 

inhibit cell death by binding to pro-apoptotic proteins inhibiting the processes 

described previously. Perhaps their most important function is to bind and 

sequester the activator BH3-only proteins to prevent their interaction and 

activation of BAX and BAK (Letai et al., 2002). The fate of the cell is therefore 

determined by the balance between the intracellular levels and/or activities of 

the anti-apoptotic BCL-2 family members and the pro-apoptotic BH3-only 

proteins (Brenner and Mak, 2009). 

 

1.2.2.2. Pro-apoptotic proteins released from mitoc hondria 

Mitochondria are essential organelles that exist in dynamic networks, and 

often change their localization and shape during stress conditions (Giannattasio 
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et al., 2005). The action of pro-apoptotic proteins, BAX and BAK, when in the 

activated form induces MOMP, which allows the release of IMS proteins, such 

as cyt c, Smac/DIABLO, HtrA2/Omi and AIF to the cytosol (Gulbins et al., 2003; 

Armstrong, 2006). 

Cyt c was the first mitochondrial protein with an apoptotic function 

identified, and established the general importance of mitochondria in apoptosis, 

represented schematicly in figure 5 (Liu et al., 1996; Cai et al., 1998). When in 

the cytosol, cyt c binds to Apaf-1 and forms the apoptosome together with 

deoxyadenosine triphosphate (dATP) (Zou et al., 1997). The apoptosome 

activates caspase-9, (Ow et al., 2008) which mediates activation of caspase-3 

and -7 and the execution of apoptosis (Zou et al., 1999; Acehan et al., 2002). 

 
Figure 4 - Schematic representation of the actions of BAX and BAK on the OMM. These 

cause the permeability of the mitochondria membrane and induce the release of the proteins 

from the mitochondrial intermembrane space. 

 

Other proteins that accompany cyt c during MOMP include SMAC/Diablo 

and Omi/HtrA2, both of which assist in caspase activation by antagonizing IAPs. 

This will be discussed in detail in the next section (Wu et al., 2000; Du et al., 

2000; Verhagen et al., 2000). 

AIF exists in the IMM and appears to play a role in mitochondrial complex I 

assembly or function. Once MOMP has occurred in response to apoptotic 

stimuli, AIF is also released from mitochondria and is translocated to the 

nucleus. When translocated into the nucleus, AIF induces DNA fragmentation 
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and chromatin condensation (Candé et al., 2002). The contribution of AIF to cell 

death depends on the cell-type and apoptotic stimulus, and is only seen when 

caspases are inhibited or not activated, because it functions in a caspase-

independent manner (Wissing et al., 2004). 

 

1.2.2.3. Caspases  

In 1992, two groups identified a human protease responsible for activating 

the precursor of interleukin-1β (interleukin-1β converting enzyme) (ICE). Later, 

it was found that one of the key genes that regulate apoptosis in C. elegans 

(CED3) shows homology with ICE (Alnemri et al., 1996). These publications 

initiated a search over the ensuing years for mammalian ICE homologs that 

should govern cell death. Today these proteases are known as caspases 

(standing for cysteine dependent aspartate-specific protease) (Thornberry et al., 

1992). 

Of the eleven caspases in humans, seven are known to be involved in 

apoptosis, three are involved primarily in pro-inflammatory cytokine activation 

and one is involved in keratinocyte differentiation, figure 5. Thus caspases can 

be divided into initiators caspases (caspases-2, -8, -9 and -10) and 

executioners caspases (caspases-3, -6, and -7) (Budihardjo et al., 1999).  

 
Figure 5 - Schematic representation of human caspases: activation, specificity, and 

regulation (Pop and Salvesen, 2009). 
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Caspase-9 is activated by the apoptosome, which then activates caspase-

3 and -7. These proteases are responsible for the cleavage of many cellular 

proteins, which results in the phenotypic hallmarks of apoptosis (Stennicke and 

Salvesen, 1998). These hallmarks include cutting of DNA into small fragments, 

condensation of chromatin in the nucleus, dissipation of the mitochondrial 

membrane potential, and redistribution of phosphatidylserine (Liu et al., 1997; 

Enari et al., 1998). 

Cells also contain natural inhibitors of caspases. IAPs were first identified 

in baculovirus but were subsequently found in human cells (XIAP, c-IAP1, and 

c-IAP2) (Deveraux and Reed, 1999; Miller, 1999). IAPs are a family of 

apoptosis-suppressing proteins that contain at least one copy of a conserved 

domain called baculoviral IAP repeat (BIR), which represents the defining 

characteristic of the family (LaCasse et al., 1998; Miller, 1999). This family of 

proteins inhibits caspases directly, blocking apoptosis. The best-characterized 

endogenous caspase inhibitor is the X-linked inhibitor of apoptosis protein 

(XIAP) (Deveraux el al., 1999). Activated caspases-3, -7 and -9 are potently 

inhibited by XIAP (figure 6) (Fuentes-Prior and Salvesen, 2004; Salvesen and 

Riedl, 2007; Ow et al., 2008), but this inhibition can be relieved by the action of 

IAP antagonists, like SMAC/Diablo and serine protease HtrA2/Omi, through the 

IAP-binding motif (IBM) that disrupts IAP (Suzuki et al., 2004; Brenner and Mak, 

2009). Thus XIAP operates both within the intrinsic pathway, downstream of 

Apaf-1 and at the point of convergence of several apoptosis pathways, where 

caspases-3 and -7 operate as executioners of the cell death program. In cells 

that express high levels of XIAP, direct activation of caspase-3 by caspase-8 is 

blocked so that these cells require the mitochondrial changes induced by 

cleavage of BID and its pro-apoptotic activity. 
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Figure 6 - Events that occur downstream of mitochondrial outer membrane 

permeabilization and their effects on cytosolic components. 

 

1.3. Apoptosis and diseases  

Based on its role in maintaining tissue homeostasis, it is not surprising that 

alterations in apoptosis play an important role in diseases development. 

Alterations in the upstream regulators of these pathways are the most common 

alterations in cancer cells. Disruption of the balance between cell death and 

proliferation is considered a major factor in the growth of tumors or their 

regression during therapy. This balance can be disrupted in two ways: by 

increasing proliferation and/or decreasing apoptosis.  

A variety of alterations in the different BCL-2 family members have been 

described, illustrating the importance of these proteins in cancer development. 

BCL-2 has been found overexpressed in a variety of cancers. BAX and BAK 

mutations are frequent in tumours. Various BH3 protein alterations have also 

been implicated in cancer development; as an example, Bid-deficient mice are 

prone to develop a form of chronic myelomonocytic leukemia (Zinkel et al., 

2005), as well as diffuse large B-cell lymphoma. The possibility to target Bcl-2 

family member proteins to induce apoptosis in cancer cells has been studied, 

and particular attention has been given to BH3 only proteins in the design of 

drugs that would mimic their pro-apoptotic functions. Some of these are 

currently being tested in phase I/II clinical trials (Esposti, 2010; Placzek et al., 

2010; Kelly and Strasser, 2011). Antisense oligonucleotides targeting BCL-2 
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have also been developed and in one case have reached the phase III clinical 

trial for patients with chronic lymphocytic leukemia. 

Caspases are the final effectors of both extrinsic and intrinsic apoptosis; 

interfering with their function impairs these pathways, leading to a survival 

advantage for cancer cells. Caspase alterations are frequent in a variety of 

tumours (Olsson and Zhivotovsky, 2011). The altered caspase function can also 

be a consequence of modified expression of their specific inhibitors. As an 

example, cFLIP which competes with caspase 8 for FADD binding, thus 

preventing its activation, is often elevated in tumours, while its down-regulation 

can sensitize tumour cells to therapy. Among caspase inhibitors, an important 

role is played by IAPs. Indeed alterations of IAPs also are found in a variety of 

human cancers (Favaloro et al., 2012). 

 

1.4. The S. cerevisiae model 

In 1996, S. cerevisiae became the first eukaryotic organism to have a fully 

sequenced genome (Dujon, 1996; Goffeau et al., 1996), thus leading to the 

creation of several widely accessible databases. After the complete sequencing 

of the genome, a search for homologies in databases to uncover potential 

regulators of apoptosis was performed. It was questioned why yeast, an 

organism composed of a single cell, would undergo a suicide program. Several 

authors argue that despite the fact that yeast is a unicellular organism, 

apoptosis could provide an evolutionary advantage at the colony level.  Yeasts 

in the wild exist in multicellular colonies and not as individuals, in which 

apoptosis may be a mechanism that saves and releases nutrients to the 

healthier cells, and apoptosis is like a mechanism of self-preservation of the 

colony as a whole (Gourlay and Ayscough, 2006). So the possibility of a single 

cell organism to undergo a programmed death program is becoming widely 

accepted. Indeed, during the last 13 years, many studies have reported the 

existence of programmed cell death in yeast.  
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The recognition of a mitochondria-mediated apoptotic pathway in yeast, 

showing similarities with the mammalian intrinsic pathway was of particular 

interest. S. cerevisiae has characteristics like a short generation time (90-120 

min), simple and inexpensive culturing, ease and safety of handling, ability to 

grow at different temperatures, easy manipulation of mitochondrial respiration, a 

good characterization of many of its genes (thanks to its responsiveness 

deletion genes), gene marking or mutations and easy genetic manipulation.  

Another very important characteristic is its distinctive ability to survive without 

mitochondrial respiration, which makes them a powerful model to study the 

involvement of mitochondria in cell death (Pereira et al., 2008). Because of 

these and other advantageous features, S. cerevisiae proved to be a valuable 

model organism in which several intracellular processes could be characterized 

in great detail. Thus the S. cerevisiae model has become one of the most 

studied models systems to many researchers in the field of molecular and 

cellular biology. 

 

1.5. Apoptosis in the yeast S. cerevisiae 

The apoptosis pathways described previously are from vertebrate 

organisms; however, other pathways with homologous proteins exist in 

invertebrates. S. cerevisiae PCD shares many morphological and biochemical 

features with apoptosis in mammalian cells, although there are some 

differences (figure 7). The first observation that there is apoptosis mechanism in 

S. cerevisiae was made in the Cdc48S565G mutant, a temperature-sensitive 

mutant. When incubated above the restrictive temperature, these cells showed 

an apoptotic phenotype with characteristics like DNA damage, 

phosphatidylserine exposure on the outer leaflet of the plasma membrane, 

chromatin condensation and fragmentation, ROS production and release of cyt 

c (Madeo et al., 1997; Braun et al., 2006). Several genetic studies contributed to 

understand the mechanisms of cell death in yeast. Some genes involved in 

metazoan cell death have been confirmed as apoptotic regulators in yeast. Key 

events of apoptosis in mammalian cells also occur in S. cerevisiae; for example, 

cyt c is also translocated from yeast mitochondria into the cytosol. The yeast 
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genome also harbors a gene, called NMA111, homologous to vertebrate 

HtrA2/Omi mitochondrial serine protease (Vande et al., 2008). Nuc1p is the 

yeast homolog of metazoan endonuclease G (EndoG), exerting its pro-death 

action upon exit from mitochondria and translocation to the nucleus (Büttner et 

al., 2007). The AIF is a highly conserved protein from yeast to human, which 

after apoptosis induction translocates to the nucleus, where it participates in 

apoptotic chromatinolysis.  

As in mammalian cells, a IAP has been identified in yeast, termed Bir1p 

(Uren et al., 1999). Yeast orthologues of mammalian ANT and VDAC have also 

been identified, AAC1/2/3 and POR1, respectively (Wissing et al., 2004; 

Ludovico et al., 2005), as has a nuclease (TAT-D) that is apparently involved in 

DNA degradation during apoptosis. Recently, yeast homologues of 

mitochondrial fission factors such as Dnm1p (Drp-1 homologue), Mdv1/Net2 

and Fis1p were reported to also regulate yeast PCD. Yeast suicide proteins 1, - 

2 (Ysp1p and Ysp2p), are also required for mitochondrial fragmentation induced 

by PCD (Pozniakovsky et al., 2005; Sokolov et al., 2006). Mitochondrial 

fragmentation has been described in yeast, after acetic acid treatment, leading 

to the formation of the typical punctate pattern (Fannjiang et al., 2004). Yeast 

internal NADH dehydrogenase (NDI1) is the homolog of metazoan AMID, and 

seems to also be involved in apoptosis. 

The yeast protein Yor197w, with structural homology with mammalian 

caspases, is called Yeast Caspase-1 (YCA1) (Madeo et al., 2002). 

Overexpression of YCA1 in combination with oxidative stress efficiently 

triggered yeast cell death, accompanied by common apoptotic features. YCA1 

belongs to the family of metacaspases, proteases that have a caspase-like fold 

(Uren et al., 2000). Yca1p overexpression enhances apoptotic-like death of the 

cells, whereas its knockout reduces cell death in response to several stimuli 

(Madeo et al., 2002b; Silva et al., 2005). 

Regulators such as Apaf-1 and most members of the Bcl-2 family of 

proteins seem to be absent in yeast (Jin and Reed, 2002; Leist and Jäättelä, 

2001). Moreover, only a yeast BH3-only protein was identified so far, Ybh3p. 

Ybh3p translocates to the mitochondria and is capable of mediating the 
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mitochondrial apoptosis pathway (Büttner et al., 2011). Although the yeast 

genome does not appear to contain very evident orthologs of the mammalian 

BCL-2 family genes, expression of pro-apoptotic BAX in yeast leads to 

apoptotic cell death (Ligr et al., 1998; Priault et al., 1999). This can be 

prevented by co-expression of antiapoptotic BCL-2 and BCL-XL, suggesting 

that the function of Bcl-2 family proteins is potentially conserved in yeast and 

that it can function in yeast in an analogous manner to its role in mammals 

(Hanada et al., 1995).  

In addition to the release of mitochondrial proteins, dissipation of the 

mitochondrial membrane potential also causes the loss of cell homeostasis via 

generation of reactive oxygen species (ROS). In S. cerevisiae, ROS 

accumulation is evident in almost every apoptotic scenario. Various studies 

have identified mitochondria as the major site of ROS production, and implicate 

ROS as a component of the apoptotic cascade. A Rho0 strain (lacking 

mitochondrial DNA) has been shown to display an increased resistance to many 

apoptotic stimuli. For some stimuli, the higher resistance was accompanied by a 

decrease in ROS levels (Pereira et al., 2008). Therefore, like in mammalian 

cells, mitochondria in yeasts play a key role in the apoptotic process. 

