
Ana Xavier Silva de Magalhães

Maio de 2012

Universidade do Minho

Escola de Ciências

U
M

in
ho

|2
01

2
An

a 
Xa

vi
er

 S
ilv

a 
de

 M
ag

al
hã

es

The Transcriptome of the Oncogenic HOXA9
Homeoprotein in Human Glioblastoma: 
Functional and Clinical Relevance

T
h

e
 T

ra
n

sc
ri

p
to

m
e

 o
f 

th
e

 O
n

co
g

e
n

ic
 H

O
X

A
9

 H
o

m
e

o
p

ro
te

in
 in

 H
u

m
a

n
 G

lio
b

la
st

o
m

a
: 

Fu
n

ct
io

n
a

l a
n

d
 C

lin
ic

a
l R

e
le

va
n

ce



Ana Xavier Silva de Magalhães

Maio de 2012

Universidade do Minho

Escola de Ciências

Trabalho efetuado sob a orientação do
Doutor Bruno Marques Costa
e da
Doutora Maria João Sousa

Dissertação de Mestrado
Mestrado em Genética Molecular

The Transcriptome of the Oncogenic HOXA9
Homeoprotein in Human Glioblastoma: 
Functional and Clinical Relevance



ii 

Declaração 

 

 

Nome: Ana Xavier Silva de Magalhães 

Endereço Electrónico: anaxsmagalhaes@ecsaude.uminho.pt 

Telefone: (+351)963153268 

Número do Bilhete de Identidade: 13348361 

 

 

Título da Dissertação: 

The Transcriptome of the Oncogenic HOXA9 Homeoprotein in Human Glioblastoma: Functional 

and Clinical Relevance 

O Transcriptoma da Homeoproteína Oncogénica HOXA9 no Glioblastoma Humano: Relevância 

Funcional e Clínica 

 

 

Orientadores: 

Doutor Bruno Marques Costa 

Doutora Maria João Sousa 

 

 

Ano de Conclusão: 2012 

 

Designação do Mestrado: Mestrado em Genética Molecular 

 

É AUTORIZADA A REPRODUÇÃO PARCIAL DESTA TESE, APENAS 

PARA EFEITOS DE INVESTIGAÇÃO, MEDIANTE DECLARAÇÃO 

ESCRITA DO INTERESSADO, QUE A TAL SE COMPROMETE. 

 

Universidade do Minho, ____/____/____ 

 

Assinatura: _____________________________________________ 



iii 

Agradecimentos 

 

 Encaro esta secção como uma mera formalidade, pois não serão estas parcas 

palavras capazes de agradecer convenientemente a todos. Penso que os 

agradecimentos devem ser feitos na altura devida e, demonstrados diariamente com 

empenho, entusiasmo e persistência. Mesmo assim, deixo alguns agradecimentos que 

me parecem mais importante, sem desmerecer a contribuição e apoio de quem 

eventualmente não esteja aqui. 

Começo por agradecer ao Doutor Bruno Costa por me ter recebido no seu 

grupo de investigação e pela total disponibilidade, incentivo, apoio, ensinamento e 

confiança transmitidos durante a execução deste trabalho. 

 À minha supervisora Doutora Maria João Sousa agradeço a disponibilidade e 

compreensão da necessidade de timings tão apertados. 

 À Marta Pojo quero agradecer a paciência, atenção, disponibilidade, ajuda e 

incentivo, mas acima de tudo, pelo olhar crítico e por me fazer pensar com clareza 

mesmo quando tudo parece estar errado. Às restantes meninas do grupo Tatiana, 

Carina, Joana, Céline, obrigada pela disponibilidade, paciência e apoio, mas também 

pelos momentos de boa disposição que se alarga a todos os elementos que passaram 

pelo grupo. 

 Márcia, as palavras não chegam para te agradecer! Obrigada por me teres 

indicado a este grupo, por todo o apoio, ajuda e partilha de confidências nos melhores 

e nos piores momentos, sem esquecer a tua energia e boa disposição contagiantes. 

Filipe, a discussão científica contigo é sempre frutífera, obrigada por todo o incentivo, 

disponibilidade e por me ouvires nos momentos de frustração. 

 Aos restantes elementos do laboratório, em especial à Marta, Dina, Nelma e 

Ricardo quero agradecer todos os momentos de boa disposição e descontracção. 

Assim como a todos os NeRDs pela fácil integração e relacionamento. 

Sem me alongar em demasia, meus bioquímicos obrigada por tudo! Pelo apoio 

e amizade, mas acima de tudo pelos momentos de enorme boa disposição e 

descontracção, tão necessários quando tudo parece andar em sentido contrário! 

 

 



 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

Summary / Resumo 
 

 

 

 

 

 



 

 



vii 

The Transcriptome of the Oncogenic HOXA9 Homeoprotein in Human Glioblastoma: 

Functional and Clinical Relevance 

 

Summary 
Gliomas are a heterogeneous group of neoplasias that account for the majority 

of primary tumors of the central nervous system, of which glioblastoma (GBM) is the 

most common and malignant subtype. These are dramatic diseases for which no 

curative therapies are yet available. The clinical responses of GBM patients are 

particularly poor and vary greatly among individuals, especially due to the 

heterogeneity of their molecular alterations. Regardless, these patients are equally 

treated with a standardized therapeutic approach, mainly due to the lack of well-

established molecular prognostic markers. Recently, the reactivation of HOXA9 

expression in GBM has been implicated as a poor prognostic marker. As HOXA9 is a 

transcription factor, we hypothesized that a set of HOXA9-transcriptionally regulated 

genes may be its true biological effectors. In this sense, we aimed to characterize the 

HOXA9 transcriptome in GBM to identify novel prognostic biomarkers and putative 

therapeutic targets. By analyzing expression microarrays in HOXA9-negative and 

positive U87MG and hTERT/E6/E7 cells, we found a vast number of genes regulated by 

HOXA9 that are involved in important hallmarks of cancer as proliferation, invasion, 

and therapy resistance. Interestingly, we found high expression of the long non-coding 

RNA HOTAIR (HOX transcript antisense intergenic RNA) in HOXA9-positive GBM cell 

lines, consistent with a significant co-expression between HOTAIR and HOXA9 in high-

grade gliomas, particularly GBMs. Mechanistically, using chromatin 

immunoprecipitation and quantitative PCR analysis in GBM cell lines, we found that 

HOXA9 directly interacts with the promoter region of HOTAIR and induces its 

transcription. Importantly, GBM patients with high expression of HOTAIR had a 

relatively shorter overall survival, independently of other putative prognostic factors. 

Using in silico analysis we found other putative direct targets of HOXA9, and ChIP 

analysis proved the direct regulation of WNT6 (Wingless-Type MMTV Integration Site 

Family Member 6) by HOXA9. Our study provides the first characterization of HOXA9 

target genes in the context of GBM, and identifies new clinically-relevant prognostic 

biomarkers, which may be new therapeutic targets to treat this aggressive malignancy. 
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O Transcriptoma da Homeoproteína Oncogénica HOXA9 no Glioblastoma Humano: 

Relevância Funcional e Clínica 

 

Resumo 
 Os gliomas são um grupo heterogéneo de neoplasias que constituem a maioria 

dos tumores primários do sistema nervoso central, dos quais o glioblastoma (GBM) é o 

simultaneamente o mais comum e o mais maligno. Actualmente não existem ainda 

terapias eficazes para estas neoplasias altamente agressivas. A resposta clínica dos 

pacientes de GBM é extremamente insatisfatória e variável entre indivíduos, 

sobretudo devido à heterogeneidade das alterações moleculares presente nestes 

tumores. Devido à falta de factores de prognóstico bem estabelecidos, todos os 

pacientes são tratados com a mesma abordagem terapêutica. Recentemente, a 

reactivação da expressão do HOXA9 em GBM foi implicada como um marcador de pior 

prognóstico. Como o HOXA9 é um factor de transcrição, colocamos a hipótese de que 

um grupo de genes regulados pelo HOXA9 poderão ser os seus efetores biológicos. 

Assim, tivemos como objectivo caracterizar o transcriptoma do HOXA9 em GBM, para 

identificar novos biomarcadores de prognóstico e potenciais alvos terapêuticos. Pela 

análise de microarrays de expressão em linhas celulares U87MG e hTERT/E6/E7, com e 

sem a expressão de HOXA9, verificámos que muitos dos genes-alvo do HOXA9 regulam 

características críticas no cancro, como a proliferação, a invasão e a resistência à 

terapia. Verificámos ainda uma expressão aumentada do RNA não-codificante HOTAIR 

(HOX transcript antisense intergenic RNA) em células de GBM HOXA9-positivas, um 

resultado consistente com a co-expressão entre HOTAIR e HOXA9 em gliomas 

primários de alto-grau. Usando imunoprecipitação da cromatina (ChIP) e PCR 

quantitativo em linhas celulares de GBM verificámos que o HOXA9 interage 

directamente com a região promotora do HOTAIR, induzindo a sua expressão. 

Encontrámos também uma relevante associação entre altos níveis de expressão do 

HOTAIR e uma pior sobrevida dos pacientes de GBM. Por análises in silico, 

encontrámos outros potenciais alvos directos do HOXA9, tendo validado o WNT6 

(Wingless-Type MMTV Integration Site Family Member 6) por ChIP. Resumindo, o 

nosso estudo providencia a primeira caracterização dos alvos do HOXA9 em GBM, e 

identifica novos biomarcadores de prognóstico, que poderão auxiliar a racionalização 

das decisões terapêuticas, bem como vir a ser testados como novos alvos terapêuticos. 
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1. Introduction 

 

Cancer remains a major health problem, and according to the International 

Agency for Research on Cancer (IARC), its global burden has more than doubled in the 

last 30 years1. Cancer is the leading cause of death in economically developed 

countries and the second on developing countries, as a consequence of population 

ageing and adoption of cancer-associated behaviors2. Despite the progress in 

treatment strategies (surgery, radiotherapy and chemotherapy), the GLOBOCAN 20083 

estimated that 12.7 million new cancer cases and 7.6 million cancer deaths have 

occurred in 2008. 

 Cancer increasing incidence has stimulated intense research, which has created 

a huge body of knowledge. Cancer is thought to arise by stepwise genetic alterations, 

such as DNA sequence changes, copy number aberrations, chromosomal 

rearrangements, and epigenetic alterations. Together, these result in altered growth 

and survival properties of cells, and drive the development and progression of the 

malignancy4,5. During the multistep development of human tumors, cells need to 

attain certain biological abilities, typically termed hallmarks of cancer6. Hanahan and 

Weinberg6 proposed ten hallmarks which have distinctive and complementary 

capabilities that enable tumor growth and metastatic dissemination (Figure 1.1), 

including active invasion and metastasis, sustained proliferative signaling, evasion from 

growth suppressors, resistance to cell death, replicative immortality, induction of 

angiogenesis, evasion from immune destruction, genome instability and mutation, 

deregulation of cellular energetics, and promotion of tumor inflammation6. 

 The ultimate cause of cancer is the alteration on the balance of cellular 

networks and gene expression programs that maintain cellular homeostasis. Analysis 

of genetic alterations in tumors allowed the identification of several genes responsible 

for the maintenance of such balance. These genes were divided into oncogenes, which 

are activated to promote malignancy, and tumor suppressor genes that protect cells 

against harmful mutations and cellular regulations capable of driving malignant 

transformation. Several studies have been revealing mutational alterations in genes
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Figure 1.1| The ten hallmarks of cancer proposed by 
Hanahan and Weinberg. These include sustaining 
proliferative signaling, evading growth suppressors, resisting 
cell death, evading immune destruction, enabling replicative 
immortality, inducing angiogenesis, activating invasion and 
metastasis, and reprogramming of energy metabolism. 
Underlying these hallmarks are genome instability, and 
inflammation. (Adapted from Hanahan and Weinberg, 
2011

6
) 

 

that control critical pathways, such as cell survival, growth arrest, DNA damage 

response, and apoptosis. Recently, was defined a set of twelve core pathways leading 

to cancer progression, including: apoptosis, DNA damage control, regulation of G1-to-S 

phase progression, hedgehog signaling, cell adhesion, integrin signaling, c-Jun N-

terminal kinase signaling, KRAS signaling, regulation of invasion, small GTPase-

dependent signaling, TGF-β signaling and Wnt/Notch signaling7-10. Nonetheless, only 

the complete understanding of cancer as a multi‐factorial disease, in which several 

pathways contribute to various stages of tumorigenesis, will allow a more rational 

design and use of new therapies.  

