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Development of biomarkers for the identification of pathogenic Candida species 

Abstract 

In the last decades the incidence of fungal infections has increased exponentially, due to the 

development of more aggressive therapeutic techniques, which increase the number of 

immunocompromised and in risk individuals. The Candida species are the most common 

etiological agents isolated from opportunistic fungal infections in these patients and Candida 

albicans appears to be the most common species isolated. However, infections caused by non-

albicans species, such as C. parapsilosis, C. glabrata, C. tropicalis and C. krusei, are 

increasing alarmingly. It is thought that the susceptibility to antifungal drugs varies according to 

species, thus, the rapid and correct identification of infecting species are crucial. Microsatellite 

sequences have been largely used as molecular targets to differentiate and characterize 

strains. However, no studies have been performed using microsatellite DNA for Candida 

species identification. Therefore, the main objectives of this work were the evaluation of the 

potential of microsatellite markers for species differentiation and for identification of specific C. 

albicans lineages. 

After an intensive search for described microsatellite markers for the main Candida species, 

several markers were selected for C. albicans, C, glabrata, C. parapsilosis, C. tropicalis and C. 

krusei. These markers were combined into a multiplex strategy and this new developed system 

tested in 81 strains from 10 different species. All tested loci amplified correctly in single and 

multiplex conditions, except for the C. tropicalis selected locus that was unable to amplify in 

multiplex. After removal of the C. tropicalis primers, this system showed 100% specificity and 

100% sensibility.  

To test if the microsatellites were able to identify specific C. albicans lineages two microsatellite 

markers were used, CAI and CAVIII. These markers are located in two repeat-containing ORFs, 

CAI is located in the terminal-3’ of RLM1 gene and CAVIII in the terminal-3’ of SAP8 gene. CAI 

microsatellite has been previously described and CAVIII was described for the first time in this 

study. CAVIII demonstrated to be highly specific for C. albicans strains and presented a 

discriminatory power of 0.72. The two microsatellite markers were tested in 144 unrelated C. 

albicans strains isolated from different body locations, allowing the statistical differentiation of 

strains from oral cavity, vulvovaginal infections and from extra-mucosal (respiratory tract and 
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urine) infections. The number of extra-mucosal strains was increased to 224 and statistical 

analysis based in CAI genotypes, demonstrated significant differences between genotypes of 

strains isolated from superficial (oral and vagina) and invasive infections (respiratory tract, 

urine and blood). 

The results obtained allowed to conclude that the microsatellite loci analysis can be used to 

differentiate the most common Candida species, being an alternative in clinical diagnosis. 

Moreover, it was also possible observe that analysis of repeat containing ORFs, such as RLM1 

and SAP8 is able to differentiate lineages of C. albicans. 
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Desenvolvimento de biomarcadores para a identificação de espécies patogénicas 

de Candida 

Resumo 

Nas ultimas décadas a incidência das infecções provocadas por fungos têm aumentado 

exponencialmente. A principal razão proposta para esta mudança incide no desenvolvimento 

de métodos terapêuticos mais agressivos, responsáveis pelo aumento do número de 

indivíduos imunocomprometidos. As espécies de Candida são os agentes etiológicos mais 

frequentemente isolados de amostras de pacientes com infeções fúngicas oportunistas, sendo 

Candida albicans a espécie mais comum. Contudo, as infecções provocadas por outras 

espécies, nomeadamente C. parapsilosis, C. glabrata, C. tropicalis e C. krusei, têm aumentado 

em grande escala. Sabe-se que a susceptibilidade ás terapêuticas antifúngicas varia de acordo 

com a espécie causadora da infecção, assim, a correta identificação destes organismos é 

essencial. As sequências de DNA microssatélite têm sido frequentemente utilizadas como 

alvos para a diferenciação de estirpes. Contudo, não têm sido realizados estudos que utilizem 

o DNA microssatélite na identificação das espécies patogénicas de Candida. Desta forma, o 

principal objectivo deste trabalho consistiu na avaliação do potencial dos marcadores de 

microssatélites na diferenciação de espécies, assim como na diferenciação de linhagens de C. 

albicans. 

Após uma intensa pesquisa por marcadores de microssatélites previamente descritos, cinco 

marcadores foram selecionados para a identificação de C. albicans, C, glabrata, C. 

parapsilosis, C. tropicalis e C. krusei. Estes marcadores foram combinados numa reação de 

PCR-multiplex e o sistema desenvolvido foi testado em 81 estirpes de 10 espécies diferentes. 

Todos os marcadores apresentaram uma amplificação específica em reação singleplex e 

multiplex, porém, o marcador selecionado para a identificação de C. tropicalis não foi capaz de 

amplificar em reação de multiplex. Após remover o marcador para a C. tropicalis do sistema 

de identificação foi obtida uma especificidade e sensibilidade de 100%. 

Com o objectivo de verificar a utilidade da análise do DNA microssatélite na diferenciação de 

linhagens de C. albicans foram utilizados dois marcadores, CAI e CAVIII, localizados no 

terminal 3’ das regiões codificantes dos genes RLM1 e SAP8, respectivamente. O primeiro, 

CAI, já tinha sido previamente descrito apresentando elevada estabilidade e especificidade, 
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enquanto que o CAVIII foi descrito pela primeira vez neste trabalho. O microssatélite CAVIII 

demonstrou ter elevada especificidade para as estirpes de C. albicans e apresentou um poder 

discriminatório de 0.72. Ambos os microssatélites foram testados utilizando 144 estirpes de 

C. albicans isoladas a partir de diferentes locais, e a análise combinada dos genótipos obtidos 

com os dois microssatélites permitiram diferenciar as estirpes provenientes da cavidade oral, 

de infecções vulvovaginais e de infeções invasivas. Porém, o número de estirpes provenientes 

de infecções invasivas foi aumentado numa fase posterior do estudo, e a análise estatística foi 

realizada novamente utilizando apenas os genótipos obtidos com o marcador CAI. Esta análise 

demonstrou diferenças significativas entre as estirpes provenientes das infecções superficiais e 

estirpes provenientes das infecções invasivas, demonstrando a sua utilidade na diferenciação 

das linhagens de C. albicans. 

Os resultados obtidos permitiram concluir que a análise de DNA microssatélite pode ser útil 

para diferenciar as espécies de Candida mais comuns, sendo uma excelente alternativa para o 

diagnóstico clínico. Para além disso, é também possível observar que a análise combinada 

com os marcadores CAI e CAVIII permite a diferenciação de linhagens de C. albicans. 
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1. Candida and candidiasis  

In the last two decades fungal infections have caused many difficulties in clinical practice. The 

main concerns about this problem are their prevalence, in which an alarming increase in 

number of cases, as well as the variety and complexity of the etiological agents involved 

(Guarro et al. 1999). Several reasons have been proposed to explain the increased incidence, 

including the increase lifespan in the populations of the developed world, the age related loss 

of immune-competence, as well as the use of more aggressive therapeutic methods, such as 

chemotherapeutic agents, bone marrow or solid-organ transplants, immunomodulatory agents, 

broad-spectrum antibiotics and more aggressive surgeries (Peres-Bota et al. 2004; Benjamin et 

al. 2010). 

The most common etiological agents involved in fungal infections are Candida spp., Aspergillus 

spp. and Cryptococcus spp., although, other agents, such as Malasezzia spp., Fusarium spp. 

or Trichosporon spp. may also be involved (Fridkin and Jarvis 1996). Several pathogenic 

species have emerged in the last years but the ubiquitous Candida species remain the most 

common cause of serious fungal infections (Fridkin and Jarvis 1996; Tortorano et al. 2004). 

More than 200 species of Candida spp. have been isolated but only nearly 20 species have 

been identified as being associated with human infections such as, C. albicans, C. 

parapsilosis, C. glabrata, C. krusei, C. dubliniensis, C. tropicalis, C. guilliermondii, C. 

metapsilosis, C. bracarensis, C. kefyr among others (Guarro et al. 1999). Many of these 

pathogenic species are present in the commensal flora of genitourinary system, 

gastrointestinal tract, skin or oral cavity of healthy individuals (30-60% of humans), and only in 

disorders of the normal flora balance or when the immune defences are compromised, they 

may cause opportunistic infections, denominated candidiasis (Sanchez-Martinez and Perez-

Martin 2001). 

 

1.1. Clinical manifestations of candidiasis 

Usually candidiasis is an endogenous infection, caused by prior colonization of mouth, 

gastrointestinal tract, vagina or skin. In these cases an unusual growth of normal flora occurs 

and the immune system is unable to react to this condition. However, the source of candidiasis 

may also be exogenous, and many species of Candida spp. have been isolated from hospital 
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environmental such as the floor, countertops, doorknobs, food and other inanimate surfaces 

(Perlroth et al. 2007). 

Candida spp. is capable of causing a range of infections, from less-severe superficial lesions in 

mucosa and skin (including nails and hair) to life-threatening disseminated mycosis, 

characterized by the spread of fungi through the tissues and blood circulation (Fridkin and 

Jarvis 1996).  

Superficial candidiasis affects mucosal epithelial tissues and is frequent in individuals with 

prior colonization when host physical barriers or immune system integrity are compromised. In 

the majority of these cases, the patient is symptom free and unaware of a problem, however, it 

can also cause a burning sensation, discomfort or pain (Jayatilake 2011). The most common 

clinical manifestations of superficial candidiasis are oropharyngeal candidiasis (OPC) and 

vulvovaginal candidiasis (VVC) although, infections in the urinary tract and skin are also 

observed (Jayatilake et al. 2009; Sobel et al. 2011).  

Candida species are frequently associated with normal oral carriage in humans, occurring in 

the mouth of up to 80% of healthy individuals, but changes in the oral cavity environment can 

enhance the Candida infection. Oropharyngeal candidiasis (OPC) is an acute condition often 

affecting new-born babies due to the immature immune system and individuals infected with 

HIV (Samaranayake and Holmstrup 1989; Blignaut 2007). VVC is the most common vaginal 

infection and more than 75 % of women will have had at least one episode during their lives. It 

is known that about 40-50% of these women experience a recurrence, and up to 5% suffer 

more than four episodes during 1 year (recurrent vulvovaginal candidiasis – RVVC) (Buitron 

Garcia-Figueroa et al. 2009; Kalkanci et al. 2012). The presence of Candida species in urine is 

a common clinical finding, particularly in hospitalized patients, and several studies indicate that 

at least 10%–15% of hospital acquired urinary tract infections are caused by Candida species 

(Sobel et al. 2011). 

Invasive candidiasis is verified only in severe cases of patient debilitation or immune 

compromisation and can involve the infection and spread of Candida cells via the bloodstream 

(candidaemia) to multiple organs, such as the brain, kidneys, heart, lungs and liver (Jayatilake 

2011). This condition is more significant because of its associated high mortality rate (46-75%) 

and high morbidity in patients who survive the infection. 
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The route of bloodstream infection can occur through the “natural” way where yeast cells 

penetrate epithelial cells, the iatrogenic way through the use of medical devices (central 

venous catheters, peritoneal dialysis and cardiovascular devices) in which the formation of 

biofilms on its surface is important, or through the damage of defence barriers (polytrauma, 

surgery, drug treatment) (Figure 1.1) (Mavor et al. 2005). 

	  

Figure 1.1.	  Routes of entry into the bloodstream by Candida. Adapted from Mavor et al. 2005.  

Numerous studies have identified common risk factors for patients developing candidiasis, and 

most of these causes are extremely common in hospitalized patients, increasing the possibility 

of development of nosocomial infections. These reasons include immunosuppression 

(chemotherapy, malnutrition, malignancy and neutropenia), prior colonization, disruption of 

normal skin barriers (intravascular catheters, extensive burns, invasive surgery, parenteral 

nutrition) and broad-spectrum antibiotics, since they disrupt the competition of bacterial flora 

(Peres-Bota et al. 2004; Benjamin et al. 2010). However, not all the predisposing factors 

equally favour superficial and invasive candidiasis, since immune protection of human host is 

site-specific. T- cell immune responses are important in protection against superficial 

candidiasis but resistance against systemic disease is more often associated with a functional 

phagocytic response (Calderone and Fonzi 2001). For example, HIV infected individuals suffer 

frequently from oral infections and onychomycosis due to a reduction in CD4+ cells counts, but 

rarely developed systemic infections (Mavor et al. 2005). Moreover, this feature is also 

supported by the fact that neutropenic patients are particularly susceptible to systemic 

infections (Koh et al. 2008). 
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1.2. Epidemiology of candidiasis 

Fungal infections are an increasingly encountered threat among critically ill patients and are a 

significant cause of morbidity and mortality. Moreover, Candida species are the most common 

etiological agents of fungal infections, causing superficial or invasive candidiasis (Table I.I) 

(Pfaller and Diekema 2007).  

Table I.I. Agents of opportunistic mycosis. Adapted from Pfaller et al. 2007. 

 

Over the past decades several epidemiologic studies have been performed in European 

countries and in USA to evaluate the incidence of superficial and invasive candidiasis. These 

studies suggested that Candida infections are the third most common urinary tract infections 

with an incidence of ≈20%, and that the majority of episodes of Candida urinary tract infections 

occur in hospitalized patients with indwelling bladder catheters (Sobel et al. 2011). Moreover, 

Candida species are also responsible for 13.2% of all intra-abdominal infections, 70% of all 

onychomycosis (Jayatilake et al. 2009) and may colonize about 70% of women vagina (Sobel 

2007). The incidence of invasive Candida infections have been studied by several multi-

institutional surveys, such as European Confederation of Medical Mycology (ECMM) (Tortorano 

et al. 2004) survey, National Epidemiology of Mycosis Survey (NEMIS) (Rangel-Frausto et al. 

1999), among others. These studies concluded that the frequency of candidaemia among 

hospitalized patients has doubled during these two decades and candidaemia is now the third 

most common nosocomial blood-stream infection.  

Data from ECMM indicate that C. albicans remains the most common species isolated from 

the blood of patients with invasive fungal infection (Tortorano et al. 2004). However, infections 

caused by non-albicans species are increasing (Lass-Florl 2009). This trend may be explained 

by the introduction of fluconazole in 1990 (Rodloff et al. 2011), since it was demonstrated that 

patients with candidaemia caused by non-albicans species received prophylactic antifungal 
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agents before the onset of their infections more frequently than patients with candidaemia by 

C. albicans (Hachem et al. 2008). 

The most common non-albicans Candida species are C. glabrata, C. parapsilosis, C. tropicalis 

and C. krusei, however, the incident rates of these organisms vary according to patient 

population (Table I.II) (Tortorano et al. 2004). 

Table I.II. Species distribution of Candida bloodstream isolates. Adapted from Tortorano et al. 2004. 

 

C. parapsilosis has been associated with parental nutrition, neonatal population, intravenous 

catheters or contaminated prosthetic devices. The contamination may be caused by health 

care workers since C. parapsilosis is the most common species isolated from the hands of 

nurses (Pappas et al. 2003; Trofa et al. 2008). C. glabrata has a natural resistance to 

commonly used antifungals due to the constitutively expression of drug efflux pumps 

(Parkinson et al. 1995) and is commonly isolated from surgical patients, patients with urinary 

catheters, neutropenia and bone marrow transplant patients (Fidel et al. 1999). C. tropicalis is 

frequently responsible for invasive infections in patients with hematologic malignancies and 

neutropenia. Finally, C. krusei represents a significant challenge to clinicians due to the 

inherent resistance to azole drugs due to an altered target enzyme, and affects more frequently 

leukemic patients and bone marrow transplant recipients (Orozco et al. 1998). 

Reported mortality rates from candidaemia range from 30 to 75% in European surveys, 

depending on species and geographic location studied (Table I.III) (Pappas et al. 2003; 

Tortorano et al. 2006; Lass-Florl 2009). 
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Table I.III. Mortality rates of Candida bloodstream infections. Adapted from Tortorano et al. 2006. 

 

Small differences in the incidence of candidiasis in Europe and USA were found, probably due 

to differences in patient demographics or differences in medical practices (Pfaller and Diekema 

2007). Candidaemia not only is associated with increased mortality and morbidity rates but 

also prolongs hospitalization and increases medical cares costs. Systemic Candida infections 

have been associated with an attributable intensive care unit cost of US $21,590 (Tortorano et 

al. 2004).  

 

1.3. Virulence factors of Candida species 

In order to establish an infection, an opportunistic pathogen have to colonise a host, penetrate 

the surface, survive and divide in the host environment, and avoid the immune response. 

Although some Candida species are commensal organisms of the normal flora, the ability to 

adapt to different environments, including changes in oxygen and carbohydrate levels, pH, 

osmolality, availability of nutrients and temperature, improves the development of Candida 

infections. The mechanisms required for the occurrence of these processes are designated as 

virulence factors (Mavor et al. 2005).  

Candida species have developed an effective battery of putative virulence factors and specific 

strategies to assist in their ability to colonize host tissues, cause disease and overcome host 

defences (Yang 2003). The Candida virulence factors most studied are adhesion capacity, 

production of hydrolytic enzymes, hyphae formation and phenotypic switching. However, the 

virulence factors expressed may vary depending on the type, the site and the stage of infection, 

and the nature of the host response (Naglik et al. 2003). 
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1.3.1. Adhesion 

The colonization and infection of Candida species are dependent on the ability to adhere to 

host cells, tissues and medical devices in different stages of infection. However, the extent of 

adhesion is dependent on microbial, host and abiotic surface proprieties, such as cell-surface 

hydrophobicity and cell wall composition (Silva et al. 2011).  

An important element that is correlated with the adhesion ability of Candida species is the 

presence of specific cell-wall proteins, denominated adhesins. These proteins are defined as 

biomolecules that promote the adherence of Candida species to host cells or host cell ligands 

(Calderone and Fonzi 2001; Trofa et al. 2008; Silva et al. 2011). Mutants deficient in the 

genes encoding these adhesins exhibit decreased adherence to host substrates in vitro as well 

as a corresponding reduction in virulence in several experimental models of candidiasis 

(Sheppard et al. 2004). 

Several genes encoding cell wall adhesins of Candida species have been identified. The most 

common adhesins studied are from the agglutinin-like sequence (Als) protein family, encoded 

by eight ALS genes (ALS1-7 and ALS 9) (Yang 2003). Three domains characterize these 

proteins and differences in N-terminal domain among distinct Als proteins are responsible for 

differences in their function. For example, Als1p has been shown to mediate binding to human 

vascular endothelial cells and epithelial cells in early stages of infection, whereas Als5p confers 

adherence to collagen, fibronectin, bovine serum albumin and laminin (Sheppard et al. 2004). 