Several assays for apoptosis detection are routinely used in yeast, and 

include assessment of viability (CFU), ROS accumulation (DHE), cell integrity 

(Propidium iodide (PI) staining), chromatin condensation (DAPI staining), DNA 

fragmentation (TUNEL assay -Terminal dUTP nick-end labeling) and exposure 

of phosphatidylserine at the outer surface of the plasma membrane (Annexin-V 

staining) (Carmona-Gutierrez et al., 2010).  
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Figure 7 - C omponents of apoptotic pathways are conserved from yeast to mammals 

(Reed and Green, 2011). 

  

1.6. Acetic Acid 

Apoptosis in yeast can be induced by a variety of compounds and 

conditions, including hydrogen peroxide, acetic acid, amiodarone, hyperosmotic 

stress, and aging. Ludovico et al., in 2001, showed that acetic acid in low 

concentrations (20–80 mM) induces PCD in S. cerevisiae cells, which display 

chromatin condensation and DNA fragmentation. At higher concentrations 

(above 120 mM), acetic acid induces cell morphological changes typical of 

necrosis (Ludovico et al., 2001). Later in 2002, Ludovico and collaborators 

showed a mitochondria-dependent pathway implicated in cell death induced by 

acetic acid. Translocation of cyt c to the cytosol and ROS production was also 

observed in yeast cells treated with acetic acid (Ludovico et al., 2002).  

When an inhibitory concentration of a weak acid is added to an 

exponentially growing yeast culture, this acid enters the cell in the undissociated 
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form by simple diffusion. In a growth medium with a pH equal or below pKa, the 

acetic acid (pKa=4.7) in the undissociated form (RCOOH) prevails. An 

undissociated form enters the yeast cells by simple diffusion through the plasma 

membrane (Casal et al., 1996). When inside the cell (where the pH is usually 

close to neutrality), the chemical dissociation of the weak acid occurs, leading to 

the release of protons (H+) and of the respective counter ion (RCOO-) and 

accumulation of protons and acetate in the cell interior figure 8. The S. 

cerevisiae response to weak acids depends on the side chain of R group (R-

COOH) (Mira et al, 2010).   

 

Figure 8 - R ecovery of intracellular pH requires stimulation of the activity of plasma 

membrane, which couples ATP hydrolysis with proton extrusion. 

 

This undissociated form of the acid, due to its electric charge, is not able 

to cross the hydrophobic lipid plasma membrane bilayer and accumulates in the 

cell interior. This will lead to intracellular acidification, anion accumulation and 

inhibition of cell metabolic activity. It also has an impact on the lipid organization 

and function of cellular membranes, consistent with its strong propensity to 

become more inhibitory as it becomes more hydrophobic (Stratford and Anslow 

1996; Piper et al., 1998). 

It has also been described that acetic acid also enters the cell in the 

undissociated form by simple diffusion, mediated by the aquaglyceroporin 
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Fps1p. Studies demonstrated that deletion of FPS1 (gene that encodes an 

aquaglyceroporin channel) abolishes the accumulation of undissociated acetic 

acid in the cell and leads to resistance to acetic acid (Mollapour and Piper, 

2007). The recovery of intracellular pH requires the stimulation of the activity of 

plasma membrane Pma1p (PM-H+-ATPase), which couples ATP hydrolysis 

with proton extrusion, figure 9. Acetic acid has been extensively used as an 

inducer of apoptosis. In yeast, acetic acid-induced apoptosis is among the best-

characterized apoptotic pathways. 

 

Figure 9 - E ntry of undissociated acid into the cell through the Fps1p channel 

(Mollapour and Piper, 2008). 

 

1.7. Genetic expression of transcription factors in volved in 

apoptosis 

To date, most studies regarding yeast apoptosis have focused on the 

identification of apoptotic markers. However, little is known about the signal 

transduction pathways that induce apoptosis. Cells possess a network of signal 

transduction pathways that enable them to respond to different stimuli, which 

implies strong changes in gene expression. Signal integration occurs at several 

levels of transduction, including transcriptional control of gene expression, 

translational regulation, and posttranslational modifications.  
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Initiation of transcription is arguably the most important control point to 

regulate gene expression. Transcription initiation begins with recruitment of 

RNA polymerase to a specific locus upstream of the gene known as the 

promoter. Transcription factors (TFs) are proteins that bind to the promoter and 

can activate or repress transcription depending where they bind relatively to the 

transcription start site of the target gene, and are thus classified as acti

et al., 2009). This regulation of transcription initiation can 

activate or repress the transcription of target genes typically in response to an 

environmental or cellular trigger (Browning et al., 2004). 

Various studies in S. cerevisiae have led to the identification of genes which are 

differentially induced in response to different stresses. Representation network of transcriptional regulators 

binding to genes encoding other transcriptional regulators. Lines with arrows depict binding o

to the gene encoding another regulator. Circles with arrows depict binding of a regulator to the promoter 

region of its own gene. (A) Circle divided into functional categories based on the functions of the target 
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ukaryotes (Lee et al, 2002). Despite these similarities, 

transcription initiation in eukaryotes is considerably more complex, and is 
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(Kornberg, 1974; Richmond et al., 1984). Prokaryotic repressor proteins bind

promoter DNA sequences and inhibit transcription by steric hindrance of RNA 
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polymerase. In eukaryotic cells, repression does not occur simply by binding of 

repressor proteins. Eukaryotic DNA is tightly wrapped around histones, forming 

nucleosomes, the basic units of chromatin, which becomes limiting for the 

binding of TFs (Richmond et al., 2003). Chromatin modifier complexes are 

required that either displace or evict nucleosomes or covalently modify histones 

to loosen their interactions with DNA (Galeote et al., 2007). TFs overcome the 

chromatin barrier to access DNA through interactions with a host of 

coregulators that modify the chromatin state. 

It is believed that transcriptional activity is in some cases correlated with 

histone acetylation. Thus, chromatin modifiers can also function as co-

repressors by effecting a more closed chromatin conformation. Given the 

drastic changes in the integrity of DNA and the state of chromatin compaction 

during apoptosis, histone modifications may play a functional role in promoting 

these changes. Methylation of sequences in promoter regions is commonly 

observed during tumor progression to inactivate genes whose products are 

important for processes such as DNA repair, cell-cycle regulation, cell adhesion, 

angiogenesis and apoptosis (Miranda et al., 2007). The stress transcription 

factors are interesting models, and their characterization can lead to the 

identification of new components of stress signaling pathways in yeast. 

 

1.7.1. The transcription factor SFL1p 

In the yeast S. cerevisiae, the global transcriptional regulator Ssn6 (Cyc8)-

Tup1 was the first transcriptional co-repressor to be described (Keleher et al., 

1992; Tzamarias and Struhl, 1994). Ssn6(Cyc8)-Tup1 is recruited to promoters 

via interactions with DNA-binding proteins, each of which represses genes in a 

specific biological pathway and inhibits the transcription of a diverse set of 

genes under a variety of stress conditions (Keleher et al., 1992). This complex 

is composed of one Cyc8 subunit and four Tup1 subunits (Tzamarias et al., 

1994). Tup1 bears the transcriptional repression activity of the co-repressor 

complex, exerting its function via two distinct mechanisms. One model suggests 

that Tup1 controls nucleosome positioning so as to mask DNA targets for 
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activators or transcription factors (Grunstein, 1990; Edmondson et al., 1996; 

Watson et al., 2000). A second model suggests that Tup1 directly inhibits the 

function by interacting with subunits of the RNA polymerase II holoenzyme, 

such as Sin4, Srb10/11, Med3, Hrs1 and Srb7 (Kuchin et al., 1998; Gromoller                                                                                                                              

2000; Papamichos-Chronakis et al., 2000). Studies show that mutations in 

components of Pol II holoenzyme alleviate the repression by Tup1 (Balciunas 

and Ronne, 1995).   

Sfl1p was first described as a transcriptional repressor but it can also act 

as an activator; it is, involved in repression of flocculation-related genes, and 

activation of stress responsive genes. Steven Conlan and Dimitris Tzamarias in 

2001 showed that Sfl1p interacts directly with Ssn6p. In vivo repression data 

suggest that Sfl1p inhibits transcription by recruiting Ssn6p-Tup1p via a specific 

domain in the Sfl1 protein. Components of specific RNA polymerase II sub-

complexes, Sin4p and Srb10p, are necessary for the Ssn6p-Tup1p repression 

activity of Sfl1 function. Sfl1p interacts with Tpk2p, a cAMP-dependent subunit 

that negatively regulates Slf1p function. This interaction of Sfl1p with DNA is 

thus regulated by Tpk2p, which is involved in the regulation of Sfl1p recruitment 

to some Ssn6p-regulated genes (Conlan et al., 2001). 

 

1.7.1.1. Regulation of SFL1p 

In eukaryotic cells, the secondary messenger cyclic adenosine 

monophosphate (cAMP) is produced in response to extracellular stimuli 

(D'Souza and Heitman, 2001). The central role of this signaling pathway in S. 

cerevisiae is nutrient sensing and regulation of diverse biological processes 

including growth, metabolism, stress resistance, and entry into either meiosis or 

pseudohyphal diferentiation (D'Souza and Heitman, 2001). The cyclic AMP-

dependent signaling transduction pathway is a multienzyme cascade that 

regulates diverse biological processes. Specific connection of appropriate G-

protein receptors followed by adenylate cyclase activation leads to the 

production of cyclic AMP. Cyclic AMP then binds to cytoplasmic protein kinase 
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A (PKA), which consists of a single regulatory subunit encoded by the BCY1 

gene and three catalytic subunits, Tpk1p, Tpk2p and Tpk3p, figure 11. 

 
Figure 11 - Schematic representation Sfl1p repression by isoform Tpk2p. 

 

When cAMP levels increase, it binds to the regulatory subunits and 

induces a conformational change that causes dissociation of the tetramer into 

dimeric regulatory subunits. These catalytic subunits are enzymatically active 

and phosphorylate target substrates that include metabolic enzymes and 

transcription factors (Sfl1p), which elicit alterations in cell cycle progression and 

stress responses (D'Souza and Heitman, 2001). Tpk1p has been implicated in 

the branched chain amino acid biosynthesis pathway, mitochondrial iron 

homeostasis and mtDNA stability. Tpk2p has been shown to influence iron 

uptake, trehalase synthesis, water homeostasis, pseudohyphal growth and 

negative regulation of Sfl1 protein (figure 11). Tpk3p is a regulator of 

mitochondrial function. Its overexpression has been shown to inhibit growth, 

and deletion of TPK3 is sufficient to prevent the production of ROS, as this PKA 

subunit regulates mitochondrial function (Leadsham et al., 2010).  

Previous studies in yeast have established links between Ras signaling 

and mitochondrial function, via cAMP/PKA. The cAMP pathway is the most 

explored signaling pathway controlled by Ras proteins; it affects a large number 

of genes, some of which are important for the defence against oxidative stress. 

In yeast, Ras/cAMP/PKA signaling also controls cellular processes that include 
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cell growth and proliferation, making this pathway a good candidate to integrate 

environmental signaling with mitochondrial regulation (Hlavata et al., 2008). 

 

1.7.1.2. Sfl1p homology in mammals 

Sfl1p encodes a 767-amino acid transcription factor, which has two 

domains significantly homologous to Myc protein (Fujita et al., 1989). The proto-

oncogene c-Myc encodes a transcription factor that plays a biological role 

through the modulation of genes in multiple cellular processes like cell growth, 

proliferation, differentiation and apoptosis (Askew et al,. 1991; Evan et al., 

1992). Deregulated expression of this oncogene is associated with a wide range 

of human cancers. This deregulated expression causes uncontrolled cell 

proliferation, which characterizes most, if not all, human cancer cells (Klefstrom 

et al., 2002). 

Expression of c-MYC sensitizes cells to mechanistically diverse pro-

apoptotic insults, including DNA damage, death receptor signaling, hypoxia, 

genotoxic stress, and nutrient deprivation (Askew et al., 1991; Evan et al., 1992; 

Klefstrom et al., 1994; Alarcon et al., 1996; Hueber et al., 1997). There are two 

discrete pro-apoptotic effector pathways mediating this sensitization: 

stabilization of p53 through the ARF (Active Response Factor)/MDM2 (Mouse 

Double Minute-2) pathway, which serves as a sentinel for genotoxic damage, 

and release of cyt c from mitochondria into the cytosol, possibly through 

activation of the pro-apoptotic molecule BAX by a mechanism that is 

independent of both Fas-FasL and DNA damage pro-apoptotic pathways (figure 

12) (Juin et al., 1999). Studies investigated a possible physical interaction 

between c-Myc protein and the Bax promoter using an immunoprecipitation 

assay. It was found that c-MYC strongly binds to the BAX promoter region, 

contributing to BAX expression. c-MYC is a transactivator of BAX, based on the 

presence of four CACGTG motifs located in the BAX gene (Mitchell et al., 

2000). Activated BAX within the mitochondrial membrane leads to apoptosis, 

through the mechanisms described previously. It remains to be established if 

there are other mitochondrial factors, such as AIF, released during c-MYC-

induced apoptosis, and their involvement in this process. 
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Figure 12 - Expression of c-MYC triggers two discrete proapoptotic effector pathways: 

the stabilization of p53 through the ARF/MDM2 pathway, which serves as a sentinel for 

genotoxic damage, and the triggers the release of cyt c from mitochondria into the cytosol, 

possibly through activation of the expression of the pro-apoptotic molecule BAX (Pelengaris et 

al., 2002). 

 

Survival signals, which serve to block c-MYC, include signaling via IGF1R 

(Insulin-like Growth Factor-1 Receptor). Activation of the IGF-1 receptor triggers 

a survival-signal, routing through Ras, PI3-kinase, serine/threonine kinase 

PKB/Akt and subsequent phosphorylation of the pro-apoptotic protein BAD.  

Phosphorylated BAD is sequestered and inactivated by cytosolic 14-3-3 

proteins. Functionally, this inactivates BAD, which cannot antagonize BCL-2 

(Kauffmann-Zeh et al., 1997; Evan and Littlewood 1998). 