 

 

1.1  General Epidemiology and Classification of Primary Brain Tumors 

 

Tumors of the central nervous system (CNS) comprise a broad variety of 

entities, which range from benign to highly malignant. According to GLOBOCAN 200811, 
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the world age-standardized incidence rate (ASR; Figure 1.2) of all primary brain and 

CNS tumors is higher in men than in women (3.8 vs. 3.1 per 100,000 people, 

respectively), a tendency that is also observed in Europe (6.2 in men vs. 4.6 in women) 

and in Portugal (7.4 in men vs. 5.4 in women)12. These tumors are far more incident in 

industrialized countries than in developing countries (Figure 1.2), but this is probably a 

consequence of the discrepancy on diagnostic equipment and appropriate health care. 

Although primary brain and CNS tumors present low incidence rates, accounting only 

for approximately 2% of all primary tumors13, they present high rates of mortality, and 

rank first for average of years of life lost among all tumor types14. 

Typically, the classification of these tumors is based on their localization within 

the CNS and the histopathological features they present, which has allowed the 

classification of a large number of CNS tumors by the World Health Organization 

(WHO)15. Gliomas are the most frequent CNS primary tumors in adults, encompassing 

a wide group of neoplasias that are classified according to the glial cell of origin or the 

morphological similarities between tumor and normal glial cells. These tumors consist 

mainly of three different tissue types15: ependymomas derived from ependyma or 

their precursors represent less than 10% of all gliomas; oligodendrogliomas derived 

from oligodendrocytes or their precursors account for 10-30% of all gliomas cases; 

astrocytomas which are derived from astrocytes and are the most common 

malignancies in CNS, consisting of about 70% of all diagnosed gliomas16,17; and 

oligoastrocytomas, which are a mixed lineage between oligodendrogliomas and 

astrocytomas, and represent 5-10% of all gliomas. The WHO grading system classifies 

astrocytomas in four grades of malignancy, spanning from the non-infiltrative and low-

grade (WHO grade I) pilocytic astrocytoma to the malignant and highly infiltrative 

diffuse astrocytoma (WHO grade II), anaplastic astrocytoma (WHO grade III) and 

glioblastoma (WHO grade IV)18,19. 

Glioblastoma (GBM) is the most frequent and lethal of all primary tumors of the 

CNS in adults, accounting for more than 50% of all glial tumor types, with a global 

incidence rate of about 5 per 100,000 people/year20. Typically, the incidence peak in 

adults occurs between 45 and 70 years, and males are more frequently affected than 

females (male to female ratio of 1.7); the incidence also doubles in Caucasians as 
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Figure 1.2| Worldwide estimated age-standardized incidence rate per 100,000 person for brain and 
nervous system tumors in males (left map) and in females (right map)

11
. 

 

compared to black people21. GBMs are characterized by rapid growth and diffuse 

invasiveness of the adjacent brain parenchyma, and its histopathological features 

include cellular polymorphism, mitotic activity, nuclear atypia, vascular thrombosis, 

microvascular proliferation, and necrosis22. From a clinical and biological point of view, 

GBMs may be divided into primary (or de novo) and secondary GBMs. Primary GBM, 

which is by far the most common subtype, arises as a de novo process, in the absence 

of a pre-existing lower-grade lesion, and manifest rapidly after a short clinical history. 

In contrast, secondary GBM develops progressively from lower-grade astrocytomas 

(WHO grades II or III), generally over a period of 5 to 10 years23. According to the 

report of Ohgaki and Kleihues24, secondary GBM represent only 5% of all cases, and 

the patients’ age distribution in both subtypes is remarkably different: the incidence 

peak for primary GBMs is 62 years, whereas secondary GBM develop in younger ages 

(peak at 45 years). Also, primary GBMs are more commonly diagnosed in males than 

females (male to female ratio 1.33), while secondary GBMs are more frequent in 

females than in males (male to female ratio 0.65)23.  

The current standard of care for GBM patients is multimodal, consisting of 

maximum surgical resection, combined with radiation and concomitant and adjuvant 

chemotherapy with the alkylating agent temozolomide25. However, and despite 

several efforts in the field of clinical neuro-oncology, the treatment remains mostly 

palliative, with an average survival of 15 months24,25. The clinical outcome of GBM 

patients varies greatly among individuals; nonetheless they are treated with the same 

standardized procedure, regardless of specific molecular alterations. So, understanding 

GBM as a result of several alterations, in which several pathways contribute to its 



1. Introduction 

7 

onset and aggressiveness, implies the need of holistic studies to evaluate the role of 

the different molecular players in gliomagenesis. Such would answer the urgent need 

to stratify patients in cohorts according to the molecular alterations of each tumor, 

and will lead to the rationalization of treatment decisions, and possibly to a patient-

tailored therapy. 

 

 

1.2 Molecular Pathology of Glioblastoma 

 

Decades of molecular studies have shown that the stochastic and complex 

transformation of normal cells into GBMs is similar to the tumorigenesis of other 

human tissues, as in both cases results from the sequential accumulation of genetic 

aberrations and the deregulation of signaling pathways (Figure 1.3 and 1.4). The 

determination of the human genome sequence, complemented with the 

improvements in bioinformatics technologies, allowed the intense characterization of 

the molecular alterations promoting GBM formation26 (Figure 1.4). Similar to other 

human tumors, the cancer stem cell (CSC) hypothesis is also considered as a possible 

mechanism for the formation of GBM. This hypothesis postulates that cancer is 

derived from a small set of stem cells that create a self-sustaining pool, and in fact, the 

adult nervous system harbors neural stem cells that are able to proliferate, self-renew, 

and differentiate into different mature cell types27. Specifically in the brain, it is 

believed that neural stem cells may be transformed into cancer stem cells, due to a 

series of selective mutations, giving rise to GBM28, and although these cells represent 

only a minority of the total burden that constitute the tumor, they seem to have 

crucial roles in allowing tumorigenesis28. Interestingly, GBM stem cells are pointed as 

important contributors to the resistance of brain tumor to chemoradiotherapy29. In 

this sense, the complete elucidation of the differences between normal and CSC may 

allow the development of therapeutic approaches targeting CSC that may overcome 

GBM resistance to therapy, but also may spare normal brain cells from the aggressive 

treatments. 
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Figure 1.3| Main signaling pathways commonly altered in glioblastoma, and the 
alteration frequency of each pathway (dashed boxes). Red and blue colors 
indicate activating and inactivating protein alterations, respectively. (Adapted 

with permission from Pojo and Costa
30) 

 

Among the most common and characterized molecular alterations in GBM, 

cytogenetic studies have identified numerous chromosomal regions with copy number 

alterations. In general, amplification or chromosomal gains are related with 

oncogenes, as they favor tumor development, while deletions are typically found in 

tumor suppressor genes as they inhibit tumor formation and/or progression31. Loss of 

heterozygosity (LOH) on chromosome 10 is the most frequent genetic alteration, being 

present in up to 80% of primary GBMs, often with loss of an entire allele (10p or 

10q)23,32,33. The three most frequently deleted loci in this chromosome include the 

region codifying for the tumor suppressor gene phosphatase and tensin homolog 

(PTEN), suggesting the presence of this and possibly other crucial tumor suppressor 

genes32,33. Less frequent in primary GBMs, LOH on 22q, 1p and 13q have been 

reported as altered in 41%, and 12% for both chromosomes 1 and 13, respectively. 
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Figure 1.4| Summary of crucial molecular pathways in the development of gliomas. 
(Adapted from Xavier-Magalhães and Costa

34
) 

 

LOH of 13q typically includes the retinoblastoma 1 (RB1) locus35; although rare, LOH of 

1p is associated with patients longer survival36. 

Besides the classic mutations (Figure 1.4), recent comprehensive analysis8 

allowed the discovery of unknown mutations in GBM, and the identification of a highly 

interconnected network of aberrations in three major pathways: receptor tyrosine 

kinase (RTK) signaling, retinoblastoma (RB) and p53 tumor suppressor pathways5. The 

hyperactivation of RTKs is a frequent event in human GBMs, which activates several 

signaling pathways involved in cellular growth and survival, but also in angiogenesis 

and invasion. In GBM, the overactivation of the RTK pathways may occur by several 

mechanisms, as gene amplification, receptors mutation resulting in its constitutive 

activation, or overexpression of both ligands and receptors (Figure 1.3)37. Also, p53 and 

RB, which are involved in cell cycle regulation, are targets of many molecular 

alterations that induce their inactivation. p53 and RB inactivation renders tumors high 

sensitivity to uncontrolled proliferation driven by mitogen activated protein kinases 

(MAPK; Figures 1.3 and 1.4)38. 
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Recently, non-protein coding RNAs (ncRNAs) have emerged as new players on 

the deregulation of signaling pathways and gene expression. For a long time, RNA was 

delegated to just an intermediate between the DNA responsible for storing the 

information and the functional protein. However, the discovery that only 2% of the 

genome encodes protein-coding sequences39,40, and the great evolution on whole-

genome and transcriptome analysis, revealed that 90% of the genome is actively 

transcribed41. The finding that the transcriptome was more complex than first noticed 

once the number of transcripts do not code for a protein is four times higher than 

coding sequences, and that these non-protein coding transcripts can regulate gene 

expression, led to the knowledge of several new forms of RNA42-45. These ncRNAs are 

divided into two groups small: ncRNAs (sncRNAs) and long ncRNAs (lncRNAs)46. The 

sncRNAs are represented by a wide sort of known RNA species that include small 

interfering RNAs (siRNAs)/ microRNAs (miRNAs), small nucleolar RNAs (snoRNAs), and 

the more recently described transcription initiation RNAs (tiRNAs), whose functions in 

the specific regulation of both protein-coding and non-coding genes were first 

elucidated. Of all sncRNAs, the functions of MiRNAs are the most studied, and are 

known to be key regulators of several biological processes by negatively controlling 

gene expression at post-transcriptional level47. MiRNAs alterations have been 

described as involved in the initiation and progression of cancer, once they may act as 

tumor suppressor or oncogenes depending on their target genes48. Interestingly, 

deregulation of these molecules have been detected in GBM, being involved in cell 

proliferation, apoptosis, cell cycle regulation, invasion, angiogenesis and glioma stem 

cell behavior49. Moreover, expression profiling of astrocytic gliomas revealed miRNA 

signatures that are able to differentiate histological subtypes50. Therefore, miRNAs 

represent promising diagnostic and prognostic markers, and eventually new 

therapeutic targets in GBM51. On the other hand, the characterization of the non-

coding transcriptome has been revealing that the genome is replete of lncRNAs. These 

have been emerging as a major class of regulatory molecules in imprinting control, cell 

differentiation, immune responses, and tumorigenesis43. Even though the number of 

characterized lncRNAs has been increasing, most of their functions remain unknown; 

nonetheless, it is accepted that lncRNAs have arisen as an important component in the 

regulation of gene expression, and major roles on formation and progression of cancer 
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are anticipated43. Particularly in GBM, only one study assessing lncRNA expression was 

reported until now52. This report indicates that a large number of lncRNAs are 

differentially expressed in GBM when compared to normal brain, and implicates two 

lncRNAs (ASLNC22381 and ASLNC20819) in GBM pathogenesis52. However, this report 

must be carefully interpreted as it represents information of only one patient52. Even 

so, it sheds light into the putative important role of altered expression of lncRNAs in 

GBM, implying their urgent characterization.  