The ALS genes are differentially expressed depending on the growth conditions or on the 

species analysed. Several strains of C. albicans express all eight ALS genes, however, in C. 

parapsilosis and C. tropicalis only five and three ALS genes were found, respectively (Silva et 

al. 2011).  

Others adhesins have been identified, including the Epa (epithelial adhesin) family in C. 

glabrata, the glycophosphatidylinositol-anchored protein 30 (Pga30) in C. parapsilosis or Hwp1 

in C. albicans (Nobile et al. 2006; Silva et al. 2011).  

1.3.2. Morphogenesis 

Some Candida species are polymorphic yeasts that are able to undergo morphogenic switching 

from the unicellular budding yeast forms (blastopores) to the filamentous forms (hyphae or 

pseudohyphae). This transition is regulated by a complex network of signal transduction 
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pathways, which includes transcription factors such as Efg1, Cph1 and Tup1. The transcription 

factors are activated by morphogenetic stimuli such as the presence of serum or the 

interaction with innate immune cells (Heilmann et al. 2011). The yeast-to-hyphae transition is 

the most prominent morphological change in the Candida (especially C. albicans) life cycle and 

two important functions of hyphae formation have been suggested, including the ability to 

penetrate into tissue surfaces and the capacity to escape from host cells following 

internalization (Gow et al. 2002). In order to penetrate the epithelial tissue and to provide 

resistance to phagocytosis, the hyphae produce mechanical forces. The expression of 

adhesins, such as Hwp1p or Als3, for anchoring the Candida cells to host tissue is probably a 

prerequisite for hyphae invasion (Kumamoto and Vinces 2005). Another trend in hyphae 

penetration consists in the secretion of enzymes able to degrade proteins, lipids and other 

cellular components, facilitating the infiltration into solid substrates and tissues (Gow et al. 

2002).  

Although the hyphae formation is considered an important virulence factor in Candida 

virulence, most lesions are populated by both morphological forms, suggesting that both have 

a role in the development and progression of disease (Calderone and Fonzi 2001). It has been 

suggested that yeast cells are better suited for dissemination while hyphae are important for 

tissue and organ invasion and for adaptation to different host niche conditions (Mavor et al. 

2005; Lim et al. 2012).  

This ability is observed in species such as C. albicans, C. parapsilosis or C. tropicalis and is 

considered to be crucial for virulence (Lim et al. 2012). C. glabrata is generally described as 

incapable to form hyphae and pseudohyphae. However, the ability of pseudohyphae formation 

was suggested in numerous studies, where this feature was observed in some strains (Odds et 

al. 1997; Csank and Haynes 2000; Lachke et al. 2002). Regarding C. krusei, no consistent 

filamentous studies have been performed. 

1.3.3. Hydrolytic enzymes 

The secretion of hydrolytic enzymes during the development of candidiasis may be required as 

a virulence attribute. This virulence factor may be involved in adhesion by degrading host cell 

surface molecules, invasion by digesting host cell membranes, resistance to host immunity by 

attacking the immune system, and nutrient acquisition. The three most significant extracellular 
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hydrolytic enzymes secreted by Candida species include secreted aspartyl proteinases (Sap), 

phospholipases and lipases (Mavor et al. 2005; Jayatilake 2011). 

The secretion of secreted aspartyl proteinases (Sap) by Candida species is recognized as an 

important virulence factor since they facilitate invasion and colonization of host tissue. A family 

of 10 SAP genes encodes the Sap proteins and the virulence mechanism of Sap involves the 

disruption of host mucosal membranes and degradation of important immunological and 

structural defence proteins, such as immunoglobulin G heavy chains, C3 protein, collagen, 

fibronectin, albumin, haemoglobin, keratin among others (Yang 2003; Trofa et al. 2008). The 

expression of SAP genes during infection has been studied by their disruption in several 

models and differential expression profiles under various conditions it has been observed 

(Naglik et al. 2003; Naglik et al. 2008; Correia et al. 2010). Schaller and co-workers (Schaller 

et al. 2001) demonstrated that SAP genes family is differentially expressed in the yeast, hyphal 

and phenotypically switched states. SAP1-3 is predominantly expressed on cell walls and 

cytoplasm of blastopores, SAP4-6 is localized at the tips of hyphae and SAP1 and SAP3 are 

expressed by phenotypically switched cells. Moreover, Sap8 is predominantly detected in yeast 

cells grown at 25ºC and Sap9 is preferentially expressed in later growth phases (Yang 2003). 

Hereupon, the versatility of SAP genes expression may prove to be vital to the success of 

Candida as an opportunistic pathogen, by allowing the fungus to survive and cause infections 

on a variety of tissues (Naglik et al. 2003). 

The secretion of Saps is recognized as an important virulence factor, however, the expression 

of all ten SAP genes is only observed in C. albicans strains, whereas only four (SAP1-4) and 

three (SAP1-3) genes have been identified in C. tropicalis and C. parapsilosis, respectively 

(Trofa et al. 2008; Silva et al. 2011). Regard C. glabrata and C. krusei, some proteinase 

activity was detected, however, the number of these proteinases have not been well defined 

(Yang 2003). Although the expression of SAP genes has been recognized as an important 

virulence factor, Correia and co-workers (Correia et al. 2010) demonstrated that other factors 

must be the major contributors to invasion and cell damage in this model. 

Phospholipases (PLs) are enzymes that hydrolyse phospholipids to fatty acids and glycerol. 

Depending on the different ester bonds cleaved, these enzymes have been classified into PLs 

A, B, C and D. However, only proteins encoded by the phospholipase B family (PLB1-5) seem 

to be extracellular, especially PLB1 that is essential for virulence in animal models of 
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candidiasis (Calderone and Fonzi 2001; Silva et al. 2011). The presence of PLs during 

infection could contribute to host cell membrane damage and adherence of Candida species. 

Jayatilake and co-workers (Jayatilake et al. 2005) and Gahnnoum and co-workers (Ghannoum 

2000) demonstrated that PLs are expressed at the tips of Candida hyphae and initial buds of 

C. albicans during invasion. These studies confirm that PLs of Candida are involved in the 

pathogenesis of candidiasis by facilitating the tissue penetration. Recent studies have indicated 

that C. tropicalis and C. parapsilosis are able to produce extracellular PLs, however, at much 

lower levels than C. albicans. For C. glabrata and C. krusei very few studies were performed 

and no clear PL activity was observed.  

Lipases are involved in the hydrolysis and synthesis of triacylglycerols. These enzymes are 

encoded by ten LIP genes (LIP1-10) differentially expressed at different stages and sites of 

infection. In C. albicans and C. tropicalis ten LIP genes (LIP1-10) were detected. However, for 

C. parapsilosis, only two lipase genes, LIP1 and LIP2, have been reported (Trofa et al. 2008). 

Moreover, no studies have been performed to investigate the expression of LIP genes in C. 

glabrata and C. krusei (Silva et al. 2011). Gácser and co-workers (Gacser et al. 2007) 

demonstrated the significance of lipases, showing that the use of lipase inhibitors significantly 

reduce tissue damage during infection in reconstituted human tissue models.  

1.3.4. Phenotypic switching 

The colonies of Candida species can reversibly switch between different morphologies, and this 

process is known as phenotypic switching. The ability to undergo phenotypic switching is 

thought to aid survival in different microenvironments, and evasion from the host immune 

response. Moreover, phenotypic switching also affects adhesion, hyphal formation, sensitivity 

to neutrophils and increase the resistance to antifungals (Mavor et al. 2005). However, the 

basic mechanism of phenotypic switching and the involvement of this switching in the 

virulence are not clear (Calderone and Fonzi 2001). 

The white-opaque switching in strain WO-1 of C. albicans is the most studied phenotypic 

switching. In this case, the smooth and white colonies with round-ovoid cells can switch to flat 

and grey colonies with elongated or bean-shaped cells (Morschhauser 2010). The 

ultrastructural observations of white and opaque phenotypes have revealed differences in the 

cell shape, cell surface structures and germination at 37ºC, suggesting that phenotypic 

switching could affect the behaviour of the organism. For instance, opaque phase cells have 
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higher ability to colonize the skin whereas white cells are more virulent in a systemic animal 

model (Calderone and Fonzi 2001). 

Although the phenotypic switching of C. albicans is the most studied, C. glabrata, C. 

parapsilosis and C. tropicalis also present this capability. Laffey and co-workers (Laffey and 

Butler 2005) identified four core phenotypes in C. parapsilosis, including the crepe, concentric, 

smooth and crater phenotypes and demonstrated their relation with biofilms formation. 

Moreover, Lachke and co-workers (Lachke et al. 2002) identified four phenotypes in C. 

glabrata (White, Dark Brown, very Dark Brown and Light Brown) and França and co-workers 

(Franca et al. 2011) demonstrated the presence of four possible phenotypes in C. tropicalis 

(Smooth, Rough, Ring, Semi-Smooth). The phenotypic switching of C. krusei has not been 

studied. 

1.3.5. Biofilm formation 

The attachment of Candida cells to host or medical devices followed by cell division and 

proliferation is called biofilm. Biofilms are complex and well organized microbial communities 

with fungal cells embedded within a mainly polysaccharide extracellular matrix (Lim et al. 

2012). Biofilm formation is considered as an important virulence factor in the development of 

infection. The presence of biofilms confers significant tolerance to antifungal therapy and host 

immune responses, and causes the failure of indwelling medical devices (Trofa et al. 2008). 

Numerous Candida species produce biofilms, including C. albicans, C. tropicalis, C. glabrata 

and C. parapsilosis, and their presence during infection has been linked to higher mortality 

rates. However, the biofilm formation is dependent on several factors, such as the species, 

strains and environmental conditions (pH, medium composition and oxygen) (Silva et al. 

2011). 

Estivill and co-workers (Estivill et al. 2011) studied the biofilm formation by C. albicans, C. 

glabrata, C. parapsilosis, C. tropicalis and C. krusei on three clinical materials. This study 

demonstrated that C. parapsilosis showed great biofilm formation capacity and its ability to 

cause nosocomial infections can be related with this feature. Moreover, this study also 

demonstrated that the capacity of C. krusei to form biofilms is limited. 
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1.4. Treatment of candidiasis 

The increasing incidence of fungal infections, including Candida infections, as well as the 

increasing variety of pathogenic species have contributed significantly to the mortality in 

immunosuppressed patients. In order to reverse this condition several antimycotics agents 

have been developed, however, numerous species remain difficult to treat due to delayed 

diagnosis, drug toxicity, antifungal drug resistance, drug bioavailability and lack of oral or 

intravenous preparations. Recent epidemiological trends have confirmed the increasing 

importance of infections caused by resistant fungal species (Lass-Florl 2009). Thereby, it is 

crucial to understand the antifungal drug resistance and develop effective therapeutics. 

The antifungal agents are classified into different groups according to the antifungal 

mechanism of action, namely polyenes, azoles, echinocandins and others antifungal agents 

(Figure 1.2) (Mathew and Nath 2009). 

	  

Figure 1.2. Mechanisms of action of  (1) polyenes, (2) azoles, (3) echinocandins and (4) 5-FU. 

1.4.1. Polyenes 

Polyenes are the major class of antifungal agents and are isolated from Streptomyces species. 

The mechanism of action of polyenes is based on their interaction with ergosterol components 

of the fungal membrane. The complex polyene-esterol formed provides an aqueous pore and 

affect cell permeability, which causes cell leakage and cell death (Mathew and Nath 2009). 

The polyenes with therapeutic application are amphotericin B, nystatin, pimaricin and 

candicidin, however only the first two are commonly used. Amphotericin B has long been 

considered the gold standard for the treatment of fungal infections. This agent is active against 

most fungal pathogens, namely Trichosporan beigelii, Aspergillus terreus, Pseudallesheria 

boydii, Malassezia furfur and Fusarium species (Masia Canuto and Gutierrez Rodero 2002). 
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Regarding candidiasis, this agent is active against most Candida species and can be used in 

the treatment of invasive or superficial candidiasis. However, the cytotoxicity associated with 

amphotericin B demanded the development of new formulations, which use liposomes or lipid 

complexes as delivery systems (Chen and Sorrell 2007). 

The acquisition of polyenes resistance by C. albicans and other Candida species is unusual 

however, numerous reports have demonstrated resistance to amphotericin B by C. albicans in 

patients previously treated with polyenes (Mokaddas et al. 2007).  The molecular mechanisms 

involved in polyene resistance are the decrease in the total ergosterol content of the cell, 

replacement of some or all of the polyene-binding sterols, and reorientation or masking of 

existing ergosterol (Masia Canuto and Gutierrez Rodero 2002). 

1.4.2. Azoles 

Azoles are the second most studied antifungal agents and their mechanism of action is based 

in the inhibition of ergosterol biosynthesis. In more detail, exposure of fungal species to azoles 

inhibits the ergosterol enzymatic pathway, especially the enzyme cytochrome P450 sterol 14α-

demethylase. This inhibition promotes the disruption of the structure of the membrane as well 

its functions in nutrient transport and chitin synthesis, reducing the fungal growth (Mathew and 

Nath 2009). 

There are two azole groups in clinical use. The first azole compounds explored are the 

imidazole-based drugs, such as clorotrimazole, miconazole, ketoconazole and econazole. 

However, this group is only efficient in superficial treatment. Later, triazole-based drugs, 

including fluconazole, itraconazole, voriconazole, posaconazole and ravuconazole were 

developed, which are used as superficial and systemic fungicidal agents (Chen and Sorrell 

2007). The differences in the structure of the different azoles are responsible for their variation 

on antifungal potency, bioavailability, drug interaction and toxicity (Mathew and Nath 2009). 

The introduction of fluconazole as antifungal agent of choice in the treatment of superficial 

candidiasis in the early 1990s triggered the appearance of azoles resistant strains. Moreover, 

this increasing azole resistance may be also explained by the appearance of species 

intrinsically resistant to fluconazole, such as C. glabrata or C. krusei (Chen and Sorrell 2007). 

The mechanism of resistance to azoles in Candida species has been studied, and distinct 

mechanisms for the acquisition of resistance have been described. These mechanisms include 



General Introduction 

 

	   15 

decreased accumulation of the drug from enhanced efflux interference of their action on the 

target enzyme, alterations in other enzymes of the biosynthetic pathway of ergosterol and 

decreased permeability of the fungal membrane to the drug (Masia Canuto and Gutierrez 

Rodero 2002). 

1.4.3. Echinocandins 

The increasing incidence of infection caused by fluconazole resistant species required the 

development of a therapeutic alternative and echinocandins have become an important group 

in the treatment of these infections. The echinocandins are lipopeptide molecules that act as 

inhibitors of the synthesis of β -1,3- D-glucan, which is an important component of the fungal 

cell wall, by blocking the action of a pathway enzyme, β -1,3- D-glucan synthase (Perlin 2007). 

The absence of β -1,3- D-glucan destabilizes the integrity of the fungal cell wall and promotes 

the osmotic instability and cell death (Kofla and Ruhnke 2011). 

The echinocandins drugs used in antifungal treatment are caspofungin, micafungin and 

anidulafungin. These agents have broad-spectrum antifungal activity against Candida and 

Aspergillus species, however, are not active against C. neoformans and non-Aspergillus moulds 

(Perlin 2007). Moreover, echinocandins drugs are effective against azole-resistant species, 

since their target is the cell wall. Another vantage of these drugs is that the toxicity is 

infrequent since glucans are not found in mammalian cells (Chen and Sorrell 2007). The 

echinocandins resistance is unusual, however, some case reports have illustrated the potential 

for resistance development (Kofla and Ruhnke 2011). 

1.4.4. Other antifungal agents 

Although the polyenes, azoles and echinocandins are the three major classes of antifungal 

agents, other compounds, including allylamines, flucytosines, griseofluvins, sordarins, 

nikkomycins, ciclopiroxolamines, amog others, have been also used (Mathew and Nath 2009).  

The flucytosine (5-fluorocytosine or 5-FC) is one of the oldest antifungal agents and its 

mechanism of action is based in the conversion into 5-fluorouracil within target cells. 

Fluorouracil is incorporated into RNA, where it causes premature chain termination, and also 

inhibits DNA synthesis through effects on thymidylate synthase (Vermes et al. 2000). This drug 
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is selectively toxic to fungi because mammalian cells lack cytosine permease and do not 

convert flucytosine into 5-fluorouracil (Mathew and Nath 2009). 

Although this agent shows antifungal activity against Candida species in cases of systemic 

candidiasis, the development of resistance is frequent. In order to overcome the development 

of resistance, the use of monotherapy is not recommended and this agent must be combined 

with azoles. The mechanisms of resistance proposed are (1) the development of mutations 

that result in a deficiency in the enzymes necessary for cellular transports and uptake of 5-FC 

or for its metabolism, and (2) the increase in the synthesis of pyrimidines, which compete with 

the fluorinated antimetabolites of 5-FC and thus diminish its antimycotics activity (Vermes et al. 

2000). 

Although in the last years a number of antifungal agents have been developed, the selection of 

the most appropriate drug is imperative. As stated above, the susceptibility of the different 

species to the different antifungal agents varies considerable. Thus, the correct identification of 

infectious agents represents an important tool in reducing the mortality rate. 

 

2. Identification of Candida species 

The rapid and correct identification of infecting species is crucial for several reasons. The main 

reason is the use of appropriate antifungal treatment, since Candida species differ in their 

susceptibility to antifungal agents. For instance, C. krusei is intrinsically resistant to azoles and 

C. glabrata easily acquires resistance to fluconazole (Parkinson et al. 1995; Orozco et al. 

1998). Moreover, species identification is also important for epidemiological purposes, for 

example, repeated identification of a particular species in a given hospital ward or locate may 

indicate a point source outbreak (Denning et al. 2003; Sabino et al. 2010). An additional 

reason to explain the significance of correct diagnosis is the fact that the risk of developing 

deep organ involvement, and the severity of clinical manifestations, differs depending on the 

infecting species (Rabkin et al. 2000). 