 

1.7.2. The transcription factor Rlm1p 

Four essential mitogen-activated protein kinase (MAPK) cascades 

respond to different external signals in yeast (figure 13). The mating pathway is 

activated by pheromones and induces cell-cycle arrest and the morphological 
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changes required for mating (Gustin et al., 1998). The Kss1 vegetative growth 

pathway may be activated by cell wall stress or changes in osmolarity (Lee and 

Elion, 1999; Cullen et al., 2000). The invasive growth pathway is activated by 

starvation. The high osmolarity glycerol (HOG) pathway increases intracellular 

glycerol levels in response to hypertonic stress. The cell wall integrity pathway 

(CWI) is activated by hypotonic stress, heat shock, or impaired cell wall 

synthesis. 

 
Figure 13 - Overview of the MAPKinase pathways in yeast (Qi M. and Elion EA. 2005). 

 

The cell wall of S. cerevisiae is an external envelope that protects it 

against different environmental conditions. The adaptive response of yeast to 

cell wall stress is mainly mediated by the CWI pathway (Levin et al., 2005; 

Fuchs and Mylonakis, 2009; Kim and Levin, 2011).  

Two membrane proteins, namely Mid2 and Wsc1, act as the main sensors 

of the CWI pathway. These, when activated, interact with the guanine 

nucleotide exchange factor Rom2, activating the GTPase Rho1, which then 

interacts and activates Pkc1. Pkc1 then activates a downstream MAP kinase 
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cascade comprising three protein kinases, MAPKKK (Bck1), MAPKK (Mkk1/ 

Mkk2), and finally the MAPK (Mpk1/Slt2) (figure 14) (Kim and Levin, 2011). 

 

 

 

 

 

 

 

 

 

 

Mpk1/Slt2 targets the transcription factor complex SBF (SCB-binding 

factor) and Rlm1p. SBF is a complex of two proteins, Swi4 and Swi6, which is 

involved in the regulation of the yeast cell cycle and polarized growth, especially 

during the transition from G1 to S phase, via transcriptional activation of genes 

such as CLN1, CLN2, PCL1 and PCL2 (Fong et al., 2008; Chiu et al., 2011). 

Rlm1p is a MADS-box transcription factor that promotes the expression of cell 

wall maintenance proteins (Watanabe et al., 1997; Heinisch et al., 1999; Jung et 

al., 2002; Garcia et al., 2004; Fuchs and Mylonakis, 2009). Thus the final 

consequence of the activation of the CWI pathway by cell wall stress is the 

induction of an adaptive transcriptional response (Jung and Levin, 1999; 

Lagorce et al., 2003; García et al., 2009). The elements of the yeast 

transcriptional machinery working in concert with Rlm1p for transcriptional 

activation upon cell wall stress and the molecular mechanisms involved in this 

process are completely unknown. Under cell wall stress conditions, Slt2p 

phosphorylates Rlm1p and the SWI/SNF recruited complex is targeted to the 

Figure 14 - Schematic 

overview of the cell wall 

integrity pathway. 
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promoters of CWI-responsive genes, altering the nucleosome positioning at the 

promoter, facilitating the binding of Rlm1p to sites previously occluded by 

nucleosomes (Kasten et al., 2011). Finally, binding of Pol II stimulates 

transcription initiation. S. cerevisiae SWI/SNF has 11 subunits: Arp7, Arp9, 

Snf2, Snf5, Snf6, Snf11, Snf12, Swi1, Swi3, Swp82 and Taf14 (Yudkovsky et 

al., 1999). 
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This work aimed to identify genes involved in the regulation of acetic acid-

induced apoptosis, and involved three approaches: 

The first part of this work aimed to identify, at a whole-genome scale, the 

genes required for sensitivity/resistance phenotypes under acetic acid-induced 

apoptotic conditions (400 mM acetic acid, at pH 3.0) in S. cerevisiae, by 

screening the EUROSCARF haploid mutant collection (http://web.unifrankfurt. 

de/fb15/mikro/euroscarf/). A set of genes involved in resistant and sensitive 

phenotypes were clustered according to biological function (MIPS Functional 

Catalogue) and known physical and genetic interactions (STRING Protein-

Protein Interactions).  

In the second part, the aim was to identify regulators and downstream 

targets of Sfl1p involved in acetic acid-induced apoptosis. Deletion mutants in 

genes regulated by Sfl1p were tested for their sensitivity/resistance to acetic 

acid-induced cell death and cell death markers were assessed in mutants 

displaying altered resistance.  

The third part was identification the downstream targets of Rlm1p involved 

in acetic acid-induced apoptosis. Deletion mutants defective in genes regulated 

by Rlm1p were tested for their sensitivity/resistance to acetic acid. 
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3.1. Yeast strains 

In this study microorganisms used were the parental strain of S. cerevisiae 

BY4741 (MATa, his3∆1, leu2∆0, met15∆0, ura3∆0) and the respective 

EUROSCARF collection of derived deletion mutant strains, containing all the 

non-essential open reading frames replaced by the KanMX cassette. 

 
Figure 15 - Strategy for deletion of genes used in the construction of the EUROSCARF 

mutant collection (Saccharomyces Genome Deletion Project). 

 

3.2. Growth conditions and treatments 

Yeast cells were grown on YPDA medium (1% yeast extract, 1% Bacto-

peptone, 2% glucose and 2% agar) plates for 2 days at 30 ºC. After growth on 

YPDA, cells were then inoculated in 10 ml of YPD medium until early 

exponential phase (OD640nm = 0.5 - 0.7) at 30°C in a shaker at 200 rpm. 

Thereafter cells were harvested, suspended in Erlenmeyers with 10 ml YPD 

medium adjusted to pH 3.0 with HCl and 120mM of acetic acid (with a ratio of 

flask volume/medium of 5:1), and incubated for up to 220 min at 30°C, with 

agitation (200 rpm). At specific time intervals (0, 60, 120, 180, 200 and 220 

min), 100цl of cells were collected, ressuspended in water, and serial dilutions 

were plated on YPDA. After 2 days of incubation at 30 °C, cell viability was 
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measured as a percentage of Colony Forming Units (CFU). The percentage of 

viable cells was estimated, considering 100% survival the number of CFU 

obtained in time 0, by the formula:  

% �� ����	
 �
		� 

����
� �� ��	���
� �� ���
 � �min�

����
� �� ��	���
� �� ���
 0
� 100 

For semi-quantitative viability assays, 10µL of cell suspensions in water 

with the dilution rate of 10-1 were spotted onto YPDA plates. After 2 days of 

incubation at 30 °C, photographs of the plates were taken with ChemiDoc XRS 

(BioRad). 

Cell viability assays were also performed in galactose medium. In thses 

assays, after growth on YPDA the strains regulated by RLM1 were inoculated 

into 10 ml of Synthetic Complete Galactose medium (SC Gal- 2% galactose, 

0.67% yeast nitrogen base without aminoacids, 0.14% Dropout mixture lacking 

0.008% histidine, 0.04% leucine, 0.008% tryptophan and 0.008% Uracil). SC 

Gal treatment medium was adjusted to pH 3.0 with HCl and contained 100 mM 

acetic acid. 

 

3.3. Analysis of apoptotic markers 

3.3.1. PI staining 

Detection of the integrity of the cell plasma membrane was assessed by 

flow cytometry using propidium iodide (PI). Cells were treated with acetic acid 

as described above, and, after specific time intervals (0, 60, 120, 180, 200 and 

220 minutes), 100 ul of cells were collected by centrifugation, washed in 

deionised water, resuspended in 500 uL of phosphate buffered saline (PBS) (80 

mM Na2HPO4, 20 mM NaH2PO4 and 100 mM NaCl) and stained with PI (1 

µg/ml) (Sigma). Afterwards, samples were incubated for 10 min at room 

temperature in the dark. Finally, fluorescence was detected in an Epics® XL™ 

(Beckman Coulter) flow cytometer, where 30,000 cells from each sample were 

analyzed. Cells with red fluorescence (FL-3 (488/620 nm)) were considered to 

contain plasma membrane disruption. 
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3.3.2. ROS Production 

To visualize the accumulation of ROS, cells were treated with acetic acid 

as described above, and, after specific time intervals (0, 60, 120, 180, 200 and 

220 minutes), 100 ul of cells were collected by centrifugation, washed in 

deionised water, resuspended in 500 uL PBS and incubated with 1 µg/mL DHE 

(Dihydroethidium) (Molecular Probes) for 20 minutes at room temperature in the 

dark. To quantify the number of cells displaying high ROS levels, 30,000 cells 

were counted in an Epics® XL™ (Beckman Coulter) flow cytometer. Cells with 

fluorescence detection (FL-4 (488/675 nm)), were considered to contain 

superoxide anion or mitochondrial ROS.     

 

3.3.3. DAPI / Chromatin Condensation 

Chromatin condensation was assessed by DAPI (4,6-diamino-2-

phenylindole dihydrochloride) (Sigma). Cells were treated as described above, 

after specific time intervals (0, 60, 120, 180, 200 and 220 minutes) 100 ul of 

cells were collected by centrifugation, washed in deionised water, fixed in 500 

uL of PBS and 500 uL of 99% (v/v) ethanol, and afterwards stained with DAPI 

(1 µg/ml) for 5 min at room temperature in the dark. Cells were visualized in a 

Leica Microsystems DM-5000B epifluorescence microscope with appropriate 

filter settings, using a 100x oil-immersion objective. Images were acquired with 

a Leica DCF350FX digital camera, and at least 200 cells were counted per 

sample.  

 

3.4. Screening of the EUROSCARF deletion mutant col lection 

To identify a higher number of the genes potentially involved in the 

regulation of acetic acid-induced apoptosis, the strains were cultured in spotted 

96-dot arrays in rich solid medium YPDA for 48 hours at 30 °C. Then, using a 

96-pin replicator, strains were transferred into 96-well plates with YPD, and 

grown for an additional 24 hours at 30 °C (no agitation). After this time, the 
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inoculum was diluted 100 fold using a multichannel pipette (because the assay 

revealed to be extremely sensitive to differences in cell density during acetic 

acid treatment). Afterwards, cells were incubated in YPD liquid medium, 

adjusted to pH 3.0 with HCl, and acetic acid was added to a final concentration 

of 400 mM. The 2 M stock solution of acetic acid used was prepared with 

distilled water and the pH adjusted to 3 with NaOH. At different times of 

incubation (100, 200, 300 and 400 minutes), cells were replicated into 96-well 

plates containing YPD medium, and the plates were incubated at 30 °C for 24 

hours. For the detection of mutants with higher resistance or sensitivity to acetic 

acid-induced cell death, all ODs were compared with that of the wild type strain. 

Mutants whose growth was be reduced compared to the wild-type strain and 

mutants that still grew at a time point where the control strain did not grow were 

considered sensitive and resistant, respectively. It was possible to determine 

the biomass in each well through optical density of 640 nm using a microplate 

reader (Molecular Devices SpectraMax Plus).  

 Cell viability assays of the strains regulated by Rlm1p were performed as 

above with the following modifications: cells were grown on YPDA during 24 

hours, and then transferred into 96-well plates with SC Gal. After, cells were 

incubated in SC Gal medium adjusted to pH 3.0 with HCl, and acetic acid added 

at a final concentration of 250 mM.  
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4.1. Part I 
Functional screening of the EUROSCARF mutant collec tion for the 

identification of determinants of resistance and se nsitivity to acetic acid-induced 

apoptosis 
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S. cerevisiae is a powerful model system that enabled the increase in our 

understanding of the mechanisms underlying apoptotic cell death, which may 

be extended to the more complex and less accessible multicellular organisms.  

To uncover the genes involved in acetic acid-induced apoptosis, we performed 

a genome-wide screening of the EUROSCARF haploid mutant collection, for 

altered sensitivity to a short exposure to acetic acid. Resistance and sensitivity 

to acetic acid-induced cell death was based on the comparison of the 

susceptibility of the mutants of the EUROSCARF haploid collection with the 

parental strain BY4741 to 400 mM acetic acid, in glucose medium at pH 3.0. 

The screening protocol was optimized and started in a previous study (Marlene 

Sousa, Masters Thesis, 2012) and completed in the present work. The analysis 

of the mutant collection revealed 2159 resistant strains and 391 susceptible 

mutants when compared with the parental strain (800 mutants were screened 

previously and 5000 in this work). 

All genes whose deletion caused sensitivity/resistance to acetic acid were 

grouped based on their function, according to the MIPS functional catalogue 

(http://mips.helmholtz-muenchen.de/proj/funcatDB/). The frequency of each 

functional class was compared in our dataset and in the yeast genome. The 

Figures 16 and 17 show the functional classes that were significantly enriched 

(p-value below 0.01). 

 

4.1.1. Genes whose deletion causes sensitivity to a cetic 

acid-induced cell death 

Clustering of the genes whose deletion causes sensitivity to acetic acid-

induced cell death based on their function revealed that the functional 

categories most significantly enriched are: "Protein fate", "Biogenesis of cellular 

components", "Transcriptional control", "C-compound and carbohydrate 

metabolism", "Respiration", "Ribosomal proteins", "Ion transport" and 

"Homeostasis of cations". The “Protein fate” class is essentially composed of 

genes coding for proteins involved in folding, stabilization, targeting, sorting and 

translocation of proteins, modifications, as with sugar residues (e.g. 



Results 

46 
 

glycosylation, deglycosylation), and protein/peptide degradation. Many of the 

mitochondrial proteins found in the screen are involved in respiration and some 

play a role in the electron transport chain, such as Aac3, Atp2, Coq9, Cox16, 

Cox18, Cyt1, Oar1, Por1 and Rip1; their deletion might increase ROS 

production in the presence of acetic acid, leading to the cell death (Ludovico et 

al., 2002). Other genes are involved in the transfer of electrons to the 

respiratory chain (SDH4). Proteins like Cox11, Cox16, Cox17, Cox20 and Sco1 

are essential for the assembly of the multi subunit enzyme cyt c oxidase, which 

catalyzes the terminal step in the electron transport chain of cellular respiration. 

Deletion of genes coding for proteins required for cyt c oxidase assembly 

resulted in sensitivity to acetic acid. Studies have previously demonstrated that 

COX activity is affected when cells are exposed to acetic acid and ROS 

production increases (Ludovico et al., 2002), suggesting deficient COX 

assembly may potentiate this effect. These results showed the importance of 

inducing apoptosis when the respiratory chain is deregulated and high 

production of ROS may occur. Other genes whose deletion confered sensitivity 

to acetic acid, like IMP1, MDL1, MDM12, MDM20, POR1 and UGO1 are 

involved on the stability and permeability of mitochondrial membranes. Deletion 

of these genes may facilitate translocation of pro-apoptotic proteins from 

mitochondria into the cytosol. Our results further reinforce that the normal 

function of the mitochondria is essential for the yeast tolerance to acetic acid-

induced cell death. 