 

 

1.3 Molecular Prognostic Factors of Malignant Gliomas 

 

It is widely recognized that the stratification of GBM patients may prove crucial 

in rationalizing treatment decisions, for which a set of molecular markers predictive of 

tumor response to specific therapies and/or patient outcome are required. Recently, 

several biological and molecular features of GBMs, including the methylation status of 

O6-methylguanine methyl transferase (MGMT) gene53, isocitrate dehydrogenase (IDH) 

mutations8 or class I homeobox (HOX) A genes expression54, have been pointed as 

putative prognostic biomarkers55. The methylation status of MGMT gene is currently 

the most promising, although it has not yet reached clinical applicability53,56. MGMT 

encodes a DNA-repair protein that removes alkyl groups from the O6 position of 

guanine, an important site for DNA alkylation. When DNA is left unrepaired, the lesions 

induced by chemotherapy trigger apoptosis and cytotoxicity57,58. Epigenetic silencing of 

MGMT by promoter methylation leads to the loss of MGMT expression and reduced 

DNA-repair activity, which is associated with longer overall survival in patients with 

GBM59. Patients whose MGMT promoter is methylated and are treated with 

temozolomide have an increased overall survival (median of 21.7 months), as well as a 

higher 2-year survival rate (46%), in comparison to patients treated with 

temozolomide but with unmethylated MGMT promoter (median survival of 12.7 

months and 2-year survival of 13.8%)58. Thus, MGMT promoter methylation represents 

an independent and favorable predictive factor to patients’ response to therapy53. 

Other important prognostic factors have been revealed by a recent genomic 

study, and concern the presence of mutations in IDH1 and 2 genes (IDH when referring 
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to both)8. IDH mutations are correlated with younger age at diagnosis, and with longer 

survival when compared to patients with IDHwt genes, independently of age and 

gender60. As mutations in IDH are limited to a single amino acid, their detection for 

diagnostic purpose should be direct. 

Strikingly, mutations in IDH1 have been included in a GBM signature that 

allowed the division of GBMs into subtypes according to their recurrent genomic 

alterations61. In Verhaak and co-workers report61, GBMs were divided in four subtypes 

- Classical, Mesenchymal, Proneural and Neural - each displaying different underlying 

genetic alterations. The identity of the Classical subtype was defined by displaying the 

most common genomic aberrations of GBM, with 93% of samples displaying 

chromosome 7 amplifications and chromosome 10 deletions, 95% showing EGFR 

amplification, and 95% with homozygous deletion on the Ink4a/ARF locus61. The 

Mesenchymal subtype was mainly characterized by the high expression of chitinase 3-

like 1 (CHI3L1 or YKL-40) and MET55, and also neurofibromin 1 (NF1) mutation or 

deletion were found to be important features of this class61. The two major features of 

Proneural subtype include the amplification of PDGFRA and IDH1 mutation, besides 

frequently presenting LOH and mutations at TP53. Importantly, Proneural subtype was 

associated with younger age and longer survival61. The Neural subtype was typified by 

the differential expression of certain genes, in this case neuron markers as gamma-

aminobutyric acid A receptor (GABRA1), solute carrier family 12 (SLC12A5), 

neurofilament (NEFL) and synaptotagmin I (SYT1)61. 

The importance in the division of GBM into subtypes lies on the possible 

application of different therapeutic approaches, as treatment efficacy differs per 

subtype61. Aggressive therapy significantly reduced mortality in Classical and 

Mesenchymal subtypes, and a tendency to better outcome was observed for the 

Neural subtype, yet patients whose GBM present Proneural features do not benefit 

from highly aggressive therapies61. In this sense, some of the genetic events underlying 

the different GBM subtypes could become part of the clinical routine to rationalize 

therapeutic decisions, and ultimately lead to a personalized therapy for groups of 

patients with GBM. Even though MGMT promoter methylation status or IDH 

mutations, among other prognostic biomarkers, are well described their clinical
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Table 1.1| Application of molecular markers in GBM clinical practice. (Adapted from Jansen et 
al., 2010

62
) 

 
Laboratory 

testing 

Research testing 

for clinical trials 

Clinical testing 

for patients 

MGMT methylation status No Ready Uncertain 

EGFR pathway assessment Uncertain Ready No 

IDH mutation testing Ready Uncertain Ready 

 

application is still limited to a small number (Table 1.1)62. Therefore, there is the urgent 

need to find new and more robust prognostic biomarkers. 

Recently, the aberrant expression of HOX genes have been implicated in several 

tumors; specifically in GBM, HOXA9 has been pointed as a putative biomarker of poor 

patient prognosis63. HOX genes encode crucial transcription factors during embryonic 

development that, in humans, are gathered in four clusters (A-D) located on different 

chromosomes64. During embryonic development, HOX genes are sequentially 

expressed from 3’ to 5’ along the anterior-posterior (A-P) axis contributing to the 

temporospatial development of limbs and organs65. The mechanisms underlying HOX 

genes control in normal development occur according to three main principles: spatial 

collinearity, posterior prevalence, and temporal collinearity66. These were found to be 

altered in cancer as a consequence of three major mechanisms proposed by Abate-

Shen67: temporospatial deregulation, gene dominance and epigenetic regulation. 

Different groups have been reporting the deregulation of these mechanisms in 

different HOX genes, and in different tumors. For instance, Takahashi et al.68 evaluated 

all HOX genes in primary esophageal squamous cell carcinoma, reporting that normal 

esophagus expressed more 3’ HOX genes than 5’ HOX genes, a temporospatial pattern 

that was completely reversed in tumor samples. The dominance of HOX gene 

expression in tumor samples in comparison to normal tissue is evident in acute 

myeloid leukemia cells, where HOXA9 is overexpressed when compared to normal 

myeloid cells. Strikingly, this differential expression is correlated with patients’ poor 

prognosis and treatment failure69. Importantly, HOX gene expression is commonly 

controlled by epigenetic mechanisms, as the cytosine-phospho-guanine (CpG) islands 

in the promoters of silenced HOX genes are frequently methylated70. Concerning 

epigenetic regulation, it is known that the polycomb group proteins and the trithorax 
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proteins drive histone methylation, resulting in lysine 27 in histone 3 (H3K27) and 

lysine 4 in histone 3 (H3K4) trimethylation, respectively. The mixed lineage leukemia 

(MLL) gene is a trithorax homologue that is mutated in some leukemias, usually 

presenting as a fusion protein, that does not present H3K4 methylation function71. 

Instead, mutated MLL recruits the disrupter of telomere-like 1 (DOT1L) 

methyltransferase resulting in an altered methylation pattern that, in lymphoblastic 

leukemia, induces the aberrant expression of HOXA4, HOXA5, HOXA7 and HOXA9 

genes, which correlate with worse prognosis69. 

The aberrant expression of HOX genes have been reported as crucial in several 

hallmarks of cancer, including increased proliferation, angiogenesis and invasion, and 

apoptosis resistance in leukemia and in several solid tumors66,72-75. Interestingly, in 

recent years, HOX genes aberrant expression has been implicated in gliomagenesis. 

Abdel-Fattah and co-workers76 evaluated the expression of all HOX genes in primary 

astrocytomas and in non-tumor brain specimens, reporting that some HOX genes are 

abnormally expressed in malignant astrocytomas. A subsequent report by Murat et 

al.54 identified a HOX-dominated gene cluster, suggestive of a signature that display 

self-renewal properties. These authors show that the expression of HOXA10 gene in 

GBM neurospheres is consistent with a role of HOX genes in gliomas stem-like cell 

compartments54. Interestingly, the HOX-dominated gene signature arises along 

malignant progression to GBM, and is an independent predictive factor of chemo-

radiotherapy resistance in patients54. Later, Costa and co-workers63 showed that HOXA 

genes are predominantly activated in GBM, as compared to lower-grade gliomas and 

normal brain tissue, suggesting they may be a useful component of a molecular 

classification of gliomas. By analyzing expression microarrays data from 100 GBMs, 

they identified tumors with abnormal chromosomal domains of transcriptional 

activation, which comprise the HOXA cluster63. Pharmacological manipulation of GBM 

cell lines and neurospheres revealed that the expression of this HOXA domain was 

regulated by the PI3K pathway, through reversible regulation of histone modifications 

mediated by enhancer of zeste homologue 2 (EZH2), independently of the mammalian 

target of rapamycin (mTOR) activity63. Of all HOXA genes, HOXA9 expression was 

predictive of worse outcome, independently of other prognostic factors63. The 

retroviral induction of HOXA9 in GBM cell lines and immortalized human astrocytes 
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revealed pro-proliferative and anti-apoptotic functions, which may explain the 

unfavorable prognosis of GBM patients with HOXA9 reactivation63. More recently, 

Gaspar et al.77 shown a pediatric cell line that is resistant to temozolomide, although 

presenting MGMT promoter methylation, and intact mismatch repair and double-

strand break repair systems77. Interestingly, they found that the resistant cell lines 

present the coordinated expression of several HOX genes, of which HOXA9 and 

HOXA10 were highlighted as crucial effectors in temozolomide resistance77. In line with 

Costa et al63 report, Gaspar suggested that the HOX-enriched signature is regulated by 

the PI3K pathway, and interestingly, is associated with resistance to temozolomide in 

pediatric GBM cell lines77. Moreover, pediatric patients with high-grade gliomas that 

express HOXA9 and HOXA10 presented shorter survival77.  

These reports identify HOXA9 overexpression as a marker of poor prognosis in 

GBM. Those allied with other studies correlating HOXA9 expression with worse 

outcome in acute myelogenous leukemia patients69, shed light into the importance of 

HOXA9 reactivation in tumorigenesis. However, the mechanisms supporting the higher 

aggressiveness induced by HOXA9 are mostly unknown69. Nonetheless, it is reasonable 

to hypothesize that a set of genes transcriptionally regulated by HOXA9 are the true 

effectors of its biological functions, by affecting crucial features of cellular malignancy, 

as proliferation, invasion and apoptosis. In this sense, the understanding of the 

transcriptome of HOXA9, and the genes directly regulated by it may aid in the 

understanding of the mechanisms by which HOXA9 exerts its functions, and may prove 

crucial in identifying new molecular prognostic and therapeutic targets. 
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1.4 Objectives 

 

GBM is the most malignant and common type of tumor in the adult CNS. The 

clinical responses of GBM patients to therapeutics are poor and vary greatly among 

individuals, especially due to the lack of well-established molecular prognostic 

markers, which could allow patient-tailored therapy. Recently, the reactivation of 

HOXA9 was shown to be more frequent in high-grade rather than in low-grade 

gliomas, and correlated with patients’ worse prognosis. Although the importance of 

HOXA9 in normal development, differentiation, and oncogenesis is well-recognized, 

little is known about the targets its transcriptome in GBM, or the genes directly 

regulated by it. 

In this sense, we intend to: 

- Characterize the full HOXA9-transcriptome in GBM; 

- Identify HOXA9-target genes in the context of GBM cells and putative 

precursors;  

- Evaluate the prognostic value of the newly identified HOXA9-target genes in 

the prognosis of GBM patients.  
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2. Materials and Methods 

2.1 Cell lines and culture conditions 

 

GBM cell lines A172 and U87MG, and immortalized human astrocytes 

(hTERT/E6/E7) were cultured in DMEM (Gibco®) supplemented with 10% Fetal Bovine 

Serum (Biochrom), and 1% Penicillin-Streptomycin (Invitrogen). The A172 cell line 

endogenously expresses HOXA9, whereas U87MG and hTERT/E6/E7 cells (which do not 

express HOXA9 endogenously) were previously63 genetically engineered with murine 

stem cell (MSCV) retroviral vectors containing the HOXA9 coding region to obtain 

HOXA9 overexpressing cells (U87MG-HOXA9 and hTERT/E6/E7-HOXA9) or with control 

empty vector (U87MG-MSCV and hTERT/E6/E7-MSCV, respectively). Selection of 

retrovirally infected cells was maintained with 500ng/μL G418 (Sigma-Aldrich®).  

 

 

2.2 RNA extraction and cDNA synthesis 

 

 Total RNA was extracted from cell lines A172, U87MG-HOXA9, U87MG-MSCV, 

hTERT/E6/E7-HOXA9, and hTERT/E6/E7-MSCV using the TRIZOL method (Invitrogen), 

according to the producer protocol. In brief, cells were lysed with TRIZOL reagent and 

RNA was separated from DNA and proteins by chloroform-based phase separation, 

followed by RNA precipitation with isopropyl alcohol. The resulting pellet was washed 

with 75% ethanol, air-dried and dissolved in RNase-free water. RNA quantification was 

performed using NanoDrop™ ND-1000 spectrophotometer, using 1.5 μl of sample. 

cDNA was synthesized from the resulting RNA with the RT-Phusion Kit (Thermo 

Scientific), using random hexameres. 