Clinical microbiology laboratory methodologies for the identification of pathogenic fungal 

species are based on the morphological, physiological and biochemical tests. However, new 

serological and molecular tests have also been developed for the differential identification of 

the fungal species. These tests are classified as conventional, serological and molecular. 
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2.1. Conventional methods 

The light microscopy analysis of biological products is the first methodology used in clinical 

laboratory practice, and is used to observe the presence, shape and size of blastopores as well 

as the hyphae/pseudohyphae formation. This method only allows the presumptive 

identification, since some species can present specific microscopic characteristics (Lee et al. 

1999; Pinoni et al. 2007). For example, the presence of true hyphae in C. albicans or the 

shape of the blastopores that in C. krusei is elongated, whereas in C. albicans or C. 

parapsilosis is oval and spherical (Ellepola and Morrison 2005). 

The growth and isolation of species present in clinical samples is an important method used in 

microbiology laboratories. The media selected should sustain the growth of all the Candida 

ssp., inhibit the growth of bacteria and should facilitate the identification of clinical specimens, 

however, should not interfere with the viability of the organisms (Sullivan et al. 1996; Alvarez-

Perez et al. 2011). Several chromogenic media have been developed in order to distinguish 

Candida species. These culture media incorporates substrates linked to chemical dyes in a 

solid medium to differentiate Candida species by the colour and texture of the colonies (Okulicz 

et al. 2008; Ozcan et al. 2010). However, these media only allows the presumptive 

identification of some Candida species, especially C. albicans, C. tropicalis and C. krusei 

(Ghelardi et al. 2008; Okulicz et al. 2008). Examples of commercial chromogenic media are 

ChromIDCandida (BioMerieux®), CandiSelect4 (BioRad®) or CHROMagar Candida (BD®) (Sendid 

et al. 2007; Guzel et al. 2011).  

For Candida species differentiation the physiological and biochemical methods are the most 

commonly used. The biochemical identification consists in carbohydrate and nitrogen 

assimilation, such as glucose, xylose, urease, trehalose, saccharose, nitrates, among others; 

fermentation tests and enzymes detection (Lopez et al. 2001; Ellepola and Khan 2012). 

However, these tests can have a number of problems associated with the results 

interpretation. The results obtained may be inconsistent since different isolates from the same 

species could yield different profiles or genetically diverse species can yield similar profiles 

(Campbell et al. 1999; Cardenes-Perera et al. 2004). For example, C. parapsilosis, C. 

metapsilosis and C. orthopsilosis or C. albicans and C. dubliniensis have similar biochemical 

profiles, however, are genetically different (Pasligh et al. 2010). Auxacolor (BioRad®), 
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APICandida (BioMerieux®), API20CAux (BioMerieux®) or Vitek Yeast Biochemical Card 

(BioMerieux®) are examples of commercial kits for biochemical Candida spp. Identification. 

Although conventional methods are the most commonly used in clinical microbiology 

laboratories, there are several limitations, such as inaccuracy, high cost and the long time 

required for identification (Ellepola and Morrison 2005). Therefore, the application of 

alternative methodologies is needed in order to overcome these limitations. 

 

2.2. Serological methods 

The species identification based in serological methods consists in the detection of specific 

antigens, antibodies or metabolites (such as D-anabinitol) in clinical samples. For this purpose 

several methods are used, such as radioimmunoassay (RIA), enzyme-linked immunosorbent 

assay (ELISA), latex agglutination (LA) or reverse passive latex agglutination (RPLA) (Ellepola 

and Morrison 2005).  

Numerous antigens have been used as potential targets for the diagnosis of disseminated 

candidiasis, including secreted aspartyl proteinases, 1,3-β-D-glucans and mannans. Mannan is 

an abundant cell wall polysaccharide of Candida spp. and is the most used and studied 

antigen (Guery et al. 2009). However, the detection of mannan in clinical samples depends on 

the frequency of sampling, the underlying disease, the degree of immunosuppression, the 

Candida species involved, the specificity and titer of the capture antibodies and the method 

used. Another important limitation of this method is the rapid clearance of the antigen from the 

patient sera (Poulain et al. 1997; Ellepola and Morrison 2005). 

A number of Candida antigens are highly immunogenic for humans and the detection of 

antibodies against them in clinical samples may represent an important diagnostic method for 

invasive candidiasis (Quindos et al. 2004). The detection of anti-mannan antibodies is the most 

common used, however, the detection of antibodies against antigens with enzymatic activity 

(enolase or aspartyl proteinase) and antibodies against proteins of C. albicans germ tubes are 

also options (Quindos et al. 1987; Ponton et al. 1994). The limitations of this technique are 

the possibility of false-negative results in immunocompromised patients that produce low levels 

of antibody, false-positive results in patients with superficial colonization and the fact that 

antibody production may occur only at an advanced stage of disease. Nevertheless, it is 
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possible to overcome these limitations since the specificity of the tests has been improved by 

selecting the appropriate antigens (purified molecules, recombinant antigens, among others) 

(Quindos et al. 2004; Ellepola and Morrison 2005). 

Several commercial kits have been developed for the diagnosis of Candida spp. based on 

detection of antigens or antibodies. For example, Fungiter-G MK® or Glucatell®, which detects 

the presence of 1,3-β-D-glucans, PlateliaCandida Ag Plus (BioRad®), which detects the 

presence of mannans in blood samples in ELISA format, or PlateliaCandida Antibody Plus 

(BioRad®), which is an ELISA-based test for of anti-mannan antibodies (Sendid et al. 2003). 

Recent studies have suggested that the combined detection of mannan and anti-mannan 

antibodies considerably improves the diagnosis of candidiasis (Alam et al. 2007). 

 

2.3. Molecular methods 

Molecular methodologies, especially based in the analysis of DNA sequences, are 

characterized by their high specificity, sensibility and reproducibility. To overcome the 

limitations of conventional methods several molecular approaches have been developed in 

molecular research laboratories for Candida species identification. 

2.3.1. Restriction Fragment Length Polymorphism (RFLP) 

Restriction fragment length polymorphism (RFLP) analysis consists in the digestion of total 

chromosomal or plasmid DNA as well as PCR products with one or more restriction 

endonucleases. The endonucleases selected (EcoR1 is the most frequent) recognize specific 

nucleotide sequences, breaking the DNA into small fragments. The fragments are finally 

separated by agarose gel electrophoresis and the number and sizes of the restriction 

fragments depend on recognition sequence of the enzyme as well as the composition of the 

DNA. The different RFLP patterns obtained allow the species or strains differentiation (Sullivan 

et al. 1996).  

Several RFLP studies have been performed to differentiate individual Candida species or 

Candida strains, especially Candida albicans strains (Xu et al. 1999; Isik et al. 2003). Williams 

et. al (Williams et al. 1995) demonstrated the possibility to distinguish eight medically 

important Candida species (C. guilliermondii, C. glabrata, C. pseudotropicalis, C. albicans, 
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C.tropicalis, C. stellatoidea, C. parapsilosis, and C. krusei) using three restriction enzymes, 

BfaI, DdeI and HaeIII. Pinto et al. (Pinto et al. 2004) also demonstrated this possibility, using 

several enzymes, and the identification of six Candida species using only one enzyme, MspI, 

was confirmed by Mirhendi et al. (Mirhendi et al. 2006). 

The RFLP analysis presents several advantages, including high reproducibility and accuracy. 

However, this is a time-consuming technique, the RFLP patterns obtained from Candida spp. 

can contain a limited number of bands hampering the interpretation, and the same species 

can present different patterns (Sullivan et al. 1996).  

2.3.2. Polymerase Chain Reaction (PCR) based methods 

The polymerase chain reaction (PCR) based methodologies are sensitive, specific and rapid 

assays that have been accepted as the standard method for detecting nucleic acids from a 

number of microorganisms in clinical samples, including Streptococcus agalactiae (de Zoysa et 

al. 2012), Treponema pallidum spp. (Leslie et al. 2007), Aspergillus species (Walsh et al. 

2011) or Candida species (Correia et al. 2004). The conventional PCR methodology was 

developed by Kary Mullis in 1983 (Mullis et al. 1986) to amplify target DNA sequences derived 

from dead or living cells by thermostable DNA polymerase-mediated extension of specific 

oligonucleotide primers. The PCR amplification is followed by PCR products detection or 

analysis, and the most common methods are the agarose or polyacrylamide gel 

electrophoresis, sequencing or pyrosequencing.  

The design of specific oligonucleotide primers, complementary to DNA sequences unique to 

the organisms, is important since it can provide identification of an organism to the species 

level. For this purpose specific sequences need to be selected as DNA targets. For Candida 

species identification the most commonly used target is the ribosomal DNA (rDNA), which 

encodes three subunits, 18S, 5.8S and 28S, and is largely distributed in Candida genome 

(Sullivan et al. 1996; Ramos et al. 2006). Although the rRNA genes are highly conserved, the 

internal transcribed spacer (ITS) is variable and species specific. The ITS region is located 

between the 18S and 26S rRNA genes and is subdivided into the ITS1 region, between the 

18S and 5.8S rRNA genes, and the ITS2 region, between the 5.8S and 26S rRNA genes 

(Figure 1.3). PCR with specific primers (ITS1 and ITS4), targeting the conserved sequences of 

5.8S and 28S rDNAs, results in the amplification of the species-specific ITS1 and ITS2 regions, 
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which vary in amplicon length and sequence according to species (Ellepola et al. 2003; 

Coignard et al. 2004).  

	  

Figure 1.3. Constitution of rRNA gene operon.  

The tRNA genes can also be used and DNA target to species identification into a specific genus 

(Baele et al. 2000). Although these genes are highly conserved, the lengths of tRNA intergenic 

spacers vary considerably and primers design in the highly conserved flanking tRNA genes can 

be used to amplify the polymorphic region in any organism that is sufficiently closely related. 

For inter-tRNA gene amplification several primers pairs have been developed and the length of 

the resultant PCR products, rather than its presence or absence, is characteristic of the 

species. The amplification of this region was firstly described by Welsh and McClelland (Welsh 

and McClelland 1991) in Staphylococcus strains, demonstrating the potential of investigation 

of tRNA gene intergenic lengh polymorphism in species differentiation. For Candida species 

identification, T3B primer pair, previously described in the identification of Staphylococcus 

species (McClelland et al. 1992), has been successfully used in species differentiation (Correia 

et al. 2004). 

In research laboratories, the most commonly used PCR based methodology for species or 

strains identification is RAPD (Randomly Amplified Polymorphic DNA) (Novak et al. 2004; 

Valerio et al. 2006). This method uses short primers, typically 9 to 10 nucleotides in length, 

which anneal at multiple genomic loci since it does not depend on prior knowledge of species-

specific sequences. Following the amplification, the PCR products obtained are analysed by 

agarose gel electrophoresis and visualized after specific staining. The RAPD patterns obtained 

allow the species or strains differentiation. This methodology has been successfully used to 

identify Candida species, including C. albicans, C. tropicalis, C. parapsilosis, C. glabrata and C. 

krusei (Bautista-Munoz et al. 2003; Valerio et al. 2006). The RAPD-PCR has a high 

discriminatory power, its easy to perform, does not require radiolabelled probes and it is 

applicable to several microorganisms. However, presents some limitations, such as the 

necessity of fastidious conditions for reproducible PCR and the inter-laboratory reproducibility 

is very low (Tang et al. 1997). 



General Introduction 

 

	   22 

In clinical laboratories, only Real Time PCR is performed using a variety of commercial kits, 

including Septifast (Roche Diagnostics®) or Quantifast Pathogen (Quiagen®). The commercial kit 

Septifast (Roche Diagnostics®) is the most used and allows the identification of twenty-five 

clinically important microorganisms, including Candida species, directly from blood samples 

(Vince et al. 2008). This methodology uses the internal transcribed spacer (ITS) region as the 

target region for fungal (18S–5.8S) species identification and the diagnosis is based in melting 

curves differences (Ellepola and Morrison 2005; Wellinghausen et al. 2009). Although Real 

Time PCR using the commercial kit Septifast (Roche Diagnostics®) is an alternative to 

conventional and serological methods, these techniques has several disadvantages, namely 

the use of nonspecific targets that can increase the appearance of nonspecific signals from 

environmental microorganisms from laboratory contamination, the presence of large amounts 

of host nucleic acid in blood samples that can interfere with primer hybridization and 

amplification or the presence of inhibitors of Taq DNA polymerase (Bravo et al. 2011). These 

limitations can be overcome by the prior DNA extraction and purification, which is not always 

simple due to the difficulty to lyse the complex fungal cell wall. Regarding to Candida species 

identification, this methodology has low analytical sensitivity in C. glabrata identification, 

probably due to the reduced efficiency of the amplification reaction owing to the larger genomic 

target flanked by the primers designed for the ITS region in this specific organism (Lehmann et 

al. 2008). 

 

3. DNA microsatellite 

The genomic DNA of all living organisms, including eukaryotes and prokaryotes, demonstrates 

a considerable number of repetitive sequences, namely transposons, which move around the 

genome and satellite DNAs. Satellite DNAs are tandemly repeated sequences, which can be 

subdivided into two classes according to the size of the repetitive motif, namely minisatellite 

DNA and microsatellite DNA (Richard and Paques 2000). Therefore, minisatellite DNAs are 

tandem arrays of longer units (10-100 bp), while microsatellite DNAs, also designated as 

simple sequence repeats (SSRs) or short tandem repeats (STRs), are tandem arrays of short 

units (1-6 bp). The STRs are stably inherited being unique to an individual and the same in all 

cells from the same individual. However, the special interest of these repetitive sequences is 
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due to their high level of polymorphism among individuals since the numbers of repeats within 

specific STRs tend to be variable (Tautz 1989). According to the length of the major repeat 

motif, STRs may be classified into mono-, di-, tri-, tetra-, penta- and hexanucleotide repeats, 

being the mono- and dinucleotide repeats the most frequently found. The total number of each 

type decreases as the size of the repeat unit increases. Moreover, STRs can also be classified 

into different groups according to the repeat structure, namely perfect repeats when it contains 

only one repetitive unit and imperfect repeats when it contain different repeat compositions 

(Fan and Chu 2007). 

The STRs exhibit a strong level of instability, which lead to great polymorphism. This 

characteristic is explained by the high mutation rates in STR sequences comparing to unique 

DNA sequences, which can vary between 10!! and 10!! per locus per generation. Regarding 

to yeasts, the STRs mutation rate is estimated in 10!!  per locus per generation. The STR 

mutation rate can be influenced by species, environmental conditions, repeat unit, repeat 

structure, base composition of repeat unit, flanking sequence, recombination and the 

interruptions in STRs (Fan and Chu 2007). 

Three mechanisms have been purposed to explain the STR mutation (addition or deletion of 

repeated units), including unequal crossing over in meiosis, retrotransposition mechanism and 

strand-slippage replication. However, the last appears to be the main explanation of STR 

mutation. The slippage replication, also called DNA slippage, polymerase slippage or slipped 

strand mispairing, was initially proposed by Kornberg and co-workers (Kornberg et al. 1964) 

and occurs during DNA replication. This process is a consequence of dissociation between the 

nascent and template DNA strands followed by their misaligned reassociation, resulting in 

unpaired repeat units (hairpins) on either the nascent or on the template strain. The majority of 

these errors are recognized and corrected by the mismatch repair system, however, 

occasionally can escape to DNA repair and the repeat number of this STR is altered (Li et al. 

2002). If the loop was on the primer strand the number of repeats will be greater than the 

original number of repeats whereas if the loop was on the template strand the number of 

repeats will be smaller (Wierdl et al. 1997). Moreover, the rate of the slippage is the highest in 

dinucleotidic STRs and the lowest in tetranucleotidic, demonstrating the reason why the total 

number of each repetition decreases as the size of the STRs repeat unit increases (Kruglyak et 

al. 1998).  
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The STRs are widely distributed in the genome and are most frequently found in non-coding 

regions. However, STRs can also be located in coding regions, such as protein-coding genes or 

expressed sequence tags, even with relatively small repeat numbers and total lengths (Li et al. 

2004). STRs are usually considered as evolutionary neutral DNA, and most of them are 

thought to have no biological uses. However, some STRs can play an important role in 

chromatin organization, regulation of DNA metabolic processes, regulation of gene activity, 

recombination, DNA replication, cell cycle, mismatch repair system, among others. This is 

supported by the involvement of trinucleotidic repeats in the development of human diseases, 

such as fragile X syndrome, Huntington’s disease, myotonic dystrophy, among others (Li et al. 

2002).  

Although the most common types of STRs are mono- and dinucleotide repeats, they are 

relatively rare in coding regions, since give rise to frameshifts and are therefore strongly 

selected against. However, trinucleotide repeats, are overexpressed in coding regions, since 

they can be accommodated more readily: changes in their length simply result in gain or loss 

of a single amino acid in the protein sequence (Hancock and Simon 2005). Moreover, the 

repetitive structure (perfect or imperfect STRs) can also influence the stability of microsatellites 

in coding regions, since imperfect microsatellites would be expected to undergo less replication 

slippage and therefore be more stable during evolution. 

 

3.1. Microsatellites described in Candida species 

In the last years, a number of microsatellites loci have been described in several organisms, 

including yeast species. The interest in the study of microsatellites loci is related to their high 

polymorphism and co-dominant character, being potential markers for strains identification and 

characterization (Tautz 1989). As molecular markers, STRs are stable, easy to assay, less time 

consume, inexpensive, adaptable to a large series and discriminatory enough to investigate 

clinical issues. Therefore, the study of microsatellite markers by PCR based methodologies 

may be an excellent alternative to differentiate species or strains. 

Several microsatellite markers have been described and studied to differentiate strains from 

genus Candida, including C. albicans, C. parapsilosis, C. glabrata, C. tropicalis and C. krusei 

strains. The first microsatellite markers used for C. albicans typing were described by Field and 
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co-workers (Field et al. 1996) in 1996. In this work eight trinucleotide C. albicans 

microsatellites loci located in coding regions were studied, namely ERK1, ZNF1, CCN1, CCN2, 

MNT2, CPH1, EFG1 and EFG2, however, these presented low polymorphism. In 1997 a novel 

C. albicans microsatellite loci, CEF3, was described. This microsatellite composed by 

trinucleotide repeats is also located in a coding region, namely in the upstream sequence of 

the elongation factor 3 gene (EF3) (Bretagne et al. 1997). The high discriminatory power 

obtained (comparing to previously described microsatellites markers) leads to its use in 

posterior studies, including the differentiation of independent C. albicans isolates from two 

geographic regions (Lott et al. 1999), the comparison of genotypes of C. albicans strains 

isolated from bloodstream and non-bloodstream infection (Dalle et al. 2000) or the comparison 

of genotypes of C. albicans strains isolated from oral mucosa (Dalle et al. 2003). Until to 

2001, the best discriminatory power, 0.97, was obtained by Bretagne and co-workers (Botterel 

et al. 2001) when described a rapid genotyping method of C. albicans using two new 

microsatellite markers located in coding regions, CDC3 and HIS3, and the previously described 

CEF3 in multiplex reaction. However, in 2003, Sampaio and co-workers (Sampaio et al. 2003) 

described a new microsatellite locus, CAI, located in RLM1 gene, which presents an individual 

discriminatory power of 0.97. This microsatellite marker has been used in several studies 

(Sampaio et al. 2005; Li et al. 2008; Ge et al. 2010), and shown to be highly efficient, 

reproducible and able to differentiate a large variety of strains. The same group also described 

five new microsatellite loci, CAIII, CAIV, CAVI and CAVII, located in non-coding regions, and 

used CAI, CAIII and CAVI to developed a multiplex strategy, obtaining the higher discriminatory 

power ever reported (0.99) (Sampaio et al. 2005). 

