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Abstract

Purpose of review—Mathematical, statistical, and computational models provide insight 

into the transmission mechanisms and optimal control of healthcare-associated infections. To 

contextualize recent findings, we offer a summative review of recent literature focused on 

modeling transmission of pathogens in healthcare settings.

Recent findings—The COVID-19 pandemic has led to a dramatic shift in the modeling 

landscape as the healthcare community has raced to characterize the transmission dynamics 

of SARS-CoV-2 and develop effective interventions. Inequities in COVID-19 outcomes have 

inspired new efforts to quantify how structural bias impacts both health outcomes and 

model parameterization. Meanwhile, developments in the modeling of methicillin-resistant 

Staphylococcus aureus, Clostridioides difficile, and other nosocomial infections continue to 

advance. Machine learning continues to be applied in novel ways, and genomic data is being 

increasingly incorporated into modeling efforts.

Summary—As the type and amount of data continues to grow, mathematical, statistical, and 

computational modeling will play an increasing role in healthcare epidemiology. Gaps remain 

in producing models that are generalizable to a variety of time periods, geographic locations, 

and populations. However, with effective communication of findings and interdisciplinary 

collaboration, opportunities for implementing models for clinical decision-making and public 

health decision-making are bound to increase.
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INTRODUCTION

Approximately 4% of all hospitalized patients develop healthcare-associated infections 

(HAIs) within the United States [1]. Although significant progress has been made in 

reducing HAIs, an important complication of HAIs is infections due to multidrug-resistant 

organisms (MDRO). In the United States, antimicrobial resistant infections have resulted in 

over 35 000 deaths annually, with an estimated cost of $4.6 billion [2,3■].

The acquisition and transmission of HAIs is a complex process that depends on 

microbiology, clinical factors, human behavior, and health system infrastructure. The 

interplay of each of these factors has resulted in challenges in measuring and understanding 

the key components of HAI epidemiology [4]. In light of these challenges, mathematical, 

statistical, and computational models play a key role in quantifying the drivers of HAI 

epidemiology, as well as identifying effective interventions [5]. The ongoing COVID-19 

pandemic has further highlighted the importance of transmission in hospitals. Here, we 

review key studies published in 2020 and early 2021, provide an overall perspective on the 

utility of modeling HAIs, highlight critical gaps in the literature, and suggest research areas 

that require additional study.

Mathematical, statistical, and computational models are tools for delineating, interpreting, 

and understanding patterns in real-world data. Mathematical models incorporate a 

mechanistic understanding of disease transmission, with parsimonious quantification of 

pathogen spread and the impact of control interventions. Statistical models, including 

many machine learning techniques, are agnostic to underlying mechanistic properties. 

These types of models are typically designed to identify correlations between observed 

variables that can be exploited for risk assessment or forecasting. Computational models, 

which include microsimulations and agent-based models, permit increased complexity of 

modeling assumptions but risk the inclusion of many variables whose values can be 

challenging to infer from data. Computational models can be used to produce forecasts, 

perform counterfactual simulations of how disease dynamics may have been altered by 

specific control interventions, or analyze how sensitive specific outcomes are to modeling 

assumptions. Often a model has a combination of features and cannot be neatly classified as 

being mathematical, statistical, or computational. In this review, we focus on how modeling 

has been used to improve the field of healthcare epidemiology, rather than delving into the 

intricacies of methodological development.

KEY PATHOGENS

SARS-CoV-2

The elephant in the 2020–2021 hospital room has been COVID-19. Over the last year, 

SARS-CoV-2, the virus responsible for COVID-19 rose from relative obscurity to over 120 

million detected cases worldwide (as of 16 March 2021) [6,7]. The meteoric rise in cases 

has been paralleled by a similar rise in modeling research. The early focus of modeling 

centered around community transmission, healthcare utilization needs, and projections of 

interventions designed to maintain health system integrity [8–12]. In addition, forecast and 
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simulation studies sought to explore the risk of nosocomial transmission of SARS-CoV-2 

among healthcare personnel and patients [13].