 

 

 

 

 

 



2. Materials and Methods 

20 

2.3 Microarray Validation and Interpretation 

 

Previously, expression microarrays (Agilent, 44K, Human Whole Genome) were 

performed in the cell lines overexpressing HOXA9 (U87MG-HOXA9 and hTERT/E6/E7-

HOXA9) and in their HOXA9-negative counterparts (U87MG-MSCV and hTERT/E6/E7-

MSCV), respectively. 

 

2.3.1 Microarray Data Validation 

 

Regarding higher log fold-changes from the microarray data, two genes among 

those most over and underexpressed for each cell line were selected, and reverse 

transcription-PCR (RT-PCR) was performed for both U87MG-HOXA9 and hTERT/E6/E7-

HOXA9, and in the HOXA9-negative U87MG-MSCV and hTERT/E6/E7-MSCV. The 

HOXA9 and housekeeping β-gluconidase (hGUS) gene expression levels were assessed, 

to ensure the overexpression of HOXA9 in transfected cells, and to guarantee the 

equal quantity of cDNA in all reactions. PCR products were visualized on ethidium 

bromide-stained agarose gel.  The sets of primers, specific melting temperatures (Tm), 

and PCR parameters for all tested genes are described in Annex I.  

 

 

2.3.2 Prognostic Value of Differentially Expressed Genes  

 

The prognostic value of the 5 genes more differentially expressed due to 

HOXA9 overexpression, were evaluated on the publicly available Repository of 

Molecular Brain Neoplasia Data (REMBRANDT)78 platform. Microarray and clinical data 

were collected on October, 2011 through the online repository 

(https://caintegrator.nci.nih.gov/rembrandt/). The minimum cut-off for gene 

differential expression was established on 3 folds higher/lower than the corresponding 

non-tumor tissue, and the analysis were performed only in GBM patients. 
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2.3.3 Biological Enrichment 

 

The Database for Annotation, Visualization and Integrated Discovery (DAVID) 

bioinformatics database allows the identification of groups of genes that share 

common biological functions or integrate the same pathways. DAVID was used to 

identify enriched biological terms on the microarray data, to cluster genes according to 

their annotated function, and display them in the Kyoto Encyclopedia of Genes and 

Genomes (KEGG) pathways. For these analysis, the differentially expressed genes 

(p<0.05) from the microarray data of both U87MG and hTERT/E6/E7 cell lines were 

used. 

 

 

2.3.4 Biological Process Clustering 

 

Biological Database (BIOBASE) software was used to perform the clustering of 

the differentially expressed genes of the GBM cell line U87MG-HOXA9, versus its 

negative counterparts, according to their gene ontology (GO) annotated biological 

process. The Biobase ExPlain™ software79 was used to understand which of the 

differentially expressed genes of both U87MG and hTERT/E6/E7 were putative direct-

targets of HOXA9. In vitro binding studies have shown that the 60-amino acids 

homeodomain, common to all HOX proteins, binds to AT-rich DNA sequences, 

particularly to a short TAAT sequence80. Such enabled the use of positional weight 

matrices for the in silico genome-wide search of genes that have an HOX binding site 

on its promoter region80.  

 

 

2.3.5 Connectivity Map Analysis 

 

To search for drug-induced gene expression signatures similar to our 

microarray data, the Connectivity Map tool81 was used. This database contains the 

genome-wide mRNA expression data of 453 individual instances (each instance 

concerns one treatment and one vehicle pair), and allows the identification of the 
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perturbagens (drugs, etc) responsible for a gene expression profile and its comparison 

against a given set of genes. The top 20 of the differentially expressed genes 

upregulated in U87MG-HOXA9 against its negative counterpart U87MG-MSCV, were 

used. 

 

 

2.4 HOTAIR and WNT6 Expression in Glioblastoma Cell Lines 

 

RNA extraction and cDNA synthesis from GBM cell lines A172, U87MG-HOXA9, 

U87MG-MSCV and for immortalized human astrocytes hTERT/E6/E7/-HOXA9 and 

hTERT/E6/E7/-MSCV were performed according to the procedure stated on 2.2. HOX 

transcript antisense intergenic RNA (HOTAIR), wingless-type MMTV integration site 

family member 6 (WNT6) and HOXA9 levels were evaluated by reverse transcription-

PCR (RT-PCR) and by quantitative real-time PCR (qPCR) (Maxima SYBR Green, 

Fermentas). HOTAIR, WNT6 and HOXA9 levels were normalized to hGUS. The set of 

primers and conditions used are described in Annex I. 

 

 

2.5 HOTAIR Expression in Oncomine and REMBRANDT 

 

Oncomine platform is a publicly available microarray database that presents 

the compiled and analyzed information of gene expression profiles of human cancer 

samples82. In Oncomine82, the categorization of HOTAIR-positive and HOTAIR-negative 

glioma patients was based on the Log2 median-centered intensity values of HOTAIR 

probe. Log2 median-centered intensity values >0 correspond to high HOTAIR 

expression, and Log2 values ≤0 correspond to low/negative HOTAIR expression. 

In REMBRANDT78, the cut-off for HOTAIR upregulation was established on 4 

folds higher than HOTAIR expression in non-tumor samples. For both databases, data 

was collected on February, 2012 at the online repository (for Oncomine 

https://www.oncomine.org/resource/main.html, and for REMBRANDT as stated on 

2.3.2). 
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2.6 Genes Co-Expression Analyses in Oncomine 

 

The human cancer microarray database Oncomine83 was used to search for 

genes co-expressed with HOTAIR in 394 high grade gliomas (HGG; 296 primary WHO 

grade IV, and 98 WHO grade III) and 45 WHO grade II low grade gliomas (LGGs). This 

co-expression was also analyzed in the datasets of other cancer types (lung, breast, 

leukemia, and colorectal cancer) from TCGA available on Oncomine83. All datasets 

lodged on Oncomine were Log2-transformed, median centered per array, and the 

standard deviation normalized to one per array82. 

 

 

2.7 Chromatin-Immunoprecipitation 

 

 ChIP experiments were done as previously described84. In brief, A172 cells were 

cross-linked with 1.42% formaldehyde for 15 minutes, followed by quenching with 

125mM glycine for 5 minutes. Cells were lysed with immunoprecipitation buffer 

(150mM NaCl, 50mM Tris-HCl, 5mM EDTA, 0.5% NP-40, 1% Triton X-100) and 

chromatin was sheared by sonication (Sonics Vibra Cell VC70T, 21 cycles for 15 

seconds) to obtain DNA fragments of approximately 0.5-1 kb. The volume of sheared 

chromatin equivalent to 2 million cells was incubated with the required antibody in an 

ultrasonic bath for 15 minutes followed by incubation with protein A-agarose beads 

(Amersham) and Chelex 100 (Bio-Rad). The following antibodies were used to 

immunoprecipitate chromatin: 4 μg anti-HOXA9 (Santa Cruz), 2 μg anti-Histone H3 (H3; 

Abcam), 3 μg anti-Immunoglobulin G (IgG; Sigma). DNA amplification was done by 

qPCR (Maxima SYBR Green, Fermentas). To ensure that the immunoprecipitations 

performed with anti-HOXA9 antibody were in fact retrieving HOXA9 direct targets, we 

used 3 different sets of primers to amplify 3 regions of the E-Selectin (SELE) gene 

promoter region that were previously described as HOXA9-binding sites85. Primer sets 

1 and 2 were described as HOXA9-binding sites, while the third set of primers was used 

as negative control of HOXA9 binding85. Anti-histone H3 and anti-IgG were used as 

ChIP positive and negative controls, respectively. The input represents a control for the 

amount of DNA used in precipitations. The levels of HOTAIR, WNT6 and SELE, were 
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calculated for each experiment using the ΔΔCt method as described previously86. Three 

biological replicates were tested, and each qPCR experiment was done in triplicate. 

The PCR parameters and primers used were as described in Annex I. 

 

 

2.8 Statistical Analyses 

 

The qPCR differences in ChIP experiments were calculated by the Student’s t 

test using Prism GraphPad software (version 5.0a). In Oncomine82, each gene was 

evaluated for differential expression using Student’s t-test in the case of two-class 

analyses (e.g. tumor tissue versus respective normal tissue); for multiclass analyses 

(e.g. grade II, III, and IV gliomas) Pearson’s correlation was used. Both tests were 

performed using the R statistical computing package, and p-values were corrected for 

multiple hypothesis testing using the false discovery rate method82. For the co-

expression analysis, each dataset was filtered in order to comprise the top 50% of the 

most variable genes. The co-expression results were sorted by node correlation82. 

Correlation values higher than 0.3 were considered significant. To evaluate the effect 

of HOTAIR expression in the overall survival of GBM patients, Kaplan-Meier survival 

curves were built using SPPS 19.0 software (SPSS, Inc.). Univariate survival analyses to 

assess the prognostic value of HOTAIR and of other clinicopathological features 

(patient age, gender, Karnofsky performance status, and institution where the patients 

were treated) were performed by the Log-rank test, whenever data was available in 

sufficient number (at least >50% of the samples). Additionally, the independent 

prognostic value of HOTAIR was further analyzed by a multivariate Cox proportional 

hazard model adjusted for those potential confounding variables. All statistical tests 

were 2-sided, and significance was considered when p<0.05.  
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3. Results 

3.1 Microarray Data Interpretation 

 

Previously, the GBM cell line U87MG and the putative GBM precursors human 

immortalized astrocytes hTERT/E6/E7 were retrovirally infected to overexpress 

HOXA963. Expression microarrays have been performed (Agilent, 44K, Human Whole 

Genome) in basal conditions for the human GBM cell lines U87MG-HOXA9 and 

U87MG-MSCV (empty vector), and for immortalized human astrocytes hTERT/E6/E7-

HOXA9 and hTERT/E6/E7-MSCV (empty vector). When comparing the resulting 

microarray data between matched HOXA9-overexpressing and control cell lines, a total 

of 3454 transcripts (top 50 listed on Supplementary Tables 2 and 3, Annex II) were 

differentially expressed (p-value<0.05) in U87MG cell line, consisting of 1537 

transcripts upregulated and 1971 downregulated (Table 3.1); for hTERT/E6/E7, 417 

differentially-expressed transcripts were found (top 50 listed on Supplementary Tables 

4 and 5, Annex II), comprising 166 probes upregulated and 251 downregulated (Table 

3.1). Crossing data from U87MG and hTERT/E6/E7cell lines, a total of 57 transcripts 

were differentially expressed in both cellular contexts, consisting of 12 transcripts 

upregulated and 45 downregulated (Table 3.1). 

 
Table 3.1| Genome-wide characterization of the HOXA9 transcriptome in U87MG glioblastoma cells and 
in hTERT/E6/E7 human immortalized astrocytes. 

 Number of Transcripts Differentially Expressed 

 Total Upregulated Downregulated 

U87MG 3454 1537 1917 

hTERT/E6/E7 417 166 251 

Common to Both Cell Lines 57 12 45 

 

 

3.2 Microarray Data Validation 

 

Using the information provided on the first analysis of the microarray data, a 

subset of the most differentially expressed genes was selected to validate the 

microarray results. Genes with high log fold-changes in the array data were selected to 

be validated by conventional RT-PCR analyses (Table 3.2): for the U87MG cell line, the 
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Table 3.2| Log fold-change and p-values of the subset of differentially expressed genes 
selected to validate microarray data from both U87MG and hTERT/E6/E7 cell lines. 

 

 

 

 

 

 

 

 

 

 

 

 

overexpressed intercellular adhesion molecule 2 (ICAM2) and bone morphogenetic 

and activin membrane-bound inhibitor (BAMBI), and the underexpressed angiopoietin 

2 (ANGPT2) and platelet-derived growth factor receptor-β (PDGFRB) genes were 

selected (Table 3.2). Also, for hTERT/E6/E7 cell line, two overexpressed genes - RAS-

related C3 botulinum substrate 2 (RAC2) and chemokine (C-X-C motif) ligand 1 (CXCL1) 

- were selected, as well as the downregulated N-myc downstream regulated 1 (NDRG1) 

and thymocyte selection-associated high mobility group box family member 2 (TOX2) 

(Table 3.2). For all genes tested and for each cell line (Figure 3.1), the RT-PCR analyses 

successfully validated the microarrays data, as obvious differential expression is 

observed in the RT-PCR results for the transcripts differentially expressed in the array 

data. 