 

 

 

 

 

 



Results 

47 
 

 
Figure 16 - Functional categories significantly enr iched in the set of genes whose 

deletion renders cells sensitive to acetic acid-ind uced cell death.  The frequency in our 

dataset (dark grey) is compared with the frequency in the whole yeast genome (light grey). 

 

Other determinants of sensibility to acetic acid clustered in the 

"Carbohydrate metabolism" functional category. The function of some genes 

from this class is related with the synthesis of cell wall polysaccharides. A high 

percentage of genes from our sensitivity data set encode ribosome proteins 

(RPL1B, RPL17B, RPL20A, RPL21A, RPL27A, RPL2A, RPL39 and RPL41B). It 

has been demonstrated that certain pathways of cell death are accompanied by 

the destruction of nucleic acids. For example, in metazoan apoptosis there is 

irreversible DNA damage, which is considered an apoptotic hallmark. However, 

specific cleavage of several RNA species is also involved. It was proposed that 

rRNA degradation could contribute to cell auto-destruction, and that degradation 

of mRNAs for anti-apoptotic factors would accelerate apoptosis (Seweryn 
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Mroczek and Joanna Kufe., 2008). A large numer of genes from our sensitivity data 

set are rRNA helicases (MRH4, DBP7) and proteins involved in pre-rRNA 

processing (Rex4p), in RNA synthesis (CAF120, CTK2, HOS1, ITC1, NAT4, 

RTF1, SDS3, SIF2, SOH1, STB2 and TSR2), and in mRNA processing (EDC1, 

FIR1, HIR2, LEA1, LSM6, MUD2, NPL3, PML1 and XRN1). This indicates that 

RNA processing and degradation may have a role in acetic acid-induced cell 

death. 

 

Other genes whose deletion also confers sensitivity to acetic acid-induced 

cell death are involved in "Ion transport" and “Homeostasis”. These classes 

include a number of genes related to proton homeostasis, in other words the 

assembly and regulation of the plasma membrane H-ATPase (PM-H-ATPase), 

of vacuolar H-ATPase (V-ATPase) and of mitochondrial F1F0 ATP synthase. To 

avoid the dissipation of plasma membrane potential and to maintain the internal 

pH within physiological values, yeast cells rely on the activity of the PM-H+-

ATPase.  Deletion of NHA1 and MCH2 (encoding an antiporter involved in 

sodium and potassium efflux and a protein involved in the transport of 

monocarboxylic, respectively) increased sensitivity to acetic acid-induced cell 

death.  

Deletion of genes involved in vacuolar V -ATPase function, as VMA3 

VMA16, VMA22, VMA4, VMA7 and VMA8 increased acetic acid-induced cell 

death, supporting the idea that the V-ATPase present in the vacuolar 

membrane is crucial for pH homeostasis when cells are exposed to weak acid 

stress. Sequestering the exceeding protons present in the cytosol in the vacuole 

lumen of acetic acid-challenged cells may aid in the recovery of the cytosolic pH 

to more physiological values. These results are in agreement with earlier 

evidence showing that V-ATPase activity is important to maintain vacuolar pH 

and ensuring the normal operation of several vacuolar processes, which are 

necessary for growth in the presence of a weak acid (Mira et al., 2010; 

Kawahata et al., 2006; Makrantoni et al., 2007; Mira et al., 2009).  Other genes 

related with vacuole function also increased acetic acid-induced cell death when 

deleted, such as VPS1, VPS16, VPS28, VPS33, VPS72, VPS73 and VPS8, 
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which encode proteins belonging to the family of the vacuolar sorting proteins 

responsible for vesicle-mediated transport. 

Deletion of genes involved in F1F0 ATP synthase function, as ATP1, 

ATP11, ATP12, ATP17, ATP2 and ATP4 increased acetic acid-induced cell 

death. Pmr1p is the major Golgi membrane P-type ATPase ion pump 

responsible for transporting calcium and manganese ions into the Golgi 

complex. Thus, Pmr1p provides a major route for cellular detoxification. Excess 

levels of cytosolic calcium and manganese ions are transported into the Golgi 

complex and then exit the cell via secretory vesicles. In our study, deletion of 

PMR1 sensitized cells to acetic acid, showing that this detoxification of the 

cytosol is important to protect cells from acetic acid-induced cell death. This is 

in accordance with the increase in calcium concentration observed in cells 

undergoing acetic acid-induced cell death (Pereira et al 2008). Other genes 

found in our data set of sensitive strains were KHA1 and MDL1. Kha1p is 

involved in intracellular cation (K+/H+) homeostasis localized to Golgi vesicles 

and Mdl1p mediates the export of peptides generated upon proteolysis of 

mitochondrial proteins and plays a role in the regulation of cellular resistance to 

oxidative stress. Our results suggest that these peptides may have a pro-

apoptotic role. 

Strains deleted in genes encoding proteins related with ion import were 

also found to be susceptible to acetic acid-induced cell death, suggesting that 

the uptake of these ions plays a crucial role in the yeast response to acetic acid. 

A previous study had shown potassium uptake is increased in response to 

acetic acid stress, possibly to compensate the stimulation in the activity of 

Pma1p (extrusion H+) occurring in these cells, thus keeping the electrical 

balance across the plasma membrane (Mira et al., 2010). A similar adaptive 

response is proposed to occur in the presence of other ions. 
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Figure 17 - Schematic representation of the interaction network of genes whose deletion 

renders cells sensitive to acetic acid-induced cell death, and that were clustered in the ion 

transport functional class, using STRING (Protein-Protein Interactions). In the depicted map, a 

line represents an interaction. 

 

 

4.1.2. Genes whose deleted causes resistance to ace tic acid-

induced cell death 

The functional categories most significantly enriched in the data set of 

genes whose deletion confers resistance to acetic acid-induced cell death are: 

"Transcriptional control", "Stress response", "Phosphate metabolism", "Cell type 

differentiation", "Amino acid metabolism", "Cell wall", "Meiosis", "Protein kinase" 

and "Detoxification" (figure18). 

The “Amino acid metabolism” class is basically composed of genes 

encoding proteins involved in assimilation of ammonia, metabolism and 

biosynthesis of glutamate and arginine, metabolism of the urea cycle, and 

metabolism of several amino acids (of the aspartate family, threonine, 

methionine, cysteine aromatic group, serine, phenylalanine, tryptophan, of the 

pyruvate family (alanine, isoleucine, leucine, valine), D-alanine and leucine). 

The economy in energy and resources resulting from blocking amino acid 
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biosynthetic pathways might improve the cellular response to a toxic 

concentration of acetic acid, and explain these results. (Li and Yuan, 2010; 

Almeida et al., 2009). 

 

Figure 18 - Functional categories significantly enr iched in the data set of genes 

whose deletion renders cells resistance to acetic a cid-induced cell death.  The frequency 

in our dataset (dark grey) is compared with the frequency in the whole yeast genome (light 

grey). 

 

Reinforcement of the cell wall structure is a general response mechanism 

to weak acid-induced toxicity. The acidic condition affects cell-wall architecture, 

which might be a reflexion of changes in the expression of cell wall-related 

genes under these conditions. We found that depletion of cell-wall components 

encoded by SED1, SCW11, SUN4, TOS6, EAF3, EAF7, MNN2, MNN9, 

MNN11, ANP1, VMR1 and GON7 increased the resistance to acetic acid, 

indicating that hindering these cell changes can protect cells from death. 
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It is important to refer that, within the "cell type differentiation" category, 

there were several genes that belong to the invasive and pseudohyphal growth 

pathway, like HMS1. Absence of other genes involved in the cell wall integrity 

MAP kinase cascade (PKH3, MKK2, PKH1, BCK1 and MKK1) also protected 

cells from acetic acid-induced cell death. 

 

Our combined screening uncovered 204 genes in the "transcriptional 

control" class important for acetic acid-induced cell death (M. Sousa 2012, this 

study). The absence of 160 transcription factors conferred resistance to acetic 

acid, whereas absence of 44 transcription factors conferred increased 

sensitivity. For some of these genes, a role in the response to acetic acid stress 

had been described before; others are described here for the first time.  

Factors that when mutated confer resistance to acetic acid include SPT10, 

HFI1 and SDS3, involved in de-acetylation and RPD3, HOS3, HOS1, HTA1, 

NHP6B, SAS5, SPT2 and ECM11, involved in acetylation. It is believed that 

transcriptional activity is correlated with histone acetylation in some cases. 

Given the drastic changes in the integrity of DNA and the state of chromatin 

compaction during apoptosis, histone modifications may play a functional role in 

promoting these changes. Thus, chromatin modifiers can also function as co-

repressors by promoting a more closed chromatin conformation. Methylation of 

sequences in promoter regions is commonly observed during tumor progression 

to inactivate genes whose products are important for processes such as DNA 

repair, cell-cycle regulation, cell adhesion, angiogenesis and apoptosis 

(Miranda TB, et al, 2007).  

Genes encoding transcription factors are of particular interest because 

their increased expression may result in the simultaneous induction of a set of 

acetic acid-resistance and sensitivity genes under their control. Cells possess a 

network of signal transduction pathways that enable them to respond to 

different stimuli, which implies strong changes in gene expression. The stress 

transcription factors are thus interesting models, and their characterization can 

lead to the identification of new components of the stress signaling pathway in 

yeast.
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4.2. Part II  
The role of Sfl1p in acetic acid-induced apoptosis 
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4.2.1. Sfl1p and the

In a previous study, it had been shown that 

increased resistance to acetic acid

this work, we aimed to study the role

apoptotic process induced by this acid in 

characterized the cell death process induced by acetic acid in the 

Cells were cultivated in YPD medium, exposed to 120 mM acetic acid, pH 3.0, 

for 220 min and cell viability and apoptotic markers were assessed over time. 

Viability was assessed by spotting serial dilutions of the cultures (10

and 10-4) onto YPD plates (figure 19

(c.f.u) (figure 19B). 

  

20

40

60

80

100

%
 o

f c
el

l v
ai

b
ili

ty
 (

c.
f.u

.)

Figure 19 - Relative cell survival of wild type and 

acetic acid. Cells were grown at 30 °C and samples were taken after 0, 60, 120, 180, 200 and 220 

minutes. (A) Serial dilutions (10-1

determined by C.F.U. counts.. Values represent means and standard deviations of 3 independent 
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and the  response to acetic acid 

In a previous study, it had been shown that SFL1 deletion leads to 

increased resistance to acetic acid-induced cell death (Marlene Sousa, 

this work, we aimed to study the role of Sfl1p in the mitochondrial

apoptotic process induced by this acid in S. cerevisiae cells. We first 

characterized the cell death process induced by acetic acid in the 

Cells were cultivated in YPD medium, exposed to 120 mM acetic acid, pH 3.0, 

for 220 min and cell viability and apoptotic markers were assessed over time. 

ility was assessed by spotting serial dilutions of the cultures (10

onto YPD plates (figure 19A) and quantified by colony forming units 
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Marlene Sousa,  2012). In 

of Sfl1p in the mitochondrial-dependent 

cells. We first 

characterized the cell death process induced by acetic acid in the sfl1∆ mutant. 

Cells were cultivated in YPD medium, exposed to 120 mM acetic acid, pH 3.0, 

for 220 min and cell viability and apoptotic markers were assessed over time. 

ility was assessed by spotting serial dilutions of the cultures (10-1, 10-2, 10-3 

A) and quantified by colony forming units 
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Exposure of the sfl1∆ mutant to acetic acid under the conditions referred 

above induced loss of viability only in about half of the cells in culture after 220 

minutes of incubation. Under the same conditions, only 1% of the wild-type cells 

were viable, thus confirming that deletion of the SFL1 gene increases resistance 

to acetic acid–induced cell death.  

To characterize the nature of cell death in sfl1∆ mutant cells, we studied 

several apoptotic markers, namely ROS production, chromatin condensation 

and fragmentation, and plasma membrane integrity. To determine the levels of 

ROS, sfl1∆ mutant cells treated with acetic acid were labeled with DHE. DHE 

can penetrate the membrane of living cells and intercalate into DNA after it is 

dehydrogenated (oxidized by superoxide anions generated in mitochondria). 

Intracellular ROS were assessed by flow cytometry and the results expressed 

as a percentage of ROS-positive cells (Figure 20A). After 220 minutes of 

treatment with acetic acid, only 18.5±11% of the sfl1∆ cells stained positive with 

DHE, showing that the mutant had a much lower accumulation of ROS than the 

wt cells (91%). These results are in agreement with its resistance phenotype. In 

addition, membrane integrity was measured by propidium iodide (PI) staining, 

under the same conditions. The results show that after 220 minutes of acetic 

acid-treatment, 19.9±2.4% of the sfl1∆ mutant cells are PI-positive (figure 20B). 

The percentage of PI positive cells over the time of treatment is low, showing 

that there is no significant loss of plasma membrane integrity. In contrast, 94% 

of wild-type cells had lost plasma membrane integrity after 220 min. 
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Figure 20 - Superoxide anion accumulation (A) and l oss membrane integrity (B) in 

wt and sfl1∆ strains incubated with acetic acid.  Samples were collected after 0, 120, 180, 
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240 and 300 minutes at 30°C, 

fluorescence measured by flow cytometry. Percentages of cells stained with DHE and PI are 

shown. Values represent means and standard deviations of 3 independent experiments. Values 

significantly different between

performed using a two-way ANOVA test.