As the pandemic evolved, significant attention has been paid to modeling nosocomial 

transmission of SARS-CoV-2 in long-term care facilities (LTCFs). Early in the pandemic, 

LTCFs proved to be particularly high-risk settings due to high concentrations of individuals 

with high-risk comorbidities and the congregate living arrangement. Consequently, a number 

of modeling studies sought to understand LTCF bed needs, testing requirements for 

preventing transmission, and optimal vaccine deployment strategies [14■,15–18].

Methicillin-resistant Staphylococcus aureus

The CDC estimated that in 2019 there were over 320 000 cases of methicillin-resistant 

Staphylococcus aureus (MRSA) in the United States resulting in over 10 000 deaths [3■]. 

MRSA colonization is associated with susceptibility to invasive infection, highlighting the 

benefit of identifying who might benefit from decolonization regiments. One study aimed to 

make screening more cost-effective by developing a clinical prediction rule for identifying 

patients at high risk of being colonized with MRSA [19■]. The model showed that a 

negative predictive value of 99.4% can be maintained when just 25.4% of patients are 

screened. In another study, the possibility of MRSA superspreading events within and 

between healthcare facilities was shown in an analysis of an extensive contact network of 

patients, emphasizing the impact and importance of screening on admission [20■■].

Models also addressed the effectiveness of interventions for preventing MRSA transmission. 

In a large-scale study of 108 Veterans Affairs acute care hospitals, Khader et al. [21■] 

found contact precautions for MRSA patients reduced transmission by 47%. Furthermore, 

genomic surveillance of MRSA is likely to be cost-effective based on the reduction of 

MRSA acquisitions in the year following an admission [22■].

Extended spectrum beta-lactamase-producing Enterobacteriaceae and other multidrug-
resistant organisms

MDROs are a frequent contributor to HAI [1]. The CDC estimated that for 2019 there were 

over 197 000 extended spectrum beta-lactamase Enterobacteriaceae infections resulting in 

over 9000 deaths [3■]. Modeling of epidemiological data for multidrug-resistant Klebsiella 
in Europe suggested that nosocomial transmission and hospital-based antibiotic consumption 

were the major drivers of transmission at a national level [23■■]. Thus improvements in 

infection prevention and antimicrobial stewardship may impact the emergence and spread of 

MDRO in both the hospital and community.

An important avenue of investigation focuses on how antibiotic resistance emerges as a 

consequence of clinical care. It has been suggested that the evolutionary rate for developing 

antimicrobial resistance is growing more quickly due to a nonlinear coupling between 

increased antibiotic use and the emergence of antibiotic resistant strains. However, it is 

unclear whether the observation of increased rapidity of antimicrobial resistance is simply 

a consequence of increased surveillance [24]. Models have also explored the potential 

impact of bystander exposure in which nonpathogenic bacteria in a patient develop drug 

resistance after they are exposed to antibiotics that are targetted for an invasive pathogen. 
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In one analysis, up to 48% of bystander antibiotic exposures might be avoidable in the 

outpatient setting [25]. However, more studies are needed to quantify the relationship 

between bystander exposure and clinically meaningful antibiotic resistance [26].

Clostridioides difficile

Clostridioides difficile infection (CDI) is a frequent complication of medical treatment. 

In 2017, nearly 224 000 people in the United States required hospital care for CDI and 

at least 12 000 people died [3■]. Models of CDI have been used to assess the amount 

of transmission occurring within the hospital system, and thus offer perspective on the 

effectiveness of prevention and control efforts. For example, a combination of electronic 

health record and sequencing data lead to an estimate that 21% of CDI cases were acquired 

from another patient due to overlapping stays or via spores left behind on discharge [27■■]. 

This study also demonstrated strain dependence in both the transmissibility and durability of 

spores.

It has long been recognized that there is significant heterogeneity in transmission of CDI. 

This may be due to host, pathogen, or environmental factors. Models can be used to tease 

apart the causes of heterogeneity. For example, a recent modeling study using C. difficile 
surveillance data found that different wards in the same hospital can exhibit different 

nosocomial transmission dynamics [28].

