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Abstract

Jet Grouting (JG) is a reference method on soil improvement technologies, allowing im-
provements to the strength, stiffness and permeability of soft soils. However, even after
several years of practice and notable technological advances, there are still some limita-
tions to overcome. In particular, the main limitation is related to the actual approaches
for JG ’s design. The actual approaches are scarce and have important applicability limi-
tations, either in terms of jet systems or soil types. Indeed, the actual design approaches
are often too conservative. As a result, the economy and quality of the soil improve-
ment can be affected. Therefore, it is fundamental to develop new approaches that are
able to accurately predict a JG column’s mechanical properties as well as its diameter.
However, due to the high number of variables involved in the JG process and the het-
erogeneity of the soils improved, the accomplishment of such complex tasks represents a
major challenge. This challenge relies on the fact that a JG model design should be able
to incorporate simultaneously the effects of different variables (e.g., soil and cement slurry
properties and jet system).

Thus far, the traditional statistical approaches were unable to address the complexity
of JG data. However, in the past few years, powerful tools have emerged for extracting
useful information from large and complex data sets. These tools are currently known as
Data Mining (DM ) techniques and have been successfully applied in different application
domains. In the present work, some of the most well-known DM algorithms were applied
in the prediction of the mechanical properties of JG mixtures, as well as the respective
column diameters. Therefore, as a first step, a multiple regression, artificial neural net-
work, support vector machine and functional network algorithms were trained to predict
the uniaxial compressive strength and stiffness of JG laboratory formulations. Moreover,
the analytical expressions proposed by Eurocode 2 and CEB-FIP Model Code 1990 for
strength and stiffness prediction of concrete were adapted to JG mixtures. After that, the
same methodologies were applied in the prediction of the same properties of JG mixtures,
as well as the diameter of the respective column.

As the main outcomes of this work, high-quality predictive models were achieved, as
well as a better understanding of the JG mixtures’ behaviour (given by a global sensitivity
analysis). Such results are quite useful for JG design, which can expect economic and
technical improvements through better optimisation of the available resources.

Keywords: Soft soils, soil improvement, jet grouting, artificial intelligence, data min-
ing, support vector machines, artificial neural networks, functional networks, sensitivity
analysis.
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Sumário

Jet Grouting (JG) surge atualmente como um método de referência entre as tecnologias
de melhoramento de solos, permitindo o aumento da resistência e rigidez bem como a
diminuição da permeabilidade de solos moles. No entanto, mesmo após vários anos de
prática e de notáveis avanços tecnológicos, existem ainda algumas limitações a vencer.
Uma das mais relevantes prende-se com as actuais abordagens de dimensionamento, as
quais são escassas e com importantes limitações de aplicabilidade, quer em termos de tipo
de jet ou tipo de solo. De facto, as atuais abordagens de cálculo são por vezes demasiado
conservativas, condicionando assim a eficiência técnica e económica do melhoramento.
Neste sentido, é fundamental desenvolver novas abordagens capazes de prever com maior
precisão as propriedades mecânicas do material JG e respectivo diâmetro das colunas.
Contudo, devido ao elevado número de variáveis envolvidas e à heterogeneidade dos solos
tratados, tal tarefa representa um enorme desafio. Este desafio prende-se com o facto
de um modelo de dimensionamento da tecnologia de JG dever ser capaz de incorporar
simultaneamente o efeito de diferente variáveis (propriedades do solo e da calda injetada,
tipo de jet, etc.).

Até aos dias de hoje, as ferramentas estat́ısticas tradicionais foram incapazes de lidar
com a complexidade caracteristica de dados de JG . No entanto, nos últimos anos têm
emergido ferramentas com enorme potencial, capazes de analisar e extrair informação útil
de grandes volumes de dados complexos. Estas ferramentas são correntemente conhecidas
como técnicas de Data Mining (DM ) e têm sido aplicadas com sucesso em diferentes
áreas do conhecimento. No presente trabalho de investigação, alguns dos mais conhecidos
algoritmos de DM foram aplicados na previsão das propriedades mecânicas de misturas
de JG bem como na previsão do diâmetro das respetivas colunas. Assim, numa primeira
fase, os algoritmos de regressão múltipla, redes neuronais artificiais, máquina de vetores
de suporte e redes funcionais foram treinados para prever a resistência à compressão
uniaxial e o módulo de deformabilidade de formulações laboratoriais de JG . Além disso,
as expressões anaĺıticas propostas pelo Eurocódigo 2 e pelo CEB-FIP Model Code 1990
usadas na previsâo destas propriedades do betão, foram também adaptadas a misturas de
JG . Posteriormente, as mesmas metodologias foram aplicadas na previsão da resistência
e módulo de deformabilidade de misturas de JG , bem como do diâmetro das respectivas
colunas.

Como principais contribuições do presente trabalho, destaca-se a elevada qualidade
previsional dos modelos obtidos, bem como uma melhor compreensão do comportamento
de misturas de JG (conseguida através da aplicação de análises de sensibilidade globais).
Estes resultados são um claro contributo para o dimensionamento de colunas de JG ,
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antevendo-se uma maior eficiência técnica e económica, através de uma melhor otimização
dos recursos dispońıveis.

Palavras-chave: Solos moles, tratamento de solos, jet grouting, inteligência artificial,
mineração de dados, máquina de vetores de suporte, redes neuronais artificiais, redes
funcionais, analises de sensibilidade.



Résumé

Jet Grouting (JG) se pose actuellement comme une méthode de référence entre les tech-
nologies d’amélioration des sols, en permettant l’augmentation de la résistance et de la
rigidité et également la diminution de la perméabilité des sols mous. Cependant, même
après des années de pratique et de notables avancées technologiques, il existe encore
quelques limitations à vaincre. Une des plus pertinentes concerne les approches de dimen-
sionnement, lesquelles sont limitées dans le domaine d’application, notamment pour la
prise en compte des différents types de JG et de sols. En effet, les approches actuelles
de calcul sont essentiellement supportées par des méthodes empiriques et parfois même
trop conservatives. Par conséquence, l’efficacité technique et économique du traitement
peut être compromise. Il est donc fondamental de développer des nouvelles approches,
plus précis et capable de prévoir les propriétés mécaniques du matériau JG , ainsi que les
diamètres des respectives colonnes. Cependant, dû aux nombres élevés des variables im-
pliquées et à l’hétérogénéité des sols traités, cette tâche est un énorme défi. Ce défis réside
dans le fait qu’un modèle de dimensionnement de la technologie de JG doit être capable
d’incorporer simultanément l’effet des différents variables (propriétés du sol, propriétés
du coulis, type de JG , entre autres).

Jusqu’á aujourd’hui, les outils statistiques traditionnels n’étaient pas en mesure de
faire face la complexité des données caractéristique du JG . Cependant, dans les dernières
années des outils avec énorme potentiel ont émergés, capable d’analyser et d’extraire de
l’information utile de grands volumes de données complexes. Ces outils sont habituelle-
ment connus comme techniques de Data Mining (DM ) et sont appliqués avec succès dans
différents domaines de la connaissance. Dans ce travail de recherche quelques un des plus
connus algorithmes de DM ont été appliqués à la prévision des propriétés mécaniques de
mélanges de JG comme dans la prévision du diamètre des respectives colonnes. Ainsi,
dans une première étape, les algorithmes de régression multiples, réseaux neuronales arti-
ficielles, machine à vecteurs de support et réseaux fonctionnels ont été formés pour prévoir
la résistance à la compression unidimensionnelle et le module de déformabilité des formula-
tions de laboratoire de JG . En outre, les expressions analytiques proposés par l’Eurocode
2 et par le CEB-FIP Model Code 1990, utilisées dans la prévision de ces propriétés pour
le béton, ont été adaptées aux mélanges de JG . Ensuite, les mêmes méthodologies ont été
aussi appliquées pour les matériaux des vraies colonnes de JG , ainsi que pour la prévision
du respectif diamètre.

Comme principaux contributions de ce travail on peut soulever l’haute qualité des
modèles de prévision et une meilleure connaissance du comportement des mélanges de
JG (donné par une analyse de sensibilité globale). Ces résultats sont très utiles pour le
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dimensionnement du JG avec des importants avantages économiques et techniques au
moyen d’une meilleure optimisation des ressources disponibles.

Mots-clés : Sols mous, l’amélioration des sols, jet grouting, l’intelligence artificielle,
data mining, machine à vecteurs de support, réseaux neuronales artificielles et réseaux
fonctionnels, analyses de sensibilité.



Contents

Acknowledgements iii

Abstract v

Sumário vii
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Chapter 1

Introduction

1.1 Motivation

Currently, due to strong urbanisation and industrialisation, any piece of soil may be

required for construction purposes, even soft soils usually characterised by high porosity,

plasticity, compressibility and low strength (Liu et al., 2008). Good examples of this

situation are harbour areas, where there is an increasing need for reclaimed land (Van Impe

et al., 2005). Unfortunately, the soil foundation at such places does not always have the

appropriate characteristics for construction purposes. Some situations1 arise in which

some undesirable behaviour of a soil foundation needs rectifying with minimal impact on

neighbouring construction. In these situations, the solution considers the improvement of

the mechanical and physical properties of the soil to increase its strength and stiffness and

to decrease its permeability. Moreover, the soil improvement method should respect the

growing concerns about environment issues. This consideration means that, for instance,

the in situ soil should be reused instead of being replaced by another one with better

proprieties.

To satisfy such needs, several soil improvement methods have been developed in recent

decades. In this field, Jet Grouting (JG) technology plays an important role as one

of the most used soft soil improvement methods worldwide. This technology has been

applied in different situations, such as ground water control, settlement or excavation

control and tunnelling support. Important advances have also been observed in injection

systems, improving energy efficiency and increasing the area treated. However, despite

being widely applied worldwide, namely in important geotechnical projects, the existing

methods for JG technology design are scarce and have important limitations in terms of jet

systems and soil types, namely for soilcrete’s2 mechanical properties and column diameter

1For example due to changes in functionality of the building.
2Soilcrete � practical designation for soil-cement mixture resulting from JG technology.

1
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prediction. Indeed, even in large-scale works, JG design is essentially based on empirical

methods and strongly supported by JG companies’ experience. As a result, considering

the subjectivity of such approaches and the conservative values of safety factors used in

empirical design methods, the economic and technical efficiency of the soil improvement

can be compromised. Therefore, keeping in mind the high versatility of JG technology

and its role in important geotechnical works, there is a need to develop new approaches

for accurately predicting JG column diameter and Soilcrete mechanical properties.

One of the main reasons for the scarcity of JG columns design (with a considerable

applicability in terms of jet systems and soil types) is related to the high number of

variables involved in the entire construction process and to the heterogeneity of the treated

soils. Furthermore, there are also situations in which, due to budget limitations, the

available information (e.g., soil characterisation or test columns) to feed the empirical

approaches is limited. On the other hand, particularly in large-scale JG works, much

information has been produced that could be used in future projects after being properly

analysed and interpreted. Therefore, the question that arises is how to explore all of the

available information related to past JG projects to support decisions in the preliminary

stages of future designs, mainly in small-scale JG works where information is scarce, while

keeping in mind the high dimensionality and nonlinearity of the problem.

An interesting solution can be the use of Artificial Intelligence (AI ) tools that has

shown successful results in different knowledge domains (Liao et al., 2012), namely in

Geotechnics field (Miranda et al., 2011; Goh and Goh, 2007; Narendra et al., 2006).

Indeed, the application of Data Mining (DM ) techniques to data gathered from large

geotechnical works can provide a strong framework to the development of models that

can be very useful in future projects. These tools are supported in the idea that there

are usefully information behind the data, aiming the extraction of patterns and rules

from the data through specific algorithms. The main advantage of DM techniques over

traditional statistical analysis is in its ability/superiority to deal with big amount of data,

characterized by high-dimensionality and complexity. Furthermore, the developed models

based on these tools can be easily updated when new data are available.

1.2 Scope of the work

The main goal of this research is to develop a new reliable approach for JG design that

predicts the Uniaxial Compressive Strength (UCS) and stiffness of both laboratory and

field mixtures. Moreover, we also intend to develop analytical models for real JG column

diameter predictions. The proposed methods aim to overcome some of the most relevant
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limitations of the current approaches, namely in terms of jet systems and soil types. This

need for such models arises from the high versatility and potential of JG technology as a

soft soil improvement method and from the increasing number of JG projects around the

world, namely in Portugal (ICOG, 2012).

Due to the high number of variables involved in soft soil improvement by JG tech-

nology and the complex relationships between soilcrete’s mechanical properties and their

contributing factors, the development of the JG design approaches proposed in this re-

search was supported on new and powerful tools currently known as DM techniques. The

use of these tools, apart from their high learning capabilities, also gives an important reli-

ability to the models when compared to those supported on traditional statistical analysis

methods.

A better understanding of JG mixtures’ behaviour supported by a detailed Sensitivity

Analysis (SA) will certainly contribute to an improvement of the JG technology efficiency

and will lead to technical and economic benefits. Therefore, a Global Sensitivity Analy-

sis (GSA) was applied over each one of the proposed models for the studied properties

(strength, stiffness and diameter) of both laboratory and field mixtures. These analyses

allowed identification of the key variable on each studied property as well as its average

effect on the output variable.

1.3 Outline of the thesis

This thesis intends to highlight the benefits resulting from the implementation of AI tools

to solve complex geotechnical problems, particularly JG technology design, and for this

purpose, it is divided into seven chapters and two appendices, organised as schematised

in Figure 1.1. In this section, the content of each chapter is described in detail.

– Chapter 1, entitled Introduction, describes the initial considerations and moti-

vations of the thesis. It also presents the description of the performed work in each

chapter.

– Chapter 2, entitled Artificial intelligence tools, presents a global overview of

AI tools. Here, the reader can find the main concepts behind knowledge discovery

database processes. It also notes all DM algorithms and methodologies implemented

in the present research, namely the applied approaches for feature selection and

model selection, as well as for model assessment and interpretability. Furthermore,

the main aspects related to the software used in the performed experiments are also

introduced.
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Chapter 1
Motivation, approach and objectives

Chapter 3
Jet grouting technology

Chapter 4
Databases definition and 

characterization

Chapter 2
Artificial intelligence tools

Chapter 5
Laboratory formulations design 

(strength, stiffness)

Chapter 6
Filed samples design (strength, stiffness, 

diameter)

Chapter 7
Conclusions and future developments

Figure 1.1: Outline and organisation of the thesis

– Chapter 3, entitled Jet grouting technology, starts by addressing the main

aspects of JG technology, highlighting the importance of this soft soil improvement

method, as well as the complexity of its design. Then, a description of the main

equipment and construction process, as well as the different JG systems, is given.

After that, the main approaches currently used for the mechanical properties of JG

mixtures and column diameter design are summarised.

– Chapter 4, entitled Jet grouting database characterisation, enumerates the

information sources for each database (laboratory and field) used in this research.

It also highlights the methodology followed during the database compilation pro-

cess. The input variables considered in both laboratory and field studies are also

enumerated and presented as a correlation matrix for each studied property that

shows the relationship level between all input and output variables.

– Chapter 5, entitled DM techniques applied to laboratory data, presents

the main results of the application of DM techniques toward the development of

analytical models for UCS and stiffness prediction of Jet Grouting Laboratory For-

mulations (JGLF ). The high learning capabilities of DM techniques, particularly

the Support Vector Machine (SVM ) algorithm, are highlighted and compared with

Eurocode 2 (EC2 ) and Model Code 1990 (MC90 ) approaches currently used for
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concrete strength and stiffness predictions. Moreover, the results of the application

of a GSA are presented and discussed, emphasising the key variables on mechanical

behaviour of JGLF , as well as its average effect on the target variable.

– Chapter 6, entitled DM techniques applied to field data, describes the data-

driven predictive models for mechanical properties of JG field mixtures collected

directly from real JG columns, as well as for their diameters. Moreover, the key

variables in strength, stiffness and diameter prediction of real JG columns, as well

as their average effect on the target variables, are enumerated. It also presents a

relationship between the strength of laboratory and field samples and a correlation

between strength and stiffness of soilcrete mixtures. At the end, a proposal for JG

column diameter design is presented.

– Chapter 7, entitled Main summary, summarises the main important conclusion

of the present work, pointing out some advice for a better economic and technical

efficiency of soft soil improvement performed by JG technology. It also presents

some research possibilities for future developments.

– Appendix A summarises the main statistics and histograms of all input and output

variables considered in the present research for both laboratory and field studies.

– Appendix B details the mathematical expressions applied to calculate some input

variables used during the entire study.
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Chapter 2

Artificial intelligence tools

2.1 Background

In the middle of 50’s a new branch of computer science started to attract the attention of

specialists in this field. This new branch, termed as AI , can be defined as the study of how

to make computers do things at which, at the moment, people are better (Rich, 1983). In

the begin, the goal was to develop a computer that could mimic human behaviour. In the

70s, AI was more focused on developing expert systems that would acquire knowledge

from experts and support decision making. Later, in the 90s, there was a shift in AI

to learn useful knowledge directly from the data. Currently, AI encompasses several

methods and solutions. For demonstration purposes, Figure 2.1 shows an historic view of

some the main AI methods.

With the boom of Information Technology, the generation and collection of data grew

rapidly. At the current stage, vast datasets are becoming commonplace. All this data hold

valuable knowledge (e.g. trends, patterns) that can be used to support decision making

and optimize success.

Classical statistics may fail to analyse vast amounts of data and/or when there are

complex relationships between the data variables. Also, the number of experts is limited

and they may overlook important details. Hence, to overcome these limitations, it is

desirable to have more automated processes for data analysis, based on computers.

Given the interest in (semi-)automatic knowledge extraction from data, in the last few

decades there has been an increase in a new research area that intersects several scientific

domains, such as Artificial Intelligence, Statistics and Information Systems. Formally,

this area was defined as Knowledge Discovery from Databases (KDD) (Fayyad et al.,

1996b) but through the years the term Data Mining become more popular. As such, in

this thesis, DM terminology will be often used as a synonym of KDD .

7
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Figure 2.1: History of the various AI areas. The width of the bars indicates prevalence of the
methods use (Ertel, 2009)

DM is receiving widespread attention in the academic and public literature. Many case

studies suggest that companies are increasingly investigating the potential of DM technol-

ogy to deliver competitive advantage. Nowadays, there are inclusively many successfully

applications of DM techniques in different knowledges domains. For instance, these tech-

niques are widely used in business fields, such as direct target marketing campaigns,

fraud detection, and development of models to aid in financial predictions (Miranda,

2007). Liao et al. (2012) carried out a deep literature review, showing the developments

and applications of DM techniques during the past decade. The survey focussed on the

period from 2000 to 2011, having found 216 articles concerning to DM techniques ap-

plications on different research and practical domains of knowledge. Additionally, Liao

and his collaborators presented some perspectives about expected future developments in

DM techniques, methodologies and applications. In particular, Liao et al. (2012) present

important application in the civil engineering domain, namely:

• Lai and Serra (1997) applied Artificial Neural Networks (ANN s) to predict com-

pressive strength of cement conglomerates;

• Prasad et al. (2009) propose an ANN to predict a 28-day compressive strength of a

normal and high strength self compacting concrete and high performance concrete

with high volume fly ash;

• Chou et al. (2011) aimed to optimize the prediction accuracy of the compressive

strength of high-performance concrete by comparing data-mining methods;
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Within the more specific Geotechnical field, there are also some relevant studies where

DM tools were applied to solve different geotechnical problems:

• Miranda et al. (2011) proposed new alternative regression models using ANN s for

the analytical calculation of strength and deformability parameters of rock masses;

• Goh and Goh (2007) used SVM s to assess seismic liquefaction;

• Erzin (2007) studied the relationship between the swell pressure and soil suction

behaviour in specimens of Bentonite-Kaolinite clay mixtures with varying soil prop-

erties using ANN s;

• Narendra et al. (2006) applied computational intelligence techniques for UCS pre-

diction of soft grounds.

As further highlighted in Chapter 3, geometric and mechanical properties design of

JG mixtures is a complex task involving a high number of variables that have shown

nonlinear relationships between input and output variables. Hence, the use of DM tools

can be seen as a interesting alternative to the development of more reliable and accurate

methods for JG design.

For a reliable design of any JG work, the first step is to carry out a soil characteri-

zation as detailed as possible. Unfortunately, such characterization is scarcely performed

due to schedule and budget limitations. In addition, for quality control purposes, some

test columns should be built near to the improvement spot, from which some samples are

extracted and tested at different ages. Once again, and particularly in small JG works,

these test columns consist of a very reduced number due to the inherent costs with materi-

als and the time demands. On the other hand, particularly in important and big scale JG

works, is usual to perform a detailed soil characterization and built several test columns,

from which a significant number of samples are collected and tested. This scenario leads

to the following question: Is there a way to optimize this useful information? That is,

how can the information produced, particularly in the big scale JG works, be efficiently

used in new JG works, particularly in the smallest ones. It is precisely here that the

application of automated process for data analysis, such as DM techniques, can give a

valuable contribution, helping to overcome the limitations of the actual JG approaches

design, namely in terms of jet systems and soil types.

A simple compilation of all available data related with JG works in an adequate

structure could be seen as a first step to help the development of new and more accurate

methodologies for JG design. Database theories and tools provide the necessary infras-

tructure to store, access, and manipulate data. Data warehousing, a recently popularized
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term, refers to the current business trend of collecting and cleaning transactional data

to make them available for online analysis and decision support. A popular approach

for analysis of data warehouses is called online analytical processing (OLAP). However,

a simple organization and manipulation of the data is not enough when dealing with JG

data, because of its high nonlinear characteristics/complexity and dimensionality. In such

situations, there is a potential contribution that can be provided by DM techniques, since

these can be used to explore all this data and automatically extract valuable rules and

patterns. The obtained knowledge/models can be further applied in the project stage,

helping the definition of the parameters for JG columns construction, as well as during the

soil improvement (in real time), advising eventual adjustments to overcome unexpected

conditions.

2.2 Knowledge discovery in databases

The main purpose of AI domain is to develop machines that mimic real persons, thus

showing intelligent behaviour (Ertel, 2009). To achieve this goal, there is one essential

ability: to learn from experience. Here is where KDD plays a key role.

KDD process can be defined as the nontrivial process of identifying valid, novel, po-

tentially useful, and ultimately understandable patterns in data (Fayyad et al., 1996b).

The term nontrivial means that some search or inference is involved. This means that

KDD process is not a straightforward computation of predefined quantities, such as com-

puting the average value of a set of numbers. KDD is interactive and iterative, involving

numerous steps with many decisions made by the user.

The first KDD works were motivated by fields concerned with inferring models

from data, including statistical pattern recognition, applied statistics, machine learning,

databases, visualization, and neural networks (see Figure 2.2). KDD largely relies on

methods from these fields to find patterns from data in the DM step of the KDD process.

According to Fayyad et al. (1996a) a large degree of the current interest in KDD is the

result of the media interest surrounding successful KDD applications. For example, the

focus articles in Business Week, Newsweek, Byte, PC Week, and other large-circulation

periodicals. In science, one of the primary application areas is astronomy. KDD focuses

on the overall process of knowledge discovery from data, including how the data is stored

and accessed, how algorithms can be scaled to massive datasets and still run efficiently,

how results can be interpreted and visualized, and how the overall human-machine in-

teraction can be modelled and supported. KDD places a special emphasis on finding

understandable patterns that can be interpreted as useful or interesting knowledge. Scal-
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ing and robustness properties of modelling algorithms for large noisy datasets are also of

fundamental interest. Statistics has much in common with KDD .

A DM model and the resulting knowledge should satisfy some important requests such

as:

• be valid when applied to new data;

• bring something new (at least to the system and preferably to the user);

• be useful to the knowledge domain or user;

• be understandable.

Figure 2.2: Scientific fields related with KDD and DM

According to Ertel (2009) the processing of knowledge follows the structure shown in

Figure 2.3. According to this schema the knowledge is stored in a knowledge base. This

knowledge is provided by those who are called Knowledge Engineering that is supported on

several knowledge sources such as humans experts, the knowledge engineer and databases.

It is also possible obtain knowledge through an active exploration of the world. Here, the

agent learns from a database and from the interaction with the world. The knowledge

stored in the knowledge base is processed allowing the final user to apply such knowledge.

An important notion, called interestingness, is usually taken as an overall measure of

model value, combining validity, novelty, usefulness, and simplicity. In order to achieve

such request, the process of developing a data-driven model should evolve several steps.

Figure 2.4 depicts the main steps of the interactive and iterative (with many decisions

made by the user) KDD process, which are following summarized:

• Selection: based on problem domain, a target dataset with the relevant information

is compiled from the database, on which the discovery will be performed;
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Figure 2.3: Structure of a classic knowledge-processing system (Ertel, 2009)

• Pre-processing: this stage consists on the target data cleaning (outliers and noise re-

moval), handling missing data and other pre-processing in order to obtain consistent

data;

• Transformation: data are transformed using dimensionality reduction or transfor-

mation methods in order to present the adequate form for DM stage;

• Data Mining: application of DM algorithms for searching for patterns of interest;

• Interpretation: this stage consists on the interpretation and evaluation of the mined

patterns, in order to obtain understandable and useful knowledge.

The KDD process should start with an understanding of the problem domain and the

collection/compilation of all available and interesting information in a database. After

that, a subset of the main database, only with the relevant attributes is extracted. For

this step it is very useful a multidisciplinary team of specialists, which are fundamental

to support the variable selection task. It is also at this stage that the main goals of study

are established. The target dataset is carefully and rigorously analysed and important

operations are made. Tasks related with removing noise or outliers are performed in order

to improve the data quality. In addition, decisions about how to handle missing values

are taken. The main approaches for dealing with missing values can be classified into four

categories (Brown and Kros, 2003):

• use of complete data only;

• deleting cases or attributes with missing data;
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Figure 2.4: Steps of KDD process (adapted from Fayyad et al. (1996b))

• data imputation; and

• model-based approaches.

The first two approaches are very simple and direct but are only best suited for situa-

tions where the amount of missing data is scarce. An imputation method replaces missing

data by estimated values, under distinct approaches, such as:

• Case substitution: use domain experts to replace missing values;

• Mean substitution: use the mean value of the data variable;

• Cold-deck imputation: use values from other sources of data;

• Hot-deck imputation: missing values are replaced with values drawn from the most

similar case. The hard part of the application of this method is the difficulty in

defining what is “similar”. The conceptual simplicity maintenance and proper mea-

surement level of variables are its main advantages;

• Regression imputation: regression analysis is used to predict missing values based on

the variable’s relationship to other variables in the data set. Single and/or multiple

regression can be used to impute missing values. The first step consists of identifying

the independent variables and the dependent variables. In turn, the dependent

variable is regressed on the independent variables. The resulting regression equation

is then used to predict the missing values. An advantage of this method is that it

preserves the variance and covariance structures of variables with missing data;
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• Multiple imputation: combination of a number of imputation methods into a single

procedure.

The main purpose of the transformation step is to transform the data in order to take

the correct form, to apply the different DM algorithms available. For instance, it may be

advantageous to normalize the inputs and/or outputs to a zero mean and a one standard

deviation.

After these steps, the DM algorithms are applied to the data. Section 2.3 focuses on

this particular KDD step. As the last KDD step, the obtained patterns are interpreted and

analysed in order to obtain knowledge, possibly using visualizations tools and applying

SA procedures or removing redundant patterns.

It can be necessary to return to any of the previous steps in an iterative procedure of

correcting options and errors in order to improve the final results. The understandable

knowledge can be used in a decision support process or be incorporated in other intelligent

systems, such as the expert or knowledge based systems. Furthermore, the new knowledge

is checked by domain experts, in order to find possible conflicts, stressing the importance

of the user in the KDD process.

The previously described KDD steps are strongly connected. For instance, the pro-

cedures applied on “Transformation” step are conditioned by the DM algorithms chosen

on DM step. Furthermore, it should be mentioned that the quality of the results is de-

pendent of a good interaction between all KDD steps and the user, and should not bet

viewed as independent steps.

2.3 Data mining

This section focuses on the main issues related with DM stage, namely DM tasks, method-

ologies and algorithms.

In this KDD step, a DM algorithm is fitted to the dataset used during the learning

phase, leading to a data-driven model. Such model can be described as the relationship

between the inputs and the output, which can represent useful knowledge. Depending

on the type of patterns that can be found, DM tasks are normally classified into two

categories: predictive and descriptive. Predictive tasks perform inference on data in

order to predict unknown values of the output variable, given known values of the input

variables. Descriptive tasks try to characterize and summarize the general properties of

the data in order improve its understanding. Figure 2.5 summarizes the main DM tasks

currently used.
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DM tasks

Predictive Descritive

Classification Regression
Association or
dependencies

Clustering Summarization Data visualization

Figure 2.5: Hierarchy of the main DM tasks

2.3.1 DM tasks

For DM purposes there are several tasks that can be applied. This section briefly presents

the most popular DM tasks (Figure 2.5).

Classification is one of most used DM tasks and has the purpose to find a model

that classifies an example into a class within a predefined set of classes. The trained

model should be able to correctly classify a new example based on its attributes. The

model used to carry out such classification is normally built using a set of labelled exam-

ples (supervised learning). Some of the most used DM algorithms in classification tasks

are decision tree, neural networks and support vector machines. The performance of a

classification model is normally accessed by classification metrics, such as the percentage

of correct predictions.

Regression is a DM task very similar to classification, sometimes also termed pre-

diction, used to estimate unknown values of the dependent variable based on a set of

independent variables. The main difference between classification and regression is re-

lated with the output variable. In classification the output is discrete while in regression

the target is continuous. Classification can be considered as a particular case of regression.

For model accuracy, distinct metrics are used (when compared to classification). Exam-

ples of such metrics are: mean absolute deviation and root mean squared error. The

present study adopts a regression approach, where mechanical and geometric properties

of JG columns will be predicted based on a set of selected attributes.

Clustering consists of grouping similar objects into classes (clusters). In contrast with

classification, there are no class labels and the clusters (or groups) are determined by an

unsupervised learning from the data. Ideally, all objects of each group should be close

to each other and the distance between groups should be as high as possible. Normally,
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clustering is a DM task used in early analysis with the purpose of finding clusters in the

data and then applying to each cluster the most adequate DM algorithm.

Association rules, which try to find a model that describes significant dependences

between variables through the identification of groups of highly associated data. These

dependencies can exist at two levels:

• Structural: the model presents locally dependent variables in a graphical way;

• Quantitative: the model specifies the strength of the dependencies using a numerical

scale.

Summarization makes use of methods that find a succinct description for the dataset.

The most sophisticate summarization methods involve rules, visualization techniques and

functional relationships between variables. Summarization functions are often used in

data exploratory analysis and automatic generation of reports. A very simple example

of summarization could be a histogram or a statistical measure of a certain attribute of

data.

Data visualization deals with displaying final or intermediate DM results through

a visual way. Its purpose is to describe complex relationships in a easily understandable

way, normally through graphics or other visual representations. Visualizing the results

in different forms together with interestingness measures can be very usefully to enhance

comprehension of the domain, selection of the patterns which represent useful knowledge

and provides guidelines for further discovery..

2.3.2 DM methodologies

Due to the increased interest in the field of DM , particularly due to the rising of vast

databases in an increasing and differentiate number of organizations, there was a need to

develop standard methodologies that can guide the implementation of DM projects. The

main efforts were developed by academics and people in the industry field. Nowadays,

the most two popular approaches are: Cross-Industry Standard Process for Data Mining

(CRISP-DM ) and Sample, Explore, Modify, Model, and Assess (SEMMA). These two ap-

proaches were developed in different environments, but with the same purpose, i.e., define

a standard methodology to increase the success of the implementation of DM projects.

The former methodology was developed by the means of the efforts of a consortium of

companies from different activities: NCR, Daimler Chrysler AH, SPSS Inc. and OHRA

(Chapman et al., 2000). The latter methodology was proposed by an organization that

delivers services in the areas of DM and decision support.



CHAPTER 2. ARTIFICIAL INTELLIGENCE TOOLS 17

CRISP-DM methodology

CRISP-DM methodology was developed at the end of the 90’s and is supported by strong

theoretical principles, as well as by the experience of those who develop DM projects. This

methodology can be described by an hierarchical, iterative and interactive process, which

sets six phases (Figure 2.6):

• Business understanding: identification and understanding of the project objectives

and requirements from a business perspective. This knowledge is converted into a

DM problem definition and a preliminary plan is proposed to achieve the goals;

• Data understanding: collection and analysis of the data in order to access its quality,

discover first insights and detect subsets or trends. With this first data analysis,

some hypotheses are formulated for hidden information;

• Data preparation: compilation of the final dataset that will be used during the learn-

ing phase (modelling) to build the DM model. Include the selection of the records

and attributes from the initial raw data as well as its cleaning and transformation;

• Modelling: selection of the DM algorithms and optimization of its parameters in

order to find patterns within the data;

• Evaluation: deep assessment of all fitted models and revision of all previous steps

in order to verify if the business objectives were achieved;

• Deployment: organization of the obtained knowledge and its implementations in a

way that the customer can use it.

SEMMA methodology

The SEMMA methodology, can be viewed as a guideline for a DM project, from its initial

specification until its implementation, allowing an organized and adequate development

and maintenance. This methodology is composed by a cycle with five main stages (see

Figure 2.7) that start with the selection of the data and finish with the assessment of

model obtained during the learning phases (Bulkley et al., 1999).

• Sample: selection of a representative sample from the studied universe, which should

have an adequate dimension in order to optimize the costs, profitability and perfor-

mance of the methodology. That is, the data sample extracted should contain the

significant information and at the same time be easily manipulated;
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Figure 2.6: Phases of CRISP-DM methodology (adapted from Chapman et al. (2000))

• Explore: application of statistical and visual techniques to get an insight on the

data, in order to identify tendencies and/or anomalies and gain understanding and

ideas;

• Modify: based on the results of previous stages some transformations can be applied.

For instance, new attributes can be included or modified;

• Model: after preparing and exploring the data, in this stage the appropriate DM

algorithms are chosen and applied, in order to achieve the fitted models;

• Assess: finally, the obtained models are evaluated in order to infer about its perfor-

mance, reliability and usefulness. For this purpose the model is applied to a new

dataset (not used during the training phase) and its response is assessed.

When comparing CRISP-DM and SEMMA methodologies, we can conclude that they

are very similar/equivalent and that there is a strong correlation with the five stages

of KDD process (Figure 2.4). Azevedo and Santos (2008) establish an correspondence

between these two DM methodologies and the KDD process (Section 2.2). The five

stages of SEMMA methodology can be seen as a practical implementation of the five

stages of KDD process. On the other hand, on the CRISP-DM methodology the first

and the last stages can represent a pre KDD and post KDD stages respectively, while

data understanding stage can be identified as the combination of the selection and pre-

processing. The remaining stages are directly correlated.
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Figure 2.7: Phases of SEMMA methodology (Bulkley et al., 1999)

Given that the CRISP-DM methodology is more complete (and also neutral in terms

of the DM tool explored), we adopt this methodology in this work.

2.3.3 DM algorithms

For each DM task (regression, classification, etc.) there are several algorithms that can

be used, each one with its own advantages and limitations. Therefore, the first step is

to choose the most suited algorithm to solve the problem at hands, viewed as skill of the

analyst (Fayyad et al., 1996b). In this work, we explore four DM methods, which are

described in the next subsections.

Multiple regression

Multiple Regression (MR) is a statistical technique used in different domains, ranging

from engineering to social sciences. This linear approach is defined as:

ŷ = β0 +
I∑
i=1

βi · xi (2.1)

where ŷ is the predicted value, x1, ..., xi are input variables and β0, β1..., βi are coefficients

to be adjusted, normally using the least squares technique. Due to its additive nature,

this model is easy to interpret and it is widely used in regression tasks. In the present

research work, MR was essentially used as a baseline comparison.
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Artificial neural networks

ANN is a computational technique inspired by nervous system structure of the human

brain (Kenig et al., 2001). This technique has shown high performance in modelling

complex nonlinear mappings and is robust when dealing with noisy data. It is particularly

useful for problems that do not have an analytical formulation or where explicit knowledge

does not exist. ANN s can be defined as a network of neurons connected in a simplified

structure very similar to the neurons of living beings. This structure is able to learn with

its own experience, store such knowledge and apply it to new examples not used during

the learning process. This generalization capacity allows its application to solve complex

problems, recognize patterns and predict future events.

Biologically, neurons are composed by a nucleus and are connected with millions of

other neurons as schematically represent in Figure 2.8. They receive electrochemical

inputs from their neighbours through connections called synapses. The synapses are

formed by axons and dendrites. This simple structure allow perform three basic functions:

input, processing and output of signals. Throughout the dendrite, the input signals reach

the neuron, which process such information. The output signal flows throughout the axon,

which is connected to other neurons throughout the synapses. Neurons form complex,

nonlinear and highly parallel structures.