 

 

To determine if exposure to acetic acid leads to chromatin condensation in 

sfl1∆ cells, nuclear DNA was stained with DAPI and cells were observed by 

fluorescence microscopy (Figure 

acetic acid, only a few apoptotic nuclei were observed in 

to the wild type strain (88%) (
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240 and 300 minutes at 30°C, stained with DHE (1µg/mL) and PI (1µg/mL) respectively, and the 

fluorescence measured by flow cytometry. Percentages of cells stained with DHE and PI are 

shown. Values represent means and standard deviations of 3 independent experiments. Values 

between BY4741 and sfl1∆ strain: *** P<0.001, Statistical analysis was 

way ANOVA test. 

exposure to acetic acid leads to chromatin condensation in 

cells, nuclear DNA was stained with DAPI and cells were observed by 

fluorescence microscopy (Figure 21A). After 220 minutes of the treatment with 

acetic acid, only a few apoptotic nuclei were observed in sfl1∆ (17%) compared 

ild type strain (88%) (Figure 21B). 
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Results 

g/mL) respectively, and the 

fluorescence measured by flow cytometry. Percentages of cells stained with DHE and PI are 

shown. Values represent means and standard deviations of 3 independent experiments. Values 

strain: *** P<0.001, Statistical analysis was 

exposure to acetic acid leads to chromatin condensation in 

cells, nuclear DNA was stained with DAPI and cells were observed by 

). After 220 minutes of the treatment with 

(17%) compared 

                T=220 
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Figure 21 - Chromatin condensation and fragmentation  in wt and sfl1∆ strains 

incubated with acetic acid . Exponential cultures of sfl1∆ and wt strains were treated with 

120mM acetic acid. Samples were collected after 0, 60, 120, 180 and 220 minutes, stained with 

DAPI (2µg/mL) and observed by fluorescence microscopy. (A) Photomicrographs of 

fluorescence and DIC (differential interference contrast) images (B) Quantification of apoptotic 

nuclei. 

 

Taken together, the results show that deficiency in Sfl1p abrogates the 

appearance of all the cellular changes induced by acetic acid assessed, 

indicating a role for Sfl1p in the induction of acetic acid-induced apoptosis.  

 

4.2.2. Role of the catalytic subunits of PKA in ace tic acid-

induced cell death 

The investigators Conian and Tzamarias demonstrated that the interaction 

of Sfl1p with DNA is regulated by PKA, and that the yeast PKA isoform Tpk2p is 

involved in the regulation of Sfl1p recruitment to Ssn6p, thus showing that Sfl1p 

is negatively regulated by the Tpk2p isoform of protein kinase A (Conlan and 

Tzamarias, 2001).  

TPK1, TPK2 and TPK3 encode the catalytic subunits of PKA in S. 

cerevisiae (Toda et al., 1987). Tpk1p was described as regulating genes 

involved in respiration, in the maintenance of iron levels, DNA stability in 

mitochondria, and derepression of branched chain amino acid biosynthesis 

genes (Gourlay and Ayscongh, 2006). Tpk2p, besides its involvment in the 

negative regulation of Sfl1p (Conlan et al., 2001), is also responsible for the 
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repression of transcription of genes involved in iron uptake, trehalose 

breakdown, water homeostasis, flocculation and pseudohyphal development. 

On the other hand, Tpk3p is involved in negative regulation of pseudohyphal 

growth and in flocculation (Robertson and Fink, 2000). It has been shown that 

loss of Tpk3p leads to the reduction of respiratory functions and that this protein 

is also involved in the regulation

al., 2005). 

We next assessed the role of individual PKA isoforms in acetic acid

induced cell death using strains deleted in each of the three genes. The cell 

viability of the three mutants was determined after

acetic acid along for up to 220 minutes (figure 22
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Figure 22 – Relative cell survival of wild, 

exposure to 120 mM acetic acid.

60, 120, 180, 200 and 220 minutes. (A) Serial dilutions (10

onto YPD plates. (B) Cell viability 

and standard deviations of 3 independent experiments. Values significantly different between 

BY4741 and tpk3∆ strains - 

ANOVA test. 
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repression of transcription of genes involved in iron uptake, trehalose 

breakdown, water homeostasis, flocculation and pseudohyphal development. 

d, Tpk3p is involved in negative regulation of pseudohyphal 

growth and in flocculation (Robertson and Fink, 2000). It has been shown that 

loss of Tpk3p leads to the reduction of respiratory functions and that this protein 

is also involved in the regulation of mitochondrial enzyme content (Chevtzoff 

We next assessed the role of individual PKA isoforms in acetic acid

induced cell death using strains deleted in each of the three genes. The cell 

viability of the three mutants was determined after exposure to 120 mM of 

acid along for up to 220 minutes (figure 22). 
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exposure to 120 mM acetic acid.  Cells were grown at 30 °C and samples were taken after 0, 

60, 120, 180, 200 and 220 minutes. (A) Serial dilutions (10-1, 10-2, 10-3 and 10

onto YPD plates. (B) Cell viability was determined by C.F.U. counts. Values represent means 

dard deviations of 3 independent experiments. Values significantly different between 

 *** P<0.001, Statistical analysis was performed using a two
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repression of transcription of genes involved in iron uptake, trehalose 

breakdown, water homeostasis, flocculation and pseudohyphal development. 

d, Tpk3p is involved in negative regulation of pseudohyphal 

growth and in flocculation (Robertson and Fink, 2000). It has been shown that 

loss of Tpk3p leads to the reduction of respiratory functions and that this protein 

of mitochondrial enzyme content (Chevtzoff et 

We next assessed the role of individual PKA isoforms in acetic acid-

induced cell death using strains deleted in each of the three genes. The cell 

exposure to 120 mM of 

T=0     T=60    T=120   T=180  T=200  T=220 

tpk3∆ strains after 

Cells were grown at 30 °C and samples were taken after 0, 

and 10-4) were spotted 

. Values represent means 

dard deviations of 3 independent experiments. Values significantly different between 

*** P<0.001, Statistical analysis was performed using a two-way 
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To determine the levels of ROS in cells treated with acetic acid, cells were 

labeled with DHE and fluorescence was analyzed by flow cytometry. The strains 

tpk1∆, tpk2∆ and tpk3∆ were incubated with 120 mM of acetic acid, at pH 3 for 

220 min, and the percentage of ROS-positive cells determined over time (Figure 

23A). The tpk3∆ mutant had the lowest percentage of cells with mitochondrial 

ROS, only 10.2±4.9% after acetic acid treatment for 220 mim. The tpk1∆ and 

tpk2∆ mutants displayed higher levels of superoxide anion, 92.3±3% and 

64.4±6.6%, respectively, under the same treatment conditions. Again, the 

results are in agreement with their phenotypes, since tpk1∆ and tpk2∆ mutants 

are more sensitive to acetic acid than mutant tpk3∆. This effect might be related 

with a lower respiration level in tpk3∆, and as a consequence lower ROS 

accumulation. 

Cells were exposed to acetic acid, under the same previous conditions, 

and stained with PI to measure the integrity of plasma membrane. Fluorescence 

levels were measured by flow cytometry. For the tpk3∆ mutant, there was only 

a residual percentage of PI positive cells of 5.9±4.9% (figure 23B). 

 

0 60 120 180 200 220
0

20

40

60

80

100 tpk1∆
tpk2∆

tpk3∆

Time (min.)

D
H

E
 p

os
iti

ve
 c

el
ls

 (
%

)

 

0 60 120 180 200 220
0

20

40

60

80

100

tpk1∆
tpk2∆
tpk3∆

Time (min.)

P
I-

p
os

iti
ve

 c
el

ls
 (

%
)

 
Figure 23 – Superoxide anion accumulation (A) and l oss of membrane integrity (B) 

in tpk1∆, tpk2 and tpk3∆ strains incubated with acetic acid.  Samples were collected after 0, 
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120, 180, 240 and 300 minutes at 30°C, stained with DHE (1

respectively, and the fluorescence measured by flow cytometry.

with DHE and PI are shown. Values represent means and standard deviations of 3 independent 

experiments. 

 

The nuclear DNA of the 

observed by fluorescence microscopy (Figure 24

minutes of the treatment with acetic acid showed that only 13% of the cells had 

abnormal nuclei and chromatin condensation, in comparison with 

wild-type cells (figure 24B).

 

Figure 24 - Chromatin

incubated with acetic acid

120mM acetic acid. Samples were collected after 0, 60, 120, 180 and 220 minutes, stained with 

DAPI (2µg/mL) and were observed by fluorescence microscopy. (A) Photomicrographs of 

fluorescence and DIC images (B) Quantification of apoptotic nuclei
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120, 180, 240 and 300 minutes at 30°C, stained with DHE (1µg/mL) and PI (1

respectively, and the fluorescence measured by flow cytometry. Percentages of cells stained 

and PI are shown. Values represent means and standard deviations of 3 independent 

The nuclear DNA of the tpk3∆ mutant was stained with DAPI and 

luorescence microscopy (Figure 24A). Observations after 220 

minutes of the treatment with acetic acid showed that only 13% of the cells had 

abnormal nuclei and chromatin condensation, in comparison with 

B). 

Chromatin  condensation and fragmentation  in wt and

incubated with acetic acid . Exponential cultures of tpk3∆ and wt strains were trated with 

120mM acetic acid. Samples were collected after 0, 60, 120, 180 and 220 minutes, stained with 

g/mL) and were observed by fluorescence microscopy. (A) Photomicrographs of 

nd DIC images (B) Quantification of apoptotic nuclei. 
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Percentages of cells stained 
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mutant was stained with DAPI and 

A). Observations after 220 

minutes of the treatment with acetic acid showed that only 13% of the cells had 

abnormal nuclei and chromatin condensation, in comparison with 88% of the 
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g/mL) and were observed by fluorescence microscopy. (A) Photomicrographs of 
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BY4741
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The results indicate that, from the three PKA isoforms, Tpk3 has the most 

relevant role in the induction of apoptosis triggered by acetic acid. TPK3 

deletion, besides decreasing the loss of cell viability, also abrogated the 

appearance of the other cell death markers evaluated. On the other hand, the 

results obtained with tpk2∆ are not consistent with a role of this isoform in the 

regulation of Sfl1p in acetic acid induced cell death. 

 

4.2.3. Identification of the downstream targets of Sfl1p 

involved in programmed cell death 

To further assess the role of Sfl1p in acetic acid-induced apoptosis, we 

next studied the genes that are described as being regulated by this 

transcription factor. Using the database http://www.yeastract.com/, we identified 

the genes listed in table 1. This table also shows the function of each gene, its 

location, the phenotype in our genome-wide screen and the genes that have 

been described as repressed or activated by Sfl1p experimentally. These genes 

were grouped by function using the database MIPS functional catalog. Most of 

these genes are located in the nucleus (34%), in the endoplasmic reticulum 

(13%), integral membrane/endomembranes (10%), vacuole and outer 

membrane of mitochondria (9% and 6% respectively). 

In our genome-wide screen, genes potentially regulated by Sfl1p were 

identified as involved in acetic acid-induced cell death. Of the 48 genes 

described as being regulated by Sfl1p, deletion of only two of these genes 

resulted in increased sensitivity to acetic acid (NNF2 and TAF14), deletion of 

one gene had no phenotype (TPK1), and deletion of all the others resulted in 

increased resistance to acetic acid-induced cell death. Taf14p is a component 

of different complexes, like the SWI/SNF chromatin remodeling complex, and is 

involved in DNA replication, stress response and transcription. It binds non-

specifically to DNA, altering nucleosome structure to facilitate the binding of 

transcription factors. Its sub-unit TFIID is also a transcription factor complex that 

is required for RNAPII-mediated transcription of protein-coding genes and some 

small nuclear RNAs. This could explain the sensitivity of taf14∆ to acetic acid. 
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taf14∆ mutants are viable, but grow slowly on rich media and display decreased 

transcription, defects in actin organization, increased osmosensitivity, heat 

sensitivity and sensitivity to caffeine, hydroxyurea, UV, and methyl 

methanesulfonate. The same happens with the mutant nnf2∆, deficient in a 

protein that exhibits physical and genetic interactions with Rpb8p, which is a 

subunit of RNA polymerases I, II, and III, and so also involved in transcription. 

Thus, the results indicate that most of the genes regulated by Sfl1p are involved 

in mediation of cell death, and their deletion seems to be beneficial during 

acetic acid-induced cell death. 
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Gene Function protein Location 
Genome -

wide 
screening 

Regulated by 
SFL1p 

ADE2 
(YOR128C) 

Encodes phosphoribosylaminoimidazole carboxylase, which catalyzes the sixth step in the biosynthesis of purine 
nucleotides (Som I, et al.  2005). 

Cytoplasm Resistant  

AGP3 
(YFL055W) 

Plays a role in regulating Ty1 transposition (Nyswaner KM, et al.  2008). 
Integral membrane Resistant  

APT2 
(YDR441C) 

Is a gene with similarity to adenine phosphoribosyltransferase (APRT), not expressed under normal 
physiological conditions in yeast (Alfonzo JD, et al.  1999). 

Cytoplasm Resistant  

AQY2 
(YLL052C) 

Water channel that mediates the transport of water and small  uncharged molecules across cell membranes, 
controlled by osmotic signals, may be involved in freeze tolerance (Laize V, et al.  2000). ER membrane and 

plasma membrane 
Resistant 

Repressed  
(stress osmotic) 

(Furukawa et al., 2009; 
Carbrey et al., 2001). 

AHC2 
(YCR082W) 

Protein of unknown function, putative transcriptional regulator, proposed to be a histone acetyltransferase 
complex component (Lee KK, et al.  2011). 

Cytoplasm e nucleus Resistant  

BRF1 
(YGR246C) 

BRF1 is an gene encodes is a initiation factor for one of three subunits of RNA polymerase III, which transcribes 
tRNAs, most small nuclear RNAs, and 5S rRNA (Alexander DE, et al.  2004). 

Nucleus Resistant  

COG4 
(YPR105C) 

Essential component of the Golgi complex, a cytosolic complex that functions in protein trafficking to mediate 
fusion of transport vesicles to Golgi compartments (Loh E and Hong W  2004). 

Golgi transport 
complex 

Resistant  

FLO8 
(YER109C) 

Transcription factor required for flocculation, diploid filamentous growth, and invasive growth (Liu H, et al.  1996). Nucleus and 
cytoplasm 

Resistant Repressed 
(Kim et al., 2004) 

FLO1 
(YAR050W) 

Gene involved in flocculation, cell wall protein that binds to mannose chains on the surface of other cells, confers 
floc-forming ability that is chymotrypsin sensitive and heat resistant (Stratford M  1989). 

Cell Wall Resistant Repressed 
(Shen et al., 2006) 

FMP42 
(YMR221C) 

Is detected in highly purified mitochondria, physical interaction with Atg27p suggests a possible role in 
autophagy (Tarassov K, et al.  2008). 

Mitochondria and 
vacuole 

Resistant  

FDC1 
(YDR539W) 

Essential for the decarboxylation of aromatic carboxylic acids to the corresponding vinyl derivatives Mukai N, et 
al.  2010). 