TRANSMISSION CONTROL AND DISEASE PREVENTION

Infection prevention

A challenge in healthcare epidemiology is quantifying the benefit of specific control 

interventions such as the implementation of contact precautions. As more detailed data are 

made increasingly available, studies are beginning to place bounds on the impact of contact 

precautions and how it varies by organisms [21■,29].

An intriguing complexity of infectious disease dynamics is the inter-relationship between 

transmission pathways for multiple pathogens. For example, a model of the MRSA 

surveillance and prevention strategy in the Veterans Affairs system quantified how the 

impact of interventions designed to reduce the spread of MRSA may have also prevented a 

substantial number of infections from other organisms [30].

Building upon success in the control of nosocomial influenza transmission through targeted 

vaccination campaigns, there has been increased interest in vaccination as a tool for 

combatting other HAIs [31,32]. In advance of a promising CDI vaccine, Toth et al. 
quantified the indirect effects of a potential vaccine. This study suggested that between 

three and 16 CDI cases per 1000 vaccinated patients could be averted, including one to five 

cases among unvaccinated individuals [31].

Another approach to HAI prevention is decolonization of organisms that can precipitate 

invasive infection. The cost-effectiveness of new antibiotics, antiseptics, and other 

technologies that decolonize carriers of drug-resistant organisms appears markedly enhanced 

when the impact on community transmission is incorporated [33]. This poses an intriguing 
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preventive strategy but would require reassessment of approval mechanisms for novel 

decolonization technologies.

Antimicrobial stewardship

Studies continue to show the benefit of antimicrobial stewardship programs in reducing 

HAI. For example, by curtailing nonspecific use of antibiotics, cases of CDI have been 

lowered by over 30% in some hospitals [34]. Several studies characterized the importance 

of coordinating antimicrobial stewardship programs among inpatient, outpatient and LTCF 

for reducing CDI and MDRO burden [35–37]. Other studies show the potential value of 

prediction algorithms for identifying patients on empiric antibiotics who have a very low 

risk of having a bloodstream infection [38].

The development of antimicrobial resistance is enhanced by antibiotic selection pressure; 

thus, there is increased interest in elucidating the relationship between the clinical use of 

antibiotics and emergence of antimicrobial resistant strains [39]. A recent model by Hansen 

et al. [40] suggested a minimalist strategy to exploit competitive suppression of selective 

strains over resistant strains so that chronic control of both invasive infection and resistance 

can be achieved.

TRENDS IN MODELS AND METHODOLOGIES

The promise of genomics

The widespread availability of genomic data coupled with the increase in computational 

power has resulted in rapid development of methods that have significantly improved 

our ability to identify transmission links among patients. For example, a study by Eyre 

et al. [27■] developed a novel approach for integrating pathogen genomic data into 

an agent-based model for CDI transmission in a hospital setting. This methodology 

permitted inference of patient-to-patient transmission links while accounting for genetic 

recombination, readmission and additional routes of transmission such as persistent 

environmental contamination.

The COVID-19 pandemic has led to additional methodologic improvements for 

incorporating genomic data into epidemiological models. A study by Meredith et al. [41] 

used genomic data and epidemiological analyses of patients in a hospital to identify clusters 

of SARS-CoV-2 transmission. The results helped clinical, infection control, and hospital 

management teams to improve interventions and patient safety. Similarly, a study by Rockett 

et al. [42] coupled genomic analysis with an agent-based model to identify the ratio of local 

versus imported acquisition of SARS-CoV-2 in Australia.

Applications of machine learning technologies

Several studies have shown the use of machine learning to identify patients at high risk of 

acquiring various types of HAI. For example, one study developed a model to predict the 

probability of a urinary tract infection caused by a MDRO [43]. Another study predicted 

patients at high risk for central line-associated bloodstream infections (CLABSI) [44]. The 
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risk of surgical site infections has also been explored [45]. The diversity in recent studies 

illustrates the broad applicability of machine learning methodologies.