Synapse 1

Nucleus

Information enters nerve 
cell at the synaptie site on 
the dentrite

AxonDentrite

Soma

Synapse 2

Axon branches

Information carried 
to other cells

Axon terminal

Input

Output

Figure 2.8: Schematic of the human neuron constitution

The first mathematical models of neural networks were designed by McCulloch, Pitts

and Hebb in the 1940s, based on results from neuroscience. Imitating the human brain

structure and its neurons, ANN s are complex parallel computational structures based on

connected processing units (neurons) organized in layers. Figure 2.9 shows the configura-

tion of an artificial neuron, which is composed by three key elements:
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• A set of connexions (wi,j): each input is weighted by a real or binary number. May

also exist an extra connection, called bias that takes the value +1 and introduces

some tendency to the computational process;

• The integrator (
∑

): all inputs are converted to a single value by weighting each

one through a linear combination;

• An activation function: this function convert the input to the output (response),

which is passed on to the neighbouring neurons as output over the synaptic weights.

Here can be introduced a nonlinear effect by adding a nonlinear component to the

computational process.

∑

x1

Output

xn

x3

W1,j

x2

n Inputs ...

W2,j

W3,j

Wn,j

f(u)

Activation 
function

...

Figure 2.9: Scheme of an artificial neuron configuration

For the activation function there are a number of possibilities. The simplest is the

identity where the neuron just calculates the weighted sum of the input values and passes

this on. However, this frequently leads to convergence problems with the neural dynamics

because the function is unbounded and the function values can grow beyond all limits

over time (Ertel, 2009). In the present work was adopted the sigmoid function which

is frequently used when adopting ANN s. Figure 2.10 depicts such function, which is

translated by the following equation:

f(x) =
1

1 + e−α·x
(2.2)

Beyond these activation functions, the threshold, linear and ramp functions are also very

common (Ertel, 2009).

The way how the neurons are organized and connected define the network architecture

or topologies. Depending on the number of layers and how information flows throughout

the network, they can be grouped in three main network topologies:
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Figure 2.10: Sigmoid activation function

• One layer feedforward networks: this is the simplest network type, only composed

by two layers - input and output (see Figure 2.11). The input layer is not considered

because it does not perform any calculations. In this type of topology, connections

are unidirectional (from input to output) and there are no connections between

neurons in the same layer forming an acyclic network;

• Multilayer feedforward networks: this architecture is composed by at least two

intermediate parallel layers called hidden layers (see Figure 2.12). The first is the

input and the last the output layer. This is the most common type of network.

By increasing the number of hidden layers, it is possible to develop more complex

functions. However, the time for learning also increases, under an exponential rate;

• Recurrent: the output neurons can be connected with input ones forming cycles,

conferring a spatial and/or temporal nonlinear behaviour to the network (see Fig-

ure 2.13). This type of ANN can lead to arbitrary topologies.

Optimizing a network topology is a trial and error process for there is no rule to define

a priori the best topology. Furthermore, before start the learning process of the ANN ,

the initial values of the weights need to be defined by the user, which should be small and

randomly generated. These initial values may affect the results accuracy. Therefore, if

the network accuracy is not acceptable, it is common to define a different topology and to

initialize the weights with a different set of values. In addiction, it is also need to define the

learning ratio. Adopting small values for learning ratio the training convergence is slow

but the obtained error values are also low. Only after this considerations, the learning

process begin.

The learning process of an ANN is based on specific algorithms with very well defined

rules. In this context, there are three main methods, normally called paradigms, used for
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Figure 2.11: Example of a one layer feedforward network
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Figure 2.12: Example of a multilayer feedforward network
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Figure 2.13: Example of a recurrent network
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ANN learning process:

• Supervised learning;

• Reinforcement learning;

• Unsupervised learning.

The supervised learning is very popular and requires the presence of a “teacher”,

which gives the right answer to the network (output target). The network learns with

each individual example and the proposed answer (the output) is then compared with

the real value resulting in an error measure. This error is used to adjust the weights of

the connection in order to minimize it in an iterative process. This type of learning is

typically used for modelling dynamic systems, classification and prediction problems, and

was the learning type used throughout the present research work.

In reinforcement learning there are also a teacher during the learning process.

However, in this case it is just given to the network if its output is right or wrong. The

right answer is not provided. Based on this information, the learning algorithm tries to

improve its accuracy.

In unsupervised learning follows a different approach, since there is no output target.

The learning process is performed through the identification of certain characteristics

within in the input data, such as statistical regularities and clusters.

The first type of ANN s were developed in 50’s. The perceptrons are one layer feed-

forward networks with several inputs and outputs and are characterized by its simplicity,

since there are just a few parameters to fit. However, due to its simplicity, they are lim-

ited to solve problems with low complexity. In 60’s decade, Minsky and Papert (1969)

show that multilayer feedforward networks can overcome most of the limitations of per-

ceptron. In 1986, Rumelhart, Hinton and Williams (Rumelhart et al., 1986), presented

an algorithm for the adjustment of the weight of hidden layers called backpropagation.

Backpropagation algorithm performs learning in multilayer feedforward networks,

which are characterized by high learning capabilities supported by its nonlinearity, exis-

tence of intermediate neurons and high connectivity degree. They are the most widely

used paradigm in supervised learning. Backpropagation can be seen as a nonlinear ex-

tension of perceptrons. It is based on the selection of an error function whose value is

determined by the difference between the outputs of the network and the real values.

This function is minimized through the correction of the weights in an iterative process

normally using the gradient descent method (Witten and Frank, 2005). The learning is

ended when the stopping criterion is met. This may occur when a sufficiently low er-
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ror is reached or when there are insignificant variations of weights or error function in

consecutive iterations.

The backpropagation algorithm can be summarized in two steps (Cortez, 2002):

• Forward phase: the input vector is given to the network following forward layer by

layer with fixed weights;

• Backward phase: the weights are adjusted in accordance with the error, which is

propagated in a backward fashion from the output until the input layer.

Backpropagation networks are powerful learning tools and have been used with success

in several applications. They are able to learn from noisy and highly nonlinear data and

can recognize different sets of data within a broader dataset. Moreover, they do not

require any pre-existing knowledge and statistical models.

Despite of all capabilities of ANN , there are also some important limitations, mainly

those that use backpropagation algorithm:

• Absence of explanatory knowledge: models induced by ANN s are not comprehen-

sible to the user. They are frequently called as “black-box” models since they give

the answer but not explain it. As a result, there is a lack of theoretical basis for

validation of the outcomes produced by the networks. In order to overcome such

drawback, research is ongoing for the development of algorithms for the extraction

of rules from trained neural networks. In this work, we adopted a sensitivity analysis

procedure (GSA method) in order to open the “black-box”;

• Computational time: the computational time during training process can be very

high due to a slow convergence of the learning procedure;

• Overfitting and generalization: there are no reliable methods to define the ideal

number of hidden layers as well as the correspondent number of neurons. Networks

with many hidden nodes have the ability to “memorize” the desired output instead

of learning the patterns. This phenomenon is classified as overfitting. When this

happen the induced model can perform poorly outside its range of training. On

the other hand, a too low number of hidden neurons can induce models with low

learning capabilities, loosing prediction accuracy.

Support vector machines

SVM s, developed by Vapnik (Vapnik, 1998), have received a large attention due to their

promising abilities in terms of achieving optimum supervised learning models. SVM s



26 2.3. DATA MINING

have shown high learning capabilities even when working with complex data and can be

used for either classification or regression analysis (Chen and Councill, 2003). For a given

dataset, the SVM algorithm fits an unique and globally optimal solution. The underlying

concept of SVM s is to map the original data into a higher dimensional feature space and

to fit optimally a linear function in this feature space.

SVM s are a very specific class of algorithms, which are characterized by the use of

kernels, absence of local minima during the learning phase, sparseness of the solution and

capacity control obtained by acting on the margin, or on the number of support vectors.

When compared with other types of base learners, such as the well known multilayer

perceptron (also known as backpropagation neural network), SVM represents a significant

enhancement in functionality. The supremacy of SVM lies in their use of nonlinear kernel

functions that implicitly map inputs into high dimensional feature spaces, as schematically

represented in Figure 2.14. In this feature space, linear operations may be possible that

try to find the best linear separating hyperplane (yi = ωo +
∑m

i=1 ωiφ (x)), related to a

set of support vector points. It is interesting that the optimal dividing hyperplane is

determined by a few parameters, namely by the support vectors. Optimal separation of

the support vectors is equivalent to optimal separation the entire data.

As a result of the transformation of the real space into the feature space, the number

of dimensions of the new vector space grows exponentially with the number of dimensions

of the original vector space. However, the large number of new dimensions is not so prob-

lematic because, when using support vectors, the dividing plane, as mentioned above, is

determined by only a few parameters. This new method of representing decision functions

is especially useful for a high dimensional input space: the number of free parameters in

this representation is equal to the number of support vectors but does not depend on the

dimensionality of the space (Vapnik et al., 1997). Although SVM s are linear learning

machines with respect to the feature space, they are in effect nonlinear in the original

input space. This means that SVM can learn nonlinear behaviors without the drawbacks

of nonlinear approaches, i.e., occurrence of local minima, convergence problems and over-

fitting. SVM s are indeed currently very popular. This is mainly due to their capacity to

combine the advantages of linear and nonlinear models, as well as their predictive results

that were achieved in several domains.

Let XY = {(x, y) | (x1, y1) , ..., (xN , yN)} denote the training dataset, where N is the

number of training samples. In linear SVM s, the relation between input variable xk (where

k represent the kth model attribute) and the predicted variable ŷk can be described by
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Figure 2.14: Example of a SVM transformation (adapted from Cortez (2010)).

the linear function f(x) taking the form of:

ŷk = f(xk) = 〈w, xk〉+ b (2.3)

where〈., .〉 denotes the dot product, w and b are the weight vector and bias parameter,

respectively. For SVM regression, the aim is to find a pair of unknown vectors of (w, b)

that minimize the prediction error for training samples and has at most an ε deviation

from actual target yk. This implies that there is no penalty during optimization for the

pairs when |yk − f(xk)| ≤ ε and is defined by the ε-insensitive loss function, Lε, which

can be expressed as follows (Gunn, 1998):

Lε(y) =

0 for |f(x)− y| < ε

|f(x)− y| − ε otherwise
(2.4)

To ensure that the minimal complexity risk would be obtained, in order to have optimal

structural risk minimization, one can minimize the norm of w, ‖w‖2 = 〈w,w〉. Hence, the

constrained regression problem can be mathematically written as a convex optimization

problem according to the following equations:

minw,b,ξk,ξ∗k
1

2
‖w‖2 + C ·

N∑
k=1

(ξk + ξ∗k) , (2.5)

subject to


yk − 〈w, xk〉 − b ≤ ε+ ξk

〈w, xk〉+ b− yk ≤ ε+ ξ∗k

ξk, ξ
∗
k ≥ 0

(2.6)
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where, ξk and ξ∗k are slack variables. The constant regularization parameter C ≥ 0 in

Equation 2.5 determines the trade of between the complexity of the function and the

deviation from the tolerable error ε. The problem represented in Equations 2.5 and 2.6 is

a convex quadratic programing optimization which can be converted to a Lagrange func-

tion by introducing a dual set of positive Lagrange multipliers variables. This Lagrange

function could be solved by maximizing its dual optimization problem and has a saddle

point regarding its primary and dual variables. The final solution of the optimization

problem is given by:

w =
N∑
k=1

(αk − α∗k) · xk
yields−−−→ ŷnew = f(xnew) =

N∑
k=1

(αk − α∗k) · 〈xk, xnew〉+ b (2.7)

where αk ≥ 0 and α∗k ≥ 0 are Lagrange multipliers. As seen in Equation 2.7, w can be

completely described as a linear combination of the training vectors and the Lagrange

multipliers. The samples that are inside the ε-insensitive tube make both Lagrange mul-

tipliers zero, and w actually is represented by only some training vectors, called support

vectors (SVs), which lie outside the ε-insensitive tube. Thus, complexity of the solution

is not dependent of the dimensionality of the problem, whereas SVs define the complexity

of the function.

For enriching SVM algorithm to deal complex nonlinear relationships, some pre-

processing procedures of training patterns can be implemented (Vapnik, 1998; Gunn,

1998). This can be done by mapping input vectors into a higher-dimensional feature

space by the means of kernel functions, which yields the nonlinear SVM for the kernel

function of K 〈., .〉. Its solution is given by:

ŷnew = f(xnew) =
N∑
k=1

(αk − α∗k) ·K 〈xk, xnew〉+ b (2.8)

Kernel functions are important to control the complexity of final solution. One may

choose any arbitrary kernel functions (Hamel, 2009), such as:

Linear: k 〈x, x′〉 = 〈x, x′〉 (2.9)

Polynomial: k 〈x, x′〉 = 〈x, x′〉d , d > 0 or

k 〈x, x′〉 = (〈x, x′〉+ 1)
d
, d > 0 (2.10)

Gaussian radial basis function: k 〈x, x′〉 = exp
(
−γ · ‖x− x′‖2

)
, γ > 0 (2.11)

Exponential radial basis function: k 〈x, x′〉 = exp (−γ · ‖x− x′‖) , γ > 0 (2.12)
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In highly nonlinear spaces, radial basis function kernel usually yields more promising

results in comparison with other mentioned kernels and present less parameters than

other kernels (Gunn, 1998). Hence, in this work we adopt the popular Gaussian kernel

throughout all experiments.

SVM was initially proposed for classification problems by Vladimir Vapnik and his

co-workers (Cortes and Vapnik, 1995). Later, after the introduction of an alternative loss

function proposed by Vapnik (Smola, 1996), called ε-insensitive loss function, was possible

to apply SVM to a regression problems (Smola and Schölkopf, 2004). When working

with SVM , it is well known that its generalization performance (estimation accuracy)

depends on a good setting of meta-parameters C (regularization parameter), ε (width

of a ε-insensitive zone) and the kernel parameters (Gilan et al., 2012). The problem of

choosing a good parameter setting in a learning task is the so-called model selection.

This task is further complicated by the fact that SVM model complexity (and hence its

generalization performance) depends on all three parameters. Parameter C controls the

trade-off between complexity of the machine (flatness) and the number of non-separable

data points and may be viewed as a “regularization” parameter (Goh and Goh, 2007).

For example, if C is too large (infinity), then the objective is to minimize the empirical

risk only, without regard to model complexity part in the optimization formulation. This

parameter is usually determined experimentally (trial and error) via the use of a training

and test (validation) set. Parameter ε controls the width of the ε-insensitive zone, used

to fit the training data. The value of ε can affect the number of support vectors used to

construct the regression function. The bigger ε, the fewer support vectors are selected.

On the other hand, bigger ε-values results in more “flat” estimates. Hence, both C and

ε-values affect model complexity, but in a different way. Selecting a particular kernel type

and kernel function parameters is usually based on application-domain knowledge and

also should reflect distribution of input (x ) values of the training data.

The problem of finding the best combination of hyper-parameters (model selection)

is often troublesome due to the highly nonlinear space of the model performance with

respect to these parameters (Gilan et al., 2012). Although an exhaustive search method

could be used to tune these hyper-parameters, it suffers from the main drawbacks of

being very time-consuming and lacking of a guarantee of convergence to the globally

optimal solution. Hence, several approaches have been proposed in order to find the best

set of parameters with less effort (time and computing consuming) (Huang et al., 2007;

Cherkassky and Ma, 2004; Frohlich and Zell, 2005; Gilan et al., 2012).

Huang et al. (2007) propose a nested Uniform Design (UD) methodology for efficient,

robust and automatic model selection for SVM . In contrast to conventional exhaustive

grid search, this method can be treated as a deterministic analogue of random search.
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The key theoretic advantage of the UD model selection over the grid search is that the

UD points are “far more uniform” and “far more space filling” than lattice grid points.

The better uniformity and space-filling phenomena make the UD selection scheme more

efficient by avoiding wasteful function evaluations of close-by patterns. Furthermore, this

model selection scheme is robust and efficient and can be carried out fully automati-

cally. In addition, UD approach provides the flexibility to adjust the candidate size under

computational cost constraint. In practice, it can be combined with variants of SVM im-

plementations easily. Following UD approach, a heuristic for setting up a two-dimensional

search box in the parameter space, which is able to automatically scale the distance factor

in the Gaussian kernel, is given. Regardless of the search scheme, it is always important

to set up a proper search region. Once the search region is determined, it is applied the

2-stage UD methodology to select the candidate set of parameter combinations and per-

form a k-fold cross validation to evaluate the generalization performance of each parameter

combination. The 2-stage UD procedure first sets out a crude search for a highly likely

candidate region of global optimum and then confines a finer second-stage search therein.

In the present research work, this model selection approach was implemented in the fea-

ture selection step, taking advantage of its the flexibility (the three hyperparameters are

automatically defined).

During the learning phase of all SVM models were adopted the recommendations

proposed by Cherkassky and Ma (2004). Following this approach, the parameter C is

analytically selected from the training data. Therefore, a “good” value for C can be

chosen equal to the range of output (response) values of training data but considering the

presence of outliers. So, the following expression is proposed to calculate the regularization

parameter:

C = max (|ȳ + 3σy| , |ȳ − 3σy|) (2.13)

where ȳ and σy are the mean and the standard deviation of the y values of training data.

For ε parameter is proposed an analytical selection based on the input noise level in the

training data (assuming that the standard deviation of the noise σ is known or estimated

from the data) and on the number of training samples. Thus, the following expression is

suggested: ε = σ̂/
√
N , where σ̂ = 1.5/N ·

∑N
i=1 (yi − ŷi)2, yi is the measured value, ŷi is

the value predicted by a 3-nearest neighbour algorithm and N the number of examples.

Functional networks

In a first look to Functional Network (FN ), we can found some similarities with ANN .

However, there are important differences that should be stressed. Unlike ANN , in a FN
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the goal is allowing the neuron functions to be learned and suppressing the weights be-

tween connexions (Castillo et al., 1998). This new type of networks is a general framework

useful for solving a wide range of problems such as statistics and engineering applications

(Castillo et al., 2001; El-Sebakhy et al., 2006; Li et al., 2001) and it has been successfully

applied in both prediction (Alonso-Betanzos et al., 2004) and classification (Zhou et al.,

2005) problems. Its neural functions can be multivariate, multi-argument and it is also

possible to use different learnable functions, instead of fixed functions. Moreover, there

is no need to associate weights to the connections between nodes, since the learning is

achieved by the neural functions. These features represent a remarkable difference be-

tween FN and ANN networks. It should be noted that FN s are not arbitrary but subject

to strong constraints to satisfy the compatibility conditions imposed by the existence of

multiple links going from the last input layer to the same output units. When compared

with ANN s, there are inclusively some advantages that deserve be highlighted (Zhou

et al., 2005). Unlike ANN , FN can reproduce certain physical characteristics that lead

to the corresponding network in a natural way. However, such reproduction only takes

place if one use an mathematical expression with a physical meaning inside the function

database. Moreover, the estimation of the network parameters can be obtained by resolv-

ing a linear system of equations, which returns a fast and unique solution, i.e. the global

minimum is always achieved.

While presenting a similar structure, ANN and FN also have important differences.

For example, the selection of the initial topology of the FN is normally based on the

problem domain, instead of several topologies and choosing one using an optimal criterion,

such as happen in ANN . The initial topology in a FN can be further simplified using

functional equations and its neural functions can be multidimensional and set during the

learning phase. Moreover, FN incorporates different neural functions, normally functions

from a given family, such as polynomial or exponential, and they are not restricted to be

a linear combination of inputs. Finally, the neurons outputs can be connected to each

others, which is not the case of the standard ANN . In Figure 2.15, it is shown the FN

associations. The structure of a FN consists in (see Figure 2.15):

• a layer of input storing units;

• a layer of output storing units;

• one or several layers of processing units, which evaluate a set of input values, coming

from the previous layer and delivers a set of output values to the next layer;

• none, one or several layers of intermediate storing units;
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• and a set directed links, that connect units in the input or intermediate layers to

neuron units, and neuron units to intermediate or output units.
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Figure 2.15: Example of the FN associations: a) initial network, b) equivalent simplified net-
work (Castillo et al., 1998).

When working with FN , several steps are necessary to be set. The first one is to define

the initial topology of the network, based on problem to be solved. Next, the architecture

using functional equations and the equivalence concept needs to be initialized, and then

checked the uniqueness condition of the desired architecture. Third, using the available

data, the learning procedure (i.e. training algorithm) is realized by considering the com-

binations of linear independent functions, ψ = {ψs1, ..., ψsms}, for all s to approximate

the neuron functions, that is:

gs(x) =
ms∑
i=1

(αsi · ψsi(x)) for all s (2.14)

where the coefficients αi are the parameters in FN . The most common linearly indepen-

dent functions are:

ψ = {1, X, ..., Xm}

ψ = {1, ex, e−x, ..., emx, e−mx} (2.15)

ψ = {1, cos(x), ..., cosl(x), sinl(x)}

where m is the number of elements in the combination of sets of linearly independent

function. To learn the parameters in Equation 2.14, different optimization techniques can

be used, such as the least squares algorithm, conjugate gradient, iterative least squares,

minimax or maximum, such as likelihood estimation. The last step in implementation

process is to select the best model and validate it.
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2.4 Feature selection

Feature Selection (FS ) is a process of selecting a subset of original features according to

a given criterion. It is an important and frequently used technique in DM for dimension

reduction and an essential step in successful DM applications. FS has been an active

research field in the last decades in DM , having been widely applied to many fields. This

research area is of great practical significance and has been developed and evolved to

answer the challenges due to data of increasingly high dimensionality. There are many

potential benefits of FS : facilitating data visualization and data understanding, reduc-

ing the measurement and storage requirements, reducing training and utilization times,

defying the curse of dimensionality to improve prediction performance. Furthermore, it

reduces the number of features, removing irrelevant, redundant, or noisy features, and

brings about palpable effects for applications, by improving DM performance, providing

faster and more cost-effective predictors, allowing a better understanding of the underly-

ing process that generated the data, and helping prepare, improving learning accuracy,

and leading to better model performance (Liu et al., 2010).

The key point on FS is: what variable are redundant? A presumably redundant

variable could be useful when taken with another set of variables. Guyon and Elisseeff

(2003) pointed out some important observations related to redundant variable:

• Noise reduction and consequently better class separation may be obtained by adding

variables that are presumably redundant. Variables that are independently and

identically distributed are not truly redundant;

• Perfectly correlated variables are truly redundant in the sense that no additional

information is gained by adding them;

• Very high variable correlation (or anti-correlation) does not mean absence of variable

complementarity;

• A variable that is completely useless by itself can provide a significant performance

improvement when taken with others;

• Two variables that are useless by themselves can be useful together.

Based on several studies has been shown that some features can be removed without

performance deterioration (Liu et al., 2010). On the other hand, it is known that including

too many input variables to a model are often harmful, since it can lead to overfitting

phenomenon, especially for small databases. Likewise, including only few variables are not
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always beneficial due to underfitting problem. Therefore, some trade-off between these

extremes is highly important.

The best subset of variables contains the least number of dimensions that most con-

tribute to accuracy, being the unimportant dimensions removed. This is an important

stage of preprocessing and is one of two ways of avoiding the curse of dimensionality (Swell,

2007). To perform FS , there are two main approaches with practical application:

• Forward selection: the process start with no variables and add them one by one. At

each step it is add the one that most decrease the error, until any further addition

does not significantly decrease the error (or improve the model performance);

• Backward selection: here, the process star with all variable and remove them one

by one. At each step is removed the one that most decreases the error (or increases

it only slightly), until any further removal increases the error significantly.

Swell (2007) summarize at his paper a list of different algorithms for FS , given an

overview of different approaches that can be used (see Figure 2.16).

Figure 2.17 shows a unified view for a FS process. This process comprise two phases:

• Feature selection

• Model fitting and performance evaluation

In few words, a subset of the original features is selected via certain research strategies,

which is evaluated in order to analyse the utility of the candidate set. Some features can

be add or discard to the candidate set. If the set of selected features is good enough using

certain stopping criterion, then the selected data are used to train a particular learning

model and test it with the test dataset. The decision whether proceed to a new iteration

is normally supported on the test error, which is calculated with the validation dataset in

order to reduce overfitting problems.

In order to improve the chances to select the best set of variables, the following list

enumerate 10 questions that should be answered to help to solve a FS problem (Guyon

and Elisseeff, 2003):
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Figure 2.16: Overview of FS methods (adapted from Dash and Liu (1997))
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Figure 2.17: A unified view of a FS process (Liu et al., 2010)

1. Do you have domain knowledge?

2. Are your features commensurate?

3. Do you suspect interdependence of features?

4. Do you need to prune the input variables (e.g. for cost, speed or data understanding

reasons)?

5. Do you need to assess features individually (e.g. to understand their influence on

the system or because their number is so large that you need to do a first filtering)?

6. Do you need a predictor?

7. Do you suspect your data is “dirty” (has a few meaningless input patterns and/or

noisy outputs or wrong class labels)?

8. Do you know what to try first?

9. Do you have new ideas, time, computational resources, and enough examples?

10. Do you want a stable solution (to improve performance and/or understanding)?
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2.5 Model assessment and interpretation

As previously mentioned, it is fundamental to perform a rigorous assessment of the DM

model when applied to on unseen data, in order to measure its generalization capacity.

For model assessment two different approaches can be taken:

• Objective: when model performance is evaluated based on statistics and structures

of patterns (e.g, support, confidence, etc);

• Subjective: the model is subjectively accessed when the user’s belief in the data are

applied (e.g. unexpected, novelty, etc).

Furthermore, and due to the high mathematics complexity of some data-driven models,

particularly those resulting from SVM and ANN algorithms, some procedures need to

be applied in order to extract understandable information from them. In this section, we

describe the approaches used to perform model assessment, as well as its interpretability.

2.5.1 Evaluation measures

Depending if the problem at hands is a classification or a regression task, different evalu-

ation measures can be applied. In regression, evaluation metrics are computed based on

the difference between observed and predicted values (the errors). Typically, the lower

the error, the better is the predictive model, being a value of zero the ideal goal to be

achieved.

In this work, we adopt three common metrics: Mean Absolute Deviation (MAD)

(Equation 2.16); Root Mean Square Error (RMSE ) (Equation 2.17) and the Squared

Correlation Coefficient (R2) (Equation 2.18). Low values of MAD and RMSE ; and R2

close to the unit value should be interpreted as high model predictive capacity. The

main difference between MAD and RMSE is that the latter one is more sensitive to

extreme values since it uses the square of the distance between the real and predicted

values. When compared with MAD , RMSE penalizes more heavily a model that in a

few cases produces high errors. Thus, these two error measurements give different and

complementary perspectives about the behaviour of the induced models, allowing its

comparison.

These three metrics can be calculated by the following way. Let yk be the actual value

and ŷk be the predicted value of the kth observation and N be the number of observations,

then MAD , RMSE and R2 could be defined, respectively, as follows:
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MAD =

∑N
i=1 |yk − ŷk|

N
(2.16)

RMSE =

√∑N
i=1 (yk − ŷk)2

N
(2.17)

R2 =

 ∑N
i=1 (yk − ȳ) ·

(
ŷk − ¯̂y

)√∑N
i=1 (yk − ȳ)2 ·

∑N
i=1

(
ŷk − ¯̂y

)2

2

(2.18)

Furthermore, different regressions DM models can be easily compared by plotting the

Regression Error Characteristic (REC ) curve proposed by Bi and Bennett (2003), which

plots the error tolerance on the x-axis versus the percentage of points predicted within

the tolerance on the y-axis. In this work, we also adopt this representation for the model

performance analysis.

2.5.2 Generalization capacity

Another important issue in a model evaluation is its generalization capacity. That is, how

a DM model is able to accurately predict unseen values. The most common methods to

infer about generalization capacity of a predictive model are holdout, cross-validation and

leave-one-out.

Following an Holdout approach the dataset is randomly partitioned into two indepen-

dents sets, one for training and the other for test. The training set, used to induce the

model, allocates typically 2/3 of the records and the remaining 1/3 are used for model

accuracy measurement. The main advantage of this approach is its simplicity and speed.

However, this method is not much robust, tending to produce different results for different

data random splits.

The Cross-Validation, schematically presented in Figure 2.18, is an improvement of

holdout approach, allowing to use all data available for training and testing. According

to this approach, the data (P ) are randomly sampled into k mutually exclusive subsets

(P1, P2, ..., Pk), with the same length. Training and testing is performed k times and the

overall error of the model is taken as the average of the errors obtained in each iteration.

The values of k can range from 2 to N, where N is the number of data sample. The typical

value for k are 5, 10 or 20, depending of the dimension of the dataset. This method is

more robust than the holdout but requires more computation.

The Leave-One-Out (Hastie et al., 2009) approach can be seen as a special case of

Cross-Validation. This method is especially suited when the dataset is small (e.g. lower
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than 100 examples). Under leave-one-out, sequentially one example is used to test the

model and the remaining data is used to fit the model. Under this scheme, all data is used

for training and testing. Yet, this method requires around N times more computation,

since N models are fitted. The final generalization estimate is evaluated by computing

evaluation metrics for all N test samples.

In order to improve model reliability, each one of the above approaches described can

be performed T times (executions, also known as runs).
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Figure 2.18: Cross-Validation approach

2.5.3 Sensitivity analysis

Basically, there are two fundamental requirements that a data-driven model should satisfy.

On one hand, it is required a high prediction quality. On the other hand, namely within the

engineering domain, the predictive model should be understandable and easy to interpret.

However, this is precisely one of the main drawbacks related with black-box data-driven

models, such as ANN and SVM . In order to solve this issue, Cortez and Embrechts (2011)

proposed a novel visualization approach based on a SA method, which is used in this work.

SA is a simple method that is applied after the training phase and measures the model

responses when a given input is changed, allowing to quantify the relative importance of

each attribute, as well as its average effect on the target variable.

In particular, we applied the GSA method (Cortez and Embrechts, 2011), which is

able to detect interactions among input attributes. This is achieved by performing a

simultaneous variation of F inputs (that can range from 1, one dimensional SA, denoted

as 1-D, to I, I-D SA). Each input is varied through is range with l levels and the remaining
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inputs are kept fixed to a b baseline value. In this research work, it was set: l = 12, which

allows an interesting detail level under a reasonable amount of computational effort; and

b is set to the average input variable value.

First, the DM model is fitted to the whole dataset. Then, the GSA algorithm (Al-

gorithm 1) is applied to the fitted DM model, being the respective sensitivity responses

stored. In the Algorithm 1 the SD jagged array is built using the Algorithm 2, while

the predict(M,X) is a function that returns the responses of model M given the input

matrix X (of N × I size). The REP procedure is equivalent to the R rep function (R

Development Core Team, 2009) (e.g. REP((1,2),2,2)=(1,1,2,2,1,1,2,2)).

Using the sensitivity responses, two important visualization techniques can be com-

puted. The input importance barplot shows the relative influence of each input in the

model (from 0% to 100%). The rational of SA is that the higher the changes produced

in the output, the more important is the input. To measure this effect, following the

suggestion of Cortez and Embrechts (2011), it was adopted the gradient metric:

ga =
l∑

j=2

|ŷa,j − ŷa,j−1| / (l − 1) (2.19)

where a denotes the input variable under analysis, ŷa,j is the sensitivity response for

xa,j. Having computed the gradient for all inputs, then the relative importance (Ra) is

calculated using:

Ra = ga/
I∑
i=1

gi · 100(%) (2.20)

To analyse the average impact of a given input xa in the fitted model, the Variable

Effect Characteristic (VEC ) curve can be used, which plots the attribute l level values

(x-axis) versus the SA responses (y-axis). Between two consecutive xa,j values, the VEC

plot performs a linear interpolation. To enhance the visualization analysis, several VEC

curves can be plotted in the same graph. In such case, the x-axis is scaled (e.g. within

[0,1]) for all xa values. Similarly, when a pair of inputs (xa1,xa2) is simultaneously varied

(F > 2), the VEC surface can be plotted, showing the average responses to changes in

the pair.
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Algorithm 1 Global Sensitivity Analysis (Cortez and Embrechts, 2011)

1: procedure GSA(M,SD, F, b,Nŷ)
2: mx ← 1
3: for a ∈ F do . compute mx length
4: mx ← mx × length(SD[a, ∗])
5: end for
6: X ← matrix mx × (I + Ycol) . rows × columns
7: for a ∈ {1, ..., I}/F do
8: X[∗, a]← b(a) . set /F columns to baseline
9: end for

10: e← 1
11: for a ∈ F do . set SA inputs
12: x′a ← SD[a, ∗]
13: t← mx/(e · length(x′a))
14: X[∗, a]← REP(x′a, e, t) . replicate x′a
15: e← e · length(x′a)
16: end for
17: ycol ← {I + 1, ..., I +Nŷ} . output columns
18: X[∗, ycol]← predict(M,X[∗, {1, ..., I}])
19: Output: X . matrix with SA inputs and responses
20: end procedure
21: procedure REP(x, each, times) . auxiliary function
22: xr = ∅ . empty vector
23: for j ∈ {1, ..., times} do
24: xe = ∅ . empty vector
25: for i ∈ x do
26: x′e ← vector with each× length(x) elements
27: x′e[∗]← i . all x′e elements are set to i
28: x′e ← c(xe, x

′
e) . concatenate operator

29: end for
30: xr ← c(xr, xe) . concatenate operator
31: end for
32: Output: Xr . vector with replicates from x
33: end procedure

Algorithm 2 Scanning data method (Cortez and Embrechts, 2011)

1: procedure SCAN DATA(D,F, l)
2: for a ∈ F do
3: SD[a, ∗]← scan(D[∗, a], l)
4: end for
5: Output: SD . jagged array with scanned inputs
6: end procedure
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2.6 Data mining tools

Nowadays, there are several data analysts, such as RapidMiner, R, Excel, Weka, SAS

and Matlab between others. In this work, we adopted the R environment, which has

gained attention of the DM community in the past few years (see Figure 2.19). The R

environment is a multiple platform (e.g. Windows, Mac OS) and free open-source tool

that is based on a high-level matrix programming language, broadly used for statistical

and data analysis. R environment is based on objects and on a high-level language, being

its functionalities easily extended by installing new packages, which are continuously

being developed by an very active R community. In addition, an extensive help system is

included and available from the prompt (help.start() calls the full tutorial in an HTML

browser). Furthermore, there is also a large documentation freely available on the R Web

site (http://www.r-project.org/) as well on books (Muenchen and Hilbe, 2010). While

not specifically oriented for Business Intelligent / DM , the R environment includes a large

variety of Business Intelligent / DM algorithms (e.g. Neural Networks, Support Vector

Machines, Bayesian Networks or Decisions Trees). Furthermore, R is currently used by a

large number of Business Intelligent / DM analysts. As a drawback, R requires some effort

for non expert users to initially learn the tool, due to the lack of an easy to use graphical

user interface (GUI), as well as the absence of technical support. Usually, almost usage

of R is under a console command interface as shown in Figure 2.20, where all commands

are typed. Yet, after some experience and training, the user achieves a better control and

understanding of what is being executed (in contrast with several “black-box” DM GUI

products).

The R environment was not specifically developed for conducting DM projects. Thus,

some packages were developed to improve this issue. Two of the most interesting inter-

faces, are Rattle and rminer packages. The main advantage of Rattle is its graphical

interface (Figure 2.21), while rminer is easier to install and requires much less R pack-

ages. Moreover, rminer presents more ANN and SVM capabilities (e.g. in Rattle version

2.6.18, SVM cannot be used for regression tasks and the ANN algorithm is unable to

automatically search for the best number of neurons on the hidden layer).

In this work, we adopted the rminer library (available at

http://www3.dsi.uminho.pt/pcortez/rminer.html or R CRAN packages). This li-

brary is an integrated framework that uses a console based approach and facilitates the

use of DM algorithms in classification and regression tasks (Cortez, 2010). Moreover,

rminer is particularly suited for ANN and SVM (two of the main DM algorithms used

in the present work), making use of a short and coherent set of functions:

http://www.r-project.org/
http://www3.dsi.uminho.pt/pcortez/rminer.html
http://cran.r-project.org/web/packages/rminer/index.html
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(a) (b)

Figure 2.19: DM /analytic tools used poll: a) May 2009, b) May 2010. Source: http://www.

kdnuggets.com/polls (kdnuggets web page)

Figure 2.20: Snapshot of R console

http://www.kdnuggets.com/polls
http://www.kdnuggets.com/polls
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Figure 2.21: Snapshot of the Rattle graphical interface for DM in R

• fit: create and adjust a given DM model using a dataset;

• predict: returns the predictions for new data;

• mining: a powerful function that trains and tests a particular model under several

runs;

• mgraph: returns several graphs;

• metrics and mmetric: compute classification or regression error metrics.