Cytoplasm Resistant  

FMP45 
(YDL222C) 

Gene encodes an integral membrane protein localized in mitochondria, which is required for sporulation and  
sphingolipid metabolism (Young ME, et al.  2002). 

Cytoplasm and 
mitochondria 

Resistant 
Repressed  

(stress ethanol) 
(Galeote et al., 2007) 

HEM1 
(YDR232W) 

Encodes the enzyme 5-aminolevulinate synthase, which catalyzes the first step in heme biosynthesis and is also 
involved in regulating the transcription of genes involved in iron and copper transport (Urban-Grimal D, et 
al.  (1986). 

Mitochondrial matrix Resistant  

HSP104 
(YLL026W) 

Encodes a general anti-stress chaperone of the HSP100 gene family. Hsp104p, in conjunction with the 
chaperone and co-chaperone Ssa1p and Ydj1p, helps to disassemble protein aggregates that have accumulated 
due to stress (Chernoff YO, et al.  1995). 

Cytoplasm and 
nucleus 

Resistant  

HSP30 
(YCR021C) 

Stress-responsive protein that negatively regulates the H(+)-ATPase Pma1p, is induced by several stresses, 
during exposure to a variety of stress conditions including heat shock, exposure to weak organic acids, hyper-
osmotic stress, oxidative stress, glucose limitation, exposure to alcohol and entry into stationary phase (Meena 
RC, et al. 2011). 

Plasma membrane Resistant 
Activated 

(stress ethanol) 
(Galeote et al., 2007) 

Table 1 -  Genes that are described as regulated by Sfl1p and respective function, location, phenotype in our genome-wide screen and whether they 
have been described as repressed or activated by Sfl1p. 
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MGA1 
(YGR249W) 

Protein similar to heat shock transcription factor, suppressor of pseudohyphal growth defects of ammonium 
permease mutants ( Lorenz MC and Heitman J., 1998). 

Nucleus Resistant  

MUC1 
(YIR019C) 

GPI-anchored cell surface glycoprotein (flocculin), required for pseudohyphal formation, invasive growth, 
flocculation, and biofilms. Transcriptionally regulated by the MAPK pathway and the cAMP pathway (Douglas 
LM, et al., 2007). 

Cell Wall Resistant  

NNF2 
(YGR089W) 

Protein that exhibits physical and genetic interactions with Rpb8p, which is a subunit of RNA polymerases I, II, 
and III ( Briand JF, et al.,  2001). 

Cytoplasm and ER Sensitive  

PTI1 
(YGR156W) 

Is a component of CPF (cleavage and polyadenylation factor); involved in 3' end formation of snoRNA and 
mRNA; interacts directly with Pta1p  (Dheur S, et al.,  2003). 

Cytoplasm and 
nucleus 

Resistant  

PET309 
(YLR067C) 

PET309 encodes protein that is required for two steps in the expression of COX1, the encoding subunit 1 of cty c 
oxidase, also influences stability of intron-containing COX1 primary transcripts (Tavares-Carreon F, et al., 2008). 

Mitochondrial inner 
membrane 

Resistant  

RPN2 
(YIL075C) 

Subunit of the 26S proteasome, substrate of the N-acetyltransferase Nat1p (Kimura Y, et al., 2003). ER membrane, 
cytoplasm and nuclear 

envelope 
Resistant  

SSA4 
(YER103W) 

Member of the HSP70 family, heat shock protein that is highly induced upon stress (Chughtai ZS, et al., 2001). 
 Cytoplasmic and 

nucleus 
Resistant 

Repressed  
(stress temperature) 

(Kryndushkin et al., 
2002) 

STA1 
 

Glucoamylase (glucan 1,4-alpha-glucosidase) (Yamashita I, et al., 1985). Cellular component 
unknown 

Resistant 
Repressed  

(stress temperature) 
(Galeote et al., 2007). 

SUC2 
(YIL162W) 

Invertase, sucrose hydrolyzing enzyme, glycosylated form is regulated by glucose repression, and an 
intracellular, nonglycosylated enzyme is produced constitutively (Lutfiyya LL and Johnston M., 1996). 

Mitochondria Resistant 

Repressed 
(stress ethanol) 
(Conlan R. S. and 

Tzamarias D., 2001) 

SPI1 
(YER150W) 

GPI-anchored cell wall protein involved in weak acid resistance, expression is induced under conditions of stress 
and during the diauxic shift (Simoes T, et al., 2006). Cytoplasm and 

vacuole 
Resistant 

Repressed 
(stress ethanol) 

(Galeote et al., 2007) 

SOR2 
(YDL246C) 

Protein of unknown function; protein sequence is 99% identical to the Sor1p sorbitol dehydrogenase, 
computational analysis also suggests a role in fructose or mannose metabolism (Gonzalez E, et al.  2000). 
 

Cellular component 
unknown 

Resistant  

STE13 
(YOR219C) 

Dipeptidyl aminopeptidase, Golgi integral membrane protein that cleaves on the carboxyl side of repeating -X-
Ala- sequences, required for maturation of alpha (Nothwehr SF, et al., 1993). 
 

Golgi Resistant  

SMI1 
(YGR229C) 

Protein involved in the regulation of cell wall synthesis; proposed to be involved in coordinating cell cycle 
progression with cell wall integrity (Martin-Yken H, et al., 2003). 

Golgi-vacuole 
transport vesicles, 

nucleus and cytoplasm 
Resistant  

TL(CAA)G1  Leucine tRNA (tRNA-Leu), predicted by tRNAscan-SE analysis (Chan PP and Lowe TM., 2009). Cytosol Resistant  
TPK1 

(YJL164C) 

Promotes vegetative growth in response to nutrients via the Ras-cAMP signaling pathway, inhibited by 
regulatory subunit Bcy1p in the absence of cAMP (Robertson LS, et al., 2000). 

Nucleus 
No 

phenotype 
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TAF14 
(YPL129W) 

Taf14p is a component of subunit of TFIID, TFIIF, INO80, SWI/SNF, and NuA3 complexes, involved in RNA 
polymerase II transcription initiation and in chromatin modification (Tora L., 2002). 

Nucleus Sensitive  

VTC4 
(YJL012C) 

Vacuolar membrane polyphosphate polymerase, subunit of the vacuolar transporter chaperone complex involved 
in synthesis and transfer of polyP to the vacuole, regulates membrane trafficking, role in non-autophagic vacuolar 
fusion (Uttenweiler A, et al., 2007). 

Cytoplasm and 
vacuolar membrane 

Resistant  

YLR125W 
Unknown function. Cellular component 

unknown 
Resistant  

YIA6 
(YIL006W) 

Mitochondrial NAD+ transporter, involved in the transport of NAD+ into the mitochondria, member of the 
mitochondrial carrier subfamily; disputed role as a pyruvate transporter (Todisco S, et al., 2006). Mitochondria Resistant  

YAR023c 
Putative integral membrane protein, member of DUP240 gene family (Poirey R, et al.  2002). Cellular component 

unknown 
Resistant  

YCR006c 
Unknown function. Cellular component 

unknown 
Resistant 

Activated  
(stress ethanol) 

(Galeote et al., 2007) 

YJR115w 
Unknown function. 

Cytoplasm Resistant 
Repressor  

(stress ethanol) 
(Galeote et al., 2007) 

YEL010w 
Unknown function. Cellular component 

unknown 
Resistant  

YCL074w 
Pseudogene: encodes fragment of Ty Pol protein  (Kim JM, et al., 1998).  Cellular component 

unknown 
Resistant  

YDL196w 
Unknown function. Cellular component 

unknown 
Resistant  

YFR054c 
Unknown function. Cellular component 

unknown 
Resistant  

YLR352w 
Unknown function. Cellular component 

unknown 
Resistant  

YOR051c 
Nuclear protein that inhibits replication of Brome mosaic virus in S. cerevisiae, which is a model system for 
studying replication of positive-strand RNA viruses in their natural hosts (Henri J, et al., 2010). 

nucleus Resistant  

YGR045c 
Unknown function. Cellular component 

unknown 
Resistant  

YOR105w 
Unknown function.   Cellular component 

unknown 
Resistant  

YCR087c-a Unknown function. Nucleus Resistant  

YMR173w-a 
Unknown function. Cellular component 

unknown 
Resistant 

Repressed  
(stress ethanol) 

(Galeote et al., 2007) 
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In the literature, a few of these genes have been described as repressed 

or activated by Sfl1p under different stress conditions, as supported by 

experimental evidence. Galeote and his collaborators, in 2007, showed that 

Sfl1p activates the transcription of the HSP30 gene during growth on glucose as 

well as under various stress conditions, including ethanol stress, heat shock, or 

limitation of carbon source. They also showed that Sfl1p activates the 

expression of the YCR006C gene and represses the genes YJR115W, FMP45, 

YMR173W-a and SPI1 in response to ethanol stress (Galeote et al., 2007). Kim 

and collaborators demonstrated that glucose-dependent repression of STA1 is 

imposed by Sfl1p, and Sfl1p also represses FLO8 expression (Kim et al., 2004). 

FLO1, another gene involved in yeast flocculation (Stratford and Assinder, 

1992), also seems to be repressed by Sfl1p (Shen et al., 2006). Another study 

showed that SUC2, a gene involved in sucrose catabolism, is also partially 

regulated by Sfl1p, which is required for regulation of SUC2 expression only 

when glucose levels are near depletion (Conlan and Tzamarias, 2001). AQY2 

also seems to be repressed by Sfl1p. Aqy2p is a water channel involved in the 

transport of water across the cell membrane, and is thus implicated in 

controlling cell surface properties (Furukawa et al., 2009; Carbrey et al., 2001). 

SSA4 is a member of the Hsp70 family and its expression seems to be induced 

under stress conditions and repressed by Sfl1p (Kryndushkin et al., 2002).  

 

4.2.3.1. Characterization of the role of genes unde r Sfl1p 

regulation in acetic acid-induced cell death 

To confirm the involvement the genes under Sfl1p regulation in acetic acid 

induced cell death, we individually tested the deletion mutants in some of these 

genes for cell viability and apoptotic markers. For this purpose, we selected 

deletion mutants in genes that were identified as being regulation by Sfl1p by 

experimental evidence. Several assays for apoptosis detection are routinely 

used in yeast (Carmona-Gutierrez et al., 2010). They include determination of 

viability (assessed by CFU), ROS accumulation, chromatin condensation and 

cell membrane integrity. 
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As seen in Figure 25A, the percentage of viable cells of fmp42∆ and 

fmp45∆ mutants was significantly higher that that of the wild type (wt) cells (0%), 

with 24.1±2.91% of fmp45∆ and 16±5.1% of fmp42∆ cells remaining viable after 

220 minutes of exposure to the acid. These results indicate that deletion of 

these genes seems to be beneficial during acetic acid-induced cell death. On 

the other hand, suc2∆ shows only slightly higher resistance when compared to 

wt cells, presenting 3.6±3.6% viable cells at 220 minutes. The differences 

between the parental and deletion strains treated with acetic acid are 

statistically significant for fmp42∆ and fmp45∆ from 60 min to 220 minutes 

(***P<0.001), and for suc2∆ at 60 minutes (***P<0.001) and 120 minutes 

(*P<0.05).  

The nnf2∆ mutant strain behaved similarly to wild type, since no significant 

change in sensitivity to acetic acid-induced cell death was observed. On the 

contrary, the hsp30∆ and hsp104∆ mutants exhibited a phenotype of resistance 

with a percentage of cell viability of 37.2±0.62% and 60±0.73%, respectively 

figure 25B). The differences between the parental and deletion strains treated 

with acetic acid are statistically significant for hsp30∆ and hsp104∆ from 60 

minutes to 220 (***P<0.001).  

The flo1∆, flo8∆ and aqy2∆ deletion strains were also more resistant to 

acetic acid (figure 25C). However, flo8∆ was considerable more resistant than 

the other mutants, with 9.5±4.1% of flo1∆, 39±0.8% of flo8∆ and 9.2±4.7% of 

aqy2∆ cells viable after 220 minutes. The differences between the parental and 

deletion strains treated with acetic acid are statistically significant for flo1∆ and 

aqy2∆ at 60 (***P<0.001), 120 (***P<0.001), 180 (**P<0.01), and 200 (*P<0.05) 

minutes, and for flo8∆ from 60 minutes to 220 minutes (***P<0.001). So, 

deficiency in these three mutants seems to be beneficial during acetic acid-

induced cell death, but Flo8p has a more relevant role in the mediation of cell 

death. 

The results obtained with ymr173-a, yJR115w and ycr006c strains showed 

that cell viability was higher than that of the wild type strain (Figure 25D). The 

difference between the parental and deletion strains treated with acetic acid are 



 

statistically significant for ymr173w
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statistically significant for ymr173w-a at 60 minutes (**P<0.01), for yJR115w at 

60 minutes (***P<0.001), and for ycr006c from 60 to 220 minutes (***P<0.001).
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Figure 25 - Relative cell survival of wild, 

aqy2∆, hsp104∆, hsp30∆, nnf2

exposure to 120 mM acetic acid.

60, 120, 180, 200 and 220 minutes. (A) Serial dilutions (10

onto YPD plates. (B) Cell viability was determined by C.F.U. counts. Values represent means 

and standard deviations of 3 independent experiments. Statistical analysis was performed using 

a two-way ANOVA test.  The difference between the parental and deletion strain, statistically 

significant: ***P<0.001, **P<0.01 and *P<0.05.
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significant: ***P<0.001, **P<0.01 and *P<0.05. 

In summary, the results from the assays where the strains were tested 
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relative quantitation of the resistance of individual strains.   

Cell death  markers 

After assessing the cell viability of the deletion strains exposed to acetic 

acid, we analyzed the appearance of several cell death markers. The first 

marker to be analyzed was the integrity of plasma membrane by PI staining, 

and the fluorescence was evaluated by flow cytometry. The results were in 

agreement with the resistance phenotypes, and the mutants most resistant to 

acetic acid had the lowest percentage of PI-positive cells (figure 26)
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Figure 26 - Membrane integrity loss in wt and fmp42∆, fmp45∆, aqy2∆ , flo1∆, flo8∆, 

nnf2∆, hsp30∆, hsp104∆, suc2∆ ycr006c∆, yjr115w∆ and ymr173w-a∆ strains incubated 

with  acetic acid.  Samples were collected after 0, 120, 180, 240 and 300 minutes at 30°C, 

stained with PI (1µg/mL), and the fluorescence measured by flow cytometry. Percentages of 

cells stained with PI are shown. Values represent means and standard deviations of 3 

independent experiments. Statistical analysis was performed using a two-way ANOVA test. The 

difference between the parental and deletion strain, statistically significant: ***P<0.001, 

**P<0.01 and *P<0.05. 

 

 

To determine the levels of ROS in mutant cells treated with acetic acid we 

labeled cells with DHE. The ROS levels were assessed by flow cytometry and 

results expressed as a percentage of ROS-positive cells. The strains were 

incubated with 120 mM of acetic acid, for 220 minutes, and stained with DHE 

(Figure 27). 

