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ABSTRACT 
 

Yeast has emerged as one of the most important model organisms to study the 

environmental and genetic factors affecting longevity and its exploitation has made huge 

contributions to the progress in understanding aging. Major advances in this research field came 

from dietary regimes that have been shown to increase longevity in organisms ranging from yeast to 

mammals. The understanding on how nutrient signaling pathways collaborate to the beneficial 

effects of dietary restriction can help expose new targets for therapy in the prevention of aged-related 

diseases.  

When studying the impact of nutrient-signaling pathways in aging of yeast, by culturing 

Saccharomyces cerevisiae, the composition of culture media has proven to be an extrinsic factor 

affecting the chronological life span (CLS). Reducing glucose concentration in the culture medium, is 

an environmental modulation that was shown to be sufficient to increase CLS. Other components of 

the culture media and factors such as the products of fermentation have also been implicated in the 

regulation of CLS. Particularly, the CLS of S. cerevisiae is strongly affected by the concentration of 

the auxotrophy-complementing amino acid in the medium.  

In this context, in the present work, we aimed to identify new nutrient signaling capable of 

regulating S. cerevisiae CLS and uncover the signaling pathways involved. The results obtained show 

that manipulation of the ammonium (NH4
+) concentration in the culture medium also affects CLS. 

NH4
+ reduced CLS of cells cultured to stationary phase under both standard amino acid 

supplementation and amino acid restriction conditions, in a concentration-dependent manner, a 

significant increase in cell survival being observed when the starting NH4
+ concentration in the 

medium was decreased. In cells cultured to stationary phase with amino acid restriction or starved 

for auxotrophy-complementing amino acids and subsequently transferred to water, the CLS was also 

significantly shortened by the addition of NH4
+, indicating that ammonium alone could induce loss of 

cell viability as observed in culture media. Cells starved for auxotrophic-complementing amino acids 

were particularly sensitive to ammonium-induced cell death and starvation for leucine in particular, 

largely contributed to this phenotype. Death induced by ammonium in cells starved for auxotrophic-

complementing amino acids (aa-starved cells) was mediated through the regulation of the 

evolutionary conserved pathways PKA, TOR and SCH9 and accompanied by an initial apoptotic cell 

death followed by a fast secondary necrosis. Autophagy, which has been described as essential for 
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cell survival during nitrogen starvation and regulating amino acid homeostasis did not seem to have 

a role in ammonium-induced cell death. The results with aa-starved cells of tor1∆, tpk1∆ and sch9∆ 

strains showed that NH4
+ toxicity is mediated through the over-activation of PKA and TOR and 

inhibition of Sch9p, suggesting that the role of Sch9p in the process is essentially independent of the 

TOR-PKA pathway. Furthermore, it was shown that NH4
+ signalling to PKA is mediated via Tor1p and 

Sch9p but does not depend on Mep2p. This activation of PKA by NH4
+ signalling is not dependent on 

its metabolization as testing for the activity of enzymes involved in the metabolism of NH4
+ 

demonstrated no correlation with NH4
+ toxicity. In agreement, the use of the NH4

+ non-metabolizable 

analog methylamine produced the same outcome as NH4
+. As a final result, it was shown that NH4

+ 

toxicity is a generalized effect in aging yeasts, not only dependent on amino acid restrictions, but 

also present in prototrophic strains.  

In conclusion, our results point out, for the first time, a role for ammonium as an extrinsic 

factor affecting CLS regulation in the culture medium joining other known extrinsic factors such as 

glucose, acetic acid and ethanol. Also, the effects of ammonium toxicity were characterized in yeast 

for the first time, showing that this process shares common features with NH4
+ toxicity in mammalian 

cells. The model presented in this work may be a powerful system for elucidation of conserved 

mechanisms and pathways of ammonium toxicity, with important implications in diverse fields 

extending from diseases associated with hyperammonemia and clarification of longevity regulation in 

multicellular organisms, to new insights for wine fermentations involving nitrogen supplementation. 
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RESUMO 
 

A levedura Sacharomyces cerevisiae, tem vindo a destacar-se como um dos mais 

significativos organismos modelo no estudo de factores ambientais e genéticos que afectam a 

longevidade. A sua utilização na investigação dos processos de envelhecimentos tem gerado 

importantes contributos neste campo. Muitos dos avanços nesta área de investigação advêm do 

estudo da influência da dieta na longevidade, com resultados positivos no aumento da longevidade 

em diversos organismos, desde a levedura até aos mamíferos. O estudo da contribuição das vias de 

sinalização de nutrientes para os efeitos da dieta na longevidade, pode ajudar na identificação de 

novos alvos terapêuticos para a prevenção de doenças associadas ao envelhecimento. No estudo do 

impacto das vias de sinalização de nutrientes no envelhecimento de leveduras, a composição do 

meio de cultura figura como um dos factores extrínsecos que afecta a longevidade cronológica. 

Neste âmbito, encontra-se bem documentado na literatura que a redução da concentração de 

glucose no meio de cultura resulta no aumento da longevidade cronológica da levedura. De forma 

análoga, outros componentes do meio de cultura, como por exemplo alguns produtos da 

fermentação alcoólica, estão também envolvidos na regulação da longevidade cronológica da 

levedura. Adicionalmente, em estirpes auxotróficas de S. cerevisiae, a concentração de aminoácidos 

essenciais (correspondentes às marcas auxotróficas) no meio de cultura afecta particularmente a 

longevidade cronológica da levedura. 

Neste contexto, o presente trabalho teve como objectivo a identificação de novos sinais 

nutricionais envolvidos na regulação da longevidade cronológica da levedura S. cerevisiae, bem 

como das vias de sinalização potencialmente envolvidas. Os resultados obtidos mostraram que a 

manipulação da concentração de amónio no meio de cultura afecta a longevidade cronológica. O 

amónio reduz a longevidade cronológica de células cultivadas até à fase estacionária, tanto em 

condições de suplementação standard de aminoácidos essenciais, como em condições de restrição, 

sendo a redução proporcional à concentração de amónio no meio extracelular. Em consonância, 

observou-se um aumento significativo na sobrevivência das células quando se reduziu a 

concentração inicial de amónio no meio de cultura. Por outro lado, em células cultivadas até fase 

estacionária em condições de restrição de aminoácidos essenciais ou esfomeadas para os mesmos 

aminoácidos e posteriormente transferidas para água, observou-se um decréscimo significativo na 

longevidade cronológica da levedura após a adição de amónio, sugerindo que o amónio, por si só, é 
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responsável pela perda de viabilidade celular, tal como observado para células mantidas no meio de 

cultura. As células esfomeadas para aminoácidos essenciais mostraram ser especialmente sensíveis 

à morte induzida pelo amónio, tendo o esfomeamento em leucina contribuído particularmente para 

este fenótipo. A morte induzida pelo amónio em células esfomeadas para aminoácidos essenciais, 

foi mediada pela vias de regulação PKA, TOR e SCH9, sendo esta morte inicialmente apoptótica 

seguida por uma extensa necrose secundária. A autofagia, um processo muitas vezes descrito como 

essencial à sobrevivência durante o esfomeamento em azoto e responsável pela regulação da 

homeostase de aminoácidos, não parece ter um papel na morte celular induzida pelo amónio. Os 

resultados com células das estirpes tor1∆, tpk1∆ e sch9∆ esfomeadas para aminoácidos, 

mostraram que a toxicidade do amónio é mediada através da sobre-activação das cinases PKA e 

TOR, e pela inibição da Sch9p, sugerindo que esta última tem uma acção independente da via TOR-

PKA. Verificou-se ainda que a activação da cinase PKA pelo amónio é mediada via Tor1p e Sch9p, 

porém independente da Mep2p. Não se observou relação significativa entre a toxicidade do amónio 

e a actividade das enzimas envolvidas no seu metabolismo, indicando que a activação da proteína 

PKA, através da sinalização pelo amónio, não depende da metabolização deste. Em concordância, 

verificou-se também que a metilamina, um análogo não metabolizável do amónio, induziu morte 

celular. Os efeitos tóxicos do amónio foram ainda observados em estirpes prototróficas de S. 

cerevisiae, indicando que a toxicidade do amónio é um efeito generalizado em células de levedura 

envelhecidas, não estando dependente apenas de condições de restrição em aminoácidos.  

Em conclusão, os estudos desenvolvidos no presente trabalho de tese, permitiram 

identificar, pela primeira vez, o amónio como um factor extrínseco envolvido na regulação da 

longevidade cronológica de S. cerevisiae, juntando-se, assim, a outros factores já conhecidos como 

a glucose, o ácido acético e o etanol. Os efeitos da toxicidade do amónio foram ainda 

caracterizados, também pela primeira vez, em leveduras, demonstrando que este processo possui 

semelhanças com o descrito para a toxicidade do amónio em células de mamíferos. O modelo de S. 

cerevisiae apresentado neste trabalho, poderá assim vir a constituir uma importante ferramenta na 

elucidação de mecanismos conservados e vias envolvidos na toxicidade do amónio, podendo ser útil 

em diversas áreas de investigação tais como no estudo de doenças associadas à hiperamonémia e 

na clarificação da regulação da longevidade em organismos multicelulares. Sob o ponto de vista 

biotecnológico, os resultados obtidos poderão também ser relevantes na definição de estratégias de 

suplementação de azoto em fermentações alcoólicas, muito em particular no sector vínico.  
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1. General Introduction 
 

1.1. Cellular pathways governing aging 

 

Aging is common to most living organisms ranging from bacteria, a unicellular prokaryotic 

organism, to multicellular eukaryotic organisms like humans. It is a complex biological process that 

involves accumulation of damage at diverse components of the organism leading ultimately to the 

loss of function and demise [1-3]. In the aging process, cellular activities compromised are 

modulated by a network of nutrient and energy sensing signaling pathways that are highly conserved 

among organisms. These pathways include the insulin/insulin-like growth factor 1 (Ins/IGF-1), the 

protein kinase/target of rapamycin (TOR) and adenylate cyclase /protein kinase A (AC/PKA) 

pathways [4]. Pioneering studies using mutations on key genes of these pathways have shown an 

increase by threefold or more in the life span of model organisms like yeast [5, 6], fruit flies [7], 

worms [8, 9] and mice [10, 11]. Many of these mutations which extend life span decrease the 

activity of the nutrient signaling pathways mimicking a starvation state during which oxidative stress 

responses are induced, reducing the levels of reactive oxygen species (ROS) and oxidative damage 

to macromolecules [12]. Accordingly, it has been shown in different aging models (yeast, flies, 

worms, fish, rodents, and rhesus monkeys) that reducing growth factors/nutrients intake has 

profound positive effects in extension of life span and also improves overall health by delaying or 

reducing aged-related diseases in mammals including diabetes, cancer and cardiovascular diseases 

(reviewed in [4]). One of the first models to implicate growth/nutrient-sensing signaling with longevity 

was the nematode worm Caenorhabditis elegans. In this model, it was shown, that the recessive 

mutation in age-I, coding for phosphatidylinositol 3-Kinase (PI3K) extend lifespan significantly [8]. 

Also in C. elegans, the insulin/IGF-1 pathway was linked to longevity by the discovery that mutating 

the gene coding for an insulin/IGF-1 receptor ortholog, DAF-2, doubled its life span [9]. This life 

span extension was dependent on the reduction of activity of Daf-2 and consequently of its 

downstream effector PI3K (encoded by age-1), and the subsequent activation of Daf-16, a Forkhead 

FoxO family transcription factor (FOXO), which regulates several genes involved in stress response, 

antimicrobial activity, and detoxification of xenobiotics and free radicals [4, 9, 13]. Another pathway 

involved in longevity regulation in C. elegans is the conserved TOR-S6K (Ribosomal S6 protein 

Kinase) pathway. This pathway interacts with the insulin/IGF-1 pathway converging on the worm 
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ortholog of regulatory associated protein of mTOR, Daf-15, to regulate larval development, 

metabolism and longevity [14] and so down-regulation of its activity results in extended life span [4].  

The fruit fly Drosophila melanogaster is a more complex model, allowing studies based on 

sex differences. As in C. elegans, reducing the activity of the insulin/IGF-1 pathway mediates cellular 

protection mechanisms and the extension of life span in this organism. Mutations in the insulin-like 

receptor favour the extension of life span yielding dwarf sterile flies with females showing up to 85% 

extension of adult longevity [15]. Down regulation of the TOR pathway in flies, similarly to C. elegans, 

was shown to increase life span when inactivated pharmacologically with rapamycin or with 

overexpression of dominant-negative forms of S6K or TSC1 or TSC2, which encode negative 

regulators of TOR [16, 17].  

Identical outcomes for genetic or pharmacologic manipulation of insulin/IGF-1 and TOR 

pathways and for dietary restriction regimes were observed in D. melanogaster and C. elegans, as 

well as in yeasts, establishing the evolutionary conserved roles of these pathways in determining life 

span and implicating them as mediators of the protective effects of dietary restriction in different 

species [4, 18]. 

In mammals, hormones of the endocrine system, the growth hormone, insulin-like growth 

factor-1 (IGF-1) and insulin pathways are key players in the hormonal control of aging in association 

with an increase of antioxidant defenses and increased stress resistance (reviewed in [19]). 

Deficiency in levels of circulating growth hormone has been shown to enhance antioxidant defenses 

and stress resistance, reduce tumor burden and to increase insulin sensitivity (reviewed in [20]). 

Enhanced insulin sensitivity is a common feature of long-living mutant mice and in humans, studies 

of centenarian populations strongly correlates this increase in insulin sensitivity with longevity [21, 

22]. IGF-1 and insulin also modulate TOR activity through Akt kinase which is a downstream effector 

of the insulin/IGF-1 pathway [23] and inhibition of mTOR pathway by rapamycin [24] or deletion of 

its downstream effector S6K, increases mice life span [25]. The life span extension due to the 

deletion of S6K was accompanied by slower progression of age-related pathologies and in particular 

slower loss of insulin sensitivity [25].  

Another pathway involved in longevity regulation is the AC/PKA pathway that is conserved 

from yeast to mammals. Down regulation of the Ras/AC/PKA pathway was first shown in yeast to 
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have a major effect on life span extension [4, 6, 26]. Only recently, studies correlating AC/PKA 

pathway with aging and age-related diseases started to emerge in mammals. Deletion of the mouse 

AC type 5, which mediates PKA activity by modulating cAMP levels, was reported to significantly 

increase life span, as it does in yeast [27], and improve cardiac stress resistance [28]. Likewise as 

described for yeast [26], deletions of PKA subunits in mice have recently been shown to increase life 

span while protecting against age-related deleterious changes such as weight gain, hypertrophic liver 

and cardiac dysfunction [29]. Although the subunits deleted are the regulatory subunits (RIIβ) and 

not the catalytic subunits like in yeast (TPK), loss of RIIβ in mice causes a concomitant and 

compensatory decrease in catalytic subunits showing a mechanistic association between loss of 

these subunits and life span extension [29]. This converging result in such divergent models 

suggests a highly conserved role for PKA in longevity and opens the possibility for new therapeutic 

targets for aging and obesity. 

In mammals the Ras proteins do not directly signal to PKA through AC [30] as it occurs in 

yeast [31] however, a recent study reported that homozygous deletion of Ras-GRF1 promotes both 

median and maximum longevity in mice [32]. Ras-GRF1 is a guanine nucleotide exchange factor 

(GEF) responsible for activating Ras by favouring its GTP-bound state [33] suggesting that the cause 

of longevity extension of the Ras-GRF1 deletion could be the reduction of Ras activity [34]. Therefore, 

the Ras pathway appears as a conserved pathway in the aging process from yeast to mammals [34].  

 

 

1.2. The particular case of yeast as a cell aging model 

 

Yeast has emerged as a highly exploited model to study the environmental and genetic 

factors affecting longevity. In particular, the genetic tools now available make yeast one of the best 

established experimental model organisms for screening genes involved in the regulation of 

fundamental cellular process including the pathways controlling life span. Two yeast life span 

models have been characterized: replicative life span (RLS) and chronological life span (CLS) 

(reviewed in [35]). RLS is defined as the total number of times a single mother cell can undergo a 

mitotic event and originate daughter cells before senescence [36]. RLS is accurately measured by 

moving and counting small daughters away from the mothers via microscopic manipulation and 
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simulates aging of mitotically active mammalian cells [35, 37, 38]. On the other hand, CLS defines 

the length of time non-dividing yeast cells remain viable [39] thus simulating aging of the pos-mitotic 

mammalian cells [40, 41]. This viability is assessed by cells re-entering the cell cycle after transfer 

from the depleted medium or water to nutrient complete-medium [35]. In CLS, two types of 

metabolic yeast cells can be studied: post-diauxic or stationary phase cells. Both metabolic state 

cells are grown in synthetic complete (SC) medium but while post-diauxic cells are kept in the 

culture medium, the stationary phase ones are transferred to water (extreme calorie restriction) after 

3 days of growth. Some protocols for post-diauxic cells could also use cells grown in YPD (yeast 

extract, peptone, dextrose) medium [35, 42] instead of SC medium.  

The two paradigms of aging in yeast, CLS and RLS, have become useful tools to compare 

the aging process in proliferating and non-proliferating cells as well as to serve as models to study 

the mechanics of the aging process in mitotic and post-mitotic cells of multicellular organisms [38]. 

The yeast Saccharomyces. cerevisiae divides by budding and therefore undergoes 

asymmetrical cell division, with the mother cell retaining more volume than the daughter cell. In this 

asymmetric division mother cells retain most of the age-associated damage, thus sacrificing 

individual replicative capacity while daughter cells retain full replicative potential [43, 44]. One of the 

aging factors affecting RLS is the accumulation of extrachromosomal ribosomal DNA circles (ERCs) 

[45]. These circular DNA molecules are self-replicating units formed in the nucleus by homologous 

recombination between adjacent rDNA repeats which segregate asymmetrically to the mother-cell 

nucleus during cell division. During each division ERCs replicate leading to an exponential 

accumulation in the mother cell and consequently to cell senescence [44, 45]. This finding in yeasts 

came in large part from the study of important age-related proteins called sirtuins. Sirtuins are NAD+-

dependent protein deacetylases involved in chromatin silencing and known to mediate longevity in 

yeast, nematodes, flies and mammals [40, 44, 46]. Deletion of SIR2 decreases RLS and its 

overexpression increases RLS showing that Sir2p mediates RLS in yeast most probably by regulating 

rDNA recombination and ERCs formation [47]. ERCs appear to be an aging factor specific to yeast, 

although without relevance in non-dividing yeast cells (CLS) and so far without a role in aging of 

multicellular eukaryotes [46, 48]. 
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Another factor known to decrease longevity both in CLS and RLS is accumulation of oxidative 

damage due to the production of reactive oxygen species (ROS). Deletion of the yeast antioxidant 

defense enzymes superoxide dismutases (SOD), reduces significantly CLS [39] and RLS [49]. 

However, overexpression of cytosolic (SOD1) and mitochondrial (SOD2) superoxide dismutases 

increased longevity of non-dividing cells [50] while it decreased RLS.  

Although studies show several similarities but also major differences between CLS and RLS 

mechanistic regulation, these two models are interconnected as RLS decreases in chronologically 

aged cells [48]. In addition both aging models are regulated by nutrient-signaling kinases as 

screenings for long-lived mutants identified the same gene mutations in both paradigms [27, 51-53].  

 

 

1.2.1. Glucose-signaling pathways involved in yeast longevity  

 

The most common dietary regimes used to study the interaction between nutrient signaling 

pathways and longevity include: dietary restriction (DR) in which the intake of nutrients, but not 

necessarily calories, is reduced without causing malnutrition; and calorie restriction (CR), a regime in 

which only calories are reduced without compromising other nutrients, for instance amino acids and 

vitamins [54, 55].  

In yeast, when studying both RLS and CLS, several results correlating environmental growth 

conditions and longevity emerged. Many studies, including those using calorie restriction (CR), 

showed that reducing the glucose or amino acids concentrations of the culture media is sufficient to 

increase replicative and chronological life span. The composition of culture media has proven to be 

an extrinsic factor affecting chronological life span but this is still giving rise to different 

interpretations on longevity regulation.  

The manipulation of nutrient-signaling pathways for the study of aging regulating 

mechanisms, as previously mentioned, can be accomplished by genetic manipulations of key 

components of these pathways or by DR and calorie restriction CR. In yeast, the vast majority of 

protocols for CR are based on the decrease of the glucose concentration in the medium from the 

standard 2% to 0.5 or 0.05%. The latter (0.05% glucose) is considered extreme calorie restriction as 
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well as the one achieved by transferring cells grown in 2% glucose to water [35, 56]. The first studies 

to report glucose as an agent affecting life span were conducted by Granot and co-worker who 

showed that addition of glucose to stationary phase cells previously transferred to water leads to a 

reduction of CLS [57]. The authors further demonstrated that glucose, in the absence of other 

complementing nutrients, induces apoptotic cell death accompanied by an increase in ROS 

production [58]. Further studies in yeast have revealed that the major nutrient-signaling pathways 

TOR, SCH9 and Ras/AC/PKA are all involved in longevity regulation by glucose [6, 46, 59]. These 

pathways promote cell division and growth in response to nutrients while inhibiting the general 

stress response and autophagy. SCH9 was one of the first genes to be implicated in CLS [27]. 

Sch9p is the yeast closest homolog of the mammalian AKT/PKB and S6K, and its deletion leads to 

an increase in both CLS and RLS [27, 53]. Sch9p is a kinase that mediates PKA activation in the 

fermentable-growth-medium-induced (FGM) pathway and also mediates regulation of many of the 

TORC1 controlled processes [60-62]. Sch9p was first described as having a partially redundant role 

with PKA pathway, since deletion of SCH9 could be compensated by increased activity of PKA and 

vice versa [63], and later as a direct target of TOR complex 1 (TORC1) regulation [61]. More 

recently, TORC1 was also identified as a target for regulating longevity in both CLS and RLS [51, 

52]. The TOR pathway responds to nitrogen and carbon sources, mainly to control cell growth, 

through the regulation of processes such as translation initiation, ribosome biogenesis, mRNA and 

amino acid permeases stability, transcription of nutrient-regulated genes and stress response genes, 

actin cytoskeleton organization and autophagy [64, 65]. Reduction of TORC1-Sch9p signaling was 

shown to promote longevity by increasing the expression of stress-response genes in a Rim15p-

dependent manner [59] as RIM15 deletion reduced the life span extension of the long-lived sch9∆ 

cells [27]. Alternatively, a recent study proposes a Rim15p-independet mechanism for life span 

extension in reduced TORC1-Sch9p signaling [66]. This study shows that in tor1∆ cells, CLS is 

reduced if mitochondrial respiration is uncoupled. The authors suggest that during growth, 

mitochondrial ROS signaling down regulates both the mitochondrial membrane potential and ROS 

accumulation of stationary phase cells to promote their longevity [66]. This is in agreement with 

previous data showing that pre-adaptation to respiratory growth can also promote extension of CLS 

[67]. CR also promoted CLS extension by doubling the life span of the long-lived sch9∆ and tor1∆ 

cells by a Rim15p partially dependent mechanism. In fact, cells with a triple mutation in Rim15p 

downstream transcription factors (msn2∆ msn4∆ gis1∆) do not display a reduction of CR promoted 
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CLS extension when compared to the long-lived sch9∆ and tor1∆ cells suggesting the involvement 

of additional Rim15p independent transcriptional factors [59].  

Another pathway involved in aging is the other major nutrient-signaling pathway 

Ras/AC/PKA responsible for the link between glucose availability and the control of growth, 

proliferation, metabolism, stress resistance, and longevity [6, 27, 50, 68]. Deletion of RAS2 or a 

reduced activity of adenylate cyclase (Cyr1p), which is activated by the Ras proteins, causes life 

span extension and stress resistance [50]. Mutation in the CYR1 gene increases both RLS and CLS 

while deletion of RAS2 decreases RLS [53, 69]. Rim15p also mediates ras2∆ life span extension by 

enhancing cellular protection against oxidative stress through the activation of SOD2 [50] indicating 

that Rim15p is a common denominator of the pathways Ras/AC/PKA, Sch9p and TOR. In addition, 

deletion of MSN2/4 in ras2∆ cells leads to life span reduction indicating that Msn2p/4p and Gis1p 

transcription factors controlled by Rim15p are also required for CLS extension. Nevertheless, the 

Rim15p downstream transcription factors (Msn2p, Msn4p and Gis1p) appear to have different roles 

in sch9∆ and ras2∆ cells given that only the abrogation of GIS1, and not of MSN2/4, was shown to 

almost completely abolish the life span expansion of sch9∆ cells [27, 59]. Therefore, Sch9p and 

Ras2p seem to differentially modulate the common downstream effectors, which is also 

corroborated by the higher stress resistance and increased CLS exhibited by ras2∆ sch9∆ double 

knockout cells in comparison to the single deletion mutants [59, 70].  

More recently, the correlation between glucose signaling, oxidative stress and aging was 

further addressed in a study showing that increasing glucose from the standard 2% to 10%, 

promotes a shortening of CLS accompanied by increased levels of intracellular superoxide anion (O2
.-

), decreased levels of hydrogen peroxide (H2O2), reduced efficiency of stationary phase G0/G1 arrest 

and activation of DNA damage [12]. On the other hand, CR by reducing glucose or by deletion of 

SCH9 or TOR1 extends CLS and diminishes superoxide anion levels promoting at the same time a 

more efficient G0/G1 arrest [12]. These and other results point to superoxide levels as one of the 

key factors regulating aging [71] which is in agreement with the aforementioned results showing that 

reduction of signaling pathways leads to the activation of oxidative stress responses mediated by 

Rim15p [59]. Nevertheless, an alternative activation of oxidative stress responses independent of 

Rim15p [59], and mediated by H2O2 has been also reported [12]. Furthermore, high levels of H2O2, 
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which respond to glucose in an inversely dose-dependent manner, promotes activation of SODs, 

leading to a reduction in superoxide anion levels and therefore to CLS extension [12, 72].  