For regression tasks, rminer package allows implement the following DM algorithms:

naive- most common class; dt - decision tree; rm - multiple regression; bruto - additive

spline model; mars - multivariate adaptive regression splines; knn - k-nearest neighbour;

mlp - multilayer perceptron with one hidden layer; mlpe - multilayer perceptron ensemble;

svm - support vector machine; and randomforest - random forest algorithm.

Additionally to the statistical R environment and rminer packages, we also used the

free version of General Algebraic Modelling System (GAMS ) (GAMS Development Cor-

poration, 2012) for the implementation of the FN s. GAMS is an high-level modelling



CHAPTER 2. ARTIFICIAL INTELLIGENCE TOOLS 45

system for mathematical programming and optimization. It consists of a language com-

piler and a stable of integrated high-performance solvers. GAMS is tailored for complex,

large scale modelling applications, allowing to build large maintainable models that can

be adapted quickly to new situations.

Moreover, particularly for initial data observation, we used the powerful visualisation

characteristics of GGobi software (Cook and Swayne, 2007) as well its ability to connect

with R. GGobi is an open source visualization program for exploring high-dimensional

data. It provides highly dynamic and interactive graphics such as tours, as well as fa-

miliar graphics such as the scatterplot, barchart and parallel coordinates plots. Plots are

interactive and linked with brushing and identification.

2.7 Conclusions

There are a large number of successful DM projects in different domains, including the

geotechnical field. Such success motivates this work, which aims to use DM techniques

for enhancing JG column design. However, there are some important issues that should

be taken into account for achieving a valuable impact. On one hand, it is fundamental

that sufficient data with significant attributes are available for the discovery task. On the

other hand, quality and reliability of the data are also relevant issues in a DM problem.

Moreover, for a successful implementation of a DM project, several steps should be taken.

For these issues, the application of SEMMA or CRISP-DM methodologies can give a

valuable contribution.

Currently, powerful DM algorithms are available to explore high-dimensionality data

and extract useful rules and patterns. Two of the most well-known and implemented in

this research are the ANN s, which are inspired by the neurons system structure of the

human brain, and the SVM s supported in statistical theory.

Another issue related to a DM problem is the selection of the model attributes, par-

ticularly in problems with high dimensionality. To help in the task, several approaches

have been proposed. In the present work, the forward and backward FS approaches were

applied to guide the process of selecting the input variables.

For model assessment, particularly in regression problems, different metrics, such as

MAD , RMSE and R2, can be calculated to measure the deviation between prediction

and experimental values. The model’s interpretability is as important as its performance.

This is a relevant issue because data-driven models are normally characterised by high

mathematical complexity. Accordingly, the application of a GSA can give a valuable

contribution. Particularly, this analysis is able to measure the relative importance of the
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input variables as well as their average effects on the target variable.

As a final note, it should be emphasised that actually there are several data analysis

methods, each with its advantages and limitations. The R environment has gained atten-

tion within the DM community in the past few years and was adopted in the present work.

One of the most attractive features of the R environment is the possibility of installing

new packages, which extend its functionalities.



Chapter 3

Jet grouting technology

3.1 Background and definitions

The main goal of any ground improvement method is to improve those soil characteristics

that match the desired results of a project. For example, an increase in density and shear

strength to overcome stability problems; reduction of soil compressibility; influencing

permeability to reduce and control ground water flow; increase the rate of consolidation;

or improve soil homogeneity.

Ground improvement techniques are continually in progress, both quantitatively and

qualitatively, as a result of not only technology developments but also of an increasing

awareness of the environmental and economic advantages of modern ground improvement

methods. Moreover, the last decade has seen an increasing demand for in situ deep soil

mixing work in Europe and North America (Moseley and Kirsch, 2004).

Within ground improvement techniques, there is distinction between methods of com-

paction or densification (e.g. deep vibro techniques, or dynamic compaction) and methods

of soil reinforcement through the introduction of additional material into the ground (e.g.

cement grouting, compaction grouting or jet grouting). Following, a brief summary of

some of the most relevant soil improvement techniques is presented, emphasizing JG

technology.

According to the fundamental concepts of soil mechanics, the placement of an exter-

nal load on a low-permeable soil layer will induce excess pore water pressure, causing

a consolidation process in which pore water is pushed out of the soil. As a result, the

effective stress increases gradually and the excess pore water pressure decreases. This

process is termed as consolidation, and will continue until the excess pore water pressure

has dissipated. The duration of this process is mainly related with the drained path.

Therefore, the idea behind the installation of vertical band drains is to reduce the length

47
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of the drainage paths and thereby reduce the time of consolidation. For this purpose,

different strategies can be adopted, such as the used of vertical sand drains, cardboard

wicks or geodrains.

Another well known soil improvement method is cement grouting. Normally, grouting

is used to fill voids in the ground, aiming to increase resistance against deformation, to

supply cohesion, shear-strength and UCS or to reduce conductivity and interconnected

porosity in an aquifer. Grouting uses liquids which are injected under pressure into

the pores and fissures of the ground. Liquid grout mixes consist of mortar, particulate

suspensions, aqueous solutions and chemical products, such as polyurethane, acrylate or

epoxy. By displacing gas or groundwater, these fluids fill pores and fissures in the ground,

conferring new properties (after setting and hardening) to the subsoil.

The concept behind JG , i.e. the use of high pressure water for disrupt the ground,

dating from middle of 60’s decade and was proposed by Japanese specialists (Xanthakos

et al., 1994). In 1965, Yamakada brothers (Miki and Nakanishi, 1984) applied this concept

not only for cutting purposes but also to mixture soil with cement. These developments

gave rise to the first two forms of JG , which date by early 1970.

Since then, several JG forms had been developed, improved and merged leading to the

three main system currently applied (Xanthakos et al., 1994). The major categories of

JG applied in Japan in 1985 are summarized and described in Figure 3.1. The strong im-

provements on equipment development, providing significantly higher flow rate at higher

pressures, allowed, since the early 1990, improve volume of soils 20 times as large as

the conventional systems. This technology progress enabled to obtain JG columns with

around 5 meters in diameter or even up to 9 meters in softer ground.

By the late 1970’s, JG technology was initially applied in Japan, Germany, UK, Italy,

France, Singapore and Brazil, by groups of geotechnical contractors, and then throughout

the world. Despite of all potential of JG technology as a soil improvement method, its

acceptance found some obstacles. The risk/legal concerns, inherent to any novel method,

appear on the top of the list. Moreover, inappropriate applications and initial technical

problems leading to poor performance, are responsible for its slow acceptance, particu-

larly in North America. In Portugal, JG was introduced in the middle of 90’s decades,

mainly on Lisbon underground extension works. Nowadays, JG solutions have become

competitive and advisable in several and more usual geotechnical scenarios (Falcão et al.,

2000).
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Figure 3.1: Development of JG methods in Japan from 1965 to 1985 (adapted from Miki and Nakanishi (1984))
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JG technology is classified as a grouting on ground improvement methods and is

defined as placement of a pumpable material (normally a cementitious material) directly

into the subsoil, without previous excavation. The cinematic energy of the drilling fluid

cut the soil, allowing its mixture with the injected grout. At the end, a new material, also

known as soilcrete, with an controlled geometry structure is obtained, presenting better

physical and mechanical proprieties when compared with natural soil.

JG is actually a viable solution for a wide range of problems when conventional injec-

tion methods are unsuitable, unsafe or too expensive. Although be a recent technology on

ground improvement, it is notable its fast growing worldwide (Terashi and Juran, 2000).

Its growth has been in response to the need to treat fine and/or grain soils that can not

be treated with permeation grouting, to produce very high strengths and to comply with

major environmental controls that chemical grouts may not meet.

Nowadays, JG is one of the most used deep mixing improvement methods worldwide

(Nikbakhtan et al., 2010), where slurry cement is injected into the natural soil, obtaining

a new material characterized by an enhancement in terms of resistance, stiffness and

permeability.

JG technology has aroused interest within the geotechnical community due to it great

versatility, enabling to improve mechanical and physical properties of different soil types,

obtaining different geometries shapes (columns, panels, etc.) with different orientations

(vertically, horizontally or inclined). As shown in Figure 3.2, that compares the applicabil-

ity of different soil improvements methods, JG technology can be economically used from

coarse to fine-grained soils (GmbH, 2002). Moreover, it requires just few equipments, can

be applied from confined places, such as from inside of buildings, allows to treat a specific

zone (e.g. a confined stratum) and is economically attractive when compared with other

soil improvement methods (Falcão et al., 2000). The bearing capacity of JG columns can

still be improved by introducing steel profiles inside them.

It is this high versatility of JG technology, namely in terms of soil type and geometry,

that give it the ability to solve a large diversity of geotechnical problems. Proof of this

is the high diversity of JG applications scattered throughout the world. These different

applications can be grouped under the following headings (Essler and Yoshida, 2004):

• groundwater control;

• movement control;

• support; and

• environmental.
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Application limits for grouting techniques
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Figure 3.2: Comparison of the applicability of different soil improvement methods (adapted
from GmbH (2002))

JG technology is also frequently required for groundwater control works, such as to

create waterproof barriers or to perform sealing works. In fact, low permeability val-

ues, normally around to 10−9 to 10−10, are a key characteristic of soilcrete. Moreover, it

can be used within environmental issues for preventing or reducing contamination flow

through the ground or encapsulating contaminants in the ground or into sensitive water

systems (Gazaway and Jasperse, 1992).

Taken advantage of the improved mechanical properties of soilcrete, JG technology is

often applied on tunnel protection, underpinning buildings during excavation or transfer-

ring foundation load through weak material to a competent strata. Furthermore, can also

be used in embankments or cuttings by increasing the safety factor (Welsh and Burke,

1991; Padura et al., 2009; Gazzarrini et al., 2008; Shibazaki and Yoshida, 1997; Gazzarrini

et al., 2005).

Despite of all particular characteristics of JG technology, there are also some less

positives aspects that should be enumerated. The high cement and water consuming

is one of the main less attractive points of JG technology. Furthermore, the bearing

capacity of the soil immediately after the soil improvement is very low. This means that

can occur undesirable settlements (Wang et al., 1998). In addiction, the high pressure used

during the soil improvement can damage neighbour structures induced by uncontrolled

soil movements (Wang et al., 1999), particularly if for some reason the excess material can

not achieve the surface. For this reason it very important to check if the excess material,

that result from the soil improvement, can freely ascend to the surface throughout the

free space between the open borehole and the rod. This spoil that ascends to the surface
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can also represent a environment threat if were not taken the appropriate measures.

Another important issue related with JG technology is its design. As previously

pointed out in Chapter 1, JG columns diameter and soilcrete mechanical properties pre-

diction are a complex task, mainly due to the high dimensionality of the problem. This

subject is of particular importance for JG technical and economic efficiency, and repre-

sents the scope of the present research work.

3.2 Function and effects of the JG technology equip-

ment on soil improvement

Conceptually, soil improvement by JG technology can be described in two main steps:

drilling phase followed by the mixture process. In the first step, a JG string with simple,

double or triple inner conduit, which convey the JG fluid(s) to the monitor, is drilled

into the soil until the intended depth and with the orientation of the column that will be

built. During this stage, a water jet flow can be used to facilitate the penetration process

and clean the space between the borehole walls and the rods, which is an important

aspect to successfully carry out the soil improvement in terms of security and technical

requirements. In the second phase, the improved mass of soil is obtained by jetting of the

disaggregating and cementing fluid(s) through small nozzles (2 mm to 4 mm of diameter)

screwed to the monitor. At the same time, a jet grouting rig apply a pre-established

withdrawal and rotation speed to the rods while the fluids are pumped with a pressure

(until 550 times of atmosphere pressure) and flow rate pre-specified. The excess water

soil-cement mixture, currently termed spoil, is removed to the surface through the annular

space between drill rod and borehole wall. Figure 3.3 schematically represents the JG

process as well as the main equipment and materials involved on the entire process.

As previously underlined, one of the aspects that make JG technology a remarkable

soft soil improvement method is the few amount of equipment necessary for its applica-

tion. Following are enumerated the main equipment used on soil improvement by JG

technology, where most of them can be identified in Figure 3.3.

• Drilling rigs;

• Jet grouting string;

• Monitor;

• Nozzle(s);

• Cement;
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Figure 3.3: JG process (adapted from GmbH (2002))

• Water reservoir;

• Grout slurry mixture station;

• Soilcrete pump and control station;

• Air compressor.

Being the JG technology a soil improvement method, the soil properties are a key element

in the final characteristics of the new material resulting, in terms of both mechanical

behaviour and column diameter.

A practical way to assess the influence of the soil, is to separate it between granular and

cohesive soils. Accordingly, and based on several studies, it was observed that unconfined

compression tests results (a standard test for quality control) follow the distribution shown

in the histograms plotted in Figure 3.4 for cohesive and granular ground. Essler and

Yoshida (2004) also propose some reference values for UCS, cohesive strength, bond

strength and bending tensile strength for granular and cohesive soils (see Table 3.1).

Moreover, there are also some reference values, proposed by several authors, for different

soil types, which are summarized in Table 3.2.

Relating to the JG column diameter, the influence of the soil it is also assessed in

terms of its structure, i.e. considering whether the soil is granular or cohesive. Figure 3.5

shows a relation between the NSPT of the soil and the JG column diameter, as a function

of the jet system applied.

1JET1 - Single fluid system; JET2 - double fluid system; JET3 - triple fluid systems (see Section 3.3
for more details.
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Figure 3.4: Histogram of experimental UCS of soilcrete for: a) sandy soil, b) cohesive soil.
(adapted from Essler and Yoshida (2004))

Table 3.1: Standard strengths in design (adapted from Essler and Yoshida (2004)).

Soil type

Unconfined Cohesive Bond Bending
compressive strength strength tensile

strength (MN m−2) (MN m−2) strength
(MN m−2) (MN m−2)

Cohesive 1 0.3 0.1 0.2
Granular 3 0.5 0.17 0.33

Table 3.2: UCS of materials treated by JG technology (adapted from Carreto (2000)).

Author/Data W/C
Soil Type - UCS (MPa)

Organic clay Clay Silt Sand Gravel

Welsh and Burke (1991) - - 1 to 5 1 to 5 5 to 11 5 to 11

Baumann et al. (1984)∗
1:1,5 - - 6 to 10 10 to 14 12 to 18
1:1,0 - - 3 to 5 5 to 7 6 to 10

Paviani (1989)∗ - - 1 to 5 1 to 5 8 to 10 20 to 40
Teixeira et al. (1987)∗ - 0,5 to 2,5 1.5 to 3.5 2 to 4.5 2.5 to 8 -
JJGA (1995)∗ - 0.3 1 1 to 3 - -
Guatteri et al. (1994)∗ - - 0.5 to 4 1.5 to 5 3 to 8 -
∗ In Carreto (2000)
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Figure 3.5: Relation between JG column diameter and NSPT for different jet systems1

There are also some empirical abacus similar to those plotted in Figure 3.6 that depicts

the column diameter as a function of NSPT for different soil types and JG systems. It

should be stressed that JG column diameter is one of the most important parameters

used for quality control purposes. Therefore, JG column diameter quantification is of

particular importance for the economy of the soil improvement.
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Figure 3.6: JG column diameter in function of SPT number for different soil types and JG
systems. a) according to Brazilian practice (NOVATECNICA, 2003), b) proposed by Miki and
Nakanishi (1984) and Abramento et al. (1998) (CCP - single fluid system, JG - double fluid
system)

Concerning to the equipment used to perform the soil improvement, the drilling rigs

is placed as close as possible to the improvement spot and is linked to the cement slurry

pump station and, if necessary, to the air compressor throughout high pressure hoses,

through which the different fluids are conducted. This machine is normally coupled to
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an truck and is provided by a drill pipe that range just from few meters (allowing to

access confined places) to several meters high (allowing to increase productivity). The

main function of the drilling rigs is to control both rotating and withdrawal speeds as well

as column orientation. The first two JG parameters allow control the cement content of

the mixture as well as the cut effect. Higher withdrawal and rotation speeds means lower

cement content and cut effect (keeping the remaining parameters constant). As a result,

monitoring these two parameters, can be controlled the mechanical properties of soilcrete

as well as JG column diameter. Moreover, this machine also disposes of an operational

panel and a recording station (see Figure 3.7) where are displayed and recorded several

JG parameters (e.g withdrawal and rotation speeds) for supervision and control in real

time. This informations can then be analysed and interpreted.

Figure 3.7: JG record station

Jet grouting string is coupled to the drilling rigs and is formed by jointed rods provided

by one monitor (see Figure 3.8) coupled at its end. This monitor enables jetting of the

fluids into the ground and is provided by a drill bit, which enables/facilitates the drilling

process. Figure 3.9 shows some details of the nozzles used on JG technology. The nozzle

is a specially manufactured device screwed to the monitor and designed to transform the

high pressure fluid flow within the JG strings into a high speed jet directed against the

soil. They are normally placed perpendicularly to the monitor. However, its orientation

is part of JG design as well as its dimension (diameter) and number. The influence of this

important element, is more noticeable in JG column diameter than in soilcrete mechanical

properties. Its number and diameter, as well as orientation will affect the jet energy and

therefore the ability to cut and reach highest distances. The importance of this element

is reflected in the strict control that is targeted during soil improvement.

Upstream of the drilling rigs, are the remains equipments listed above and shown in

Figure 3.3. Among them, it should be stressed the importance of cement silo and water
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Figure 3.8: JG monitor details, showing nozzles and drill bit position

Figure 3.9: JG nozzle details
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reservoir that ensure a continuous supply of cement and water respectively. Concerning

to cement type, it should be stressed that its influence is particularly noticeable in the

strength development ratio (Limprasert, 1995). Finally, the cement slurry obtained from

mixing cement with water is pressurized in the pump station (see Figure 3.10). This

equipment is responsible to create all necessary energy to disrupt the soil and mix them

with the cement slurry. Combining the injection pressure of the fluids with the diameter

of the nozzles, it is developed the sufficient energy to perform the soil improvement.

Figure 3.10: Pump station (equipment used in Multiusos - Viana do Castelo)

3.3 Jet grouting systems

Since its first application until nowadays, JG technology has undergone several devel-

opments and refinements. One of the main developments is related with the number of

fluids injected, which define the three main systems currently in use, i.e., single fluid

system, double fluid system and triple fluid system2. More recently, other systems has

been proposed, where Xjet system is highlighted. Following are emphasized the main

characteristics related to the different JG systems, as well as the influence of each one in

the mechanical properties of soilcrete and JG column diameter.

3.3.1 Single fluid system

Single fluid system is the simplest form of JG , where it is just injected cement slurry, at

high pressure and velocity. This fluid is responsible to erode the soil and mix with it. A

schematic representation of this system is presented in Figure 3.11. Single fluid system is

predominantly used in horizontal JG works, namely in tunnel protection. Furthermore,

2Single, double and triple fluid systems are also currently known as JET 1, JET 2 and JET 3 respec-
tively.
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it is normally the best alternative when there are concerns about the air usage and loss

of strength. This was the first system to be developed and the small columns diameter

produced, usually up to 1 m in diameter, is one of its main limitations. Moreover, the

borehole opened to introduce the rods has a tendency to become blocked, often resulting

in ground heave. Under single fluid system, six jetting parameters must be specified:

grout pressure, flow rate, number and diameter of the nozzles and withdrawal time and

rotation speed of the drill rod. There are also some other parameters, related with cement

slurry properties, that also need to be defined, such water/cement ratio, cement or water

type (e.g. drinking or in situ water).

Figure 3.11: Single fluid system schema (adapted from GmbH (2002))

3.3.2 Double fluid system

Double fluid system, schematically represented in Figure 3.12, is very similar to the single

system but with the addition of an air shroud the cement grout jet. Adding air to the

grout jet the cutting energy increases, allowing higher eroding distance, mainly above

water table. Beyond its benefits related with the erosion energy, the compressed air

is very importance for conveying spoil up to the ground surface. However, due to the

injection of air during the mix process, the final mixture present highest porosities, which

normally leads to lower strength values. Moreover, on double fluid system a lot of grout

may be lost to the surface due to the airlift, decreasing soil improvement efficiency. In

this system, additionally to all parameters related with single fluid system, it is also need

to control the pressure and flow rate of air jet.

The development of double fluid system was strongly supported on the observation

of jet behaviour on different media. The experience has shown that a water jet is very
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Figure 3.12: Double fluid system schema (adapted from GmbH (2002))

effective in air (for instance as a fire extinguisher), and that its effectiveness is significantly

decreased in water. This observation is shown in Figure 3.13 that sketches the eroding

distance of a jet in air, in water, and in water with an air shroud. Therefore, and taking

into account that JG technology is frequently performed beneath the water table, the

efficiency of an alone grout jet will be low. So, shrouding the liquid jets with compressed

air, is created a atmosphere effect by eliminating ground water around the jets. However,

to increase the effectiveness of the air shrouding liquid jet, its velocity should be higher

than half the sonic velocity, ensure a thickness of one millimetre and provide sufficient air

flow. A compressed air may be generated by a low-pressure compressor rated at 0.7 MPa

for work up to 20 m deep, but is dependent of the ground water pressure. For deeper

works high-pressure compressor is required.

3.3.3 Triple fluid system

Triple fluid system, schematically represent in Figure 3.14, is slightly different and more

complex than single and double fluid systems. In this system the erosion of the ground

is carried out by a high pressure water jet shrouded by air and the mixture process

is performed by an additional low pressure grout line. Typically, grouting nozzles are

placed half a meter below the water jetting nozzle in order to convey as much excavated

soil particles as possible to the surface while limiting the grout ejected. By controlling

independently the erosion and grout ejection, this system is superior to the other two

systems from the point of view of control quality. Moreover, a higher column diameter

can be obtained. The triple system is usually less viscous and hence offers less risk for

blockage and potential structural or ground movement. However, and similar to double

fluid system, the strength of the final mixture is lower due to the injection of air during the
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Figure 3.13: Relationships of dynamic pressure rates and distance from nozzle in various media.
(adapted from Essler and Yoshida (2004))

process. Furthermore, since the achieved diameter is higher, the cement content is lower,

contributing for a strength decreasing. On this system, beyond of the all parameters

related to double system, it is also need to define the number and diameter of water

nozzles as well as the pressure and flow rate of water.

Figure 3.14: Triple fluid system schema (adapted from GmbH (2002))

3.3.4 Xjet system

Additionally to single, double and triple fluid systems, there is another concept, proposed

in the late of 1980, providing an innovative progress for JG systems. This novel system,
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termed Xjet system, also known as Cross-jet or collided jet, consists of a pair of inter-

secting air-shrouded water jets (see Figure 3.15) and is designed to cut a nominal 2 m

to 2.5 m column diameter in any ground (Shibazaki et al., 1996). Figure 3.16 compares

conceptually the profiles of conventional jetting and Xjet systems. Cementitious grout is

injected below the erosion nozzles to displace and mix with the soil to create a high quality

soilcrete column. When compared to the other systems, this concept allows control the

eroding capability and thus achieve a better control of the column diameter regardless

to the soil conditions (Welsh and Burke, 1997). Furthermore, the enhancement in this

in situ mixing system results in more than 4 times the treated volume using the same

equipment (Essler and Yoshida, 2004). Xjet is mostly applicable in variable weak ground

such as soft clays and peat where overcutting of the design diameter can be a problem.

This method is becoming popular in Japan and Europe due to its considerable technical

and cost advantages. Xjet substantially replaced the in situ material, rather than mixing

it with cement, thereby producing a very high quality soilcrete, can reduce up to 25% the

spoil production and allow reduce the project schedule around 50%. The main drawback

of this new concept is that requires sophisticated, more costly equipment and speciality

contractors experienced in JG technology.

Figure 3.15: Xjet system

3.3.5 Jet grouting system selection

One of the first steps on a JG project is to choose the JG system to implement, which

represents an important step in JG design. In this task, soil properties are within the
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Figure 3.16: Comparison between the conceptual profiles of the conventional jetting and Xjet
system

main factors to take into account. Moreover, and considering the cut energy associated

to each jet system, it is expected that the highest diameters are achieved for triple fluid

system. However, there are also other aspects that need to be considered, such as the

economy and the project requirements. To help to accomplish such task, Figure 3.5 and

particularly Figure 3.17 give an idea of the applicability of the three main JG systems in

cohesive and granular soils.

NSPT10 20 30 40 500

JET 1

JET 2

JET 3

Granular soils
Cohesive soils

Figure 3.17: Applicability of the three main JG systems for cohesive and granular soils

Despite of the strong influence of the final column diameter on JG system choice

(Figure 3.5), there are other factors that should also be taken into account. For instance,

if there are concerns about air usage and loss of strength, the single system is the available

alternative. Otherwise, the choice normally rests between the use of the double or triple

system. Triple system generally offers less risk for blockage and potential structural or

ground movement. Another issue that can affect the JG system choice is related with JG
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equipment limitations. As previously mentioned Xjet requires sophisticated equipment

and speciality contractors with high experience in JG technology that may not always be

available.

3.4 Quality control and empirical approaches

3.4.1 Quality control

JG design is a task involving several steps. The choice of the most adequate JG system

is one of the first tasks, followed by the definition of all parameters related with JG

process (pressures, velocities, flow rate, etc.), as well as the definition of the cement slurry

properties (water/cement ratio, cement type, etc.). Additionally, it is very important

to perform a detailed soil site investigation in order to characterize it correctly. These

aspects evidence the complexity behind JG design, where are involved several parameters.

Moreover, it should be remainder that the soil is a very heterogeneous material, increasing

the complexity of such task. Therefore, and keeping in mind that the actual approaches

for JG design have important applicability limitations, it is fundamental to perform a

rigorous quality control procedure throughout the entire process. Figure 3.18 summarize

the main steps that should be followed during a JG work in order to ensure that the

project requirements will be achieved.

Verified
project

requirement?
No Yes

Tests
Laboratory 

Formulations

Verified
project

requirement ?
No Yes

Tests
Test 

Columns

Verified
project

requirement?
Yes

Tests
Project 

Columns

No

Figure 3.18: JG quality control procedure

In few words, this procedure start with the preparation of a set of laboratory formu-

lations using the same materials that will be used during the soil improvement (e.g. the

same soil, water and cement). This formulations allow the designer define some parame-

ters related with soil-cement mixture, such as the water/cement ratio or the better choice

for cement type. In addition, it is also assessed whether the in situ water can be used

to prepare the cement slurry. Moreover, these formulations will give the first idea of the

mechanical properties of the soilcrete.
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The next step is to build some test columns in a representative place, normally close

to the site where the project columns will be build. These test columns are built with the

“same” parameters of the project columns (e.g. cement type, water, ejection pressure,

withdrawal and rotation speed, etc.). Based on the tests results of some samples collected

from this columns, normally measuring its strength and stiffness, is assessed whether some

adjustments are necessary or not. Moreover, it is based on the column diameter of the

these test columns that the decision about the construction of the project columns is

supported. This means that the test column diameter is a key element on JG quality

control assessment, giving indication whether to proceed or not for the project columns.

Therefore, it is expected that the project columns will achieve the same diameter of test

columns.

Finally, the project columns are constructed with all parameters previously defined.

During the works, some samples are extracted periodically from this columns, in order to

verify the project requirements, particularly in terms of strength and stiffness of soilcrete,

and eventually procedure to some parameter refinements. More recently, additionally to

core samples collected from JG columns after some days of curing time, some samples of

fresh material3 are also collected immediately after the columns construction, which are

saved in a controlled environment and tested (unconfined compression tests) at different

days time of cure. The diameter of the project columns, usually, is not verified, since

it is assumed that the expected diameter is accomplished, considering the measurements

performed over the test columns. This assumption is supported on the idea that for the

same conditions (i.e. soil and jet parameters), the same results are always achieved, and

it is contemplated by Eurocode 7 (CEN, 2004b).

Additionally to these main steps, during the jet grouting process some procedures

are followed in order to guaranty that everything is in accordance with the design spec-

ifications. For example, the nozzles diameter are rigorously inspected before the soil

improvement and periodically during the works, because this element has a preponder-

ant influence of the jet energy, and consequently in the column diameter. Moreover, the

specific gravity and viscosity of the injected cement slurry are also periodically checked.

Furthermore, spoil is continuously observed in order to analysis its aspect and flow rate,

avoiding underground overpressures that can damage neighbouring structures.

Another important aspect is drilling tolerance, particularly when overlapping of

columns is crucial, namely on groundwater control works, base slabs or tunnel break-

in or break-out. In these situations, omission or misplacement of a column can have the

most serious effect on performance or safety. For this reason column position and the

3fresh material is the designation currently used to the material collected from the JG columns
immediately after its construction.
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expected diameter should be rigorously controlled.

All procedures and aspects above described are very important to guarantee the ex-

pected results (soilcrete physical and mechanical properties and JG column diameter).

However, it is also fundamental be able to correctly define all JG parameters, according

to the JG system chosen and soil properties, in order to achieve the project requirements.

Moreover, understanding the effect of changing a given parameter, it is also crucial to

efficiently correct undesired results, and so far there are almost no information.

The current state of knowledge about JG technology has shown that JG efficiency

and effectiveness are strongly dependent of all JG parameters previously enumerated.

Furthermore, it has been observed that such parameters present complex relationships

between them, which has hindered the development of analytical models for JG design.

Indeed, so far there just few mathematical expression, supported on traditional statistics

analysis and using data from some JG works carried out in the last decades. As a result,

they are very limited to the conditions under which were developed. Some of the most

relevant analytical expressions that perform a relationship between JG parameters and

soilcrete mechanical properties and column diameter are summarized on Sections 3.4.2

and 3.4.3 respectively. Moreover, many other authors have proposed some reference

values and recommendations that can be seen as useful tips for JG design. According

to Gazaway and Jasperse (1992) experience, grout pressure and flow rate, jet nozzle

diameters, rotation and lift rate are some of the most important parameters that are

involved in JG soil improvement. Van Impe et al. (2005) highlight the influence of the

depth on soilcrete strength. Essler and Yoshida (2004) suggest that for lift speed should

be adopted a 5 cm lift for up to 2 m of column diameter and a 10 cm lift for more than to

4 m of column diameter.

The core of the JG design is essentially supported in the know-how of each JG compa-

nies, which developed their own design tables. These tables perform a direct correlation

between the expected results (normally the column diameter) and the JG parameters

values that should be applied. However, although practical and simple these tables are

very conservatives, compromising sometimes the economy of the soil improvement. More-

over, they also not explain the influence of each parameter in the final mixture. As above

mentioned, these tables represent the know-how of each company and, for this reason are

confidential. However, these tables are similar to that presented in Table 3.3, which sum-

marizes the range of some of the most influential JG parameters currently used, according

to the three main JG systems.
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Table 3.3: JG parameters range (adapted from Carreto (2000)).

JG parameter Single System Double System Triple System

Pressure
Grout (MPa) 20 to 60 20 to 55 0.5 to 27.6
Air (MPa) - 0.7 to 1.7 0.5 to 1.7
Water (MPa) PJ PJ 0.5 to 27.6

Flow rate
Grout (l/min) 30 to 180 60 to 150 60 to 250
Air (m3/min) - 1 to 9.8 0.33 to 6
Water (l/min) PJ PJ 30 to 150

Nozzles diameter
Grout (mm) 1.2 to 5 2.4 to 3.4 2 to 8
Water (mm) PJ PJ 1 to 3

Nozzles number
Grout 1 to 6 1 to 2 1
Water PJ PJ 1 to 2

Water/Cement ratio 1:0.5 to 1:1.25 1:0.5 to 1:1.25 1:0.5 to 1:1.25

lift speed (m/min) 0.1 to 0.8 0.07 to 0.3 0.04 to 0.5

rotation rate 6 to 30 6 to 30 3 to 20

PJ - prejetting

3.4.2 Empirical approaches for mechanical properties prediction

For quality control purposes, the UCS of soilcrete is the mechanical properties currently

used. In some situations, where structure’s serviceability are required, deformability prop-

erties of the improved soils are also needed. For this reason, the use of reliable approaches

for early predict the final mechanical properties of soilcrete is useful. Accordingly, several

approaches (analytical models) have been proposed for its prediction. These expressions,

normally supported on experimental studies, aims to establish a relationship between

UCS and some of the most relevant JG parameter. Followed are summarized some of the

most widely known empirical expressions with this purpose. It should be stressed that

all mathematical expressions bellow presented are limited to its own development condi-

tions. Therefore, it is recommended to consult the author works, for its full description

and applicability.

Following the experiences of Nikbakhtan and Osanloo (2009), it was observed a good

relationship between grout flow rate (FR, l/min) or grout pressure (Pgrout, bar) with UCS

(MPa) for soilcrete material. These two relationships are mathematically expressed by

Equations 3.1 and 3.2 respectively and are graphically depicted on Figures 3.19 and 3.20.

It should be underlined that, among other conditions, these two expression were adjusted

to data collected from JG columns built with triple fluid system to improve low-strength
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clay and fine soils.

UCS = 0.4376 · e0.0079·FR (3.1)

UCS = 0.6334 · e0.0937·Pgrout (3.2)
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Figure 3.19: Relationship between UCS and FR for triple fluid system JG columns (adapted
from Nikbakhtan and Osanloo (2009))
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Figure 3.20: Relationship between UCS and Pgrout for triple fluid system JG columns (adapted
from Nikbakhtan and Osanloo (2009))

Later, Nikbakhtan in cooperation with Ahangari (Nikbakhtan and Ahangari, 2010)

proposed a new expression to correlate UCS (MPa) with grout pressure (Pgrout, bar) (see
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Figure 3.21) as well as three others expressions that correlate Cement/Water ratio (C/W )

(see Figure 3.22), lift speed (WS, cm/min) and rotation speed (rpm) with UCS (MPa)

(see Figure 3.23):

UCS = 0.7131 · e0.0523·Pgrout (3.3)

UCS = 1.6141 · e−0.0784·WS (3.4)

UCS = 1.6141 · e−0.0784·rpm (3.5)

UCS = 2.4507 · e0.2296·C/W (3.6)

Again, these expressions were developed based on data collected from triple fluid system
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Figure 3.21: Relationship between Pgrout and UCS (adapted from Nikbakhtan and Ahangari
(2010))

JG columns built on fine grain soils, mainly from clay with low plastic property or plastic

sediment.

Croce and Flora (1998) showed that UCS of JG mixtures can be successfully correlated

(R2 = 0.70), within a set of restrictions, with its dry unit weight (γd, kg m−3), following

an linear law:

UCS = 2933 · γd − 32427 (3.7)

This relationship was obtained from a case study where pyroclastic soils were treated with

single fluid system injecting a slurry of cement with a water/Cement ratio equal to 1 at

45 MPa and applying a lifting step of 40 mm.

Shen et al. (2010) proposed inferring the UCS of soilcrete based on the degree of
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Figure 3.22: Relationship between C/W ratio and UCS (adapted from Nikbakhtan and Ahangari
(2010))
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mixing uniformity (Du), which is determined using samples collected immediately after

mixing. This coefficient is defined as:

Du =
N1

N2

× 100% (3.8)

Where N1 is the number of collected samples and N2 the number of samples with an pH

value higher than the critical value. The average strength of soilcrete can be obtained by

multiplying the degree of mixing uniformity with the strength from a standard laboratory

mixing test.

There are also some other expressions that can give an idea of the strength values

of soil-cement mixture, particularly for laboratory formulations. Narendra et al. (2006)

proposed the following equation:

UCS =
A

BWc/C
(3.9)

where A is a coefficient related to the type of clay, liquidity index and age of the mixture;

Wc/C is the soil-water/cement ratio and B is an empirical constant that range from 1.22

to 1.24 and is independent of the type of clay.

Lee et al. (2005), based on previous works, particularly those developed by Gallavresi

(1992), Kaushinger et al. (1992), Nagaraj et al. (1996), observed that for a given type

of cement and cohesive soil, the UCS (kPa) can be correlated with water/cement ratio

(W/C) and soil/cement ratio (S/C). Thus, after some experiments proposed the following

relationship:

UCS = UCS0 ·
em·(S/C)

(W/C)n
(3.10)

where UCS0 (kPa), m and n are experimentally fitted values.