 

 

 



Results 

72 
 

 

0 60 120 180 200 220
0

20

40

60

80

100

BY4741
hsp30∆
hsp104∆
nnf2∆

***

******
***

Time (min.)

D
H

E
 p

os
iti

ve
 c

el
ls

 (
%

)

0 60 120 180 200 220
0

20

40

60

80

100

BY4741

flo8∆
aqy2∆

flo1∆

**

***

***

*** ***

Time (min.)

D
H

E
 p

os
iti

ve
 c

el
ls

 (%
)

0 60 120 180 200 220
0

20

40

60

80

100

BY4741
ycr006c
yjr115w
ymr173w-a

***
***

***
***

Time (min.)

D
H

E
 p

o
si

tiv
e 

ce
lls

 (
%

)

0 60 120 180 200 220
0

20

40

60

80

100

BY4741
fmp45∆
fmp42∆
suc2∆

** **

***

***

*** ***

Time (min.)

D
H

E
 p

o
si

tiv
e 

ce
lls

 (
%

)

 

Figure 27 - Superoxide anion accumulation loss in w t and fmp42∆, fmp45∆, aqy2∆ , 

flo1∆, flo8∆, nnf2∆, hsp30∆, hsp104∆, suc2∆ ycr006c∆, yjr115w∆ and ymr173w-a∆ strains 

incubated with  acetic acid.  Samples were collected after 0, 120, 180, 240 and 300 minutes at 

30°C, stained with DHE (1µg/mL), and the fluorescence measured by flow cytometry. 

Percentages of cells stained with DHE are shown. Values represent means and standard 

deviations of 3 independent experiments. Statistical analysis was performed using a two-way 

ANOVA test. The difference between the parental and deletion strain, statistically significant: 

***P<0.001, **P<0.01 and *P<0.05. 

 

 

The percentage of wild-type ROS-positive cells after acetic acid treatment 

was 93±4.8% after 220 min of treatment. The suc2∆, flo1∆ and nnf2∆ mutants 

also showed higher levels of mitochondrial ROS after 220 min of treatment, 

about 75.8±7.2%, 76.6±5% and 98.8±0.1% respectively. On the other hand, the 

other mutants had a lower percentage of cells with ROS, after 220 min of 

treatment. The results were in agreement with their resistance phenotypes, and 

the mutants most resistant to acetic acid had the lowest levels of ROS. 
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Additionally, we quantified the appearance of nuclei with chromatin 

condensation during acetic acid treatment, one of the hallmarks of apoptotic cell 

death. Nuclear DNA was stained with DAPI, observed by fluorescence 

microscopy (Figure 28A), and results quantified (Figure 28B). Nuclei with 

normal chromatin are round and regular shaped, whereas nuclei with chromatin 

condensation can be visualized in the form of semicircles.  
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Figure 28 – The effect of acetic acid on chromatin condensation and fragmentation. 

(A) Samples were collected after 0, 60, 180 and 220 minutes, stained with DAPI (2 µg/mL) and 

samples were observed by fluorescence microscopy. (B) Quantification of apoptotic nuclei from 

cells treated with 120 mM acetic acid. 

 

 

As expected, we observed an increase in the number of wild-type cells 

exhibiting chromatin condensation, which can be visualized by the 

fluorescent semicircles formed by chromatin fragments. In the mutants 

tested, few apoptotic nuclei showing chromatin condensation were observed; 

instead they show single round fluorescent circles. After 220 minutes of 

treatment with acetic acid, 27%, 20.7%, 26.1% and 37% of the cells had 

abnormal nuclei and chromatin condensation in the mutants fmp45∆, 

hsp104∆, hsp30∆ and aqy2∆ respectively. 87.5% of wild-type cells exhibited 

an apoptotic nucleus after this time. 

 

4.2.3.3. Alignment Mycp with Sfl1p 

The results presented above show the involvement of Sfl1p in the 

regulation of acetic acid-induced cell death. From a structural point of view, 

Slf1p is a protein of 766 amino acids with 3 domains characteristic of the c-myc 

oncoprotein (similarity of 43% between the domains of these two proteins). In 

Figure 30, we show the amino acid alignment of Sfl1p and Myc. Some authors 

have described that c-myc oncoprotein has an important role in apoptosis, since 
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it activates the protein Bax, which induces the release of cyt c into the cytosol. 

The conserved c-Myc domains are responsible for its function as a transcription 

factor, but have also been shown to be required for its ability to induce 

apoptosis. Our results showing that Sfl1p is also involved in the regulation of a 

mitochondrial-dependent apoptotic process suggest that these domains can 

have a conserved function not only on transcription regulation but also in 

apoptosis regulation across kingdoms. 

 

 

SFl1p IWEFKHSSGIFKKGDIEGLKHIKRRASSRNNSSINSRKNSSNQNYDIDSGARVRPSSIQD 240 
MYCp  ------------------MDFFRVVENQQPPATMPLNVSFTNRNYDLDYDS-------VQ 35 
                        
SFl1p PSTSSNSFGNFVPQIPGANNSIPEYFNNSHVTYENANHAPLESNNPEMQEQNRPPNFQDE 300 
MYCp  PYFYCDEEENFYQQQQQSELQPPAPSEDIWKKFELLPTPPLS---PSRRSGLCSPSYVAV 92 
      
SFl1p TLKHLKEINFDMVKIIESMQHFISLQHSFCSQSFTFKNVSKKKSENIVKDHQKQLQAFES 360 
MYCp  TPFSLRGDNDGGGGSFSTADQLEMVTELLGGDMVNQSFICDPDDETFIKN---------- 142 
      
SFl1p DMLTFKQHVMSRAHRTIDSLCAVNAAATAASVAPAPAPTSTSAYAPKSQYEMMVPPGNQY 420 
MYCp  ---IIIQDCMWSGFSAAAKLVSEKLASYQAARKDSGSPNPARGHSVCSTSSLYLQDLSAA 199 
 
SFl1p VPQKSSSTTNIPSRFNTASVPPSQLLYNTNRSRNQHVTYASEPAHVPNFINQPIPIQQLP 480 
MYCp  ASECIDPSVVFPYPLNDSSSPKSCASQDSSAFSPSSDSLLSSTESSPQGSPEPLVLHEET 259 
      
SFl1p PQYADTFSTPQMMHNPFASKNNNKPGNTKRTNSVLMDPLTPAASVGVQGPLNYPIMNINP 540 
MYCp  PPTTSSDSEEEQEDEEEIDVVSVEKRQAPGKRSESGSPSAGGHSKPPHSPLVLKRCHVST 319 
      
SFl1p SVRDYNKPVPQNMAPSPIYPINEPTTRLYSQPKMRSLGSTSSLPNDRRNSPLKLTPRSSL 600 
MYCp  HQHNYAAPPSTRKDYPAAKRVKLDSVRVLR-----------QISNNRKCT----SPRSSD 364 
 
SFl1p NEDSLYPKPRNSLKSSISGTSLSSSFTLVANNPAPIRYSQQGLLRSLNKAANCAPDSVTP 660 
MYCp  TEENVKRRTHNVLERQRR-NELKRSFFALRDQIPELENNEKAPKVVILKKATAYILSVQA 423 
      
SFl1p LDSSVLTGPPPKNMDNLPAVSSNLINSPMNVEHSSSLSQAEPAPQIELPQPSLPTTSTTK 720 
MYCp  EEQKLIS----------------------------------------------------- 430 
 
SFl1p NTGEADNSKRKGSGVYSLLNQEDSSTSSADPKTEDKAAPALKKVKM 766 
MYCp  ---EEDLLRKRREQLKHKLEQLRNSCA------------------- 454 

 

 

Figure 29 - Alignment of SFL1p amino acid sequences from S. cerevisiae with MYCp 

amino acid sequences from H. sapiens. 



 

77 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.3. Part III  
The role of Rlm1p in acetic acid-induced apoptosis 
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As mentioned previously, the cell wall of S. cerevisiae is an external 

envelope that protects it against environmental conditions. The adaptive 

response of yeast to cell wall stress is mainly mediated by the CWI pathway. 

The final consequence of the activation of the CWI pathway by cell wall stress is 

the induction of an adaptive transcriptional response (Lagorce et al., 2003; 

García et al., 2004; García et al., 2009, Jung and Levin, 1999). The 

transcriptional program triggered by cell wall stress is coordinated by Slt2/Mpk1, 

and is mostly mediated by the transcription factor Rlm1p. Previous results in the 

lab had shown that under non-repression conditions (galactose grown cells) 

deletion of slt2∆ or of rlm1∆ induced resistance to acetic acid (Flávio Azevedo, 

unpublished results). However, the involvement of downstream components of 

this signaling pathway in acetic acid-induced apoptosis is not known.  

With the aid of bioinformatics tools, in particular with data available in the 

database YEASTRACT (http://www.yeastract.com/), we could identify 197 

genes regulated by Rlm1p, of which 29 are essential. To identify genes 

regulated by Rlm1p required for resistance to acetic acid induced-cell death, we 

screen the strains mutated in all the non-essential genes under Rlm1p control 

from the EUROSCARF haploid mutant deletion collection (EUROSCARF; 

http://www.uni-frankfurt.de/fb15/mikro/euroscarf/). 

 

4.3.1. Optimization of screening conditions 

First, we optimized treatment parameters in order to obtain the best 

experimental conditions to detect of mutant strains with higher resistance or 

sensitivity to acetic acid-induced cell death in galactose medium, when 

compared with the wild type strain. Several parameters, such as acetic acid 

concentration (from 200 mM - 300 mM), cell concentration and treatment time 

were tested. Six control strains (hog1∆, rlm1∆, slt2∆, swi4∆, swi6∆ and wild 

type) were distributed in triplicate by the plates, as a control, as  these strains 

have different susceptibility to acetic acid in galactose-containing media (Flávio 

Azevedo, unpublished results). Treatment conditions chosen were exposure of 

cultures to 250 mM acetic acid, at pH3, for 400 minutes. The stringent assays 
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reported in this study increased the feasibility of exploring yet unknown 

pathways of cell death in yeast. 

An array of the 168 strains was then patched as 96-dot arrays onto the 

surface rich solid medium and grown at 30°C for 2 days. Using a 96-pin 

replicator, strains were transferred into 96-well plates with synthetic complete 

liquid medium (SC-Gal) and grown for an additional 24 hours at 30 °C, without 

agitation. Cultures were diluted 100 fold using a multichannel pipette into SC-

Gal medium at pH3 containing 250 mM acetic acid, for 400 minutes. At different 

times of incubation (100, 200, 300 and 400 min.) cells were replicated into 96-

well plates containing YPD medium, and the plates were incubated at 30°C for 

2 days. Mutants whose growth was reduced compared to the wild-type strain 

and mutants that still grew at a time point where the control strain did not grow 

were considered sensitive and resistant, respectively. To further validate our 

tests, we determined the viability of 50 mutant strains individually and compared 

the phenotype with the screening results (46 coincident) (table 2). 
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Table 2 -  Genes that are described as regulated by Rlm1p, phenotype in genome-wide screen 
and viability individually. 

Genes Screening  Individual  Genes Screening  Individual  

AFR1 +  PRY2 + + 

AGE1 +  PST1 +  

AGP3 +  PTP2 +  

ALD3 no phenotype  PUN1 -  

AMN1 +  PXL1 +  

API2 +  RAD30 +  

APQ12 no phenotype  RAD55 +  

ARI1 + + RBA50 not viability  

ASE1 +  RCK1 +  

ASK10 no phenotype  RIM21 +  

ATG8 +  RMD1 - no phenotype 

BER1 no phenotype  RMD6 +  

BGL2 + + RML2 -  

BSC1 +  RNH203 + + 

BUD22 + + RPA34 +  

CCW12 + + RPC10 not viability  

CCW14 +  RPI1 +  

CHS1 no phenotype  RPL9b + + 

CHS3 - no phenotype RTS3 +  

CHS5 no phenotype  SBP1 + + 

CIS3 no phenotype  SEC59 not viability  

CLB4 +  SED1 no phenotype  

COS9 not viability  SFG1 +  

COY1 +  SGE1 +  

CRG1 no phenotype no phenotype SIM1 +  

CRH1 + + SLM5 +  

CRM1 not viability  SLT2 +  

CSN9 no phenotype no phenotype SMF1 -  

CTT1 -  SNF11 + + 

CWP1 -  SOR1 not viability  

CWP2 -  SOR2 not viability  

DDR48 no phenotype no phenotype SPO77 no phenotype  

DFG5 + + SPS100 no phenotype  

DSD1 -  SPS2 + + 

DSE2 no phenotype  SRL3 + + 

ECM19 + no phenotype SUN4 +  

ECM38 +  SUR1 no phenotype  

EGD2 no phenotype  SUS1 -  

EXG1 +  TAT2 + + 

EXG2 + + TPO2 -  

FAA4 + + TSL1 -  

FBP26 +  TUB3 -  

FIT2 +  UTR2 +  

FKS1 -  VPS74 -  

FLC1 +  WSC4 no phenotype  

FLC2 + + YAR053w not viability  

FLO10 + + YBR071w +  

FMP33 no phenotype no phenotype YCL049C +  

FRE6 no phenotype  YCL065w not viability  
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FRQ1 not viability  YCR018c-a not viability  

GDS1 +  YDR042C -  

GFA1 not viability  YDR210c-d not viability  

GIC2 +  YDR417C +  

GVP36 -  YEF1 + + 

HAL1 no phenotype  YEL074w not viability  

HOG1 -  YER001W +  

HOR7 -  YER138c not viability  

HSP12 + + YGL159W + + 

HSP150 -  YGL260W no phenotype  

HXT15 not viability  YGP1 + + 

HXT16 not viability  YGR149W +  

ICS2 + + YHL041W no phenotype + 

IME2 -  YHL042W +  

INO1 +  YHR033W +  

IPT1 +  YHR097C no phenotype no phenotype 

IRC22 +  YIL108W +  

KAR2 not viability  YJL105w +  

KDX1 + + YJL107C no phenotype  

KTR2 +  YJL160c + + 

LHS1 + + YJL171C + + 

LYS9 +  YJR157w not viability  

MAK32 +  YKE4 + + 

MCH5 -  YKR104W +  

MDM31 + + YLR040c + + 

MGA1 +  YLR111W no phenotype  

MID2 no phenotype  YLR194C +  

MLP1 + + YLR463c not viability  

MPH2 not viability  YLR465c not viability  

MSB4 + + YMR103C +  

MSC1 + + YMR295C +  

MSC6 no phenotype  YMR315w + + 

MTF2 -  YNL010W no phenotype  

MUM2 no phenotype  YNL058C +  

NAG1 not viability  YNL208W +  

NFT1 + + YOL159C +  

NFU1 +  YOL160W +  

NNF2 -  YOR314W no phenotype  

PAM16 not viability  YPL088W + + 

PAU20 not viability  YPR195C no phenotype  

PCL1 no phenotype  YPS1 no phenotype no phenotype 

PCM1 not viability  YPS3 no phenotype  

PGK1 not viability  YPS5 +  

PIR1 no phenotype  YPS6 + + 

PIR3 -  YRF1-4 not viability  

POG1 no phenotype no phenotype YRF1-5 not viability  

PPR1 no phenotype no phenotype YSN1 no phenotype  

PRM10 no phenotype  YSP3 -  

PRM5 + + YSR3 -  

PRY1 +     
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4.3.2. Functional categories significantly enriched  in the data 

set of resistant strains 

Of the 168 mutants tested, 102 were resistant to acetic acid-induced cell 

death. The functions of these genes were determined using the MIPS database 

(http://mips.helmholtz-muenchen.de/proj/funcatDB/), and are shown in figure 

31. One functional class was considered enriched over random whenever the 

attributed p-value was below 0.01. The description of gene function was 

complemented using the information available at SGD 

(http://www.yeastgenome.org). 