 

 

1.2.2. Amino acid metabolism in the regulation of the yeast chronological life span 

 

In nature, yeast cells enter a resting or quiescent state in the absence of favorable 

nutritional conditions. When inadequate carbon, nitrogen, sulfur or phosphorus levels are sensed by 

yeast cells, growth ceases and cell cycle is arrested as a survival strategy. In natural environments, 

yeast are prototrophs capable of synthetizing most of their metabolites from simple carbon and 

nitrogen sources, whereas laboratory strains commonly have auxotrophic markers that confer a 

nutrient-limiting growth phenotype useful for genetic manipulation. These markers are usually genes 

involved in the biosynthesis of specific amino acids or nucleotides. Amino acids are important 

nutrients that can also be recycled by autophagy. This recycling process maintains amino acid 

homeostasis and is crucial for cell survival under nitrogen starvation leading to rapid loss of viability 

in autophagy-defective mutants [73] and therefore has been implicated in CLS regulation. Curiously, 

it was demonstrated that prototrophic and auxotrophic strains display different responses to nutrient 

starvation [74]. Starvation of “natural” nutrients such as phosphate and sulphate leads to an arrest 

in G0/G1 cell cycle phase of prototrophics cells, while auxotrophic cells failed to arrest the cell cycle 

upon starvation of  “supplemental” nutrients (auxotrophic nutrients) [74]. It was also observed that 

auxotrophic cells limited for leucine or uracil consume glucose at a much faster rate, exhausting it 

from the medium, than prototrophic cells limited for phosphate, sulfate or ammonium that spare 

glucose [75]. These findings clearly reveal a failure of auxotrotophic cells in regulating nutrient 

sensing in response to starvation of “supplemental” nutrients [76]. Furthermore, limiting levels of 

auxotrophy-complementing amino acids, in the growth medium, induce an early arrest in G2/M 

phase, negatively affecting chronological longevity and leading to a premature aging phenotype [77]. 

In accordance, reduction of total amino acid levels, including essential ones (auxotrophic amino 

acids), in the medium also decreases CLS [78]. Starvation for leucine in non-dividing leucine 

auxotrophic cells induces a rapid loss of viability [76]. Nevertheless, this phenotype is partially 

dependent on the carbon source present in the starvation medium but not in that used in the growth 

medium. For example the presence of ethanol/glycerol or galactose in the starvation medium 
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increases CLS in contrast to starvation in glucose [76]. However not all essential (auxotrophic) 

amino acids have the same effect on CLS. In fact, methionine starvation of methionine auxotrophic 

cells has no effect on viability  [79]. Another study also reported that from extra supplementation of 

the auxotrophic-complementing amino acids lysine, histidine and leucine, the latter has a more 

pronounced positive effect in CLS in both autophagy-competent and autophagy-deficient strains [80]. 

Authors pointed out that the enhanced sensitivity of yeast cells to leucine starvation is correlated to 

the high levels of leucine codon, the most frequent amino acid codon [80]. CLS is extended by the 

presence of non-essential amino acids, particularly isoleucine and its precursors threonine and 

valine, via the general amino acid control (GAAC) pathway. The authors proposed a mechanism for 

CLS regulation by the branched side chain amino acids (BCAA) leucine, isoleucine and valine, in 

which low levels of these amino acids induce the GAAC pathway therefore shortening CLS and vice 

versa [80].  

Starvation for non-essential amino acids was reported to extend RLS [81] and starvation for 

preferred amino acids such as asparagine or glutamate induced CLS extension in direct proportion 

to the nature of the amino acid removed [52]. 

 

 

1.2.3. Impact of products of fermentation in the yeast chronological life span 

 

Ethanol is the main product resulting from alcoholic fermentation and it is used as a carbon 

source during the diauxic shift and post-diauxic phase. Nevertheless, ethanol is known to negatively 

affect the metabolic activity of the yeast cells by inhibiting cell growth and fermentation [82]. It is 

also known to cause among others the damage of cell membranes by increasing membrane fluidity 

[83, 84] and the inhibition of transport systems across the plasma membrane. The severity of the 

effects is dependent on the alcohol concentration and at high ethanol levels it results in cell death 

[82, 85, 86]. Recently, ethanol was described as an apoptotic inducer [87] and has also been 

implicated as an extrinsic factor in aging, significantly decreasing CLS of severely calorie restricted 

strains (CR in water), known for their life span extension in this condition [88]. In contrast to wild 

type cells, long-lived sch9∆ cells consume all the ethanol from the medium during chronological 

aging, further supporting ethanol as a modulator of aging [88].  
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A recent study on the genetic expression profile of long-lived tor1∆, sch9∆ and ras2∆ cells 

revealed an up-regulation of genes involved in the metabolism of glycerol. In contrast to wild type 

cells that accumulate ethanol and rapidly deplete glycerol, those long-lived mutant cells accumulate 

glycerol whereas ethanol was early depleted. These observations suggest that inhibition of 

Tor1p/Sch9p mediates a metabolic switch from biosynthesis and release of ethanol to activation of 

glycerol biosynthesis and its consequent release [70]. Glycerol, unlike glucose and ethanol [56, 59, 

88], does not promote aging or cell death and so this metabolic change extends CLS [70, 89]. In 

calorie restricted cells, ethanol is completely consumed before the beginning of viability decline. 

Conversely, non-calorie restricted cells were unable to completely consume ethanol before viability 

decline. The authors suggested a correlation between ethanol accumulation and loss of peroxisome 

function in non-calorie restricted cells since ethanol suppresses the synthesis of certain proteins 

localized to peroxisomes [90]. 

Acetic acid is a byproduct of fermentative metabolism in yeast accumulating in the medium 

during fermentation of glucose to ethanol and is also one factor described to affect CLS [91, 92].  

After sugar is depleted in 2% glucose standard conditions, a shift in metabolism occurs from 

fermentation to respiration and the metabolization of ethanol also leads to the production and 

accumulation of acetic acid. Acetic acid is a well-known inducer of apoptotic cell death leading to 

ROS production [93, 94]. In a recent study, Burtner and co-workers identified acetic acid as an 

important extracellular factor affecting CLS in SC medium [91]. The authors showed that cells grown 

for 48 hours under extreme calorie restriction conditions (0.05% glucose concentration), known to 

extend CLS, rapidly loss viability if transferred to cell-free supernatants of 2% standard glucose-

depleted medium, indicating that cell-extrinsic aging factors were present in the SC depleted 

medium [91]. Although several other organic acids also accumulate in the culture medium during 

chronological aging, only acetic acid was identified as being sufficient to cause chronological aging 

[91]. In the same study it was also shown that buffering of aging cultures to pH 6 is sufficient to 

increase CLS, neutralizing the toxic effect of acetic acid. Actually, the acetate anion is not readily 

taken up from the environment by glucose grown yeast cells, but the protonated acetic acid can 

cross the plasma membrane resulting in intracellular acidification [95]. This negative effect of acetic 

acid in CLS was diminished by mutational inactivation of conserved signaling pathways namely 

deletion of SCH9 and RAS2 conferring resistance via unknown mechanisms [91]. SCH9 and RAS2 

mutant cells are known to have a more frequent growth arrest in G1 phase when compared to the 
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wild-type, promoted by the reduction in growth signaling in these mutants [96]. In accordance, 

nutrient-depleted stationary phase cells are continuously subjected to acetic acid-induced growth 

signals, even in the absence of glucose, that promote cell cycle progression and consequently 

replication stress due to the lack of favorable conditions [97]. These and other results show that 

acetic acid, as glucose, activates Sch9p and RAS pathways and seems to mediate cell death by 

promoting the accumulation of superoxide anion (O2
.-) in consequence of down regulation of SODs 

and other oxidative stress defenses by the activated pathways [12]. The long-lived ade4∆ cells 

(Ade4p is involved in the purine de novo biosynthetic pathway) do not accumulate acetic acid in the 

culture medium when compared to the wild type cells, while the short-lived atg16∆ cells (Atg16p is 

involved in the autophagic process) accumulate acetic acid at higher concentrations than the wild 

type cells, inversely correlating the amount of acid release from cells and the extension of CLS [98]. 

Buffering the growth media to pH 6.0 of the short-lived atg16∆ cells and the wild type strain, also 

dramatically increase CLS to the same levels obtained for the CR growth condition and for the long-

lived ade4∆ cells, indicating that pH neutralized the toxic effects of acetic acid. Overall the results 

demonstrate that acetic acid can have an important impact on CLS through a cell extrinsic 

mechanism that is dependent on media pH [98]. 

 

 

1.2.4. Nutrient and stress signaling pathways in the regulation of survival: TOR, PKA 

and SCH9 pathways 

 

Regulation of metabolic survival is mediated by environmental conditions in all living 

organisms. Flexibility in adaptation to environmental conditions is conserved from yeasts to 

mammals and is mediated by complex nutrient signaling pathways. In yeast these pathways, 

through complex signaling cascades, control the necessary metabolic changes that take place when 

a shift in environmental conditions occurs, thus allowing cells to stimulate proliferation in optimal 

conditions and also to induce cell cycle arrest and enter into a quiescent state in nutrient exhaustion 

conditions. Mainly, three major nutrient signaling pathways control and regulate cell metabolism: 

TOR (Target of rapamycin), PKA (protein kinase A) and Sch9p [99]. 
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TOR pathway 

 

In S. cerevisiae, TOR signaling responds to nitrogen and possibly to carbon sources. This 

pathway controls cell growth by activating anabolic processes and inhibiting catabolic processes and 

mRNA degradation [64, 65]. The yeast Tor proteins (Tor1p and Tor2p) are highly conserved 

serine/threonine kinases that were first described as the target of antifungal and 

immunosuppressive agent rapamycin [100]. The Tor proteins form two distinct multiprotein 

complexes entitled TOR1 and TOR2 complex (TORC1 and TORC2, respectively), with distinctive 

subunit composition (TORC1 consisting of Tor1/2p, Lst8p, Kog1p, and Tco89p, and TORC2 

consisting of Tor2p, Lst8p, Avo1p, Avo2p, Avo3p, Bit61p and Bit2p). This difference in composition 

is responsible for making only TORC1 rapamycin sensitive, presumably due to Avo1p masking the 

FRB domain of Tor2p in TORC2, which is the FKBP-rapamycin binding site [101]. TORC1 can be 

assembled by integrating Tor1p or Tor2p, while TORC2 only contains Tor2p. Although Tor2p can 

substitute Tor1p in the TORC1 complex due to its redundant role, the contrary is not true, since 

Tor2p possesses additional functions that cannot be fulfilled by tor1p and hence the lethality in 

deleting TOR2 [64, 65, 101, 102].  

 

TORC1 signaling - Phosphatase effector branch 

 

TORC1 signaling is nowadays quite well described due to the rapamycin specific inhibitory 

effect on this complex. A big part of TORC1 signaling is mediated by several type 2A or type 2A-

related protein phosphatases, namely PP2As (Pph21p and Pph22p), Sit4p (Suppressor of Initiation 

of Transcription-4), Tap42p (Type 2A-Phosphatase Associated protein of 42kDa) and Tip41p (TAP42-

interacting protein of 41kDa) [64, 103]. Combined together as complexes (Tap42-phophatase 

complexes) these proteins regulate the activity of several transcription factors whose target genes 

are controlled by TORC1 (Figure 1). Tap42p is directly phosphorylated by TORC1, which enables the 

interaction of this essential protein with the catalytic subunits of type 2A (and 2A-like) protein 

phosphatases, and consequently formation of the complexes, in favourable nutrient conditions [64, 

103, 104]. Tip41p is also part of the complex and has recently been proposed to have a similar role 

to Tap42p in transducing the signal within the complex [104, 105].  
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Nitrogen metabolism regulation  
 

One set of genes regulated by TORC1 in a Tap42-phosphatase-dependent manner belongs 

to one of the nitrogen metabolism pathways. TORC1 regulates the transcription of genes of the 

nitrogen metabolism by controlling several of its transcription factors in response to nutrients. Under 

rich nitrogen sources conditions, Tap42p-Sit4p phosphatase complex is attached to TORC1 [106] 

and the transcription factor Gln3p, whose activity regulates Nitrogen catabolite repression (NCR)-

sensitive genes, is sequestered in the cytoplasm via Ure2p TORC1- dependent phosphorylation 

[107, 108]. Treatment with rapamycin or nitrogen limiting conditions which inhibit TORC1, result in 

the dissociation of the Tap42p-Sit4p phosphatase complex from TORC1, subsequent release of the 

complex in the cytoplasm followed by its disassembly, leading to Gln3p dephosphorylation via Sit4p. 

Gln3p then dissociates from Ure2p and successfully enters in the nucleus, activating NCR genes. 

[104, 106, 107].  

Another nitrogen pathway regulated by TORC1 via Tap42-phophatase complex is the general 

amino acid control pathway (GAAC). The GAAC is a stress response pathway that, in reaction to 

amino acid starvation, activates the protein kinase Gcn2p to phosphorylate the eukaryotic initiation 

factor-2 (eIF2p) reducing its activity and thus lowering global translation while at the same time, 

preferentially stimulating translation of GCN4 mRNA. Gcn4p is a transcription factor that activates 

transcription of genes under the control of GAAC, many of which involved in amino acid 

biosynthesis. TORC1 negatively regulates GAAC by indirectly phosphorylating, via Tap42p-Sit4p 

phosphatase, the Gcn2p and thus inactivating this kinase [104, 109]. A recent study has revealed 

that Gcn4p not only activates transcription upon amino acid depletion but also in response to 

rapamycin treatment, activating several genes in conjunction with Gln3p that are required for 

secondary nitrogen sources adaptation and thus having a major role as an effector of the TOR 

pathway [109].  

Also targets of TORC1 regulation are the transcription factors RTG1/RTG3 involved in the 

Retrograde Response Pathway (RTG). This pathway controls target genes that code for intermediates 

of the tricarboxylic acid cycle (TCA) that assure high levels of α-ketoglutarate, a precursor involved in 

the biosynthesis of glutamate [64, 110]. In good nitrogen growth conditions the RTG pathway is 

inactive and Rtg3p and Rtg1p are sequestered in the cytoplasm due to hyperphosphorylation by 
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Mks1p, which is a phosphoprotein controlled by TOR. Activation of RTG pathway by rapamycin 

treatment or limiting nitrogen conditions triggers Rtg3p partial dephosphorilation followed by 

Rtg1p/Rtg3p translocation into the nucleus. This translocation is dependent on the association of 

dephosphorylated Mks1p to Rtg2p and thus inactivation of the former protein [104, 111].  

Amino acids uptake by permeases is also subjected to TORC1 regulation and is dependent 

on the nitrogen composition of the medium. Rich nitrogen sources favor the delivery of constitutive 

high-specificity permeases to the plasma membrane such as Tat2p (tryptophan permease) and 

Hip1p (histidine permease), while targeting nitrogen-responsive broad-specificity permeases like 

Gap1p (general amino acid permease) to degradation in the vacuole. Poor nitrogen sources reverse 

this fluidity. TORC1 regulation of the stability of these permeases is mediated by protein kinase Npr1 

(nitrogen permease reactivation kinase). TORC1 promotes phosphorylation and inactivation Npr1p in 

a Tap42p-Sit4p dependent manner, preventing Npr1 to protect Gap1p from ubiquitination and 

favouring Tat2p stabilization [64, 104].  

 

Regulation by other nutrients 
 

TORC1 also mediates signal cascades via Tap42-phophatase complex, in response to 

nutrients other than nitrogen and so regulating autophagy, stress response genes and ribosomal 

protein mRNA [64]. In stressful conditions deriving from oxidative stress, nutrient depletion and also 

heat and osmotic shock, the redundant transcription factors Msn2p and Msn4p activate the 

expression of more than 150 genes involved in the stress response pathway [112]. These 

transcription factors are subjected to control of TORC1 in a Tap42p-PP2Ap dependent manner, 

being phosphorylated and retained in the cytoplasm. Following TORC1 inactivation, the transcription 

factors accumulate in the nucleus and proceed to activate the stress response genes [105]. TORC1 

regulation upon stress response transcription factors can also be mediated following another route 

independent of Tap42-phophatase complex, which will be addressed in the next section (Sch9 

effector branch). Recent studies have shown that the catabolic process of autophagy is also 

negatively regulated by TORC1 through Tap42p-PP2Ap complex [113]. TORC1 exhibits its negative 

effects on autophagy by phosphorylating Tap42p which subsequently activates the PP2A catalytic 
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subunit. However, the downstream effector of PP2Ap that exerts the negative regulation is not yet 

known [113, 114].  

 

 

Sch9p effector branch 

 

The other known direct downstream effector of TORC1 responsible for the mediation of 

TORC1 signaling, is a serine/threonine kinase named Sch9p (Figure 1). Sch9p is a substrate for 

TORC1 suffering direct phosphorylation on several residues in the C-terminus and essential for 

TORC1 regulation of entry into G0 phase, ribosome biogenesis, translation initiation and stress 

response [61, 104]. The three nuclear RNA polymerases (Pol I, Pol II and Pol III) responsible for 

Ribosome biogenesis are tightly regulated by TORC1 and nuclear localization of TORC1 with binding 

to the 35S and 5S rDNA chromatin has been described as necessary for their transcription by RNA 

polymerase I and RNA polymerase III, respectively, under favorable conditions [115]. RNA 

polymerase II is responsible for the transcription of ribosomal protein (RP) genes and genes coding 

for proteins involved in the assembly of ribosomal subunits [116]. The transcription of these genes 

(RP genes) is regulated by the zinc finger-containing transcription factor Sfp1p which is a direct 

target of TORC1. Sfp1 activates RP gene expression in favourable conditions and down-regulates 

expression, by translocating to the cytoplasm, in response to cell stress and nutrient limitation [117]. 

RNA polymerase I, II and III regulation by TORC1 involves key factors such as the Rrn3p essential 

initiation factor for RNA polymerase I, the RNA polymerase II transcription repressors Stb3p and 

Dot6p/Tod6p, and the negative regulator of RNA polymerase III transcription, Maf1p [115, 116]. 

Besides directly regulating ribosome biogenesis, TORC1 also regulates this process via Sch9p. 

Sch9p is involved in the regulation of Maf1p capacity to bind and inhibit RNA polymerase III by direct 

phosphorylation of this repressor [116]. Similarly it was demonstrated that Sch9p phosphorylates 

and inhibits the activity of the repressors (Stb3p and Dot6p/Tod6p) of RNA polymerase II. As for 

Sch9p effects on RNA polymerase I it was observed to promote rRNA species processing from the 

35S transcript into the 25S, 18S and 5.8S rRNA and to recruit the polymerase to the rDNA locus 

[61, 104, 116]. Previous studies also demonstrated that Sch9p controls expression of translation 

initiation and elongation factors [60] and recent studies have demonstrated that eIF2α 

phosphorylation is dependent on Sch9p [61]. TORC1 control on stress response is not only 
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mediated by the phosphatase complex as mentioned above but also by the Sch9p effector [118]. 

Sch9p directly phosphorylates the kinase Rim15p in a TORC1 dependent manner [119], thus 

preventing its nuclear translocation and the consequent activation of transcription factors Gis1p and 

Msn2p and Msn4p that are involved in the post-diauxic shift (PDS) element-driven gene expression 

and stress-responsive elements (STRE) gene expression, respectively [60, 104, 119].  

 

 

 

 

 

Figure 1.TORC1 signaling pathway in S. cerevisiae. The vast majority of the processes regulated by the rapamycin-

sensitive TORC1 complex are mediated via the Tap42-Sit4/PPA2c or the Sch9 branches. This pathway responds to 

nutrients resulting in the stimulation of protein synthesis and the inhibition of stress response genes, autophagy and 

several pathways that allow growth on poor nitrogen sources. Adapted from [104]. 
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PKA pathway 

 

The protein kinase A (PKA) pathway is involved in the regulation of metabolism, stress 

response and proliferation, and this regulation is dependent on a fermentative growth [104, 120]. 

Activation of PKA pathway requires a rapid fermentable sugar but also a complete medium with all 

the essential nutrients present in order to trigger its downstream effectors. Because of these 

requirements for a sustainable activation of the PKA pathway, and in addition to the glucose 

activated cAMP-PKA pathway, Thevelein and co-workers named the activation of PKA pathway by 

other nutrients, the ‘fermentable-growth-medium induced pathway’ or FGM pathway [120-122]. In 

favorable conditions of fermentative growth, PKA upregulates a variety of processes such as 

glycolysis, cell growth and cell cycle progression, while at the same time downregulating stress 

resistance and gluconeogenesis and mobilizing carbohydrate glycogen and stress protectant 

trehalose reserves, in a process known as high PKA phenotype. In a low PKA phenotype, like under 

respirative growth or in stationary phase, PKA downregulation causes a variety of characteristics 

such as accumulation of the carbohydrates trehalose and glycogen, induction of stress-responsive 

element- and postdiauxic shift-controlled genes, induction of autophagy and increased stress 

resistance, and in the case of nutrient starvation growth arrest and subsequent entrance into G0 

[120, 121, 123]. PKA is a conserved serine/theonine kinase formed by two catalytic subunits, 

encoded by the partially redundant genes TPK1, TPK2 and TPK3, and by two regulatory subunits, 

encoded by BCY1 [124, 125]. In its inactive form, PKA forms a hetero-tetramer between the 

catalytic and the regulatory subunits, and activation occurs by the binding of cyclic AMP (cAMP), a 

secondary messenger, to the regulatory subunit Bcy1p, causing its dissociation and leaving the 

catalytic subunits free to interact and regulate their downstream targets [60, 104, 124, 125].  

 

cAMP-dependent regulation of PKA 
 

In order to respond to glucose, PKA is regulated by upstream intracellular glucose sensing 

system and extracellular glucose detection system (Figure 2) [104]. For glucose intracellular 

signaling to occur, glucose is required to be transported into the cell and consequently 

phosphorylated by hexokinases (Hxk1p, Hxk2p and Glk1p). Glucose phosphorylation will then induce 

cAMP-PKA activation through the Ras proteins (Ras1p and Ras2p) which are small GTP-binding 
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proteins that when active in the GTP-bound state will stimulate the activity of the adenylate cyclase 

Cyr1p to produce cAMP [31, 104, 121, 123]. The Ras-GTP/Ras-GDP ratio is controlled through the 

GTPase-activating proteins Ira1 and Ira2, and the guanine nucleotide exchange factors (GEFs) 

Cdc25p/Sdc25p. Ira proteins stimulate GTP hydrolysis and keep Rasp in the GDP-bound inactive 

state while GEFs promotes GTP loading on Rasp and thus favouring the GTP-bound active state [31, 

123, 126].  

The extracellular glucose detection system consists of a G protein-coupled receptor (GPCR) 

system, composed of Gpr1 and Gpa2 [104, 123, 127]. GPR1 codes for a seven-transmembrane G 

protein–coupled receptor that belongs to the GPCR superfamily and interacts with GTP-binding 

protein Gpa2, which belongs to the heterotrimeric G protein α subunit (Gα) protein family [104, 123, 

127]. Extracellular glucose activates Gpr1p stimulating the formation of the GTP-bound active form 

of Gpa2p which will in turn increase cAMP production levels through adenylate cyclase (Cyr1p) 

stimulus [104, 123, 126]. The Gpr1p-Gpa2p module displays a low affinity for glucose and sucrose 

but interestingly does not respond to any other sugar. The switch from respiration to fermentative 

growth only occurs in high glucose concentrations with cAMP production levels having a major role 

in this switch, which relates to the low affinity of the Gpr1p-Gpa2p module for glucose [104, 128]. 

The extracellular detection system and the intracellular sensing system are described as being two 

distinct processes but they are also interdependent with glucose phosphorylation being required for 

the GPCR system to further continue to activate adenylate cyclase to produce cAMP [128]. The 

levels of cAMP are also subjected to negative control via PKA itself. Two phosphodiesterases, 

encoded by PDE1 and PDE2, are responsible for the hydrolysis of cAMP to AMP [104]. 

 

cAMP-activated PKA targets 

 

PKA regulation is responsible for 90% of transcriptional changes that occur upon addition of 

glucose to glucose starved cells, in which multistress response is one of the downregulated 

processes [104, 123, 126]. This process is mediated by PKA through two transcription factors, 

Msn2p and Msn4p, which in unfavourable conditions of PKA activity bind to stress responsive 

elements (STRE) in the promoter of their targets genes and thus promoting the general stress-

response (Figure 2) [112]. In this group of STRE controlled genes, are genes involved in the 
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protection against stress such as heat, oxidative and osmotic stress, carbohydrate metabolism and 

growth regulation [104, 123, 126]. PKA regulation possibly occurs from direct phosphorylation of 

the two transcription factors impeding their nuclear localization and thus promoting their 

sequestration in the cytoplasm. Besides direct phosphorylation and inhibition of the transcription 

factors, PKA also regulates Msn2p/Msn4p through other routes by negatively controlling other 

protein kinases such as Yak1 and Rim15 [104, 112, 129]. Yak1p is a PKA antagonist responsible 

for inhibiting growth and is regulated by the Msn2p/Msn4p transcription factors in a positive 

feedback loop. PKA inhibits Yak1p possibly by direct phosphorylation via a yet unknown mechanism 

thus maintaining a cytoplasmic localization of Yak1p. PKA inhibition favors nuclear translocation of 

Yak1p, where it will activate Msn2p and thus favor transcription of the STRE response genes [130]. 

Rim15p is also negatively regulated by PKA being phosphorylated and inactivated in the cytoplasm. 

Rim15p is a kinase responsible for the accumulation of glycogen and trehalose, proper G1-cell cycle 

arrest upon nutrient starvation, the induction of several stress response genes and activation of 

Gis1p-dependent PDS-element driven transcription [131, 132]. The majority of the Rim15p 

controlled gene expression is mostly mediated by the three transcription factors Gis1p, Msn2p and 

Msn4p [60, 104, 131]. Upon PKA inactivation both kinases Yak1p and Rim15p, enter the nucleus 

and activate their targets, which in turn have also been liberated from the direct negative control of 

PKA. 