Liu et al. (2008) introduced a simple index, the total water/Cement ratio (Rm), that

present a good correlation with UCS of marine clay stabilized with cement. This index

is defined as follows:

Rm = mw/mc (3.11)

where mw represents the weight of water in the mixed soil-cement, including the water in

the original soil and the water in slurry cement; and mc represents the weight of cement

in dry state. Figure 3.24 shows the relation between the UCS (MPa) and the inverse of

proposed index (1/Rm), presenting a good adjustment for a given age.
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Figure 3.24: Relationship between UCS and total water-cement ratio (Liu et al. (2008))

Liu et al. (2008) also summarize some others mathematics expressions proposed by

many others authors to predict UCS of soil-cement mixtures. According to Mitchell et al.

(1974) there are the following relationship between UCS and curing time:

UCSt = UCSt0 +K · log (t/t0) (3.12)

where UCSt (kPa) is UCS at t days; UCSt0 is UCS (kPa) at t0 days; K = 480 · C for

granular soils and K = 70 · C for fine grain soil; C is cement content (% by mass.)

Nagaraj and Miura (1996) carried out unconfined compressive tests on four inland

clays that had different liquid limits, and obtained the generalized relationship as follows:

UCSt/UCS14 = a+ b · ln (t) (3.13)

where UCSt is the UCS at age t (days); UCS14 is UCS the 14 days time of cure with

initial water content as much as liquid limit of soil. It is reported that a = −0.20 and

b = 0.458 for inland clays. Yamadera et al. (1997) further investigated the strength

development with time of three different marine Ariake clays at their liquid limit. They

found that a = 0.190 and b = 0.299.

Tan et al. (2002) have established an empirical relationship to predict the strength

development based on cement content, water content and curing period. The strength

developed at specific cement, water content and curing period is used as the reference
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compressive strength for a given soil and the strength developed under other conditions

for the same soil is normalized using the reference strength.

UCSsoil1
UCSsoil1 (aw, ω, t)

=
UCSsoil2

UCSu,soil2 (aw, ω, t)
=

UCSsoil3
UCSsoil3 (aw, ω, t)

(3.14)

where UCSsoil1, UCSsoil2, and UCSsoil3 are the UCS of soil 1, soil 2, and soil 3, respec-

tively; aw is the ratio of cement to clay by weight both in their dry states (%); ω is the

water content of soil; and t is the curing time.

Miura et al. (2001) and Horpibulsuk et al. (2003) used Abram’s law as the basis for

model development. With the concept explained in the literature of Horpibulsuk et al.

(2003), the empirical model is developed as follows:

UCS(Wc/C)1,t

UCS(Wc/C)2,28

=

1.24[(Wc/C)2−(Wc/C)1] (0.038 + 0.281 · ln (t)) if LI = 1.0 ∼ 2.5

1.24[(Wc/C)2−(Wc/C)1] (−0.216 + 0.342 · ln (t)) if LI > 2.5

(3.15)

where t is the curing period in days; UCS(Wc/C)1,t
is the UCS at (Wc/C)1 for the curing

period of t days; Wc is the water content; C is the cement content; UCS(Wc/C)2,28 is the

UCS at (Wc/C)2 for the reference curing period of 28 days; LI is the liquidity index.

Lorenzo and Bergado (2004) found that the ratio between after-curing void ratio (eot)

and cement content (C) is sufficient to characterize the strength of cement-admixed clay

at high water contents. The following relationship has been derived to describe the UCS

of any cement-admixed clay:

UCS = A · pa · eB·(eot/C) (3.16)

where A and B are dimensionless constants and pa is atmospheric pressure. Based on the

results presented, for soft Bangkok clay mixed with Type I Portland cement, the constants

are A = 10.33 and B = −0.046. The constant A is affected by the type of admixture

(or type of cement), while the constant B is affected by the type and mineralogy of the

original clay. Thus, the empirical relationship of after-curing void ratio, eot, which is

related to clay water content, cement content, and curing time, is put forward.

Additionally to all empirically expression previously enumerated, there are other ap-

proaches used on different areas that can be adapted to predict soil-cement mixtures

mechanical properties, namely of JG material. Two of these approaches are those con-

templated on EC2 (CEN, 2004a) and MC90 (CEB-FIP, 1991) regulations, currently

applied to predict mechanical properties (strength and stiffness) of concrete. These to ap-
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proaches will be adapted and tested in the present research work to predict both strength

and stiffness of JG material, particularly for JGLF .

EC2 proposes the following mathematical expression to estimate concrete strength

over time:

fcm(t) = e(s·[1−( 28
t )

a
]) · fcm (3.17)

where fcm(t) is the strength at age t; fcm is 28 days strength of the mixture; s is a

coefficient related with cement type and t is the age of the mixture. The coefficient a,

taken equal to a = 1/2 for concrete will be adapted to JG mixtures.

For stiffness estimation, EC2 proposes a similar expression, defined as follows:

Ecm(t) =
(
e(s·[1−( 28

t )
a
])
)b
· Ecm (3.18)

where Ecm(t) is the stiffness at age t; Ecm is 28 days stiffness of the mixture; s is a

coefficient related with cement type, t is the age of the mixture and a and b are coefficients

to be adjusted using JG data.

Based on MC90 regulation, concrete stiffness can be estimated according to the fol-

lowing equation:

Eci(t) =
(
e(s·[1−( 28

t )
a
])
)b
· αE · Ec0 · (fcm/fcm0)c (3.19)

where Eci(t) is the stiffness at age t; Ecm is 28 days stiffness of the mixture; s is a coefficient

related with cement type, t is the age of the mixture; αE is a coefficient that depends on

the type of aggregate (for soil clay, a 0.99 value can be adopted); fcm0 = 10 MPa; fcm

is 28 days stiffness of the mixture; Ec0 was determined for each formulation based on 28

days stiffness and a, b and c are coefficients to be adjusted. For strength development

through the time, the proposed model by MC90 is equal to those present by EC2 (see

Equation 3.17).

3.4.3 Empirical approaches for diameter prediction

JG column diameter prediction is one of the most important issues in JG technology

design. Particularly on groundwater control works, It is fundamental that there is no

free space between columns, i.e., that all columns intersect with the adjacent. Once

again, in order to guarantee such conditions it is necessary to dispose of design tools able

to accurately predict JG column diameter. Since the begin of JG technology, several

attempts were made in order to develop a mathematical model able to predict JG column
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diameter as accurate as possible, under different soil conditions and JG systems.

One of the most interesting approaches so far developed is the proposed by Modoni

et al. (2006). However, in spite of its strong theoretical support and applicability to differ-

ent soil types, also presents important limitation, namely its restriction to JG single fluid

system. Conceptually, the proposed model, approach the problem of column diameter as

the distance achieved by the jet grout. This mean that the column diameter will be equal

to distance travelled by jet until its energy is null, keeping in mind that the jet energy

is maximum immediately after the nozzle and decrease during its travel throughout the

soil.

Following the proposed approach, the jet propagation is performed in two steps. The

first one correspond to the jet propagation across the space included between the injection

nozzles and the intact soil, which is modelled based on the theory of submerged flows. The

second step coincide with the jet propagation within the soil. Here, different interactions

are assumed for gravels, sands and clays. In the case of gravels, grout seepage is considered

to be the most relevant mechanism. For sandy soils, the injected fluid is assumed to

penetrate, for a limited extent, into the soil skeleton, producing a considerable increment

of the pore pressures and a corresponding reduction of the grain-to-grain contact forces.

The removal of the soil particles is then triggered by the dragging action of the fluid

threads, and the analysis is developed under drained conditions. For clayey soils, the jet

action is considered as a load imposed on the jet-soil interface, and the erosion process is

modelled as an evolving sequence of undrained failures.

For granular (gravels and sands) and cohesive (clayey) soils Modoni et al. (2006)

proposed the Equations 3.20a and 3.20b respectively, to predict the maximum radius

(theoretical, i.e., for high jetting time) of single fluid JG columns.

Granular: R =
2 · ν0 · Λ · C ·Dgrout√

Ωs·g·N
γf
· c′+σz ·tan(φ′)

1+Ωs·[tan(φ′)/2]

(3.20a)

Cohesive: R =
2 · Λ · C ·Dgrout · ν0√

Ωc·g·N ·cu
γf

(3.20b)

In the above equations ν0 is the initial speed of the jet threads (immediately after the

nozzle); Λ is a coefficient (experimentally quantified) related with the nozzle shape that

affect the attenuation of the fluid velocity along the jet axis (x); C =
√
ξ/2, where

ξ = νx/νxmax which represent a fraction of the maximum velocity of the jet at distance x

from the nozzle (νx is the mean velocity of the jet at distance x and νxmax represent the

respective maximum velocity); Dgrout is the nozzles diameter; Ωs and Ωc are dimensionless
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parameter accounting for energy dissipation of the injected fluid on granular and cohesive

soils respectively; g is the gravitational acceleration; N represent the turbulent kinematic

viscosity ration of injected fluid and water (N = εf/εw); γf represent the unit weight of

the injected fluid; c′ and φ′ are respectively the effective cohesion and friction angle of the

soil; cu is the undrained soil cohesion; σz is the initial vertical overburden stress.

It should be stressed that Equations 3.20a and 3.20b allow predict the maximum

theoretical column radius for JG single fluid system and for a reference time of jetting

(t∗) that allows obtain such radius. One of the main contributions of the works developed

by Modoni et al. (2006) was to show the dependency of JG column radius on the fluid

velocity, number and diameter of the nozzles, as well as monitor lifting speed. Particularly,

for clayey soils, the proposed approach shows that JG it is only effective if applied high

flow rates and low withdrawal speeds.

Three years latter, Carletto (2009) proposed a simplification to Modoni et al. (2006)

method. After observe that the JG column should consider both the effect of jet energy

and soil resistance, he try to simplify the two equations proposed by Modoni et al. (2006)

for granular and cohesive soils (Equations 3.20a and 3.20b). One of the first guidelines

for its development is related with the fact that the soil resistance should be considered

by its shear strength (under drained conditions for granular soils and under undrained

conditions for clayey soils). Therefore, one of the main tasks is to quantify the shear

strength for the different soil types and conditions. On the other hand, it was expected

that the entire effect of the jet action could ever be considered by a single parameter (J).

This parameter is then defined as the product between the proportionality relationship

observed on Modoni et al. (2006) equations, i.e., between the maximum theoretical JG

radius diameter (R) and the reference time that allow obtain such theoretical diameter

(t∗) (for a detailed description of these considerations is recommended to consult Carletto

(2009)). The jet effect can so be mathematically expressed as follows:

J =
ν0 ·Dgrout ·

√
γf√

N
·

(
M ·
√
N

WS

)χ

= ν0 ·Dgrout ·
(
M

WS

)χ
·N0.5·(χ−1) · γf (3.21)

where M is the number of nozzles; WS represent the lifting speed of the rods; and χ is a

calibration parameter that depends of the soil type (granular or clayey), being quantified

through numerical simulations. This expression can then be simplified by replacing χ by

the values obtained by Carletto (2009) for granular and cohesive soils as well as taken

into account that both N and γf are dependent of water cement ratio (W/C). Hence, the
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following expressions are obtained:

Granular: Js = ν0 ·Dgrout ·
(
M

WS

)0.50

·
(
1.16(W/C)2 − 2.06(W/C) + 3.55

)
(3.22a)

Cohesive: Jc = ν0 ·Dgrout ·
(
M

WS

)0.77

·
(
0.72(W/C)2 − 1.52(W/C) + 4.07

)
(3.22b)

The last step on Carletto (2009) approach is to combine the effect of all JG parameters,

which is represented by J parameter, with shear strength of the soil. From this interaction,

it was observed that the column diameter follows an power law (S · Jβ), where S is the

function of shear strength and β is the power coefficient. After quantified S function and

β coefficient, the following equations are proposed by Carletto (2009) to predict single

JG column diameter for granular and clayey soils, using a simplified approach:

Granular: D = 0.58 · s−0.40 · J0.67
s (3.23a)

Cohesive: D = 0.11 · s−0.26
u · J0.55

c (3.23b)

where s and su are respectively the drained shear strength for granular soils and undrained

shear strength for clayey soils.

Additionally to these two main approaches (Modoni et al., 2006; Carletto, 2009) char-

acterized by a strong theoretical explanation, there are other simplest approximations

used to predict JG column diameter and to support JG system selection. Some of these

approximations are described herewith.

Kanematsu (1980) proposed that JG column diameter should be around 300 times

the diameter nozzle (both in meters), without consider any soil proprieties or JG param-

eter. In turn, Langbehn (1986), considering the grout pressure, proposed a range for JG

diameter in function on soil type (soft clays or soft compact sands), which are depicted

on Figure 3.25.

Nikbakhtan and Ahangari (2010), based on their works where three JG columns were

constructed with triple fluid system under fine grained soil (clay with low plastic property

or plastic sediment) with different JG parameters, also correlated JG column diameter

with grout pressure according to the law depicted in Figure 3.26. Furthermore, a good

relationship was observed between JG column and lifting or rotating speed as shown in

Figure 3.27, as well as with Cement/Water ratio plotted Figure 3.28.

These four relationships show that eroding distance increase with grout pressure and

Cement/Water ratio, and decrease with lifting and rotating speed, according an exponen-

tial law.
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Figure 3.25: Relationship between Pgrout and D: a) soft clay, b) sandy soil medium dense
(adapted from Langbehn (1986))
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Figure 3.26: Relationship between Pgrout andD (adapted from Nikbakhtan and Ahangari (2010))
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As Modoni et al. (2006), also Wang et al. (2012) followed the turbulent kinematic flow

theory to support his approach for JG column diameter prediction. Thus, based on such

theory, the following expression was proposed, which can be applied to most soil types:

R =
d0

2
+ b · 4FR

MπDgrout

√
UCS/pa

(3.24)

where R is the radius of the JG column; d0 is the rod diameter; FR is the flow rate of

the fluid injected; M the number of nozzle of the rod; Dgrout the nozzle diameter; UCS is

the unconfined compressive strength of the soilcrete; pa the atmospheric pressure; and b

is a parameter related to the soil characteristics, which can represent the eroding ability

of jet fluid on different soils. Following the results of Wang et al. (2012), b should range

between 1.2 to 2.0 for very soft clay, 0.75 to 1.4 for clayed silt and 0.25 to 0.75 for sand.

Observing Equation 3.24, it is evident the JG column diameter dependency of the UCS

of the improved mixture. This means that such approach can only be used after the soil

improvement and after perform unconfined compression tests in order to quantify soilcrete

strength.

Motivated by the need of obtain JG columns up to 5 meters in diameter, and after

carried out an experimental program where JG triple fluid system was applied to built

the columns, Shibazaki and Yoshida (1997) proposed an empirical formula to predict the

cutting distance, defined as:

R =
(
4.95 ·K · P−1.4

grout · FR−1.6 ·N−0.2 · v−0.3
n

)
−0.7 (3.25)

where R is the column radius (m); K is a constant related with jetting liquid (2.5 for

cement slurry and 1.0 for water); Pgrout correspond to the discharge pressure (kg cm−2);

FR is the flow rate (l/min); N represent the number of passes; vn is the tangential

velocity at a nozzle outlet (m s−1). Since this expression was developed based on a small

experimental program, a special carefully should be taken to the range of each parameter.

Thus, Pgrout is limited to 200∼500 kgf/cm2, FR to 70∼300 l/min, N to 1∼20 and vn to

0.1∼0.2 m/s.

Another proposed approach to estimate JG column diameter is applying the mathe-

matical expression developed by Croce and Flora (1998). Based on his works, where single

fluid system was applied to treat pyroclastic soils, the following equation was proposed

to predict JG column diameter (D):

D = 2 ·
{

α · Vj
π · [1− (1− β) · (1− n)]

}0.5

(3.26)
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In this equation Vj represent the injected grout volume per unit length and n is the initial

soil porosity. The coefficient α and β are related with the percentage of mortar retained

by the subsoil and the percentage of soil removed by jet action respectively.

3.5 Conclusions

The literature review presented in the current chapter focuses on two main aspects related

to JG technology. The first emphasises the high versatility of such technology and its

importance in geotechnical works as a soft soil improvement method. It illustrates the

diversity of applications under different soil characteristics and logistical conditions of JG

technology, as well as its economic advantages when compared with other soil improvement

methods. On the other hand, the main drawback of JG technology is related to the

actual approaches for JG design. As presented, the actual approaches for such purposes

are scarce and have important applicability limitations. In some cases, such approaches

are only valid for particular soil conditions and for a given jet system. In the case of

JG column diameter, there are some theoretical approaches, but they are also limited to

a particular jet system (single fluid system). Indeed, JG companies’ experience remains

the principal source of knowledge for JG design, which is then validated through the

construction of some test columns and laboratory tests over extracted samples.

Based on the performed literature review, it was observed that the grout flow rate,

grout pressure, water/cement ratio, withdrawal and rotation speeds and dry unit weight

are some of the most commonly used variables for the prediction of mechanical proper-

ties. For JG column diameter, the number and diameter of the nozzles are also usually

considered. Moreover, the importance of a detailed soil characterisation (or at least a

distinction between granular and cohesive soils) for a reliable JG technology design was

stressed. In addition, the complexity of JG column design caused by the high number

of variables involved and nonlinear relationships between JG mechanical properties or

column diameter and its contributing factors was also underlined.

So far, several attempts were performed toward the development of more reliable

approaches for JG design, which were almost supported by traditional statistical analysis.

Until now, however, no proposed approaches were completely successful. Therefore, this

long path needs to be continued to encourage the use of new and advanced tools to solve

this complex problem. This work addresses this step and aims to develop new approaches

for JG mechanical properties and column diameter design while contemplating different

soil types and jet systems.
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Chapter 4

Jet grouting database characterisation

4.1 Introduction

Information can be seen as a synonym of knowledge, representing a key issue on any

business. This is what happen on JG technology, where knowledge is fundamental for a

successful JG column design because so far, reliable methods for such task are scarce. Par-

ticularly in small JG works, such knowledge is still more preponderant due to the higher

budget limitations in these situations. As a result the number of field and laboratory

experimental tests for soil characterization are reduced to only a few number.

For this reason it is very important to collect and store all information related to

each JG work. Such information is normally related with three main aspects, as shown in

Figure 4.1: soil and materials characterization and JG parameters. Moreover, information

concerning to mechanical properties of both laboratory formulations and soilcrete are

also collected through laboratory tests, as well as columns geometry (diameter). JGLF

are soil-cement mixtures prepared in the laboratory, using the same materials (e.g. soil

and cement) of the JG columns, with the purpose to guide early stages of JG process.

This formulations, almost not performed on small JG works due to budgets limitations,

are tested at different ages giving an idea of the mechanical properties of the soilcrete,

and allowing to define some JG parameters such as cement type, cement content or

Water/Cement ratio.

Soilcrete mechanical properties measurement is a key aspect on JG technology qual-

ity control. Through a simple and not so expensive procedure, it is possible to quantify

soilcrete strength and stiffness, by performing laboratory tests over some samples directly

collected from the JG columns. Additionally to the mechanical properties of soilcrete,

the measurement of the JG column diameter at different depths, particularly in the test

columns, it is also fundamental. Indeed, the diameter of the test columns represents the

83
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JG Database
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• Diameter

Soil Properties
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Characteristics

JG Parameters

JG Laboratory and Fild 
Mixtures Study

Figure 4.1: Structure of the compiled database

main decision criterion used to assess the soil improvement quality, allowing to start the

construction of the project columns. These are the three key element (strength, stiffness

and column diameter) usually taken for a quantitatively assessment of JG soil improve-

ment quality. Moreover, particularly in big-scale JG projects, are also prepared and

tested some laboratory formulations that supply important informations related with the

materials used for its preparation, since usually a detailed characterization is performed

for all used materials.

Another fundamental aspect for any JG project is a geotechnical characterization of

the soil to be improved, although sometimes this characterization is minimal. Moreover,

several JG parameters related with the soil improvement process (e.g. grout pressure,

rotation speed) are continually monitored in the record station (see Figure 3.7). At the

end, for each JG project, it is stored information related with JG column diameter and

soilcrete mechanical properties, the materials used in the soil improvement (particularly

soil, cement and water characterization), as well as about the JG parameters applied

during the soil improvement. Now, the challenge is to cross and deeply analyse all this

information in order to find patterns and useful tendencies for future JG projects.

So far, all these informations are essentially used for quality control procedures and to

guide the designer to make decisions, i.e., to verify if the project requirements are being
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satisfied, and to help the engineering to choice the best solution able to correct undesired

behaviours. However, it’s known that all these information/data handle useful knowledge

that can be very useful in future JG projects. Therefore, the first step is organise them

in a structured database and then explored them, particularly through the application of

DM techniques and guided by a panel of expertises. Moreover, and keeping in mind that

due to economic constrains, not always a convenient soil and materials characterization

is performed, such analysis is even more important toward a better efficiency of JG

technology.

In the following sections, the two main databases used in the present research work

for JGLF and soilcrete samples study will be presented and characterized.

4.2 Laboratory data

The study of JGLF mechanical properties was supported on a database compiled with

data taken from a large experimental program carried out at University of Minho. This

program aimed to analyse the influence of different parameters in mechanical properties

of JG laboratory mixtures (Gomes Correia et al., 2009). Hence, during the preparation of

the laboratory formulations, a special care was taken to record all information potentially

usefully, such as those related to the soil properties, cement type, water quality, cement

dosages, soil and water content of each formulation, etc. A full list of all variables consid-

ered for the study of JGLF is further presented. These particular circumstances, i.e., the

fact that all information used in this study came from a singular source, represent a key

factor on the quality and confidence of the research results, since this provides greater uni-

formity in the procedures adopted for JGLF preparation during the entire experimental

program.

This experimental program contemplated the preparations of JGLF for seven different

JG projects. This means that seven different ground types (soil types) were concerned,

which will be further characterized. After mixing and prepare several samples for each

formulation, each one was tested in order to measure either its UCS, stiffness or both.

Figure 4.2 shows the different moduli that can be defined in a nonlinear stress strain

relationship, which are determined through a unconfined compression test with a sample

strain instrumentation (Gomes Correia et al., 2009), measuring the local deformations of

the tested sample with LDTs (local deformation transducers) and LVDTs (linear variable

differential transformers), as shown in Figure 4.3.

Table 4.1 summarizes the number of records and formulations used in the study of

strength and stiffness of JGLF . This table shows that for the study of the tangent de-
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Figure 4.2: Illustration of the different deformability properties (i.e. moduli) that can be defined
in a unconfined compressed test(x-axis denotes the strain ε and y-axis the stress σ)

Figure 4.3: Specimen of the laboratory mixture instrumented with LDT and LVDT (Gomes Cor-
reia et al., 2009)
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formability modulus at 50% of the maximum applied stress (Etg50%), secant deformability

modulus at 50% of the maximum applied stress (Esec50%) and maximum secant deformabil-

ity modulus (Emax) there are only 48 records available, which can be seen as a rather small

number for DM purposes. Yet, it should be stressed that the acquisition of each data

example requires considerable costs and amount of time, as well as demanding laboratory

work.

Table 4.1: Number of records and formulations used in both mechanical properties study of
JGLF

UCS E0 Etg50% Esec50% Emax

Number of records 175 188 48 48 48
Number of formulations 35 9 8 8 8

For JGLF mechanical proprieties study a total of 24 variables were considered, for

which the histograms are presented in Appendix A.1, following listed:

• W/C - Water/Cement ratio

• CT - cement type

• SCC - strength cement class

• s - coefficient related with cement type

• kg/m3 - kilograms of cement by cubic meter of soil

• t (days) - age of the mixture

• ρ (kg m−3) - natural density of the mixture

• ω (%) - water content of the mixture

• ρd (kg m−3) - dry density of the mixture

• 1/ρd (m3 kg−1) - inverse of the dry density of the mixture

• %Soil - soil content in the mixture

• %Cement - cement content in the mixture

• γs.mixt (kg m−3) - unit weight of the mixture
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• e - void ratio of the mixture

• n - mixture porosity

• 1/n - inverse of the mixture porosity

• ωsat (%) - saturated water content

• Sω - degree of saturation

• Civ - volumetric content of cement

• n/(Civ)
d - relation between mixture porosity and volumetric content of cement

• %Sand - percentage of sand in the natural soil

• %Silt - percentage of silt in the natural soil

• %Clay - percentage of clay in the natural soil

• %OM - percentage of organic matter in the natural soil

• UCS (MPa) - uniaxial compressive strength

• E0 (GPa) - elastic Young’s modulus

• Etg50% (GPa) - tangent deformability modulus at 50% of the maximum applied

stress

• Esec50% (GPa) - secant deformability modulus at 50% of the maximum applied

stress

• Emax (GPa) - maximum secant deformability modulus

Among all considered variables, just three of them are discrete: CT (1, 2 and 4), SCC

(32.5R and 42,5R) and s (0.2 and 0.25). Moreover, since, not all of them were directly

measured from the samples, the mathematical expressions used for its calculation are

presented in Appendix B.

One of the first steps on data analysis is to describe the data with a simple parameter,

which can be provided by statistics. On Tables A.1, A.2 and A.3 of Appendix A.1 are

presented the main statistics, i.e., maximum, minimum, mean and standard deviation, of

each input and output variables considered in the study of JGLF mechanical properties.

Figures 4.4 and 4.5 show the histograms of UCS and elastic Young’s modulus (E0), Etg50%,

Esec50% and Emax respectively for JGLF . It is interesting to observe that the shape of
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Figure 4.4: Histogram of UCS in the study of JGLF

the UCS histogram shown in Figures 4.4 is similar to that found in the literature (see

Figure 3.4b), although they are related to different types of materials (i.e. laboratory and

field JG mixtures respectively).

For the analysis of multidimensional data, it is also important to verify if two vari-

ables xi and xj are statistically dependent. For example, the covariance (defined in Equa-

tion 4.1) gives information about this issue. In this sum, the summand returns a positive

entry for the pth data vector exactly when the deviations of the ith and jth components

from the average both have the same sign. If they have different signs, then the entry is

negative.

σij =
1

N − 1
·
N∑
p=1

(xpi − x̄i)
(
xpj − x̄j

)
(4.1)

However, the covariance also depends on the absolute value of the variables, which makes

comparison of the values difficult. To compare the degree of dependence in the case of

multiple variables, it is preferable to calculate the correlation coefficient (Ertel, 2009):

Kij =
σij

Si · Sj
(4.2)

for two values xi and xj, which is nothing but a normalized covariance. The matrix K of

all correlation coefficients contains values between –1 and 1, is symmetric, and all of its

diagonal elements have the value 1. In order to facilitate the interpretation of K matrix,

it can be represented as a density plot. Hence, instead of the numerical values, the matrix

elements are filled with grey values. Figure 4.6 represents the correlation matrix for all 24
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Figure 4.5: Histograms of: a) E0, b) Etg50%, c) Esec50% and d) Emax in the study of JGLF
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attributes and target variables in the JGLF strength study. Taken into account that the

number of records of the database used in JGLF deformability modulus study is not the

same than in UCS study, the equivalent representation for E0 is presented in Figure 4.7

and, for Emax, Esec50% and for Etg50% (here the database is the same for all three moduli)

is shown in Figure 4.8.

As previously mentioned, in the study of JGLF mechanical properties seven different

JG project were considered. This means that were prepared JGLF using seven different

soil types. Thus, soil samples were collected from the different test sites of the present re-

search work and submitted to laboratory tests to obtain a physical characterisation of the

natural soils used in the JGLF preparation. Although all the soils are of a clayey nature,

they contain different percentages of sand, silt, clay and organic matter. Considering the

information from the literature review (see Section 3.2), where the soil influence is defined

only for cohesive and granular soils, it is expected just a slight influence of the soil proper-

ties in the present research work. A detailed classification of the natural soils is provided

in Table 4.2, where the first column denotes the construction site and the third column

shows the number of records that contain that soil. The soil classification was based on

the Unified Soil Classification System � ASTM D2487–83 (ASTM, 1985). This system

is based on identifying soils according to their textural and plasticity qualities and on

their grouping with respect to behaviour. Soils seldom exist in nature separately as sand,

gravel, or any other single component. They are usually found as mixtures with varying

proportions of particles of different sizes, which independently contribute for the global

characteristics of the soil mixture. Based on such characteristics the soil is evaluated as an

engineering construction material. For soil classification, the following properties, which

can be determined by simple tests, are considered: percentages of gravel, sand, and fines

(fraction passing the #200 sieve); shape of the grain-size-distribution curve; and plasticity

and compressibility characteristics. Combining all this information, the Unified Soil Clas-

sification System, label the soil with a letter symbol and a descriptive name indicating its

principal characteristics.

All laboratory formulations used in the study of JGLF deformability were prepared

with cement type CEM I 42.5R (Portland cement with 100% clinquer) and CEM II 42.5R

(composed Portland cement with ≥65% clinquer). For UCS study, additionally to this

two cement types were also prepared some samples with pozzolanic cement (CEM IV/A

35.5R with ≥20% clinquer).

It should be remarked that in the current stage of knowledge within JG technology

domain, there are still no specific procedures to prepare JG laboratory mixtures. However,

some specifications/standards currently applied to similar materials, such as concrete, can

be adopted and used to guide the preparation of JG laboratory mixtures (Magalhães,
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Figure 4.6: Correlation matrix as a frequency graph for all 24 variables considered in UCS
prediction of JGLF . In this representation the absolute values were considered, here white means
kij ≈ 0 (uncorrelated) and black |kij | ≈ 1 (strongly correlated)
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Figure 4.7: Correlation matrix as a frequency graph for all 22 variables considered in E0 pre-
diction of JGLF . In this representation the absolute values were considered, here white means
kij ≈ 0 (uncorrelated) and black |kij | ≈ 1 (strongly correlated)



94 4.2. LABORATORY DATA

W/C

W
/C

CT

C
T

Kg m3

K
g

m
3

t  (days)

t 
(d

ay
s)

ρ (Kg m3)

ρ 
(K

g
m

3 )

ω (%)

ω
 (%

)

ρd  (Kg m3)

ρ d
 (

K
g

m
3 )

1/ρd  (Kg.m3)

1/
ρ d

 (
K

g.
m

3 )

%Soil

%
So

il

%Cement

%
C

em
en

t

γs.m ixt (Kg m3)

γ s
.m

ix
t (

K
g

m
3 )

e

e

n

n

1/n

1/
n

ωsa t (%)

ω
sa

t (
%

)

Sω (%)

S
ω

 (
%

)

C i v

C
iv

n (C iv)d
n

(C
iv

)d
%Sand

%
Sa

nd

%Silt

%
Si

lt

%Clay

%
C

la
y

%OM

%
O

M

Emax (GPa

E
m

ax
 (

G
P

a

Esec50%  (GPa

E
se

c5
0%

 (
G

P
a

E tg50%  (GPa

E
tg

50
%

 (G
P

a

Figure 4.8: Correlation matrix as a frequency graph for all 22 variables considered in Etg50%,
Esec50% and Emax prediction of JGLF . In this representation the absolute values were considered,
here white means kij ≈ 0 (uncorrelated) and black |kij | ≈ 1 (strongly correlated)
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Table 4.2: Soil types present in the collected data for JGLF mechanical properties study and
its classification according to ASTM D2487–00 (ASTM, 1985)

Site Soil Type
Frequency

%Sand %Silt %Clay %MO
UCS E0 E∗

A Lean clay (CL) 10 28 9 39.0 33.0 27.0 8.3
B Organic lean clay (OL) 5 18 6 6.0 57.0 37.0 1.8
C Fat clay (CH) 85 93 22 7.0 53.0 40.0 3.2
D Silty clay (CL-ML) 20 27 6 25.0 52.5 22.5 0.4
E Lean clay (CL) 15 22 5 0.0 55.0 45.0 3.9
F Silty clay (CL-ML) 20 - - 32.5 43.5 24.0 1.2
G Lean clay (CL) 20 - - 10.5 48.5 41.0 1.0

E∗ - Emax or Esec50% or Etg50%

2006). For instance, the JGLF were mixed in laboratory using an electrical machine,

allowing a better homogeneous mixture. A special care was also given during samples

manipulation in order to not introduce vibrations. Another important issue is related

with the cure conditions, that should be as similar as possible to the in situ conditions.

Hence, after prepared, each JGLF sample was coated with a film waterproofing and stored

under the adequate temperature and humidity conditions.

4.3 Field data

The capability of accurately predict the mechanical properties of JGLF is just the first

step on JG technology design. Therefore, after overcome this issue, the next and most

important step is to develop reliable methods to predict soilcrete mechanical properties

(strength and stiffness) and JG column diameter.

Once again, as in the study of JGLF mechanical proprieties, the first step is to compile

a dataset with all available and potential useful information. In this respect it should be

noted that, this simple and apparently vulgar task is more complex than looks like and

consumed a lot of time. The main reason for this observation is related with the absence

of systematic process for information organization during a JG project. This means that,

although most of the information exist, it is spread in different “places” within the JG

company, which represents a huge obstacle on the database compilation process for DM

purposes.

In order to guarantee the highest reliability as possible of the present research work

results, the entire database compilation process was guided by a rigorous verification
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procedure, contemplating the following steps:

1. Collection of all information available in spreadsheets, old archives and many other

sources;

2. Compilation of the collected information in a structured and organized database;

3. Performing a first attempt in order to fill the missing data by researching the col-

lected information, looking for into other information sources, talking with the en-

gineers responsible for each project as well as with experts;

4. Deep and careful revision of the entire database with the collaboration of an engineer

(employer of the company that supplied all information) who was involved in a

significant number of JG projects included in the database;

5. Sending the database for a detailed revision. In this step, the database was split by

project and sent to the responsible engineer of such project;

6. Revision of the entire database, considering the comments introduced in the previous

step, and compilation of the final database.

It should be noted that the compiled database, had two main purposes. The first and

foremost was to support the present research work. The second one was to boost an

important process for the company related with the development of a structured database,

representing the framework for storing information for future JG projects.

An overview of the compiled database showed that the most complete records, i.e.,

containing information for almost all attributes, belong just to five JG works, within a

total of 107 JG projects. Therefore, and in order to have available the highest number of

records, independently of the set of input variables selected, for all experiments performed

aiming the development of predictive models for strength, stiffness and column diameter,

it was only considered the data related with these five JG projects, which are related to

works carried out in Portugal and Spanish.

During the compilation process of the field database, and keeping in mind the second

purpose of the database above underlined, it was made an additional effort toward to fill

the database with all information available related with each JG project. Thus, addition-

ally to the variables listed above in the scope of the study of JGLF (see Section 4.2), some

other variables/information were introduced, in order to consider all parameters related

with JG process as well as to describe in detail each work. The following list enumerates

all variables available and considered in the study of the soilcrete mechanical properties

and JG column diameter:
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• W/C - Water/Cement ratio

• CT - cement type

• SCC - strength cement class

• s - coefficient related with cement type

• kg/m3 - kilograms of cement by cubic meter of soil

• kg/ml - kilograms of cement by linear meter of column

• t (days) - age of the mixture

• ρ (kg m−3) - natural density of the mixture

• ω (%) - water content of the mixture

• ρd (kg m−3) - dry density of the mixture

• 1/ρd (m3 kg−1) - inverse of dry density of the mixture

• %Soil - soil content in the mixture

• %Cement - cement content in the mixture

• γs.mixt (kg m−3) - unit weight of the mixture

• e - void ratio of the mixture

• n - mixture porosity

• 1/n - inverse of the mixture porosity

• ωsat (%) - saturated water content

• Sω - degree of saturation

• Civ - volumetric content of cement

• n/(Civ)
d - relation between mixture porosity and volumetric content of cement

• Wc/C - soil water/cement ratio: ratio between water content of soil and cement

content

• S/C - soil/Cement ratio: ratio between weight of soil and weight of cement
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• OM/C - Organic Matter/Cement ratio: ratio between organic matter content and

cement content

• OM/CWc/C - relation between organic matter, cement content and soil water content

• ρgrout - grout density

• %Sand - percentage of sand in the natural soil

• %Silt - percentage of silt in the natural soil

• %Clay - percentage of clay in the natural soil

• %OM - percentage of organic matter in the natural soil

• H (m) - depth where sample was collected

• JS - Jet system

• WS (cm/min) - withdrawal speed of the rod

• rpm - rotation speed of the rod

• WT (s) - withdrawal time of the rod

• Step (cm) - withdrawal step

• FR (l/min) - flow rate of grout slurry

• Dgrout (mm) - mean diameter of grout nozzles

• NDgrout - number of grout nozzles

• Dwater (mm) - diameter of water nozzle

• Pgrout (bar) - grout pressure

• Pair (bar) - air pressure

• Pwater (bar) - water pressure

• Impgrout (kg) - grout impact

• UCS (MPa) - uniaxial compressive strength;

• E0 (GPa) - Young’s modulus;
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• D (mm) - column diameter

Relating to the list of variables above presented, particularly for the impact, it was bal-

anced its empirical relevance and the number of records available if such variable was

considered or not. Accordingly, we considered only the impact of the grout, since there

is a lot of missing data related to the pressure and nozzle diameter for air and water jets

(required for the calculation of the total impact). This way, it was possible to include the

impact variable and maximize the number of records available.