 

 
Figure 30 - Functional categories significantly enr iched in gene whose deletion 

renders cells resistant to acetic acid-induced cell  death. The frequency in our dataset (dark 

grey) is compared with the frequency in the whole yeast genome (light grey). 

 

In the data set of resistant strains, the functional categories most 

significantly enriched are: "Cell type differentiation", "Cell wall", "Pheromone 

response" and "Osmosensing and response". The “Cell type differentiation” 

class in basically composed of genes encoding proteins involved in filamentous 

growth (DFG5), hyphae formation (SFG1) and sporulation (SPS2). 
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"Osmosensing and response" is composed of genes involved in temperature 

perception and response (HSP12) and osmolarity (PTP2). Another important 

group consists in genes involved in pheromone-regulated proteins like Prm5, 

Afr1 and Kdx1. 

Protein Bgl2, Exg1, Exg2, Flc1, Flc2, Rim21 and Sun4 are involved in the 

formation of the cell wall. Mutation of their respective genes conferred 

resistance to acetic acid-induced cell death, confirming that the cell wall is 

important in the response to this acid and that cell wall remodeling plays a 

decisive role in the induction of apoptosis. 

 

4.3.3. Functional categories significantly enriched  in the data 

set of sensitive strains 

The analysis of the genes whose deletion caused sensibility to acetic acid-

induced cell death revealed 27 sensitive strains. The functional categories of 

these genes also were determined using the MIPS database and are shown in 

figure 32. A functional class was considered enriched over random whenever 

the attributed p-value was below 0.01. 

 
Figure 31 -  Functional categories significantly enriched in gen e whose deletion 

renders cells sensitive to acetic acid-induced cell  death. The frequency in our dataset (dark 

grey) is compared with the frequency in the whole yeast genome (light grey). 
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In the data set of sensitive strains, the functional categories most 

significantly enriched are: "Stress response" and "Cell wall". The "Stress 

response" class is composed of genes that code for proteins involved in 

oxidative stress response (CTT1 has a role in protection from oxidative 

damage), osmotic and salt stress response (HOG1) and detoxification (TPO2). 

The “Cell wall” class is basically composed of genes encoding proteins involved 

in the stability of the cell wall, like PIR3, HSP150, CWP2, FKS1 and PUN1. 

Therefore, proteins regulated by Rlm1p that ensure the stability of the cell wall 

protect cells from acetic acid-induced cell death. Acetic acid can enter the cells 

by diffusion. One of the mechanisms proposed to reduce the diffusion rate of 

anions is the reinforcement of the cell wall structure to decrease its porosity. 

Cell integrity depends on the cell wall, which protects cells against extreme 

environmental conditions. Stress conditions can alter the cell wall, leading to the 

activation of a cellular response that allows cells to adapt and survive. The 

results from our screen seem to indicate that it is the stabilization of the cell wall 

and not its remodeling that is important for the cell´s ability to cope with acetic 

acid stress. 
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One of the aims of the present work was the identification of genes 

involved in the acetic acid-induced programmed cell death through a genome-

wide analysis. To this end, we utilized the EUROSCARF knock-out mutant 

collection in BY4741 background. This screening uncovered a set of genes 

involved in resistant and sensitive phenotypes that were clustered according to 

their biological function and known physical and genetic interactions using as 

support STRING and MIPS. The frequency of each functional class in our 

dataset was compared with the frequency in the whole genome also using the 

MIPS functional catalogue. Approximately, 2159 strains were found to be 

resistant and 391 strains were found to be sensitive. The genes whose deletion 

increased resistant to acetic acid-induced cell death belong to the functional 

categories, transcriptional control, stress response, phosphate metabolism, cell 

type differentiation, amino acid metabolism, cell wall, meiosis, protein kinase 

and detoxification. The stress response and transcriptional control, groups were 

the functional category most significantly enriched among the resistant strains. 

The stress response group included genes involved in the oxidative stress 

response, osmotic and salt, pH, heat shock, cold shock, DNA damage, nutrient 

starvation and UV. Proteins involved in regulation of transcription that when 

mutated confer resistance to acetic acid (Rpd3, hos3, Hos1 Hta1, Nhp6b, Sas5, 

Spt2 and Ecm11) were involved in acetylation, histones complexes and 

nucleosomes. Thus, chromatin modifiers may function as co-repressors by 

effecting a more closed chromatin conformation and possibly inactivate genes 

whose products are important for apoptosis.  

The functional categories most significantly enriched in the deletions 

strains that displayed increased sensitivity to acetic acid-induced cell death 

were: protein fate, biogenesis of cellular components, transcriptional control, c-

compound and carbohydrate metabolism, respiration, ribosomal proteins, ion 

transport and homeostasis of cations. From this data set of genes, those related 

to proton homeostasis and ion transport include a number of genes involved in 

the assembly and/or regulation of the activity of plasma membrane H-ATPase 

(PM-H-ATPase), of vacuolar H-ATPase (V-ATPase) and of mitochondrial F1F0 

ATP synthase. Changes in cytoplasmic H+ concentration are considered an 

important signal for the control of cell function. Intracellular pH not only governs 
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the actual activity of enzymes but also affects the expression of signaling 

proteins (Capuano and Capasso, 2003; Lehen'kyi, 2011). Therefore, 

intracellular pH controls essential steps in the cell cycle and is involved in the 

decision to undergo either proliferation or apoptosis.  

Mutants, whose deleted genes encode proteins involved in ion import, 

were found to be susceptible to acetic acid, suggesting that the uptake of these 

ions plays a crucial role in yeast response to acetic acid stress. A study, 

showed an increase in potassium uptake, in response to acetic acid stress, 

being expected to compensate the stimulation in the activity of extrusion of H+ 

occurring in these cells, and thus keeping the electrical balance across the 

plasma membrane (Mira et al., 2010). A similar adaptive response is proposed 

to occur, in the presence of other ions. The levels of the other ions as Na+ and 

Ca2+ represent central determinants in signaling events leading to cell death. 

Thus the ion fluxes mediated by ion channels are extremely important 

mechanisms of apoptosis regulation and discovery that the expression of ion 

channels is not limited solely to the plasma membrane, but also include 

membranes of internal compartments.  

Many of the mitochondrial proteins found in the screen are involved in 

respiration and some play a role in the electron transport chain such as Aac3, 

Atp2, Coq9, Cox16, Cox18, Cyt1, Oar1, Por1 and Rip1. Proteins like Cox11, 

Cox16, Cox17, Cox20 and Sco1 are essential for the assembly of the multi 

subunit enzyme cyt c oxidase, these deletions of these genes triggered 

sensitivity to acetic acid. These results showed the importance of inducing 

apoptosis when the respiratory chain is deregulated and high production of 

ROS may occur. 

In this work we also aimed to study the role of Sfl1p in acetic acid-induced 

apoptosis, since it had been described that deletion of SFL1 confers a 

resistance phenotype to this cell death stimulus. Sfl1p is a transcription factor 

involved in repression of flocculation-related genes, and activation of stress 

responsive genes, and it was described that Sfl1p is negatively regulated by 

TPK2 isoform of protein kinase A (PKA) (Conlan et al., 2001). So cell viability of 

deletion mutants in the three PKA isoforms TPK1, TPK2 and TPK3 were 
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assessed after exposure to acetic acid at 120 mM. From these three mutants, 

the strains tpk1∆ and tpk2∆ showed a phenotype similar to the parental strain. 

The only mutant that presented a phenotype of resistance was the strain tpk3∆, 

this characteristic can be explained by the reduction of the respiratory functions 

and consequently lower production of ROS (Gourlay and Ayscongh, 2006), that 

was confirmed by assessment of accumulation of superoxide anion. It is known 

that Sfl1p leads to a decrease of pseudohyphal and invasive growth, and Tpk3p 

also inhibits the pseudohyphal development (Robertson and Fink, 1998). Since 

the deletion of TPK3 and SFL1 genes presented higher resistance in the 

presence of acetic acid, the results suggest that the filamentous growth invasion 

pathway is important in induction of acetic acid-induced apoptosis. We also 

studied apoptotic markers in these three isoforms, and as expected the results 

agreed with the viabilities. It should be also noted that tpk2∆ mutant strain also 

displaying rapid loss of CFUs did not present a high production of ROS and the 

membrane integrity was not totally lost. Thus, these data suggested that this 

strain still presented a programmed death.  

To further assess the role of Sfl1p in these conditions, the viability of 

strains deleted in genes reported as being under Sfl1p regulation was tested. 

We studied a group of genes reported to be repressed (aqy2∆, flo1∆, flo8∆, 

fmp45∆, suc2∆, yjr115w∆ and ymr173-a∆) and activated (hsp30∆ and 

ycr006c∆) by Sfl1p under certain stress conditions, not including the acetic acid. 

Other genes (fmp42∆, hsp104∆ and nnf2∆) also potentially regulated by Sfl1p, 

but for which repression or activation regulation is unknown, were also studied. 

The viability of these mutant strains was assessed after exposure to acetic acid 

(120 mM, pH3.0). Of these strains only nnf2∆ did not show a resistant 

phenotype compared to the parental strain. This phenotype could be explained 

by the interaction of NNF2 with RNA polymerase, which could lead to the 

inhibition of transcription. Through our genome-wide screening we also 

evaluated the phenotype of the deletion mutants in the remaining genes 

documented as being regulated by SFL1p. From these, deletion of only two 

genes showed an increased sensitivity to acetic acid (nnf2∆ and taf14∆), while 

the others presented an increased resistance when submitted to acetic acid–

induced cell death. Taf14p complex is involved in RNA polymerase II 
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transcription initiation and in chromatin modification. These mutants are viable, 

but grow slowly on rich media and displays decreased transcription, defects in 

actin organization, increased osmosensitivity, heat sensitivity and sensitivity to 

caffeine, hydroxyurea, UV, and methyl methanesulfonate. This could explain the 

sensitivity to acetic acid. The same happens with the mutant nnf2∆, protein that 

exhibits physical and genetic interactions with Rpb8p, which is a subunit of RNA 

polymerases I, II, and III. These results evidence the need for an active 

transcription in the response to acetic acid stress. 

Overall, the results indicate that Sfl1p, during acetic acid induced cell 

death, acts as an activator of these genes, whose deletion gives a resistant 

phenotype. So the phenotype of sfl1∆ strain can be explained by the coordinate 

decrease in gene expression of a group of genes that cooperate to promote 

acetic acid induced-apoptosis. 

The stress transcription factors are interesting models, and their 

characterization can lead to the identification of new components of the stress 

signaling pathways in yeast. Little is known about the signal transduction 

pathways that induce apoptosis. Cells possess a network of signal transduction 

pathways that enable them to respond to different stimuli, which implies strong 

changes in gene expression. Sfl1p has great similarity in the amino acid 

sequence with the oncoprotein c-Mycp, a trancription factor also involved in 

apoptosis regulation. Some studies confirm that this oncoprotein is mutated in 

many human carcinomas, and when expressed induces apoptosis through the 

activation of BAX with the consequent release of cty c from mitochondria to 

cytosol.  

After these data, that support a role for Sfl1p in acetic acid induced 

apotosis, it would be interesting to study also the release of cty c from 

mitochondria in the sfl1∆ mutant strain, to further evaluate the putative 

parallelism with the oncoprotein c-myc.  

The remodelling of yeast cell wall structure in response to acetic acid is an 

essential response to reduce the diffusion rate of the undissociated weak acid 

forms into the cell interior. The cell wall of S. cerevisiae is an external envelope 
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that protects it against environmental conditions. The transcriptional program 

triggered by cell wall stress is coordinated mostly by transcription factor Rlm1p. 

Several genes regulated by RLM1, which play a role in cell wall, when mutated 

confer resistance or sensitivity to acetic acid, confirming that the cell wall plays 

a decisive role in the resistance to acetic acid. While deficiency in proteins Bgl2, 

Exg1, Exg2, Flc1, Flc2, Rim21 and Sun4, involved in the formation of the cell 

wall, confer resistance to acetic acid, deletion of one group of genes involved in 

the stability of the cell wall constituted by PIR3, HSP150, CWP2, FKS1 and 

PUN1, induced a sensitivity phenotype to acetic acid-induced cell death. So we 

can say that genes activated by RLM1 can ensure the stability of the 

membrane, allowing better response to acetic acid, while remodeling of the cell 

wall increases cell death.  
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