PKA has also been described to mediate the transcription of Ribosomal protein (RP) genes 

in a positive manner. The transcription factor Sfp1p, which has been described above as a TORC1 

target for regulation of RP genes expression, is also a target of PKA. PKA contributes to the 

maintenance of Sfp1p in the nucleus acting in a redundant way with TORC1 [104, 117]. Other direct 

targets of PKA mediation are the metabolic enzymes fructose-1,6-bisphosphatase (Fbp1p) involved 

in gluconeogenesis, which is negatively regulated, and the 6-phosphofructo-2-kinase (Pfk2p) and 

pyruvate kinase (Pyk1p and Pyk2p) involved in glycolysis, which are positively regulated by PKA in 

favorable conditions of glucose availability [104, 133, 134]. Another important effector of PKA 

signaling is the neutral trehalase (Nth1p) responsible for the breakdown of the stress protectant 

trehalose. Trehalase activity is mediated by direct phosphorylation of PKA and so after PKA 

activation by glucose addition to glucose starved cells, trehalase activity increases just a few minutes 

after, thus being extensively used to monitor nutrient-induced activation of the PKA pathway [133, 

135, 136]. Autophagy is another process negatively regulated by PKA in its active state. PKA directly 
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phosphorylates Atg1p and Atg13p proteins necessary for the autophagy process to take place, 

demonstrating to be an autophagy regulator [137]. The authors also state that this regulation occurs 

independently of TORC1 regulation of autophagy indicating that both pathways independently control 

autophagy [137]. 

 

 

 

 

 

Figure 2. cAMP-PKA signaling pathway in S. cerevisiae. cAMP synthesis by adenylate cyclase for PKA activation requires 

two sensing systems: (i) extracellular detection of glucose via the Gpr1–Gpa2 system and (ii) intracellular detection of 

glucose, which requires uptake and phosphorylation of the sugar. PKA upregulates a variety of processes such as 

glycolysis, cell growth and cell cycle progression, while at the same time downregulating stress resistance and 

gluconeogenesis .Adapted from [104].  
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cAMP-independent regulation of PKA 

 

As mentioned previously, in order for PKA to become active it is necessary the availability of 

a rapid fermentable sugar but also a complete medium, indicating that PKA also responds to other 

essential nutrients for its activation [62, 120]. The lack of any other essential nutrient in the 

presence of glucose causes cell cycle arrest with characteristics of a “low PKA phenotype” whereas 

the readdition of the missing nutrient rapidly activates PKA. Nitrogen and phosphate induced 

activation of PKA seems to follow the above mentioned ‘fermentable-growth-medium induced 

pathway’ or FGM pathway in which cAMP increase is not a mediator in the signaling cascade [62, 

120, 121, 123] but the free catalytic subunits of PKA are still necessary for mediation in this 

pathway [138]. Another kinase, Sch9p, has also been described to mediate response in amino acid 

and ammonium induced activation of the FMG pathway but not in phosphate induced activation 

[62]. Due to the homology between the catalytic domains of Sch9p and the catalytic subunits of PKA 

[63], and to the common targets shared by the two kinases, the Sch9p kinase has been proposed to 

act in parallel with PKA [60].  

In the cAMP-independent regulation of PKA, the activation of the FMG pathway occurs 

through plasmas membrane sensors known as transceptors because of their double functions as 

active transporters and receptor sensors. There are three described transceptors that activate this 

pathway: the amino acid transceptor, Gap1p; the ammonium transceptors, Mep1p and Mep2p; and 

the phosphate transceptor, Pho84 [121, 123]. Synthesis and activity of the Gap1p and the Meps 

transceptors are subjected to tight control by the nitrogen catabolite repression (NCR) pathway. The 

regulation of the transceptors by this pathway is addressed in section (1.5). Rapid PKA activation of 

nitrogen-starved cells by amino acid addition requires Gap1p as an amino acid sensor but not 

further metabolization of the amino acids. In gap1∆ strains, addition of the amino acid L-citrulline, 

fails to active trehalase when transported by other amino acid carriers, showing that amino acid-

induced activation of PKA is mostly dependent on Gap1p [139]. Recent work has also shown that 

transport is not necessary for Gap1p to activate signaling since amino acid analogs that are not 

transported are still able to trigger signaling [140]. Mep1p but predominantly Mep2p can also 

activate PKA in response to the addition of ammonia to nitrogen-starved cells and as for Gap1p this 

activation in not dependent on a cAMP increase [135]. The non-metabolizable ammonium analog 
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methylamine, was able to activate trehalase in a Mep2p expressing strain while being unable to do 

the same in a triple Mep deletion strain although it can diffuse through the plasma membrane, 

showing that trehalase activation is in fact Mep2p-dependent [123, 135]. As referred above the 

Gap1p and Mep2p induced PKA activation involves the kinase Sch9p, however the underlying 

mechanism behind the signaling is not yet known. A recent study has identified different putative 

interactors for Gap1p and Mep2p that appear to be good candidates to unravel the signaling 

cascade between the transceptors and PKA. The study also demonstrated that the signaling and 

transporting functions can be separated and can act independently of each other conforming that 

signaling does not require transport. Using deleted strains in these putative interactors the authors 

verified that variations (increase or decrease) in transport are not necessarily correlated to an 

increase or decrease in signaling [141].  

 

 

SCH9 pathway 

 

As introduced above, Sch9p is a kinase that mediates PKA activation in the FMG pathway 

and also mediates many of the TORC1 controlled processes [60-62]. Sch9p was first described has 

having a partially redundant role with PKA pathway, since deletion of Sch9p could be compensated 

by increased activity of PKA and vice versa [63], and later as a direct target of TORC1 regulation, 

perceiving Sch9p as a downstream effector of TORC1 and an integrating part of the PKA signaling 

cascade. Nevertheless, over the past few years a new, more relevant role has emerged for Sch9p as 

recent studies propose an antagonistic and independent effect of Sch9p in the regulation of some of 

TORC1 and PKA mediated processes [60, 118, 142]. Roosen and co-workers verified that PKA and 

Sch9p act through separate but partially overlapping signaling cascades in a parallel manner, having 

both synergistic and opposite effects in the expression of common target genes [60]. Sch9p has 

been implicated in the shift in signaling that occurs upon the alteration of the carbon source as it 

became clear that in strains lacking Sch9p, cells cannot perceive the signal of starvation of the 

fermentable carbon source, displaying phenotypic characteristics associated with higher PKA activity 

in these conditions and reverse phenotypic characteristics in fermentable carbon sources [60, 62]. 

Sch9p displays a similar function to the PKA pathway in fermentative growth but activates stress 

response genes during diauxic shift and respiratory growth [60, 118], negatively regulating nuclear 
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accumulation of the Rim15p kinase during the former condition and positively regulating Gis1-

dependent PDS gene expression, independently of Rim15p itself, in the latter conditions [60, 118]. 

Rim15p is the converging signaling effector of PKA, TORC1 and Sch9p and a regulator of the 

entrance into G0 [143] In other stressful conditions like in osmotic stress, Sch9p also has an 

independent role in the activation of osmostress-responsive genes, acting as a chromatin-associated 

transcriptional activator, being recruited to the promoter region of these genes in a Hog1p 

dependent manner. Hog1p is a High-Osmolarity Glycerol MAP kinase involved in the osmoregulatory 

signaling cascade [118, 142]. A recent study also emphasized the independent role of Sch9p by 

showing that it acts independently of TORC1 to regulate genes encoding for proteins involved in 

respiration, such as TCA cycle proteins, involved in fatty acid metabolism and mitochondrial 

ribosomal proteins, and the authors propose a mechanism in which during favorable conditions, the 

TORC1-dependent Sch9p effector branch is predominant, leading to translation while repressing the 

stress response genes, and alternatively in unfavorable conditions, when TORC1 is inactive, Sch9p is 

necessary to activate the expression of the stress response genes [118]. Also in the same study 

Sch9p emerged as a regulator of the nitrogen metabolism, being able to act independently of TORC1 

to reduce the basal expression of genes belonging to the nitrogen discrimination pathway (NDP) like, 

Gap1p and Mep2p and to the GAAC pathway like Gcn4p [118]. Recently, Sch9p has also been 

described as being involved in the regulation of autophagy when Yorimitsu and co-workers found that 

Sch9p and PKA cooperate in this regulation, demonstrating that simultaneous inactivation of both 

kinases is sufficient to trigger autophagy induction, while TORC1 is activated. This study proposes 

that the three pathways act in parallel to regulate autophagy since inactivation of all three kinases 

revealed an additive stimulation of autophagy [144]. 

 

 

1.3. Programmed cell death  

 

Programmed cell death (PCD) is an active form of cell death, genetically regulated, opposite 

to accidental cell death or classical necrosis that occurs during cell injury. It is often referred as a 

suicide process that cells undergo during development and homeostasis of adult tissues, 

embryogenesis and disease control in multicellular organisms. PCD includes, among others, 
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programmed necrosis, autophagic cell death and apoptosis, the latter being the most common form 

of PCD [145]. Cells undergoing apoptosis are characterized by severe morphological changes such 

as the reduction of cellular volume, chromatin condensation and nuclear fragmentation and 

engulfment by resident phagocytes.  

 

 

1.3.1. General aspects in multicellular organisms 

 

Due to recent advances in the biochemical and genetic characterization of cell death, a new 

terminology has been proposed for PCD, that replaces morphological criteria for molecular criteria, 

and so delineates PCD in the following categories: extrinsic apoptosis, caspase-dependent or -

independent intrinsic apoptosis, regulated necrosis, autophagic cell death and mitotic catastrophe 

[146].  

Extrinsic apoptosis, based on molecular criteria, is defined as a caspase-dependent 

subroutine that is activated by extracellular stress signals and that is possible to suppress by 

caspases inhibitors such as N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (Z-VAD-fmk) and 

viral inhibitors of caspases like cytokine response modifier A (CrmA) [146, 147]. Caspases are 

cysteine proteases that cleave their substrates following an aspartic acid residue and have key 

mediating functions in this PCD process. These proteases can be divided into initiator caspases (pro-

caspases 2, 8, 9 and 10) and effector caspases (pro-caspases 3, 6 and 7). Initiator caspases 

activate effector caspases by cleaving inactive pro-forms of effector caspases, which are then 

responsible for triggering the apoptotic process [148, 149]. Extracellular signals are sensed and 

subsequent propagated by specific transmembrane receptors, namely death receptors (e.g., TNFR1, 

Fas/CD95 and TRAIL-R) and dependence receptors The signal is produced upon the interaction of 

specific ligands, called death activators, with the transmembrane receptors that in turn recruit 

proteins that form a multiprotein complex that will then activate the caspase cascade [146].  

On the other hand, intrinsic apoptosis is activated by intracellular stressful signals (DNA 

damage, oxidative stress, overload of cytosolic Ca2+, accumulation of unfolded proteins in the 

endoplasmatic reticulum (ER), etc.) which generate pro-survival and pro-death signals that culminate 

in a mitochondria-controlled mechanism [150]. In a scenario where cells cannot cope with stress, 
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pro-death signals prevail and will generate the mitochondrial outer membrane permeabilization 

(MOMP) that can be triggered by members of the BCL-2 protein family such as BAK and BAX, at the 

outer mitochondrial membrane, or it can be triggered at the inner mitochondrial membrane resulting 

from a multiprotein complex formation known as mitochondrial permeability transition pore (MPTP) 

[150, 151]. Upon MOMP, a series of events are triggered that lead to mitochondrial membrane 

potential (∆Ψm) dissipation, arrest of ATP synthesis and ∆Ψm-dependent transport activities, 

release of proteins from the mitochondrial intermembrane space into the cytosol like cytochrome c 

(cyt c), apoptosis inducing factor (AIF), endonuclease G (Endo G), HtrA2/OMI and Smac/DIABLO, 

and inhibition of the respiratory chain leading to overproduction of reactive oxygen species (ROS) 

[152, 153]. Once released into the cytosol, cyt c promotes the formation of the apoptosome, by 

assembling with the adaptor protein Apaf1 and the pro-caspase 9, and upon formation the 

apoptosome will trigger the caspase 9-caspase 3 proteolytic cascade. This caspase cascade 

activation is further facilitated by the inhibition of antiapoptotic proteins members of the Inhibitor 

apoptosis protein (IAP) family, which is executed by the mitochondrial released Smac/DIABLO and 

HtrA2/OMI. In a caspase-independent manner, on the other hand, apoptosis-inducing factor (AIF) 

and endonuclease G (endoG) after mitochondrial release relocate to the nucleus and mediate large-

scale DNA fragmentation [154]. 

Autophagic cell death has been described in cases where cell death occurs with massive 

cytoplasmic vacuolization, in the absence of chromatin condensation. Initially, this expression merely 

meant that autophagy was present during cell death but was not the causing agent of death [145, 

146]. Nevertheless, involvement of autophagy in cell demise was discovered in the developmental 

program of Drosophila melanogaster and in some cancer cells, especially in cells lacking essential 

apoptotic modulators like BAX and BAK or caspases [155-157]. All the same, in most cases 

autophagy is considered a protective response to cope with stress, where dying cells activate 

autophagy in an attempt to re-establish homeostasis and survival [158]. The new molecular criteria 

for the definition of autophagic cell death postulate that this type of death should be suppressed by 

chemical inhibitors of the autophagic pathway and by genetic manipulation of the pathway which 

leads to inhibition of the autophagic process, in order to access the actual occurrence of an 

autophagic death [146]. 
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Necrosis, in the classical view, is an accidental, uncontrolled death that occurs upon major 

cellular injury. The main morphological characteristics of necrosis include increase in cell volume 

and swelling of organelles with subsequent loss of plasma membrane integrity and leakage of cell 

content, and also at the molecular level, DNA is randomly degraded, ATP-levels are depleted and 

overproduction of ROS occurs [159-161]. However, in the past decade evidences have emerged 

indicating that necrosis can be regulated process controlled by a set of signal transduction pathways 

and catabolic mechanisms [159, 160]. Although the complete mechanism in yet unknown, some 

key players in the regulation of necrosis have been identified such as receptor interacting protein 

(RIP) kinases (Rip1p and Rip3p), calpains, cathepsins and cyclophilin D. Activation of death 

receptors is known to stimulate necrosis, when caspases are inhibited, by interacting and activating 

Rip1p that in turn phosphorylates and activates Rip3p [145, 160]. This cascade will then affect 

mitochondria and production of ROS initiating a number of events including mitochondrial 

alterations, such as nitroxidative stress by nitric oxide and mitochondrial membrane 

permeabilization, lysosomal and nuclear changes, lipid degradation and increases in the cytosolic 

concentration of calcium, which culminates in activation of non-caspase proteases like calpains and 

cathepsins [145, 160, 162]. Recently, it was discovered that Rip3p can regulate necrosis in a Rip1p 

independent manner and so, due to the lack of a biochemical denominator, identifying a necrotic 

process still relies on negative criteria like absence of apoptotic or autophagic markers [145, 146].  

 

 

1.3.2. Apoptosis and necrosis in yeast: pathways and key molecular components 

 

PCD processes, involving tightly regulated mechanisms, were thought to be exclusive of 

multicellular organisms for many years until apoptosis-like, autophagic and necrotic cell death 

pathways were detected in yeast cells. It was shown that yeast also possesses a coordinated suicide 

program that can help the community to deal with external stressful conditions and ensure a rapid 

adaptability. Actually, in yeast colonies, single cells undergo an altruistic death promoting the long-

term survival of the whole colony [163]. However this process can also be imposed, triggered by 

competing yeast strains or higher eukaryotes [164]. The “group selection theory” postulates that 

individual cells sacrifice themselves in benefit of the whole population and so programmed cell death 

seems to clean the population over time, suggesting that aging in yeast and possibly in higher 
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organisms may be programmed [42, 196]. This death in chronological aging cultures provides the 

population with nutrients and the DNA damage and mutation frequency that derives from superoxide 

eases the appearance of adaptive regrowth mutants that assure the survival of the group. These 

mutants turn up when almost all the population is dead (90-99%) and grow under conditions that are 

normally not permissive for growth [71]. 

Apoptosis in unicellular S. cerevisiae yeast cells was first described by Frank Madeo and co-

workers in 1997, in CDC48 defective cells (cdc48S565G) that showed many of the markers associated 

with apoptosis, like DNA fragmentation, phosphatidylserine externalization and chromatin 

condensation [165]. Soon after, the same authors described that accumulation of reactive oxygen 

species (ROS) by depletion of glutathione or exposure to low external doses of H2O2 led to apoptosis 

in wild-type cells, while depletion of ROS or hypoxia prevented cell death. Therefore a key role for 

ROS in the regulation of yeast apoptosis emerged [166]. In the early and mid-2000s a vast number 

of other stimuli that could induce apoptosis were discovered, including acetic acid [94], sugar [58], 

osmotic stress [167], UV radiation [168], amino acid starvation in auxotrophic cells [169], DNA 

damage [170] and chronological aging [171], among others. The most well studied external 

inducers of apoptosis in yeast are the acetic acid and H2O2 compounds. Studies by Ludovico and co-

workers discovered that acetic acid induced apoptosis through a mitochondria-mediated apoptotic 

pathway similar to the mammalian intrinsic apoptotic pathway, resulting in cytochrome c release 

and ROS production [93]. Another important breakthrough in yeast apoptosis studies was the 

identification of metacaspase Yca1p, the only yeast ortholog of mammalian caspases identified so 

far, and its implication in H2O2 induced apoptosis [172]. The discovery that yeast possesses some 

orthologs of mammalian apoptosis regulators such as cytochrome c, AIF, HtrA/OMI  and 

endonuclease G supports the existence of conserved primordial apoptotic machinery in yeast similar 

to that found in higher eukaryotic organisms [173, 174], that has proven to be useful in unraveling 

unknown features of mammalian proteins of the intrinsic apoptotic pathway [175].  

Necrosis in yeast is up till now an extremely recent field not yet generally well-known. The 

fate of an apoptotic yeast cell in culture is in fact a necrotic end with loss of plasma membrane 

integrity since it will not be phagocytosed by neighboring yeast cells. This phenomenon is known as 

secondary necrosis. In chronological aged yeast cells, death exhibits biochemical and morphological 

markers of both apoptosis and necrosis [171], nevertheless several studies have shown the 
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appearance of necrotic markers without apoptotic characteristics, suggesting an additional type of 

necrotic cell death, distinguishable from secondary necrosis and that should be classified as primary 

necrosis [176-178]. Although further studies are necessary for establishment of necrotic machinery 

in yeast, it is already known that mitochondria plays an important role in this process and some of 

the biochemical changes that occur during necrosis include, mitochondrial outer membrane 

permeabilization (MOMP), dissipation of mitochondrial potential, ATP depletion, overproduction of 

reactive oxygen species (ROS) and nuclear release of Nhp6Ap, yeast homolog of the mammalian 

high mobility group box-1 (HMGB1) protein [176]. A recent study showed the involvement of pro-

apoptotic mitochondrial Nuc1p, yeast homolog of mammalian endonuclease G (EndoG), displaying 

vital functions as an anti-necrotic protein. Deletion of NUC1, led to increasing rates of necrosis upon 

aging or peroxide treatment [179]. Another finding that further postulates that necrosis is also a well-

controlled molecular process in yeast was the discovery of anti-necrotic characteristics of yeast 

ortholog of mammalian cathepsin D, Pep4p. The propeptide of this vacuolar protease promoted 

survival of chronological aged cells by specifically reducing necrosis [180].  

 

 

The involvement of cellular organelles 

 

Mitochondria involvement in apoptosis 

 

As aforementioned mitochondria has an established role in apoptosis. One of the most 

studied apoptotic inducers is acetic acid and its effects in the apoptotic cascade have been 

extensively characterized. Mitochondria is also an active executer in acetic acid induced apoptosis, 

leading to the release of cyt c into the cytosol, production of ROS, reduction in oxygen consumption 

and in mitochondrial membrane potential and decrease in cytochrome oxidase activity (COX) linked 

to a specific decrease in the amount of COX II subunit [93, 181]. However the events that follow cyt 

c release are so far unknown since downstream components have not yet been identified in yeast. 

Although a relationship between cyt c release and caspase activation has been established for 

hyperosmotic shock induced apoptosis [167], this is not the case for most apoptotic scenarios in 

yeast and so the precise role of cyt c release, as it has been clearly demonstrated for the 

mammalian caspase activation, still requires further investigation. Another important step in 
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mammalian mitochondria-dependent apoptosis is the formation of the above mentioned MOMP. 

Though the molecular composition of the pore is not completely defined, it has been proposed that 

its major components/regulators are the adenine nucleotide transporter (ANT), the voltage 

dependent anion channel (VDAC) and cyclophilin D [151]. In yeast, Pereira and co-workers 

demonstrated that the absence of ADP/ATP carrier (AAC) proteins (yeast orthologs of ANT) protects 

cells exposed to acetic acid, by inhibiting cyt c release [182] and Pavlov and coworkers 

demonstrated that Bax expressed in yeast cells induced the formation of mitochondrial apoptosis-

induced channel (MAC) [183]. The absence of AAC proteins and cyt c release just partially prevented 

acetic acid-induced cell death, suggesting that alternative cyt c-independent pathways are involved 

[182]. The translocation from the mitochondria to the nucleus of intermembrane space 

mitochondrial proteins released in response to acetic acid, such as Aif1p, could possibly mediate 

this alternative pathways [184]. In fact, other stimuli, besides acetic acid, can stimulate yeast Aif1p 

to translocate from mitochondria to the nucleus, such as aging and H2O2 [173]. As in mammalian 

cells, yeast Aif1p effects are dependent on yeast cyclophilin-A and Aif1p possesses the ability to 

degrade DNA. However, unlike mammalian cells in which this mechanism is caspase-independent, 

in yeast Aif1p pro-apoptotic activity is partially metacaspase-dependent since deletion of YCA1 gene 

partially suppressed cell death in cells overexpressing Aif1p during H2O2 exposure [184]. Besides its 

death function, Aif1p also has vital functions within the mitochondrial intermembrane space with its 

redox function being necessary for proper oxidative phosphorylation [185]. Another mitochondrial 

protein that translocates to the nucleus upon apoptotic stimuli is the yeast Nuc1p, ortholog of the 

mammalian pro-apoptotic endonuclease-G (EndoG). This protein was found to trigger apoptosis 

independently of the Aif1p and metacaspase, while depending on proteins involved in the 

permeability transition pore formation (yeast orthologs of ANT and VDAC), nuclear import 

(karyopherin Kap123p) and in phosphorylation of histone H2B. These results showed a EndoG-cell 

death route from mitochondria release to nuclear import with consequent DNA fragmentation [179]. 

Resembling Aif1p, Nuc1p also has dual functions, demonstrated by the deletion of this gene, which 

inhibited apoptotic death during mitochondrial respiration and enhanced necrotic death during 

fermentation [173, 179].  

During mammalian apoptosis, mitochondrial fragmentation (fission) is commonly observed 

at early stages and is mediated by fission machinery regulated by the dynamin related protein-1 
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(Drp1p). This machinery has also been identified in yeast as a complex of three proteins, Dnm1p, 

Mdv1p/Net2p, and Fis1p.  

Like for mammals, mitochondria have emerged as a central organelle in yeast PCD. The 

finding that proteins within this organelle regulate apoptosis in a similar way in both unicellular and 

multicellular organisms is indicative of an evolutionary conserved mechanism and so yeast has 

proven to be a valuable help to unravel the mechanisms of severe human diseases associated with 

mitochondria-dependent apoptosis [174].  

 

Vacuole involvement in apoptosis 

 

Other organelles besides mitochondria have also been described to be involved in PCD 

regulation. In mammalians, lysosomal membrane permeabilization (LMP) causes the release of 

hydrolases from the lysosome lumen into the cytosol [186]. Once in the cytosol these hydrolases, 

namely CatD, initiate a mitochondrial apoptotic cascade [187]. Recent studies have demonstrated 

that yeast vacuoles, the yeast equivalent to mammalian lysosomes, also play a role in cell death. As 

in mammalian cells, the yeast ortholog Pep4p is released into the cytosol without rupture of the 

vacuolar membrane, during H2O2 [188] and acetic acid exposure [189] leading to degration of 

nucleoporins and mitochondria. However, anti-apoptotic and anti-necrotic functions have been 

identified for Pep4p in yeast. Deletion of this vacuolar protease, causes increased cell death during 

acetic acid exposure [189] and results in combined apoptotic and necrotic cell death during 

chronological aging [180]. Also, a pro-survival role of CatD during apoptosis has also been observed 

in mammalian cells [190, 191]. The involvement of Pep4p in the degradation of mitochondria and 

the importance of this degradation to the cell death cascade reveals a complex regulation between 

mitochondria and the vacuole. 

 

Peroxisome involvement in apoptosis 

 

Peroxisomes also seem to have a role in PCD, since it was discovered that deletion of PEX6, 

which codes for a peroxisomal membrane protein involved in protein import to the peroxisome, 

induced a necrotic cell death process accompanied by an increased accumulation of ROS in yeast 
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cells exposed to acetic acid or entering early stationary phase. The fact that peroxisomes harbour 

antioxidant enzymes, like catalase and glutathione peroxidase to protect the cell against oxidative 

damage could be one explanation for the decrease in viability observed in pex6∆ mutant cells [178].  

 

 

Signaling pathways 

 

The signaling pathways regulating cell death in yeast are still a matter deprived of extensive 

study. Indeed, most studies have focused on the identification of different apoptotic triggers and the 

components/regulators of apoptotic death. The involvement of the major nutrient pathway 

Ras/AC/PKA in acetic acid induced apoptosis was first described in Candida albicans as it was 

observed that apoptotic induced cell death, during acetic acid treatment, was largely delayed or even 

supressed in strains deleted in several key components (ras1∆, cdc35∆, tpk1∆, and tpk2∆) of this 

signaling pathway whereas mutations in RAS1 or PDE2 that increased signaling, enhanced apoptosis 

[192]. In S. cerevisiae this major nutrient signaling pathway was also proven to be involved in acetic 

acid induced apoptosis since deletion of the RAS2 gene decreased cell death during the exposure to 

this acid [91, 192]. Gourlay and co-workers have also shown the involvement of Ras/AC/PKA 

pathway in apoptotic cell death induced by accumulation of stable actin aggregates that lead to 

hyper activation of this pathway and consequently to the production of ROS in mitochondria. 

Moreover, these authors found that deletion of TPK3, which codes for one of PKA catalytic subunits, 

prevented ROS production in actin aggregating strains and that Tpk3p seems to regulate 

mitochondria function by activating several downstream targets [193, 194].  