 

 

3.3 Prognostic Value of Differentially Expressed Genes  

 

As HOXA9 overexpression in GBM patients has already been associated with 

shorter survival63, we performed overall survival (OS) analyses to the 5 most 

differentially expressed genes due to HOXA9 overexpression, to understand if they 

present prognostic value. The expression and clinical information from the Repository 
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RAC2 2.94 1.266 

CXCL1 4.5 1.435 

Downregulated   

NDRG1 -3.59 9.065 

TOX2 -3.49 1.568 
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Figure 3.1| Microarray validation of U87MG-HOXA9 (left panel) and hTERT/E6/E7-HOXA9 (right panel) 
against its negative counterparts U87MG-MSCV and hTERT/E6/E7-MSCV, respectively. Two subsets of 
highly differentially expressed genes (both up and downregulated) were used to validate microarray 
data of both cell lines. The upregulated genes on the microarrays results show a higher expression by 
RT-PCR in both U87MG-HOXA9 (left panel) and hTERT/E6/E7-HOXA9 (right panel) cells as compared to 
their HOXA9-negative (MSCV) counterparts. The consistency between the genes expression comparing 
microarray data and PCR results allows the validation of microarray data. 

 

of Molecular Brain Neoplasia Data (REMBRANDT) was used to complete these 

analyses. We found that GBM patients that have high expression of NDRG1 present a 

statistically significant shorter survival when compared to those presenting low 

expression (Figure 3.2; p=0.009). The expression of ICAM2, BAMBI, RAC2, CXCL1, XIST 

and TOX2 did not present statistically significant associations with survival in GBM 

patients (Annex III). For the remaining genes (TOX2, ANGPT2, SDK2, SERPINB2, NPR3, 

RPL39L, MST4, C10orf35, CXCR7, C10orf10, FERL1L4, OLFML2A, FN1), the number of 

patients presenting their expression was reduced, so no OS analyses were performed. 

 In fact the association of NDRG1 expression with GBM patient survival presents 

interesting, as it has been associated with cellular growth, differentiation, 

tumorigenesis, metastasis and poor clinical outcome in several tumor types87. This 

gene warrants further analysis in GBM, as it might represent a potential prognostic 

biomarker. 

 

 

3.4 Microarray Data Bioinformatics Analysis 

 

In order to better understand the biological relevance and significant 

connections between the vast number of differentially expressed genes, several 

bioinformatics analysis were performed. 
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Figure 3.2| Kaplan-Meier overall survival curve of patients 
from REMBRANDT

78
 dataset with high (n=39) and low 

(n=17) expression of NDRG1. GBM patient with higher 
expression of NDRG1 present a statistically significant 
shorter survival when compared to low NDRG1 expressing 
patients (p=0.009). 

 

3.4.1 Biological Enrichment Analysis 

 

The Database for Annotation, Visualization and Integrated Discovery (DAVID) 

bioinformatics resource consists of an integrated biological knowledgebase and 

analytic tools that allow the systematical extraction of biological meaning from large 

gene lists88. The total list of the differentially expressed genes (up and downregulated) 

from the microarray data of both U87MG and hTERT/E6/E7 were analyzed by 

performing functional clustering annotation, and integrated in Kyoto Encyclopedia of 

Genes and Genomes (KEGG) pathways to facilitate biological interpretation in a 

network context (Figure 3.3). 

In U87MG cells, genes upregulated by HOXA9 were enriched for several cancer-

related pathways (Figure 3.3), including “pathways in cancer” and pathways related 

with different tumor types (e.g., small cell lung cancer and bladder cancer). 

Interestingly, “pathways in cancer” was found to be the most enriched pathway in 

U87MG-HOXA9 cells as compared to their HOXA9-negative counterparts (Figure 3.3), 
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Figure 3.3| DAVID functional annotation clustering analysis of differentially expressed genes due 
to HOXA9 overexpression in U87MG and hTERT/E6/E7 cells, revealing cell line-specific enriched 
pathways. 
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and other important cancer hallmarks, such as the enrichment of genes involved in 

pathways that may drive proliferation and invasion. Moreover, genes overexpressed 

by HOXA9 in U87MG cells were also enriched for DNA repair pathways, which have 

been associated with drug resistance in some tumor types89,90 (Figure 3.3). In 

agreement with an upregulated HOXA9-mediated genetic signature associated with 

important cancer hallmarks, genes downregulated by HOXA9 in U87MG are involved in 

“focal adhesion”, “cell adhesion molecules” and “antigen processing and presentation” 

(Figure 3.3). Several of these pathways are related with crucial hallmarks of cancer6, 

which may lead to increased malignancy or aggressiveness of tumor cells. 

On the other hand, the HOXA9 transcriptome in non-tumoral hTERT/E6/E7 

human immortalized astrocytes cells reveals pathways that are mostly unrelated to 

cancer; for example, the “chemokine signaling” pathway is enriched in HOXA9-

upregulated genes, and the “cytokine-cytokine receptor interaction” pathway is 

enriched in HOXA9-downregulated genes. These pathways are mainly involved in 

immune response91, but in cancer their deregulation has been linked with increased 

proliferation and invasion, among others92,93. The fact that HOXA9-induced gene 

expression is so different in the U87MG GBM cell line and in the putative GBM 

precursors hTERT/E6/E7 immortalized human astrocytes, suggests that its 

transcriptome is cell-type dependent, which is supported by previous reports on the 

literature94. 

 

 

3.4.2 Biological Process Clustering Analysis 

 

 While the functional annotation clustering shed light into the importance of 

HOXA9-target genes in affecting crucial hallmarks of cancer, in order to better 

understand the biological significance of functionally-related genes, together as a unit, 

we performed biological process clustering analyses. Here, the GBM cell line U87MG 

HOXA9-mediated overexpressed and underexpressed genes were analyzed using gene 

ontology (GO) annotation terms and the Biological Database (Biobase) software. 

In line with the results obtained in DAVID bioinformatics (Figure 3.3), GO 

analysis revealed that HOXA9-target genes are involved in some of the most important 
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hallmarks of cancer development and progression. For example, the HOXA9-

upregulated genes were involved in “cell cycle progression”, “DNA replication”, “cell 

division”, “RNA processing”, and “cellular biosynthetic processes” (Table 3.3), 

supporting Costa and co-workers63 report of higher proliferation in HOXA9-positive 

cells in comparison with HOXA9-negative cells. Additionally, deregulation of cellular 

energetics, a recently-established cancer hallmark6 was also found as indicated by an 

enrichment of genes involved in “cellular metabolic processes” (Table 3.2). Equally 

interesting, genes involved in pathways related with drug-resistance were again 

identified (HOXA9-mediated upregulation of genes involved in “response to DNA 

stimulus”, “DNA repair”, “nucleotide excision repair” and “recombinatorial repair”; 

Table 3.3). 

Conversely, genes downregulated by HOXA9 in U87MG cells were involved in 

other biological processes relevant in the context of cancer, including “antigen 

processing and presentation” (an important hallmark of cancer as it allows cells to 

avoid immune destruction, and thus represents a mechanism of resisting cell death6) 

and “extracellular matrix organization” and “cell adhesion” (relevant to allow tumor 

cell invasion and migration; Table 3.3). Of note, these are crucial features of GBM, as 

this tumor is highly invasive of the adjacent brain parenchyma22. While the overall 

results seem to support the importance of HOXA9-mediated transcriptome in favoring 

tumor progression and/or aggressiveness, some features that do not easily fit in that 

hypothesis were also found on this analysis, as is the case of the HOXA9-mediated 

downregulation of genes involved in “vasculature development” (Table 3.3). 

Taken together, our microarray results are a strong indication that HOXA9-

overexpression in GBM cell lines renders them a more aggressive phenotype, implying 

HOXA9-target genes in GBM cells as responsible for patients’ worse prognosis.  

 

 

3.4.3 Connectivity Map Analyses 

 

The important occurrence of HOXA9-mediated upregulated groups of genes 

involved in cancer drug-resistance (Figure 3.3 and Table 3.3), and the fact that GBM is 

described as highly resistant to therapy, prompted us to search the Connectivity Map 
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Table 3.3| Biological function clustering performed using gene ontology terms for differentially 
expressed genes of U87MG-HOXA9 cells compared to U87MG-MSCV cells. (Redundant instances were 
eliminated and the most inclusive class was considered; terms are organized according to higher p-
values, and only statistically significant classes (p-value <0.05) are represented.) 
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ncRNA metabolic process 49 4.123
-16

 

Ribonucleoprotein complex biogenesis 42 2.421
-15

 

Cell cycle 111 3.917
-15

 

DNA replication 46 9.807
-15

 

DNA metabolic process 77 9.789
-14

 

Response to DNA damage stimulus 51 6.478
-9

 

Cellular metabolic process 501 2.892
-7

 

Gene expression 281 2.756
-6

 

DNA repair 37 3.207
-6

 

Cellular response to stress 55 1.411
-5

 

Cell division 38 1.42
-5

 

DNA damage checkpoint 14 5.317
-5

 

Response to ionizing radiation 11 6.544
-5

 

Cellular biosynthetic process 293 8.309
-5

 

Nucleotide-excision repair 6 2.485
-4

 

RNA processing 197 4.818
-4

 

Recombinational repair 6 8.945
-4
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Antigen processing and presentation 19 1.977
-08

 

Extracellular matrix organization 21 3.150E
-07

 

System development 201 4.041E
-07

 

Cell adhesion 89 4.412E
-07

 

Response to hypoxia 19 1.509E
-06

 

Regulation of biological quality 127 5.242
-5

 

Regulation of cell motion 24 9.271
-5

 

Lipid transport 24 1.03
-4

 

Multicellular macromolecule metabolic process 10 2.103
-4

 

Oxidation reduction 66 2.183
-4

 

Peptidyl-proline modification 3 3.139
-4

 

 Small GTPase mediated signal transduction 55 3.303
-4
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data set 81 for drugs that induce, in cell lines, gene expression signatures similar to the 

one we obtained in our microarray analysis. Although we are only concerning the top 

20 of the differentially expressed genes upregulated in the U87MG-HOXA9 GBM cell 

line as compared to its HOXA9 negative counterpart, we found that the drug that 

ranked first (regarding statistically significance, p-value <0.00001) was LY-294002 

(Table 3.4), a known phosphatidylinositol 3-kinase (PI3K) inhibitor95. Interestingly, the 

highly negative enrichment of the LY-294002 in PC3 cell line indicates that the gene 

expression signature we provided to the software (i.e., putative HOXA9-target genes) 

is highly repressed by the perturbagen (i.e., LY-294002). As inhibition of the PI3K 

pathway is known to inhibit HOXA9 transcription63, this result further supports the 

validity of our microarray data. The histone deacetylase (HDAC) inhibitor Trichostatin A 

(TSA)96 was also found to be able to repress the gene expression signature induced by 

HOXA9 in MCF7 cell line. HDACs are able to deacetylate lysine residues on histones and 

induce transcriptional repression through chromatin condensation, and their inhibitors 

lead to cell cycle arrest97 and apoptosis97, among others98-101. In line with LY-294002 

and TSA, Tanespimycin and its analogue Geldanamycin, the second and ninth 

compounds on the Connectivity map results, respectively (Table 3.4), were described 

to be heat-shock protein 90 (HSP90) inhibitors102,103, which are molecular chaperones 

involved in the conformational maturation of proteins crucial in signaling pathways102. 

Again, on the MCF7 cell line, Tanespimycin and Geldanamycin exert a repressive effect 

on the query gene signature, indicating important roles for HSP90 in the mediation of 

HOXA9 effects in GBM cells. 