Regarding to C. parapsilosis, two major works were performed in order to describe and test 

microsatellite loci. The first study was performed in 2006 by Lasker and co-workers (Lasker et 

al. 2006), which described seven microsatellite markers, A to G, with discriminatory powers 

ranging from 0.341 to 0.876. These microsatellite markers were also studied using a multiplex 

strategy, presenting a discriminatory power of 0.971. In 2010, Sabino and co-workers (Sabino 

et al. 2010) described three new microsatellite loci located in non-coding regions, Cp1, Cp4 

and Cp6. They developed a multiplex, including microsatellite B from Lasker’ study, resulting 

in discriminatory power of 0.99. Moreover, this multiplex strategy have been largely used to 

type C. parapsilosis strains isolated from outbreaks in infants hospitalized (Vaz et al. 2011; 

Reiss et al. 2012; Romeo et al. 2012).  
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The first C. glabrata microsatellite loci were described in 2005 by Foulet and co-workers 

(Foulet et al. 2005), namely RPM2, ERG3 and MTI. These microsatellites are located in coding 

regions and the discriminatory powers obtained ranged from 0.521 to 0.757, multiplexing 

these three microsatellite markers the discriminatory power increased to 0.84. This multiplex 

was also used to test the genotypic variability of invasive C. glabrata isolates over a period of 

six years presenting a total of 12 genotypes (Abbes et al. 2011). In 2007, Grenouillet and co-

workers (Grenouillet et al. 2007) described six new C. glabrata microsatellite loci, three of 

them composed by dinucleotide repeats and located in non-coding regions (Cg4, Cg5, Cg6), 

and the remaining composed by imperfect trinucleotidic motifs and located in coding regions 

(Cg7, Cg10 Cg11). The discriminatory powers obtained ranged from 0.64 (Cg7) to 0.79 

(Cg10). However, in the multiplex analysis, using the six microsatellite markers, the 

discriminatory power was only 0.902. The higher discriminatory power for this species, 0.96, 

was obtained by Brisse and co-workers (Brisse et al. 2009) in 2009, testing nine microsatellite 

markers in multiplex PCR. The nine microsatellite loci were composed by five trinucleotide 

microsatellites located in coding regions, three trinucleotide loci located in non-coding regions 

and a tetranucleotide located in a non-coding region. In 2010, this multiplex strategy was used 

to type a large panel of both blood culture and digestive tract isolates, obtaining a 

discriminatory power of 0.97 (Enache-Angoulvant et al. 2010). 

A few microsatellites were observed in C. tropicalis and C. krusei genome. Desnos-Ollivier and 

co-workers (Desnos-Ollivier et al. 2008) described two C. tropicalis microsatellite loci, URA3, 

which is located in a coding region and CT14, which is located in a non-coding region. In C. 

krusei genome only one microsatellite, CKTNR, was described so far (Shemer et al. 2001). 

 

4. Objectives  

Candida species are the most common and clinically important pathogens representing the 

major fungal agents causing serious infection in Europe (Tortorano et al. 2004). Cancer 

chemotherapy, organ transplantation, antimicrobial therapy and abdominal surgery are among 

the main risk factors predisposing for Candida infections (Perlroth et al. 2007). Although 

Candida albicans is the most frequently isolated species other species such as Candida 

tropicalis, Candida glabrata, Candida parapsilosis and Candida krusei have been increasingly 
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recognized as pathogens with a wide distribution (Tortorano et al. 2004).  

Microsatellite DNAs are tandem arrays of short units (1-6bp), stably inherited, present high 

polymorphism and co-dominant character. They are widely distributed in the genome and are 

most frequently found in non-coding regions, although can also be located in coding regions, 

such as protein-coding genes or expressed sequence tags. Microsatellite sequences are 

potential markers for strains identification and characterization and have been largely used as 

molecular targets to differentiate and characterize strains from several species, including 

Candida spp. However, no studies have been performed using microsatellite DNA for Candida 

species identification. Thus, the main objectives of this study were the evaluation of the 

potential of microsatellite markers for species differentiations and for identification of specific 

C. albicans lineages. 

To fulfil these objectives the present work was organized into three main chapters. Chapter I 

encompasses a brief review on fungal infections and their significance, especially the ones 

caused by Candida species. This chapter discusses the epidemiology and clinical 

manifestations of candidiasis as well as the virulence factors needed for the development of 

infection. The methodologies commonly used in research and clinical laboratories for Candida 

species identification are also described due to their significance in the selection of appropriate 

antifungal treatment. The last parameter discussed in this chapter is a brief review of strains 

identification methods with emphasis in microsatellite loci since it is commonly used for 

Candida strains characterization and is the object of this thesis. 

The second chapter describes the development of a new multiplex PCR based methodology to 

discriminate clinically important Candida species and it encompasses the selection of specific 

microsatellite loci for the most common pathogenic Candida species (C. albicans, C. 

parapsilosis, C. glabrata, C. krusei and C. tropicalis), the optimization of the multiplex PCR 

conditions and the evaluation of the specificity, sensibility and reproducibility of the proposed 

method. 

 The third chapter describes the characterization of new C. albicans microsatellite marker, 

denominated by CAVIII, as well as the evaluation of the specificity and polymorphism. This 

chapter also describes the use of CAVIII and CAI to genotype C. albicans strains, and the ability 

of these markers to differentiate C. albicans lineages. 
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1. Introduction 

Fungal pathogens represent the major eukaryotic agents of serious infection in Europe, in 

which infections due to Candida species are the most common and clinically important 

(Tortorano et al. 2004). The development of medicine has caused a dramatic increase in the 

number of immunocompromised individuals. Cancer chemotherapy, organ transplantation, 

antimicrobial therapy and abdominal surgery are among the main risk factors predisposing for 

Candida infections (Perlroth et al. 2007). Thus, the incidence of Candida bloodstream 

infections has increased dramatically in the last years and Candida spp is now the third on the 

list of nosocomial agents of sepsis, being associated with high morbidity and mortality rates as 

well as high hospital costs (Pappas et al. 2003; Tortorano et al. 2006).  

There are about 150 species of Candida, but only a small number are human pathogens. 

Although Candida albicans is the most frequently isolated species other species such as 

Candida tropicalis, Candida glabrata, Candida parapsilosis and Candida krusei have been 

increasingly recognized as pathogens with a wide distribution (Tortorano et al. 2004). The 

incidence rates reported are dependent on the type of hospital/patients studied and on the 

geographic region (Van Asbeck et al. 2008). Sabino and co-workers (Sabino et al. 2010) 

studied the incidence of candidaemia in a Portuguese oncology hospital for a period of six 

years and demonstrated that although C. albicans was more frequently isolated from patients 

with solid tumours, non-albicans species were most frequently found in haematological 

patients.  

Clinical microbiology laboratory methodologies for the identification of pathogenic fungal 

species are based on the morphological, physiological and biochemical tests, which requires 

three or more days and may be inaccurate. In order to overcome these drawbacks a variety of 

molecular based methods, particularly PCR-based methods, have been developed, presenting 

high simplicity, specificity and sensitivity (Ellepola and Morrison 2005). 

Microsatellites are extremely common in Candida spp. genome and may be located in coding 

and non-coding regions. These repetitive regions may represent an important target for species 

identification due to the high specificity as well as for strains characterization due to the high 

polymorphism (Sampaio et al. 2005; Li et al. 2008; Sabino et al. 2010). This study describes 

the development of a sensitive and specific method, based in microsatellite multiplex PCR 
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analysis, for the identification of the most clinically important pathogenic Candida species, 

namely C. albicans, C. parapsilosis, C. glabrata, C. tropicalis and C. krusei.  

 

2. Materials and methods 

2.1. Yeast Strains 

A total of fifty-six previously identified isolates, including eight C. albicans, five C. parapsilosis, 

nineteen C. glabrata, six C. tropicalis, four C. krusei, five C. metapsilosis, five C. orthopsilosis, 

three C. bracarensis and one L. elongisporus, isolated from different sources, such as saliva, 

vagina, respiratory tract, faeces, skin, blood culture, urine, catheter and wine, were selected for 

this study (Table II.I). The fifty-six strains, provided from collection of Biology Department of 

Minho University, have been identified by the use ID 32C strips or VITEK YBC identification 

cards (BioMérieux, SA, Marcy-l’Étoile, France) and by PCR fingerprinting with primer T3B 

(Correia et al. 2004). The reference strains C. albicans (PYCC 3436), C. tropicalis (PYCC 

3097), C. krusei (PYCC 3341), C. glabrata (PYCC 2418) and C. bracarensis (153M) were also 

included in this study. The reference strains were obtained from the Portuguese Yeast Culture 

Collection (PYCC), New University of Lisbon, Lisbon, Portugal. As the reference strains of C. 

parapsilosis were not available, strains already described as C. parapsilosis were used (Vaz et 

al. 2011). Strains previously sequenced, namely C. metapsilosis HSM CAN155 (GQ152299.1) 

and C. orthopsilosis HSM CAN138 (GQ152298.1) were used as references. To test the 

specificity of PCR multiplex methodology, twenty isolates without previous identification, 

isolated from hands of healthy volunteers and saliva of patients with oral infection, were also 

tested (Table II.I). 

All isolates were stored in 40% glycerol at − 80 °C, and grown at 30°C for 48 hours on YPD 

agar medium (Yeast extract 1%, Bactopeptone 1%, Glucose 2% and Agar 2%) whenever needed. 

Table II.I. Isolates used in the study and respective sources. 

Isolate code Species Origin Isolate code Species Origin 

Strains previously identified 

S085 C. albicans Saliva Cipo43 C. tropicalis RT 

S092 C. albicans Saliva 176C C. tropicalis Blood culture 

S104 C. albicans Saliva 10F4 C. tropicalis Urine 
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S040 C. albicans Saliva 2D C. tropicalis Saliva 

S038 C. albicans Saliva 3D C. tropicalis Saliva 

OB15V C. albicans Vagina 4D C. tropicalis Saliva 

Cipo72 C. albicans RT 109/RN0000.001 C. krusei Unknown 

1V C. albicans Rectum H11 C. krusei Unknown 

2251 C. parapsilosis Unknown 535 C. krusei Unknown 

2252 C. parapsilosis Unknown Cipo 94 C. krusei RT 

2253 C. parapsilosis Unknown IPO A911012 C. metapsilosis Unknown 

2256 C. parapsilosis Unknown 960161  C. metapsilosis Unknown 

2257 C. parapsilosis Unknown Ana R. C. metapsilosis Unknown 

M2 C. glabrata Unknown O113 C. metapsilosis Unknown 

177 C. glabrata Blood culture HSM CAN 155 C. metapsilosis Unknown 

H38 C. glabrata Vagina J981226 C. orthopsilosis Unknown 

70V C. glabrata Unknown HSM CAN 138 C. orthopsilosis Unknown 

24/9-10 C. glabrata Vagina H10 USA C. orthopsilosis Unknown 

14666a C. glabrata Vagina 154a C. orthopsilosis Blood culture 

14666b C. glabrata Vagina 1 AII C. orthopsilosis RT 

14408 C. glabrata Vagina CL-7030  C. bracarensis Unknown 

24/9-4 C. glabrata Vagina 246188 C. bracarensis Vagina 

7/5-17 C. glabrata Vagina NCYC 3133 C. bracarensis Catheter 

21/9-26 C. glabrata Vagina ISA 1421 L. elongisporus Wine 

21/9-20 C. glabrata Vagina 

Type strains 1/4-22a C. glabrata Vagina 

23/9-24 C. glabrata Vagina 

6/9-17 C. glabrata Vagina IGC 3436T C. albicans Skin 

27/5-16 C. glabrata Vagina IGC 2418T C. glabrata Faeces 

17/3-3 C. glabrata Vagina IGC 3097T C. tropicalis RT 

14573 C. glabrata Vagina 153MT C. bracarensis Vagina 

14735 C. glabrata Vagina IGC 3341T C. krusei RT 

Strains without previous identification 

CDQN5 - Saliva APC4 - Skin 

CDQN10 - Saliva APC5 - Skin 

CD1 - Saliva APC6 - Skin 

CD2 - Saliva APC7 - Skin 

S152 - Saliva C1 - Saliva 

S153 - Saliva C2 - Saliva 

D1 - Skin C3 - Saliva 

APC1 - Skin C4 - Saliva 

APC2 - Skin C5 - Saliva 

APC3 - Skin 1432 - Saliva 

RT-Respiratory tract; - no previous identification 



New multiplex PCR based methodology to discriminate clinically important Candida species 

 

	   33 

2.2. Primers selection 

A search for previously described and studied microsatellites for Candida species was 

performed in order to identify specific microsatellites loci for C. albicans, C. parapsilosis, C. 

glabrata, C. tropicalis and C. krusei.  Primers selection was based on (1) annealing 

temperature (above 54ºC), to ensure reproducibility and specificity, (2) size of DNA fragments, 

to allow multiplexing and differentiation of species (different species would have PCR products 

with different molecular weights) and (3) number of nucleotides of the repetitive motif 

(trinucleotidic repeats), to facilitate alleles differentiation.  

The microsatellites selected for locus specific amplification, and the respective primers pairs 

(forward and reverse) are present in Table II.II. The selected reverse primers were fluorescently 

labelled with hexachlorofluorescein (HEX), 6-carboxyfluorescein (FAM) or ortetrachloro-6-

carboxyfluorescein (TET) for DNA size determination in automatic sequencer ABI 310 (Applied 

Biosystems).   

Table II.II. Sequences and characteristics of the microsatellite loci selected. 

Specie STR Motif Primer Sequence (5’ to 3’) 
Size 

(bp) 

Ta 

(ºC) 
Ref. 

C. albicans CAIII (GAA)n 
a)F-TTG GAA TCA CTT CAC CAG GA  

R-TTT CCG TGG CAT CAG TAT CA  
95-110 60ºC 

(Sampaio et al. 

2005) 

C. parapsilosis Cp1 (AAG)27 
F-AAA GTG CTA CAC ACG CAT CG  

R-GGC TTG CAA TTT CAT TTC CT  
207-270 62ºC (Sabino et al. 2010) 

C. glabrata 2bis (AAC)6 
F-ACA CCT ACG AGA AAC CAA CA  

R-TAG CGG TCA TCC AGC ATC A  
127-138 65ºC (Brisse et al. 2009) 

C. tropicalis CT14 (CAT)n 

F-GTA AAT CTT GTA TAC CGT GGA  

R-TAG CCC ATT TTC TAG TTT TGC  
140-160 55ºC 

(Desnos-Ollivier et al. 

2008) 

C. krusei CKTNR - 
F-ACA GCA GTC GCA GGC CC  

R-GTC GGA GAC ATA ACC GC  
200-260 58ºC (Shemer et al. 2001) 

a) In the start of each primer, F means the forward primer and R the reverse primer.	  

 

2.3. Colony-PCR 

For microsatellite amplification in PCR reaction colony-PCR was performed. Colony-PCR is a 

simple and fast methodology that uses directly the colony in the PCR tube to obtain the DNA 

template. To perform this technique, a single colony was picked with a micropipette tip and 

added to PCR microtube. For DNA release, the cells were lysed by thermal shock during 90 
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seconds in the microwave, and the microtubes were immediately placed in the ice to inhibit 

DNA degradation (Vaz et al. 2011). A volume of 10 µl of the PCR reaction mix was added and 

the PCR performed as described below. 

2.3.1. PCR amplification conditions  

(1) Singleplex amplification 

In order to evaluate the locus specific amplification and compare DNA fragment sizes with 

previously described results, singleplex amplification was performed for all selected 

microsatellite loci. A total of five C. albicans strains (S038, S040, S085, S090 and IGC 

3436T), five C. parapsilosis (2551, 2552, 2554, 2556 and 2557), five C. krusei 

(109/RN0000.001, H11, 535, Cipo 94 and IGC 3341T), five C. glabrata (M2, 177, H38, 70V 

and IGC 2418T) and five C. tropicalis 2D, 2D, 4D, Cipo 43 and IGC 3097T) were used. The 

singleplex amplification was performed according to the conditions described in the literature 

(Shemer et al. 2001; Sampaio et al. 2005; Desnos-Ollivier et al. 2008; Brisse et al. 2009; 

Sabino et al. 2010). Briefly, the PCR reaction mix was performed by combining 1x PCR Buffer 

(20mM TrisHCl [pH 8.4], 50mM KCl), 0.2mM of each of the four deoxynucleotide 

triphosphates (dNTPs), 2mM MgCl2, 1 U of Taq polymerase and the respective concentration 

of each primer carried in a 10 µl final volume. The samples were amplified in UNO II 

thermocycler (Biometra®) and the PCR program consisted of an initial denaturation step for 5 

min at 95ºC, followed by 30 cycles of 30 s at 94ºC, 30 s at respective annealing temperature, 

1 min at 72ºC for, and with a final extension step of 10 min at 72ºC.  

(2) Multiplex amplification 

Initially the multiplex PCR was tested using the same strains amplified by singleplex PCR. 