As TOR pathway is another major nutrient signaling pathway, its involvement in PCD seems 

inevitable. Indeed, TOR is involved in apoptotic cell death induced by acetic acid exposure, that 

causes severe intracellular amino acid starvation, regulating death by the two downstream mediator 

phosphatases Pph21p and Pph22p but not Sit4p [195]. The association of the TOR pathway with 

PCD in yeast came from CLS studies where the outcome of its inactivation was the extension of life 

span [52]. During aging in yeast, apoptotic cell death occurs [171] suggesting that cell death has 

evolved in microorganisms as a survival strategy beneficial to the group [71]. The nutrient signaling 

pathways Sch9, TOR and Ras/AC/PKA are key elements in this program and its activation reduces 
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cell protection as it raises the levels of superoxide production leading to cell damage and death [12, 

42, 196]. Deletion of key genes in these pathways such as SCH9, RAS2 or TOR1 increase longevity 

up to 3-fold and point to an “aging program” that blocks cell protection and accelerates cell death, 

naturally connecting aging and apoptosis [27, 50, 52, 71].  

 

 

1.4. Autophagy and its role in cell survival 

 

In order to maintain viability during starvation periods, yeasts undergo a degradative process 

of their own cellular components by a self-eating process via the vacuole, named autophagy [197, 

198]. Autophagy is a highly conserved porcess in eukaryotic cells and consists of the formation of a 

double-membrane vesicle in the cytosol, the autophagosome [199], which enfolds cellular 

components that are delivered into the vacuole upon fusion of the autophagosome with its 

membrane. Once inside the vacuole the cellular components engulfed are exposed to a variety of 

hydrolytic enzymes that degrade their macromolecules, generating an internal pool of molecules 

ready to be recycled [197, 198]. Although under starvation conditions mainly nitrogen starvation but 

also carbon source starvation or auxotrophic amino acid starvation, autophagy is drastically induced, 

it also occurs under normal growth conditions degrading damaged or aged organelles [200]. 

Selective autophagy of organelles is essential for cellular homeostasis and includes mitochondria 

(mitophagy), peroxisomes (pexophagy) and ribosomes (ribophagy) [198, 201, 202].  Another 

autophagy-related pathway of selective autophagy, active under normal growth conditions, involves 

the transport of the precursors of the hydrolases aminopeptidase I (prApe1) and α-mannosidase 

(prAms1) synthesized in the cytosol into the vacuole by a pathway so-called cytoplasm to vacuole 

targeting (Cvt) which consists of the only known biosynthetic function of autophagy [114]. The 

involvement of autophagy in several conditions ranging from cell stress and starvation to growth 

reveals the importance of autophagy regulation in to the cell’s response to specific metabolic 

requirements.  
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1.4.1. Basic mechanisms and molecular components 

 

Autophagy in yeast starts in a define location with the biogenesis of membranes called the 

phagophore assembly site (PAS). This PAS is not yet fully known and it is still not clear if it 

represents the site of autophagosome formation or the phagophore itself that will then mature into 

an autophagosome [203]. At the PAS, several specific autophagy proteins are recruited to initiate the 

formation of the autophagosome. The autophagy-related genes (ATG) where almost all screened in 

yeast and so far 33 genes have been identified that code for proteins having functions at several 

steps in the non-selective and selective autophagy-related pathways [204]. Of these Atg proteins, 

seventeen are core components, making part of all autophagy-related pathways and the other 

sixteen proteins have more specific roles. In spite of being isolated in yeast orthologues of almost all 

Atg proteins have now been identified in multicellular organisms, revealing that both the molecular 

machinery and the mechanism of autophagy are highly conserved [198, 205]. The assembly of the 

PNAS, called nucleation, starts with the recruitment of Atg17p that in turn recruits Atg13p and 

Atg9p. Together they activate class III phosphoinositide 3-kinase (PI3K) complex formed by the two 

vacuolar protein sorting-associated (VPS) 34 and 15 and the two Atg proteins 14 and 6 [200]. The 

next step is the formation of a complex between Atg13p and Atg1p however this step is highly 

regulated by the nutrient signaling pathways [137, 144]. Under rich nutrient conditions, the TOR 

kinase hyperphosphorylates Atg13p reducing its affinity for Atg1p. On the other hand under 

starvation conditions TOR kinase is inactive and Atg13p becomes hypophosphorylated and is now 

capable of forming a complex with Atg1p [206]. More recently, the involvement of the PKA pathway 

in the regulation of autophagy by interaction with the Atg13p/Atg1p complex was discovered. The 

PKA kinase directly phosphorylates Atg13p in a TOR-independent manner, and it is by itself 

responsible for inhibiting autophagy during TOR inactivation and vice versa, which means that these 

two pathways independently regulate autophagy [137]. After the formation of the Atg13p/Atg1p 

complex, Atg18p and Atg2p are recruited to join the PI3K complex and to mediate the retrograde 

transport of Atg9p to periphery sites where it is thought to recruit membranes to the PAS for the 

biogenesis of the autophagosome. For vesicle expansion, it is necessary the conjugation between 

Atg5p, Atg12p and Atg16p and also Atg8p with phosphatidylethanolamine (PE), which is dependent 

on an ubiquitin-like conjugation systems involving Atg3p, Atg4p, Atg7p, and/or Atg10p [114, 200]. 

The Atg8p-PE then associates with the expanding double membrane autophagosome in both 
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surfaces while the Atg5p/Atg12p/Atg16p complex only associates with the outer membrane. After 

fusion of both ends of the expanding double membrane, Atg4p is activated to cleave Atg8p-PE and 

Atg5p/Atg12p/Atg16p complex releasing these complexes from the surface of the outer membrane 

but leaving Atg8p-PE intact in the inner membrane. After removal of the complexes from the 

autophagosome surface, it is now ready to dock and fuse with the vacuolar membrane. Once inside 

the vacuole, the autophagic body is degraded by lipase Atg15p and by vacuolar hydrolases such as 

Pep4p and finally the products from autophagy degradation are then released back into the cytosol 

through permeases such as Atg22 [114, 200]. 

 

 

1.4.2 Autophagy in cell survival and aging 

 

Due to its role in cellular homeostasis, autophagy is also an important process in aging and 

in cell death and is regulated by the same major nutrient signaling pathways as aging. During aging, 

damaged proteins and organelles accumulate and an effective “clean up” process like autophagy is 

necessary for cell survival. Although the contribution of autophagy to CLS is presumed since 

autophagy is induced in long-lived deletion strains of the TOR/SCH9 and PKA pathways, only 

recently a number of studies confirmed this contribution. Deletion of genes involved in the 

autophagic pathway shortened the CLS, demonstrating that autophagy is required for extension of 

CLS [80, 89, 98]. Also a relation between the amino acid pool and autophagy is critical for CLS, as 

amino acids extend CLS in autophagy-deficient as well as autophagy-competent yeast cells [80]. This 

result is in agreement with previous results for nitrogen starvation, where it was demonstrated that 

autophagy-defective mutants could not maintain the amino acid pool needed for protein synthesis 

[207]. The same authors in a recent work also showed that autophagy is essential for maintaining 

mitochondrial functions during nitrogen starvation and that mitochondria dysfunction is the major 

cause of starvation-induced cell death in autophagy-defective mutants [208]. Future studies in yeast 

will further clarify the involvement of autophagy in CLS and the role of mitochondria as several short-

lived mutants are in mitochondria related genes [89, 98].  

Even though most studies point to a positive role for autophagy in survival during aging, 

some studies point to the involvement and contribution of autophagy in cell death [209, 210]. A 
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study using proteotoxic stressed cells evaluated the role of autophagy in CLS and demonstrated that 

excessive autophagy can lead to cell death and shortening of CLS. These results evidence the 

balance of autophagy levels as a key point in survival [210]. 

  

 

1.5. Ammonium utilization and its toxicity 

 

Ammonium toxicity has been well described in animals and plant systems [211], however 

little is known about a possible toxic role of ammonium in yeast. Production of ammonia in yeast 

colonies has even been described as a mechanism of protection from cell death during colony 

development [163]. To date, only one report of ammonium toxicity in yeast is known and refers to 

steady-state chemostat cultures limited for potassium [212]. In this study, excess ammonium was 

found to be toxic for S. cerevisiae, under potassium limitation, resulting in amino acid excretion 

similar to the detoxifying mechanism found in mammals. The authors described that ammonium 

toxicity in yeast is related to a “leak current” of ammonium ions that enter the cell through 

potassium channels, in limiting potassium conditions, and this influx causes an excess of internal 

ammonium that becomes toxic for the cell. To cope with this ammonium excess, cells excrete amino 

acids possibly through the Ssy1p-Ptr3p-Ssy5p (SPS)-system of amino acid transporters, which were 

found to be strongly up-regulated in this condition, or by directly excreting ammonium via the Ato 

(Ammonium Transporter Outward) transporters [212].  

 

 

1.5.1. A brief introduction to ammonium toxicity in mammals 

 

In mammals ammonium toxicity is associated to Urea Cycle Disorders (UCD) in which the 

inability to detoxify ammonium through the urea cycle in liver cells, leads to high levels of 

ammonium in the blood, a condition known as hyperammonemia [213]. This condition of excess 

ammonium in the blood can ultimately reach the central nervous system (CNS), where ammonium 

toxicity will cause the most damages. Hyperammonemia can result in neurological disorders such as 

hepatic encephalopathy and other metabolic encephalopathies, which display high mortality rates 

[129]. The main alteration caused by hyperammonemia in the CNS is astrocyte swelling that can 
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lead to brain edema with increased intracranial pressure and brain herniation [213, 214]. Astrocytes 

are the first line of defence of the brain against ammonium neurotoxicity by metabolizing ammonium 

as it reaches the brain. Possibly as the only brain cells to express glutamine synthetase (GS), 

astrocytes detoxify ammonium by synthesizing glutamine leading to an increase in the intracellular 

levels of glutamine [213, 214]. Excess of glutamine can enter into mitochondria and be degraded 

back to ammonium resulting in the generation of reactive oxygen-nitrogen species, mitochondrial 

permeability transition (mPT) and also activation of mitogen-activated protein kinases (MAPKs) and 

the nuclear factor-kappaB (NF-κB) [215]. Ammonium toxicity in the brain also alters 

neurotransmitters system by promoting glutamate extracellular release in a pH and Ca2+ dependent 

manner by astrocytes, by inhibiting glutamate uptake in astrocytes due to down regulation of protein 

levels of GLT-1 and GAST transporters and by an excess in depolarization of glutamatergic neurons 

[213, 215]. 

Pedriatic patients are more susceptible to ammonium toxicity than adults and prolonged 

exposure to high levels of ammonium can permanently damage the CNS causing cortical atrophy, 

ventricular enlargement, demyelination and other alterations in neurons and oligodendrocytes, while 

no major structural damage to neurons is observed in adult patients [216]. Ammonium triggers 

apoptosis in neurons of new-borns or infants mediated by activation of caspases and calpain, during 

which calpain cleaves the cyclin-dependent kinase 5 activator p35 to p25, forming the complex 

cdk5/p25 which has been described to cause neuronal death [213]. During ammonium exposure 

the brain also activates defensive mechanisms to protect itself from damage. Among these 

endogenous defensive mechanisms is the activation of ciliary neurotrophic factor (CNTF), which is a 

cytokine-like protein expressed only in astrocytes, involved in injury survival in the brain. This 

neurotropic factor is up-regulated in response to ammonium exposure by p38 MAPK activation but 

its expression is also controlled by intracellular signaling occurring in both oligodendrocytes and 

neurons via SAPK/JNK and Erk1/2 MAPK activation. The protective effect of CNTF was only 

observed in oligodendrocytes in the presence of ammonium, through the involvement of JAK/STAT, 

SAPK/JNK and c-Jun pathways [216].  
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1.5.2. Ammonium as a nitrogen source 

 

Ammonium has a central role in nitrogen metabolism in S. cerevisiae being involved in both 

catabolic and biosynthetic pathways [217]. In yeast, nitrogen sources need to be converted into 

glutamate and glutamine prior to their use. However not all nitrogen sources are equally preferred 

and yeast can select the nitrogen sources through nitrogen catabolite repression (NCR) mechanism 

also known as nitrogen discrimination pathway (NDP). As mentioned above, this pathway enables 

yeast to repress genes that code for proteins required for the use of poor nitrogen sources, when in 

the presence of sufficient quantities of rich nitrogen sources like glutamine [104]. This 

transcriptional regulation is performed by four GATA family transcription factors, in partnership with 

the TOR pathway, of which two are activators, Gln3p and Gat1p and two are repressors, Dal80p and 

Gzf3p [104, 107, 218]. As previously described in section 1.2.4., under favorable conditions, the 

TORC1 and Tap42p-Sit4p phosphatase form a complex that prevents the transcription of genes of 

NCR by sequestrating Gln3p in the cytoplasm and promoting its binding to the cytoplasmic protein 

Ure2. When nitrogen becomes limiting, the Tap42p-Sit4p complex detaches from TORC1, becoming 

active, and dephosphorylates Gln3p which can now translocate to the nucleus where it will activate 

the transcription of NCR genes [104, 107]. These NCR genes include genes coding for Gln1 

(Glutamine synthetase), Glt1 (Glutamate synthase), Gdh1 and Gdh2 (Glutamate Dehydrogenase), 

Gap1 (General amino acid permease), Mep2 (Ammonium permease), enzymes involved in nitrogen 

source metabolism (Dal3p and Put1p), and the transcription factors Dal80p and Dal82p [108]. As 

for the second activator, Gat1p, it responds to nitrogen availability in a similar way to Gln3p, 

although it does not seem to be as regulated as Gln3p. Ure2p restriction of Gat1p to the cytoplasm 

is much weaker than the one imposed on Gln3p and also Sit4p is not required for nuclear 

localization of Gat1p. The expression and regulation of the repressor transcription factors is achieved 

by overlapped and auto regulation between the activators and the repressors. The activator Gln3p 

strongly regulates Dal80p and Gat1p whereas Gzf3p is weakly regulated. On the other hand, 

expression of Gzf3p is NCR sensitive and regulated by Dal80p in the presence of one of the two 

activators [107].  

The genetic background of strains also plays a major role in the perception of quality of the 

nitrogen source in question and even ammonium can have a dubious quality. Early studies with 

strains of the ∑1278b genetic background demonstrated ammonium as a preferred nitrogen source 
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whereas more recent studies using S288C genetic background strains, demonstrated that 

ammonium was not a preferred source of the latter strain, being unable to block the Gap1p 

transport [218]. A recent study, using strains from the Sigma and the TB background, demonstrated 

that regulation of the NCR differed at the level of the GATA activators Gln3p and Gat1p and the 

presence or absence of the repressor Gzf3p in the strain background [107]. For strains with the 

S288C genetic background like BY strains, ammonium does not act as a repressor of the NCR 

pathway and thus allows the transcription of genes regulated by this pathway such as GAP1 [218].  

Ammonium membrane transporters system in yeast belongs to the highly conserved 

Mep/Amt/Rh superfamily found in all forms of life [211] and comprises three permeases (Mep1p, 

Mep2p and Mep 3p) with different kinetics properties [219]. From the three, Mep2 protein displays 

the highest affinity for ammonia (Km 1–2 µM), followed by Mep1p (Km 5–10 µM) and Mep3p (Km 

1.4–2.1mM). When ammonium is available in concentrations below 5 mM as the only nitrogen 

source, the Mep proteins are indispensible for growth in these conditions [219]. Mep proteins, more 

specifically Mep2p, have also been described to be involved in the retrieval of ammonium after 

catabolic ammonium leakage [220]. As mentioned above, Mep proteins are subjected to NCR 

control and so, in the presence of good nitrogen sources all three genes are repressed, on the other 

hand, in the presence of limiting ammonium concentrations or poor nitrogen sources, MEP2 

expression is much higher than MEP1 or MEP3 expression. This difference in expression is due to 

different transcription controls exerted by the two general nitrogen regulatory factors, Gln3p and 

Gat1p. MEP2 expression is controlled by both Gln3p and Gat1p, and the contribution of each 

individual regulatory factor is dependent on the nitrogen source available. In the presence of poor 

nitrogen sources, both regulatory factors activate transcription and one can even compensate for the 

absence of the other. Also, both factors are needed for basal MEP2 expression in high ammonium 

concentration grown cells. By the contrary, when good nitrogen sources are available, only Gln3p is 

required for MEP2 expression. As for MEP1 and MEP3, Gln3p is the essential regulatory factor for 

these genes expression in all sources of nitrogen, however Gat1p still down-regulates its expression 

in poor nitrogen sources [123, 219]. Recent studies have attributed yet another role for Mep1 and 

Mep2 proteins, demonstrating that they can also function as sensors to activate major nutrient-

signaling pathways. In nitrogen starvation conditions, in the presence of a fermentable sugar, Mep2p 

acts as an ammonium sensor enabling pseudohyphal growth in diploid yeast cells [123, 220]. Also, 

Mep2p and Mep1p to some extent act as nutrient transceptors for ammonium-induced activation of 
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the PKA pathway. Ammonium re-supplementation to nitrogen starved cells induced PKA activation, 

measured by trehalase activity, in a Mep1p,2p-dependent manner [135].  

Another set of ammonium transporters belonging to the YaaH family have been reported to 

be outward transporters, involved in ammonia production in S. cerevisiae [221].These membrane 

transporters designated as Ato1p, Ato2p and Ato3p seem to be ammonium/ H+ antiporters, 

excreting ammonium and importing protons [211, 221].  

 

 

1.6. General objectives and work plan of the thesis 

 

The elucidation of the mechanisms responsible for aging and the regulators involved in 

these processes are a major area of current research. The budding yeast S. cerevisiae has 

contributed vastly as a model system to the understanding of the mechanisms involved in aging. 

Understanding and discovering new modulators of yeast longevity contributes to unravel pathways 

and regulators that proved to be conserved among eukaryotic organisms. In this context, we aimed 

to identify new nutrient signaling capable of regulating chronological life span (CLS) of S. cerevisiae.  

The work developed in the scope of this thesis is organized in four chapters: 

In chapter 1, an introduction to the theme is made regarding the main contribution of the 

aging models to the understanding of the cellular pathways involved in aging and focusing in the 

particular case of yeast as a model. For this organism growth culture conditions and nutrient 

signaling modulating chronological longevity are discussed and mechanisms of cell death during are 

described. A brief introduction to ammonium toxicity in mammals is given as well. 

In chapter 2, the materials and methods used in this work are described.  

In chapter 3, results are presented in five sections. The results presented in the section 3.1 

show ammonium as a new modulator regulating CLS in S. cerevisiae contributing to CLS decrease 

in amino acid restriction conditions. In section 3.2, results show the characterization of the death 

process induced by ammonium. In section 3.3, results show that ammonium toxicity is not 

dependent on its metabolization. In section 3.4, the results point out the involvement of the major 



General introduction 

 

 

56 

nutrient-signaling pathways (TOR, PKA and SCH9) in ammonium induced-cell death. Section 3.5 

presents the results showing the contribution of auxotrophy-complementing amino acids in the 

regulation of CLS by ammonium and the results related with the strain background involvement in 

ammonium toxicity. 

In chapter 4, a more thoughtful discussion is made of the results and futures perspectives of 

this work are highlighted. 
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2. Materials and methods 
 

2.1. Strains 
 

Several Saccharomyces cerevisiae strains were used throughout this study, including one 

prototrophic (CEN.PK113-7D) and four auxotrophic strains (W303-1A; CEN.PK2-1C; BY4741 and 

BY4742). Knockouts of BY4742 strain in: AIF1, ATG8, CPR3, MEP1, MEP2, RAS2, RIM13, SCH9, 

TOR1, TPK1, TPK2, TPK3 and YAC1 genes were also used. All strains used are summarized in table 

1. 

 

Table 1.Saccharomyces cerevisiae strains used in this study. 

Strain Genotype Source 

   

CEN.PK113-7D MAT α MAL2-8C SUC2 P.Koetter 

W303-1A MAT a ura3-52 trp1∆2 leu2-3,112 his3-11 ade2-1 can1-100 Euroscarf 

CEN.PK2-1C MAT a ura3-52 trp1-289 leu2-3,112 his3∆1 MAL2-8C SUC2 Euroscarf 

BY4741 MAT a his3∆1 leu2∆0 met15∆0 ura3∆ 0 Euroscarf 

BY4742 MAT α his3∆1 leu2∆0 lys2∆0 ura3∆0 Euroscarf 

aif1∆ MAT α his3∆1 leu2∆0 lys2∆0 ura3∆0 YNR074c::kanMX4 This study 

atg8∆ MAT α his3∆1 leu2∆0 lys2∆0 ura3∆0 YBL078c::kanMX4 This study 

cpr3∆ MAT α his3∆1 leu2∆0 lys2∆0 ura3∆0 YML078w::kanMX4 This study 

mep1∆ MAT α his3∆1 leu2∆0 lys2∆0 ura3∆0 YGR121c::kanMX4 This study 

mep2∆ MAT α his3∆1 leu2∆0 lys2∆0 ura3∆0 YNL142w::kanMX4 This study 

ras2∆ MAT α his3∆1 leu2∆0 lys2∆0 ura3∆0 YNL098c::kanMX4 This study 

rim13∆ MAT α his3∆1 leu2∆0 lys2∆0 ura3∆0 YMR154c::kanMX4 This study 

sch9∆ MAT α his3∆1 leu2∆0 lys2∆0 ura3∆0 YHR205w::kanMX4 This study 

tor1∆ MAT α his3∆1 leu2∆0 lys2∆0 ura3∆0 YJR066w::kanMX4 This study 

tpk1∆ MAT α his3∆1 leu2∆0 lys2∆0 ura3∆0 YJL164c::kanMX4 This study 

tpk2∆ MAT α his3∆1 leu2∆0 lys2∆0 ura3∆0 YPL203w::kanMX4 This study 

tpk3∆ MAT α his3∆1 leu2∆0 lys2∆0 ura3∆0 YKL166c::kanMX4 This study 

yca1∆ MAT α his3∆1 leu2∆0 lys2∆0 ura3∆0 YOR197w::kanMX4 This study 
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2.2. Culture media and growth conditions  

 

For experiments with stationary phase cells with or without restriction of auxotrophy-

complementing amino acids (low and high amino acids conditions, respectively), cells were cultured 

at 26 ºC, 150 rpm, for 72 hours, in defined minimal medium (SC medium) containing 0.17% yeast 

nitrogen base without amino acids and without ammonium sulphate (Difco, BD), 2% D-glucose and 

supplemented with 100 mg/l uracil. The concentrations of ammonium sulphate ((NH4)2SO4) and 

auxotrophy-complementing amino acids in the medium were manipulated and the different 

conditions of supplemented nitrogen are presented in table 2.  

 

Table 2. Nitrogen supplement to SC growth medium.  

 Low amino acids High amino acids 

Nitrogen        

Ammonium sulphate 0.01% 0.1% 0.5% 1% 0.5% 1% 

Leucine  60 mg/l 60 mg/l 60 mg/l 60 mg/l 300 mg/l 300 mg/l 

Lysin 10 mg/l 10 mg/l 10 mg/l 10 mg/l 50 mg/l 50 mg/l 

Histidine 10 mg/l 10 mg/l 10 mg/l 10 mg/l 50 mg/l 50 mg/l 

 

After 72 hours of growth, cells were collected by centrifugation and resuspended at a cell density of 

about 3.8 x 107 cells/ml, in: A) growth medium (exhausted medium) without adjusting pH - pH 2.9; 

B) growth medium (exhausted medium) with pH adjusted to 7.0; C) water (pH 7.0), after being 

washed three times; D) water with ammonium sulphate (0.5% or 1%, pH 7.0.), after being washed 

three times. For experiments at pH 7.0, no changes in pH were observed throughout the 

experiment. Viability of stationary 3 day old cultures (72 hours of growth) was considered to be 100% 

of survival and this was considered day 0 of the experiment. Cell viability was assessed by Colony 

Forming Units (CFU) at day 0 (100% viability) and in subsequent days, as indicated. Culture aliquots 

were diluted, spread on YPD (2% glucose, 2% agar, 1% peptone and 0.5% yeast extract) agar plates 

and incubated for 2 days at 30 °C before counting. 
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For experiments with amino acid and nitrogen-starved cells, cells were first cultured at 26 

°C and 150 rpm, in the defined minimal medium described above, supplemented with 0.5% 

(NH4)2SO4, appropriate amino acids and base (50 mg/l histidine, 50 mg/l lysine, 300 mg/l leucine 

and 100 mg/l uracil) and 2% D-glucose, to exponential phase (OD600 = 1.0–1.5). These cells were 

harvested and resuspended in nitrogen-starvation medium (N-) containing 4% glucose and 0.17% 

yeast nitrogen base without amino acids and (NH4)2SO4, or in amino acid-starvation medium (aa-) 

containing the same components as N-starvation medium plus 0.5% (NH4)2SO4. After 24 hours, cells 

were collected by centrifugation and resuspended at a cell density of about 3.8 x 107cells/ml in: A) 

starvation medium (N- or aa-), without adjusting pH (pH 2.7); B) resuspended in starvation medium 

(N- or aa-) with pH adjusted to 7.0; C) resuspended in water (pH 7.0), after being washed three 

times; D) resuspended in water with (NH4)2SO4 (0.5%, pH 7.0.), after being washed three times, at 

cell density of about 3.8 x 107 cells/ml. Viability of 24 hours starved cultures was considered to be 

100% of survival and this was considered day 0 of the experiment. pH 7.0 was maintained 

throughout the experiment in cultures with adjusted pH. Cell viability of culture aliquots was 

assessed by CFU at day 0 (100% viability) and in subsequent days, as indicated. Diluted samples 

were incubated for 2 days at 30 °C on YEPD agar plates.  