Similarity to the study of JGLF , not all variables above enumerated were directly

measured from the JG columns (e.g. Impgrout is calculated from other variables). In

these cases, the mathematical expressions used for its calculation are presented in the

Appendix B. The main statistics, i.e., maximum, minimum, mean and standard deviation,

of each input and output variables considered in the study of soilcrete mechanical prop-

erties and JG column diameter are present on Tables A.4, A.5 and A.6 of Appendix A.2.

Figure 4.9 shows the histograms of soilcrete mechanical properties, where one can observe

that the shape of UCS histogram (Figure 4.9a) is similar to that found in the literature

and shown in Figure 3.4b. Figure 4.10 plots the histogram of JG column diameter. The

histograms of each attribute considered in the study of soilcrete mechanical properties

and JG column diameter are presented in Appendix A.2.
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Figure 4.9: Histogram of: a) UCS and b) E0, in the study of soilcrete mechanical properties

Also here, as has been done in the study of JGLF , the correlation matrix for all

variables considered in the study of both soilcrete mechanical properties and JG column

diameter were calculated. Thus, Figure 4.11 shows the correlation matrix for all variables

used in the study of UCS of soilcrete samples. The equivalent matrix for E0 and JG
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column diameter are shown in Figure 4.12 and Figure 4.13 respectively. It should be

stressed that for the calculation of the correlation values, it was only considered the

complete and not constant (σ 6= 0) records. Moreover, and contrary to the study of

JGLF where were studied the different moduli that can be defined in an unconfined

compressed test (see Figure 4.2), here it was only analysed the E0, since there are no

information related to the remains moduli.
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Figure 4.11: Correlation matrix as a frequency graph for all 41 variables considered in UCS
prediction of JG field samples. In this representation the absolute values were considered, here
white means kij ≈ 0 (uncorrelated) and black |kij | ≈ 1 (strongly correlated)
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Figure 4.12: Correlation matrix as a frequency graph for all 41 variables considered in E0

prediction of JG field samples. In this representation the absolute values were considered, here
white means kij ≈ 0 (uncorrelated) and black |kij | ≈ 1 (strongly correlated)
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Figure 4.13: Correlation matrix as a frequency graph for all 21 variables considered in D pre-
diction. In this representation the absolute values were considered, here white means kij ≈ 0
(uncorrelated) and black |kij | ≈ 1 (strongly correlated)
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4.4 Conclusions

The success of the present research, similar to that of any study that involves the appli-

cation of DM techniques, is strongly dependent on the database quality used during the

experiments. Hence, throughout the entire process of the database compilation a rigor-

ous methodology was followed to guarantee the highest reliability possible. Moreover, an

extra effort was put forth to use as many of the number of records as possible and to

include all potentially useful variables.

Despite all the difficulties and obstacles found during the database compilation process,

in the end two main databases were prepared with the most relevant variables within the

JG technology domain and with a significant number of records that represent a particular

issue for DM application studies purposes. However, it should also be noted that in the

case of the laboratory database for deformability study, namely for Etg50%, Esec50% and

Emax, the number of records is particularly small (only 48 records are available). However,

due to the interest of these moduli for practical purposes, some experiments will still be

performed.

Due to the large amount of missing data in the field database, special care was required.

Although there are approaches to deal with missing data, in the present work, and after

some experiments, only the complete records were considered because the implementation

of such approaches could compromise the results’ reliability.

Concerning the soil characterisation, its effect was considered based on the %Sand,

%Silt, %Clay and %OM of each soil type (seven in the study of laboratory mixtures and

five in the study of field mixtures), all of which are of a clayed nature.



Chapter 5

DM techniques applied to laboratory data

5.1 Introduction

This section presents the explored data-driven models for JGLF mechanical properties

prediction through the application of DM techniques.

For the FS task, we applied two different approaches, namely a forward sequential FS

and backward selection scheme. For the last one, we opted for the procedure implemented

in the rminer package that is guided by a SA procedure, as previously explained in Sec-

tion 2.5.3. Adopting a SA to guide the variable deletion, the computational effort can

be reduce by a factor of I (when compared to the standard backward procedure) (Cortez

et al., 2009). A schematic representation, contemplating the main steps, of these two

FS s schemas is depicted in Figure 5.1. After run a FS method, based on the achieved

results and on the statistic analysis information, particularly those related with the corre-

late coefficient shown in Figures 4.6, 4.7 and 4.8 and considering the empirical knowledge

related with the soil-cement laboratory mixtures behaviour, a manual FS was performed.

In other words, several models with different sets of variables were trained (using the

SVM algorithm) and compared its performance, considering MAD , RMSE , and R2 as a

performance criteria. At the end, a set of nine input variables was selected (eight in the

case of stiffness prediction) and trained each one of the four DM algorithms (i.e. MR,

ANN , SVM and FN ). A full search of all possible combination between all variables

was not considered because this study contemplates 24 variables and such combinato-

rial exploration is not practically possible (in the conditions, there are around 16777215

combinations between all 24 variables).

For model selection purposes, particularly during the FS step, where only SVM was

applied, we adopted the methodology proposed by Huang et al. (2007). The main advan-

tage of this approach lies in the fact that the three SVM parameters {C, γ, ε} can be

105
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Figure 5.1: Schematic of the FS approaches

automatically defined, which is very useful during the FS process.

During the learning phase (after choosing the input variables), for ANN we adopted

a fully connected multilayer perceptron, with one hidden layer with H processing units,

bias connections and logistic activation functions 1/(1 + e(−x)). To find the best value

for H, a grid search within the range {2, 4, ..., 10}, under an internal (i.e. applied over

training data) 5-fold cross validation (Hastie et al., 2009) was executed. Under this grid

search, the H value that produced the lowest MAD was selected and then the ANN

was retrained with all training data. For SVM algorithm, in order to reduce the search

space, we adopted the popular gaussian kernel and considered the heuristics proposed

by Cherkassky and Ma (2004) to set the complexity penalty parameter, C=3, and the

size of the insensitive tube, ε = σ̂/
√
N , where σ̂ = 1.5/N ·

∑N
i=1 (yi − ŷi)2, yi is the

measured value, ŷi is the value predicted by a 3-nearest neighbour algorithm and N the

number of examples. The most important SVM parameter, the kernel parameter γ, was

set using a grid search within {2−15, 2−13, ..., 23}, under the same internal 5-fold cross

validation scheme (Hastie et al., 2009).

Additionally to ANN and SVM algorithms, we also tested a MR, as a baseline com-

parison. All these three DM algorithms (ANN , SVM and MR) were implemented in

the R tool (R Development Core Team, 2009) and rminer library. Furthermore, be-

fore fitting the ANN , SVM and MR models, the data attributes were standardized to a

zero mean and one standard deviation and before analysing the predictions, the outputs

post-processed with the inverse transformation (Hastie et al., 2009).

In this research, we also explored a FN to solve the following generic expression,



CHAPTER 5. DM TECHNIQUES APPLIED TO LABORATORY DATA 107

aiming to predict the mechanical properties of JGLF :

ŷ = β0 ·
n∏
i=1

xαi
i (5.1)

where, {x1, ..., xi} are the input parameters, {β0, α1..., αi} are coefficients to be adjusted.

To learn the coefficients in Equation 5.1 the following minimization problem was used:

Minimize Q =
S∑
S=1

δ2
S =

S∑
S=1

(
ys − β0 ·

I∏
i=1

xαi
i

)2

(5.2)

The formulation and resolution of this FN was implemented in the free version of the

GAMS software (GAMS Development Corporation, 2012).

Additionally to the four DM algorithms above enumerated, the analytical models

proposed by EC2 (CEN, 2004a) and MC90 (CEB-FIP, 1991) for strength and stiffness

prediction of concrete were also adapted to JGLF to predict such properties.

5.2 Uniaxial compressive strength prediction

5.2.1 Model performance

Table 5.1 compares the models performance of the two FS approaches implemented

and the two models where the set of variables were manually selected (Tinoco et al.,

2009, 2011b), using MAD , RMSE and R2 as a performance criteria. This table shows

that both forward and backward FS approaches were unable to define the best set of vari-

ables to predict JGLF mechanical properties. However, the information given by these

two approaches represent an important information source in the definition of the nine

input variables (termed as MSql1) that lead to the best predictive models, which were

used during the UCS study of JGLF (Tinoco et al., 2009).

After optimizing the coefficients of EC2 analytical expression to UCS data of JGLF ,

coefficient a of Equation 3.17 took the value of a = 0.5, leading to the following model

(in this work, this model is termed EC2-UCS.Lab):

UCS = e

(
s·
[
1−( 28

t )
0.5
])
· UCS28days (5.3)

The mathematical expression resulting from the optimization of the coefficients in Equa-

tion 5.1 using the FN algorithm and UCS data is written as (this model will be termed
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as FN-UCS.Lab):

UCS = 12023149 ·W/C−1.052 · s−2.090 · t0.239·

· (n/(Civ)d)−3.064 · C1.473 ·%Sand−0.028· (5.4)

·%Silt−1.594 ·%Clay0.397 ·%OM−0.028

The above equation, trained using the Leave-One-Out estimation method and the min-

imization problem according to Equation 5.2, achieved a high performance with small

values of MAD = 0.58 MPa and RMSE = 0.75 MPa and an R2 close to the unit vale

(R2 = 0.92). Moreover, as shown in Figure 5.2, the number of predictions above of

diagonal line is approximately equal to the number of predictions below the same line,

which is a sign of reliability, since the model predictions are not either underestimated or

overestimated.

The average hyperparameters and fitting time values (and respective 95% level con-

fidence intervals according to a t-student distribution) of all DM models trained using

the set of nine input variables assigned in Table 5.1 as MSql1 are shown in Table 5.2.

These models (trained to predict UCS of JGLF ) will be termed as MR-UCS.Lab, ANN-

UCS.Lab and SVM-UCS.Lab, and are respectively the result of the training of MR, ANN

and SVM algorithms with UCS data of JGLF .

Table 5.3 shows the predictive capacity of all trained models, comparing its perfor-

mance in UCS prediction of JGLF based on the MAD , RMSE and R2 metrics, computed

for the test data under a leave-one-out approach (mean value and 95% confidence inter-

vals). This table shows that UCS of JGLF can be accurately predicted by each one of the

four DM models, particularly by ANN-UCS.Lab and SVM-UCS.Lab models. Moreover,

it is shown that EC2-UCS.Lab model also represents a good alternative to predict UCS

of JGLF over time, which is characterized by its simplicity. However, it should be noted

that such model has limitations, being impossible its application during the project level,

since it requires the 28 days strength of each formulation, which implies waiting 28 days

before performing experimental tests for its quantification.

Scatterplots of ANN-UCS.Lab and SVM-UCS.Lab models illustrated in Figures 5.3

and 5.4 respectively, corroborate the high predictive performances shown in Table 5.3. As

shown, in both models the predictions are very close to the experimental values (diagonal

line). In Figure 5.5 it’s compared the predictive performance of all models trained for

UCS prediction of JGLF (EC2-UCS.Lab, FN-UCS.Lab, MR-UCS.Lab, ANN-UCS.Lab

and SVM-UCS.Lab), depicting the model accuracy as a function of the absolute deviation

(REC curves, (Bi and Bennett, 2003)). The shape of these curves evidence once more the

high performance of the models, namely of ANN-UCS.Lab and SVM-UCS.Lab models.
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For instance, the REC curve of SVM-UCS.Lab model shows that if an absolute deviation

around 1.0 MPa is tolerated, then 80% of the records can be accurately predicted by

the model. It is also appealing to observe that EC2-UCS.Lab model predicts accurately

20% of the records (absolute deviation equal to zero). However, it should be stressed

that this is just a consequence of the model structure. This means that implicitly the

EC2-UCS.Lab model is able to predict correctly the 28 days strength of each formulation

since this is a model input.

Table 5.1: Model performance comparison of the two FS approaches implemented and those
where the attributes were manually selected, in UCS prediction of JGLF

Var FFS BFS MSql0 MSql1

s × × × X
%Sand X X X X
%Silt × X X X
%Clay × × X X
%OM X X X X
Civ × X × X
n/(Civ)

d X × × X
t X X X X
W/C × X X X
CT × X X ×
SCC × × X ×
ρ X X X ×
1/ρd × X × ×
Sr X X × ×
ω X X X ×
kg/m3 × X X ×
1/n × X × ×

MAD 0.62± 0.01 0.56± 0.02 0.54± 0.01 0.55± 0.00
RMSE 0.82± 0.02 0.74± 0.02 0.73± 0.01 0.73± 0.00
R2 0.91± 0.01 0.93± 0.00 0.93± 0.00 0.93± 0.00

5.2.2 Model interpretability

Besides achieving a high predictive performance, it is also important to consider the ex-

planatory power of the data-driven model. This is particularly relevant in the engineering

domain. When “black-box” DM models are applied (e.g. ANN or SVM algorithms),

involving complex mathematical expressions, the application of a given procedure able



110 5.2. UNIAXIAL COMPRESSIVE STRENGTH PREDICTION

2 4 6 8 10 12

2
4

6
8

10
12

UCS  Experimental (MPa)

U
C

S
 P

re
di

ct
ed

  b
y 

F
N

-U
C

S.
L

ab
 (M

P
a)

Figure 5.2: Relationship between UCS experimental versus predicted values by FN-UCS.Lab
model

Table 5.2: Hyperparameters and computation time of each DM model for UCS prediction of
JGLF

Model Hyperparameters time (s)

FN-UCS.Lab - 35.5± 00.00
MR-UCS.Lab - 11.08± 00.03
ANN-UCS.Lab H = 6± 0 346.63± 02.47
SVM-UCS.Lab γ = 0.12± 0.00, ε = 0.11± 0.00 1087.42± 12.82

Table 5.3: Error metrics of all DM models for UCS prediction of JGLF (test set values, best
values in bold)

Model MAD RMSE R2

EC2-UCS.Lab 0.60± 0.00 0.88± 0.00 0.90± 0.00
FN-UCS.Lab 0.58± 0.00 0.75± 0.00 0.92± 0.00
MR-UCS.Lab 0.86± 0.00 1.13± 0.00 0.83± 0.00
ANN-UCS.Lab 0.61± 0.02 0.82± 0.02 0.91± 0.01
SVM-UCS.Lab 0.55± 0.00 0.73± 0.00 0.93± 0.00
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Figure 5.3: Relationship between UCS experimental versus predicted values by ANN-UCS.Lab
model
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Figure 5.4: Relationship between UCS experimental versus predicted values by SVM-UCS.Lab
model
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Figure 5.5: REC curves of EC2-UCS.Lab, FN-UCS.Lab, MR-UCS.Lab, ANN-UCS.Lab and
SVM-UCS.Lab models, comparing the UCS predictive performances of JGLF

to “open” the model plays an important role. In this work, model interpretability was

measured by quantifying what are the key input variables in UCS prediction of JGLF

and their average effects in such prediction. For such purpose, the GSA algorithm (Cortez

and Embrechts, 2011) was applied.

Figure 5.6 shows and compares the relative importance of each variable in UCS pre-

diction of JGLF according to MR-UCS.Lab, ANN-UCS.Lab, SVM-UCS.Lab and FN-

UCS.Lab models, as measured by the 1-D SA, with the correspondent t-student 95%

confidence intervals for all 20 runs performed.

A first analysis to Figure 5.6 shows that the UCS behaviour of JGLF should not be

guided only by a linear model. This observation is supported on the relative importance of

each variable according to MR-UCS.Lab model that consider the soil properties, namely

its sand, clay and silt content, as the only variables that control the UCS of JGLF . On

the other hand, and according to FN-UCS.Lab model, the Civ and the relation n/(civ)
d

play the major role in strength prediction of JGLF . Moreover, the soil properties, mainly

the %Silt and %OM also control the UCS of JGLF prediction. When compared with

the empirical knowledge, FN-UCS.Lab model seems to underestimate the effect of the

age of the mixture (4.25%) in the development of JGLF strength.
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The relative importances of each variable according to ANN-UCS.Lab and SVM-

UCS.Lab are similar and in agreement with what is known empirically. Following SVM-

UCS.Lab model, the three key variable for UCS prediction of JGLF are t (19%), Civ

(18%) and n/(Civ)
d (16%). The soil properties, mainly according to ANN-UCS.Lab

model, also have an important influence on UCS behaviour of JGLF . The W/C ratio

and the s have a smaller impact in the strength behaviour of JGLF , with an relative

importance around 12% and 10%, respectively. It is well known, from the experience

with soil-cement mixtures (Coulter and Martin, 2006), that t has a strong influence in

the behaviour of these kind of mixtures, mainly if one takes in account the range of t

variable in the dataset used during the learning phase, i.e. t ≤ 56 days time of cure

(see Table A.1 on Appendix A). On the other hand, it makes sense that Civ has a strong

impact on cementitious materials (Horpibulsuk et al., 2003). The mixture porosity, also

relevant in the strength behaviour of soil-cement mixtures, is indirectly considered in

n/(CIV )d variable. Relatively to the influence of the soil properties and according to the

SVM-UCS.Lab, it may seem strange its low influence. However, it should be stressed

that all laboratory formulations were prepared using soils relatively similar, i.e., all soil

were classified as clayed nature, just differing on its sand, silt, clay and organic matter

content.

Making a global appreciation of all five models presented, and considering both met-

rics values and SA as performance criteria, the SVM-UCS.Lab model seems to be the

most interesting. When compared with ANN-UCS.Lab, the metrics values are slightly

better and the relative importance of the input attributes is more coherent in terms of

what is known empirically in the JG domain. Furthermore, through the 20 runs per-

formed, SVM-UCS.Lab model shows more consistency in the metrics values, as well as

in the variables importance. Comparing SVM-UCS.Lab with MR-UCS.Lab and EC2-

UCS.Lab, the advantages are more enhanced. On one hand, MR-UCS.Lab performance

is lower (see Table 5.3) and unrealistic in terms of the relative influence of each input

variable. On the other, comparing with EC2-UCS.Lab, besides of a higher performance,

SVM-UCS.Lab has the important advantage of being applicable during the project level,

where EC2-UCS.Lab is restricted because of its need for 28 days time of cure of each

formulation. Finally, FN-UCS.Lab has a very similar performance in terms of the met-

rics values and relative importance distribution. However, the underestimation of the

t effect by FN-UCS.Lab, as well as the strong asymmetry of the relative importance,

make SVM-UCS.Lab more interesting for practical purposes. The main disadvantage

of SVM-UCS.Lab, particularly when compared with MR-UCS.Lab, EC2-UCS.Lab and

FN-UCS.Lab, is the high complexity of its mathematical expression that makes difficult

its understanding by humans.
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Given the previous explained analysis, we adopt the SVM-UCS.Lab as a reference

model (Tinoco et al., 2012b). In order to achieve a better understanding of the modelled

UCS behaviour of JGLF , we performed a more detailed SA analysis, under a 1-D and

2-D approaches, to measure the key input effects in the model.

Figure 5.7 depicts the effect of the four most relevant variables in UCS prediction

of JGLF according to SVM-UCS.Lab model. As a first observation, it can be pointed

out that all four variables have a nonlinear effect on UCS behaviour of JGLF . Then,

and as empirically expected, t and Civ have a positive impact in strength prediction of

JGLF (Tinoco et al., 2011c). On the other hand, increasing n/(Civ)
d (i.e. increase the

porosity of the mixture or decrease the volumetric content of cement) or W/C leads to

a decrease of mixture strength. This means that these both variables have a negative

impact in UCS behaviour. Moreover, the VEC curve of t shows a concave shape, which
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Figure 5.7: VEC curves for the four key input variables according to SVM-UCS.Lab model in
UCS prediction of JGLF , quantified by 1-D SA

means that the mixture strength increases more quickly in early ages (up to 45 days time

of cure) and then more slowly, until it stabilizes (Horpibulsuk et al., 2003; Van Impe

et al., 2005).It is also interesting to observe the shape of Civ VEC curve, showing that Civ

improves considerably UCS for values higher than 45%. Lastly, it is possible to observe

that n/(Civ)
d and W/C VEC curves have a very similar effect (concave shape) on UCS

prediction of JGLF (Lee et al., 2005).
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All previous results, i.e., relative importance and averaged effect of the key input

variables, were taken based on a 1-D SA, i.e., holding all variables at their mean values,

ranging only one at each time. As known, such conditions rarely or even never happen

in practical conditions. Therefore, and keeping in mind a more realistic and detailed

analysis, we discuss some important observations taken from a 2-D SA, i.e., changing

simultaneously two input variables, keeping the remaining ones at their mean values.

This approach allows measuring the interaction level between variables and quantifying

the average effect on UCS when two variables are changed simultaneously. Hence, we

measured the interaction level of all variables with t and Civ (the two most relevant

variables in UCS prediction of JGLF ) and plotted the VEC surfaces for: t and W/C; t

and n/(Civ)
d; Civ and W/C and Civ and t (Tinoco et al., 2012b).

Figure 5.8 shows the relative importance of the interaction between all variables with t

(Figure 5.8a) and Civ (Figure 5.8b). In both situations the highest interaction is observed

with W/C, presenting a relative importance around 14%. This observation shows that in

spite of W/C being just the fourth variable with more impact in UCS prediction of JGLF

(based on a 1-D SA), it should be taken into account in JGLF behaviour because it has a

strong interaction with other variables, namely with t and Civ. The highest interaction of
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Figure 5.8: Interaction level between all variables with: a) t and b) Civ, according to SVM-
UCS.Lab model in UCS prediction of JGLF , measured by a 2-D SA

W/C with t can be explained if we take into account that the gain of strength is related

to the decreasing of free water in the mixture (hardness process). This means that JGLF

with high W/C ratio needs more time to obtain the same strength than for a lower W/C

ratio. From this, it can be concluded that in order to obtain a faster hardness process,

JGLF should be prepared with lower values of W/C ratio. On the other hand, the high
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interaction between Civ and W/C is related with mixture preparation. Normally, mixtures

with high Civ are prepared using grout slurry with lower W/C ratio. Therefore, is clear

that Civ and W/C has a strong interaction. Another interesting observation from these

two figures is related with the soil properties. Once again, this input shows low impact

on UCS prediction of JGLF (within the database conditions).

Plotting the interaction effect between t and W/C in UCS prediction of JGLF , the

VEC surface shown in Figure 5.9 is obtained. This surface shows precisely the high effect

of the interaction between these two variables, evidenced by the high range of UCS values

for different combinations of t and W/C (since 2 MPa to 9 MPa). Furthermore, it is also

possible to observe that mixtures with high W/C ratios tend to stabilize for early ages.

Based on VEC surface of t and n/(Civ)
d plotted in Figure 5.10, we can see the high
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Figure 5.9: VEC surface for t and W/C interaction in UCS prediction of JGLF , according to
SVM-UCS.Lab model, quantified by 2-D SA

impact interaction that these two variables also have in UCS prediction of JGLF (UCS

range from 2 MPa to 9 MPa). In addition, it is observed that the effect of t on UCS is

more pronounced for lower values of n/(Civ)
d than for higher values. This means that for

mixture with high porosity (or lower cement content) the UCS will just slight increase

over time.

Figure 5.11 shows the VEC surfaces for Civ and W/C and Figure 5.12 the equivalent

representation for Civ and t. In these two graphs, we can see once again the high impact
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Figure 5.10: VEC surface for t and n/(Civ)d interaction in UCS prediction of JGLF , according
to SVM-UCS.Lab model, quantified by 2-D SA
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Figure 5.11: VEC surface for Civ and W/C interaction in UCS prediction of JGLF , according
to SVM-UCS.Lab model, quantified by 2-D SA
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Figure 5.12: VEC surface for Civ and t interaction in UCS prediction of JGLF , according to
SVM-UCS.Lab model, quantified by 2-D SA

interaction of both W/C and t with Civ (UCS range from 3 MPa to 11 MPa). The VEC

surface of Civ and W/C depicted in Figure 5.11 shows a fast increasing of UCS for higher

values of Civ when W/C decrease. This behaviour can be explained by the high amount

of cement in such condition (high Civ and low W/C ratio). Observing the VEC surface

of Civ and t plotted in Figure 5.12 we can see an almost linear effect of Civ for advanced

ages.

5.3 Deformability modulus prediction

5.3.1 Model performance

Similar to what was done in UCS study of JGLF , Table 5.4 compares (using MAD , RMSE

and R2 as a performance criteria) the model performance (SVM algorithm) achieved in

E0 prediction of JGLF by forward and backward FS approaches with a model where a

set of eight variables were manually selected. However, in this case, the main purpose of

this exercise is to validate/corroborate the set of variable chosen in UCS study. In other

words, once the goal of the problem at hands is to predict the mechanical properties

of a given material, in this case JGLF , it is more rational to consider the same set of
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variables in both strength and stiffness studies. Therefore, the two FS approaches were

just applied in E0 study, since it is where the amount of data is higher and its purpose is

just to compare the results with UCS study.

Analysing Table 5.4, we can observe that the achieved performance by SVM model

in the three approaches is slightly higher than in UCS study (see Table 5.1). It is also

observed that FFS leads to the most accurate model in E0 prediction of JGLF using only

three input variables, which seems to be unrealistic, although recognizing the importance

of t and Civ variables empirically known as relevant in soil-cement mixtures mechanical

properties behaviour. However, and considering the above reasons, in the present research

work the study of JGLF stiffness was performed using the same set of variables considered

in UCS study, which is termed in Table 5.4 as MSE0l1 (Tinoco et al., 2011f).

Table 5.4: Model performance comparison of the two FS approaches implemented and that
where the attributes were manually selected, in E0 prediction of JGLF

Var FFS BFS MSE0l1

%Sand × × X
%Silt × × X
%Clay × X X
%MO × X X
Civ X X X
n/(Civ)

d × X X
t X X X
W/C × × X
ρd × X ×
Sr × X ×
CT × X ×
e × X ×
kg/m3 × X ×
%Solo X X ×

MAD 0.15± 0.00 0.19± 0.02 0.17± 0.00
RMSE 0.21± 0.00 0.26± 0.02 0.25± 0.01
R2 0.97± 0.00 0.96± 0.01 0.96± 0.00

The average hyperparameters and fitting time values (and respective 95% level confi-

dence intervals according to a t-student distribution) of the four DM algorithms trained

for stiffness prediction of JGLF (i.e. MR, ANN , SVM and FN ) are shown in Table 5.5.

Table 5.6 shows and compares the performance of these algorithms trained for E0, Etg50%,

Esec50% and Emax prediction of JGLF . In order to facilitate the referencing to each trained
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model, and following the same criterion used in UCS study, each one of the predictive

models of stiffness of JGLF will be termed as shown in Table 5.7.

Table 5.5: Hyperparameters and computation time of each DM model for stiffness prediction of
JGLF

Model Hyperparameters time (s)

FN-E0.Lab - 56.60± 0.00
FN-Etg50%.Lab - 17.30± 0.00
FN-Esec50%.Lab - 16.60± 0.00
FN-Emax.Lab - 14.00± 0.00

MR-E0.Lab - 10.82± 0.02
MR-Etg50%.Lab - 2.54± 0.01
MR-Esec50%.Lab - 2.57± 0.02
MR-Emax.Lab - 2.67± 0.01

ANN-E0.Lab H = 7± 1 869.93± 0.95
ANN-Etg50%.Lab H = 3± 1 128.69± 0.67
ANN-Esec50%.Lab H = 5± 1 134.92± 1.06
ANN-Emax.Lab H = 3± 1 136.27± 0.25

SVM-E0.Lab γ = 0.70± 0.02, ε = 0.06± 0.00 1168.92± 0.97
SVM-Etg50%.Lab γ = 0.74± 0.06, ε = 0.02± 0.0 190.07± 1.46
SVM-Esec50%.Lab γ = 0.36± 0.05, ε = 0.01± 0.00 202.39± 0.16
SVM-Emax.Lab γ = 0.39± 0.02, ε = 0.02± 0.00 201.79± 1.73

As done for UCS study, also here the mathematical expression proposed by

EC2 (CEN, 2004a) for deformability estimation of concrete was applied to stiffness pre-

diction of JGLF . In addition, the analytical expression used by MC90 (CEB-FIP, 1991)

for concrete stiffness estimation, was also adapted to JGLF stiffness prediction. These

two analytical models were only applied in E0 study due to the following reasons. On

one hand, for practical purposes, E0 and Etg50% are the two moduli currently used. The

first one has demonstrated a good relationship with non-destructive tests with very small

deformations, such as bender elements or sonic tests, while the second is a key geotech-

nical parameter that better defines the deformability properties of soil-cement mixtures

and has important practical use. On the other hand, as depicted in Figure 5.13, a strong

relationship is observed between E0 and Etg50% (R2 = 0.89), after comparing these two

moduli for all the tested samples for which such data are available. Moreover, both these

expressions require some a priori information related with a given formulation. This

means that to apply EC2 expression it is need to know the 28 days deformability modu-

lus of each formulation and in the case of MC90 expression the 28 days strength of each
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formulation. Therefore, and since the databases for Etg50%, Esec50% and Emax studies are

rather small (see Table 4.1), not contemplating such information, these two approaches

were only applied for E0 prediction of JGLF .

Optimizing the two coefficients of Equation 3.18 using Young’s modulus data of JGLF ,

the following model is achieved:

E(t) =

(
e

(
s·
[
1−( 28

t )
0.0011

]))959.56

· Ecm (5.5)

This model presents a performance equivalent to DM models, particularly SVM-E0.Lab

and ANN-E0.Lab, as shown in Table 5.8 that compares the performance (based on MAD ,

RMSE and R2 metrics) between EC2-E0.Lab, FN-E0.Lab, MR-E0.Lab, ANN-E0.Lab and

SVM-E0.Lab models in E0 prediction of JGLF . Figure 5.14 corroborates such performance

illustrating an excellent relationship between the experimental E0 values and those pre-

dicted by the EC2-E0.Lab model adapted to JGLF .

Table 5.6: Error metrics of all DM models for E0, Etg50%, Esec50%, Emax prediction of JGLF
(test set values, best values in bold)

Model MAD RMSE R2

FN-E0.Lab 0.22± 0.00 0.30± 0.00 0.95± 0.00
FN-Etg50%.Lab 0.18± 0.00 0.24± 0.00 0.93± 0.00
FN-Esec50%.Lab 0.20± 0.00 0.25± 0.00 0.95± 0.00
FN-Emax.Lab 0.20± 0.00 0.27± 0.00 0.95± 0.00

MR-E0.Lab 0.34± 0.00 0.48± 0.00 0.87± 0.00
MR-Etg50%.Lab 0.32± 0.00 0.40± 0.00 0.81± 0.00
MR-Esec50%.Lab 0.30± 0.00 0.39± 0.00 0.87± 0.00
MR-Emax.Lab 0.31± 0.01 0.42± 0.01 0.90± 0.00

ANN-E0.Lab 0.15± 0.00 0.21± 0.00 0.97± 0.00
ANN-Etg50%.Lab 0.20± 0.01 0.29± 0.01 0.90± 0.01
ANN-Esec50%.Lab 0.12± 0.01 0.16± 0.01 0.98± 0.00
ANN-Emax.Lab 0.18± 0.01 0.26± 0.02 0.96± 0.01

SVM-E0.Lab 0.17± 0.00 0.25± 0.01 0.96± 0.00
SVM-Etg50%.Lab 0.15± 0.00 0.20± 0.00 0.95± 0.00
SVM-Esec50%.Lab 0.15± 0.01 0.21± 0.03 0.96± 0.01
SVM-Emax.Lab 0.18± 0.00 0.31± 0.01 0.94± 0.00

Both Table 5.8 and Figure 5.14 show that EC2-E0.Lab model can be used to accu-

rately predict Young’s modulus of JGLF . However, looking to the arguments of Equa-

tion 5.5 (mathematical expression of EC2-E0.Lab model), an important limitation is also
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Table 5.7: Adopted nomenclature for model referencing in stiffness study of JGLF

Algorithm Modulus Designation

FN

E0 FN-E0.Lab
Etg50% FN-Etg50%.Lab
Esec50% FN-Esec50%.Lab
Emax FN-Emax.Lab

MR

E0 MR-E0.Lab
Etg50% MR-Etg50%.Lab
Esec50% MR-Esec50%.Lab
Emax MR-Emax.Lab

ANN

E0 ANN-E0.Lab
Etg50% ANN-Etg50%.Lab
Esec50% ANN-Esec50%.Lab
Emax ANN-Emax.Lab

SVM

E0 SVM-E0.Lab
Etg50% SVM-Etg50%.Lab
Esec50% SVM-Esec50%.Lab
Emax SVM-Emax.Lab
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Figure 5.13: Relationship between E0 and Etg50% of JGLF , illustrating a strong correlation
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Table 5.8: Comparison of the performance between the four DM models and the EC2 analytical
approach in E0 prediction of JGLF , based on MAD , RMSE and R2 metrics (mean values and
95% level confidence intervals according to a t-student distribution)

Metric EC2-E0.Lab FN-E0.Lab MR-E0.Lab ANN-E0.Lab SVM-E0.Lab

MAD (GPa) 0.16± 0.00 0.22± 0.00 0.34± 0.00 0.15± 0.00 0.17± 0.00
RMSE (GPa) 0.25± 0.00 0.30± 0.00 0.48± 0.00 0.21± 0.00 0.25± 0.01
R2 0.96± 0.00 0.95± 0.00 0.87± 0.00 0.97± 0.00 0.96± 0.00

identified. The argument Ecm means that its application requires the knowledge of the

deformability modulus at 28 days time of cure. Therefore, its application must be post-

poned for 28 days to perform stiffness tests on each formulation and quality control during

construction. Nevertheless, it should be mentioned that ongoing research to predict stiff-

ness based on earlier measurements (Azenha et al., 2011) will most likely eliminate this

problem in the future.

As previously mentioned, the mathematical expression proposed by MC90 was also

applied to Young’s modulus prediction of JGLF . Therefore, the three coefficients of Equa-

tion 3.19, were adapted to JGLF using E0 data. However, contrary to the EC2-E0.Lab

model, in this case the performance achieved was very poor, as shown in Table 5.9 (Tinoco

et al., 2010b). After analysing the MC90 analytical expression (Equation 3.19), it was

observed that the coefficient Eco should not be constant as initially considered and defined

in CEB-FIP (1991). Thus, this coefficient was taken for each laboratory formulation (see

Table 5.9), keeping the remaining coefficients at the following values: a = 1/2, b = 1/2

and c = 1/3. However, even when considering different values for Ec0 coefficient, the

performance achieved was worse than the EC2-E0.Lab model. Moreover, and similarly

to EC2 analytical model, the MC90 approach also requires laboratory tests to quantify

UCS of each formulation at 28 days time of cure (fcm argument). Therefore, it contains

the same limitations previously explained related to its application during the project

level.

Comparing the mathematical expression of both EC2 and MC90 approaches, it is

observed that the main differences are related with Ecm and fcm parameters, respectively.

Hence, and as expected, we can conclude that E0 prediction of JGLF based on Ecm is

more reliable than on fcm of each formulation. However, the prediction of JGLF stiffness

based on the respective strength values (as considered by MC90 approach), has a value

in a practical application and therefore should be adopted. An attempt toward to this

goal is present in Section 5.4.
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Figure 5.14: Relationship between E0 experimental versus predicted values by EC2-E0.Lab
model

The mathematical expression formulated in Equation 5.1 demonstrated a good perfor-

mance in strength prediction of JGLF . Therefore, it was also applied in the study of JGLF

stiffness. Hence, it was applied the minimization problem formulated in Equation 5.2 and

the FN algorithm to optimize the coefficients of Equation 5.1 in order to predict E0,

Etg50%, Esec50% and Emax of JGLF . The optimized coefficients (using the Leave-One-Out

approach), related to each moduli predictive model are summarized in Table 5.10.