Multiplex PCR reaction mix was performed by combining 1x PCR Buffer (20mM TrisHCl [pH 

8.4], 50mM KCl), 0.2mM of each of the four deoxynucleotide triphosphates (dNTPs), 2mM 

MgCl2, 1 U of Taq polymerase and 0.2 µM of each primer carried in a 10 µl final volume. The 

samples were amplified in iCycler Thermal Cycler (BIO-RAD) and the PCR program consisted of 

an initial denaturation step for 7 min at 95ºC, followed by 30 cycles of 45 s at 94ºC, 30 s at 

64ºC, 1 min at 72ºC for, and with a final extension step of 10 min at 72ºC.  
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2.4. DNA Sequence Analysis and Fragment Size Determination 

For DNA sequence analysis, 2.5 µl of each PCR product was added to 12.5µl of mixture of 

formamide and the internal size standard (GeneScan 500 6-carboxytetramethylrhodamine 

[TAMRA]; Applied Biosystems Inc.), and PCR fragments were separated by capillary 

electrophoresis with POP4 polymer in the automatic sequencer ABI 310 (Applied Biosystems 

Inc.). The results were analysed using the GeneScan 3.7 Analysis Software and fragment sizes 

of the PCR products were determined automatically using the same software.  

 

2.5. Multiplex PCR optimization 

Following PCR multiplex evaluation, the PCR conditions were optimized and the results 

obtained were always compared with the ones observed in the singleplex assay. The 

parameters optimized include the amplification cycles, annealing temperature (55ºC, 58ºC, 

60ºC, 62ºC and 64ºC), magnesium chloride (MgCl2) concentration (2mM, 2.5mM and 3mM), 

primers concentration (from 1.5μ to 4.0μ), Taq polymerase and PCR adjuvants (Tween 20, 

BSA and DMSO). After optimization the PCR conditions, multiplex PCR was tested using the 

strains present in Table II.I. 

 

3. Results and discussion 

3.1. Microsatellite selection 

In the present study a new multiplex PCR protocol for the rapid and simultaneous identification 

of the most clinically important Candida species: C. albicans, C. glabrata, C. parapsilosis, C. 

tropicalis and C. krusei was developed. For this purpose primer pairs previously designed, for 

specific amplification of C. albicans, C. parapsilosis, C. glabrata, C. krusei and C. tropicalis 

microsatellites loci, were selected. 

The microsatellite polymorphism analysis is a commonly used methodology for strains 

differentiation. However, this work entails species identification and the microsatellite selection 

was based on the characteristic of these markers that is its species specificity. Microsatellite 

markers are designed to be species specific and the majority are located on non-coding 
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regions. Since this regions of the genome are more prone to accumulate mutations, the 

discrimination of closely related species its even more probable. 

Thus, we selected microsatellite marker of each species according to three main criteria (1) 

specificity, (2) size of the expected amplified fragments and (3) the repeated motif should be at 

least a trinucleotide. The specificity is obviously important as stated before. The DNA 

fragments size is crucial in planning a multiplex strategy, since differences in the size of the 

alleles amplified at each of selected loci and the possibility of combining different fluorescent 

dyes will make possible the simultaneous amplification. Ideally, all the primer pairs in a 

multiplex PCR should enable similar amplification efficiencies for their respective target. This 

may be achieved through the utilization of primers with nearly identical optimum annealing 

temperatures (Henegariu et al. 1997). 

Several microsatellite loci have been identified in the C. albicans genome, such as EF3 

(Bretagne et al. 1997), HIS3 or CDC3 (Botterel et al. 2001), however, in the last years our 

work group identified and described new microsatellite loci with great specificity and stability 

(CAI, CAIII, CAIV, CAV, CAVI, CAVII and CAVIII) (Sampaio et al. 2003; Sampaio et al. 2005).  

In order to select the ideal microsatellite locus for C. albicans identification, four primer pairs 

were tested by singleplex amplification, namely CAI, CAIII, CAIV and CAVIII. The most studied 

repetitive region is CAI, which is an imperfect trinucleotidic microsatellite ((CAA/G)n) located in 

RLM1 gene ((Sampaio et al. 2009). The repetitive region CAVIII is composed by trinucleotidic 

repeats ((CAA/G)n) and is also located in a coding region, which encodes an extracellular 

secreted aspartyl proteinase (SAP8) with unknown function. On the other hand CAIII and CAIV 

are composed by perfect trinucleotidic motifs and are located in a non-coding region (Sampaio 

et al. 2005). 

The microsatellite loci amplification was performed using previously described conditions 

(Sampaio et al. 2005). CAI, CAIII and CAIV forward primers were labelled with 6-

carboxyfluorescein (FAM) and CAVIII forward primer was labelled with hexachlorofluorescein 

(HEX). An example of GeneScan profile obtained with amplification of the four loci is shown in 

Figure 2.1. 
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Figure 2.1. GeneScan profiles obtained in a singleplex analysis using the markers (a) CAI, (b) CAIII, (c) CAIV and 

(d) CAVIII for C. albicans. 

After this analysis the microsatellite marker selected for C. albicans identification was CAIII. 

The criteria defined for this selection were the species specific amplification demonstrated in 

previous studies, the small size range (95 to 110 bp) as well as the small molecular weight 

(Sampaio et al. 2005). Another selection factor was the high annealing temperature above 

60ºC, inhibiting the development of secondary structures. CAI presented a great polymorphism 

being ideal for strains differentiation, and it was not selected due to the large size range of the 

alleles, between 189-303 base pairs (Sampaio et al. 2003). CAIV and CAVIII were also not 

selected since their size range overlaps with the other markers (Cp1 and CKTNR) size ranges 

(described ahead) (Sampaio et al. 2005).  

Although several microsatellites of C. parapsilosis have been described (Lasker et al. 2006; 

Pulcrano et al. 2012), the microsatellite selected for this study was Cp1. This repetitive region 

was described by our study group and is located in a non-coding region (Sabino et al. 2010). 

The main criteria for primer selection were its great specificity and reproducibility as well as the 

high annealing temperature (62ºC). 

For other Candida species, the microsatellite selection was based on the literature. Some of 

the microsatellites of C. glabrata described are RPM2, ERG3, MTI (Foulet et al. 2005), Cg4, 

Cg10 (Abbes et al. 2012), among others. The repetitive region selected for specific 

amplification was 2bis described by Brisse and co-authors (Brisse et al. 2009). The criteria 

defined for this selection was the specificity as well as the molecular weight and range of PCR 

products (between 127 and 138), differing from the products obtained in other species. 

Another criteria for 2bis selection was the annealing temperature, of 65ºC that allows the 

multiplex to be carried out at a Ta above 60ºC. 

a 

b 

c 

d 
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A few microsatellites were described in the literature for C. tropicalis and C. krusei species. 

Desnos-Ollivier and co-workers (Desnos-Ollivier et al. 2008) described two C. tropicalis 

microsatellite loci, URA3 (located in a coding region) and CT14 (located in a non-coding 

region). In this study the locus CT14 was selected due to the fact that was located in a non-

coding region. However, the described annealing temperature of CT14 was only 55ºC. In C. 

krusei genome only one microsatellite, CKTNR, was described, but no information regarding its 

genome location is available (Shemer et al. 2001). The annealing temperature described for 

amplification of this microsatellite was 58ºC. 

After the microsatellite loci selection the reverse primers for each species was fluorescently 

labelled with different dyes to allow simultaneous amplification and identification of the specific 

PCR products. The reverse primers of C. albicans and C. krusei were labelled with FAM, C. 

parapsilosis and C. glabrata with TET and C. tropicalis with HEX (Figure 2.2).	  	  

	  

Figure 2.2. GeneScan profile of PCR products amplified with different primer pairs. 

 

3.2. Singleplex amplification 

All selected microsatellite were used to amplify, in singleplex, five strains of each species, in 

order to evaluate the locus-specific amplification.  

The singleplex PCR was performed in a UNO II thermocycler (Biometra®) and the amplification 

of CAIII, Cp1, 2bis and CKTNR loci was successful. However, no GeneScan profiles were 

obtained with the CT14 locus in any of the analysed strain. In order to observe if the absence 

of GeneScan profiles was due to the fluorescent dye ineffectiveness an agarose gel 

electrophoresis 1.2% was performed and no amplification products were found in the gel, 

confirming the absence of amplification. 

The singleplex PCR was performed again with the same conditions, however, using the iCycler 

(Bio-RadTM), and the amplification of all selected loci was observed (Figure 2.3).  
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Figure 2.3. GeneScan profiles obtained with (a) CAIII, (b) Cp1, (c) 2bis, (d) CKTNR and (e) CT14 in strains S038 

(C. albicans), 2257 (C. parapsilosis), 70V (C. glabrata), 109/RN0000.001 (C. krusei) and 2D (C. tropicalis), 

respectively, by singleplex PCR amplification. 

The main reason proposed for the differential amplification is the difference in the ramp rates 

(heating and cooling) of both thermocyclers. The ramp rate consists in the time that 

thermocycler takes to change the temperature between PCR stages. A quicker temperature 

change improves PCR results, thus the results obtained suggest that iCycler presents lower 

ramp rates, improving the CT14 locus amplification. 

Molecular weights of PCR products obtained were compared with results previously described 

in the literature and similar molecular weights were identified in this study, confirming the 

effectiveness of this methodology. The expected differences between the molecular weights of 

PCR products obtained in the five different species ensure the possibility of simultaneous 

amplification and identification. 

Although the specificity of these molecular markers was well established, this feature was 

confirmed since no amplification products were obtained when the primers and PCR conditions 

described were tested with strains from different species. Not even the closest related species 

of C. parapsilosis amplified with C. metapsilosis, C. orthopsilosis or L. elongisporus or the 

primers for C. glabrata amplified C. bracarensis. 

 

3.3. Multiplex amplification 

Amplification of strains from the five Candida species was performed by multiplex PCR with the 

selected primers in order to test the applicability of this methodology in the identification of the 
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most frequent species isolated from clinical samples. For this step the same strains tested in 

singleplex amplification were used and the results obtained compared. The amplification was 

performed using the iCycler (Bio-RadTM). 

The PCR products obtained in multiplex amplification of C. albicans, C. parapsilosis, C. 

glabrata and C. krusei loci were similar to those obtained in singleplex amplification, 

confirming the specificity of the method. However, no PCR products were obtained in the 

analysis of C. tropicalis strains (Figure 2.4).  

	  

Figure 2.4. GeneScan profiles obtained by multiplex amplification with (a) C. albicans, S040, (b) C. parapsilosis, 

2252, (c) C. glabrata, M2, (d) C. krusei, H11, (e) C. tropicalis, 2D and (f) L. elongisporus strains, ISA 1421. 

The presence of more than one primer pair in the multiplex PCR increases the chance of 

obtaining unspecific results, because of the formation of primer dimers. In order to evaluate if 

the absence of CT14 locus amplification was due to the primer dimer formation, AutoDimer 

Check 1.0 software was used (Vallone and Butler 2004), however this feature was not 

observed.  

It is thought that several factors can affect the PCR amplification, particularly in multiplex 

analysis. Some of these factors are the amplification cycles, annealing temperature, 

magnesium chloride (MgCl2) concentration, primers concentration, Taq polymerase and PCR 

adjuvants (Markoulatos et al. 2002). In order to verify the influence of these factors in C. 

tropicalis CT14 locus in the multiplex amplification, an optimization of PCR conditions was 

performed. 
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3.4. Optimization of multiplex amplification conditions 

The PCR conditions represent an important factor to obtain reliable results particularly when 

several loci are analysed simultaneously. Adverse multiplex PCR conditions can present several 

difficulties, including poor sensitivity and specificity, and/or preferential amplification of certain 

specific targets. In these cases, the optimization of PCR conditions is needed (Markoulatos et 

al. 2002).  

In this study, several PCR conditions were tested in order to amplify the locus CT14 in 

multiplex reaction and also to improve the multiplex methodology. For this optimization step 

three C. tropicalis strains and one strain from C. albicans, C. parapsilosis, C. glabrata and C. 

krusei were used. 

3.4.1. Annealing temperature 

The annealing temperature (Ta) is one of the most important parameters in PCR amplification 

and depends on length and composition of the primers selected. Comparing with the primer 

optimal temperature, if the Ta is too high the binding between primers and DNA may not 

occur, and if Ta is too low the development of nonspecific products can occur (Kramer and 

Coen 2006).  

In order to inhibit the nonspecific products development the Ta used in multiplex amplification 

was 64ºC, however, Desnos-Ollivier and co-authors (Desnos-Ollivier et al. 2008) described that 

the optimal temperature for CT14 primers annealing is 55ºC. Thus, the absence of CT14 locus 

amplification could be due to the higher Ta. The amplification using a gradient temperature in 

singleplex PCR was performed to verify the ideal temperature for CT14 locus amplification. In 

this study, five annealing temperatures were tested, namely 55ºC, 58ºC, 60ºC, 62ºC and 64ºC 

(Figure 2.5).  
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Figure 2.5. GeneScan profile of C. tropicalis strain (2D) amplified with CT14 at different annealing temperatures 

(a) 55ºC, (b) 58ºC, (c) 60ºC, (d) 62ºC and (e) 64ºC. 

The results obtained demonstrated that in singleplex amplification the CT14 locus was 

observed in all annealing temperatures selected. It was also demonstrated that Ta of 64ºC 

ensures less secondary structures development. These results indicate that the absence of 

CT14 locus amplification was not due to the annealing temperature, and that 64ºC is the 

optimal temperature for multiplex PCR amplification of selected loci. 

No attempt to change the annealing temperature in a multiplex reaction was made since 

several secondary structures were observed in lower Ta and that would difficult the 

interpretation of the results. 

3.4.2. Amplification cycles 

The PCR amplification is composed by 20-40 cycles, and each cycle consists of different 

amplification stages (denaturation, annealing and extension/elongation). The number of cycles 

and the time of each stage depend on several parameters such as polymerase, ions and 

dNTPs concentration and the melting temperature of the primers (Mullis and Faloona 1987). 

The denaturation step represents an important factor in PCR amplification since it promotes 

the separation of DNA strands. The denaturation time needs to ensure the total separation of 

DNA strands, however, a long time can reduce the polymerase half-life. The temperature and 

the denaturation time depend on the template used, essentially to the amount of guanine and 

cytosine (Kramer and Coen 2006). 
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In order to verify if the absence of CT14 locus amplification in multiplex was related with the 

denaturation step an optimization of this feature was performed. Firstly, the PCR program 

consisted of an initial denaturation step for 5 min at 95ºC, followed by 30 cycles of 30 s at 

94ºC, 30 s at 64ºC, 1 min at 72ºC, with a final extension step of 10 min at 72ºC. The 

multiplex PCR amplification was then tested changing the initial denaturation step to 7 minutes 

and the denaturation cycle to 45 seconds.  

The results demonstrated that denaturation time was not related with the absence of CT14 

locus amplification since no amplification products were found. However, the new denaturation 

conditions were considered since it improved the profiles obtained in the amplification of the 

other loci, removing same secondary structures of the PCR products. 

3.4.3. Primers concentration 

The optimal primers concentration depends essentially on the concentration and complexity of 

DNA template. The primers concentration should always be adjusted since higher 

concentrations can lead to secondary structures or primer dimers formation, while lower 

concentrations can lead to unsatisfactory amplification. Hot start PCR often eliminates 

nonspecific reactions (production of primer dimers) caused by primer annealing at low 

temperature (4–25°C) before initiating thermocycling (Koreth et al. 1996). 

In multiplex amplification the total primer concentration was 2µM. However, in order to 

optimize primer concentration several concentrations were tested (Table II.III).  

Table II.III. Primers concentrations tested in multiplex amplification. 

Primers pairs First conc. (µM) Second conc. (µM) Third conc. (µM) 

CAIIIF+CAIIIR 0.4 0.8 0.3 

Cp1F+Cp1R 0.4 0.8 0.3 

2bisF+2bisR 0.4 0.8 0.3 

CKTNRF+CKTNRR 0.4 0.8 0.3 

CT14F+CT14R 0.4 0.8 0.3 

Total 2 4 1,5 

 

No CT14 locus amplification was observed in multiplex when 2, 4 or 1,5µM of total primer 

concentrations were used. However, with 4µM an increase of secondary structures was 

observed whereas with 1.5µM the decrease of the CAIII, Cp1, 2bis and CKTNR amplification 

products was observed. The obtained results demonstrated that ineffectiveness CT14 locus 
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amplification was not related with the primer concentration. It was also demonstrated that 

2µM was the optimal primer concentration for CAIII, Cp1, 2bis and CKTNR amplification. 

3.4.4. Magnesium Chloride (MgCl2) concentration 

The optimization of MgCl2 concentration is an important procedure for successful PCR reaction 

since Mg2+ is a cofactor required for Taq polymerase activity. Each PCR reaction has an optimal 

concentration of Mg2+ and a low concentration of Mg2+ does not enable the polymerase activity, 

reducing the amount of product. Moreover, a high Mg2+ concentration stabilizes the DNA 

double strand, preventing the complete denaturation of DNA, and stabilizes unspecific 

annealing of primer to incorrect template sites, decreasing specificity. The dNTPs bind to free 

Mg2+ in a 1:1 molar ratio, so the MgCl2 concentration must be proportional to the concentration 

of dNTPs (Ely et al. 1998; 2011).  

In order to verify if the absence of CT14 locus amplification was due to the MgCl2 concentration 

three concentrations were tested, namely 2mM, 2.5mM and 3mM.  

No CT14 locus amplification was observed using the three MgCl2 concentrations, 

demonstrating that the absence of amplification was not related with Mg2+ concentration. The 

results also demonstrated that no significant differences were observed in the amplification of 

the other selected loci using the three concentrations. Figure 2.6 gives an example of 

amplification with different MgCl2 concentrations. For this reason, the concentration selected for 

the multiplex amplification was 2mM. 

	  

Figure 2.6. GeneScan profiles of C. krusei H11 strains obtained with multiplex reaction using (a) 2.0mM, (b) 

2.5mM and (c) 3.0mM of MgCl2. 
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3.4.5. PCR additives 

Several studies demonstrated that PCR adjuvants have a beneficial effect on the yield of PCR 

amplification of purified DNA. The most common additives used are organic co-solvents 

(dimethyl sulfoxide (DMSO) or formamide), reducing compounds (dithiothreitol (DTT)), non-

ionic detergents (Triton X-100, Tween 20), stabilising proteins (Bovine serum albumin (BSA)), 

and glycerol (Nagai et al. 1998; Ralser et al. 2006). Three of the most studied adjuvants, 

DMSO, Tween 20 and BSA were tested to improve the multiplex reaction. DMSO has been 

used to increase the yield of a PCR reaction on GC rich DNA templates, by preventing the 

formation of secondary structures. However, more than 10%DMSO can reduce the polymerase 

activity. BSA has been applied to increase the thermal stability and half-life of the enzymes and 

neutralize inhibitory contaminants that may be present in the DNA (Farell and G. 2012). 