CRITICAL GAPS AND FUTURE CHALLENGES

Inequities and inequalities in healthcare modeling

The COVID-19 pandemic has highlighted disparities in outcomes across socioeconomic 

status, residential neighborhood, race, and ethnicity [46,47]. Models can help characterize 

structural factors that lead to inequity. Epidemiologic and population-level modeling 

studies have explored the extent to which inequities arise from variability in hospital 

care, heterogenous exposure in the workplace, higher rates of comorbidities in certain 

subpopulations, and geographic localization of intergenerational households [48–50]. While 

studies have begun to explore disparities, additional modeling studies are needed to 

translate these descriptive findings into actionable interventions such as improving access 

to healthcare or addressing mistrust that some communities have of the medical profession 

[51].

Predictive models for HAI should continue to explore the specific impact of demographic 

factors such as sex and race. Although a number of studies include demographic variables in 

the model building process, causal dependencies can be challenging to illicit. For example, 

a study identified black race as a predictor for CLABSI risk, but it was unclear whether 

this relationship was due to self-identified race serving as a proxy for socioeconomic factors 

[44]. In addition, the effects of implicit bias on prediction models deserve more attention. In 

particular, implicit biases may affect the selection of training data and thus bias predictions.

Transitioning from theory to implementation

Despite this era of seemingly endless computational resources, challenges of model 

generalizability, and applicability abound [52,53]. A common problem identified in models 

focused on risk estimation is that they are invariably trained for a specific time and location. 

However, inevitable changes in epidemiology, treatments, or patient demographics can 

necessitate retraining or rewriting a model.

Internal validation of models requires a balance between accurate parameterization and 

overfitting. Thus, there are trade-offs between a time-invariant model that includes minimal 

site-specific information and a complex microsimulation model for which data might be 

lacking to support the specific assumptions. One approach for addressing this challenge 

maybe to use machine learning algorithms to parameterize mechanistic models tailored to 

our best scientific understanding of the spread of disease [5].

Beyond internal validation, barriers to implementation of algorithms include assurance of 

quality standards that are transferable across locations. For example, resistance patterns to 

antimicrobials in urinary tract infections can generally differ from region-to-region, and even 

from ward-to-ward within a hospital [43]. Encouragingly, many studies use separate hospital 

cohorts for external validation. However, careful consideration of the external validation 

is needed before broad application to a new health system. For example, training and 

external validation of a model using data in a single country may not translate well to 
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other countries. Similarly, results based on data from urban areas may not apply to more 

rural areas. Additional studies are needed to evaluate how technologies such as propensity 

score matching can help evaluate the generalizability and safe clinical application of models 

beyond the time periods and populations in which internal and external validation was 

conducted [54].

Finally, a critical gap exists between statistical validation of models and the implementation 

of these advances for clinical or public health decision-making. All too often well developed 

models are not deployed to address the problems they target; rather they languish in 

academic journals collecting dust. To transition models from a theoretical concept to 

practical implementation requires communication among modelers, healthcare workers, 

healthcare administrators, and public health officials [55,56]. In particular, the rapid, high 

stakes collaborative effort that brought modelers, hospital administrators, and public health 

officials together to manage the COVID-19 pandemic has shown that greater emphasis on 

the deployment process is needed to efficiently and effectively address future outbreaks 

[57,58■].

CONCLUSION

Recent studies continue to demonstrate how modeling research can be applied to understand 

the mechanisms driving disease transmission in healthcare settings. The COVID-19 

pandemic has expanded the scope and urgency of these investigations, particularly with 

regard to characterizing inequities in disease outcome. Meanwhile, the overall impact of 

modeling research for prevention and control of HAIs will depend on further advancements 

in implementation research.
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KEY POINTS

• Mathematical modeling can help disentangle the complex interplay of factors 

that impact the transmission of pathogens in healthcare settings.

• Commonly modeled pathogens in 2020 were SARS-CoV-2, methicillin-

resistant S. aureus and C. difficile.

• Innovative methodologies are taking advantage of the surge in genomics data 

and the development of machine learning technologies.

• Future challenges for modeling research include addressing inequities 

in healthcare and transforming theoretical results into meaningful 

implementation.
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