Table 5.9: Metrics values in MC90-E0.Labadapted and MC90-E0.Labmodified models for E0 pre-
diction of JGLF

Metric MC90adapted
MC90modified

LF1 LF2 LF3 LF4 LF5 LF6 LF7 LF8 LF9

MAD (GPa) 0.84 0.33 0.82 0.24 0.32 0.13 0.18 0.21 0.15 0.15
RMSE (GPa) 1.11 0.45 1.01 0.31 0.43 0.17 0.23 0.26 0.18 0.22
R2 0.48 0.64 0.75 0.89 0.93 0.92 0.93 0.53 0.80 0.48

Eco (GPa) 3.54 4.06 6.64 2.59 4.03 3.08 2.08 3.17 2.88 1.80

LF - Laboratory Formulation



126 5.3. DEFORMABILITY MODULUS PREDICTION

Table 5.10: Optimized coefficients of Equation 5.1 to the prediction of JGLF stiffness, i.e., E0,
Etg50%, Esec50% and Emax

Model β0 α%Sand α%Silt α%Clay α%OM αW/C αt αC αn/(Civ)d

FN-E0.Lab 10.010 -0.11 -9.80 4.60 -1.99 -1.03 0.23 1.11 -0.73
FN-Etg50%.Lab 2.473 -0.10 -1.63 -1.40 -0.26 -0.61 0.24 1.02 0.02
FN-Esec50%.Lab 6.912 -0.09 0.46 -2.65 0.12 -0.73 0.18 0.90 -0.49
FN-Emax.Lab 10.010 -0.03 -8.58 4.92 -1.72 -0.57 0.13 0.94 -1.96

As shown in Table 5.6, all DM algorithms (i.e., MR, ANN , SVM and FN ) achieved

once again a good performance on JGLF stiffness prediction, particularly ANN and SVM

algorithms.

Figure 5.15 compares all data-driven models in E0 prediction of JGLF based on the

REC curves, underling the superiority of ANN-E0.Lab, SVM-E0.Lab models on such task.

The Scatterplots of MR-E0.Lab, ANN-E0.Lab, SVM-E0.Lab and FN-E0.Lab models are

shown in Figure 5.16.
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Figure 5.15: REC curves of MR-E0.Lab, ANN-E0.Lab, SVM-E0.Lab, FN-E0.Lab and EC2-
E0.Lab models, comparing its performance in E0 prediction of JGLF

Considering the performance achieved by all DM models in stiffness prediction sum-

marized in Table 5.6 using MAD , RMSE and R2 as a performance criteria, as well as
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Figure 5.16: Relationship between E0 experimental versus predicted values by: a) FN-E0.Lab,
b) MR-E0.Lab, c) ANN-E0.Lab and d) SVM-E0.Lab models
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the relationships depicted in Figure 5.16 for the particular case of E0 study, ANN models

seems to be a little more accurate than SVM . However, taken into account that SVM was

used as a reference model in UCS study, this algorithm will be also used as reference in

JGLF stiffness study, particularly on model interpretability, where this algorithm showed

once again a good interpretation of JGLF behaviour, as discussed in Section 5.3.2.

Following this observation, Figure 5.17a compares SVM models performance in stiff-

ness prediction of JGLF , showing that SVM algorithm is able to predict almost with

the same performance either E0, Etg50%, Esec50% or Emax of JGLF (Tinoco et al.,

2011a, 2010a, 2011f). The plots b), c) and d) of Figure 5.17 corroborate the high learn-

ing capabilities of SVM algorithm, even when the database that supports the learning is

rather small.

5.3.2 Model interpretability

Keeping in mind a better understanding and interpretation of the developed DM models

for JGLF stiffness prediction, a GSA method was applied over such models. Hence, a

1-D and 2-D SA was applied aiming to measure the relative importance of each variable,

as well as its effect in stiffness behaviour of JGLF . Moreover, and following previous

observations related to the practical importance of E0 and the learning capabilities of

SVM algorithm, a particular emphasize was given to SVM-E0.Lab model.

Through the application of a 1-D SA, the relative importance of each variable, accord-

ing to each one of the four DM models trained for E0 prediction of JGLF (i.e., FN-E0.Lab,

MR-E0.Lab, ANN-E0.Lab and SVM-E0.Lab models), is illustrated in Figure 5.18. Under

a quick analysis, it is clear that FN-E0.Lab model is unsuitable to predict E0 of JGLF

over time, despite of its good predictive performances based on the MAD , RMSE and R2

metrics, as well as the results obtained for the UCS study. According to this model, E0

of JGLF is only controlled by %OM and %Silt of the soil, which does not make sense

and is unrealistic in soil-cement mixtures studies. These results stress the importance of

involving domain experts in DM projects (as suggested by the CRISP-DM methodology).

According to MR-E0.Lab model, used mainly for a baseline comparison, the Young’s

modulus of JGLF is almost only conditioned by soil properties, namely by its sand, silt

and clay content. As expected, these results point out that the relationship between E0

of JGLF and its contributing factors follows nonlinear laws and consequently cannot be

described by a linear model. Analysing the relative importance of each variable according

to ANN-E0.Lab and SVM-E0.Lab models, one can see that n/(Civ)
d and t are key param-

eters in E0 prediction of JGLF . Furthermore, it is also observed a strong influence of the

soil properties, mainly according to ANN-E0.Lab model. There results are in agreement
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Figure 5.17: Stiffness prediction performance of JGLF : a) REC curves of SVM model for E0,
Etg50%, Esec50% and Emax prediction, b) scatterplot of Etg50% according to SVM-Etg50%.Lab,
c) scatterplot of Esec50% according to SVM-Esec50%.Lab and d) scatterplot of Emax according
toSVM-Emax.Lab
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with the empirical knowledge related with soil-cement mixtures and also coincide with

those observed in UCS study.

Figure 5.19 depicts the relative importance of each variable in Etg50% prediction ac-

cording to FN-Etg50%.Lab, MR-Etg50%.Lab, ANN-Etg50%.Lab and SVM-Etg50%.Lab (Tinoco

et al., 2011a). Also here, FN-Etg50%.Lab model proves to be inappropriate for stiffness

prediction. According to this model the soil properties have an influence around 77%

in Etg50% prediction that seems to be excessive. Also MR-Etg50%.Lab model shows the

same behaviour, giving an excessive importance to soil properties in Etg50% prediction,

following the same approach than in E0 study. Following the relative importance ranking

according to ANN-Etg50%.Lab and SVM-Etg50%.Lab models, its shown that n/(Civ)
d is

the key variable in Etg50% prediction. The soil properties, namely %Clay, and Civ also

have a strong influence in Etg50% prediction. It is still interesting to observe that the t

effect on Etg50% prediction is almost insignificant, even according to ANN-Etg50%.Lab and

SVM-Etg50%.Lab models. This behaviour is understood and explained by the range of t in

the dataset used during the training phase of the models (see Table A.3) of Appendix A.

As shown in this table, this variable only ranges from 28 to 84 days. On the other hand,

it is known that in cementitious mixtures (including soil-cement mixtures), t performs an

important role (in both strength and stiffness behaviour), mainly for t ≤ 28.

Figures 5.20 and 5.21 show the relative importance of each variable in Esec50% and Emax

prediction according to SVM-Esec50%.Lab and SVM-Emax.Lab respectively, and measured

by a 1-D SA (Tinoco et al., 2011f). Again, similar conclusions are drawn. On one hand,

both MR and FN models consider the soil properties as the most important factor in

Esec50% and Emax prediction of JGLF . On the other hand, and according to ANN and

SVM models, the key variables in stiffness prediction of JGLF are the relation n/(Civ)
d

and the t.

Making a global appreciation of all data-driven models for stiffness prediction of JGLF ,

it should be stressed that both MR and FN models are unable to understand the stiff-

ness behaviour of JGLF . On the other hand, it should be remarked the high learning

capabilities of ANN and SVM algorithms in stiffness prediction of JGLF . Comparing

these two algorithms, it can be concluded that SVM is more interesting, leading to better

results. While achieving a similar predictive performance, the relative input importances

according to SVM models is more coherent in terms of what is known empirically in

the JG domain. Moreover, also in the study of UCS of JGLF , SVM achieved the most

interesting results.
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Figure 5.20: Relative importance of each input variable quantified by 1-D SA, comparing MR-Esec50%.Lab, ANN-Esec50%.Lab, SVM-
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Figure 5.21: Relative importance of each input variable quantified by 1-D SA, comparing MR-Emax.Lab, ANN-Emax.Lab, SVM-Emax.Lab
and FN-Emax.Lab models
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Therefore, and using the SVM models as a reference (i.e. SVM-E0.Lab, SVM-

Etg50%.Lab, SVM-Esec50%.Lab and SVM-Emax.Lab), Figure 5.22 compares the relative

importance of each variable in stiffness prediction of JGLF . This figure shows that the

relation n/(Civ)
d and the soil properties, mainly its clay and sand content, are the key

variables in JGLF stiffness prediction. Particularly in the study of Etg50%, the W/C ratio

also evidences a strong influence. Figure 5.22 also underlines previous observations related

with t effect, showing that t is only preponderant (the second more relevant variable) in

E0 study. This is precisely the only situation where this variable take values lower than

28 days time of cure (3 ≤ t ≥ 56), as shown in Table A.2 of Appendix A. Thus, these

results come to corroborate the empirically knowledge related to the effect of the age of

the mixture in cementitious mixtures, i.e., that t is more preponderant for ages lower than

28 days time of cure in both strength and stiffness prediction.

Model interpretability given by a SA in terms of the relative importance of each

variable can be improved measuring the effect of the key variables on the target variable.

Therefore, using SVM models as reference, particularly SVM-E0.Lab model, we analysed

the effect of the key variable in JGLF stiffness prediction, based on a 1-D and 2-D SA.

Figures 5.23 and 5.24 plot respectively the VEC curves of n/(Civ)
d and %Clay vari-

ables (the two most relevant variables in stiffness prediction of JGLF ), according to SVM-

E0.Lab, SVM-Etg50%.Lab, SVM-Esec50%.Lab and SVM-Emax.Lab models respectively. In

both situations it is observed a decreasing on JGLF stiffness when n/(Civ)
d or %Clay

increase. On %Clay VEC curves it is observed a slight increase on JGLF stiffness for

higher values of clay content. This phenomena is probably a consequence of the high

amount of cement added when the soil treated has a high content of clay. Thus, it is

anticipated that the stiffness will increase despite of the high amount of clay in the soil.

As illustrated in Figure 5.22, t and W/C also have an important influence in JGLF

stiffness prediction, particularly in E0 and Etg50% respectively. Accordingly, Figures 5.25

and 5.26 plot the VEC curve for these two variables according to SVM-E0.Lab and SVM-

Etg50%.Lab models. In these graphs, for a given input, each plot shows the histogram

(frequency values are shown at the right of the y-axis) and the VEC curves (predicted

values, shown at the left of the y-axis) when the analytical test values (x-axis) are changed

through their domain values (with l=6 levels). Since several experiments were held,

vertical averaging is performed (with the respective 95 % confidence intervals) of all VEC

curves. The main advantage of this representation is to easily compare the VEC curve

and the histogram for a given attribute. As empirically expected, the VEC curve of t

illustrated in Figure 5.25 shows an exponential shape, evidencing the higher effect of t

until 28 days time of cure.



1
3
6

5
.3

.
D

E
F

O
R

M
A

B
IL

IT
Y

M
O

D
U

L
U

S
P

R
E

D
IC

T
IO

N

SVM-E0 .Lab
SVM-E tg50% .Lab
SVM-E sec50% .Lab
SVM-Emax .Lab

Importance (%)

0 10 20 30 40

0 10 20 30 40

7.92
7.25

8.59
7.88

9.17
7.32
7.28

9.23

8.82
7.08

8.64
9.35

11.26
11.74

12.52
10.61

6.99
8.96
9.04

12.63

16.65
17.98

17.54
13.48

5.15
6.61

7.23
13.79

34.04
33.06

29.16
23.03

%Silt

%OM

C i v

%Sand

W/C

%Clay

t

n (C iv)d

V
ar

ia
bl

e

Figure 5.22: Relative importance of each variable in stiffness prediction according to SVM-E0.Lab, SVM-Etg50%.Lab, SVM-Esec50%.Lab
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Figure 5.23: VEC curves of n/(civ)
d according to each SVM model in stiffness prediction of

JGLF , quantified by 1-D SA

Relating to the W/C VEC curve, the slight increase of Etg50% observed if Figure 5.26

for low values of W/C is probably related with the absence of data for such range of

values, for what the model found some difficulties to learn. It is also observed an almost

linear effect of W/C in Etg50% prediction of JGLF .

Similar to what was executed in the UCS study, and in order to improve the inter-

pretability of the models, a 2-D SA was performed, allowing to measure the interaction

level between variables and quantify its average effect in stiffness prediction when two

variables are changed simultaneously. Accordingly, Table 5.11 summarizes the interac-

tion level between all variables with n/(Civ)
d according to SVM-E0.Lab, SVM-Etg50%.Lab,

SVM-Esec50%.Lab and SVM-Emax.Lab models, after applying a 2-D SA. The %Clay and

t are the two variables that have the higher overall interaction with n/(Civ)
d in JGLF

stiffness prediction. The strong interaction between n/(Civ)
d and t helps to understand

the less relative importance of t in Etg50%, Esec50% and Emax prediction (see Figure 5.22),

and complement previous observations related with the range of t in this situations. The

VEC contour plotted in Figure 5.27a, depicts the interaction effect between n/(Civ)
d and

%Clay in Etg50% study according to SVM-Etg50%.Lab model, showing that the highest val-

ues of Etg50% are achieved on samples with lower n/(Civ)
d and prepared using soils with

low clay content. In Figure 5.27b, it is plotted the effect of n/(Civ)
d and t interaction in
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Figure 5.26: Vertical averaging of the VEC curves (points and whiskers) and histogram (in bars)
according to SVM-Etg50%.Lab model for W/C variable in Etg50% prediction of JGLF

E0 prediction, where it is possible to observe a slightly influence of t in E0 prediction of

JGLF samples with low values of n/(Civ)
d.

Table 5.11: Interaction level between all variables with n/(Civ)
d according to SVM-E0.Lab,

SVM-Etg50%.Lab, SVM-Esec50%.Lab and SVM-Emax.Lab models in stiffness prediction of JGLF ,
measured by a 2-D SA

Variable t civ W/C %Sand %Silt %Clay %OM

n/(Civ)
d

E0 21.22 10.60 14.48 15.86 10.45 17.94 9.45
Etg50% 15.34 13.20 13.39 15.00 12.46 16.48 14.13
Esec50% 15.57 13.49 13.18 14.92 12.44 16.31 14.10
Emax 15.80 13.77 12.89 14.90 12.42 16.16 14.07
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Figure 5.27: VEC contour for: a) n/(Civ)
d and %Clay interaction in Etg50% prediction of

JGLF , according to SVM-Etg50%.Lab model and b) n/(Civ)
d and t interaction in E0 prediction

of JGLF , according to SVM-E0.Lab model, quantified by a 2-D SA

5.4 Strength and stiffness relationship

As shown in Sections 5.2 and 5.3, an high performance was achieved, particularly by

SVM algorithm, in both strength and stiffness prediction of JGLF (Tinoco et al., 2012e).

Table 5.12 summarizes the metrics values (MAD , RMSE and R2) of SVM-UCS.Lab,

SVM-E0.Lab, SVM-Etg50%.Lab, SVM-Esec50%.Lab and SVM-Emax.Lab models, comparing

its performance. Using R2 as performance criterion, this table underlines the high learning

capabilities of SVM algorithm in the study of JGLF mechanical properties.

Table 5.12: Comparison of the performance of each SVM predictive model in UCS, E0, Esec50%

and Etg50% of JGLF , using MAD , RMSE and R2 as performance criteria

Model MAD RMSE R2

SVM-UCS.Lab 0.55± 0.00 0.73± 0.00 0.93± 0.00
SVM-E0.Lab 0.17± 0.00 0.25± 0.01 0.96± 0.00
SVM-Etg50%.Lab 0.15± 0.00 0.20± 0.00 0.95± 0.00
SVM-Esec50%.Lab 0.15± 0.01 0.21± 0.03 0.96± 0.01
SVM-Emax.Lab 0.18± 0.00 0.31± 0.01 0.94± 0.00

Figure 5.28, which compares the relative importance of each input variable according to

SVM predictive models of UCS, E0, Etg50%, Esec50% and Emax, illustrates that the relation

n/(Civ)
d is the key variable in both mechanical properties prediction of JGLF (Tinoco
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et al., 2012d). Moreover, in the UCS study the t and Civ should be also taken into

account. On the other hand, we can observe that the soil properties are apparently

more relevant in stiffness prediction of JGLF than in strength study. This observation

is explained if one takes into account that for low deformations, the grain size of the soil

particles is responsible for the main resistance capacity of the material. After the grains

broke, the cohesion is sustained by soil-cement matrix. So, after this time, the age of the

mixture and the percentage of cement take the main role in the strength capacity of the

soil-cement mixture. Furthermore, it should also be stressed that all conclusions herein

pointed out underlie the characteristics of the database used during the learning of each

mechanical properties studied. Indeed, it was shown that the range of some variables

support some of the observations, such as the small influence of t in Etg50%, Esec50% and

Emax prediction.

As underlined in Section 5.3.1, when MC90 model results were analysed, the predic-

tion of soil-cement mixtures stiffness (e.g. JG mixtures) based on strength values has an

important practical application. It is known that the unconfined compression test is a

standard, simple and relatively inexpensive way to assess JG soil improvement quality.

However, the deformability properties of JG material are sometimes required for struc-

ture’s serviceability evaluation (Gomes Correia, 2004). On the other hand, and keeping

in mind that deformability tests are more expensive and require more time, it would be

useful to predict JGLF stiffness based on an unconfined compression test in practice.

Therefore, a novel approach using DM techniques is proposed, aiming to predict JGLF

stiffness based on the UCS of the respective mixture and considering elementary variables

related to the mix properties. The proposed model is capable of predicting the E0 of

JGLF based on the %Clay, Civ, t and the UCS of the mix at the same age. The choice

of these variables is supported, on one hand by the empirical knowledge related to soil-

cement mixtures, particularly the variable t and, on the other hand by the comparison

of the key variables in JGLF strength (Tinoco et al., 2012b) and stiffness prediction (see

Figure 5.28). This comparison indicates that %Clay plays an important role in JGLF

stiffness behaviour and is almost insignificant in UCS prediction, whereas Civ is more

important to JGLF strength prediction than deformability. This evidences that these

two variables are key elements to determining the stiffness of a given JGLF based on its

unconfined strength.

The proposed approach was developed based on a rather small database, containing

only 11 samples, extracted from the main database of E0 study. The database dimension

can represent an important limitation in such circumstances because DM techniques are

particularly designed to work with high amounts of data. However, the practical relevance

of such approach justifies its use, even under such conditions.
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In order to optimize all available data, the leave-one-out procedure was applied to the

model generalisation capacity assessment and during the learning phase (i.e., using only

training data). Table 5.13 summarises the main statistics of the database’s input and

output variables used in this experiment.

Table 5.13: Summary of both input and output variable statistics of the database used in the
experiments performed in Section 5.4, aiming to correlate strength and stiffness of JGLF

Variable Minimum Maximum Mean Standard Deviation

%Clay 22.50 45.00 32.73 11.75
t 28.00 56.00 40.73 14.62
Civ 35.85 36.83 36.30 0.51
UCS (MPa) 1.52 7.27 4.72 2.43

E0 (GPa) 2.32 7.89 5.00 1.99

The results show an high performance by the SVM-E0UCS.Lab model (termed in this

way following the same nomenclature previously adopted), despite of the low number of

records used during the training and test phases. Figure 5.29 depicts the relationship

between the E0 experimental values and those predicted by the SVM-E0UCS.Lab model,

showing a small deviation between them, which is corroborated by an R2 value very

close to the unit (R2 = 0.94). These results indicate once again the advanced learning

capabilities of such an algorithm, namely in JGLF data analysis. Among the 20 runs

performed, the SVM hyperparameters (described in Section 2.3.3) that best fit the data

are ε = 0.07± 0.01 and γ = 0.05± 0.00 (mean values and 95% confidence intervals).

The relative importance of each input variable according to SVM-E0UCS.Lab model

was measured by performing the GSA described in Section 2.5.3. Figure 5.30 shows, as

expected, that the UCS is strongly correlated with the E0 of a given sample and that t,

Civ, and %Clay also play important roles in the relationship between these two mechanical

properties of JGLF .

Moreover, the GSA analysis also confirms that these variables have an almost linear

effect on E0 prediction, as illustrated in the VEC curves of UCS and t depicted in Fig-

ure 5.31. This linear behaviour, indicates that all nonlinear components in E0 prediction

are incorporated through the UCS variable, confirming what was expected.

The proposed approach is compared with the EC2-E0.Lab model adapted for JGLF

presented in Section 5.3 for the purposes of a baseline comparison and practical applica-

tion. Figure 5.29 shows the deviation between the values predicted by these two models
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(SVM-E0UCS.Lab and EC2-E0.Lab) and their metric values. A simple comparison of

the results evidences that the EC2-E0.Lab model presents a slightly better performance

than the proposed approach (SVM-E0UCS.Lab model). However, it should be stressed

that the EC2-E0.Lab model is strongly dependent of the 28 day deformability modulus

of each formulation, which requires more complex and expensive laboratory testing than

what is required to get the UCS. Moreover, five of the eleven samples were tested at

28 days, meaning that the EC2-E0.Lab model error is equal to zero for these records.

The proposed approach (the SVM-E0UCS.Lab model) presents a better accuracy for

the remaining samples (see Figure 5.29), which were tested at 56 days. Furthermore, it

should be stressed that the proposed approach (i.e. SVM-E0UCS.Lab model) can further

be updated, as new data becomes available, which will certainly improve the model’s

accuracy.

5.5 Conclusions

The study of laboratory formulations is an important task that can supply valuable in-

formation related to the future behaviour of soilcrete, which helps in the definition of
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the JG technology parameters. This study is particularly important if the information

related to the soil to be treated is scarce. In these particular situations, several laboratory

formulations need to be prepared and tested to define the best solutions that meet the

project requirements at lower environmental and economic costs. For such purposes, it is

very useful to have a set of predictive models capable of accurately estimating mechanical

properties of such mixtures. In this work, we attempted to develop new reliable models

for JGLF mechanical properties prediction.

The results presented in this chapter show that both UCS and stiffness of JGLF

can be accurately predicted by data-driven models over time for seven different ground

types. It was shown that the SVM algorithm is able to learn the complex relationships

between JGLF mechanical properties and their contributing factors. Moreover, based on

the application of a GSA, the proposed models, particularly those obtained from the SVM

algorithm that are characterised by a high mathematical complexity, were “opened”, al-

lowing extraction of useful information. This analysis suggested that t, n/(Civ)
d and soil

properties, particularly %Clay, are key variables in both strength and stiffness prediction

of JGLF . In addition, we also measured the effect of such key variables in JGLF mechan-

ical behaviour, determining the exponential effect of t as well as the negative impact of

%Clay in the development of JGLF mechanical properties. Moreover, it was shown that

the analytical expressions proposed by EC2 for strength and stiffness prediction of con-

crete can be successfully adapted to predict mechanical properties of JGLF . However, this

approach presents an important limitation related to its application in the early stages of

a JG project.

Additionally, an attempt to predict E0 of JGLF based on UCS values was performed.

Although supported by a rather small number of records, this experiment showed a good

performance in E0 prediction, and it showed an almost linear relationship between stiffness

and strength for a given sample of JGLF . This approach has an important practical

application because it allows the prediction of E0 for a given sample based on unconfined

compression tests that are less expensive.

The knowledge developed herein can potentially contribute a better understanding of

the JGLF behaviour and improve the technical and economic efficiency of JG technology

because the number of JGLF to prepare can be significantly reduced without a loss of

information.



Chapter 6

DM techniques applied to field data

6.1 Introduction

In Chapter 5, we proposed several data-driven models for JGLF mechanical properties

prediction. It was shown that DM algorithms, particularly SVM , are able to explore

JGLF and learn its mechanical behaviour. Moreover, through the application of a GSA,

useful information was extracted, representing a greet contribution for a better under-

standing of JGLF behaviour and model interpretability.

Accordingly, in this chapter the same framework was applied to JG data related with

real JG columns. Therefore, we developed predictive models for UCS and Young’s mod-

ulus of soilcrete material, as well as for JG columns diameter, using ANN and SVM

algorithms, and MR as a baseline comparison. Moreover, the generic expression written

in Equation 5.1 was also optimized to soilcrete mechanical properties, using the minimi-

sation problem of Equation 5.2 and the FN algorithm. In addition, and considering the

good performance of EC2 approach in JGLF mechanical properties study, its analytical

expressions were also adapted to strength and stiffness prediction of soilcrete mixtures.

Similar to what was executed in the study of JGLF , we also applied the two FS

approaches described in Section 2.4, (i.e. forward and backward FS algorithms), aiming

to help to define the best set of input variables. Also, during the FS task, we applied

the SVM algorithm and the methodology proposed by Huang et al. (2007) for model

selection (i.e. to select the best values of the hyperparameters C, ε and γ). Then, during

the learning phase of the models, i.e. after choosing the final set of input variables, we

used the same parameters for ANN and SVM algorithms, as described in Section 5.1 (e.g.

the same activation function for ANN algorithm as well as the same grid search for H and

γ hyperparameters). The only difference is related with the approaches applied during

the search for the best value of H and γ, as well for generalizations purposes. Thus,

147
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instead of an internal (i.e. applied over training data) 5-fold cross-validation,we applied a

3-fold cross validation, and instead of a leave-one-out scheme we applied a 20-fold cross-

validation for model generalization assessment. The reason for these choices is basically

related with the higher number of records of the databases used for strength, stiffness and

diameter study of real JG columns, which requires more computational effort. Finally,

we adopted R environment and rminer library for MR, ANN and SVM predictions, and

for FN estimation we adopted the GAMS software.

It should be noted that in the study of the mechanical properties and diameter of JG

columns, the choice of the input variables was somewhat conditioned by the availability of

some variables. On one hand, aiming to maximize the number of records, some variables

were not considered because there was just few records with such informations. On the

other hand, there are some variables that despite of its empirical relevance, were not

considered as inputs because either are constant in the compiled database or just are not

used by the company that supplied the data (e.g. nozzles orientation).

6.2 Uniaxial compressive strength prediction

6.2.1 Model performance

On Table 6.1 it’s compared the performance (using metrics MAD , RMSE and R2 as

performance criteria) of the SVM predictive models developed based on the forward and

backward FS approaches, with that (termed as MSqf1) where the input variables were

manually selected considering the literature review, knowledge from JGLF study, as well

as on the contribute given by the two FS approaches implemented. This table shows that

the best performance, considering the metric values and its confidence interval as well as

the empirical relevance of the chosen variables, was achieved by SVM model using the

set of variables assigned as MSqf1. Hence, this set of nine variables will be used during

the entire study of UCS of soilcrete mixtures (Tinoco et al., 2012a). On Table 6.2 are

summarized the main statistics of the database used during this study, i.e. the database

that contemplates just the nine variables assigned in Table 6.1 as MSqf1 and is composed

by 472 records.
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Table 6.1: Comparison of the SVM models performance developed using the forward and back-
ward FS approaches with a manual selection of attributes, aiming to predict UCS of soilcrete
mixtures

Var FFS BFS MSqf1

JS × X X

n/(Civ)
d X X X

t × X X

Civ × × X

1/ρd × × X

e × × X

ω X X X

W/C × × X

%Clay X X X

kg/ml X × ×
NDgrout X × ×
1/n × X ×
Impgrout × X ×
kg/m3 × X ×
rpm × X ×
ρ × X ×
ρd × X ×
n × X ×
Wc/C × X ×
Sr × X ×

MAD 1.37± 0.02 1.37± 0.03 1.38± 0.01

RMSE 1.98± 0.03 1.97± 0.06 1.99± 0.01

R2 0.52± 0.02 0.52± 0.03 0.51± 0.01

FFS - forward feature selection; BFS - backward feature selection

The mathematical expression proposed by EC2 (see Equation 3.17), which had shown

a good performance in strength prediction of JGLF , it was also adapted to soilcrete

material. After optimize the coefficient a of Equation 3.17 to UCS data of soilcrete

mixtures, the best value is a = 0.5, and the resulting model (further termed as EC2-
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UCS.Field) is written by the following equation:

UCS = e

(
s·
[
1−( 28

t )
0.5
])
· UCS28days (6.1)

However, EC2-UCS.Field model performs badly UCS of soilcrete as illustrated in Fig-

ure 6.1, achieving an R2 value of just 0.13. This low performance is probably related with

the higher heterogeneity of soilcrete material when compared with JGLF , as well as with

the not consideration of many others variables that are important in soilcrete strength

prediction over time (e.g. mixture porosity or cement content). This means that, even

when knowing the UCS of each formulation at 28 days time of cure, the proposed ap-

proach by EC2 for strength prediction of concrete is unable to accurately predict UCS

of soilcrete mixtures over time.

Table 6.2: Summary statistics of both input and output variable of the database used during
the study of UCS of soilcrete mixtures, which contemplates the nine input variables assigned
in Table 6.1 as MSqf1

Variable Minimum Maximum Mean Standard Deviation

JS 1.00 3.00 2.03 0.38
W/C 0.83 1.05 0.93 0.07
ω 2.50 96.80 38.89 12.12
%Clay 22.50 45.00 30.84 6.87
t 9.00 181.00 46.12 32.80
1/ρd 5.63E−4 1.44E−3 8.43E−4 1.23E−4

Civ 0.14 0.28 0.22 0.03
e 0.56 2.99 1.32 0.34
n/(Civ)

d 37.88 79.17 59.49 6.88

UCS 0.32 20.27 4.05 2.83

The coefficients of Equation 5.1, optimized to UCS data of soilcrete mixtures, using

the FN algorithm and the minimization problem described in Equation 5.2 are present

in Equation 6.2 (this model will be termed as FN-UCS.Field).

UCS = 1.000E+10 · JS−0.730 ·W/C1.142 · ω0.328 ·%Clay−0.550· (6.2)

· t0.133 · 1/ρ2.892
d · C0.891

iv · e−3.193 · (n/(Civ)d)0.422

The FN-UCS.Field model, trained/assessed under the Leave-One-Out estimation ap-

proach, presents a slightly better performance in UCS prediction of soilcrete mixtures
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Figure 6.1: Relationship between UCS experimental versus predicted values by EC2-UCS.Field
model

when compared to EC2-UCS.Field model, as shown in Table 6.4. However, such perfor-

mance is still very poor, as illustrated in Figure 6.2 that depicts the relationship between

UCS experimental and predicted by FN-UCS.Field model. This figure shows a signifi-

cant dispersion, particularly when compared which FN-UCS.Lab model used for strength

prediction of JGLF , but not unrealistic for field data analysis.

The averaged hyperparameters and fitting time values (and respective 95% level con-

fidence intervals according to a t-student distribution) of all DM models trained using

the set of nine input variables assigned in Table 6.1 as MSqf1 are summarized in Ta-

ble 6.3. These models, developed to predict UCS of soilcrete will be further termed as

MR-UCS.Field, ANN-UCS.Field and SVM-UCS.Field, and are respectively the result

of the training of MR, ANN and SVM algorithms with UCS data of soilcrete mixtures.

Table 6.4 shows and compares the predictive capacity of all trained models for UCS

prediction of soilcrete based on MAD , RMSE and R2 metrics, computed for the test data

under a 20-fold cross-validation approach (mean value and 95% confidence intervals). This

table shows a considerable decrease in predictive performance when compared to JGLF

study (see Table 5.3). However, keeping in mind that here we analyse JG field data, with

all its with all its complexity and heterogeneity, an R2 value around 0.5 could be considered

satisfactory. The MR-UCS.Field model, used mainly for a baseline comparison achieved
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Figure 6.2: Relationship between UCS experimental versus predicted values by FN-UCS.Field
model

the lowest performance. This observation can be interpreted as an indication that the

UCS of soilcrete mixtures are not guided by linear laws.

Scatterplots of ANN-UCS.Field and SVM-UCS.Field models, illustrated in Fig-

ures 6.3 and 6.4 respectively, confirming the non ideal performance shown in Table 6.4.

As depicted, in both models the predictions are not very close to the diagonal line that

represent the experimental values. However, approximately 81% of the records are pre-

dicted with an absolute error lower than 2 MPa and just around 7% are unsafe predictions,

which represents an acceptable performance for field data predictions.

Table 6.3: Hyperparameters and computation time of each DM model for UCS prediction of
soilcrete material

Model Hyperparameters time (s)

FN-UCS.Field - 121.20± 0.00
MR-UCS.Field - 0.64± 0.01
ANN-UCS.Field H = 3± 1 46.21± 0.35
SVM-UCS.Field γ = 0.07± 0.01, ε = 0.10± 0.00 40.94± 0.13
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Table 6.4: Error metrics of all DM models for UCS prediction of soilcrete (test set values, best
values in bold)

Model MAD RMSE R2

EC2-UCS.Field 1.75± 0.00 2.65± 0.00 0.13± 0.00
FN-UCS.Field 1.40± 0.00 1.95± 0.00 0.19± 0.00
MR-UCS.Field 1.53± 0.00 2.13± 0.01 0.43± 0.00
ANN-UCS.Field 1.41± 0.02 2.01± 0.06 0.49± 0.03
SVM-UCS.Field 1.38± 0.01 1.99± 0.01 0.51± 0.01

Figure 6.5 compares the performance of all models trained for UCS prediction of soil-

crete mixtures (i.e. EC2-UCS.Field, FN-UCS.Field, MR-UCS.Field, ANN-UCS.Field

and SVM-UCS.Field models), depicting the model accuracy as a function of the absolute

deviation (REC curves, (Bi and Bennett, 2003)). The shape of these curves evidence

once more the non ideal performance of the developed models, and that SVM-UCS.Field

and ANN-UCS.Field are the two more accurate models in UCS of soilcrete mixtures.

Reading the REC curve of SVM-UCS.Field model (the most accurate), it is shown that

if an absolute deviation around 2 MPa is tolerated, then around 81% of the records can

be accurately predicted by the model, as above underlined.

Making a global appreciation of EC2-UCS.Field, FN-UCS.Field, MR-UCS.Field,

ANN-UCS.Field and SVM-UCS.Field models, it can be concluded that even the last two

models have difficulties to learn the complex relationships between UCS of soilcrete mix-

tures and its contributing factors. However, the achieved performance by ANN-UCS.Field

and SVM-UCS.Field models, with an R2 close to 0.5, can be considered acceptable within

field data analysis.

6.2.2 Model interpretability

The obtained data-driven models, namely SVM-UCS.Field and ANN-UCS.Field mod-

els, perform UCS prediction of soilcrete mixtures with a considerable but acceptable

dispersion. In this section, we apply a GSA over such models to extract useful informa-

tion, helping to understand better the UCS behaviour of soilcrete mixtures. Accordingly,

and based on a 1-D SA, Figure 6.6 shows and compares the relative importance of each

input variable according to MR-UCS.Field, ANN-UCS.Field, SVM-UCS.Field and FN-

UCS.Field models.

Interpreting Figure 6.6, one can observe that according to SVM-UCS.Field model

(the most accurate in UCS prediction), the relation n/(Civ)
d, JS, t and %Clay are the
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Figure 6.3: Relationship between UCS experimental versus predicted values by ANN-UCS.Field
model
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Figure 6.4: Relationship between UCS experimental versus predicted values by SVM-UCS.Field
model
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and SVM-UCS.Field models, comparing its performance in UCS prediction of soilcrete mixtures

four key variables in UCS prediction of soilcrete mixtures (Tinoco et al., 2011e). Among

them it is identified one that is related to the soil type (%Clay), another related with

the JG process (JS) and two others related to the JG mixture, namely its age and the

relation n/(Civ)
d that combines the porosity and cement content effect. In other words,

to predict UCS of soilcrete mixtures, the models ask for information about the soil to be

improved, how the improvement was performed and the actual conditions of the obtained

mixture. Moreover, it is also interesting to observe that such variable ranking has a

physical explanation and is empirically understandable. Experimental studies related with

soil-cement mixtures have been shown that both soil properties and age of the mixture

should be taken into account in its behaviour (Van Impe et al., 2005; Liu et al., 2008).

Furthermore, concerning to soil improvement using JG technology, it makes sense that

the JG system used should be considered, since it will determine the energy applied or the

impact of the fluids against the soil. On the other hand, FN-UCS.Field model evidences

an unrealistic behaviour by considering e (66%) and 1/ρ (19%) the two key variables in

UCS prediction of soilcrete mixtures. Hence, based on these observations, and although

of the dry density (1/ρd) of the soilcrete mixture as well as its void ratio (the key variables

according to ANN-UCS.Field model), show a lower relevance in SVM-UCS.Field model

(but not dismissed), SVM-UCS.Field model seems to be the most interesting one.
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Thus, in the next paragraphs, SVM-UCS.Field model will be used as the reference

model in the performed analysis. Moreover, this algorithm was already used as reference

in mechanical properties study of JGLF .

Toward to a better understanding what has been learned by SVM-UCS.Field model

about UCS behaviour of soilcrete mixtures, the VEC curves of its four key input variables

are plotted in Figure 6.7. Analysing such curves, it can be observed that the influences

of the four key variables are in agreement with the empirical knowledge, showing a pre-

dominant nonlinear effect in UCS behaviour of soilcrete mixtures (Tinoco et al., 2011d).