 

 

 

 

 Vasculature development 33 3.453
-4

 

Wound healing 24 3.998
-4

 

Nervous system development 88 5.209
-4

 

Endothelial cell proliferation 9 6.615
-4

 

Ras protein signal transduction 8 6.79
-4
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Table 3.4| Connectivity Map search for drug treatments that induce gene expression 
signatures similar to the top 20 upregulated genes in U87MG-HOXA9 cells, as compared to 
U87MG-MSCV cells. (Only cancer-related drugs were considered). 

Rank Cmap Name Cell line n Enrichment p-Value 

1 LY-294002 PC3 12 -0.634 <0.00001 

2 Tanespimycin MCF7 36 -0.434 <0.00001 

3 Trichostatin A MCF7 92 -0.399 <0.00001 

9 Geldanamycin MCF7 10 -0.56 0.002 

n – number of treatments and vehicle pair; Enrichment – correlation value with 

the query gene signature 

 

 

3.5 Expression of Non-Coding RNAs Induced by HOXA9 

 

The fact that recent reports have implicated non-coding RNAs (ncRNAs) in 

cancer104, allied with “non-coding RNA metabolic process” genes ranking first on 

biological function clustering (Table 3.3), drove us to understand which ncRNAs were 

differentially expressed in our microarray data, and which have already been 

associated with cancer (Table 3.5). On hTERT/E6/E7, the non-tumor cell line, only two 

ncRNAs were differentially expressed on HOXA9-positive cells in comparison to the 

HOXA9-negative matching part (Table 3.5); conversely, in the U87MG GBM cell line, 

fifteen ncRNAs were present when comparing HOXA9-positive and -negative cells 

(Table 3.5). Two ncRNAs from hTERT/E6/E7, XIST and LINC00087, were also present on 

U87MG (Table 3.5). Seven of the ncRNAs are yet to be characterized. Besides their 

uncharacterized roles in cancer, the fact that these ncRNAs are differentially expressed 

on HOXA9-positive GBM cell line makes them interesting targets to be studied in GBM. 

Our microarray data showed that HOX transcript antisense intergenic RNA (HOTAIR) 

was upregulated in HOXA9-overexpressing cells (Table 3.5), a long ncRNA (lncRNA) that 

has recently gained a central role in breast105, colorectal106, hepatocellular107,108, 

pancreatic109 and gastrointestinal stromal tumors110. Interestingly, no studies assessing 

HOTAIR status in GBM have been reported. 
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Table 3.5| Non-protein coding RNAs from the microarray data of both hTERT/E6/E7 and U87MG, and respective log fold-change, after HOXA9 overexpression versus their 
respective MSCV counterpart. 

Gene Name FC Tumor Type Cancer-related Functions Refs 

hTERT/E6/E7     
   LINC00087 -1.13 N/A N/A N/A 

   XIST -6.44 Breast, ovarian, cervical, kidney, colorectal, lymphoma and 
testicular germ cell tumor 

Tumor recurrence and therapy resistance 111-116 

U87MG     

   CECR4 -1.95 N/A N/A N/A 

    DLEU2 1.24 Chronic lymphocytic leukemia Tumor suppressor gene 117 

    HOTAIR 1.11 Breast, colorectal, hepatocellular, pancreatic and 
gastrointestinal stromal tumor 

Increased proliferation, invasion, drug 
resistance and tumor recurrence 

105-110 

   LINC00085 -1.70 N/A N/A N/A 
   LINC00087 -1.22 N/A N/A N/A 

   MALAT1 -1.85 Lung adenocarcinoma, non-small cell lung, breast, pancreas, 
colon, prostate osteosarcoma and hepatocellular 

Increased migration, invasion and drug-
resistance 

118-124 

   MEG3 -1.38 Hepatocellular, meningioma, acute myeloid leukemia and 
multiple myeloma 

Tumor suppressor gene 125-128 

   MIR100HG -2.08 N/A N/A N/A 

   NEAT1 -1.12 Ovarian Putative apoptosis inhibitor 129 

   SNHG1 1.43 N/A N/A N/A 

   SNHG7 1.06 N/A N/A N/A 

   SNHG8 1.22 N/A N/A N/A 

   UCA1 1.25 Bladder  Increased proliferation, migration, invasion 
and drug resistance 

130 

   XIST -2.20 Breast, ovarian, cervical, kidney, colorectal, lymphoma and 
testicular germ cell tumor 

Tumor recurrence and therapy resistance 111-116 

   ZNFX1-AS1 0.79 Breast Tumor suppressor gene 131 

FC – Log Fold- Change; N/A – Not Available 



3. Results 

38 

3.6 HOTAIR Expression in Human Gliomas 

 

To understand if HOTAIR is expressed in primary gliomas, we analyzed its 

expression levels in low grade glioma (LGG) and in high grade glioma (HGG) patients 

using gene expression array data from the Oncomine83 and REMBRANDT78 datasets. 

We found that none of the LGG patients presented HOTAIR overexpression (Table 3.6), 

whereas 17% (76/448) of HGG patients displayed HOTAIR overexpression when 

comparing to controls (Table 3.6). This suggests that the overexpression of HOTAIR is 

increased as the glioma grade increases. Moreover, the fact that is reactivation is more 

frequent in HGG may also indicate that HOTAIR presents crucial roles in the more 

aggressive features of HGG compared to LGG.  

 

 

3.7 HOTAIR Co-expression with HOX Genes in Human Gliomas 

 

In an attempt to identify the mechanisms that may be regulating HOTAIR gene 

activation in gliomas, we searched for genes that are significantly co-expressed with 

HOTAIR in glioma samples using human microarray datasets from the Oncomine 

database83. We assessed four independent studies54,55,132,133, and found that several 

HOX genes were significantly co-expressed with HOTAIR (correlation values >0.3; 

Figure 3.4 and Table 3.7) in all studies, which supports the co-expression of HOTAIR 

with these genes in GBM. Interestingly, across all studies54,55,132,133, HOXA genes were 

the most frequently co-expressed with HOTAIR (Figure 3.4 and Table 3.7). In 

agreement with our microarray data that revealed HOXA9-induced expression of 

HOTAIR, HOXA9 was one of the genes highly correlated with HOTAIR expression in 

primary GBMs (Figure 3.4 and Table 3.7). This co-expression was also verified in 

primary GBMs from the REMBRANDT dataset, where approximately 90% (43/48) of 

HOTAIR-positive GBMs (Table 3.6) were also HOXA9-positive, which implies a putative 

role for HOXA9 on HOTAIR regulation. Remarkably, concomitant overexpression of 

HOTAIR and HOXA9 occurs almost exclusively in high-grade astrocytomas and 

oligodendrogliomas (Figure 3.4), again supporting the possible contribution of HOTAIR 

to more aggressive tumors. 
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Table 3.6| Clinicopathological features and HOTAIR expression status in patients from Oncomine
83

 and REMBRANDT
78

 databases. 

Datasets No. cases Age (median ± SD) Male/female ratio Diagnosis WHO grade No. HOTAIR+ 

Oncomine: 

       Murat54 80 56.5 ± 7.8 2.81 GBM IV 2 

       Phillips55 
24 35 ± 9.9 2 AA III 2 

76 49 ± 12.8 2.17 GBM IV 7 

       Sun133 

7 N/A N/A DA II 0 

38 N/A N/A ODG II 0 

19 N/A N/A AA III 3 

12 N/A N/A ODG III 1 

81 N/A N/A GBM IV 12 

       Freije132 

8 34 ± 6.8 0.13 AA III 0 

7 32 ± 5 0.14 AOA III 0 

18 35.5 ± 10.2 0.3 AODG III 0 

59 47 ± 16.2 0.79 GBM IV 1 

REMBRANDT78 67 50 ± N/A 0.79 GBM IV 48 

AA - Anaplastic Astrocytoma; AOA - Anaplastic Oligoastrocytoma; AODG - Anaplastic Oligodendroglioma; DA - Diffuse Astrocytoma; GBM – 

Glioblastoma; LGG – Low Grade Glioma; ODG – Oligodendroglioma; N/A – Not Available 
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Figure 3.4| Heatmap analysis of genes co-expressed with HOTAIR in the Sun (A; correlation value 0.487), 
Freije (B; correlation value 0.372), Phillips (C; correlation value 0.309) and Murat (D; correlation value 
0.293) studies from the Oncomine database. All sets present concomitant overexpression of HOTAIR and 
HOXA9, which occurs more frequently in higher WHO grades (A - C). [(A) 0 - normal tissue (n= 23); 1 – 
Grade II (n=45); 2 – Grade III (n=31); 3 – Grade IV (n=81); (B) 0 - normal tissue (n=1); 1 - grade III (n=25); 
2 - grade IV (n=59); (C) 1 - normal tissue (n=4); 2 – grade IV (n=80); (D) 0 - grade III (n=24); 1 - grade IV 
(n=76)]. 

C 
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Conversely, when searching on TCGA datasets lodged on the Oncomine 

database83 for co-expression between HOTAIR and HOXA9 on other cancer types, no 

significant associations were found for lung, leukemia, colorectal, or breast cancer 

(Table 3.8). Taken together, our results suggest that HOTAIR expression is frequent in 

GBM, and that its expression is highly correlated with HOXA9 expression exclusively in 

high-grade glioma. 

 

Table 3.7| HOTAIR co-expression with several HOX genes, indicating a good correlation 
between HOTAIR and HOXA9 in human gliomas (only instances with correlation values 
≥0.3 are shown). 

 Murat54 Phillips55 Sun133 Freije132 

HOXA1 0.293 0.309 0.487 0.372 

HOXA2 0.293 0.309 0.487  

HOXA3 0.293 0.309 0.487 0.372 

HOXA4  0.309 0.487  

HOXA5 0.293 0.309 0.487 0.372 

HOXA7 0.293 0.309 0.487 0.372 

HOXA9 0.293 0.309 0.487 0.372 

HOXA10 0.293 0.309 0.487 0.372 

HOXA11   0.401  

HOXB2 0.293 0.309 0.487 0.372 

HOXB3 0.293 0.309 0.487 0.372 

HOXB6  0.309   

HOXB7 0.293 0.309 0.487  

HOXB9   0.348  

HOXC6 0.364 0.285 0.676  

HOXC9 0.699    

HOXC10 0.699 0.285 0.676  

HOXC13  0.511   

HOXD3 0.364 0.285   

HOXD4 0.364    

HOXD8 0.364    

HOXD10 0.527 0.285 0.456  

HOXD11 0.527 0.285 0.456  

HOXD13  0.285 0.367  
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Table 3.8| Analysis of HOTAIR overexpression and co-expression with HOXA9 in lung, 
leukemia, colorectal, and breast cancer datasets from TCGA, available at Oncomine

83
. 

Correlation values indicate lack of significant correlations between the expression of 
HOTAIR and HOXA9 in these cancer types (Pearson correlations<0.05). 

Study 
No. of 

Patients 

No. of Patients 

HOTAIR+ (%) 

Correlation 

HOTAIR+/HOXA9+ 

TCGA Lung134 167 16 (9.6%) 0.046 

TCGA Leukemia134 197 1 (0.5%) -0.019 

TCGA Colorectal134 215 12 (5.6%) 0.012 

TCGA Breast134 532 326 (61.3%) -0.051 

 

 

3.8 Mechanism Driving HOTAIR Expression in Glioblastoma 

 

HOX genes encode transcription factors that are master regulators of gene 

expression in both normal and pathological states. Here, the interesting 

overexpression of HOTAIR in HOXA9-positive U87MG cell line (Table 3.5), as well as the 

fact that the expression of HOTAIR and HOXA9 were found to be significantly 

correlated in primary glial tumors (Figure 3.4 and Table 3.6), led us to hypothesize that 

HOTAIR expression may be transcriptionally activated by HOXA9. To test this 

hypothesis, GBM cell lines A172 (endogenously expressing HOXA9), U87MG-HOXA9 

(retrovirally infected to overexpress HOXA9), U87MG-MSCV (control, HOXA9-

negative), and immortalized human astrocytes hTERT/E6/E7-HOXA9 (retrovirally 

infected to overexpress HOXA9) and hTERT/E6/E7-MSCV (control, HOXA9-negative) 

were tested for HOTAIR expression by RT-PCR and qPCR (Figure 3.5). All 3 tested GBM 

cell lines A172, U87MG-MSCV, and U87MG-HOXA9 presented HOTAIR expression. 