Finally, the Tween 20 improves the polymerase stability and suppresses the formation of 

secondary structures (Ralser et al. 2006). 

Rasler and co-workers (Ralser et al. 2006) also demonstrated that the use of BSA combined 

with DMSO increases the range of organic solvent effectiveness. The concentrations of DMSO, 

BSA and Tween 20 used in this study were selected according Rasler and co-authors (Ralser et 

al. 2006), namely 1.2% DMSO, 10µg/µl BSA and 0.01% Tween 20. The three additives and 

combination of additives tested in our study are presented in Table II.IV. 

Table II.IV. Additives and combinations tested. 

Additives 

0.01% Tween 20 

10µg/µl BSA 

1.2% DMSO 

0.01% Tween 20 + 1.2% DMSO 

1.2% DMSO + 10µg/µl BSA 

0.01% Tween 20 + 1.2% DMSO + 10µg/µl BSA 

 

No CT14 locus amplification was observed in all conditions tested. No significant differences 

were also observed in CAI, Cp1, 2bis and CTKNR loci amplification. The results obtained 

demonstrated that the absence of CT14 locus amplification was independent of the use of PCR 

additives. Also demonstrated that the adjuvants did not influence the amplification of the other 

loci analysed in this study. 



New multiplex PCR based methodology to discriminate clinically important Candida species 

 

	   46 

Several factors are involved in PCR amplification and the optimization of other factors, such as 

Taq polymerase or dNTPs concentration could be performed to promote the CT14 locus 

amplification, however it seamed more reasonable to design new primers for the CT14 locus. 

Four new primer pairs were designed in the non-variable flanking regions of CT14 locus using 

Primer 3 Input 4.0 software. These primers were analysed in AutoDimer Check 1.0 software to 

observe the primer dimer formation and only one primer pair was selected, namely F-5’ 

CCCCACCAAAAACATACATACAT 3’ and R-5’ TTACATTCAGCCCGCCACAG 3’. However, due to 

the lack of time, these primers were not yet tested. 

 

3.5. Multiplex amplification (without CT14 primers pair) 

The same strains analysed by singleplex amplification were tested using the multiplex mix 

without CT14 primers. The molecular weights obtained by multiplex analysis were compared 

with previous singleplex results and the same peaks were observed in both profiles. Although 

the molecular weights obtained were the expected ones, the intensity of amplification of the 

different markers was unbalanced. In these cases, the primer concentration should be 

optimized since the more efficiently amplified loci would negatively influence the yield of 

product amplification from the less efficient loci. This feature is due to the fact that PCR has a 

limited supply of enzyme and nucleotides, and all products compete for the same pool of 

supplies (Markoulatos et al. 2002). The total primers concentration used was 2µM equally 

divided by all primers pairs, however, a low intensity of amplification of locus CAIII and Cp1 

and a high intensity of amplification of locus 2bis was observed.  

In order to balance the intensity of amplification of different loci, the primers concentration was 

adjusted, according to Table II.V. 

Table II.V. Concentration of each primer pairs used in multiplex reaction. 

Primers pairs 
Initial concentration 

(µM) 

Final concentration 

(µM) 

CAIIIF+CAIIIR 0.5 0.6 

Cp1F+Cp1R 0.5 0.6 

2bisF+2bisR 0.5 0.3 

CKTNRF+CKTNRR 0.5 0.5 

Total 2 2 
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Using the new primers concentration an increase of intensity of amplification of CAIII and CP1 

loci as well as a decrease of intensity of amplification of 2bis locus was observed (Figure 2.7). 

The results obtained demonstrated that the use of the new primers concentration improved the 

quality of amplification of all selected loci.  

	  

Figure 2.7. GeneScan profiles of C. albicans, C. parapsilosis, C. glabrata and C. krusei, using the (a) initial 

primer concentrations and the (b) adjusted primer concentrations. 

The multiplex mix with new primer concentrations was then used with the forty-six strains 

previously identified in order to evaluate their specific amplification. The species identification 

was essentially based in molecular weights/fluorescent label of PCR products obtained. The 

results of multiplex analysis showed the same species identification for all strains as the 

previously reported, confirming the specificity of the method (Table II.VI). 

The specificity was also confirmed by simultaneous amplification of two strains in the same 

reaction, for example C. albicans (S085) and C. glabrata (M2), as well as the amplification of 

one strain covered by the multiplex and a second that was not included in the multiplex, for 

example C. albicans (S085) and C. orthopsilosis (H10USA). 

The mix developed was also tested in the twenty strains without previous identification, isolated 

from hands and saliva of healthy patients. No amplification products were obtained in ten of 

the twenty unknown strains, indicating that they did not belonged to range of species covered 

by the multiplex. The ten remaining strains amplified with primer CAIII were suspected to be C. 

albicans (Table II.VI). 

Table II.VI. Isolates tested with new multiplex mix, genotypes obtained e respective identification. 

Isolate Genotype Dye Identification Isolate Genotype Dye Identification 

S085 95-95 FAM C. albicans Cipo 94 227-233 FAM C. krusei 

S092 107-107 FAM C. albicans IPO A911012 - - - 

S104 95-98 FAM C. albicans 960161 - - - 

C. albicans! C. albicans!

C. parapsilosis! C. parapsilosis!

C. glabrata! C. glabrata!

C. krusei! C. krusei!
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S040 92-95 FAM C. albicans Ana R. - - - 

S038 95-95 FAM C. albicans O113 - - - 

OB15V 98-98 FAM C. albicans HSM CAN 155 - - - 

Cipo72 92-95 FAM C. albicans J981226 - - - 

1V 95-101 FAM C. albicans HSM CAN 138 - - - 

2551 238-241 TET C. parapsilosis H10 USA - - - 

2252 223-238 TET C. parapsilosis 154a - - - 

2253 238-238 TET C. parapsilosis 1 AII - - - 

2256 241-241 TET C. parapsilosis CL-7030 - - - 

2257 223-238 TET C. parapsilosis 246188 - - - 

M2 127 TET C. glabrata NCYC 3133 - - - 

177 127 TET C. glabrata ISA 1421 - - - 

H38 127 TET C. glabrata IGC 3436T 95-95 FAM C. albicans 

70V 127 TET C. glabrata IGC 2418T 127 TET C. glabrata 

24/9-10 127 TET C. glabrata IGC 3097T - - - 

14666a 127 TET C. glabrata 153MT - - - 

14666b 127 TET C. glabrata IGC 3341T 197-209 FAM C. krusei 

14408 127 TET C. glabrata CDQN5 110-110 FAM C. albicans 

24/9-4 127 TET C. glabrata CDQN10 98-98 FAM C. albicans 

7/5-17 127 TET C. glabrata CD1 95-95 FAM C. albicans 

21/9-26 127 TET C. glabrata CD2 95-98 FAM C. albicans 

21/9-20 127 TET C. glabrata S152 95-101 FAM C. albicans 

1/4-22a 127 TET C. glabrata S153 110-110 FAM C. albicans 

23/9-24 127 TET C. glabrata D1 - - - 

6/9-17 127 TET C. glabrata APC1 - - - 

27/5-16 127 TET C. glabrata APC2 - - - 

17/3-3 127 TET C. glabrata APC3 - - - 

14573 127 TET C. glabrata APC4 - - - 

14735 127 TET C. glabrata APC5 - - - 

Cipo43 - - - APC6 - - - 

176C - - - APC7 - - - 

10F4 - - - C1 110-110 FAM C. albicans 

2D - - - C2 - - - 

3D - - - C3 95-95 FAM C. albicans 

4D - - - C4 95-95 FAM C. albicans 

109/RN0000.001 245-245 FAM C. krusei C5 - - - 

H11 227-233 FAM C. krusei 1432 95-98 FAM C. albicans 

535 224-233 FAM C. krusei     

- no data was obtained for these strains. 

In order to confirm the results obtained, a multiplex PCR for C. albicans strains differentiation 

described by Sampaio and co-workers (Sampaio et al. 2005) was used. All of the ten strains 

were amplified using the C. albicans multiplex and their identification was confirmed. 



New multiplex PCR based methodology to discriminate clinically important Candida species 

 

	   49 

The strains that did not showed amplification with the multiplex are being further analysed with 

other techniques in order to specifically identify then at the species level. 

In conclusion, the specific amplification of all selected strains, as well as the ability of 

simultaneous amplification, by combining different molecular weights and different fluorescent 

dyes demonstrated that the methodology developed is a fast and accurate alternative in clinical 

microbiology laboratories. The study also demonstrated that PCR methodologies are 

dependent of several conditions, and the optimization of the process is essential. 

 

4. Conclusion and final remarks 

The rapid and accurate identification of the species involved in Candida infections is of extreme 

relevance to the development and application of the correct therapeutic strategies, once 

different species present different susceptibility to the antifungal agents (Lass-Florl 2009). In 

clinical practice fungal species differentiation involves morphological, physiological and 

biochemical assays, however these techniques requires three or more days and may be 

inaccurate. The fast and accurate diagnosis can be improved by molecular approaches, such 

as PCR based methods, which represent an excellent alternative for methodologies used. The 

PCR based methods have several advantages over the other methodologies used, since PCR is 

less time-consuming, the results can be easily reproduced and is suitable for screening large 

number of isolates with reduced workload (Ellepola and Morrison 2005).  

In clinical laboratories, the PCR based technique used for Candida species diagnosis is the 

Real Time PCR. The commercial kits developed do not required prior yeast culture and the 

amplification is performed directly from clinical samples, especially from blood samples 

(Casalta et al. 2009).  Although this is a rapid methodology, this technique is mainly based in 

the melting curves differences of the amplification products, the 18S and 5.8S rRNA 

sequences are the most used targets, which are less sensitive than the analysis of species-

specific markers, such as microsatellite loci. The use of nonspecific targets can also increase 

the appearance of nonspecific signals from environmental microorganisms from laboratory 

contamination. This risk is present in several steps of the PCR procedure, from the blood 

sampling to the performance of the PCR assay (Lehmann et al. 2008). Moreover, the use of 

clinical samples has several disadvantages, including the presence of large amounts of host 

nucleic acid that can interfere with primer hybridization and amplification or the presence of 
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inhibitors of Taq DNA polymerase, such as EDTA (Peters et al. 2004). Microsatellites are found 

in all genomes and has being designated as excellent molecular markers for fungal 

species/strains differentiation. Several microsatellites were successfully used to characterize 

and rapidly type isolates of different fungal species, such as Penicillium marneffei (Fisher et al. 

2004; Lasker and Ran 2004), Saccharomyces cerevisiae (Legras et al. 2005), Aspergillus 

fumigatus (Vanhee et al. 2008; Araujo et al. 2009), C. albicans (Bretagne et al. 1997; 

Sampaio et al. 2005), C. parapsilosis (Sabino et al. 2010) or C. glabrata (Foulet et al. 2005; 

Brisse et al. 2009). Their main advantage over the 18S and 5.8S rDNA is the possibility of 

designing highly specific primers and since these regions are under less tight selection 

pressure accumulates more mutation, enabling the discrimination of closely related species.  

The development of multiplex systems, co-amplifying several STRSs, in order to test rapidly 

and reproducibly a great number of isolates represents and important tool in biomedical 

mycology (Rosehart et al. 2002; Illnait-Zaragozi et al. 2010; L'Ollivier et al. 2012). In this work 

a new multiplex methodology was developed to identify the most clinically important Candida 

species (C. albicans, C. parapsilosis, C. glabrata, C. tropicalis and C. krusei), and although no 

CT14 locus (C. tropicalis) amplification was observed, this methodology showed a high stability 

and capacity to discriminate the four different Candida species. The Colony PCR overcomes 

some limitations such as the need for DNA extraction (Mirhendi et al. 2007). The methodology 

developed is easy to perform and can be implemented at relatively low cost for routine 

identification in hospitals and health centres.  

The multiplex system developed showed to be a fast and accurate method, however, several 

difficulties were found with C. tropicalis selected locus. C. tropicalis infections have been 

reported in immunocompromised patients with chronic mucocutaneous candidiasis and have 

progressively been observed to be the cause of invasive candidiasis in neutropenic patients 

(Kothavade et al. 2010). Thus, it is imperative to include C. tropicalis identification in this 

methodology testing the new primers pair specific for CT14 locus already designed. Given the 

need of new fast and accurate diagnostic methodologies in microbiology laboratories, the test 

of clinical samples from different Hospitals and Health Centres would be relevant to determine 

the applicability of this methodology in clinical practice. Thus, this multiplex system will also be 

tested directly in biological samples to test for its applicability in clinical laboratories. 
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1. Introduction 

Candida albicans is commensal yeast present in the mucosal surfaces of genitourinary system, 

gastrointestinal tract, skin and oral cavity in humans (Guarro et al. 1999; Hube 2004). In 

immunocompromised and intensive care patients is the most common opportunistic yeast 

pathogen, causing several superficial or systemic candidiasis (Sabino et al. 2010; Spiliopoulou 

et al. 2011), with high level of morbidity and mortality (Fridkin and Jarvis 1996; Weinberger et 

al. 2005). One major problem of C. albicans infections is the variable virulence of this species 

attributed to several virulence factor (Romani et al. 2003), like adhesion capacity, phenotypic 

switching, hyphal formation and secretion of extracellular hydrolytic enzymes (Ramage et al. 

2012), which promotes the flexibility to resist to the immune system defences (Calderone and 

Fonzi 2001; Yang 2003). Extracellular hydrolytic enzymes include phospholipase A and B 

(Ghannoum 2000), lipases (Trofa et al. 2008)  and secreted aspartyl proteinases (Saps), which 

are the most studied extracellular hydrolytic enzymes in this species (Naglik et al. 2003; Abegg 

et al. 2011). C. albicans Saps have been implicated in the development of systemic and 

mucosal infections, influencing adhesion, tissue damage and host immune responses evasion.  

The success of pathogenic yeasts depends on their dynamic interactions with the host and the 

adaptive responses that enable them to escape/adjust to host defences. This is particularly 

important for commensal organisms, such as C. albicans, due to the diverse and polymorphic 

nature of the colonized host and environments that it can live on (Mavor et al. 2005). 

Microorganisms evolved mechanisms for increasing genetic variations in loci that are involved 

in critical interaction with the host. These alterations can be achieved by intergenomic or 

intragenomic events but the contribution of intergenomic in a clonal reproducing organism as 

C. albicans is limited. Within intragenomic mechanisms that generate hypervariability the 

addition or deletion of repeat units during replication, through slipped-strand mispairing or 

gene conversion is the best characterized.  

The genome of the human pathogen Candida albicans contains approximately 2600 repeat-

containing ORFs, three and ten times more, respectively, than those of the ascomycete yeasts 

Saccharomyces cerevisiae and Schizosaccharomyces pombe (Braun et al. 2005). Comparative 

genomic analyses of C. albicans strains suggest that repeat-containing ORFs may be important 

C. albicans fitness determinants (Zhang et al. 2009). To date, only a few of these genes have 

been characterized, including EAP1, PIR1 CEK1, HYR1, HYR2, HWP1, and the ALS (agglutinin 
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like sequence) family of adhesins (Hoyer 2001; Staab et al. 2004; Sumita et al. 2005; Li and 

Palecek 2008). RLM1 and SAP8 are two repeat-containing ORFs. Rlm1, this is one of the 

transcription factors of the cell wall integrity (CWI) pathway. Sampaio and co-workers (Sampaio 

et al. 2003; Sampaio et al. 2009) have demonstrated that Rlm1 presents a great variability at 

its C-terminus, conferred by the CAI microsatellite with more than 35 alleles identified. 

Phenotypic analysis of strains harbouring CAI alleles with higher number of (CAA/G) repetitions 

showed that they displayed a higher tolerance to cell wall stress agents, indicating that CAI 

repetitive region confers a high genetic variability to RLM1 gene, which is reflected in strain 

susceptibility to different stress conditions (Sampaio et al. 2009). SAP8 gene, encoding an 

extracellular SAP with a C-terminal consensus sequence typical for glycosylphosphotidylinositol 

(GPI) with unknown function, is transiently overexpressed in cases of oral and vaginal infection 

(Wu and Samaranayake 1999; Ripeau et al. 2002). This ORF also contains a microsatellite 

consisting of (CAA/G) repeat units at the C-terminus of the protein that has not been 

characterized.  

In this context, we addressed the question of a possible correlation between the pathogenicity 

of lineages of C. albicans strains with regard to their genotype at these two repeat-containing 

ORFs.  

 

2. Materials and methods  

2.1. Yeast Strains 

A total of 244 clinical isolates of C. albicans, obtained from Hospitals, Health Centres and Oral 

Clinics with different geographical origins were analysed in this study (Table III.I). Fifty-one 

clinical strains were isolated from saliva of patients diagnosed with oral infection, before 

antifungal treatment, 51 from the oral cavity of healthy volunteers, 42 from vagina, 27 from 

urine, 43 from upper respiratory tract, and 30 from blood cultures. Two C. albicans reference 

strains (WO-1 and PYCC 3436 (ATCC 18804)) and reference strains of C. krusei PYCC 3343 

(ATCC 6358), C. tropicalis PYCC 3097 (ATCC 750), C. lusitaniae PYCC 2705 (ATCC 34449), 

C. guilliermondi PYCC 2730 (ATCC 6260) and C. dubliniensis, CBS 7987 (ATCC MYA-646) 

were also included in this study. The reference strains were obtained from the Portuguese 
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Yeast Culture Collection (PYCC), New University of Lisbon, Lisbon, Portugal, and from the 

Centraalbureau voor Schimmelcultures, Baarn, The Netherlands.  

All strains were previously identified by their assimilation patterns on ID32C strips (BioMérieux, 

SA, Marcy-L’Étoile, France) and by PCR fingerprinting with primer T3B (Correia et al. 2004).  

 

2.2. Growth conditions and PCR amplification 

Yeast cells were grown at 30ºC for 48 hours on YPD-agar medium (Yeast extract 1%, 

Bactopeptone 1%, Glucose 2% and Agar 2%). For microsatellite amplification, colony-PCR was 

performed. A single colony was picked with a micropipette tip, added to a microtube and the 

cells lysed by thermal shock during 90 seconds in microwaves (Ward 1992; Vaz et al. 2011). 