On one hand, UCS increases with the age of the mixture according to an exponential

law (Van Impe et al., 2005; Coulter and Martin, 2006). This convex shape evidences that

the first days of cure are responsible by the main gain of strength of the mixture. On

the other hand, the relation n/(Civ)
d and the %Clay have a similar and negative impact

in UCS prediction of soilcrete. This means that when increasing the mixture porosity

or clay content, or decreasing the cement content, the UCS of the mixture will decrease.

In addition, the highest values of UCS are achieved for mixtures produced with single

fluid system, decreasing almost linearly for double and triple fluid system. This outcome

makes sense if we take into account that when increasing the energy of the jet (from single

to triple fluid system), the achieved distance is higher. As a result, the content of cement

by unit volume of soil is lower, leading to a decrease in UCS of the mixture.

Aiming a better understanding of soilcrete strength behaviour when two variables are

changed simultaneously, a 2-D SA was applied over SVM-UCS.Field. Accordingly, it was

measured the interaction level between all variables with t and %Clay. Table 6.5 summa-

rizes the relative importance of each variable in these interactions. In both situations, it is

observed that W/C ratio presents a high interaction level with t and %Clay despite of its

low relative importance in strength prediction of soilcrete, as shown in Figure 6.6. This

observation is by itself the reason of such small influence in UCS behaviour of soilcrete,

since t and %Clay are within the four more relevant variables.

Table 6.5: Interaction level (%) between all variables with t and %Clay, according to SVM-
UCS.Field model for UCS prediction of soilcrete mixtures, measured by a 2-D SA

Variables JS W/C ω %Clay t 1/ρd Civ e n/(Civ)
d

t 13.18 13.77 11.36 13.13 - 11.45 12.92 11.40 12.78
%Clay 12.47 13.82 13.04 - 15.07 10.06 12.66 10.00 12.89

Plotting the effect in UCS of soilcrete mixtures when t and JS are changed simul-
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Figure 6.7: VEC curves of the four key input variables according to SVM-UCS.Field model in
UCS prediction of soilcrete, quantified by 1-D SA

taneously, the VEC surface of Figure 6.8a is obtained. The VEC contour depicted in

Figure 6.8b represents the effect in UCS of soilcrete mixtures for different combination

between t and %Clay. In the first situation, it is observed that the t effect in UCS is

more pronounced when the soil improvement is performed with single fluid system and

that this gain ratio, as well as the maximum strength values, decreases for double and

triple fluid systems (Tinoco et al., 2011d). Indeed, for triple system, UCS of soilcrete

mixtures just slightly increase over time. Moreover, it is also observed that the influence

of the JG system, will be particularly noteworthy for advanced ages. In the second case,

a similar behaviour is observed, i.e. that the gain of strength is more pronounced in soil

with low clay content, noting also that for high %Clay the UCS of soilcrete mixtures just

slightly increases over time.

Figure 6.9a shows that for soils with high clay content, the effect of Civ variations on

UCS of soilcrete mixtures is hardly noticeable. Additionally, it is also observed that for

soils with low %Clay, even for low Civ, it is obtained a considerable strength. On Fig-

ure 6.9b it is observed a uniform variation of UCS of soilcrete when %Clay and n/(Civ)
d

are changed simultaneously, being the highest values of UCS achieving for soilcrete mix-

tures with a low n/(Civ)
d ration and prepared in a soil with low clay content.
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Figure 6.8: 2-D SA according to SVM-UCS.Field model in UCS prediction of soilcrete: a)
VEC surface for t and JS interaction and b) VEC contour for t and %Clay interaction
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Figure 6.9: 2-D SA according to SVM-UCS.Field model in UCS prediction of soilcrete: a) VEC
surface for %Clay and Civ interaction and b) VEC contour for %Clay and n/(Civ)

d interaction
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6.3 Comparison between laboratory and field

strength predictions

As shown in Chapter 5, a new approach was developed to accurately predict UCS of

JGLF , namely by SVM-UCS.Lab model. On the other hand, the same novel approach was

applied for field samples from JG columns of geotechnical works. Moreover, in Section 6.5,

it will be proposed a relationship between strength and stiffness of soilcrete mixtures. In

order to set an integrated approach for JG mechanical properties design, a final step

needs to be executed, allowing to make the bridge between laboratory formulations and

field samples. Accordingly, a plausible, although tentative framework as a step toward

the prediction of UCS of soilcrete from the laboratory database was attempted. In

Figure 6.10, the mean values at 28 days of UCS experimental field samples by geotechnical

works are compared with those predicted by SVM-UCS.Lab laboratory model (also by

mean values at 28 days of geotechnical works). The analysis of these results show an

acceptable relationship between UCS of laboratory formulations and field samples except

for one geotechnical work (G). Indeed, if this case is excluded, a relationship between

laboratory formulations and field samples with an R2 = 0.64 is achieved. Moreover, it

is observed that UCS of soilcrete is around 11% higher than the equivalent laboratory

formulation, following reference values found in the literature (Van Impe et al., 2005).

For geotechnical work G, the mean value predicted by SVM-UCS.Lab model was

considerably overestimated. Since the SVM-UCS.Lab model applicability is satisfied for

all field records used in this experiment, it was performed an attempt to find a plausible

justification for such situation.

Considering that the study of soilcrete mixtures is based on laboratory formulations,

we agree that such deviation should be related with a given variable not contemplated by

the laboratory model. However, since this deviation is observed just for one geotechnical

work, this behaviour is probably related with a particular situation of this geotechnical

work. Therefore, it was performed a deep analysis of all available information related

with each of the geotechnical works, such as the amount of cement applied during the

soil improvement, the water content of the mixture, the depth where the samples were

collected (influence of environment effects), water table level, etc. Some experiments

were also performed, using UCS of each sample normalized by the 28 days strength of

the respective formulation. However, no significant differences were observed. The only

relevant difference is related with the water table level of geotechnical work G. In this

case, there are information that the columns were built bellow water table level, leading

us to conclude that this is probably the reason for the low values of UCS observed for
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Figure 6.10: Deviation of the mean by geotechnical works of UCS experimental field samples
against predicted by SVM-UCS.Lab model (mean values by geotechnical works)

field samples when compared to what was expected based on laboratory formulations

behaviour. However, this issue requires a more detailed analysis in order to establish

stronger evidence-based conclusions.

6.4 Deformability modulus prediction

6.4.1 Model performance

The prediction of soilcrete stiffness is often of high importance, namely in the evaluation

of structure’s serviceability. Therefore, and following the same framework of Section 6.2,

some analytical models are herein proposed for E0 prediction of soilcrete mixtures.

The forward and backward FS approaches were also applied to guide the selection

of the best set of input variables. At the end, the selection for soilcrete stiffness study

was based on the information given by the FS approaches and empirical knowledge, but

also supported on the soilcrete strength study described in Section 6.2. Moreover, the

experience obtained with the study of JGLF also gave an important contribution.

Using the metrics MAD , RMSE and R2, Table 6.6 compares the performance of the

SVM predictive models developed based on the forward and backward FS approaches,
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with that (termed as MSqf1) where the input variables were manually selected considering

the literature review, knowledge from JGLF and soilcrete strength studies, as well as on

the contribute of the two FS approaches implemented.

Based on the metric values and on the empirical importance of the input variables of

each model, the set eight attributes assigned in Table 6.6 as MSEf1 will be used during

the entire study of E0 of soilcrete mixtures, compiled in a database with 261 records.

Table 6.7 summarizes the main statistics of E0 and the eight input variables assigned in

Table 6.6 as MSEf1 that will be used during the study of soilcrete stiffness.

Table 6.6: Comparison of the SVM models performance developed using the forward and back-
ward FS approaches and that where the attributes were manually selected, aiming to predict
E0 of soilcrete mixtures

Var FFS BFS MSEf1

JS × × X
n/(Civ)

d X × X
t X X X
Civ × × X
1/ρd × X X
e × X X
ω × X X
W/C × × X
%Sand × X ×
%Silt × X ×
%Clay × X ×
%OM × X ×
Pgrout X × ×
1/n × X ×
kg/m3 X × ×
rpm × X ×
ρ × X ×
ρd × X ×
Wc/C X × ×
OM/C × X ×
OM/CWc/C × X ×

MAD 0.31± 0.01 0.32± 0.01 0.31± 0.00
RMSE 0.46± 0.01 0.47± 0.02 0.46± 0.01
R2 0.54± 0.03 0.49± 0.05 0.53± 0.01

FFS - forward feature selection; BFS - backward feature selection
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Table 6.7: Summary statistics of both input and output variable of the database used during
the study of E0 of soilcrete mixtures, which contemplates the eight input variables assigned in
Table 6.1 as MSEf1

Variable Minimum Maximum Mean Standard Deviation

JS 1.00 3.00 2.04 0.51
W/C 0.83 1.00 0.89 0.07
ω 2.50 96.80 36.38 13.34
t 9.00 181.00 36.72 35.07
1/ρd 5.63E−4 1.40E−3 8.18E−4 1.23E−4

Civ 0.14 0.28 0.21 0.04
e 0.56 2.85 1.25 0.33
n/(Civ)

d 37.88 78.61 58.00 7.50

E0 0.06 3.63 0.89 0.68

Similar to what was performed in the study of JGLF and in strength prediction of

soilcrete mixture, also for stiffness prediction of soilcrete mixture, the proposed expression

by EC2 for concrete deformability prediction was adapted to soilcrete mixtures. Relating

to the approach proposed by MC90 (CEB-FIP, 1991) for the same purpose, and taking

into account its poor performance in JGLF study, it was not applied here. The model

obtained from the optimization of coefficients a and b of Equation 3.18 to soilcrete stiffness

data is written in Equation 6.3 (further termed as EC2-E0.Field).

E(t) =

(
e

(
s·
[
1−( 28

t )
0.5
]))0.3

· Ecm (6.3)

Again, the EC2 analytical expression adapted to soilcrete mixtures (EC2-E0.Field model)

is unable to accurately predicts E0 of JG mixtures. The weak performance achieved by

EC2-E0.Field is plotted in Figure 6.11 and corroborated by the low R2 value achieved

(R2 = 0.24). These results illustrate the complexity of soilcrete stiffness prediction, even

knowing E0 of each formulation at 28 days time of cure.

The coefficients of Equation 5.1, optimized to soilcrete data for stiffness prediction,

using the FN algorithm and the minimization problem according to Equation 5.2 are

shown in Equation 6.4 (this model will be termed as FN-E0.Field).

E0 = 1.000E+10 · JS0.238 ·W/C1.904 · ω−0.100 · t0.625· (6.4)

· 1/ρ−18.517
d · C2.194

iv · e20.226 · (n/(Civ)d)−22.516
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Figure 6.11: Relationship between E0 experimental versus predicted values by EC2-E0.Field
model

FN-E0.Field model written in Equation 6.4 and trained using the Leave-One-Out esti-

mation method, performs E0 prediction of soilcrete mixtures with some dispersion, as

depicted in Figure 6.12, but considerably better than EC2-E0.Field model, obtaining a

R2 = 0.55. However, keeping in mind that this model was trained with JG field data,

such performance may be acceptable.

The average hyperparameters and fitting time values (and respective 95% level con-

fidence intervals according to a t-student distribution) of all DM models trained using

the set of eight input variables assigned in Table 6.6 as MSEf1 are shown in Table 6.8.

These models, developed to predict E0 of soilcrete will be further termed as MR-E0.Field,

ANN-E0.Field and SVM-E0.Field, and are respectively the result of the training of MR,

ANN and SVM algorithms with E0 data of real JG columns.

Table 6.9 shows the predictive capacity of all trained models (i.e. EC2-E0.Field, FN-

E0.Field, MR-E0.Field, ANN-E0.Field and SVM-E0.Field), comparing its performance

in E0 prediction of soilcrete mixtures using MAD , RMSE and R2 metrics as performance

criteria (mean value and 95% confidence intervals), which were computed for the test

data under a 20-fold cross-validation approach. Once again, the best performance was

achieved by ANN-E0.Field and SVM-E0.Field models, together with FN-E0.Field model.

However, the last one is unrealistic in terms of the relative importance of the attributes
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Figure 6.12: Relationship between E0 experimental versus predicted values by FN-E0.Field
model

as further discussed. Comparing ANN-E0.Field and SVM-E0.Field models, the latter

seems to be a better choice for E0 prediction of soilcrete mixtures because it gets smaller

confidence intervals along the 20 runs performed (Tinoco et al., 2012c). In addition, as

further explained when model interpretability is discussed, this model is more coherent,

namely in terms of what is empirically known.

Analysing Table 6.9, it is also observed a significant decrease of models accuracy,

namely ANN-E0.Field and SVM-E0.Field models, when compared to the proposed models

for stiffness prediction of JGLF (see Table 5.6). However, and as above underlined, since

these models were trained using JG field data that normally are characterized by high

complexity and heterogeneity, an value of 0.5 for R2 could be considered satisfactory

and acceptable. On the other hand, among the four DM algorithms trained, the lowest

performance was achieved by MR-UCS.Field model, similarly to what occurred in the

UCS study of soilcrete mixtures. This means that also soilcrete stiffness behaviour cannot

be set by linear laws.

Scatterplots of ANN-E0.Field and SVM-E0.Field models are shown in Figures 6.13

and 6.14 respectively, corroborating that non ideal performance shown in Table 6.9. As

observed, there are several predictions that are far from the diagonal line (i.e. higher pre-

dictive errors). However, these two Scatterplots also illustrate that the model predictions
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Table 6.8: Hyperparameters and computation time of each DM model for E0 prediction of
soilcrete material

Model Hyperparameters time (s)

FN-E0.Field - 117.09± 0.00
MR-E0.Field - 1.05± 0.01
ANN-E0.Field H = 3± 1 59.30± 0.40
SVM-E0.Field γ = 0.19± 0.02, ε = 0.17± 0.00 39.68± 0.05

Table 6.9: Error metrics of all DM models for E0 prediction of soilcrete (test set values, best
values in bold)

Model MAD RMSE R2

EC2-E0.Field 0.84± 0.00 1.52± 0.00 0.24± 0.00
FN-E0.Field 0.34± 0.00 0.45± 0.00 0.55± 0.00
MR-E0.Field 0.39± 0.00 0.55± 0.00 0.33± 0.01
ANN-E0.Field 0.31± 0.01 0.46± 0.01 0.54± 0.02
SVM-E0.Field 0.31± 0.00 0.46± 0.01 0.53± 0.01

tend to follow the diagonal line. Indeed, both models are able to predict approximately

85% of the records within an absolute error less than 0.5 GPa. Moreover, within the pre-

diction with an absolute error higher than 0.5 GPa, 60% (around 9% of all predictions) are

conservatives, i.e. the prediction is performed below the experimental value. These two

observations give a considerable reliability to the model in spite of the R2 value around

0.53.

Figure 6.15 compares the predictive performance of all models trained for E0 predic-

tion of soilcrete mixtures (i.e. EC2-E0.Field, FN-E0.Field, MR-E0.Field, ANN-E0.Field

and SVM-E0.Field models), depicting the model accuracy as a function of the absolute

deviation (REC curves, (Bi and Bennett, 2003)). These curves confirm the poor per-

formance of EC2-E0.Field even for higher absolute deviations. Furthermore, it is shown

that ANN-E0.Field and SVM-E0.Field models have the highest performance, which is

very similar. It is still appealing to observe that FN-E0.Field model performs better E0

prediction of soilcrete mixtures for an absolute deviation higher than 0.9 GPa. Reading

the REC curve of SVM-E0.Field or ANN-E0.Field models, it is concluded that these

models are able to predict accurately more than 80% of the records within an absolute

deviation less than 0.5 GPa, as above underlined.
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Figure 6.13: Relationship between E0 experimental versus predicted values by ANN-E0.Field
model
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model
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6.4.2 Model interpretability

As previously underlined, namely in Chapter 2, the main drawback of complex DM

models is related with its interpretability, due to high mathematical complexity of the

algorithms. Thus, although the difficulty found by the proposed models for soilcrete

stiffness prediction, as above presented, the application of a GSA over such models, namely

ANN-E0.Field and SVM-E0.Field, can give a valuable help in models interpretability and

soilcrete stiffness behaviour. Accordingly, and based on a 1-D SA, Figure 6.16 shows and

compares the relative importance of each variable according to FN-E0.Field, MR-E0.Field,

ANN-E0.Field and SVM-E0.Field models.

Analysing Figure 6.16, and according to SVM-E0.Field model, it is observed that the

t and Civ present the highest impact in E0 prediction of soilcrete (Gomes Correia et al.,

2011). Based on the ANN-E0.Field model, e and ρd also have an important influence

in E0 behaviour. Although with a similar performance in terms of MAD , RMSE and

R2, FN-E0.Field model does not have a physical meaning in terms of relative importance

of the attributes, because considers that the e is the only variable that controls E0 be-

haviour of soilcrete mixtures. Moreover, it is appealing to observe, particularly according

to SVM-E0.Field model, that the jet system applied shows just a slightly influence in
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stiffness prediction of soilcrete mixtures. This behaviour may be related with the statis-

tical distribution of such variable in the database. Indeed, a significant number of records

are from double jet system and just few records are from single and triple fluid system.

Based on the interpretation of Figure 6.16, as well as in models performance shown

in Table 6.9, the SVM-E0.Field seems to be the most interesting one to predict soilcrete

stiffness with the highest accuracy. Moreover, SVM algorithm shows good learning ca-

pabilities in JGLF study and in soilcrete strength prediction. Therefore, SVM-E0.Field

model will be used as reference in the following analysis, performed toward to a better

understanding of soilcrete stiffness behaviour.

To improve model interpretability and better understand what has been learned by

SVM-E0.Field model, the VEC curves of its three key input variables, identified in Fig-

ure 6.16 are plotted in Figure 6.17. Both VEC curves of t and Civ show a positive effect

in deformability properties of soilcrete mixtures (Tinoco et al., 2012c). Particularly, the

concave shape of t VEC curve corroborates once again the exponential effect of t in soil-

cement mixtures behaviour (Coulter and Martin, 2006; Van Impe et al., 2005). On the

other hand, the convex shape of Civ VEC curve gives the idea that for lower cement con-

tents, soilcrete stiffens just slight increases with Civ and only after a given dosage (around

0.20⇒ 0.40 according to the scaled x-axis of Figure 6.17), it increases quickly. The VEC

curve for ω presents an unexpected shape, namely for high water contents of the mixture,

where soilcrete stiffness increases with ω (Liu et al., 2008). This unexpected behaviour

is probably related with the interaction between variables that forced mixtures with high

ω to reach higher stiffness than other with low ω. The not so high SVM-E0.Field model

accuracy can also contribute for such behaviour. As previously shown, all models, even

SVM-E0.Field experienced some difficulties to learn the complex relationships between

E0 and its contributing factors.

Aiming a more realistic interpretation of the models and a more detailed understanding

of soilcrete stiffness behaviour, a 2-D SA was performed over SVM-E0.Field, allowing to

measure the interaction level between variables, as well as its effect in E0 prediction of

soilcrete mixtures. Figure 6.18a plots the interaction level between all variables with t

where W/C is in the top of the ranking with an relative importance around 17%. This

observation shows that although W/C is considered the second variable with less impact

in E0 prediction of soilcrete mixtures (see Figure 6.16), it should also be considered

in soilcrete stiffness behaviour. It is appealing to observe that this behaviour was also

identified is strength study of soilcrete mixtures.
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The VEC surface of t and Civ interaction, depicted in Figure 6.18b, illustrated that

the stiffness gain is proportional to t and Civ. This means that, for instance, the gain

of stiffness over time is higher in mixtures with higher cement content. Observing VEC
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Figure 6.18: 2-D SA according to SVM-E0.Field model in E0 prediction of soilcrete: a) inter-
action level between all variables with t and b) VEC surface for t and Civ interaction
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contour plotted in Figure 6.19a, it is pointed out that the gain of E0 through the time

is faster for mixtures with low ω. On VEC contour of t and W/C interaction, depicted

in Figure 6.19b, it is observed a slight increase of soilcrete stiffness when W/C increases,

mainly for advanced ages (Lee et al., 2005). Although not expected, this phenomenon is

probably related to the low relative importance of W/C (see Figure 6.16), as well as to

the non ideal performance of SVM-E0.Field model.
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Figure 6.19: 2-D SA according to SVM-E0.Field model in E0 prediction of soilcrete: a) VEC
contour for t and ω interaction and b) VEC contour for t and W/C interaction

6.5 Soilcrete strength and stiffness - comparison and

relationship

Bearing capacity of JG columns is normally performed based on soilcrete mechanical

properties, i.e. its strength and stiffness. Table 6.10 summarizes the metrics values (MAD ,

RMSE and R2) of all models so far proposed for UCS and E0 prediction of soilcrete,

comparing its performance. A global overview of this table, and using R2 as performance

criterion, shows that for both mechanical properties prediction each algorithm achieved

a similar performance. The only exception is for FN algorithm that performs better

strength prediction then stiffness of soilcrete mixtures. Moreover, it is underlined the

poor performance of EC2 models in both mechanical properties prediction.

Figure 6.20 compares the relative importance of each input variable in UCS and E0

prediction of soilcrete mixtures according to SVM-UCS.Field and SVM-E0.Field models.

This figure shows that there are some differences between the key variables in the strength
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Table 6.10: Comparison of the performance of all predictive models in UCS and E0 of soilcrete
using MAD , RMSE and R2 as performance criteria

Model MAD RMSE R2

EC2-UCS.Field 1.75± 0.00 2.65± 0.00 0.13± 0.00
EC2-E0.Field 0.84± 0.00 1.52± 0.00 0.24± 0.00

FN-UCS.Field 1.40± 0.00 1.95± 0.00 0.19± 0.00
FN-E0.Field 0.34± 0.00 0.45± 0.00 0.55± 0.00

MR-UCS.Field 1.53± 0.00 2.13± 0.01 0.43± 0.00
MR-E0.Field 0.39± 0.00 0.55± 0.00 0.33± 0.01

ANN-UCS.Field 1.41± 0.02 2.01± 0.06 0.49± 0.03
ANN-E0.Field 0.31± 0.01 0.46± 0.01 0.54± 0.02

SVM-UCS.Field 1.38± 0.01 1.99± 0.01 0.51± 0.01
SVM-E0.Field 0.31± 0.00 0.46± 0.01 0.53± 0.01

and stiffness of soilcrete mixtures behaviour. While in UCS study the three most rel-

evant variables are n/(Civ)
d, JS and t, in soilcrete stiffness study the key variables are

t, Civ and ω. Among the key variables in strength and stiffness study of soilcrete mix-

tures, t is the only one common to both mechanical properties, although with different

relative importances. It is also observed that both models (i.e. SVM-UCS.Field and

SVM-E0.Field models) also include Civ as a key variable. However, in the case of UCS

prediction this variable is only considered indirectly through n/(Civ)
d relation. For the

remaining variables, significant differences are observed.

As previously highlighted, the prediction of soilcrete stiffness based on its strength

values has an important practical application, particularly because the tests for measur-

ing mixtures deformability are more expensive. Accordingly, and similar to what was

done for JGLF presented in Section 5.4, we present a novel approach, aiming to predict

soilcrete stiffness based on the UCS of the respective mixture, and considering some ad-

ditional elementary variables. The proposed approach, developed using DM techniques,

is intended to predict E0 of soilcrete mixtures based on n/(Civ)
d, JS, t, Civ and ω, as

well as the UCS of the mix at the same age. The choice of these set of input variables

is essentially supported on the observation of Figure 6.20, where it is found a significant

difference in its relative importance depending on whether strength or stiffness is studied,

which means that probably these variables make the bridge between these two mechanical

properties. Moreover, some of these variables, namely t and Civ, were also identified as

relevant for this correlation in JGLF study (see Figure 5.30).
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Table 6.11 summarizes the main statistics of both input and output variables used

during this experiment, i.e. to predict E0 of soilcrete mixtures as a function of the re-

spective UCS. For this exercise, we only applied the two DM algorithms that achieved

the best global performance throughout this research work, i.e. the algorithms ANN and

SVM . Additionally, it was also applied the MR algorithm for a baseline comparison. Af-

ter training these three algorithms using the database characterized in Table 6.11 and the

same hyperparameters and considerations underlined in Section 6.1 (i.e. ANN activation

function, model generalization approaches, etc.), the obtained models will be termed as

MR-E0UCS.Field, ANN-E0UCS.Field and SVM-E0UCS.Field, respectively. Table 6.12

summarizes the averaged hyperparameters and fitting time values (and respective 95%

level confidence intervals according to a t-student distribution) of MR-E0UCS.Field,

ANN-E0UCS.Field and SVM-E0UCS.Field models. The predictive capacity of MR-

E0UCS.Field, ANN-E0UCS.Field and SVM-E0UCS.Field models is compared in Ta-

ble 6.13 (mean value and 95% confidence intervals), using MAD , RMSE and R2 metrics

as a performance criteria.

Table 6.11: Summary statistics for both input and output variables of the database used during
the experiments performed with the goal to correlate E0 and UCS of soilcrete mixtures

Variable Minimum Maximum Mean Standard Deviation

JS 1.00 3.00 2.04 0.51
ω 2.50 96.80 36.38 13.34
UCS 0.32 20.27 4.03 3.15
t 9.00 181.00 36.72 35.07
Civ 0.14 0.28 0.21 0.04
n/(Civ)

d 37.88 78.61 58.00 7.50

E0 0.06 3.63 0.89 0.68

Table 6.12: Hyperparameters and computation time of MR-E0UCS.Field, ANN-E0UCS.Field
and SVM-E0UCS.Field models, used in E0 prediction of soilcrete material

Model Hyperparameters time (s)

MR-E0UCS.Field - 0.85± 0.01
ANN-E0UCS.Field H = 4± 1 52.89± 0.04
SVM-E0UCS.Field γ = 0.26± 0.02, ε = 0.11± 0.00 38.61± 0.11
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Table 6.13: Error metrics of MR-E0UCS.Field, ANN-E0UCS.Field and SVM-E0UCS.Field
models, used for E0 prediction of soilcrete, and its comparison with ANN-E0.Field and SVM-
E0.Field models (test set values, best values in bold)

Model MAD RMSE R2

MR-E0UCS.Field 0.36± 0.00 0.52± 0.00 0.41± 0.00
ANN-E0UCS.Field 0.26± 0.00 0.43± 0.03 0.59± 0.06
SVM-E0UCS.Field 0.26± 0.00 0.43± 0.00 0.59± 0.01
ANN-E0.Field 0.31± 0.01 0.46± 0.01 0.54± 0.02
SVM-E0.Field 0.31± 0.00 0.46± 0.01 0.53± 0.01

Although not very accurate, ANN-E0UCS.Field and SVM-E0UCS.Field models per-

forms better E0 prediction when compared to the ANN-E0.Field and SVM-E0.Field mod-

els presented and discussed in Section 6.4. Figure 6.21 plots the relationship between

E0 experimental values versus predicted by ANN-E0UCS.Field and SVM-E0UCS.Field

models, corroborating its better accuracy in E0 prediction of soilcrete mixtures when

compared to ANN-E0.Field and SVM-E0.Field models (see Figures 6.13 and 6.14 re-

spectively). Indeed, both these new models are able to perform E0 prediction of soilcrete

within an absolute deviation lower than 0.5 GPa for 88% of the records, which represent an

improvement around 4%. Figure 6.22 compares the performance of ANN-E0UCS.Field,

SVM-E0UCS.Field, ANN-E0.Field and SVM-E0.Field models in E0 prediction of soil-

crete mixtures throughout the REC curves (Bi and Bennett, 2003). It is shown that

SVM-E0UCS.Field model is able to predict E0 of soilcrete mixtures more accurately

than ANN-E0UCS.Field, as well as its superiority when compared with ANN-E0.Field

and SVM-E0.Field models.

From these observations can be pointed out that E0 prediction of soilcrete mixtures

using UCS as input variable leads to a more reliable results. Hence, it is recommended the

use of UCS as an input variable in soilcrete stiffness prediction whenever this information

is available.

The relative importance of each one of the six input variables, according to ANN-

E0UCS.Field and SVM-E0UCS.Field models, was measured based on a 1-D SA. Fig-

ure 6.23 illustrates that in both models t and UCS are the two most relevant variables

in soilcrete stiffness prediction with an total influence around 50%. It is also appealing

to observe that the effect of both variables is almost linear, particularly according to

ANN-E0UCS.field model, as depicted in Figure 6.24.
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Figure 6.21: Relationship between E0 experimental versus predicted values by: a) ANN-
E0UCS.Field model and b) SVM-E0UCS.Field model
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Figure 6.23: Relative importance of each input variable quantified by 1-D SA, comparing MR-E0UCS.Field, ANN-E0UCS.Field and
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Figure 6.24: VEC curves of: a) t according to ANN-E0UCS.Field model; b) UCS according to
ANN-E0UCS.Field model; c) t according to SVM-E0UCS.Field model and d) UCS according
to SVM-E0UCS.Field model, on soilcrete stiffness prediction, quantified by 1-D SA

A 2-D SA over ANN-E0UCS.Field corroborates the strong influence of t and UCS

in soilcrete stiffness prediction, as shown in Figure 6.25a that depicts the interaction

level between all variables with UCS. The effect of UCS and t interaction is plotted in

Figure 6.25b, denoting a uniform influence of both variables in E0 behaviour of soilcrete

material.
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Figure 6.25: 2-D SA according to ANN-E0UCS.Field model in E0 prediction of soilcrete: a)
interaction level between all variables with UCS and b) VEC surface for UCS and t interaction

6.6 Diameter prediction

6.6.1 Model performance

In this section, we present and discuss the proposed models for D prediction, developed

through the application DM tools. Relating to this task, it should be underlined that

the learning process was supported on a database that includes information from test

columns, for which the diameter was measured, and project columns, for which the diam-

eter is assumed equal to the test columns, since these columns are built under the same

conditions.

Table 6.14 compares the SVM models performance of the two FS approaches imple-

mented, i.e. forward and backward methods, with the manual selection that took into

account the knowledge acquired from literature review and balanced with the information

given by FS approaches.

Accordingly, Table 6.15 summarizes the main statistics of the database used during

the study of JG column diameter, i.e. the database that includes just the nine variables

assigned in Table 6.14 as MSDf1, which encompasses 632 records (403 from test columns

and 229 from project columns).

The average hyperparameters and fitting time values (and respective 95% level con-

fidence intervals according to a t-student distribution) of all DM models trained using

the set of eight input variables assigned in Table 6.14 as MSDf1 are shown in Table 6.16.

These models, developed to predict JG column diameter will be termed as MR-D.Field,
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Table 6.14: Comparison of the SVM models performance developed using the forward and
backward FS approaches with the manual selection, aiming to predict D

Var FFS BFS MSDf1

JS × X X
FR X X X
WS X X X
Impgrout × X X
Pgrout × X X
Dgrout X X X
%Sand X × X
%Clay × × X
WT × X ×
rmp X X ×
kg/m3 X X ×
kg/ml × X ×
W/C X X ×
ρgrout × X ×
Pwater × X ×
Pair × X ×
Dwater × X ×

MAD 0.92± 0.40 0.97± 0.22 0.23± 0.22
RMSE 3.69± 6.47 4.87± 1.78 2.27± 3.88
R2 1.00± 0.00 1.00± 0.00 1.00± 0.00

FFS - forward feature selection; BFS - backward feature selection

Table 6.15: Summary statistics for both input and output variables of the database used during
the study of D, which contemplates the eight input variables assigned in Table 6.14 as MSDf1

Variable Minimum Maximum Mean Standard Deviation

JS 1.00 3.00 2.05 0.37
WS 6.00 21.82 10.10 4.22
FR 139.00 577.89 363.30 79.06
Dgrout 3.80 7.00 4.89 0.84
Pgrout 140.00 450.00 355.78 85.37
Impgrout 58.06 278.95 213.56 69.12
%Sand 0.01 39.00 22.15 16.79
%Clay 22.50 45.00 32.89 7.28

D 800.00 3008.00 2184.55 432.12
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ANN-D.Field and SVM-D.Field, and are respectively the result of the training of MR,

ANN and SVM algorithms with JG column diameter data.

Table 6.16: Hyperparameters and computation time of each DM model for D prediction

Model Hyperparameters time (s)

MR-D.Field - 1.21± 0.02
ANN-D.Field H = 8± 1 115.92± 0.82
SVM-D.Field γ = 1.98± 0.24, ε = 2.61E−5 ± 4.48E−7 112.64± 0.34

Table 6.17 shows the predictive capacity of all trained models, comparing its perfor-

mance on JG column diameter prediction based on the MAD , RMSE and R2 metrics,

computed for the test data under a 20-fold cross-validation approach (mean value and 95%

confidence intervals). Analysing Table 6.17, it is concluded that JG column diameter pre-

diction was correctly learned by both ANN and SVM algorithms. Indeed, ANN-D.Field

and SVM-D.Field models achieved an R2 = 1 in such task.

Table 6.17: Error metrics of all DM models for D prediction (test set values, best values in
bold)

Model MAD RMSE R2

MR-D.Field 76.97± 0.09 125.46± 0.14 0.92± 0.00
ANN-D.Field 0.83± 0.16 2.78± 2.58 1.00± 0.00
SVM-D.Field 0.23± 0.22 2.27± 3.38 1.00± 0.00

This excellent performance is shown in the Scatterplots shown in Figure 6.26, where

the predictions according to ANN-D.Field and SVM-D.Field models are very close with

the experimental ones (diagonal line) for both test and project columns. Figure 6.26a

illustrated the difficulty of predicting JG column diameter based on linear laws, which is

corroborated by the REC curves plotted in Figure 6.26d. This figure also illustrates once

more the very high accuracy of ANN-D.Field and SVM-D.Field models in JG column

diameter prediction. As shown, both ANN-D.Field and SVM-D.Field models are able to

predict almost all records of the database with and absolute deviation lower than 0.5 mm.

6.6.2 Model interpretability

In order to identify what are the most relevant variables in JG column diameter prediction,

a 1-D GSA was performed over MR-D.Field, ANN-D.Field and SVM-D.Field models.
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Figure 6.26: Relationship between D measured versus predicted values by: a) MR-D.Field
model; b) ANN-D.Field model and c) SVM-D.Field model. In d) it is plotted the REC curves
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diction
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Figure 6.27 compares the relative importance of each variables showing that, although

ANN-D.Field and SVM-D.Field models are both very accurate in JG column diameter

prediction, they are not guided exactly by the same variables. According to SVM-D.Field

model, the %Sand, WS, %Clay and Dgrout are the for key variables in JG column diam-

eter prediction. On the other hand, ANN-D.Field model presents an relative importance

distribution more uniform where Pgrout and WS are in the top of the ranking. Looking

to the key variables according to each model, we can conclude that SVM-D.Field model

predicts JG column diameter as a function of the soil properties (%Sand and %Clay

have an total influence around 44%). On the other hand, and according to ANN-D.Field

model, JG column diameter is particularly related with the energy applied during the JG

soil improvement (soil properties just have an influence around 15%). Together, these two

models combine the observations performed by Modoni et al. (2006) on their theoretical

approach for JG column diameter prediction, i.e. the interaction between the soil and

the jet energy on JG column diameter development.

Aiming to understand how ANN-D.Field and SVM-D.Field models learned the effect

of the grout jet and soil properties in JG column diameter development, a GSA was

performed over these two models. Accordingly, and based on a 1-D SA, the VEC curves

of Pgrout and WS were calculated using the ANN-D.Field model. Figure 6.28a plots

the VEC curve Pgrout, showing that JG column diameter decreases when the jet grout

pressure increases. This behaviour, apparently not expected, can be explained by the

concepts behind the different JG systems. Indeed, the grout pressure used in the triple

fluid system is normally lower than in single fluid system, as illustrated in Figure 6.28b,

because its main function is “just” to mix the fragmented soil with the cement slurry.

However, it is known (Essler and Yoshida, 2004) that the diameter of JG column built

with single fluid system is lower than by triple fluid system, as a result of the highest energy

applied in triple system, supplied by the additional water jet involved by pressurized air

that cut the soil before apply the grout jet. Therefore, since the effect of the water jet

used in double or triple fluid systems is not available to the model, it learned the effect of

the jet fluids just using the grout pressure. The effect of the WS and JS in JG column

diameter prediction is depicted in Figure 6.29, showing, as expected, that the column

diameter decreases with the increasing of the WS according to a logarithm law, and

increases almost linearly from single to triple fluid system.