In section 3.5, stationary phase cells were cultured at 26 ºC, 150 rpm, for 72 hours, in 

minimal K medium [222] supplemented with the following auxotrophy-complementing amino acid 

concentrations: 1) high (300 mg/l leucine, 50 mg/l histidine, 50 mg/l lysine); 2) low (60 mg/l 

leucine, 10 mg/l histidine, 10 mg/l lysine); 3) low concentration reduced to half (30 mg/l leucine, 5 

mg/l histidine, 5 mg/l lysine) and 4) low concentration reduced to one quarter (15 mg/l leucine, 2.5 

mg/l histidine, 2.5 mg/l lysine) and with 100 mg/l uracil. After 72 hours of growth, cells were 

collected by centrifugation, washed three times, and resuspended at a cell density of about 3.8 x 107 

cells/ml in: A) water (pH 7.0); B) water with (NH4)2SO4 (0.5%, pH 7.0.) and C) water with (NH4)2SO4 

(1%, pH 7.0.). Viability of stationary phase 3 day old cultures was considered to be 100% of survival 

and this was considered day 0 of the experiment. pH 7.0 was maintained throughout the experiment 

in cultures with adjusted pH. Cell viability was assessed by CFU as described above. In the 

experiments where the influence of the strain background on ammonium toxicity was assessed, cells 

were grown in SC medium with high or low concentrations of auxotrophy-complementing amino 

acids and with or without 0.5% (NH4)2SO4. Viability of stationary phase 3 day old cultures was 
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considered to be 100% of survival and this was considered day 0 of the experiment. Cell viability was 

assessed by CFU as described above. 

 

2.3. Construction of mutant strains and plasmid transformation 

 

To construct knockout strains in the following genes: AIF1, ATG8, CPR3, MEP1, MEP2, 

RAS2, RIM13, SCH9, TOR1, TPK1, TPK2, TPK3 and YAC1, we used genomic DNA from the 

respective deleted strains from Euroscarf as template and amplified by PCR, the disruption cassette 

using the respective primers summarized in table 3. The resulting fragment was transformed into 

wild-type S. cerevisiae strain BY4742 by the lithium acetate method. Briefly, 5 µg DNA of the 

disruption cassette were mixed with 50 µg of freshly denatured salmon sperm DNA (10 mg/ml, 

boiled for 20 min in a water bath, then chilled in ice/water) and added to the cell pellet of 

exponential grown cells (2.9 x 109 cells/ml). After mixing with caution, 300 ml of freshly prepared 

sterile 40% PEG 4000 were added and carefully mixed. Cells were first incubated for 30 minutes at 

30 ºC with constant agitation and after for 15 min at 42 ºC, then 800 ml sterile water were added, 

mixed and cells were collected by centrifugation. Cells were resuspended in 1 ml YPD and incubated 

for 2–3 h at 30 ºC. Then cells were collected by centrifugation, resuspended in 200 ml YPD and 

plated onto YPD plus G418 plates (200 mg/ml G-418). Plates were incubated at 30 ºC until colonies 

appeared [223]. Colonies were then screened by colony PCR using the verification primers 

summarized in table 3.  

S. cerevisiae  BY4742 strain was transformed as described above with plasmids pUG35 and 

pUG35- NHP6A-EGFP [177], kindly provided by Frank Madeo (University of Gratz, Austria), and was 

cultured as described above for aa-starved cells, in medium lacking uracil.  
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Table 3. Primers used in the construction of knockout strains. 

Gene Sequence (5’ – 3’) 

   

Gene disruption Forward Reverse 

AIF1 GCTGCTGCAGACTAGAAACG CCAGCGGCCTTCTTTGTTTC 

ATG8 CCAATTGGTGATGAAGAACAATCTA TTGAATTTCTTCCTATTTCTGATGC 

CPR3 AGGACCATACCTTCTTGAAGGGTGA ACTGAGGCAAACCAGAATAAAAGTTG 

MEP1 CAGAGATTGCGATAACGATAAGATT ATTACCGGTTGGTGTACTCAAATAA 

MEP2 TCGGTCTCTTCTTACTGCTGTTACT GAAACAGTGAAAGATAAGGCAAAAA 

RAS2 CAAGCGTAACGCAATCCGGC ATGATATTGCCCAAAGTTTCC 

RIM13 ACAACATAAACTTGAGGAGAAGTGG GGTTTCCAAGAATTCTACTTCCTTC 

SCH9 TACTTATTCACATTACGGGTCCAAT TTCGGATGATATAACCGACCTATAA 

TOR1 TTGAATCCTAATTTCTTGCTCAATC AAGGCATATATTGATGCTCAAAAAG 

TPK1 CGTATCCCTTTACTTGAAAACTTGA AGAAAATCAAAGACAGAAGCGTAGA 

TPK2 TACAATTCTGGCCTTCTTACCTAAA TAATTTTTGCACTGAGATCATGAGA 

TPK3 GGTGAACCACTTTCTTTTTAGTGAA TCTTCTTATTGTAGCAGGCTCACTT 

YCA1 AATAGTGGACGAAATCCATCTTGTA CTTAATTTTTCTTTGGTTGAGGTGA 

   

Verification Forward Reverse 

AIF1 GATGAGCATTGTACAGCTTA GTTAATTCTCACCGTCCCC 

ATG8 CTGGACAAGAAACCAGAACC CAAACGAACAGGTCAGAGAG 

CPR3 CTTACAAAGAGGCAAGGGTC CATAGCCCTGAAGCTGTAC 

MEP1 CTTCTACGGTTGTCCTTTGC CGATATTTCTGCGGTTACCG 

MEP2 GTAATTCATGTCGGCCATCG CCATTTCAGTGCAGTTTCGAG 

RAS2 GGAAACAAGGTTCACATCAGC TTGTTATTCCAGGTGGAAC 

RIM13 GGATAGCTTACTTGAGGCAG GAGATGGATGGGTCAAGTTG 

SCH9 GTTGCTTAAAGGGTGGATCG CGATGGGATGACAGTTAAGC 

TOR1 GAAATTGGTTGCAGAGGTGG GTCGAAACTGAACGATCTCC 

TPK1 GTGCTGCTATTCGTTCTTGC CGACTTGTTTGGAGCCACCA 

TPK2 CCGCCTCAAGATAAACCAGC CTACAACTACGAAGCGTTGC 

TPK3 TCCAGGTACGAGTGATTTAGG GAATCTGCGGTAGTCTGGTA 

YCA1 GGATCTTATTGGCCGAGTTG GGTCACTCCAAAGAAGGATG 
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2.4. Ammonium and ATP Determination 

 

Ammonium in the culture media was quantified by Dr. José Coutinho (University of Trás-os-

Montes e Alto Douro, Portugal) as previously described [224]. ATP measurements were performed 

according to [225]. Briefly, cells were collected by centrifugation and the pellet was frozen with liquid 

nitrogen and stored at -80 ºC. For the ATP assay, the pellet was mixed with 200 µl of 5% 

trichloroacetic acid (TCA) and vortexed for one minute, twice, with a one minute interval on ice. This 

mix was centrifuged for one minute, at 4 ºC, and 10 µl of the supernatant were added to 990 µl of 

reaction buffer (25 mM HEPES, 2 mM EDTA, pH 7.75). 100 µl of this mixture was added to 100 µl 

of Enliten Luciferin/Luciferase Reagent (Promega) and luminescence was measured on a 

ThermoScientific Fluoroskan Ascent FL. Protein quantification was determined using the Bradford 

assay (Bio-Rad, Germany) according to the manufacturer's instructions. 

 

2.5. Measurements of cell death markers 

 

For the detection of chromatin changes, cells were stained with 4,6-diamido-2-phenyl-indole 

(DAPI, Sigma). Cells (3x105 cell/ml) were harvested, washed, suspended in DAPI solution (0.5 

mg/ml in PBS (137mM NaCl, 2.7mM KCl, 8mM Na2HPO4, 1.46mM KH2PO4, pH 7.4)) and then 

incubated in the dark for 10 min at room temperature. Stained cells were washed twice with PBS 

and visualized by epifluorescence microscopy. DNA strand breaks were assessed by TUNEL with the 

‘In Situ Cell Death Detection Kit, Fluorescein’ (Roche Applied Science) as described previously [94]. 

Briefly, 1x107  celsl/ml were fixed with 3.7% formaldehyde followed by digestion of the cell walls with 

lyticase. Cytospins were made and after the slides were rinsed with PBS, incubated in 

permeabilization solution (0.1%, v/v, Triton X-100 and 0.1%,w/v, sodium citrate) for 3 minutes on 

ice, rinsed twice with PBS, and incubated with 10 µl of TUNEL reaction mixture (terminal 

deoxynucleotidyl transferase and FITC-dUTP) for 60 minutes, at 37 °C. Finally, the slides were 

rinsed three times with PBS and a coverslip was mounted with a drop of anti-fading agent 

Vectashield (Molecular Probes, Eugene, OR, U.S.A.) and with 2 µl of 50 µg/ml propidium iodide (PI, 

Molecular Probes, Eugene, OR) solution in Tris buffer (10 mM, pH 7.0) with MgCl2 (5 mM) and 

RNase (0.5 µg/ml). Cells were visualized by epifluorescence microscopy. For quantification of the 
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number of TUNEL positive cells, at least 400 cells from three independent assays were counted. For 

the nuclear release of the necrotic marker Nhp6Ap–EGFP, cells were also visualized by 

epifluorescence microscopy. For the later assays, at least 300 cells of three independent 

experiments were evaluated.  

To measure DNA content, 106 cells were stained with SYBR Green I as described [226] and 

staining was assessed by flow cytometry. Plasma membrane integrity was assessed by incubating 

106 cells with 5 mg ml-1 PI (Molecular Probes, Eugene, OR) for 10 minutes at room temperature 

followed by flow cytometry measurements of PI-stained cells. Intracellular reactive oxygen species 

were detected by dihydrorhodamine (DHR)-123 staining or dihydroethidium (DHE) (Molecular 

Probes). For DHR-123, cells were incubated with 15 mg/mL of dye for 90 minutes at 30 ºC in the 

dark, washed in PBS and evaluated by flow cytometry. For DHE, cells were incubated with 5 µM and 

after incubation for 10 min at 30 °C cells were washed once with PBS and evaluated by flow 

cytometry. Phosphatidylserine exposure was detected by FITC Annexin-V (BD Pharmingen) staining 

as described previously [94]. The cell walls were digested with 3% (v/v) glusulase (NEE-154 

Glusulase; Perkinelmer) and 7 U/ml lyticase (Sigma) for 40 minutes, at 28 °C. For intracellular 

calcium measurements, 106 cells previously washed with PBS were stained with 10 µM FLuo3 AM 

(Molecular Probes, Eugene, OR) for 2 hours at 30 °C in the dark, subsequently washed in PBS and 

assessed by flow cytometry. Positive controls for apoptosis involved treatment of cells with 160 mM 

acetic acid for 200 minutes, at pH 3.0 and 3 mM H2O2 at pH 3.0. For the necrotic marker Nhp6Ap–

EGFP, no nuclear release was observed in the presence of 3 mM H2O2. 

 

2.6. Epifluorescence microscopy and flow cytometry  

 

In the experiments employing epifluorescence microscopy a Leica Microsystems DM-5000B 

microscope was used, with appropriate filter settings and a 100x/1.3 oil-immersion objective. 

Images were acquired with a Leica DCF350FX digital camera and processed with LAS AF Leica 

Microsystems software. Flow cytometry analysis in the above described experiments was performed 

in an Epics® XL™ (Beckman Coulter) flow cytometer, equipped with an argon ion laser emitting a 

488 nm beam at 15 mW. The green fluorescence was collected through a 488-nm blocking filter, a 

550-nm/long-pass dichroic and a 525-nm/bandpass. Red fluorescence was collected through a 
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488-nm blocking filter, a 590-nm/long-pass dichroic and a 620-nm/bandpass. Thirty thousand cells 

per sample were analyzed. 

 

2.7. Treatments 

 

Methionine sulfoximine (MSX,Sigma), an irreversible inhibitor of glutamine synthetase, was 

dissolved in sterile water at a concentration of 100 mM and stored at 4 °C. MSX was added to water 

(pH 7.0), and water with ammonium sulphate (0.5%, pH 7.0), at the concentration of 1 mM. 

Wortmannin (Sigma), a PI3K inhibitor, was added to water (pH 7.0), and water with ammonium 

sulphate (0.5%, pH 7.0), at the concentration of 6 µM or 23 µM. Glutamate was added to water (pH 

7.0), and water with ammonium sulphate (0.5%, pH 7.0), at the concentration of 5 mg/ml. 

Adenosine 3′,5′-cyclic monophosphate (cAMP, Sigma) was added to aa-starvation or N-starvation 

medium or to water (pH 7.0), and water with ammonium sulphate (0.5%, pH 7.0), at the 

concentration of 4 mM α-ketoglutaric acid potassium salt (Sigma) was added to water (pH 7.0), and 

water with ammonium sulphate (0.5%, pH 7.0), at the concentration of 5 mg/ml. Cyclosporin A 

(Sigma) was added to water (pH 7.0), and water with ammonium sulphate (0.5%, pH 7.0.), at the 

concentration of 120 µg/ml. For inhibition of YCA1, zVAD-fmk from a 20 mM stock in 1:1 

DMSO/ethanol was added twice (at T0 and T1) to a final concentration of 40 µM, to water (pH 7.0), 

and water with ammonium sulphate (0.5%, pH 7.0). Rapamycin (Sigma) was suspended in ethanol 

at a stock concentration of 1 mg/mL and stored at −20°C. Rapamycin was added during the 

beginning of the 24 hour amino acid starvation period (aa-starved cells) or added to water (pH 7.0), 

and water with ammonium sulphate (0.5%, pH 7.0) at the concentration of 0.2 µg/ml. 

 

2.8. Western Blot analysis  

 

Western blot analysis was performed according to [227]. Briefly, protein lysates were 

separated on 12.5% SDS-PAGE gels and transferred to polyvinylidene fluoride membranes (hybond-

P; Amersham). The membranes were blocked with 5% non-fat milk in PBS containing 0.05% Tween 

20, for 1 h at room temperature. Membranes were then incubated overnight at 4 °C with primary 

antibodies directed against yeast Atg8p and Pgk1p, rabbit polyclonal anti-Aut7 (1:200; Santa Cruz 



Materials and methods 

 

 

67 

Biotech) and mouse monoclonal anti-PGK1 (1:5000; Molecular Probes) respectively, followed by one 

hour incubation at room temperature with secondary antibody Peroxidase-AffiniPure Goat Anti-Rabbit 

IgG (1:10000; Jackson ImmunoResearch). 

 

2.9. Enzyme assays  

 

Glutamine synthetase (Gs) assay was performed according to [228]. Glutamate 

dehydrogenase activity was determined according to [229]. Briefly, cell extracts were prepared by 

adding to the cell pellet a roughly equal volume of 0.5 mm diameter glass beads in the presence of 

0.1 M potassium phosphate buffer (pH 6.0), followed by vigorous mixing during 1 minute intervals 

interspersed with periods of cooling in ice. The NADP-dependent GDH activity was determined by 

following the disappearance of NADPH at 340 nm. Trehalase activity was determined according to 

[230]. Briefly, crude enzyme extracts were obtained by ressuspending the cell pellet in ice-cold 50 

mM MES/KOH buffer (pH 7.0) containing 50 µM CaCl2, and adding a roughly equal volume of 0.5 

mm diameter glass beads, followed by vigorous mixing during 1 minute intervals interspersed with 

periods of cooling in ice. The extracts were then dialyzed overnight at 4 ºC in a dialysis cellulose 

membrane (Cellu Sep H1, Orange). The dialyzed extract was then used to assess trehalase activity 

by measuring the liberated glucose with glucose oxidase assay (GOD, Roche). Protein quantification 

was determined using the Bradford assay (Bio-Rad, Germany) according to the manufacturer's 

instructions. 

 

2.10. Statistical analysis  

 

Data are reported as mean values of at least three independent assays and presented as 

mean ± SD. The arithmetic means are given with SD with 95% confidence value. Statistical analyses 

were carried out using Two-way ANOVA. *P <0.05 was considered statistically significant.  
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Section 3.1. Ammonium as a yeast chronological life span modulator 
 

It is well established that the composition of the culture medium can modulate the 

chronological life span (CLS) of yeast cells and therefore culturing cells in different media generates 

different outcomes in CLS [35]. In this line, cells grown in rich YPD medium are known to present an 

extension of CLS when compared to cells grown in synthetic complete (SC) medium [35, 90]. Also, 

manipulation of single components of the culture medium is known to extend CLS such as the 

reduction of glucose concentration (known as caloric restriction - CR) or manipulation of amino acids 

supply [35, 56, 77, 78, 80]. Particularly, the CLS of Saccharomyces cerevisiae is strongly affected 

by the concentration of the auxotrophy-complementing amino acids in the medium. Cells of the 

auxotrophic S. cerevisiae strain BY4742 cultured with an insufficient supply of essential amino acids 

display reduced lifespan compared with cells grown with increased amino acid supplementation in 

the medium [77]. Taking into account that manipulating glucose and auxotrophy-complementing 

amino acid concentration in the medium largely influences CLS, we investigated the effects of 

ammonium, which is a commonly used nitrogen source, on yeast CLS. In the present section, we 

present the results regarding the influence of different ammonium concentrations on yeast CLS, 

either in cells aged in the culture medium under standard or limiting auxotrophy-complementing 

amino acid conditions (3.1.1), or in amino acid-starved cells after transferred to water (3.1.2). 

 

 

3.1.1. Ammonium induces CLS shortening of yeast cells aged in the culture medium  

 

To determine the effect of ammonium (NH4
+) on the survival of chronologically aged S. 

cerevisiae cells, we manipulated NH4
+ concentration in the culture medium both under auxotrophy-

complementing amino acid restriction (low amino acid concentrations), and in standard amino acid 

supplementation conditions (high amino acid concentrations). For that, we reduced the standard 

concentration of (NH4)2SO4 in the culture medium five- or fifty-fold (from 0.5% to 0.1 and 0.01 %, 

respectively) in amino acid restriction conditions, and increased the starting concentration of 

(NH4)2SO4 from 0.5% to 1%, either with or without amino acid restriction. The results presented in 

Figure 3 show that reducing the starting concentration of (NH4)2SO4 in the culture medium improved 
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the survival of chronological aging cells in amino acid restriction conditions. In contrast, when the 

initial (NH4)2SO4 concentration in the culture medium, either with or without restriction of amino 

acids, was increased to 1%, there was a decrease in cell survival, although loss of cell viability was 

much faster for cells grown with amino acid restriction (Figure 3). 

 

 

Figure 3. Survival of  wild-type S. cerevisiae (BY4742) stationary phase cells grown in media supplemented with low 

(open symbols) and high (dark symbols) concentrations of auxotrophy-complementing amino acids, and with 0.01% (□); 

0.1% (�); 0.5% (�,�) or 1% (�,�) (NH4)2SO4. In all the cultures, starting cell density was about 3.8 x 107 cells/ml. 

Values are means ± SEM (n=3). P < 0.001 (low concentrations vs high concentrations of auxotrophy-complementing 

amino acids). Statistical analysis was performed by two-way ANOVA. 

 

 

To further clarify the effect of NH4
+ on CLS and to investigate if it was in fact responsible for 

the observed loss of cell viability in the culture media, we tested whether adding NH4
+ to yeast 

suspensions in water induces loss of cell viability, as it had been reported for glucose [57, 58]. Cells 

were grown in SC medium plus 0.5% (NH4)2SO4 with or without amino acid restriction in the medium 

for 72 hours and then transferred to water without NH4
+ (pH 7.0), water with NH4

+ (pH 7.0), or to the 

exhausted medium as a control. Figure 4 represents schematically the methodology used. As shown 

in Figure 5, cells grown with or without amino acid deprivation exhibited a longer CLS after they were 

transferred to water compared to cells transferred to exhausted culture medium that maintained a 
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pH of 2.6-2.9, although loss of cell viability again occurred much faster for cells grown with amino 

acid restriction. 

 In both cases, addition of NH4
+ to water reduced cell survival in proportion to its 

concentration, mimicking its effect in the depleted media, and supporting that NH4
+ can be 

responsible for triggering loss of cell viability.  

 

 

 

Figure 4. Scheme of the methodology used in experiments with the stationary phase cells. 
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Figure 5. Survival of wild-type S. cerevisiae (BY4742) stationary phase cells grown in media supplemented with: (A) high 

(High-AA) and (B) low (Low-AA) concentrations of auxotrophy-complementing amino acids, and supplemented with 0.5% 

(NH4)2SO4. After 72 hours of growth, cells were transferred to: (�) water (pH 7.0); (�) water with 0.5% (NH4)2SO4 (pH 

7.0); (�) water with 1% (NH4)2SO4 (pH 7.0); (�) exhausted medium (pH 2.6-2.9); (�) exhausted medium (pH 7.0). 

Values are means ± SEM (n=3-5). (A) and (B) P < 0.001 (H2O vs 0.5% (NH4)2SO4), P < 0.001 (H2O vs 1% (NH4)2SO4). 

Statistical analysis was performed by two-way ANOVA. 

 

 

It has been reported that medium acidification limits survival of yeast cells during 

chronological aging in SC medium and that the longer survival observed in water can be, at least in 

part, attributed to the differences in pH [91, 231, 232]. To assess whether acidification could play a 

role in the NH4
+ -induced loss of cell viability, we measured cell survival in media adjusted to pH 7.0 

(see schematic of methodology in Figure 4). As shown in Figure 5A, for cells grown without amino 

acid restriction, when the depleted medium was adjusted to pH 7.0, there was an increase in CLS 

compared to exhausted medium without pH adjustment, which is consistent with results previously 

described for similar conditions [91, 97]. However, transferring cells cultured with insufficient supply 

of amino acids with 0.5% (NH4)2SO4 to the respective exhausted medium adjusted to pH 7.0 did not 

lead to a significant difference in CLS relative to the CLS of cells in the exhausted acidic medium, 

suggesting that in this condition, acidification is not the main cause of cell viability loss.  

Due to the amino acid restriction, these cells do not complete glucose exhaustion [77] due 

to growth limitation (Figure 6A). Moreover, not only glucose, but also NH4
+ is not completely depleted 

from the medium in amino acid restriction conditions (Figure 6B), thus suggesting that the presence 



Ammonium as a yeast chronological life spam modulator 

 

 

77 

of unused NH4
+ could contribute to loss of cell viability since decreasing its concentration in the 

medium increased CLS in amino acid restriction conditions (Figure 3). 

 

 

 

Figure 6. (A) Growth curves of wild-type S. cerevisiae  (BY4742) cultured in SC media supplemented with: (�) low and 

(�) high concentrations of auxotrophy-complementing amino acids, and supplemented with 0.5% (NH4)2SO4. (B) 

Quantification of (NH4)2SO4 in SC medium supplemented with low concentrations of auxotrophy-complementing amino 

acids and 0.5% (NH4)2SO4  during culture of wild-type S. cerevisiae  (BY4742) cells; day -3 represents the day of culture 

inoculation and day zero represents the beginning of aging experiments. 

 

 

Additionally, we also tested ammonium effects in cells transferred to water after being 

cultured in media with different NH4
+ concentrations with or without amino acid (Figure 7). We 

observed that raising the initial (NH4)2SO4 concentration in the culture medium from 0.5% (Figure 5A 

and 5B) to 1% (Figure 7A and 7B), either with or without amino acid restriction decreased cell 

survival both in water and water with (NH4)2SO4. On the other hand, for cells cultured under amino 

acid restriction, reducing the initial (NH4)2SO4 concentration from 0.5% (Figure 5B) to 0.1% (Figure 

7C) or to 0.01% (Figure 7D) increased CLS in water and in water with (NH4)2SO4. These results show 

that the NH4
+-induced reduction in CLS observed in water positively correlates with the concentration 

of NH4
+ in the growth medium, indicating that culture conditions pre-determined the cellular 

response to NH4
+. For cells cultured with insufficient supply of amino acids and 1%, or 0.1% 

(NH4)2SO4 and then transfered to the respective exhausted medium with or without pH adjustment, 



Section 3.1. 

 

 

78 

pH had no significant influence on CLS (Figure 7A, 7B and 7C). In contrast, cells cultured with 1% 

cells (NH4)2SO4 without amino acid restriction and cells cultured under amino acid restriction 

conditions with the lowest (NH4)2SO4 concentration (0.01%), after transfer to the respective exhausted 

medium adjusted to pH 7.0, exhibited an increase in CLS when compared with cells transfered to 

exhausted medium without pH adjustment (Figure 7A and 7D). The results for 0.01% (NH4)2SO4 

(Figure 7D) seem to suggest that the ammonium concentration is low enough not to affect negatively 

the cell viability.  

 

 

 

Figure 7. Survival of wild-type S. cerevisiae (BY4742) stationary phase cells grown in media supplemented with low (Low-

AA) and high (High-AA) concentrations of auxotrophy-complementing amino acids, and with (D) 0.01%; (C) 0.1%; or (A, 

B) 1% (NH4)2SO4. After 72 hours of growth, cells were transferred to: (�) water (pH 7.0); (�) water with 0.5% (NH4)2SO4 

(pH 7.0); (�) water with 1% (NH4)2SO4 (pH 7.0); (�) exhausted medium (pH 2.6-2.9); (�) exhausted medium (pH 7.0). 

Values are means ± SEM (n=3-5). (A) and (B) P < 0.001 (H2O vs 0.5% (NH4)2SO4), (H2O vs 1% (NH4)2SO4); (C) and (D)P < 

0.001 (H2O vs 0.5% (NH4)2SO4). Statistical analysis was performed by two-way ANOVA. 
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3.1.2. Ammonium induces CLS shortening in amino acid-starved cells, after transfer to 

water 

 

 During the above experiments in which NH4
+ emerged as an extrinsic factor in CLS 

regulation, a condition for exploring the toxic effects of ammonium also emerged from the 

observations that this toxic effect of NH4
+ was more severe in amino acid restriction conditions. 

Following this line of thought a conventional nitrogen starvation protocol [135] was adapted to 

accommodate the following conditions in SC glucose starvation medium: i) lack of the auxotrophy-

complementing amino acids and presence of NH4
+ (aa-starved cells) or ii) lack of the auxotrophy-

complementing amino acids and of NH4
+ (N-starved cells). For that, cells were grown to mid 

exponential phase in SC medium with 2% glucose and then starved for 24 hours in both types of 

starvation media. Cells were subsequently transferred to water (pH 7.0), with and without NH4
+ or to 

the respective 24 hour starvation medium (final pH 2.7-2.9) that was or was not adjusted to pH 7.0. 