The microtubes were immediately placed in the ice, and 10µl of PCR reaction mix was added. 

This mixture included 1x PCR Buffer (20mM Tris HCl [pH 8.4], 50mM KCl), 0.2mM of each of 

the four deoxynucleoside triphosphates (dNTPs), 1.5mM MgCl2, 0.25µM of each primer and 1 

U of Taq polymerase. The primers for CAI locus amplification in RLM1 locus are described in 

Sampaio et al. (Sampaio et al. 2003), while the specific primers used for SAP8 locus 

amplification were CAVIII-F:5’- TCCCTGAAGACATTGATAAAAGAGC-3’ and CAVIII-R:5’-

AGAATCAACCACCCATAAATCAGAA-3’. For automatic allele size determination, the CAVIII 

forward primer was 5’ fluorescently labelled with hexachlorofluorescein (HEX) and CAI with 6-

carboxyfluorescein (FAM). 

The samples were amplified in UNOII Thermocycler (Biometra) with a pre-incubation step for 5 

min at 95ºC, 30 cycles of denaturation at 94ºC for 30 s, annealing at 60ºC for 30 s and 

extension at 72ºC for 1 min, and with a final extension step of 10 min at 72ºC. 

 

2.3. Fragment Size Determination and DNA Sequence Analysis 

Following amplification, 2.5 µl of each PCR product was added to 12.5µl of mixture of internal 

size standard (GeneScan 500 6-carboxytetramethylrhodamine [TAMRA]; Applied Biosystems 

Inc.), formamide, and PCR fragments separated in an ABI 310 Genetic Analyzer (Applied 

Biosystems Inc.). Fragment sizes were determined automatically using the GeneScan 3.5 

Analysis Software.  
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2.4. Statistical analysis 

The discriminatory power of the microsatellites markers CAI and CAVIII was expressed as a 

numerical index based on the probability that two unrelated isolates will be placed into different 

typing groups and calculated according to the method of Hunter and Gaston (Hunter and 

Gaston 1988). 

All data were subjected to statistical analysis with the use of Statistical Package for Social 

Science (SPSS®) vers. 11.0, Chicago, IL, EUA. P values were calculated by analysis of variance, 

chi-square test or McNemar’s correlation analysis with 95% of confidence interval (CI) and 5% 

significance level, using the software Genepop version 4.1.3 and allelic frequency was 

calculated use Populations version 1.2.28 (http://www.cnrs-gif.fr/pge). 

Genetic distance between C. albicans strains was calculated using the Cavalli-Forza method 

with the Populations 1.2.30 software (Populations 1.2.30, Oliver Langella, Boston, MA. 

http://bioinformatics.org/~tryphon/population/). Clustering of the isolates was performed 

with NTSys software version 2.0 software (Applied Biostatistics Inc), by using the unweighted 

pair group method with arithmetic mean (UPGMA). 

 

3. Results and discussion 

3.1. Microsatellite locus analysis  

In this work, the ability of CAVIII to differentiate strains was initially studied. The specific 

amplification and the polymorphism of CAVIII microsatellite in SAP8 locus was tested using two 

reference strains and 181 unrelated C. albicans strains, including 51 from saliva of patients 

diagnosed with oral infection, 51 from the oral cavity of healthy volunteers, 42 from vagina, 20 

from urine and 17 from upper respiratory tract (Table III.IV). It is known that C. albicans is 

diploid, and each obtained fragment was considered one allele, so the presence of two 

different fragments represents heterozigozity and the presence of only one fragment 

homozygozity. Less intense stutter bands were frequently present, reflecting polymerase 

slippage during the PCR, but they did not present any problem in the identification of the 

correct fragment since they were of a lower intensity (Fig. 3.1).  
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In vitro stability of CAVIII microsatellite was analysed by growing four independent strains over 

300 generations. For the four strains we observed that genotypes were the same after 300 

generations, suggesting an expected mutation rate less than 3.33x10-3. CAVIII microsatellite 

also revealed to be species specific, since no amplification products were obtained when using 

the described primers in the amplification conditions with DNA from other pathogenic Candida 

species, namely C. glabrata, C. krusei, C. parapsilosis, C. tropicalis, C. guilliermondi, C. 

lusitaniae and C. dubliniensis. It is noteworthy to mention the specificity regarding C. 

dubliniensis, which is very closely related to C. albicans (Sullivan et al. 1995). 

Eight different alleles and 15 genotypes were identified in this survey. The CAVIII fragments 

obtained in this analysis were sequenced in order to determine the nature of the 

polymorphisms observed and the number of repeated units. The number of repeats of the 

obtained PCR products varied between 7 and 14 (CAA/G) repeats, thus the alleles were 

designated by their number of trinucleotidic repeats instead of the molecular weight (Table 

III.I).  

Table III.I Alleles structure of CAVIII locus. The consensus sequence, obtained from data base sequence for 

SC5314 strain is indicated and contain 10 repetitive units. 

CAVIII – Consensus sequence: 

P1(25bp)tgaaaaagttgtctcattagattttaccgttaccagaaaaccttttaatgctactgctcatggacaacatca

tcaatccCAA(CAG)3(CAA)6ccagctcaaaaaagaggaactgttcaaacaagtttgattaatgaaggtccatcat

atgctgctaccatcactgttggttcaaacaaacaacaacaaactgttattgttgacacaggttc-P2(25bp) 

Allele (bp): 

7 (269) Data not analysed 

8 (272) (79bp) ----------------(CAA)8------------------(119bp) 

9 (275) (79bp) ----------------(CAA)9------------------(119bp) 

10a (278) (79bp) CAA(CAG)3(CAA)6------------------(119bp) 

10b (278) (79bp) CAA(CAG)4(CAA)5------------------(119bp) 

11 (281) Data not analysed 

12a (284) (79bp) CAA(CAG)3(CAA)8------------------(119bp) 

Figure 3.1. GeneScan profile demonstrating a less intense stutter band ( ). 
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12b (284) (79bp) CAA(CAG)2(CAA)5CAG(CAA)3--(119bp) 

13 (287) (79bp) CAA(CAG)3(CAA)9------------------(119bp) 

14 (290) Data not analysed 

 

The most frequent CAVIII genotypes were 10-10 (84 strains, 46.4%) and 8-10 (37 strains, 

20.4%) (Figure 3.2). 

	  
Figure 3.2. Genotypes and respective frequencies obtained in CAVIII analysis of all C. albicans strains. 

The discriminatory power was calculated according to the Simpson index of diversity:  

𝐷𝑃 = 1−
1

𝑁(𝑁 − 1) 𝑛𝑗(𝑛𝑗 − 1)
!

!!!

 

where N is the number of strains, s is the total number of different genotypes, and nj is the 

number of strains of j genotype (Hunter and Gaston 1988). The results indicated that CAVIII 

presented a DP value of 0.72. 

CAI microsatellite presented a great genetic variability even though it is present in the coding 

region of a gene, the transcription factor RLM1. Amplification of the same C. albicans isolates 

with the CAI microsatellite resulted in a total of 80 different genotypes with fragments varying 

from 11 to 49 repeat units. The most frequent CAI genotypes were 21-25 (22 strains, 12.2%), 

25-25 (11 strains, 6.1%) and 21-22 (9 strains, 5.0%), and the frequency of the other genotypes 

ranges between 0,6% (1 strain) and 4.4% (8 strains) (Figure 3.3). The discriminatory power, 

calculated according to the Simpson index of diversity for CAI in these same strains was 0.97.  
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Figure 3.3 Genotypes and respective frequencies obtained in CAI analysis of all C. albicans strains. 
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3.2. Use of the microsatellites CAVIII and CAI for strains differentiation 

Sampaio and co-workers (Sampaio et al. 2009) showed a relationship between higher 

molecular weight of CAI genotypes and the ability to survive in different stress conditions, and 

Liu and co-workers (Liu et al. 2009) confirmed a relationship in strains isolated from 

vulvovaginitis with CAI genotypes with higher molecular weight alleles in comparison with 

strains from vagina of asymptomatic women. In this context, we addressed the question of a 

possible correlation between the pathogenicity of lineages of C. albicans strains with regard to 

their genotype at these two repeat-containing ORFs. For this purpose, the strains analysed in 

this study were grouped according to their origin of isolation and population differentiation tests 

were performed concerning allelic and genotypic distribution in the different groups by testing 

the null hypothesis Ho: “the allelic/genotype distribution is identical across populations”. 

Our analysis indicated that the null hypothesis could not be rejected (P>0.05) in the 

comparison of strains form oral infections and from oral asymptomatic individuals, considering 

genetic and genotypic data (Table III.II). 

Table III.II. Unbiased P-values of the probability test estimated by the Fisher method and obtained for each 

population pair considering the combination of CAI and CAVIII microsatellite data. 

Genotypic 
Genetic 

Oral 
Infection 

Oral 
Commensal 

Vulvovaginitis URT Infection 
Urinary 

Infection 

Oral Infection  0.536 0.002 0.125 0.003 

Oral Commensal 0.232  0.000 0.003 0.002 

Vulvovaginitis 0,00000 0,000  0.236 0.000 

URT Infection 0.033 0.000 0.071  0.200 

Urine 0.000 0.000 0.000 0.070  

 

This result suggests that the development of an oral infection is mainly dependent on the host 

conditions rather than on the strain. Additionally, no significant differences were observed in 

the genetic and genotypic distributions between strains from the URT and urine. In this view, it 

was decided to analyse the strains only in three groups. All strains from the oral cavity were 

considered into an oral group, the vaginal strains were incorporated into the vaginal group, and 

the strains from the URT and urine into the extra-mucosal group. The population differentiation 

tests were performed once again and results are showed in Table III.III. 
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Table III.III. Significance of unbiased P-values of the probability test estimated by the Fisher method and 

obtained for each population pair considering microsatellite data. (+ when P<0.05 and - P>0.05). A- Results 

obtained with CAVIII. B- Results obtained with CAI. 

A B 
       Genotypic 

Genetic 
Oral Vaginal 

Extra-

mucosal 

Oral  + + 

Vaginal +  + 

Extra-mucosal + +  

  

       Genotypic 

Genetic 
Oral Vaginal 

Extra-

mucosal 

Oral  - + 

Vaginal -  + 

Extra-mucosal + +  
 

 

The results obtained with CAVIII demonstrated significant allelic and genotypic differences 

(P<0.05) in the comparison between the three groups, showing that the polymorphism in 

SAP8 microsatellite could contribute to differentiate strains isolated from the three different 

groups. However, with CAI no significant differences (P>0.05) between strains from the oral 

and vaginal groups were observed. A significant difference (P<0.05) remained between extra-

mucosal group and the other groups, regarding genetic and genotypic data. Combining the two 

microsatellites, significant differences (P<0.05) were observed in the comparison between all 

groups.  

To confirm this tendency it was necessary to balance the number of strains analysed in each 

group. Therefore, we decided to address again this question increasing the number of strains 

isolated from extra-mucosal infections. With this purpose we used CAI genotypes of strains 

described in previous studies, namely 7 from urine, 26 from upper respiratory tract and 30 

from blood stream, making a total of 102 strains in oral group, 42 in vaginal group and 100 in 

extra-mucosal group (Table III.IV). 

Table III.IV – C. albicans strains used and respective CAI and CAVIII genotypes. 

Strains Source Country 
CAI 

Genotype  
CAVIII 

Genotype 
Strains Source Country 

CAI 
Genotype  

CAVIII 
Genotype 

S008 Saliva Portugal 23/30 9/9 46C VE Portugal 27/27 10/10 

S020 Saliva Portugal 18/34 12/13 49C VE Portugal 21/26 7/10 

S038 Saliva Portugal 21/25 10/10 51C VE Portugal 22/34 7/10 

S040 Saliva Portugal 26/34 8/10 52C VE Portugal 22/34 7/10 

S046 Saliva Portugal 22/26 10/10 53C VE Portugal 27/47 7/10 

S073b Saliva Portugal 22/26 10/10 55C VE Portugal 27/42 7/10 

S078 Saliva Portugal 26/26 10/10 57C VE Portugal 11/28 7/10 

S085 Saliva Portugal 25/25 10/10 58C VE Portugal 28/47 7/10 

S092 Saliva Portugal 21/28 8/10 3J VE Portugal 17/23 10/10 

S094b Saliva Portugal 22/22 10/10 7J VE Portugal 30/30 10/10 

S104 Saliva Portugal 21/25 10/10 12J VE Portugal 18/25 10/10 
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S110 Saliva Portugal 24/25 10/10 17J VE Portugal 21/21 10/10 

S111 Saliva Portugal 26/27 8/8 20J VE Portugal 26/26 10/10 

S117 Saliva Portugal 18/25 10/10 22J VE Portugal 23/27 7/9 

S128a Saliva Portugal 21/25 10/10 27J VE Portugal 22/23 7/9 

S133 Saliva Portugal 18/27 10/10 29J VE Portugal 20/20 10/10 

S134 Saliva Portugal 25/26 10/10 31J VE Portugal 21/26 10/10 

S140 Saliva Portugal 24/26 10/10 35J VE Portugal 25/25 10/10 

S141 Saliva Portugal 21/25 10/10 37J VE Portugal 18/27 10/10 

S142 Saliva Portugal 27/38 8/10 39J VE Portugal 21/21 10/12 

S143 Saliva Portugal 23/28 7/9 41J VE Portugal 23/27 7/9 

S144 Saliva Portugal 23/25 10/10 45J VE Portugal 25/25 10/10 

S145 Saliva Portugal 25/26 10/10 1M Urine Portugal 21/25 10/10 

S148 Saliva Portugal 21/26 8/10 2M Urine Portugal 21/25 10/10 

DM-1 Saliva UK 26/32 10/10 31M Urine Portugal 21/25 10/10 

DM-2 Saliva UK 25/31 10/10 8M Urine Portugal 21/25 10/10 

ND-1 Saliva UK 17/39 10/12 13M Urine Portugal 21/25 10/10 

ND-2 Saliva UK 16/37 10/12 37M Urine Portugal 17/23 8/10 

ND-5 Saliva UK 16/38 10/12 41M Urine Portugal 21/22 10/12 

RB-1 Saliva UK 28/41 8/10 43M Urine Portugal 21/22 10/12 

RB-2 Saliva UK 28/41 8/10 45M Urine Portugal 21/22 10/12 

RB-3 Saliva UK 27/40 8/10 47M Urine Portugal 21/22 10/12 

SAR1 Saliva UK 23/27 10/10 48M Urine Portugal 21/22 10/12 

S001 Saliva Portugal 25/33 12/12 49M Urine Portugal 21/22 12/12 

S005 Saliva Portugal 25/25 12/12 51M Urine Portugal 36/36 12/12 

S006 Saliva Portugal 21/21 10/10 52M Urine Portugal 21/21 9/12 

S009 Saliva Portugal 28/38 8/10 55M Urine Portugal 21/21 9/12 

S013 Saliva Portugal 26/26 10/10 63M Urine Portugal 25/27 10/10 

S017a Saliva Portugal 21/21 10/10 74M Urine Portugal 20/28 10/10 

S019 Saliva Portugal 21/25 10/10 88M Urine Portugal 20/28 10/10 

S031 Saliva Portugal 25/25 10/10 82M Urine Portugal 18/47 8/10 

S032 Saliva Portugal 27/27 8/10 84M Urine Portugal 18/47 8/10 

S034 Saliva Portugal 26/34 8/12 CIPO 34 Urine Portugal 19/28 - 

S036b Saliva Portugal 26/32 8/12 CIPO 47 Urine Portugal 22/22 - 

S045a Saliva Portugal 25/25 10/10 CIPO 45 Urine Portugal 25/26 - 

S052a Saliva Portugal 26/26 12/12 CIPO 90 Urine Portugal 17/40 - 

S076 Saliva Portugal 23/23 10/12 CIPO 26 Urine Portugal 22/22 - 

S108 Saliva Portugal 24/25 10/10 CIPO 64 Urine Portugal 23/27 - 

S151 Saliva Portugal 30/49 8/10 CIPO 92 Urine Portugal 21/23 - 

S152 Saliva Portugal 17/17 8/10 H37 RT Portugal 25/27 7/9 

S153 Saliva Portugal 28/48 8/10 5M RT Portugal 13/32 12/12 

2247 Saliva Brazil 25/43 8/10 10M RT Portugal 17/17 8/10 

2248 Saliva Brazil 25/25 10/10 12M RT Portugal 17/17 8/10 

2249 Saliva Brazil 21/25 10/10 26M RT Portugal 20/28 10/10 

2250 Saliva Brazil 47/49 8/10 35M RT Portugal 24/27 7/9 
2251 Saliva Brazil 11/20 8/10 39M RT Portugal 18/18 10/10 
2252 Saliva Brazil 26/33 9/10 61M RT Portugal 17/21 8/10 
2253 Saliva Brazil 27/30 8/10 62M RT Portugal 28/28 8/10 
2254 Saliva Brazil 27/49 8/10 64M RT Portugal 22/22 10/11 
2255 Saliva Brazil 25/25 10/10 67M RT Portugal 22/22 10/11 
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2256 Saliva Brazil 25/25 10/10 69M RT Portugal 21/25 10/10 
2257 Saliva Brazil 25/25 10/10 75M RT Portugal 21/25 10/10 
Guy331-1 Saliva UK 48/48 8/10 86M RT Portugal 21/25 10/10 
Guy775-1 Saliva UK 42/42 8/10 79M RT Portugal 18/34 12/13 
Guy778-w1 Saliva UK 30/32 8/10 90M RT Portugal 24/24 10/12 
AX Saliva Portugal 26/34 8/12 91M RT Portugal 21/27 10/10 
O Saliva Portugal 27/27 8/10 CIPO 93 RT Portugal 26/34 - 
AR Saliva Portugal 20/28 10/10 CIPO 54 RT Portugal 20/28 - 
F Saliva Portugal 23/26 8/8 CIPO 14 RT Portugal 21/21 - 
J Saliva Portugal 26/34 8/12 CIPO 3 RT Portugal 19/27 - 
AF Saliva Portugal 21/21 10/10 CIPO 84 RT Portugal 23/27 - 
AC Saliva Portugal 21/25 10/10 CIPO 16 RT Portugal 18/18 - 
Aa Saliva Portugal 21/25 10/10 CIPO 99 RT Portugal 21/22 - 
S Saliva Portugal 21/25 8/10 CIPO 8 RT Portugal 21/30 - 
AA Saliva Portugal 21/22 8/12 CIPO 25 RT Portugal 18/18 - 
R Saliva Portugal 21/26 10/10 CIPO 76 RT Portugal 21/25 - 
Q Saliva Portugal 30/31 10/10 CIPO 15 RT Portugal 17/21 - 
BB Saliva Portugal 26/26 10/10 CIPO 7 RT Portugal 25/33 - 
AH Saliva Portugal 27/45 8/10 CIPO 49 RT Portugal 25/25 - 
AL Saliva Portugal 18/25 10/10 CIPO 66 RT Portugal 26/30 - 
L Saliva Portugal 21/22 10/12 CIPO 31 RT Portugal 20/28 - 
M Saliva Portugal 28/28 8/10 CIPO 21 RT Portugal 21/21 - 
BC Saliva Portugal 21/25 10/10 CIPO 19 RT Portugal 13/25 - 
AP Saliva Portugal 23/28 10/10 CIPO 13 RT Portugal 21/25 - 
AN Saliva Portugal 35/37 10/10 CIPO 40 RT Portugal 17/17 - 
CDQN5 Saliva Portugal 23/26 8/8 CIPO 36 RT Portugal 18/25 - 
CDQN10 Saliva Portugal 23/28 10/10 CIPO 27 RT Portugal 18/27 - 
CD1 Saliva Portugal 19/19 10/10 CIPO 41 RT Portugal 20/26 - 
BE1 Saliva Portugal 21/25 10/10 CIPO 74 RT Portugal 26/26 - 
BH Saliva Portugal 21/24 10/10 CIPO 32 RT Portugal 24/26 - 
BI Saliva Portugal 21/22 8/12 CIPO 85 RT Portugal 18/25 - 
BJota Saliva Portugal 20/28 10/10 CIPO 63 RT Portugal 21/22 - 
B1 Saliva Portugal 25/25 10/10 HSJ 63 BC Portugal 16/25 - 
N1 Saliva Portugal 27/47 8/10 HSJ 69 BC Portugal 16/25 - 
O1 Saliva Portugal 27/46 8/10 HSJ 90 BC Portugal 21/25 - 
Bx Saliva Portugal 25/26 10/10 HSJ 93 BC Portugal 21/25 - 
AZ1 Saliva Portugal 21/21 10/10 HSJ 114 BC Portugal 12/12 - 
V1 Saliva 