Importantly, in line with our hypothesis that HOXA9 activates HOTAIR in GBMs, 

U87MG-HOXA9 cells presented significantly increased expression of HOTAIR as 

compared to their HOXA9-negative counterpart (U87MG-MSCV; Figure 3.5). In 

contrast, non-malignant hTERT/E6/E7-MSCV and hTERT/E6/E7-HOXA9 astrocytes did 

not present HOTAIR expression (Figure 3.5), even after HOXA9 overexpression, adding 

to our body of data that suggests HOTAIR and HOXA9 co-expression is specific to high-

grade GBM cells. 
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Figure 3.5| HOTAIR and HOXA9 expression were evaluated by reverse-transcriptase quantitative PCR in 
a panel of cell lines with different levels of HOXA9 expression. No detectable levels of HOTAIR are 
present in hTERT/E6/E7 immortalized human astrocytes (either HOXA9-positive or HOXA9-negative). 
The 3 GBM cell lines (U87MG-MSCV, U87MG-HOXA9, and A172) present endogenous HOTAIR 
expression, which is significantly increased after retrovirally-mediated HOXA9 overexpression in 
U87MG-HOXA9 cells as compared to U87MG-MSCV (HOXA9-negative cell line). HOTAIR and HOXA9 
levels were normalized to hGUS. The results are representative of three independent experiments 
(mean and standard deviations are represented). *p=0.014. 

 

To understand if HOXA9 directly interacts with the HOTAIR promoter to 

modulate its expression, we performed ChIP on A172, the GBM cell line endogenously 

expressing HOXA9, using an antibody against HOXA9. To ensure that the 

immunoprecipitation procedure was performed successfully before testing any 

putative direct-target, we used 3 different sets of primers to amplify 3 regions of the E-

Selectin (SELE) gene promoter region that were previously described as HOXA9-binding 

sites85: both regions 1 and 2 of SELE promoter (primers sets 1 and 2, respectively) were 

described as HOXA9-binding sites, while region 3 (third set of primers) was described 

as a negative control for HOXA9 binding85. Accordingly, qPCR performed in HOXA9-

bound chromatin from A172 cells showed that both primers sets 1 and 2 retrieved 

amplification of SELE, while the 3rd primer set presented little amplification of the 

fragments immunoprecipiated with anti-HOXA9 (Figure 3.6). An anti-H3 

immunoprecipitated DNA was used as a positive control for all qPCR reactions (Figure 

3.6). Together, these results further validate our ChIP data.  
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Figure 3.6| The putative binding of HOXA9 protein to the promoter region of E-

SELECTIN (SELE) gene was assessed by chromatin immunoprecipitation (ChIP) 

analysis followed by qPCR in A172 cells. Chromatin immunoprecipitated with anti-

HOXA9, anti-H3, and anti-IgG was amplified using 3 different sets of primers.Primer 

sets 1 and 2 were described as amplifying a region of SELE promoter bound by 

HOXA9, while primer set 3 amplifies a promoter region where HOXA9 does not 

bind
85

. As expected, sets 1 and 2 retrieved SELE amplification in fragments 

precipitated with anti-HOXA9, while set 3 presented reduced amplification. The 

ChIP positive control anti-histone H3 was amplified in all primers sets. IgG was used 

as ChIP negative control, and input DNA was not subjected to immunoprecipitation. 

Fold enrichment is normalized to input and to the IgG background signal from three 

independent experiments. * p=0.0333 in region 1 and p=0.0338 in region 2. 

 

 

Then using these validated immunoprecipitates, we tested our hypothesis of 

HOTAIR direct-regulation by HOXA9, for which we used a set of primers to amplify a 

portion of HOTAIR promoter region. Quantitative PCR revealed HOXA9 occupancy of 

the promoter region of HOTAIR (Figure 3.7). Together, these results indicate that 

HOXA9 is a direct activator of HOTAIR expression in GBM. 
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Figure 3.7| The putative binding of HOXA9 protein to the 
promoter region of HOTAIR was assessed by chromatin 
immunoprecipitation (ChIP) analysis followed by quantitative 
PCR in A172 cells. Anti-histone H3 and control IgG were used as 
positive and negative controls for the ChIP, respectively. Input 
DNA was not subjected to immunoprecipitation. Chromatin 
immunoprecipitated with an anti-HOXA9 antibody shows direct 
binding of HOXA9 to the HOTAIR promoter. Relative enrichment 
is normalized to input and to the IgG background signal from 
three independent experiments. ***p=0.0007. 

 

 

3.9 Association of HOTAIR Expression with Survival of Glioblastoma Patients 

 

HOTAIR expression was recently associated with poor prognosis of patients 

with breast cancer105, hepatocellular carcinoma108, colorectal106, pacreatic109, and 

gastrointestinal stromal tumors110. Additionally, HOXA9 overexpression was shown to 

correlate with worse survival in GBM patients63. Therefore, we investigated the clinical 

significance of HOTAIR expression in GBM patients from REMBRANDT78. In 67 GBM 

patients with available survival data, a statistically significant decrease in overall 

survival (OS) was observed in patients with high HOTAIR expression (n=48), as 

compared to patients whose tumors present low levels of HOTAIR (n=19; p=0.005 Log-

rank test; Figure 3.8 and Table 3.9). Univariate survival analyses of the 

clinicopathological data available in sufficient number (at least >50% of the samples) 

from this dataset, showed that patient age and institution of treatment were 

significantly associated with overall survival (p<0.0001 and p=0.001, respectively; Table 

3.9). 
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Figure 3.8| Kaplan-Meier overall survival curve of 67 patients 
from REMBRANDT

78
 dataset indicating that patients whose 

tumors present high HOTAIR expression (n=42) show a 
statistically significant shorter overall survival as compared to 
those with HOTAIR-low expression tumors (n=19; p=0.005). 

 

Moreover, we performed multivariate survival analyses using a Cox model 

(Table 3.9) to verify if HOTAIR expression has prognostic value independently of other 

putative confounding variables (as gender and patient’s treatment institution). We 

found that high HOTAIR expression in GBM patients from REMBRANDT was 

significantly associated with decreased OS (p=0.034; Table 3.9), independently of the 

other clinicopathological features. Together, our data suggest HOTAIR expression as a 

marker of prognosis in GBM. 

 

 

3.10 WNT6 as New Direct-Target of HOXA9 

 

As stated previously, HOTAIR is one of the downstream effectors of HOXA9 

expression in GBM. However, the panoply of unknown HOXA9-direct targets must be 

enormous. Accordingly, in order to understand which of the differentially expressed 

genes might be directly regulated by HOXA9, we performed a genome-wide in silico 

analysis, which assessed every gene with putative binding sites for HOXA9. We found 

that HOXA9 may be the direct-regulator of 1907 genes. Integrating this gene list with
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Table 3.9| Univariate (Log-rank) and multivariate (Cox proportional regression model) analyses of 
HOTAIR prognostic value in 67 patients from REMBRANDT

78
 dataset. Patients with high HOTAIR 

expression present statistically significant shorter overall survival compared to those with 
HOTAIR-negative tumors (p=0.005; Log-rank test), independently of other putative prognostic 
factors (age, p=0.002, gender, p=0.275 and patient’s treatment institution p=0.402). 

 Overall survival 

 
n Median (95% CI)a 

p-value 

(Log-rank) 

p-value 

(Cox) 

HOTAIR expression     

   High 48 15.8 (12.8-18.8) 
0.005 0.034 

   Low 19 37.4 (11.9-62.9) 

Age     

>50 26 15.8 (9.8-21.8) 
<0.0001 0.002 

≤50 29 32.0 (18.5-45.5) 

Gender     

   Male 16 27.5 (3.8-51.2) 
0.379 0.275 

   Female 8 20.0 (14.5-25.5) 

Institution     

   TJU 12 9 (3.9-14.1) 

0.001 0.402 

   NIH NOB 10 26.6 (11.0-48.2) 

   PITT 2 6.9 (N/A) 

   USCF 4 30.8 (N/A) 

   HLMCC 5 19.0 (2.4-14.3) 

   UCLA 2 27.5 (N/A) 

   DFCI 1 5.4 (N/A) 

   HFH 27 18.0 (13.8-22.2) 

   MDACC 2 3.7 (N/A) 

   JHH 2 18.0 (14.3-21.7) 

n - Number of Patients; N/A – Not Available; TJU – Thomas Jefferson University; NIH 

NOB – National Institute of Health Neuro-Oncology Branch; PITT – University of 

Pittsburgh; UCSF – University of California. San Francisco; HLMCC – H. Lee Moffitt 

Cancer Center; UCLA – University of California. Los Angeles; DFCI – Dana-Farber Cancer 

Institute; HFH – Henry Ford Hospital; MDACC – M.D. Anderson Cancer Center; 
a Median survival with 95% confidence intervals in months. 

 

the differentially expressed genes from our microarray data, we found 173 putative-

direct targets in U87MG cells, and 24 in hTERT/E6/E7 (Table 3.10), of which CISH, 

KLHL4 and PPP2R2B were common to both U87MG and hTERT/E6/E7.  

Besides being overexpressed in U87MG-HOXA9 cells (log fold-change of 1.61), 

the wingless-type MMTV integration site family member 6 (WNT6) was one of the 

putative direct targets of HOXA9 (Table 3.10). Interestingly, WNT proteins are a family 
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Table 3.10| In silico analysis using ExPlain™ software from BIOBASE to detect putative 
HOXA9-bindings sites at the genome-wide level. HOXA9 may directly regulate 1907 genes, of 
which 173 were found differentially expressed in U87MG and 24 in hTERT/E6/E7 cells. (For 
U87MG, examples of the genes with higher number of binding sites for HOXA9 are shown.) 

U87MG hTERT/E6/E7 

No. of Binding 
Sites 

Gene Symbol 
No. of Binding 

Sites 
Gene Symbol 

4 LRRC37A4 3 GRAMD4 
3 LOC221710 2 MGLL 

3 SGOL1 2 QPRT 

3 TMC4 2 TRIM63 

2 HLA-G 2 CPA3 

2 AK1 2 KLHL4 

2 SERPINB2 2 GHDC 

2 UMPS 2 IRF5 

2 WNT6 2 CISH 

2 GRM1 2 ABHD10 

2 HLA-DMA 2 CDKL2 

2 CCDC132 2 CRYL1 

2 ABCA8 1 LRFN2 

2 CDCA3 1 PLAC8 

2 IGSF10 1 ZNF585A 

2 OSCAR 1 PTPRE 

2 PCDHB16 1 SLC25A26 

2 FASN 1 C8orf47 

2 ANGPT2 1 FGF13 

2 AQP9 1 LOC79999 

2 BNC2 1 BAIAP2L2 

2 HOXB13 1 PPAP2B 

2 CCT5 1 CWF19L1 
2 PLK4 1 PPP2R2B 

2 RASL10B   
2 OASL   
2 KRT32   
2 LETM2   
2 LNX1   
2 MOCS1   
2 KIAA0513   
2 KLHL4   
2 SERPINB1   
2 RSC1A1   
2 KRR1   
2 PEX6   
2 SCD5   
2 CHCHD3   
2 CISH   
2 FABP4   
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of glycoproteins that are able to control several signal transduction pathways and a 

wide range of cellular processes135, whose aberrant expression have been implicated in 

several tumor types, including GBM136-138. However, no data assessing WNT6 roles in 

GBM was reported until now. So, as WNT proteins have important roles in cancer, and 

WNT6 may be directly regulated by HOXA9 in GBM cells, we assessed its expression in 

A172, U87MG-HOXA9, and U87MG-MSCV GBM cell lines, and in the non-tumor 

hTERT/E6/E7-HOXA9 and hTERT/E6/E7-MSCV immortalized human astrocytes. We 

found that WNT6 is expressed in all tested cell lines, presenting no differences when 

comparing hTERT/E6/E7-HOXA9 and hTERT/E6/E7-MSCV. However, the levels of WNT6 

were found to be higher in U87MG-HOXA9 when comparing to the corresponding 

U87MG-MSCV HOXA9-negative cell line (Figure 3.9A). To verify if the putative direct 

regulation of WNT6 by HOXA9 suggested by the in silico analysis was in fact real, we 

performed ChIP on A172, the endogenously HOXA9-expressing GBM cell line. Two sets 

of primers to amplify 2 regions of the WNT6 promoter were used. ChIP followed by 

quantitative PCR revealed that HOXA9 binds to both tested regions of WNT6 promoter 