The initial pH did not significantly change during the assay, except for cells transferred to starvation 

media at pH 7.0, which reached a final pH around 5.0. Figure 8 represents schematically the 

methodology used. The results presented in Figure 9 show that both aa-starved and N-starved cells 

survived for a longer period of time in water relative to those in starvation medium (pH 2.7-2.9). 

Addition of NH4
+ to water induced a rapid loss of cell viability and shortening of CLS only for aa-

starved cells (Figure 9A). Cells transferred to starvation medium that was adjusted to pH of 7.0 also 

exhibited a rapid decrease in cell viability, indicating that the NH4
+ effect is not due to the 

acidification of the medium (Figure 9A). In contrast to aa-starved cells, N-starved cells survived for a 

longer period when transferred to the starvation medium adjusted to pH 7.0 (Figure 9B)  

To eliminate the possibility that the reduced survival of aa-starved cells induced by the 

addition of (NH4)2SO4 to water was due to sulphate and not to ammonium itself, a similar experiment 

with aa-starved cells was performed in water to which NH4OH was added instead of (NH4)2SO4. As 

shown in Figure 10, similar results were obtained, confirming that the cell death phenotype is due to 

ammonium.  
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Figure 8. Scheme of the methodology used in experiments with amino acid (aa-) and nitrogen (N-) starved cells. 
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Figure 9. Survival of wild-type S. cerevisiae (BY4742) (A) amino acid-starved cells (aa-) or (B) nitrogen starved cells (N-), 

after transfer to: (�) water (pH 7.0); (�) water with 0.5% (NH4)2SO4 (pH 7.0); (�) starvation medium (pH 2.7-2.9) and 

(�) starvation medium (pH 7.0). In all the cultures, starting cell density was about 3.8 x 107 cells/ml. Values are means 

± SEM (n=8). P < 0.001 (aa-starved H2O vs aa-starved 0.5% (NH4)2SO4). Statistical analysis was performed by two-way 

ANOVA. 

 

 

 

Figure 10. Survival of wild-type S. cerevisiae (BY4742) aa-starved cells, in water or water with 0.5% NH4OH. Starting cell 

density was about 3.8 x 107 cells/ml. Values are means ± SEM (n=3). P < 0.001 (aa-starved H2O vs aa-starved 0.5% 

NH4OH). Statistical analysis was performed by two-way ANOVA. 
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3.1.3. Addition of potassium does not revert ammonium toxicity 

 

As discussed in the Introduction, NH4
+ toxicity was previously described in steady-state 

chemostat cultures of yeast under limiting potassium concentration [212]. To determine if the 

ammonium toxicity we observed in our experiments depends on potassium concentration, we 

repeated the experiments after adding potassium to water at a concentration that according to this 

earlier study [212] abolished NH4
+ toxicity. The results obtained show that addition of potassium did 

not alter the NH4
+ -induced loss of cell viability (Figure 11), showing that potassium, at least at the 

concentration used, does not revert NH4
+ toxicity in cells previously starved for amino acids. 

 

 

 

Figure 11. Survival of wild-type S. cerevisiae (BY4742) aa-starved cells, in water, water with 0.5% (NH4)2SO4 and water 

with 0.5% (NH4)2SO4 supplemented with 13 mM K2SO4. Starting cell density was about 3.8 x 107 cells/ml. Values are 

means ± SEM (n=3). P < 0.001 (H2O vs 0.5% (NH4)2SO4); (H2O vs 0.5% (NH4)2SO4 + K2SO4). Statistical analysis was 

performed by two-way ANOVA. 
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3.1.4. Effect of ammonium on the cell cycle of aa- and N-starved cells 

 

To further explore the different responses from aa- and N-starved cells presented above 

we evaluated, by flow cytometry, the cell cycle of cells in the two conditions after 24 hours of 

starvation and after 5 days upon transfer to water and water with ammonium (Figure 12). Previous 

studies showed that cells starved for auxotrophic-complementing amino acids in otherwise complete 

medium, fail to properly arrest in G0 [76, 77]. In accordance, aa-starved cells in our study also do 

not seem properly arrested in G0, presenting a smaller percentage (71%) of cells arrested in G0/G1 

in comparison to N-starved cells that show 85% of G0/G1 cells. However, this scenario of cell cycle 

arrest failure does not seem to account for the differences in the observed loss of cell viability, since 

the small differences in cell cycle phase percentages between water and water with ammonium 

could not probably account for the major loss of cell viability induced by ammonium in aa-starved 

cells (Figure 9).  

 

 

 

Figure 12. Cell cycle histograms of wild-type S. cerevisiae (BY4742) aa-starved and N-starved cells at day 0 and day 5 

upon transfer to water or water with 0.5% (NH4)2SO4, after a 24 hour period in starvation (aa- and N-) media. 
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3.1.5. A quantitative measure of the CLS under the different culture conditions 

 

In order to simplify and summarize data analysis of the experiments shown in this section 

(3.1), we calculated the area under the curve for the survival curves which provides a quantitative 

measure of the chronological life span [91, 232]. Table 4 summarizes the results obtained under 

the different culture conditions used.  

Overall the results presented in this section suggest that: 

 (i) NH4
+ in the culture medium has a substantial concentration-dependent inhibitory effect 

on CLS indicated by a significant increase in cell survival when the starting NH4
+ concentration in the 

medium is reduced; 

 (ii) The CLS of cells cultured to stationary phase with amino acid restriction or starved for 

auxotrophy-complementing amino acids and subsequently transferred to water is significantly 

shortened by the addition of NH4
+ and, 

(iii) acidification of the medium does not promote the observed decrease in cell survival, in 

contrast to what is observed at the lowest NH4
+ concentration and in cells grown without amino acid 

restriction.  
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Table 4. Values of Area under the survival curve of strain BY4742 cultured in different medium 

composition. 

  Cell culture or pre-incubation conditions 
 

 High-AA Low-AA 
aa-

starved 
N-

starved 
 

 
(NH4)2SO4 

0.5% 
(NH4)2SO4 

1% 
(NH4)2SO4 

0.01% 
(NH4)2SO4 

0.1% 
(NH4)2SO4 

0.5% 
(NH4)2SO4 

1% 
(NH4)2SO4 

0.5% 
 

A
gi
ng
 a
ss
ay
 in
: 

Medium 
Sc 

1205 ± 13 1175 ± 2 805 ± 47 207 ± 12 115 ± 5 71 ± 5 186 ± 7 272 ± 3 

Medium 
Sc pH7 

1439 ± 33 1202 ± 5 1214 ± 2 175 ± 5 74 ± 9 74 ± 2 249 ± 3 725 ± 1 

H2O 
 

1375 ± 87 1347 ± 29 1390 ± 5 916 ± 25 745 ± 42 446 ± 44 723 ± 10 679 ± 2 

(NH4)2SO4 

0.5% 
923 ± 77 951 ± 5 706 ± 23 385 ± 20 271 ± 13 133 ± 12 188 ± 10 588 ± 16 

(NH4)2SO4 

1% 
535 ± 2 552 ± 102 n.d. n.d. 120 ± 10 90 ± 7 n.d. n.d. 

n.d. – not determined. Cells were grown in SC media supplemented with low (Low-AA) or high (High-AA) concentrations 

of auxotrophy-complementing amino acids and with 0.01%; 0.1%; 0.5% or 1% (NH4)2SO4 for 72 hours; or cells were grown 

in SC media until O.D. 1-1.5, harvested and resuspended in Nitrogen-starvation medium (N-) or in amino acid-starvation 

medium (aa-) for 24 hours. The aging assays were performed by resuspending cells from the different culture conditions 

in their respective exhausted medium, exhausted medium (pH 7.0), water (pH 7.0) or in 0.5 and 1% (NH4)2SO4, (pH 7.0). 
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Section 3.2. Characterization of ammonium induced cell death in 

amino acid starved cells 
 

As mentioned in Introduction section, programmed cell death (PCD) in eukaryotic cells can 

be triggered by exogenous and endogenous inducers being coordinated by a complex network of 

regulators and effectors, which leads to a series of cell structure and functional changes that 

characterize the death phenotype [233]. Among the different forms of PCD [145], namely apoptosis, 

autophagic cell death and programmed necrosis, apoptosis is the most common morphological 

expression of PCD. 

The discovery that yeast cells display apoptosis-like characteristics has validated yeast as a 

model system and led to the emergence of a recent research field that profited from the recognized 

advantages of yeast for the study of biological processes. Currently, it is consensual that yeast can 

undergo cell death with typical markers of mammalian apoptosis in response to different stimuli and 

possess orthologs of mammalian apoptosis regulators, supporting the existence of a primordial 

apoptotic machinery similar to that present in higher eukaryotic cells (for a revision see [173, 174]). 

In this context, several cell death markers used in higher eukaryotes are also currently used in yeast. 

These include externalization of phosphatidylserine to the outer leaflet of the plasma membrane, 

DNA degradation, chromatin condensation, and the accumulation of reactive oxygen species, all of 

which can be measured both at a qualitative and/or at a quantitative level [234, 235]. Programmed 

necrosis has recently been described as an active regulatory mechanism in yeast [177] and 

consequently new markers for necrosis are emerging such as nuclear release of the yeast HMGB1 

(Nhp6Ap) and detection by electron microscopy of plasma membrane rupture and complete 

disintegration of subcellular structures [176]. In this section we started with the characterization of 

the cell death induced by ammonium in aa-starved cells and studied the role of key players involved 

in different cell death scenarios.  In the last part of the section we evaluated whether ammonium 

toxicity required its metabolization. 
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3.2.1. Ammonium induces apoptosis and necrosis in amino acid starved yeast cells 

 

In order to determine and characterize the cell death scenario occurring in association with 

the reduction in CLS induced by NH4
+, several standard markers of cell death were examined in aa-

starved cells transferred to water alone or to water containing NH4
+ with pH adjusted to 7.0 in both 

cases. We measured the accumulation of reactive oxygen species (ROS) using the fluorescent probe 

dihydrorhodamine 123 (DHR, which preferentially detects H2O2). DHR levels increased over time 

either in the absence or presence of NH4
+, but this increase occurred more rapidly in cells incubated 

with NH4
+, peaking at day 2 (Figure 13). After day 2, DHR levels started to decrease in the presence 

of NH4
+ accompanying the viability decline of these cells (Figure 13). On the contrary, levels of ROS 

detected using dihydroethidium (DHE, which preferentially detects O2
.-), were not significantly 

different in the absence or presence of NH4
+ and there was no increase in its levels over time for 

both conditions.  

 

 

 

 

Figure 13. ROS accumulation measured by dihydrorhodamine 123 (DHR, which preferentially detects H2O2) and 

dihydroethidium (DHE, which preferentially detects O2
.--) in wild-type S. cerevisiae (BY4742) aa-starved cells, upon 

transfer to: water (pH 7.0) or water with 0.5% (NH4)2SO4 (pH 7.0). Results are expressed as ratio values estimated by 

dividing the mean fluorescence intensity of each sample by the mean fluorescence intensity of the control cells 

(unmarked) for the same time, normalized for T0. P < 0.001. Statistical analysis was performed by two-way ANOVA. 
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Chromatin condensation and nuclear fragmentation is a typical marker of apoptosis and was 

evaluated using DAPI staining [165]. The results demonstrate (Figure 14A) that the shorter CLS 

induced by NH4
+ was accompanied by an increase in the number of cells positively exhibiting this cell 

death marker and also by the emergence of a population of cells with a sub G0/G1 content of DNA 

that increased over time, in agreement with nuclear alterations occurring in an apoptotic cell death 

(Figure 14B). However, assessing apoptotic DNA fragmentation by the TUNEL assay of cells 

incubated with NH4
+ only resulted in a relatively small percentage of TUNEL positive cells of the total 

population (Figure 14C).  

Furthermore, staining with annexin V and PI was used to identify apoptotic and necrotic cells 

(Figure 15), resulting also in a very small percentage of early apoptotic cells [173]. In this double 

staining approach, annexin V binds phosphatidylserine of the plasma membrane whereas PI, being a 

membrane-impermeable stain, assesses loss in membrane integrity. Annexin V+/PI- staining shows 

cells with phosphatidylserine exposed on the outer surface of the plasma membrane in the absence 

of a loss in membrane integrity and therefore cells are considered apoptotic, while PI+ cells are 

necrotic. Cells transferred to water containing NH4
+ exhibited a very small increase in Annexin V 

staining in the absence of PI staining during the first few days (Figure 15). However, after day 2 

these cells exhibited extensive permeabilization of the plasma membrane indicated by PI staining, 

which indicates they were mostly undergoing necrosis.  

We also measured the intracellular calcium concentration as failure of Ca2+ homeostasis is 

associated both with apoptotic and necrotic PCD [160, 174, 236]. In mammalian cells, Ca2+ 

overload induces permeability transition but can also stimulate calpains, which have recently been 

described as being involved in necrotic cell death execution [160, 176]. The results demonstrate 

that an increase in the concentration of intracellular Ca2+ was observed in cells transferred to water 

containing NH4
+ (Figure 14D).  
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Figure 14. Cell death markers measurements in wild-type S. cerevisiae (BY4742) aa-starved cells, upon transfer to: (�) 

water (pH 7.0) or (�) water with 0.5% (NH4)2SO4 (pH 7.0). (A) Chromatin condensation and fragmentation, (B) 

Appearance of Sub-G0/G1 peak, (C) TUNEL staining and (D) Calcium accumulation. Values are means ± SEM (n=3). 

H2O vs 0.5% (NH4)2SO4: (B) P < 0.001; (C) P < 0.01; (D) P < 0.01. Statistical analysis was performed by two-way ANOVA. 
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Figure 15. Staining of aa-starved cells of wild-type S. cerevisiae (BY4742) with annexin V and propidium iodide (PI), upon 

transfer to: water (pH 7.0) or water with 0.5% (NH4)2SO4 (pH 7.0). Values are means ± SEM (n=3). H2O vs 0.5% 

(NH4)2SO4: P < 0.001. Statistical analysis was performed by two-way ANOVA. 

 

 

Taking into account the results from double staining with annexin V and PI and in order to confirm 

that the cell death scenario induced by NH4
+ was necrotic we evaluated the nucleus-cytosolic 

translocation of Nhp6Ap (Figure 16), the yeast homologue of human chromatin bound non-histone 

protein HMGB1 (high mobility group Box 1) whose nuclear release is considered a marker of 

necrosis [177]. The translocation from the nucleus to the cytosol of the protein Nhp6Ap tagged with 

GFP was evident after day1 and continued till day 3 for cells transferred to water containing NH4
+, 

whereas for cells transferred to water alone, the tagged protein maintained its nuclear localization 

(Figure 16) confirming that it was the presence of NH4
+ that induced the nuclear release of this 

necrotic marker.  

In agreement with necrosis, the evaluation of ATP levels revealed a substantial decrease in 

ATP content in aa-starved cells transferred to water with NH4
+ beginning on the first day of assays 

(Figure 17). ATP depletion could favor a switch from apoptotic to necrotic cell death since apoptotic 

processes are energy consuming [160]. In fact, ATP depletion is an event described to occur during 

necrosis in higher eukaryotes and also in plants strengthening the idea of conservation of a necrotic 

cell death mechanism [160, 162, 237]. 
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Figure 16. Fluorescence microscopy of wild-type S. cerevisiae (BY4742) aa-starved cells (day 0, 1 and 3) expressing 

Nhp6A–EGFP, upon transfer to water (pH 7.0) or water with 0.5% (NH4)2SO4 (pH 7.0). Scale bars, 10 µm.  
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Figure 17. ATP content of wild-type S. cerevisiae (BY4742) aa-starved cells (day 0, 1, 2 and 3) upon transfer to water 

(pH 7.0) or water with 0.5% (NH4)2SO4 (pH 7.0). Values are means ± SEM (n=3). ***P < 0.001 (T0 vs T1, 2 and 3 in 

NH4
+). 

 

 

To gain further insight into the cell death induced by NH4
+ and to clarify the underlying 

mechanism(s), we employed strains from which genes coding for the yeast metacaspase (Yca1p), 

apoptosis inducing factor (Aif1p), mitochondrial cyclophylin (Cpr3p) and calpain (Rim13p) had been 

deleted.  Loss of cell viability induced by NH4
+ in aa-starved cells in water was not altered by deletion 

of either YCA1 or AIF1 (Figure 18A and 19). Therefore, cell death does not depend on Yca1p or 

Aif1p, which are key factors in several yeast apoptotic processes [172, 184]. In agreement with 

these results, addition of the caspase inhibitor z-VAD-FMK (benzyloxycarbonyl-VAD-

fluoromethylketone) to aa-starved cells after transfer to water and water with NH4
+ did not cause any 

significant differences (Figure 18B). These results seem to suggest that caspase-like activity does not 

play a role in the process, although it cannot be ruled out that activity of other intracellular caspase-

like or other aspartic proteases (ASPase) is occurring as it has been previously describe that these 

proteases are insensitive to Z-VAD-FMK inhibition [238].  
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Figure 18. Loss of cell viability induced by NH4
+ in aa-starved cells of wild-type (WT) S. cerevisiae (BY4742) and the 

mutant deleted in the gene coding for the yeast metacaspase (Yca1). (A) Survival of WT and yca1∆ aa-starved cells, in 

water or water with 0.5% (NH4)2SO4. (B) Survival of WT aa-starved cells, in water or water with 0.5% (NH4)2SO4, 

supplemented or not with) z-VAD-FMK (40 µM). In all the cultures, starting cell density was about 3.8 x 107cells/ml and 

the initial pH was adjusted to 7.0. Values are means ± SEM (n=3-4). (A) and (B) P < 0.001 (H2O vs 0.5% (NH4)2SO4). 

Statistical analysis was performed by two-way ANOVA. 
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Figure 19. Loss of cell viability induced by NH4
+ in aa-starved cells of wild-type (WT) S. cerevisiae (BY4742) and the 

mutant deleted in the gene coding for the yeast  apoptosis inducing factor (Aif1p). Survival of WT and aif1∆ aa-starved 

cells, in water or water with 0.5% (NH4)2SO4. In all the cultures, starting cell density was about 3.8 x 107cells/ml and the 

initial pH was adjusted to 7.0. Values are means ± SEM (n=3-4). P < 0.001 (H2O vs 0.5% (NH4)2SO4). Statistical analysis 

was performed by two-way ANOVA. 

 

 

aa-starved cells of strains deleted in RIM13 and CPR3 coding for the yeast orthologs of 

mammalian proteins previously associated with necrotic phenotypes [162] displayed loss of cell 

viability induced by NH4
+ in water similar to wild type strain (Figure 20A and 21), indicating that 

those genes are not associated with the NH4
+ sensitivity phenotype. In agreement with the results 

obtained with the cpr3∆ mutant, loss of cell viability induced by NH4
+ in aa-starved wild type cells in 

water was also not altered by simultaneous incubation with cyclosporine, an inhibitor of 

mitochondrial cyclophylin (Figure 20B). However, it can be observed an increase in death induced 

by NH4
+ in the rim13∆ mutant, suggesting that instead of mediating cell death, Rim13p, belonging to 

the calpain family of cysteine protease that are activated by Ca2+ [239], may protect against cell 

death. Consistent with the involvement of calpain activity, is the increase in the intracellular calcium 

concentration observed in the presence of NH4
+ (Figure 14D).  
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Figure 20. Loss of cell viability induced by NH4
+ in aa-starved cells of wild-type (WT) S. cerevisiae (BY4742) and the 

mutant deleted in the gene coding for the yeast mitochondrial cyclophylin (Cpr3p). (A) Survival of WT and cpr3∆ aa-

starved cells, in water or water with 0.5% (NH4)2SO4. (B) Survival of WT aa-starved cells, in water or water with 0.5% 

(NH4)2SO4, supplemented or not with cyclosporine A (CsA) (120 µg/ml). In all the cultures, starting cell density was about 

3.8 x 107cells/ml and the initial pH was adjusted to 7.0. Values are means ± SEM (n=3-4). (A) and (B) P < 0.001 (H2O 

vs 0.5% (NH4)2SO4). Statistical analysis was performed by two-way ANOVA. 
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Figure 21. Loss of cell viability induced by NH4
+ in aa-starved cells of wild-type (WT) S. cerevisiae (BY4742) and the 

mutant deleted in the gene coding for the yeast calpain (Rim13p). Survival of  WT and rim13∆ aa-starved cells, in water 

or water with 0.5% (NH4)2SO4. P < 0.001 (H2O vs 0.5% (NH4)2SO4); P <0.001 (WT 0.5% (NH4)2SO4 vs rim13∆ 0.5% 

(NH4)2SO4). Statistical analysis was performed by two-way ANOVA. 

 

 

3.2.2. ROS accumulation and autophagy are not key players in the NH4
+- induced 

shortening of CLS 

 

The free radical theory of aging attributes the loss of cell viability/vitality to an increase in 

ROS accumulation and subsequent oxidative damage [240]. Also, mitochondrial oxidation events 

have been linked to autophagy regulation in mammalian cells where nutrient starvation stimulated 

ROS production, namely H2O2, which act as a signaling molecule essential for autophagy induction 

under these conditions [241, 242]. Autophagy is regulated by nitrogen availability through the major 

nutrient signalling pathways, which also regulate CLS [42, 243]. As described above, NH4
+ induced a 

considerable increase in ROS accumulation, particularly H2O2 assessed by DHR, in aa-starved cells 

(Figure 13). In order to assess if ROS accumulation is associated with NH4
+-induced decrease in CLS, 

cells were incubated in the presence of several water- or lipid-soluble ROS scavenging agents. The 

results showed that addition of ascorbic acid, N-acetyl cysteine (Figure 22A), tocopherol, and 

resvaratrol (Figure 22B) did not reverse the NH4
+ induced death phenotype; hence ROS 

accumulation does not appear to be responsible for the loss of cell viability. On the contrary, 

ascorbic acid and tocopherol induced a shortening of the CLS of cells kept in water without NH4
+, in 

agreement with a protective role for ROS under these conditions. This is in agreement with previous 
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reports showing that calorie restriction or inactivation of catalases extended CLS of S. cerevisiae by 

inducing elevated levels of H2O2 [72].  

 

 

 

 

Figure 22. Survival of wild-type (WT) S. cerevisiae (BY4742) aa-starved cells, in water or water with 0.5% NH4
+, 

supplemented with: (A) hydrophilic antioxidants, Ascorbic acid and N-acetyl cysteine (NAC) or (B) lipophilic antioxidants, 

α-tocopherol and resveratrol. In all the cultures, starting cell density was about 3.8 x 10 7 cells/ml and the initial pH was 

adjusted to 7.0. Values are means ± SEM (n=3). (A) P <0.001 (H2O vs 0.5% NH4
+); P <0.01 (H2O vs H2O + Ascorbic acid) 

(B) P <0.001 (H2O vs 0.5% (NH4)2SO4); P <0.01 (H2O vs H2O + α-Tocopherol). 
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Following, we asked whether autophagy might be required for the NH4
+-induced decrease in 

CLS. ATG8 codes for a protein essential for autophagosome assembly and its expression is up-

regulated by nitrogen starvation shortly after autophagy induction [244]. Thus, we monitored Atg8p 

levels in cells starved for amino acids (aa- starved cells), before and after transfer to water with or 

without NH4
+ (Figure 23A). As expected, autophagy was induced in control cells completely starved 

for nitrogen (N-starved cells) (Figure 23A) [80, 208]. However, autophagy was not induced in aa-

starved cells before they were transferred to water, although autophagy was detected in both aa- and 

control N-starved cells after transfer to water in the absence of NH4
+. Importantly, the presence of 

NH4
+ in water inhibited the induction of autophagy in aa-starved cells but not in control N-starved 

cells (Figure 23A).  

To evaluate the impact of inhibiting autophagy on cell viability, we used a mutant in the TOR 

pathway (tor1∆) and its pharmacological inhibitor rapamycin. As referred in introduction (section 

1.2.4) Tor1p associates with Tor2p and three other proteins to form the TORC1 complex, which 

negatively regulates autophagy [104]. The results show that rapamycin did not significantly alter the 

loss of cell viability induced by NH4
+ in aa-starved cells (Figure 24). Furthermore, NH4

+ still prevented 

autophagy induction in the presence of rapamycin (Figure 23A). In agreement with these results, aa-

starved cells othe tor1∆ mutant also did not exhibit autophagy either after amino acid starvation or 

upon transfer to water with NH4
+ (Figure 23B). However, there was a significant reduction in NH4

+ 

toxicity in this mutant (Figure 25), thus excluding inhibition of autophagy as a causal factor in NH4
+-

induced cell death. Although addition of rapamycin had no effect on the survival of cells transferred 

to water with NH4
+, surprisingly it could prevent cell death in auxotrophy amino acid-starvation 

medium (Figure 24). This result enlightens that the cell death processes induced by NH4
+ and by 

amino acid starvation are regulated by different pathways. Despite these differences, NH4
+-induced 

cell death in aa-starved cells was not prevented by cycloheximide (Figure 26), indicating that death 

seems to rely on the machinery already present in aa-starved cells before their transfer to water.  
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Figure 23. Western-blot analysis of Atg8p levels present in S. cerevisiae (BY4742): (A) wild-type (WT) aa-starved or N-

starved cells, upon transfer to water or water with 0.5% (NH4)2SO4 supplemented or not with rapamycin (RP) (0.2 µg/ml); 

and in (B) WT and tor1∆ aa-starved cells, upon transfer to water or water 0.5% (NH4)2SO4. In all the cultures, starting cell 

density was about 3.8 x 10 7 cells/ml and the initial pH was adjusted to 7.0.  

 

 

 

 

 

Figure 24. Survival of wild-type (WT) S. cerevisiae (BY4742) aa-starved cells upon transfer to water, water with 0.5% 

(NH4)2SO4 or aa-starvation medium supplemented or not with rapamycin (RP) (0.2 µg/ml). In all the cultures, starting cell 

density was about 3.8 x 107 cells/ml and the initial pH was adjusted to 7.0. Values are means ± SEM (n=3-4).) P < 

0.001 (H2O vs 0.5% (NH4)2SO4). Statistical analysis was performed by two-way ANOVA. 
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Figure 25. Survival of aa-starved cells of wild-type (WT) S. cerevisiae (BY4742) and tor1∆ strains, upon transfer to water 

or water with 0.5% (NH4)2SO4. In all the cultures, starting cell density was about 3.8 x 107 cells/ml and the initial pH was 

adjusted to 7.0. Values are means ± SEM (n=3-4).) P < 0.001 (H2O vs 0.5% (NH4)2SO4); P < 0.01 (tor1∆ H2O vs tor1∆ 

0.5% (NH4)2SO4); Statistical analysis was performed by two-way ANOVA. 