Portugal 
30/30 

10/10 
HSJ 
124a 

BC 
Portugal 18/34 - 

BL Saliva Portugal 28/29 8/10 HSJ 140 BC Portugal 18/34 - 
BP Saliva Portugal 25/35 10/10 HSJ 144 BC Portugal 18/34 - 
BQ Saliva Portugal 34/34 8/12 HSJ 130 BC Portugal 12/12 - 
BV Saliva Portugal 26/26 8/12 HSJ 141 BC Portugal 12/17 - 
1C VE Portugal 17/21 8/8 HSJ 143 BC Portugal 26/26 - 
2C VE Portugal 26/33 8/8 HSJ 150 BC Portugal 26/26 - 
3C VE Portugal 20/37 12/14 HSJ 154 BC Portugal 26/26 - 
5C VE Portugal 18/18 8/8 HSJ 155 BC Portugal 29/29 - 
6C VE Portugal 21/26 10/10 HSJ 164 BC Portugal 26/28 - 
7C VE Portugal 25/26 10/10 HSJ 165 BC Portugal 21/25 - 
9C VE Portugal 24/26 8/8 HSJ 168 BC Portugal 21/26 - 
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10C VE Portugal 27/49 8/10 IPOL 1 BC Portugal 25/25 - 
11C VE Portugal 21/25 10/10 IPOL 2 BC Portugal 25/25 - 
13C VE Portugal 20/27 10/10 IPOL7 BC Portugal 26/26 - 
14C VE Portugal 39/46 8/10 IPOL 10 BC Portugal 12/12 - 
16C VE Portugal 21/26 10/10 IPOL 11 BC Portugal 23/27 - 
19C VE Portugal 27/27 8/10 IPOL 13 BC Portugal 40/40 - 
24C VE Portugal 17/21 8/8 IPOL 14 BC Portugal 20/28 - 
27C VE Portugal 16/27 7/10 IPOL 15 BC Portugal 35/44 - 
31C VE Portugal 21/25 10/10 IPOL 17 BC Portugal 16/38 - 
35C VE Portugal 21/25 9/11 IPOL 19 BC Portugal 18/28 - 
36C VE Portugal 11/18 7/9 IPOL 20 BC Portugal 21/25 - 
39C VE Portugal 20/18 7/9 IPOL 21 BC Portugal 19/34 - 
45C VE Portugal 11/18 10/10 IPOL 22 BC Portugal 21/26 - 

- no data was obtained for these strains, VE vaginal exsudate, RT respiratory tract, BC blood culture 
  
 

 

A total of 97 CAI genotypes were obtained in the amplification of all selected strains. The 

number of different genotypes identified in each group was 59 to the oral group, 31 to the 

vaginal group and 46 to the extra-mucosal group. The genotype 21-25 remained the most 

common genotype in all groups, as well as 25-25 in strains from oral group, 21-26 in strains 

from vaginal group and 21-22 in strains from extra-mucosal group (Figure 3.4).  

In order to confirm the population differences observed, population differentiation tests were 

performed concerning allelic and genotypic distribution with higher number of strains. No 

significant differences were found between strains from oral and vaginal groups, considering 

the genotypic and genetic distribution (P>0.05). The extra-mucosal group remained significant 

different (P<0.05) from strains from the other groups, comparing the genetic data (Table III.V).  

Table III.V. Unbiased P-values of the probability test estimated by the Fisher method and obtained for each 

population pair considering CAI microsatellite data. 

       Genotypic 

Genetic 
Oral Vaginal 

Extra-

mucosal 

Oral  0.609 0.008 

Vaginal 0.367  0.166 

Extra-mucosal 0.000 0.025  

 



 

	  

 

  



 

	  

	  

	  

Figure 3.4. Genotypic frequencies based on CAI microsatellite analysis of Candida albicans strains from (a) oral group, (b) vaginal group and (c) extra-mucosal group. 
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These results demonstrated a similarity between the genotypes of oral and vulvovaginal 

isolates, strains isolated from mucosal surfaces. Therefore, a final analysis was performed 

comparing strains from superficial infections and strains from invasive infections, regarding 

CAI genotype. The superficial group (total of 144 strains) contains strains isolated from oral 

infection, strains from saliva of healthy volunteers and strains from vulvovaginal candidiasis. 

On the other hand, the invasive group (total of 100 strains) contains strains isolated from 

upper respiratory tract, urinary and blood stream infection. 

 The genotypic frequency of both groups demonstrated that the genotype 21-25 remains the 

most common. These results also demonstrated that strains from the superficial group 

presented an increase of genotypes with higher molecular weight, comparing to the invasive 

group (Figure 3.5). Moreover, the superficial group had 51 specific genotypes, which 

represents 46.5% (67 strains) of all superficial strains, whereas the invasive group had 23 

specific genotypes, which represents 27.0% (27 strains) of all invasive strains (Figure 3.6).  

Li and co-authors (Li et al. 2008) described that CAI genotyping presented a biased distribution 

in which, strains isolated from vulvovaginal candidiasis (VVC) and Candida balanoposthitis 

showed CAI alleles with high molecular weight, with emphasis in four genotypes, when 

compared with strains isolated from asymptomatic women. The specific CAI genotypes 

described were 30-45, 32-46, 30-36 and 30-47, however, these genotypes were not found in 

strains of vaginal group studied in this work. Nevertheless, strains from the superficial group 

presented an increase of genotypes with higher molecular weight, comparing with invasive 

group, such as 42-42, 47-49 and 48-48 (Figure 3.5). These results confirm a biased 

distribution of CAI genotypes in strains isolated from superficial infections comparing with 

strains isolated from invasive infections. 

 

 



 

	  



 

 

	  

	  

	  

	  

	  

Figure 3.5. Genotypic frequencies based on CAI microsatellite analysis of Candida albicans strains from (n) superficial group and (n) invasive group. 
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Figure 3.6. Specific genotypes and respective frequencies obtained with CAVI analysis of C. albicans strains from (a) Superficial group and (b) Invasive group. 
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Sampaio and co-authors (Sampaio et al. 2009) classified CAI alleles according to its number of 

CAA/G repetitions, namely alleles with less than 16 repetitions were type I, alleles with 

repetitions from 17 to 28, type II; and alleles with more than 28 repetitions, type group III. In 

order to group strains in this study according to this allele classification, genotypes were 

codified accordingly and the cluster analysis performed (Figure 3.7). 

It is possible to distinguish three major groups of isolates. Group A includes 24,18% (59 

strains) of all strains, and represents genotypes with high molecular weight alleles, type III; the 

group B includes 71,31% (174 strains) of the strains representing genotypes with alleles type 

II; and group C includes 4,51% of all strains (11 strains) and represents genotypes with low 

molecular weight alleles, type I. In groups B and C an equally distribution of superficial and 

invasive strains (approximately 50% of each) was observed. However, in group A, the majority 

of the strains were isolated from superficial infection (76,27%, 45 strains). This result confirms 

Li and co-authors (Li et al. 2008) observation that CAI genotyping presents a biased 

distribution in which, strains isolated from superficial infection showed CAI alleles with high 

molecular weight comparing with strains isolated from invasive infections. 

To confirm this hypothesis population differentiation tests were performed concerning allelic 

and genotypic distribution with these two different groups. Regarding genetic (P=0.000) and 

genotypic (P=0.006) data, a significant difference (P<0.05) was observed in comparison 

between strains isolated from superficial infection/commensalism and strains isolated from 

invasive infections, supporting the results presented above. 

In conclusion, the presence of specific genotypes in superficial and invasive groups 

demonstrates the ability of CAI to differentiate strains isolated from different body locations. 

Moreover, the increasing incidence of CAI genotypes with high molecular weight in superficial 

strains can explain the influence of this microsatellite in the adaptation to mucosal conditions.	  	  
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Figure 3.7. UPGMA clustering of 244 C. albicans isolates based on the genotypes, showing three phylogenetic 

groups (A, B and C). The percentage of strains with different origins in each group is represented by different 

shades: black, invasive infection; grey, superficial infections.	  
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4. Conclusion and final remarks 

The commensal yeast Candida albicans is the most common opportunistic pathogen, causing 

a number of superficial and invasive infections in humans (Hube 2004). It is thought that the 

pathogenicity and antifungal susceptibility of this yeast vary among strains, thus, correlation 

between the pathogenicity of lineages of C. albicans strains with variation at molecular markers 

can be important. Moreover, the identification of different strains can be essential for 

addressing medical questions such as the origin of the infective strains.  

The genome of C. albicans contains a large number of repeat-containing ORFs, including SAP8 

and RLM1 (Braun et al. 2005). SAP8 gene encoding an extracellular SAP with unknown 

function and contains an uncharacterized microsatellite consisting of (CAA/G) repeat units (Wu 

and Samaranayake 1999; Ripeau et al. 2002). Several molecular methods have been used to 

type C. albicans strains and microsatellite markers have assumed increasing importance due 

to their high level of polymorphism and stability. In this work was developed an SAP8 

microsatellite marker, designated by CAVIII, in order to observe its ability to differentiate C. 

albicans strains. The results obtained suggested that SAP8 microsatellite loci has a reasonable 

discriminatory power of 0.72 and presents great specificity.  

Although a number of polymorphic microsatellite markers have been reported in C. albicans 

(Botterel et al. 2001; Sampaio et al. 2005), CAI, which is specific for RLM1 microsatellite loci, 

appears to be more polymorphic than other STRs (Sampaio et al. 2003). Thus, same strains 

used in CAVIII analysis were tested using CAI microsatellite marker. The results obtained 

demonstrated the great specificity of CAI marker, which presents a discriminatory power of 

0.97. 

Previous studies demonstrated the relationship between higher molecular weight of CAI 

genotypes and the ability to survive in different stress conditions (Liu et al. 2009; Sampaio et 

al. 2009). Therefore, we consider important verify the ability of this marker to distinguish 

strains isolated from different body sources. Since SAP8 microsatellite marker is also located 

in a coding region, differences in SAP8 genotypes were also studied. The results suggested 

that CAVII can contribute significantly to differentiate C. albicans strains isolated from different 

body locations, namely from oral cavity, vaginal infection and extra-mucosal infections, 

however, CAI was not able to differentiate strains isolated from oral cavity and vaginal infection. 
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The results obtained also suggested that the ability to differentiate strains increased when CAI 

and CAVIII microsatellite markers were combined. 

In order to balance the number of strains isolated from the different groups, 63 strains from 

extra-mucosal infections were added to study, however, only CAI genotypes were analysed. The 

results obtained suggested that the CAI microsatellite marker remains unable to differentiate 

strains isolated from oral cavity and strains from vulvovaginal infection. Therefore, the strains 

were organized into two groups, namely superficial infections and invasive infections, and the 

results obtained in this division demonstrated that CAI microsatellite marker is able to 

differentiate strains isolated from the two selected groups. 

Although the CAI microsatellite marker was able to differentiate C. albicans strains isolated 

from superficial and invasive infections, it was observed that the combination of both CAI and 

CAVIII microsatellite markers is able to differentiate strains into three groups (oral group, 

vaginal group and extra-mucosal group). Thus, it seems important test all strains used with 

both microsatellite markers and verify if the tendencies observed with CAI microsatellites 

remains. The increase of the number of vaginal strains, in the differentiation of oral group, 

vaginal group and extra-mucosal group, is also important. 
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In the last two decades an alarming increase in the number of fungal infections has been 

observed. The use of more aggressive therapeutic methods, such as chemotherapeutic agents, 

bone marrow or solid-organ transplants, immunomodulatory agents, broad-spectrum 

antibiotics and more aggressive surgeries are some of the reasons proposed to explain this 

increased incidence (Peres-Bota et al. 2004; Benjamin et al. 2010). A number of ethological 

agents may be involved in the development of fungal infections, such as Aspergillus spp., 

Cryptococcus spp., Malasezzia spp., Fusarium spp. or Trichosporon spp., however, Candida 

species are the most frequently found (Fridkin and Jarvis 1996).  

There are about 150 species of Candida, but only a small number are human pathogens. 

Candida albicans is considered the most frequently species isolated from Candida infections, 

however, other species such as Candida tropicalis, Candida glabrata, Candida parapsilosis and 

Candida krusei have been increasingly recognized as pathogens with a wide distribution 

(Tortorano et al. 2004).  

The rapid and correct identification of infecting species is crucial since Candida species differ 

in their susceptibility to antifungal agents. Clinical microbiology laboratory methodologies for 

the identification of pathogenic fungal species are based on morphological, physiological and 

biochemical tests, which requires three or more days and may be inaccurate. (Ellepola and 

Morrison 2005). Molecular methodologies, especially based in the analysis of DNA sequences, 

are characterized by their high specificity, sensibility and reproducibility. Microsatellite 

sequences have been largely used as molecular targets to differentiate and characterize 

strains. However, no studies have been performed using microsatellite DNA for Candida 

species identification. Therefore, the main objectives of this work were the evaluation of the 

potential of microsatellite markers for species differentiation and for identification of specific C. 

albicans lineages. 

Initially a new multiplex methodology based in microsatellite loci analysis was developed to 

identify the most clinically important Candida species. In this work a new multiplex-PCR 

methodology was developed to identify the most clinically important Candida species (C. 

albicans, C. parapsilosis, C. glabrata, C. tropicalis and C. krusei). This methodology showed a 

high stability and capacity to discriminate the different Candida species. However, although 

performing well in singleplex- PCR, the marker design to identify C. tropicalis isolates was 

unable to amplify in multiplex-PCR. C. tropicalis infections have been reported in 
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immunocompromised patients with chronic mucocutaneous candidiasis and its incidence in 

invasive candidiasis in neutropenic patients has been increasing (Kothavade et al. 2010). 

Thus, in the future is imperative to include C. tropicalis identification in this methodology and 

new primers for CT14 locus has already been designed. Given the need for fast and accurate 

diagnostic methodologies in microbiology laboratories, it would also be important in the future 

to test this multiplex directly in clinical samples from different Hospitals and Health Centres 

The methodology developed is easy to perform and can be implemented at relatively low cost 

for routine identification in Hospitals and Health Centres.  

Microorganisms evolved mechanisms for increasing genetic variations in loci that are involved 

in critical interaction with the host. These alterations can be achieved by several mechanisms, 

including mechanisms that generate hypervariability in repeat-containing ORFs, the addition or 

deletion of repeat units during replication, through slipped-strand mispairing or gene 

conversion is the best characterized. Thus, it has been suggested that repeat-containing ORFs 

may be important C. albicans fitness determinants. In this view, the applicability of two repeat-

containing ORFs, RLM1 and SAP8, in the discrimination of C. albicans lineages was also 

addressed in this study. Rlm1, this is one of the transcription factors of the cell wall integrity 

(CWI) pathway and it has been demonstrated that Rlm1 presents a great variability at its C-

terminus, conferred by the CAI microsatellite with more than 35 alleles identified and that 

strains with high molecular weight alleles display higher tolerance to cell wall stress agents 

(Sampaio et al. 2009). SAP8 gene, encoding an extracellular Secreted Aspartyl Proteinase 

contains a microsatellite consisting of (CAA/G) repeat units, named CAVIII, at the C-terminus of 

the protein that has not been characterized. After the characterization of CAVIII, the genotypes 

obtained were combined with CAI results to test 144 unrelated C. albicans strains isolated 

from different body locations. The combination of genotypes form these two repeat-containing 

ORFs allowed the clear statistical differentiation of strains from superficial (oral and vagina) and 

invasive (respiratory tract, urine and blood) infections, in a universe of 224 strains. This 

differentiation may reflect adaptation of strains to different host environments since these ORFs 

express proteins that are important in the direct contact with the host. However, to confirm this 

capacity to differentiate strains according to its habitat of isolation, genotypes from a few 

strains from this study must be completed and strains from different geographic areas 

(different countries) included. 
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The results obtained with this work allowed concluding that the microsatellite loci analysis can 

be used to differentiate the most common Candida species, being an alternative in clinical 

diagnosis. Moreover, it was also possible observe that analysis of repeat-containing ORFs, such 

as RLM1 and SAP8 is able to differentiate lineages of C. albicans. 
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