The VEC curves of %Sand, WS and %Clay according to SVM-D.Field model are

plotted in Figure 6.30, with the intention of explaining the effect of soil in JG column

diameter development. On one hand, it is observed that the VEC curve of WS presents

the same shape that in ANN-D.Field model, i.e. that JG column diameter decreases with

the increasing of WS.
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Figure 6.27: Relative importance of each input variable quantified by 1-D SA, comparing MR-D.Field, ANN-D.Field and SVM-D.Field
models
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On the other hand, VEC curves of %Sand and %Clay show that the JG columns

with the highest diameters are built in sandy soils and that the smallest ones are built

in clayed soils. Moreover, comparing these two VEC curves, it is pointed out that the

decrease of the clay fraction of the soil has a higher impact in the column diameter than

the increase of the sand fraction.
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Figure 6.28: 1-D SA according to ANN-D.Field model: a) vertical averaging of Pgrout VEC
curve (points and whiskers) and histogram (in bars) and b) relationship between JS and Pgrout
variables
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D prediction, quantified by 1-D SA

Based on a 2-D sensitivity analysis, it was measured the interaction level between all

variables with %Clay (see Figure 6.31a) and plotted the effect in JG column diameter

development when %clay and WS are changed simultaneously. Figure 6.31b shows that

the effect of WS is more preponderant in soils with high clay content.
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Figure 6.31: 2-D SA according to SVM-D.Field model in D prediction: a) interaction level
between all variables with %Cay and b) VEC contour for %Clay and WS interaction
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6.7 Proposal for jet grouting column diameter design

In the present chapter, some predictive models for soilcrete mechanical properties and

JG column diameter were proposed. In the case of column diameter prediction, one of

the most important tasks for JG quality control purposes, a high accuracy was achieved.

However, due to the high mathematical complexity of the DM algorithms applied (e.g.

SVM algorithm), such models are difficult to understand and implement for practical

applications.

For models interpretability, a GSA was applied (see Section 6.6.2), where important

observations were taken. To facilitate the implementation of the proposed models, namely

during the project level, a graphical representation of the proposed model could be very

useful. However, due to the high number of variables involved, such representation is

complex, being necessary to apply some simplifications to make it possible.

Taking the SVM-D.Field model, which achieved a great performance in JG column

diameter prediction as shown in Section 6.6, Figure 6.32 depicts the relationship between

JG column diameter built using single fluid system and WS for different combination of

the remain input variables, i.e. FR, Pgrout, Impgrout and Dgrout, and according to the

soil properties. The equivalent representation for double and triple fluid system are plot

in Figures 6.33 and 6.34 respectively. For each one of the input variables, particularly

WS, FR, Dgrout and Pgrout, it was considered the range currently used, as summarized in

Table 3.3, but limited to the SVM-D.Field model applicability. In these three plots, the

doted line represents the relation between WS and JG column diameter considering the

mean value of each one of the remains input variables and the shaded area represents the

envelop of the JG column diameter for different combinations of each one of the input

variables.
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Figure 6.32: Abacus for D design of single fluid system and according to SVM-D.Field model
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Figure 6.33: Abacus for D design of double fluid system and according to SVM-D.Field model
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Figure 6.34: Abacus for D design of triple fluid system and according to SVM-D.Field model
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6.8 Conclusions

Soft soil improvement using JG technology is currently applied in many geotechnical

works. Quality assessment is usually taken from the JG column diameter, particularly of

the test columns, and the soilcrete mechanical properties (strength and stiffness). There-

fore, it is useful to have numerical approaches capable of accurately predicting each one

of these elements. However, due to the high number of parameters involved during the

soil improvement and the heterogeneity of the soils, such a task is highly complex. As

a result, attempts to develop predictive models for soilcrete mechanical properties and

column diameter of JG technology are scarce and have important applicability limitations

(summarised in Chapter 3).

In this chapter, some analytical models were proposed for predicting UCS and E0 of

soilcrete mixtures and JG column diameter through the application of advanced statistical

analysis, usually known as DM techniques. Although these techniques have good potential

for learning complex mappings (as shown in Chapter 5), non-ideal predictive performances

were achieved in the experiments conducted for the prediction of the mechanical properties

of soilcrete. Nevertheless, the proposed models, particularly ANN and SVM , for UCS

and E0 prediction of soilcrete mixtures achieved a performance that can be acceptable for

field mixtures study. In particular, it was observed that most of the predictions are above

the experimental values, i.e., predictions have a positive safety factor. Moreover, after

applying a GSA procedure over the most interesting data-driven models, important and

useful observations were noted that help one understand soilcrete mechanical behaviour.

For instance, the exponential effect of t in soilcrete strength and stiffness behaviour was

observed, and ω and Civ play an important role in E0 prediction of soilcrete mixtures.

Moreover, the relation n/(Civ)
d and the jet system also exert an important influence on

soilcrete strength prediction. In addition, it was shown that the behaviour of soilcrete

mechanical properties cannot be accurately learned by linear approaches.

Despite its good performance in the JGLF mechanical properties study, the EC2

approach for the prediction of soilcrete mechanical properties was fair. Indeed, even

considering the material properties at 28 days of curing, the performance was poor, which

could be attributed to other variables not contemplated in the model. For example, it

was shown through the data-driven models that soilcrete porosity is relevant in the study

of its mechanical properties.

The preliminary experiments performed to correlate the UCS of laboratory formula-

tions and field mixtures showed that the mean value (by geotechnical work) of UCS of

soilcrete mixtures at 28 days of curing is approximately 11% higher than the equivalent
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laboratory formulation. However, this experiment needs to be further validated when

new data are available because it was not satisfied for one of the five geotechnical works

considered.

The prediction of soilcrete stiffness based on strength values achieved a slightly better

performance in comparison to the model where the strength is not considered as an input

variable. In this experiment an almost linear relationship between E0 and UCS for a

given sample was observed.

Regarding the predictive models for JG column diameter, an excellent performance

was achieved, namely by the SVM and ANN algorithms. Moreover, a GSA was performed

over the proposed models, confirming some of the well-known theoretical approaches for-

mulated to describe the development of the JG column diameter, i.e., the effect of the soil

resistance and jet action. The importance of the WS and the soil properties, namely its

sand and clay content, in the development of the JG column diameter was underscored.

It should also be noted that the models explored in this thesis represent a starting

point towards the development of new approaches for more accurate and applicable (in

terms of soil types) JG technology design. Moreover, some interesting observations were

stressed, contributing a better understanding of the mechanical behaviour of soilcrete

mixtures as well as the JG column diameter development, which has the potential to

improve the technical and economic efficiency of JG technology.
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Chapter 7

Main summary

7.1 Synthesis and main conclusions

This thesis studied Jet Grouting (JG) technology from the point of view of the devel-

opment of new approaches for its design, i.e., to predict Uniaxial Compressive Strength

(UCS) and stiffness of Jet Grouting Laboratory Formulations (JGLF ) and soilcrete1 mix-

tures as well as JG column diameter. To do so, a literature review was performed to

identify the existing approaches for JG design and the most relevant variables that can

directly or indirectly interfere in the development of strength, stiffness and diameter of JG

columns during the JG process. In addition, research on Artificial Intelligence (AI )/Data

Mining (DM ) tools was performed to develop a background to support the implementa-

tion of such tools in the development of the intended JG design methodologies.

The main achievements found in each chapter are summarised below.

In Chapter 2, the high learning capabilities and flexibility of DM techniques even when

addressed to problems of high dimensionality/complexity were highlighted, and the im-

portance of a structured database with sufficient data containing significant attributes for

the discovery task was emphasised. Relating to this issue, the noise levels deserve partic-

ular attention because it is not current practice in JG projects to organise all information

related with each JG project. Moreover, another important task during a DM problem

is related to the selection of the best set of input variables, where the implementation of

Feature Selection (FS ) algorithms can provide a valuable contribution. Additionally, it

was observed that the main drawback related to the application of DM techniques to solve

complex problems is the model interpretability due to the high mathematical complexity

of the algorithms implemented. To overcome this drawback, the application of a novel

Global Sensitivity Analysis (GSA) over the trained models gives important help. With

1Soilcrete � practical designation for soil-cement mixture resulting from JG technology.
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this analysis, it was possible to measure the relative importance of each input variable as

well as its average effect on the target variable.

In Chapter 3, the importance of JG technology as a soft soil improvement method

was discussed. This versatile technology can be applied for different purposes, such as

groundwater control or support. Despite JG being widely used, the actual approaches

for JG design (mechanical properties and column diameter) are scarce and have impor-

tant applicability limitations. The main factors for this scenario are the high number of

parameters involved and the heterogeneity of the soil. Therefore, demand for advanced

tools able to develop design approaches for JG design is rising. The answer could lie in

the large amount of data related to different JG projects that were collected and stored

over the last few years. These data, containing information related to the soil properties,

JG parameters, mechanical properties of the soilcrete mixture and JG column diame-

ter, can now be analysed by powerful statistical analysis methods usually known as DM

techniques. These tools are able to analyse complex data and extract useful patterns

and trends that can be converted into knowledge/models for implementation in future

projects.

A first step toward the development of new and more reliable approaches for JG tech-

nology design was addressed by JGLF . The main achievements of these formulations,

normally prepared for large-scale JG projects, were based on the databases created in

Chapter 4 and were presented and discussed in Chapter 5. The main innovative contri-

butions are as follows:

• DM techniques, particularly Support Vector Machine (SVM ) and Artificial Neural

Network (ANN ) algorithms, proved to be powerful tools for exploring JGLF me-

chanical properties. Indeed, these tools were able to learn with high accuracy the

complex relationships between JGLF mechanical properties and their contributing

factors. For both UCS and stiffness prediction of JGLF , SVM achieved a perfor-

mance higher than 0.93, using R2 as a performance indicator;

• Based on a GSA, it was shown that the relation between the mixture porosity and

the volumetric content of cement (n/(Civ)
d) is a key variable in both mechanical

properties prediction of JGLF . Moreover, in the UCS study the age of the mix-

ture (t) and Civ (volumetric content of cement) should also be taken into account.

Additionally, it was observed that the soil properties are slightly more relevant in

stiffness prediction of JGLF than for strength;

• By measuring the average impact of t and Civ in the mechanical properties of

JGLF , a positive influence following an exponential law, with a concave shape in
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the case of t and convex shape for Civ, was observed. On the other hand, the relation

n/(Civ)
d and the %Clay (clay content of the soil) have a negative impact in both

JGLF mechanical properties development;

• The analytical expressions proposed by Eurocode 2 for predicting the strength and

stiffness of concrete can be seen as an interesting alternative for JGLF strength

and stiffness predictions. However, because these approaches require information

from 28-day laboratory tests, their application is particularly limited to validation

purposes;

• An attempt to predict the elastic Young’s modulus (E0) based on UCS values was

successfully performed through the SVM algorithm, where an almost linear rela-

tionship between E0 and UCS of JGLF was observed. Although there is a practical

importance for such an approach (i.e., predict E0 based on UCS values), this task

can be accurately performed by an equivalent model (in terms of performance) using

elementary variables as attributes, i.e., without considering UCS.

• The obtained results are a valuable contribution to geotechnical engineers, as the

number of JGLF can be reduced. Additionally, a better understanding of the be-

haviour of JG material based on few variables was achieved. As a result of this

knowledge, the quality, speed and cost of JG technology can be improved by effi-

ciently controlling some variables involved in JG technology to achieve the desired

result. Furthermore, DM models can be easily updated when new data are available,

expanding its applicability in terms of soil types and for a range of JG variables.

Concerning the study addressing JG mixtures collected directly from real JG columns, for

which the main achievements were presented and discussed in Chapter 6, the main inno-

vative contributions related with mechanical properties and column diameter prediction

are as follows:

• When working with soilcrete, DM techniques experienced some difficulties learning

the complex relationship between soilcrete mechanical properties and their con-

tributing factors. However, particularly for the SVM algorithm, it is still possible

to predict UCS and E0 of soilcrete mixtures with considerable accuracy, from 9 to

181 days in advance and for single, double and triple fluid systems;

• Supported by a novel GSA, the development of soilcrete mechanical properties fol-

lowed an exponential law based on the age of the mixture. For UCS prediction the

relation n/(Civ)
d and jet system (JS) also play an important role, and in stiffness
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development a strong influence of the cement and water content of the mixture was

observed;

• For a better understanding of the problem at hand, a detailed Sensitivity Analysis

(SA) (e.g., 2-D or higher) was extremely useful. For instance, based on a 2-D SA it

was shown that t and W/C have a strong interaction in UCS prediction and that

the effect of t is more pronounced on JG columns built with a single fluid system;

• Although it has shown good performance in JGLF mechanical properties study,

using Eurocode 2 (EC2 ) for the prediction of soilcrete mechanical properties was

fair. Indeed, even when considering the material properties at 28 days of curing, the

achieved performance was poor, which could be attributed to other variables not

included in the model. For example, it was shown through the data-driven models

that the soilcrete porosity is relevant in the study of its mechanical properties;

• Soilcrete stiffness can be predicted with better accuracy when the UCS of the

mixtures is available to use as an input variable in the model. In this circumstance

an almost linear relationship between E0 and UCS is observed;

• The mean value (by geotechnical work) of UCS of soilcrete mixtures at 28 days

of curing is approximately 11% higher that the equivalent laboratory formulation.

This tentative correlation between the UCS in laboratory formulations and soilcrete

mixtures needs to be further validated when new data are available because this was

not satisfied for one of the five geotechnical works considered;

• For JG column diameter prediction, two models with high accuracy were developed

based on ANN and SVM algorithms. These models were able to assimilate both

the jet action and the soil resistance in the development of JG column diameter.

As a final observation, the following conclusion should be stressed:

• DM tools were shown to be a powerful instrument for addressing complex geotech-

nical problems that involve a high number of variables, such as in JG technology.

Particularly, the ANN and SVM algorithms were able to learn the complex phe-

nomena involving soil-cement mixtures and are recommended to explore similar

problems;

• In addition to the high learning capabilities showed by the applied DM tools, it

should also be stressed that the proposed models can be further updated when new

data are made available, improving its performance and applicability, namely in

terms of soil types;
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• Another important and useful methodology, representing a complement to DM

tools, is the application of GSA over the trained models. These methodologies

can provide a valuable contribution for the models’ interpretability, promoting a

better understanding of the problem;

• It should be noted that the proposed models are not intended to substitute for the

actual approaches, but to complement it. Moreover, independent of the accuracy of

the developed models, there will always be an associated error, which needs to be

controlled by laboratory and/or field tests;

• Taking into account the achieved results, the proposed models, namely those ob-

tained from the SVM algorithm, can be seen as a starting point to describe statis-

tically the actual knowledge related to the behaviour of JG mixtures. Moreover,

the proposed approaches can be used for either future JG project design or quality

control purposes. Therefore, it is expected to improve JG technical and economic

efficiency and to optimise both quality and costs of the soil improvement;

• It should be strongly stressed that all proposed models for strength, stiffness and

diameter of JG columns, as well as all conclusions, are based on the databases

used. This means that, for instance, because all data were collected from just one

company, other important variables that were not considered because they are not

usually used by the company (e.g., nozzle geometry) may exist. Moreover, the

proposed models should only be applied in the same conditions for which they were

developed.

7.2 Future Developments

The different models proposed in the present work for mechanical properties prediction of

both JG laboratory and field mixtures, as well as for JG column diameter, gave an impor-

tant contribution for a better understanding of JG technology. However, the applicability

of such models in real JG project design was not assessed. Therefore, it will be very useful

the development of an informatics application supported on the proposed models, allow-

ing its easily implementation and, at the same time assess its practical application and

real contribution for JG technology.

In the present research, the high learning capabilities of DM tools to address JG

material, particularly to learn the JG column diameter, were proved. However, the data

used to feed the DM algorithms, although consistent and collected from reliable sources,

contained some missing data that forced some variables to be omitted as input attributes.
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This lack can be seen as one of the causes of the lower performance of the proposed models

for soilcrete mechanical properties prediction. Therefore, supported by the idea that DM

tools are able to learn the complex relationships behind soilcrete mechanical properties

and JG column diameter, it is proposed to spend some effort to determine additional

variables that improve model performance. Moreover, it will be interesting to have data

regarding the Xjet system and to compare their results with the prediction from the other

techniques.

According to the literature review, the type of soil is one of the main parameters

that influences both soilcrete mechanical properties and JG column diameter. However,

a detailed characterisation of the soil conditions is an expensive task, and, as a result,

it is minimised to the vital parameters only. On the other hand, important information

related to the soil profile can be taken during the perforation phase in the JG technology.

Accordingly, the development of an integrated approach able to contemplate the informa-

tion collected during this JG phase and the high learning capabilities of DM techniques

could represent an important advance for JG technology efficiency.
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Appendix A

Histograms and main statistics of the

numerical variables used in the DM process

A.1 Jet grouting laboratory formulations data

A.1.1 Main statistics and histograms for UCS study

Table A.1: Summary of the input and output variables of database used in UCS study of JGLF

Variable Minimum Maximum Mean Standard Deviation

W/C 0.68 1.12 0.88 0.16

CT 1.00 4.00 2 1.17

SCC 32.50 42.50 40.21 4.21

s 0.20 0.25 0.21 0.02

kg/m3 500.00 1806.00 1010.86 402.81

t (days) 3.00 56.00 21.6 19.24

ρ (kg ·m−3) 1484.11 1916.16 1689.77 118.73

ω (%) 28.00 87.00 52.77 16.83

ρd (kg ·m−3) 807.28 1497.00 1127.44 197.34

1/ρd (m3 · kg−1) 6.68E−4 1.23E−3 9.16E−4 1.67E−4

%Soil 26.02 75.81 52.56 15.21

%Cement 24.19 73.98 47.44 15.21

γs.mixt (kg ·m−3) 2758.86 2982.91 2863.49 68.43

e 0.87 2.57 1.63 0.52

n 46.53 71.96 60.50 7.59

Continued on next page
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Table A.1 – continued from previous page

Variable Minimum Maximum Mean Standard Deviation

1/n 0.01 0.02 0.02 0.00

ωsat (%) 31.08 88.89 56.62 17.17

Sω 0.88 0.98 0.93 0.02

Civ 0.21 0.71 0.44 0.15

n/(Civ)
d 48.83 74.26 62.59 7.26

%Sand 0.00 39.00 13.57 11.54

%Silt 33.00 57.00 50.49 5.49

%Clay 22.50 45.00 35.89 7.74

%OM 0.40 8.30 2.71 1.81

UCS (MPa) 0.76 13.19 5.20 2.73
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Figure A.1: Histograms of the numeric variables used in UCS study of JGLF
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Figure A.1: Histograms of the numeric variables used in UCS study of JGLF (cont’d)
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Figure A.1: Histograms of the numeric variables used in UCS study of JGLF (cont’d)
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Figure A.1: Histograms of the numeric variables used in UCS study of JGLF (cont’d)
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Figure A.1: Histograms of the numeric variables used in UCS study of JGLF (cont’d)
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Figure A.1: Histograms of the numeric variables used in UCS study of JGLF (cont’d)
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Figure A.1: Histograms of the numeric variables used in UCS study of JGLF (cont’d)
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A.1.2 Main statistics and histograms for E0 study

Table A.2: Summary of the input and output variables of database used in E0 study of JGLF

Variable Minimum Maximum Mean Standard Deviation

W/C 0.69 1.11 0.98 0.12

CT 1.00 2.00 1.12 0.32

SCC 42.50 42.50 42.50 0.00

s 0.20 0.20 0.20 0.00

kg/m3 500.00 1000.00 790.43 168.00

t (days) 3.00 56.00 20.22 17.07

ρ (kg ·m−3) 1478.15 1853.41 1667.10 134.47

ω (%) 29.00 90.00 60.23 19.76

ρd (kg ·m−3) 822.65 1435.19 1136.03 152.87

1/ρd (m3 · kg−1) 6.97E−4 1.22E−3 8.97E−4 1.27E−4

%Soil 35.14 75.81 54.90 11.48

%Cement 24.19 64.86 45.10 11.48

γs.mixt (kg ·m−3) 2758.86 2902.23 2830.60 31.75

e 0.96 2.45 1.54 0.37

n 48.95 71.02 59.83 5.68

1/n 0.01 0.02 0.02 0.00

ωsat (%) 34.11 86.33 54.37 12.92

Sω 0.85 1.49 1.09 0.19

Civ 0.21 0.61 0.41 0.11

n/(Civ)
d 51.21 73.81 62.03 5.49

%Sand 0.00 39.00 13.44 12.82

%Silt 33.00 57.00 50.57 7.48

%Clay 22.50 45.00 35.85 7.48

%OM 0.40 8.30 3.51 2.28

E0 (GPa) 0.25 7.89 2.36 1.32
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Figure A.2: Histograms of the numeric variables used in E0 study of JGLF
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Figure A.2: Histograms of the numeric variables used in E0 study of JGLF (cont’d)
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Figure A.2: Histograms of the numeric variables used in E0 study of JGLF (cont’d)
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Figure A.2: Histograms of the numeric variables used in E0 study of JGLF (cont’d)
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Figure A.2: Histograms of the numeric variables used in E0 study of JGLF (cont’d)
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Figure A.2: Histograms of the numeric variables used in E0 study of JGLF (cont’d)
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A.1.3 Main statistics and histograms for Etg50%, Esec50% and Emax

study

Table A.3: Summary of the input and output variables of database used in Etg50%, Esec50% and
Emax study of JGLF

Variable Minimum Maximum Mean Standard Deviation

W/C 0.69 1.11 0.98 0.12

CT 1.00 2.00 1.10 0.31

SCC 42.50 42.50 42.50 0.00

s 0.20 0.20 0.20 0.00

kg/m3 500.00 1000.00 783.33 178.15

t (days) 28 84 64.75 19.29

ρ (kg ·m−3) 1478.15 1853.41 1674.79 134.64

ω (%) 29.00 90.00 59.06 19.75

ρd (kg ·m−3) 822.65 1435.19 1139.66 158.19

1/ρd (m3 · kg−1) 6.97E−4 1.22E−3 8.95E−4 1.34E−4

%Soil 35.14 75.81 55.45 11.87

%Cement 24.19 64.86 44.55 11.87

γs.mixt (kg ·m−3) 2758.86 2902.23 2830.68 36.37

e 0.96 2.45 1.54 0.39

n 48.95 71.02 59.70 5.90

1/n 0.01 0.02 0.02 0.00

ωsat (%) 34.11 86.33 54.20 13.57

Sω 0.85 1.49 1.08 0.19

Civ 0.21 0.61 0.41 0.12

n/(Civ)
d 51.21 73.81 61.93 5.7

%Sand 0.00 39.00 14.40 13.67

%Silt 33.00 57.00 49.90 8.32

%Clay 22.50 45.00 35.52 7.40

%OM 0.40 8.30 3.70 2.45

Emax (GPa) 1.50 7.00 3.44 1.30

Esec50% (GPa) 1.50 5.67 3.17 1.11

Etg50% (GPa) 1.30 4.90 2.76 0.93



APPENDIX A. HISTOGRAMS AND MAIN STATISTICS 229

W/C

Fr
eq

ue
nc

y

0.7 0.8 0.9 1.0 1.1

0
5

10
15

20

(1) Histogram of W/C

CT

Fr
eq

ue
nc

y

1.0 1.2 1.4 1.6 1.8 2.0
0

10
20

30
40

(2) Histogram of CT

SCC

Fr
eq

ue
nc

y

40 42 44 46 48 50

0
10

20
30

40

(3) Histogram of SCC

s

Fr
eq

ue
nc

y

0.00 0.05 0.10 0.15 0.20

0
10

20
30

40

(4) Histogram of s

Figure A.3: Histograms of the numeric variables used in Etg50%, Esec50% and Emax studies of
JGLF
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Figure A.3: Histograms of the numeric variables used in Etg50%, Esec50% and Emax studies of
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Figure A.3: Histograms of the numeric variables used in Etg50%, Esec50% and Emax studies of
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A.2 Jet grouting field samples data

A.2.1 Main statistics and histograms for UCS study

Table A.4: Summary of the input and output variables of database used in UCS study of
soilcrete mixtures

Variable Minimum Maximum Mean Standard Deviation

W/C 0.83 1.05 0.94 0.07

CT 1.00 2.00 1.22 0.42

SCC 42.50 42.50 42.50 0.00

s 0.20 0.20 0.20 0.00

kg/m3 492.00 1194.00 846.08 163.79

kg/ml 600.00 18885 3906.94 3301.32

t (days) 9.00 181.00 47.77 32.22

ρ (kg ·m−3) 1000.00 2600.00 1665.42 132.66

ω (%) 2.50 96.80 38.80 12.13

ρd (kg ·m−3) 693.00 1776.26 1213.17 177.64

1/ρd (m3 · kg−1) 5.63E−4 1.44E−3 8.42E−4 1.22E−4

%Soil 72.19 86.30 78.70 3.34

%Cement 13.70 27.81 21.30 3.34

γs.mixt (kg ·m−3) 2711.64 2775.13 2745.86 15.01

e 0.56 2.99 1.31 0.34

n 35.91 74.92 55.86 6.43

1/n 0.01 0.03 0.02 0.00

ωsat (%) 20.26 108.11 47.78 12.23

Sω 0.09 2.38 0.81 0.17

Civ 0.18 0.43 0.31 0.06

n/(Civ)
d 37.88 79.17 59.41 6.88

Wc/C 0.96 2.30 1.53 0.39

s/C 2.60 6.30 3.83 0.90

OM/C 0.02 0.61 0.26 0.17

OM/CWc/C 0.00 0.37 0.18 0.15

ρgrout 1.52 1.59 1.55 0.03

%Sand 0.01 39.00 24.40 16.53

Continued on next page
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Table A.4 – continued from previous page

Variable Minimum Maximum Mean Standard Deviation

%Silt 33.00 57.00 43.23 11.18

%Clay 22.50 45.00 31.84 6.87

%OM 0.40 8.30 5.40 3.22

H (m) 7.00 31.95 22.50 4.97

JS 1.00 3.00 2.05 0.37

WS (cm/min) 6.00 20.87 9.87 3.51

rpm 3.00 10.00 4.83 1.52

WT (s) 11.50 60.00 38.39 12.74

Step (cm) 4.00 6.00 5.66 0.75

FR (l/min) 139.00 577.89 370.86 78.41

Dgrout (mm) 4.00 7.00 4.84 0.73

NDgrout 1.00 2.00 1.66 0.47

Dwater (mm) 0.00 5.00 0.16 0.88

Pgrout (bar) 140.00 450.00 364.19 82.72

Pair (bar) 0.00 10.00 9.08 2.25

Pwater (bar) 0.00 400.00 36.88 115.82

Impgrout (kg) 58.06 278.95 220.13 66.98

UCS (MPa) 0.32 20.27 3.85 2.61
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Figure A.4: Histograms of the numeric variables used in UCS study of soilcrete mixtures
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Figure A.4: Histograms of the numeric variables used in UCS study of soilcrete mixtures (cont’d)
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Figure A.4: Histograms of the numeric variables used in UCS study of soilcrete mixtures (cont’d)
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Figure A.4: Histograms of the numeric variables used in UCS study of soilcrete mixtures (cont’d)
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Figure A.4: Histograms of the numeric variables used in UCS study of soilcrete mixtures (cont’d)
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Figure A.4: Histograms of the numeric variables used in UCS study of soilcrete mixtures (cont’d)
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Figure A.4: Histograms of the numeric variables used in UCS study of soilcrete mixtures (cont’d)
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Figure A.4: Histograms of the numeric variables used in UCS study of soilcrete mixtures (cont’d)
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Figure A.4: Histograms of the numeric variables used in UCS study of soilcrete mixtures (cont’d)
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Figure A.4: Histograms of the numeric variables used in UCS study of soilcrete mixtures (cont’d)
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Figure A.4: Histograms of the numeric variables used in UCS study of soilcrete mixtures (cont’d)
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A.2.2 Main statistics and histograms for E0 study

Table A.5: Summary of the input and output variables of database used in E0 study of soilcrete
mixtures

Variable Minimum Maximum Mean Standard Deviation

W/C 0.83 1.00 0.91 0.06

CT 1.00 2.00 1.02 0.15

SCC 42.50 42.50 42.50 0.00

s 0.20 0.20 0.20 0.00

kg/m3 492.00 1194.00 821.28 186.31

kg/ml 600.00 18885.00 3907.28 4230.68

t (days) 9.00 181.00 41.52 34.10

ρ (kg ·m−3) 1310.00 2080.00 1677.99 126.34

ω (%) 2.50 96.80 36.41 13.32

ρd (kg ·m−3) 713.92 1776.26 1250.58 193.12

1/ρd (m3 · kg−1) 5.63E−4 1.40E−3 8.18E−4 1.23E−4

%Soil 72.19 86.30 79.24 3.79

%Cement 13.70 27.81 20.77 3.79

γs.mixt (kg ·m−3) 2711.64 2775.13 2743.44 17.04

e 0.56 2.85 1.25 0.33

n 35.91 74.05 54.47 6.94

1/n 0.01 0.03 0.02 0.00

ωsat (%) 20.26 103.72 45.38 12.24

Sω 0.09 1.12 0.79 0.17

Civ 0.18 0.43 0.30 0.07

n/(Civ)
d 37.88 78.61 58.00 7.49

Wc/C 0.97 2.30 1.48 0.38

S/C 2.60 6.30 4.00 1.02

OM/C 0.08 0.61 0.34 0.16

OM/CWc/C 0.01 0.37 0.24 0.13

ρgrout 1.52 1.59 1.56 0.03

%Sand 0.01 39.00 30.88 14.40

%Silt 33.00 57.00 38.77 10.22

%Clay 27.00 45.00 29.59 4.72

%OM 1.80 8.30 6.77 2.73

Continued on next page
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Table A.5 – continued from previous page

Variable Minimum Maximum Mean Standard Deviation

H (m) 7.17 31.60 22.81 5.15

JS 1.00 3.00 2.07 0.46

WS (cm/min) 6.00 20.87 11.17 3.72

rpm 3.00 10.00 5.51 1.54

WT (s) 11.50 60.00 32.52 10.78

Step (cm) 4.00 6.00 5.49 0.87

FR (l/min) 139.00 432.00 356.09 89.64

Dgrout (mm) 4.00 7.00 4.67 0.67

NDgrout 1.00 2.00 1.72 0.45

Dwater (mm) 0.00 5.00 0.28 1.14

Pgrout (bar) 140.00 450.00 359.75 100.97

Pair (bar) 0.00 10.00 8.81 2.84

Pwater (bar) 0.00 400.00 56.84 139.85

Impgrout (kg) 58.06 278.95 215.85 81.79

E (GPa) 0.06 3.88 1.16 0.88
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Figure A.5: Histograms of the numeric variables used in E0 study of soilcrete mixtures
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Figure A.5: Histograms of the numeric variables used in E0 study of soilcrete mixtures (cont’d)
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Figure A.5: Histograms of the numeric variables used in E0 study of soilcrete mixtures (cont’d)



APPENDIX A. HISTOGRAMS AND MAIN STATISTICS 253

%Cement

Fr
eq

ue
nc

y

0.15 0.20 0.25

0
50

10
0

15
0

(13) Histogram of %Cement

γs.mi xt  (Kg m3)

Fr
eq

ue
nc

y

2710 2720 2730 2740 2750 2760 2770 2780
0

20
40

60
80

10
0

12
0

(14) Histogram of γs.mixt

e

Fr
eq

ue
nc

y

0.5 1.0 1.5 2.0 2.5 3.0

0
20

40
60

80

(15) Histogram of e

n

Fr
eq

ue
nc

y

40 50 60 70

0
20

40
60

80
10

0

(16) Histogram of n

Figure A.5: Histograms of the numeric variables used in E0 study of soilcrete mixtures (cont’d)
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Figure A.5: Histograms of the numeric variables used in E0 study of soilcrete mixtures (cont’d)
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Figure A.5: Histograms of the numeric variables used in E0 study of soilcrete mixtures (cont’d)
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Figure A.5: Histograms of the numeric variables used in E0 study of soilcrete mixtures (cont’d)
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Figure A.5: Histograms of the numeric variables used in E0 study of soilcrete mixtures (cont’d)
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Figure A.5: Histograms of the numeric variables used in E0 study of soilcrete mixtures (cont’d)
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Figure A.5: Histograms of the numeric variables used in E0 study of soilcrete mixtures (cont’d)
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A.2.3 Main statistics and histograms for D study

Table A.6: Summary of the input and output variables of database used in D study

Variable Minimum Maximum Mean Standard Deviation

W/C 0.83 1.05 0.94 0.07

kg/m3 492.00 1194.00 840.69 172.06

kg/ml 600.00 18885.00 3826.09 3165.90

ρgrout 1.52 1.59 1.54 0.03

%Sand 0.01 39.00 23.06 16.78

%Silt 33.00 57.00 43.85 11.05

%Clay 22.50 45.00 32.58 7.22

%OM 0.40 8.30 5.31 3.12

JS 1.00 3.00 2.04 0.36

WS (cm/min) 6.00 21.82 10.05 4.10

rpm 3.00 10.00 4.75 1.51

WT (s) 11.00 60.00 38.28 13.63

Step (cm) 4.00 6.00 5.59 0.81

FR (l/min) 139.00 577.89 366.24 77.64

Dgrout (mm) 4.00 7.00 4.91 0.76

NDgrout 1.00 2.00 1.63 0.48

Dwater 0.00 5.00 0.16 0.88

Pgrout (bar) 140.00 450.00 355.82 85.24

Pair (bar) 0.00 10.00 9.16 2.13

Pwater (bar) 0.00 400.00 36.42 115.16

Impgrout (kg) 58.06 278.95 213.64 69.02

D (mm) 800.00 3008.00 2180.44 420.28



262 A.2. JET GROUTING FIELD SAMPLES DATA

W/C

Fr
eq

ue
nc

y

0.85 0.90 0.95 1.00 1.05

0
50

10
0

15
0

20
0

25
0

30
0

(1) Histogram of W/C

Kg m3

Fr
eq

ue
nc

y

600 800 1000 1200

0
50

10
0

15
0

20
0

(2) Histogram of kg/m3

Kg/ml

Fr
eq

ue
nc

y

0 5000 10000 15000 20000

0
10

0
20

0
30

0
40

0

(3) Histogram of kg/ml

ρgro ut

Fr
eq

ue
nc

y

1.52 1.53 1.54 1.55 1.56 1.57 1.58 1.59

0
50

10
0

15
0

20
0

25
0

30
0

(4) Histogram of ρgrout

Figure A.6: Histograms of the numeric variables used in D study
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Figure A.6: Histograms of the numeric variables used in D study (cont’d)
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Figure A.6: Histograms of the numeric variables used in D study (cont’d)
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Figure A.6: Histograms of the numeric variables used in D study (cont’d)
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Figure A.6: Histograms of the numeric variables used in D study (cont’d)
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Figure A.6: Histograms of the numeric variables used in D study (cont’d)
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Appendix B

Mathematical expressions for input variables

calculation

Some of the variables used as input in the present research work were not measured or

experimentally quantified but calculated according to a given mathematical expression.

Following are present are presented the mathematical expressions used for calculate some

of the input variables used in this work.

– Dry density of the mixture — ρd (kg ·m−3):

ρd =
ρ

1 + ω/100
(B.1)

where ρ is the natural density of the mixture (kg/m3) and ω is the water content of

the mixtures in percentage.

– Unite weight of the mixture — γs.mixt (kg ·m−3):

γs.mixt = Gmixt
s × γw where Gmixt

s =
%soil

100
×Gs +

%Cement

100
× c (B.2)

where γw = 1000 kg ·m−3, Gs = 2.65 and c = 3.1.

– Void ratio of the mixture — e:

e =
γs.mixt − ρd

rhod
(B.3)

269
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– Mixture porosity — η:

η =
e

1 + e
(B.4)

– Saturated water content — ωsat (%):

ωsat =
e

Gmixt
s

× 100 where Gmixt
s =

%soil

100
×Gs +

%Cement

100
× c (B.5)

where Gs and c take the values of 2.65 and 3.1 respectively.

– Degree of saturation — Sω:

Sω =
ω

ωsat
(B.6)

– Volumetric content of cement — Civ:

Civ =

%Cement
100

×ρd×
Vsample
1000000

3100(
%Soil
100
×ρd×

Vsample
1000000

Gs×γw

)
+

(
%Cement

100
×ρd×

Vsample
1000000

3100

) (B.7)

where Gs = 2.65, γw = 1000 kg ·m−3 and Vsample is the volume of the sample in

cm3.

– Grout impact — Impgrout (kg):

Impgrout = 2×
π ×D2

grout ×Ngrout

4
× Pgrout (B.8)

where Dgrout is mean diameter of grout nozzles in meters and Pgrout is the grout

pressure in MPa.
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