 

 

 

Figure 26. Survival of wild-type (WT) S. cerevisiae (BY4742) aa-starved in water or water with 0.5% (NH4
+)2SO4, 

supplemented with  cycloheximide (0.01%). Values are means ± SEM (n=3). P < 0.001 (H2O vs 0.5% (NH4)2SO4). 

Statistical analysis was performed by two-way ANOVA. 

 

 

To further exclude inhibition of autophagy as the causative event of NH4
+ - induced cell 

death, we employed wortmannin (Figure 27), an inhibitor of PI3-kinases that blocks autophagy, as 

well as a mutant deficient for ATG8 (Figure 28). atg8∆ aa-starved cells in water with NH4
+ displayed 

loss of cell viability similar to that of wild type (WT) cells (Figure 28A). Addition of wortmannin to aa-
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starved WT cells incubated in water with NH4
+ also had no effect in cell survival (Figure 27). 

Furthermore, NH4
+ -induced cell death was not observed in atg8∆ N-starved cells (Figure 28B). 

These results indicate that although NH4
+ inhibits autophagy, autophagy inhibition is not the cause of 

the NH4
+ -induced cell death observed in aa-starved cells.  

 

 

 

Figure 27. Survival of wild-type S. cerevisiae (BY4742) aa-starved cells, in water or water with 0.5% (NH4
+)2SO4, 

supplemented with wortmannin (WN) Values are means ± SEM (n=3). P < 0.001 (H2O + DMSO vs 0.5% (NH4)2SO4 + 

DMSO). Statistical analysis was performed by two-way ANOVA. 

 

 

The importance of autophagy in CLS extension of S. cerevisiae has been recently discovered 

as well as an involvement of autophagy and mitochondrial function in CLS regulation [80, 89]. Also, 

a role for autophagy in the regulation and maintenance of mitochondrial function by preventing ROS 

accumulation has been established under conditions of nitrogen starvation, in which maintenance of 

mitochondrial function is important for cell survival [208]. In the latter study, the failure to respond 

to starvation with the upregulation of components of the respiratory pathway and ROS scavenging 

enzymes is the major cause of cell death in ATG mutants [208]. However the above presented 

results demonstrate that neither autophagy nor ROS production seems to be the cause of the NH4
+ -

induced cell death. Since glucose, a fermentable carbon source, represses mitochondrial formation, 

cells were grown and starved for amino acids (aa-starvation) in the presence of a respiratory carbon 

source that does not exhibit catabolic repression, galactose, in order to increase respiration and 

assess if this could influence NH4
+ -induced cell death. The results presented in Figure 29 
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demonstrate that although with increased respiratory capacity cells are less sensitive to NH4
+, being 

able to extend the length of survival, NH4
+ still induces cell death in this condition, suggesting that 

ROS do not seem to play an important role in the toxic effects of NH4
+. 

 
 

 

 
Figure 28. Survival of wild-type (WT) S. cerevisiae (BY4742) and atg8∆ mutant (A) aa-starved or (B) N-starved cells, in 

water or water with 0.5% (NH4)2SO4. Values are means ± SEM (n=3). (A)P < 0.001 (H2O vs 0.5% (NH4)2SO4). Statistical 

analysis was performed by two-way ANOVA. 
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Figure 29. Survival of wild-type S. cerevisiae (BY4742) aa-starved cells grown and starved in the presence of galactose, 

upon transfer to: (�) water (pH 7.0) or (�) water with 0.5% (NH4)2SO4 (pH 7.0). Values are means ± SEM (n=3). 
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Section 3.3. Metabolism of ammonium is not required for ammonium-

induced cell death 
 

As referred in introduction (section 1.5), ammonium has a central role in nitrogen 

metabolism in S. cerevisiae being involved in both degradative and biosynthetic pathways [217]. 

Ammonium enters the cell mostly through plasma membrane transporters, since NH3, which can 

enter the cells by passive diffusion, does not occur significantly in the common extracellular acidic-

environments, which shift the acid-base balance towards the protonated NH4
+ form [123].. 

Ammonium membrane transporters system in yeast belongs to the highly conserved Mep/Amt/Rh 

superfamily found in all forms of life [211] and comprises three permeases (Mep1, Mep2 and Mep 

3) with different kinetics properties [219]. Recent studies have attributed yet another role for Mep1 

and Mep2 proteins, demonstrating that they can also function as sensors to activate major nutrient-

signaling pathways. This role of Mep2p in signaling PKA activation in response to NH4
+ in nitrogen 

starvation medium is not however, dependent on the metabolism of NH4
+ [135]. Taking these results 

into consideration, it was assessed whether NH4
+ toxicity, which leads to a reduction in CLS, was a 

direct consequence of NH4
+ signaling or perhaps required its metabolization. In yeasts, the first step 

of NH4
+ assimilation is mediated by NADPH-dependent glutamate dehydrogenase, which converts α-

ketoglutarate to glutamate, which can be further metabolized to glutamine by glutamine synthetase. 

Therefore, the activity of these two enzymes was measured. Glutamine synthetase activity was 

higher in N-starved cells than in aa-starved cells, decreasing for both conditions after transfer to 

water and water with NH4
+ (Table 5). This result indicates that the activity of this enzyme is not 

related to the higher toxicity of NH4
+. 
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Table 5. Glutamine synthetase (GS) activity of aa- and N-starved cells of S. cerevisiae before (T0) and after 

transfer to water or water with 0.5% NH4
+. 

 
Data are presented as mean of three independent experiments with SD. 

 

 

We also tested the effect of NH4
+ in both aa-starved and N-starved cells in the presence of 

the glutamine synthetase inhibitor methionine sulfoximine. No significant differences in loss of cell 

viability were observed (Figure 30A and 30B), further supporting the hypothesis that the toxic effect 

of NH4
+ does not require that it be metabolized. 

 In the assessment of the other enzyme involved in NH4
+ metabolization, glutamate 

dehydrogenase, it was observed that enzyme activity at T0 was higher in N-starved cells than in aa-

starved cells, but incubation in water with or without NH4
+ led to a decrease in its activity (Figure 31). 

In contrast, glutamate dehydrogenase activity increased approximately 3-fold in aa-starved cells 

incubated in the presence of NH4
+.  

It was further tested whether α-ketoglutarate depletion or glutamate accumulation, which 

might result from the higher glutamate dehydrogenase activity, could be the cause of NH4
+ toxicity. 

Adding α-ketoglutarate to the medium did not alter the toxic effects of NH4
+ (Figure 32), whereas 

adding glutamate resulted in more rapid loss in cell viability, even in the absence of NH4
+ (Figure 

33A). Surprisingly, addition of glutamate to N-starved cells had the opposite effect, resulting in a 

rescue of cell viability more pronounced in cells incubated in water (Figure 33B). This seems to 

indicate that starving conditions pre-determine the metabolism functioning which in turn responds in 
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an opposite manner to the same stimuli. Further supporting that NH4
+ toxicity does not depend on its 

metabolization, the non-metabolizable NH4
+ analogue methylamine also induced cell death in aa- but 

not N-starved cells (Figure 34). In agreement with these results, the NH4
+ toxicity observed in SC 

media cultures (Figure 3) was also not associated with a significant NH4
+metabolization, as shown 

from the levels of (NH4)2SO4 along time (Figure 6B). 

 

 

 

Figure 30. Survival of wild-type (WT) S. cerevisiae (BY4742)  aa-starved cells (A) or N-starved cells (B), in water or water 

with 0.5% (NH4)2SO4, supplemented or not with methionine sulfoximine (MSX) (1 mM). In all the cultures, starting cell 

density was about 3.8 x 107cells/ml and the initial pH was adjusted to 7.0. Values are means ± SEM (n=3-4). (A)P < 

0.001 (H2O vs 0.5% (NH4)2SO4). Statistical analysis was performed by two-way ANOVA. 
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Figure 31. Glutamate dehydrogenase (GDH1) activity of wild-type S. cerevisiae (BY4742) aa-starved (aa-H2O and aa-NH4
+) 

and N-starved cells (N-H2O and N-NH4
+), before transferred to water (T0h) and after 2, 24 and 48 hours in water or water 

with 0.5% (NH4)2SO4. In all the cultures, starting cell density was about 3.8 x 107 cells/ml and the initial pH was adjusted 

to 7.0. Values are means ± SEM (n=3-4).  ***P < 0.001; **P < 0.01. Statistical analysis was performed by two-way 

ANOVA. 

 

 

 

Figure 32. Survival of wild-type (WT) S. cerevisiae  (BY4742) aa-starved cells, in water or water with 0.5% (NH4)2SO4, 

supplemented with α-ketoglutarate (α-KG) (5 mg/ml). In all the cultures, starting cell density was about 3.8 x 107cells/ml 

and the initial pH was adjusted to 7.0. Values are means ± SEM (n=3-4). P < 0.001 (H2O vs 0.5% (NH4)2SO4). Statistical 

analysis was performed by two-way ANOVA. 
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Figure 33. Survival of wild-type (WT) S. cerevisiae  (BY4742): (A) aa-starved cells and (B) N-starved cells, in water or 

water with 0.5% (NH4)2SO4, supplemented or not with glutamate (5 mg/ml). In all the cultures, starting cell density was 

about 3.8 x 107 cells/ml and the initial pH was adjusted to 7.0. Values are means ± SEM (n=3-4). (A) P < 0.001 (H2O vs 

0.5% (NH4)2SO4); P < 0.05 (H2O vs H2O + Glutamate); (B). P < 0.01 (H2O + Glutamate vs 0.5% (NH4)2SO4 + Glutamate) 

Statistical analysis was performed by two-way ANOVA. 

 

 

Taken together, these results suggest that although glutamate could play a role in NH4
+-

induced cell death to some extent, NH4
+-induced shortening of CLS does not appear to require that it 

be metabolized.  
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Figure 34. Survival of of wild-type (WT) S. cerevisiae  (BY4742) aa-starved or N-starved cells, in water or water with 0.5% 

(NH4)2SO4, supplemented with methylamine (MA) (30 mM). In all the cultures, starting cell density was about 3.8 x 

107cells/ml and the initial pH was adjusted to 7.0. Values are means ± SEM (n=3-4). P < 0.001 (H2O vs 0.5% (NH4)2SO4). 

Statistical analysis was performed by two-way ANOVA. 
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Section 3.4. PKA and TOR regulate the ammonium-induced CLS 

reduction of amino acid-starved cells 
 

The results presented in the previous section seem to rule out metabolization of NH4
+ as 

necessary for cell death induction in amino acid starved cells. Since NH4
+ is known to activate PKA 

pathway through Mep2p in a Sch9p dependent manner when added to nitrogen-starvation medium 

[135], the involvement of nutrient signaling pathways in NH4
+ -induced cell death was assessed. The 

absence of autophagy inhibition as a causal factor in NH4
+ -induced cell death led us to hypothesize 

that NH4
+ toxicity might be mediated by PKA activation. CLS is under the control of both TOR, Sch9p 

and PKA signalling pathways [42]. These pathways promote cell division and growth in response to 

nutrients while inhibiting the general stress response and autophagy.  

Trehalase is a target of PKA regulation and its activity has been extensively used to monitor 

PKA activation [120]. As shown in Figure 35, trehalase activity was much higher in aa-starved cells 

upon transfer to water with NH4
+ than in the same cells without NH4

+ or in N-starved cells (negative 

control) under both conditions  

 

 

 

Figure 35. Trehalase activity of wild-type (WT) S. cerevisiae  (BY4742) N-starved cells and WT and mutant (mep2∆, 

sch9∆ and tor1∆) aa-starved cells, before transferred to water (T0h) and after 2 hours in water (T2h H2O) or water with 

0.5% (NH4)2SO4 (T2h H2O + NH4
+). In all the cultures, starting cell density was about 3.8 x 107 cells/ml and the initial pH 

was adjusted to 7.0. Values are means ± SEM (n=3-4).*P < 0.05 (WT H2O vs WT 0.5% (NH4)2SO4), (WT 0.5% (NH4)2SO4 vs 

tor1∆ 0.5% (NH4)2SO4); **P < 0.01 (WT 0.5% (NH4)2SO4 vs sch9∆ 0.5% (NH4)2SO4). Statistical analysis was performed by 

two-way ANOVA. 
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In support of the hypothesis that activation of PKA increases sensitivity to NH4
+, addition of 

cAMP increased cell death in the presence of NH4
+ in N-starved cells and had no effect on aa-starved 

cells, which display high PKA activity even in the absence of added cAMP (Figure 36A and 36B).  

 

 

 

Figure 36. Survival of of wild-type (WT) S. cerevisiae  (BY4742): (A) aa-starved cells or (B) N-starved cells, after transfer 

to: (�) water (pH 7.0); (�) water with 0.5% (NH4)2SO4 (pH 7.0); (�) water (pH 7.0) supplemented with cAMP (4 mM); 

(�) water with 0.5% (NH4)2SO4 (pH 7.0) supplemented with cAMP (4 mM). In all the cultures, starting cell density was 

about 3.8 x 107 cells/ml and the initial pH was adjusted to 7.0. Values are means ± SEM (n=3-4). 
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In addition, deletion of RAS2, a regulator of PKA activity through the stimulation of cAMP 

production, caused a partial reversion of the NH4
+ sensitivity phenotype of aa-starved cells (Figure 

37), although it is described that PKA activation by NH4
+ is cAMP-independent  [135]. The NH4

+ 

permease Mep2 (and Mep1 to a lesser extent) function as sensors for NH4
+-induced activation of 

PKA, whereas Mep3p, the other member of the family of NH4
+ transporters, does not [135, 219]. As 

shown in Figure 37, the mep2∆ and mep1∆ strains exhibited a decrease in NH4
+-induced death in 

aa-starved cells, although this decrease was significant only for mep2∆. This is in agreement with 

the more predominant role of Mep2p in PKA signalling. In order to identify the specificity of the 

signalling process through PKA, the effect of deleting the genes that code for the three isoforms of 

the catalytic subunit of this kinase, TPK1, TPK2 and TPK3, was also tested. Only deletion of TPK1 

caused a significant reversion of the NH4
+-induced decrease of the CLS, whereas no differences were 

detected for strains deficient in TPK2 and TPK3 (Figure 38).  

 

 

 

Figure 37. Survival in water (pH 7.0) or water with 0.5% (NH4)2SO4 (pH 7.0) of aa-starved cells of wild-type (WT) S. 

cerevisiae  (BY4742), mep1∆, mep2∆ and ras2∆ strains. In all the cultures, starting cell density was about 3.8 x 107 

cells/ml and the initial pH was adjusted to 7.0. Values are means ± SEM (n=3-4). P < 0.05 (WT 0.5% (NH4)2SO4 vs ras2∆ 

0.5% (NH4)2SO4); P < 0.01 (WT 0.5% (NH4)2SO4 vs mep2∆ 0.5% (NH4)2SO4); P < 0.05 (WT 0.5% (NH4)2SO4 vs mep1∆ 0.5% 

(NH4)2SO4). Statistical analysis was performed by two-way ANOVA. 
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Figure 38. Survival in water (pH 7.0) or water with 0.5% (NH4)2SO4 (pH 7.0) of aa-starved cells of wild-type (WT) S. 

cerevisiae  (BY4742)  and tpk∆ mutants (tpk1∆, tpk2∆ or tpk3∆). In all the cultures, starting cell density was about 3.8 

x 107 cells/ml and the initial pH was adjusted to 7.0. Values are means ± SEM (n=3-4). P < 0.01 (WT 0.5% (NH4)2SO4 vs 

tpk1∆ 0.5% (NH4)2SO4). Statistical analysis was performed by two-way ANOVA. 

 

 

Sch9p is a protein kinase with high sequence homology to Tpk1, 2, 3 kinases and regulates 

cell metabolism in response to several nutritional signals, such as nitrogen and carbon source [61]. 

It shares many targets with PKA and TORC1, and different interactions between these pathways, 

either cooperating or antagonizing, have been described [118]. Data from Figure 39 show that 

sch9∆ aa-starved cells underwent increased cell death upon transfer to water plus NH4
+ and that the 

lack of Sch9p reduced survival after cells were transferred to water. These results suggest that 

pathways regulated by Sch9p are important for survival under these conditions. 

To evaluate the dependence of PKA activation on Sch9p, Tor1p, and Mep2p trehalase 

activity was measured in aa-starved cells of the corresponding deletion mutants. Trehalase activity 

was similar in all strains before or after transfer to water. However, in the presence of NH4
+, 

trehalase activity decreased in tor1∆ and in sch9∆ cells and was almost completely undetectable in 

the latter strain (Figure 35). These results establish that NH4
+ signalling to PKA requires Tor1p and 

Sch9p. However, the opposite cell death phenotypes of sch9∆ compared to tor1∆ and tpk1∆ cells 

observed in aa-starved cells in the presence of NH4
+ suggest that the role of Sch9p in the process is 

essentially independent of the TOR-PKA pathway. 

Hog1p is a kinase that regulates and is regulated by Sch9p and mediates stress response 
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independently of PKA and TOR pathways [142]. To assess whether Hog1p might play a role in 

resistance to the toxic effects of NH4
+ mediated by Sch9p, we examined the effects of NH4

+ in a 

hog1∆ strain (Figure 39). Like sch9∆ cells, hog1∆ cells were more sensitive to the toxic effects of 

NH4
+, which suggests that Sch9p may be signaling Hog1p to mediate increased resistance. This 

result also reinforces the independent role of Sch9p from TOR-PKA pathway since hog1∆ cells 

presented a sensitive phenotype very similar to sch9∆ cells. 

 

 

 
Figure 39. Survival in water (pH 7.0) or water with 0.5% (NH4)2SO4 (pH 7.0) of aa-starved cells of wild-type (WT) S. 

cerevisiae  (BY4742), sch9∆ and hog1∆ strains. In all the cultures, starting cell density was about 3.8 x 107 cells/ml 

and the initial pH was adjusted to 7.0. Values are means ± SEM (n=3-4). P < 0.05 (WT 0.5% (NH4)2SO4 vs hog1∆ 0.5% 

(NH4)2SO4), P < 0.001 (WT H2O vs sch9∆ H2O). Statistical analysis was performed by two-way ANOVA. 
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Section 3.5. Influence of auxotrophic amino acid markers and strain 

background on ammonium toxicity 
 

3.5.1. Role of starvation for each of the auxotrophic-complementing amino acids of 

BY4742 strain in ammonium induced CLS shortening 

 

Several studies in the literature report different effects of amino acids on life span regulation 

and depending on which amino acid is deprived the outcome on CLS regulation differs [76, 77, 80]. 

In this context, while it is known that starvation of non-essential amino acids (strains without 

auxotrophys) used as preferred nitrogen sources can extend CLS [26, 52, 81], starvation for 

auxotrophy-complementing amino acids (essential amino acids) reduces CLS [76, 77]. A recent 

study reported that when extra supplementation of the auxotrophic-complementing amino acids 

studied, lysine, histidine and leucine was employed, the latter had a more pronounced effect in CLS 

extension than the others in both autophagy-competent and autophagy-deficient strains [80]. In the 

same study, CLS was also extended by supplementation of non-essential amino acids, particularly 

isoleucine and its precursor threonine and valine [80]. In our studies, as presented in previous 

sections we have shown that ammonium induces cell death associated with shortening of CLS. This 

effect was correlated to the concentration of NH4
+ added to the culture medium and is particularly 

evident in cells starved for auxotrophy-complementing amino acids.  

In order to elucidate if the ammonium effect on yeast survival described in the previous 

sections is dependent on the specific  auxotrophy-complementing amino acid that is deprived in the 

medium, and thus to evaluate the auxotrophy-complementing amino acids inputs in the observed 

death scenario, we tested the effect of adding to the standard starvation medium without any of the 

three auxotrophy-complementing amino acid (aa-starved cells), each amino acid individually or in 

combination of two of the three auxotrophy-complementing amino acids. For that, following the 

protocol systematized in Figure 8, cells were deprived in the starvation medium of one amino acid at 

a time (Figure 40A) or cells were deprived of two amino acids at a time (Figure 40B) and compared 

to standard starvation of all the three auxotrophy-complementing amino acids (aa-starved cells). The 

results obtained from the first series of experiments (Figure 40A) revealed that the removal, from the 

starvation medium, of any of the three auxotrophy-complementing amino acids individually at a time, 
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induced a decrease of CLS upon transfer of cells to water with NH4
+, the effect being less 

accentuated when lysine alone was removed. The most pronounced effect on CLS shortening 

induced by NH4
+ was observed for cells starved in the absence of leucine. Additonaly, from the 

experiments in which two of the amino acids were removed at a time, in different combinations 

(Figure 40B), we could observe that the presence of leucine during starvation for the other two 

amino acids increased survival in comparison to starvation for all three amino acids (Figure 40B). 

The results suggested that, under amino acid starvation, from the three auxotrophy-complementing 

amino acids tested, leucine had the most positive influence in the survival of cells in the presence of 

ammonium and induced the most sensitive effect when it was not present In turn, the presence of 

lysine in the starvation medium without the other two amino acids had the opposite effect of leucine, 

increasing ammonium induced cell death (Figure 40B). Histidine does not seem to have a major 

role in regulating CLS in response to ammonium, as its presence or absence in the starvation 

medium resulted in a cell death profile similar to that exhibited by cells under standard starvation 

condition.  

The results regarding leucine are in accordance with the literature since it has been 

described a more important role for leucine in CLS extension in auxotrophic strains [76, 80]. In a 

recent study, supplementation of extra leucine to SC medium or transformation of auxotrophic 

leucine strain into a prototrophic leucine strain, resulted in CLS extension suggesting that leucine 

levels in the SC medium were limiting for the BY4742 strain used in the study. Also, these low levels 

were responsible for the activation of the GAAC pathway in leu2∆ strains thus diminishing CLS. The 

importance of leucine was attributed to the regulation of the branched side chain amino acids 

synthesis that appears to be misregulated in a leu2∆ strain. Deletion of the LEU3 gene that codes 

for the primary transcriptional regulator of the superpathway for branched side chain amino acids 

biosynthesis, severely extended CLS. In agreement, supplemental levels of the branch side amino 

acids isoleucine, threonine and valine, also extended CLS in a leu2∆ strain, suggesting that the 

misregulation of this biosynthetic pathway likely results from the leu2∆0 mutation in the BY4742 

strain [80]. The negative effect observed for lysine in cell survival during ammonium induced cell 

death can possibly be due to the fact that autophagy is inhibited in the presence of ammonium, and 

the lack of autophagy might somehow be responsible for this effect since lysine seems to act in an 

autophagy-dependent manner on the regulation of CLS. Autophagy deficient strains showed no 
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improvement in CLS extension after regaining LYS prototrophy in contrast to wild-type autophagy 

competent cells that increased CLS extension with LYS prototrophy [80]. Also, TPK1p has been 

implicated in the branched chain amino acids biosynthesis pathway [194], which could be 

correlated with these results showing that leucine seems to have a positive role in NH4
+-induced 

decrease of the CLS. 

 

 

 

Figure 40. Survival of wild-type (WT) S. cerevisiae (BY4742): (A) aa-starved cells for all three amino acids (�;�) and 

cells starved for one specific amino acid at a time (Without; w/o); and (B) aa-starved cells for all three amino acids 

(�;�) and cells complemented with one amino acid at a time (With; w/);  upon transfer to water or water with 0.5% 

(NH4)2SO4. In all the cultures, starting cell density was about 3.8 x 107 cells/ml and the initial pH was adjusted to 7.0. 

Values are means ± SEM (n=2). P < 0.01 (H2O + NH4
+ vs H2O + NH4

+ w/Leu). Statistical analysis was performed by two-

way ANOVA. 
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3.5.2. Influence of strain background on ammonium induced CLS shortening 

 

In order to assess if the strain background could influence ammonium toxicity, four strains 

with different backgrounds (BY4742, BY4741, W303-1A and CEN-PK2-1C) and/or carrying different 

amino acids auxotrophys, were tested. We first tested BY4742 and BY4741, two strains with the 

same background but with different auxotrophic markers, in cells aged in the culture medium. We 

tested the influence of ammonium in each strain by evaluating CLS of cells grown in SC medium 

with or without ammonium supplementation. The results presented in Figure 41A show that BY4742 

cells grown with low concentrations of auxotrophy-complementing amino acids were very sensitive to 

the ammonium negative effects on CLS, since in medium without ammonium supplementation a 

decrease in cell death was not observed. For BY4741 cells, a similar result was obtained for cells 

grown with low concentrations of auxotrophy-complementing amino acids, although these cells 

presented a less pronounced shortening of CSL in the presence of ammonium (Figure 41B).  

As for BY4741, cells grown in SC medium supplemented with high concentrations of 

auxotrophy-complementing amino acids, contrary to BY4742 cells, presented an increase in CLS in 

medium without ammonium supplementation (Figure 41B). The results seem to indicate that 

auxotrophys within the same genetic background can influence the toxic effects of ammonium, 

which is in agreement with previous results indicating that each individual auxotrophy has a different 

effect on CLS upon starvation of the respective amino acid [76, 80].  

To evaluate the contribution of the genetic background to the toxics effects of ammonium, 

we used two strains, W303-1A and CEN.PK2.1C, which have the same amino acid auxotrophys 

(tryptophan, leucine and histidine). Cells of these two strains were grown in SC media supplemented 

with low concentrations of auxotrophy-complementing amino acids, condition in which the toxic 

effects of ammonium on CLS are more evident, with or without ammonium supplementation. As 

presented in Figure 42, both strains exhibited a decrease in CLS when ammonium is supplemented. 

Also, strain CEN.PK2-1C (Figure 42B) was more sensitive than strain W303-1A (Figure 42A) to the 

toxic effects of ammonium. Comparing all three genetic backgrounds, the results indicated that the 

toxic effects of ammonium were more pronounced in BY strains, followed by CEN.PK2 and W303. 

These results clearly demonstrate that in amino acid restriction conditions ammonium is toxic and 

the severity of this toxicity is strain-dependent. 
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Figure 41. Survival of wild-type S. cerevisiae strains (A) BY4742 and (B) BY4741 in SC media supplemented with: 

(�,�) low and (�,�) high concentrations of auxotrophy-complementing amino acids (AA), and with (dark symbols) or 

without (open symbols) 0.5% (NH4)2SO4 supplementation.  Values are means ± SEM (n=3). P < 0.001 (Low AA with 0.5% 

(NH4)2SO4 vs Low AA without 0.5% (NH4)2SO4 . Statistical analysis was performed by two-way ANOVA. 

 

 

 

Figure 42. Survival of wild-type S. cerevisiae strains: (A) W303-1A and (B) CEN.PK2-1C in SC media supplemented with 

low concentrations of auxotrophy-complementing amino acids, with (dark symbols) or without (open symbols) 0.5% 

(NH4)2SO4 supplementation. Values are means ± SEM (n=2). (A) P < 0.01 (B) P < 0.001. Statistical analysis was 

performed by two-way ANOVA. 

 



Section 3.5. 

 

 

130 

As mentioned above, the composition of the culture medium can modulate the chronological 

life span (CLS) of yeast cells [35]. Culturing cells in different media generates different outcomes in 

CLS. For example, cells grown in rich YPD medium are known to present an extension of CLS when 

compared to cells grown in synthetic complete (SC) medium [35, 90].  

In order to assess the influence of medium composition during growth, on ammonium 

toxicity in water in different strain backgrounds, we used minimal K medium [222], which is a define 

medium that allows us to manipulate all components of the medium. For that, cells were grown in 

minimal K medium with or without amino acid restriction in the medium (low and high 

concentrations of the auxotrophy-complementing amino acids). After 72 hours of growth, cells were 

transferred to water (pH 7.0), water with 0.5% (NH4)2SO4 (pH 7.0) and water with 1% (NH4)2SO4 (pH 

7.0). For strain W303-1A, as shown in Figure 43, there was no shortening of CLS upon transfer to 

water or water with ammonium of cells grown in K medium supplemented with high (Figure 43A) or 

low (Figure 43B) concentrations of auxotrophy-complementing amino acids. These results imply that 

for this strain, grown in minimal K medium, restriction of amino acids did not seem to potentiate 

ammonium toxicity upon transfer to water with ammonium, as verified for BY4742 strain grown in 

SC medium (Figure 3). Taking into account that this result could be due to strain background allied 

to different auxotrophys and different growth medium conditions, we increased the amino acid 

restriction by lowering one (Figure 43C) or two-fold (Figure 43D) the condition of low concentration 

of auxotrophy-complementing amino acids defined in this study (see section 2.2 of chapter 2). The 

results presented in Figure 43C and 43D demonstrate that restricting more severely auxotrophy-

complementing amino acids led to shortening of CLS upon transfer to water with ammonium, 

demonstrating that the ammonium toxicity phenotype is dependent on the severity of the amino acid 

restriction which in turn seems to vary from strain to strain.  

 



Influence of auxotrophic amino acid markers and strain background on ammonium toxicity 

 

 

131 

 

Figure 43. Survival of wild-typw S. cerevisiae  (W303-1A) grown in minimal K medium supplemented with different 

concentrations of auxotrophy-complementing amino acids (AA): (A) high (leucine 300 mg/L; histidine 50 mg/L; lysine 

50 mg/L);  (B) low (leucine 60 mg/L; histidine 10 mg/L; lysine 10 mg/L); (C) low concentration of AA reduced to half 

(leucine 30 mg/L; histidine 5 mg/L; lysine 5 mg/L) and (D) low concentration of AA reduced to one quarter (leucine 15 

mg/L; histidine 2.5 mg/L; lysine 2.5 mg/L). After 72 hours of growth, cells were transferred to: (�) water (pH 7.0); 

(�) water with 0.5% (NH4)2SO4 (pH 7.0) and (�) water with 1% (NH4)2SO4 (pH 7.0). Values are means ± SEM (n=2). (D) 

P < 0.01. Statistical analysis was performed by two-way ANOVA. 

 

 

To verify if medium composition was in fact contributing to ammonium sensitivity, BY4742 

was also tested in minimal K medium. For that, cells were grown in this medium with or without 

amino acid restriction in the medium (low and high concentrations of the auxotrophy-complementing 
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amino acids, respectively). After 72 hours of growth, cells were transferred to water (pH 7.0), water 

with 0.5% (NH4)2SO4 (pH 7.0) and water with 1% (NH4)2SO4 (pH 7.0). The results presented in Figure 

44 confirm that in fact medium composition affected the sensitivity of strains to ammonium, as cells 

of BY4742 strain previously grown in minimal K medium presented an increase in survival when 

transferred to water with ammonium (0.5% or 1% (NH4)2SO4 (pH 7.0)) when compared to cells of the 

same strain previously grown in SC medium (Figure 5B). However, when cells previously grown in 

minimal K medium were transferred to water, they presented a decrease in survival when compared 

to cells pre-grown in SC medium.  

 

 

 

Figure 44. Survival of wild-type S. cerevisiae  (BY4742) grown in minimal K medium supplemented with (A) high and (B) 

low (L-AA) concentrations of auxotrophy-complementing amino acids. After 72 hours of growth, cells were transferred to: 

(�) water (pH 7.0); (�) water with 0.5% (NH4)2SO4 (pH 7.0) and (�) water with 1% (NH4)2SO4 (pH 7.0). Values are 

means ± SEM (n=3). (B) P < 0.05. Statistical analysis was performed by two-way ANOVA. 

 

 

Overall these results demonstrate that several factors contribute to ammonium sensitivity 

including background of the strain, auxotrophic markers present in the strains and also medium 

composition. Still, a common denominator is present: the toxicity of ammonium in amino acid 

restriction conditions. However, these amino acid restriction conditions were tested in strains 

bearing auxtotrophys in several amino acid biosynthetic pathways and so we questioned if 
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ammonium toxicity would also apply to prototrophic strains. To evaluate this scenario, a prototrophic 

strain, CEN.PK113-7D, was tested in different conditions to assess a possible toxic effect of 

ammonium. For that, firstly cells were grown in minimal K medium without addition of amino acids 

for 72 hours and subsequently transferred to water (pH 7.0) or water with 0.5% (NH4)2SO4 (pH 7.0). 

The results presented in Figure 45, show that also for a prototrophic strain, transferring cells to 

water with ammonium had a negative effect on cell survival, confirming that ammonium alone was 

toxic.  

 

 

 

Figure 45. Survival of wild-type S. cerevisiae  (CEN.PK113-7D) grown in minimal K medium. After 72 hours of growth, 

cells were transferred to: (�) water (pH 7.0) and (�) water with 0.5% (NH4)2SO4 (pH 7.0). P < 0.05. Statistical analysis 

was performed by two-way ANOVA. 

 

 

In order to further evaluate ammonium toxicity in the present prototrophic strain, we used a 

similar methodology to that used for BY4742 starved cells, with the proper alterations due to the 

lack of auxotrophys. For that, cells were grown to mid exponential phase in SC medium and then 

transferred for 24 hours to: i) SC medium and ii) SC medium without 0.5% (NH4)2SO4 (equivalent to 

N-starved cells). After 24 hours, cells were transferred to water (pH 7.0), water with 0.5% (NH4)2SO4 

(pH 7.0) and water with 1% (NH4)2SO4 (pH 7.0). The results presented in Figure 46A show that also 

for cells grown in SC medium, ammonium alone could induce CLS shortening. Also, for cells starved 

during 24 hours for any nitrogen source, the sensitivity to ammonium was diminished (Figure 46B) 
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in comparison to cells incubated in complete SC medium. Like for BY4742 N-starved cells (Figure 

9B), when prototrophic cells were starved for total nitrogen and subsequently transferred to water, 

there was a decrease in CLS in this condition (Figure 46B). These results indicate that the presence 

of ammonium during the 24 hour period of incubation was sufficient to increase sensitivity to 

ammonium in a prototrophic strain. Furthermore, the results showed that ammonium toxicity is not 

only a consequence of amino acid restriction, although this condition potentiates toxicity, but it is a 

more generalized scenario affecting not only auxotrophic but also prototrophic strains.  

 

 

 

Figure 46. Survival of wild-type S. cerevisiae  (CEN.PK113-7D) grown in SC medium and incubated during 24 hours in: 

(A) new SC medium;  (B) SC medium with glutamate (5 g/L) and without (NH4)2SO4 and (C) SC medium without 

glutamate and without  (NH4)2SO4. After 24 hours cells were transferred to: (�) water (pH 7.0); (�) water with 0.5% 

(NH4)2SO4 (pH 7.0) and (�) water with 1% (NH4)2SO4 (pH 7.0). Values are means ± SEM (n=2). (A) P < 0.05. Statistical 

analysis was performed by two-way ANOVA. 
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4. General discussion and future perspectives 
 

4.1 General discussion 

 

The primary molecular mechanisms underlying aging in living organisms are a matter of 

intense debate, despite decades of study, and with an elderly population increasing in industrialized 

countries, a healthy aging has become one of the main interests of the general public. In this 

context, yeast has emerged as one of the most important model organisms to study the 

environmental and genetic factors affecting longevity, and its exploitation has made huge 

contributions to the progress in understanding aging. Although some aspects of aging in yeast are 

specific to this organism, many of the most important features reveled in yeast proved to be 

evolutionarily conserved in higher eukaryotic organisms [4]. One of this conserved features are the 

nutrient-signaling pathways and manipulation of these pathways in yeast has uncovered the impact 

of environmental growth conditions in longevity. During yeast growth, the medium composition is 

altered suffering a depletion of substrates and is enriched in several compounds resulting from 

cellular metabolism. Studies using calorie restriction show that reducing glucose concentration of the 

culture media is sufficient to increase replicative and chronological life span (CLS) [59, 81, 245-

247]. Other components of the culture media and factors such as the products of fermentation have 

also been implicated in the regulation of CLS. Acidification of the culture media mainly due to acetic 

acid and other organic acids production negatively impacts CLS [91]. Ethanol is another 

fermentative metabolite capable of inducing CLS reduction in aged cells by yet unknown 

mechanisms [88].  

In the present work, we uncover ammonium as a new extrinsic factor modulating life span in 

yeast and focus on the mechanisms underlying this modulation. Our studies showed that 

manipulating the ammonium concentration in the culture medium affects CLS, with high 

concentrations inducing cell death in association with a reduction in CLS. Also, decreasing the 

concentration of NH4
+ in the culture medium increases yeast CLS in both standard amino acid 

supplemented and amino acid restriction conditions indicating that the toxic effects of NH4
+ correlate 

with NH4
+ concentration in the culture medium. Moreover, after transferring cultured cells to extreme 

calorie restriction conditions in water, the addition of ammonium drastically decreases the CLS, 
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indicating that ammonium alone could also induce loss of cell viability as observed in culture media. 

We also showed that for amino acid restriction conditions, medium acidification, previously reported 

to decrease survival of chronological aged cells in SC medium [91], did not play a role in survival. 

We also reported that the toxic effects of NH4
+ are particularly detrimental in cells starved for 

auxotrophy-complementing amino acids aged in water and that starvation for leucine in particular, 

largely contributes to the susceptibility to NH4
+ induced cell death. This result regarding leucine is in 

accordance with the literature since it has been described a more important role for leucine in CLS 

extension in auxotrophic strains [76, 80]. On the contrary, starvation for lysine positively contributed 

to cell survival while its presence had a substantial negative effect. This negative effect observed for 

lysine in cell survival during ammonium induced cell death can possibly be due to the fact that 

autophagy is inhibited in the presence of ammonium, and the lack of autophagy might somehow be 

responsible for this effect since lysine seems to act in an autophagy-dependent manner on the 

regulation of CLS. Autophagy deficient strains showed no improvement in CLS extension after 

regaining LYS prototrophy in contrast to wild-type autophagy competent cells that increased CLS with 

LYS prototrophy [80].  

Further studies with auxotrophy-complementing amino acids starved cells allowed us to 

characterize cell death induced by NH4
+ and establish, that although the toxic effects of NH4

+ were 

accompanied by markers for apoptosis, NH4
+ -induced cell death was predominantly necrotic at later 

time points. Our data suggest that NH4
+ causes an initial apoptotic cell death followed by a fast 

secondary necrosis. Necrosis due to ATP depletion has been reported in other cell death scenarios, 

namely in tumor cells under metabolic stress [248]. This appears to be the case in NH4
+-induced 

necrosis, since ATP depletion was observed in cells incubated in water with NH4
+ which might block 

ATP-dependent apoptosis and thus trigger necrosis. The results obtained with the deletion mutant 

rim13∆ point to a protective function of the protease calpain in this cell death process, although 

Rim13p homologs have been described as players on the execution of the necrotic process in 

mammals CLS [160]. Recently, it has been suggested that Ras2/PKA signaling may harbour a 

conserved pro-necrotic function in yeast as observed in mammalians. Actually, PKA and the ras-like 

Rab protein Rab25 are both required for TNF induced necrosis of mammalian cells [176]. In 

agreement with this premise our results demonstrate that the necrotic cell death process is 
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accompanied by high levels of PKA activity, underlying that the Ras2/PKA cascade may in fact 

comprise a necrotic function. 

After characterizing the death process induced by NH4
+ in aa-starved cells, we further 

explored the causes underlying the death process. Induction of autophagy is one of the features that 

occur when cells go into a quiescent state in nutrient exhaustion conditions [99, 123]. Previous 

studies showed that cells starved for auxotrophic amino acid markers in otherwise complete medium 

fail to properly arrest in G0 [76]. In accordance, aa-starved cells in our study also do not seem 

arrested in G0 (indicated by a failure to induce autophagy). It should be noted that this failure to 

induce autophagy by aa-starved cells was sustained when cells were transferred to water containing 

NH4
+ in the absence of other nutrients. This is in contrast with that observed in G0 arrested N-starved 

cells transferred to water where NH4
+ could not activate PKA or inhibit autophagy. Treatment with 

rapamycin under these conditions also could not trigger autophagy induction, possibly due to 

overactivation of PKA which has been described to abrogate rapamycin-induced effects [249]. 

Although autophagy was inhibited by NH4
+ in aa-starved cells, inhibition of autophagy by deletion of 

ATG8 did not induce the NH4
+ sensitivity phenotype in N-starved cells, suggesting that autophagy 

inhibition is not responsible for the loss of cell viability and shorter CLS induced by NH4. We also 

assessed whether activation of PKA could be inducing replication stress, a mechanism responsible 

for cell aging under different conditions [96]. This could be the case, at least to some extent, since 

there was a slight increase in the number of budded cells (evaluated by bright field microscopy) for 

aa-starved (16 %) conditions relative to the control N-starved cells (8%).  

In contrast to what has been described for aging cells that reach stationary phase due to 

carbon limitation [89], we observed that autophagy mutants did not exhibit increased cell death after 

they were transferred to water, indicating that autophagy is not a key player in cell survival in water 

when the cells were previously starved for amino acids or nitrogen. It was recently shown that ATG 

genes are important for removing ROS and for maintaining mtDNA and mitochondrial function [208]. 

This may explain the lack of dependence of cell survival on autophagy in our experimental 

conditions, as the production of ROS was relatively low. Concordantly, we have observed that the 

toxic effects of ammonium were not decreased by the presence of ROS scavenging compounds, 

indication that oxidative stress is not underlying ammonium toxicity. Hence, the cell physiological 
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state resulting from different culture conditions influences not only life span extension [71], but also 

the cellular processes essential for its regulation.  

In yeasts, the TOR, Sch9p and PKA pathways are key players in the regulation of CLS [42]. 

Assessing the involvement of nutrient signaling pathways in NH4
+ -induced cell death, showed that 

activation of PKA correlates with sensitivity to NH4
+, which is partially suppressed by deletion of 

RAS2, indicating the RAS/Cyr1/PKA pathway is involved in this process. Partial, but not complete, 

suppression of these effects when RAS2 is deleted suggests either that the second RAS isoform 

(RAS1) also participates in NH4
+-induced PKA activation or the existence of two pathways responsible 

for NH4
+ toxicity, one that depends on RAS/Cyr1/PKA and one that is independent of this pathway. 

Previous studies have shown that in nitrogen starvation medium, addition of NH4
+ directly signals 

PKA activation through Mep2p and does not depend on its metabolization [135]. Our results show 

that Mep2p is involved in NH4
+-induced cell death but does not appear to have a major role in PKA 

activation. Further experiments using the double mutant (mep1∆mep2∆) will be necessary to 

assess the involvement of ammonium permeases in PKA activation since Mep1p can also act as a 

sensor in NH4
+ signaling to PKA [135, 219]. Still, although glutamate could somewhat mediate the 

effect of NH4
+, CLS shortening also seemed to be directly signaled by NH4

+, as it was not dependent 

on its metabolization to either glutamate or glutamine. 

The deletion of TPK1, but not of TPK2 or TPK3, encoding the other two PKA isoforms, 

significantly reverted the NH4
+-induced death and shorter CLS. These results suggest that different 

programmed cell death processes can be regulated by distinct PKA isoforms, since Tpk3p has been 

reported to regulate apoptosis induced by actin stabilization [194]. Furthermore, it suggests that the 

postulated pro-necrotic role of Ras/PKA signaling may specifically involve Tpk1p. In addition, our 

data are also in agreement with previous results showing that CLS extension of glucose-growth 

limited stationary phase cells depends on PKA inactivation [27]. Our results indicate that PKA 

inactivation cannot extend cell survival time in the absence of Sch9p, since we observed that SCH9 

deletion abolishes PKA activation in response to NH4
+, but does not rescue the shortening in CLS 

induced by NH4
+. This result is in aggrement with previous studies showing that Sch9 protein kinase 

is required for nitrogen activation of the PKA pathway in the presence of glucose [62, 123]. 

Furthermore, the phenotype of aa-starved sch9∆ cells in the presence of NH4
+ was the opposite of 

that of tor1∆ and tpk1∆, suggesting that the role of Sch9p in the process is essentially independent 
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of the TOR-PKA pathway mediated by a TORC1-Sch9 effector branch. Instead, the two pathways 

likely regulate their downstream targets that are involved in NH4
+-induced cell death in an opposing 

manner. Consistent with this possibility, it was reported that Sch9p positively regulates many stress-

response genes and genes involved in mitochondrial function, whereas the same classes of genes 

are inhibited by the TOR1C pathway [118]. Data suggest that Sch9p may mediate survival in 

response to NH4
+ through activation of Hog1p, the yeast closest homolog to p-38 and c-JNK of 

mammalian cells [250]. Previous reports have shown that sch9∆ yeast cells exhibit a longer CLS 

compared to wild type cells, when aging in SC medium or after transfer from this medium to water 

[27, 51]. Differences in strain background and/or in culture conditions may account for the 

discrepancy in results [27, 51, 251, 252]. Supporting this explanation it was also previously 

reported that SCH9 deletion shortened the CLS survival of S288c-based strains (as is the case of 

BY4742 strain used in the present work) pregrown on glycerol [27, 51, 67, 251, 252].  

Lastly, we show that severity of NH4
+ toxicity in amino acid restriction conditions is strain-

dependent. This implicates NH4
+ metabolism regulation as a probable key factor in toxicity. We also 

show that NH4
+ toxicity is a generalized effect, not only dependent on amino acid restrictions, but also 

present in prototrophic strains. This discovery could have major applications in wine fermentations 

that frequently resort to assimilabe nitrogen supplementations.  

Overall the results suggest NH4
+ is a factor accounting for the loss of cell viability in aging 

cells and provide, for the first time, a role for ammonium in chronological longevity regulation. Here 

we have shown that NH4
+ induced cell death in aging yeast is positively correlated with NH4

+ 

concentration in the culture medium. Furthermore, these effects are enhanced in cells starved for 

auxotrophy-complementing amino acids. Figure 47 summarizes the mechanism involved in NH4
+ 

induced cell death in aa-starved cells, showing that NH4
+ activates PKA through both RAS and 

TOR/Sch9p signalling cascades and leads to cell death increase with predominant necrotic features. 

The mediation of NH4
+ effects seems to involve the NH4

+ permeases Mep2 and (to a lesser extent) 

Mep1 as sensors. Sch9p is also mediating survival in response to NH4
+ possibly through activation of 

Hog1p. NH4
+ action on both pathways, resulting in the over-activation of PKA and TOR pathways and 

inhibition of Sch9p, culminates in the shortening of CLS. Altogether results support that ammonium 

induces cell death in aging cultures through the regulation of evolutionary conserved pathways. 
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Figure 47. Proposed mechanism for the regulation of cell death associated to CLS shortening induced by ammonium in 

amino acid-starved yeast cells. NH4
+ activates PKA through both RAS and TOR/Sch9p and leads to cell death increase 

with predominant necrotic features associated to ATP depletion. Sch9p is mediating survival in response to NH4
+ possibly 

through activation of Hog1p. 

 

Taken together, our results point out, for the first time, a role for ammonium as an extrinsic 

factor affecting CLS regulation in the culture medium joining other known extrinsic factors such as 

glucose [12, 35, 57], acetic acid [91, 97, 98] and ethanol [70, 88].  

 

 

4.2. Future perspectives  

 

As discussed in introduction, NH4
+ is toxic for mammals, and NH4

+-induced cell death is 

involved in different human disorders that are accompanied by hyperammonemia, such as hepatic 
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encephalopathy [214]. Here we extensively characterized for the first time a cell death process 

induced by NH4
+ in yeast cells. This process shares common features with NH4

+-induced cell death in 

brain cells. A better understanding of NH4
+-induced cell death in the yeast cell model can help clarify 

controversial issues on NH4
+ toxicity associated to hyperamonemia that are not easy to examine in 

more complex models. Our results show that the effect of NH4
+ is not due to different levels of NH4

+ 

metabolization, an open question for brain cells, but relies on the over-activation of PKA and the TOR 

pathway and inhibition of Sch9p (yeast closest homolog of mammalian Akt and S6K). On the other 

hand, the mitogen activated protein kinase (MAPK) Hog1p was associated with higher cell viability in 

the presence of NH4
+ similarly to what was found for its human homolog p38 that mediates 

endogenous cell protection in response to ammonium in astrocytes [216]. Also, we observed that 

NH4
+ toxicity is higher in non-arrested cells, which is consistent with the observation that 

hyperammonemia presents with much more severe consequences in the developing brain of 

newborns or infants than in adulthood. Furthermore, our data link NH4
+ toxicity to amino acid 

limitation, a situation that can also be present in hyperammonemic patients, who are often on 

dietary protein restriction [213]. Further experiments will be necessary to establish whether over-

activation of TOR and PKA pathways and inhibition of Sch9p is a widely conserved mechanism in 

NH4
+ toxicity and induction of cell death. We believe that our model can be useful in the elucidation 

of conserved mechanisms and pathways of NH4
+-induced cell death and in identification of 

therapeutic targets for diseases associated with hyperammonemia. Deprivation of essential amino 

acids has been employed as a strategy in cancer therapy, but resistance has often been found. Our 

results establishing that NH4
+ can stimulate cell death in amino acid-deprived cells and suggests that 

S. cerevisiae might serve as useful model for the identification of signaling pathways for this disease.  

Under a biotechnology point of view, our results show that the presence of ammonium in the 

culture medium can be toxic also for prototrophic strains. We believe that studying the impact of 

ammonium and amino acids interactions on survival of S. cerevisiae during alcoholic fermentation 

can provide benefitial outcomes. Although wine yeast are usually prototrophs, in the conditions yeast 

face towards the end of the alcoholic fermentation, the increase of toxic compounds (such as 

ethanol and acetic acid) can compromise amino acid homeostasis [195] and NCR. Therefore, under 

such conditions the presence of ammonium and amino acids may affect yeast viability (both 

positively and negatively) and as a consequence the completion of fermentation. The 

characterization of the influence of different amino acids and ammonium, present during growth or 
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added at growth arrest, in CLS regulation can thus be crucial for the optimization of yeast viability at 

the end of fermentation probably providing important clues to guide management of yeast 

assimilable nitrogen (YAN) addition. In grape must, YAN can vary in type and amount, being 

frequently at suboptimal concentrations for the normal developmental of the fermentation process. 

As a consequence, sluggish or stuck fermentations may occur with great economic impact. To avoid 

this problem it is a common practice among winemakers to supplement grape juice with YAN 

(ammonium in the form of diammonium phosphate – DAP and/or amino acids) either at the 

beginning or some time after the start of the fermentation. Alternatively, nitrogen supplementation 

can also be applied only when alterations in the normal course of fermentation occur. However, late 

additions not always result in efficient ammonium consumption [253]. 

Studies on laboratory strains of S. cerevisiae have characterized the selective use of different 

N-sources by this yeast. Most laboratory strains preferentially use what are known as rich nitrogen 

sources (ammonium and glutamine, e.g.) in detriment of poor nitrogen sources (threonine and 

proline, e. g.). For such they repress genes involved in the utilization of the poor nitrogen sources 

while rich sources are available, a process known as nitrogen catabolic repression (NCR). NCR was 

found in response to DAP addition at the beginning of fermentation when one industrial wine yeast 

strain was grown in grape must [254]. However, the efficiency of NCR in response to ammonium is 

highly strain dependent. Early studies with strains of the ∑1278b genetic background demonstrated 

ammonium as a preferred nitrogen source whereas studies using S288C genetic background 

strains, demonstrated that ammonium was not a preferred source, being unable to inhibit the 

general amino acid permease Gap1p [218]. Also, a recent study, using strains from the Sigma and 

the TB background, demonstrated that regulation of the NCR differed at the level of the GATA 

activators Gln3p and Gat1p and the presence or absence of the repressor Gzf3p in the strain 

background [107]. To further understand the ammonium toxicity, studies aiming to clarify the 

interconnection in the regulation of ammonium metabolism and amino acids metabolism in CLS, 

should be carried out.  

The results presented in this thesis support that ammonium induces cell death in aging 

cultures through the regulation of evolutionary conserved pathways. They also show that the study of 

ammonium toxicity in yeast aging may be a powerful system to understand longevity regulation in 

multicellular organisms and to give new insights into wine fermentation technics.  
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