(Figures 3.9B and C). Although these results are very preliminary, the integration of the 

microarrays, in silico, RT-PCR, and ChIP data suggest HOXA9 is a direct activator of 

WNT6 expression in GBM. 
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Figure 3.9| WNT6 expression was evaluated by reverse-transcriptase PCR (A) in a variety 
of cell lines with different levels of HOXA9 expression. All cell lines present WNT6 
expression. In hTERT/E6/E7-HOXA9 and hTERT/E6/E7 the expression level is similar; 
whereas in U87MG WNT6 expression levels increased after HOXA9 overexpression. The 
putative direct regulation of WNT6 by binding of HOXA9 protein to its promoter region 
was evaluated by chromatin immunoprecipitation (ChIP) analysis followed by quantitative 
PCR (B) in A172 cells. Chromatin immunoprecipitated using an anti-HOXA9 antibody shows 
direct binding of HOXA9 to the 2 tested regions of WNT6 promoter. Anti-histone H3 and 
control IgG were used as positive and negative controls for ChIP, respectively. Input DNA 
was not subjected to immunoprecipitation. Fold enrichment is normalized to input and to 
the IgG background signal from three independent experiments. * p=0.0174 in region 1 
and p=0.0255 in region2. 
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4. Discussion 

 

Tumors of the central nervous system account for only a small percentage of all 

human tumor types, but comprise a wide range of distinctive neoplasias, of which 

glioblastoma (GBM) is the most common, malignant and aggressive subtype15. GBM is 

a particularly dramatic disease ranking first for years of life lost among all tumors and 

despite advances in clinical neuro-oncology, no curative therapies are available21, 

remaining the prognosis of GBM patient poor, with a median survival of 15 months25. 

Patients are equally treated with the same standardized procedure (surgical resection 

followed by concomitant radiotherapy and chemotherapy with the alkylating agent 

Temozolomide25) regardless of specific molecular alterations, which lead to great 

variability in the response to treatment. In this sense, there is the urgent need to 

establish molecular prognostic markers that would allow the stratification of patients 

and the adaptation of therapeutics according to the underlying alterations. As referred 

previously, the methylation status of the promoter region of O6-methylguanine methyl 

transferase (MGMT) in GBM is currently one of the most promising prognostic and 

therapy response predictive biomarker58. However, it has not reached clinical 

applicability and there is still the need to establish new prognostic biomarkers. 

Another putative biomarker concerns the deregulation of class I homeobox (HOX) 

genes in several tumor types65,66, including primary malignant astrocytomas76. In GBM, 

it was suggested that these abnormal expression was part of a glioma stem cell-like 

gene expression signature, associated with worse clinical outcome of patients treated 

with temozolomide-based chemoradiotherapy77. Later, our group reported that HOXA 

genes are overexpressed more frequently in high-grade than in low-grade primary 

astrocytomas63, and the reactivation of HOXA genes expression was found to be 

regulated by the PI3K pathway, through reversible regulation of EZH2-mediated 

histone modifications63. Among all HOXA genes, the overexpression of HOXA9 was 

predictive of patient worse outcome, and the induction of HOXA9 overexpression in 

GBM cell lines and neurospheres indicated pro-proliferative and anti-apoptotic roles, 

which may be responsible for the HOXA9-mediated worse prognosis of GBM 

patients63. More recently, a stem cell signature enriched in HOX genes mediated by the 

PI3K pathway was associated with resistance to temozolomide in pediatric GBM cell 
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lines77. Moreover, this report showed that patients with high expression of HOXA9 and 

HOXA10 genes presented shorter survival77. These studies, implicate the aberrant 

expression of the transcription factor HOXA9 in GBM as a therapeutic and prognostic 

marker. Such indicate the urgency in developing and testing new HOXA9 inhibitors 

(both direct or indirect, as PI3K inhibitors), and demand the identification of HOXA9 

direct-targets, which are likely to be the true effectors of its functions, in order to 

recognize new putative prognostic biomarkers and, eventually more important, to 

identify new putative therapeutic targets. 

The transcriptome of HOXA9 in GBM is unknown; however, in hematopoietic 

cells, it has been shown that HOXA9 is able to modulate the expression of a wide group 

of genes that have a large range of functional roles, and which were still not known to 

be target of any HOX gene94. In order to identify genes and pathways altered due to 

HOXA9 overexpression in GBM, we performed genome-wide expression microarrays 

(Agilent, 44K, Human Whole Genome) for the human GBM models U87MG and 

hTERT/E6/E7 cells, comparing the transcriptomes of U87MG-HOXA9 vs. U87MG-MSCV, 

and hTERT/E6/E7-HOXA9 vs. hTERT/E6/E7-MSCV. These analyses provided a large set 

of differentially expressed genes that are likely to include both HOXA9-direct and 

indirect targets, which might be used for prognostic and therapeutic purposes. We 

found more than 3400 genes differentially expressed in the GBM cell line U87MG, and 

more than 400 in hTERT/E6/E7, indicating that HOXA9 is modulating the expression of 

many genes in a cell-line specific manner, acting both as an activator and a repressor 

of gene expression. The large number of genes might indicate that the overexpression 

of HOXA9 is altering cell regulation, which may possibly lead to the higher aggressive 

features of HOXA9-positive GBM cells63. The fact that only 57 genes are simultaneously 

differentially expressed in both cell lines, implies that the effects of HOXA9 

overexpression are highly dependent on the cellular background.  

Due to the lack of agreement between the techniques available to obtain 

microarray expression data, we validated our microarray data by reverse transcription-

PCR (RT-PCR). Such validation should be global, addressing all genes differentially 

expressed from the microarray data139; however, the enormous number of genes 

differentially expressed obtained, makes global validation impractical. Thus, we used 

the strategy of choosing a subset of the most differentially expressed genes (largest 
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fold-changes) to perform this validation139 (Figure 3.1). Although the chosen strategy 

presents pitfalls, as the agreement between microarray and RT-PCR/qPCR validation 

results selecting transcripts with the largest fold-changes may not be generalized to 

the entire set of differentially expressed genes140, we attempted to overcome this 

drawback by evaluating the expression of genes with relatively mild/small fold-

changes, as were the cases of HOTAIR and WNT6 in U87MG cell line (Figures 3.5 and 

3.9). For all genes evaluated, we obtained consistent results between the microarray 

data and RT-PCR, thus validating the microarray results. 

As previously focused, the genes used on this analysis had their expression 

highly altered after HOXA9 overexpression (Table 3.2), so they may present important 

roles in GBM onset and development. We found that intercellular adhesion molecule 2 

(ICAM2) and bone morphogenetic and activin membrane-bound inhibitor homolog 

(BAMBI) were highly overexpressed due to HOXA9. It is known that the upregulation of 

ICAM2 is crucial on immune response and resistance to drug-mediated apoptosis141, 

while BAMBI has already been reported to be upregulated in several cancers, and is 

involved in the regulation of differentiation, migration, apoptosis, and cell 

proliferation142. The upregulation of both genes in HOXA9-positive U87MG cells 

possibly indicates that they have important roles in mediating the more aggressive 

phenotype induced by HOXA9 in GBM. Equally important, some of the most 

downregulated genes due to HOXA9 overexpression included angiopoietin 2 (ANGPT2) 

and platelet-derived growth factor receptor-β (PDGFRB). The expression of ANGPT2 

has been reported as increased in several tumors, and is able to promote angiogenesis 

and growth143. A very recent study showed that ANGPT2 contributes to tumor 

progression and invasion144; however, evidence is emerging that ANGPT2 may play 

different roles in the vasculature, depending on the cellular context145. In gastric 

cancer, PDGFRB is frequently overexpressed, and is known to be involved in the 

maintenance of microvessels and recruitment of pericytes146. So, further analyses to 

assess the roles of these genes in HOXA9-positive and negative GBM cells should be 

performed. 

Similar to the genes validated in U87MG, those selected for the validation of 

GBM putative precursor hTERT/E6/E7 microarray data seem to have crucial roles in 

GBM. The upregulated RAS-related C3 botulinum substrate 2 (RAC2) is involved in 
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regulating the production of reactive oxygen species, and its overexpression has been 

reported in GBM147, and associated with increased cell proliferation148, migration, and 

neovascularization149. Also, chemokine (C-X-C motif) ligand 1 (CXCL1) was found to be 

upregulated in hTERT/E6/E7 cells overexpressing HOXA9; interestingly, its role in the 

oncogenic transformation of glioma precursors has been studied150. In this report, the 

authors implicate CXCL1 as an oncogenic factor in glioma, indicating that the 

deregulation of glial proliferative factors contributes to tumorigenesis150. The HOXA9-

induced overexpression of both genes imply that these present characteristics of 

aggressiveness. Moreover, the increased upregulation of CXCL1 mediated by HOXA9 

may point a role for HOXA9 in the activation of genes involved in the putative 

oncogenic transformation of hTERT/E6/E7 in GBM, a study that would be of great 

interest. Concerning the downregulated N-myc downstream regulated 1 (NDRG1) and 

thymocyte selection-associated high mobility group box family member 2 (TOX2), their 

functions are still not completely understood. The function of TOX2 is still elusive, but 

a very recent study reported a CpG island in the promoter region of TOX2 that in 

normal cells is unmethylated, but is methylated in a significant percentage of lung 

(28%) and breast (23%) cancer cells. In fact, the expression of TOX2 is correlated with 

the modulation of several pathways involved in tissue remodeling, inflammatory 

response, cell differentiation, apoptosis, cell cycle regulation, and DNA-damage 

response151, so its downregulation is associated with a more aggressive phenotype. 

Also, the authors state that TOX2 may contribute to early malignant changes and to 

the modulation of the tumor microenvironment151. Similarly to TOX2, the examination 

of a wide variety of tumor tissues has shown that the expression level of NDRG1 in 

cancer cells is usually similar or diminished when comparing to normal tissue152-155, 

and has been associated with cellular growth, differentiation, tumorigenesis, 

metastasis87. Strikingly, it has been observed that the low levels of NDRG1 protein are 

associated with worse prognosis of glioma patients87, which in fact is contradictory 

with our overall survival analysis (OS) in GBM patients from the Repository of 

Molecular Brain Neoplasia Data (REMBRANDT; p-value=0.009; Figure 3.2). However 

the survival analysis in Sun’s report87 does not distinguish glioma WHO grades, so in 

order to clear this question, the prognostic value of NDRG1 expression in glioma 

patients should be assessed in other datasets, and to distinct WHO grades. 
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The above mentioned large list of differentially expressed genes makes the 

manually curated data analysis a highly time-consuming task, therefore requiring 

support from bioinformatics software88. To address this question, an increasing 

number of publicly available bioinformatics platforms have been arising, which are 

able to improve the biological analysis through the organization of massive and 

redundant results into comprehensible groups, and systematically ranking the most 

overrepresented biological terms156. We used two different but complementary 

bioinformatics software to extract biologically meaningful information from the 

microarray data: i) the Database for Annotation, Visualization and Integrated Discovery 

(DAVID)88 bioinformatics database, and ii) the Biological Database (Biobase)79 platform. 

DAVID bioinformatics was able to cluster non-redundant genes according to their 

function and display them in the pathways they integrate (Figure 3.3), whereas 

Biobase clustered differentially expressed genes according to biological processes 

using Gene Ontology (GO) annotation terms (Table 3.3). The overexpression of HOXA9 

in both GBM cell line U87MG and human immortalized astrocytes hTERT/E6/E7 was 

found to modulate the expression of genes that enrich several pathways involved in 

several important cellular processes. In addition to some cancer-unrelated pathways 

(e.g., “viral myocarditis” and “asthma”, among others; Figure 3.3), an interesting result 

concerns the upregulation of pathways typical of cancers other than GBM, such as 

bladder cancer and small cell lung cancer (Figure 3.3). Also, the class comprising the 

highest number of overexpressed genes was found to be “pathways in cancer” (Figure 

3.3), showing an association between the HOXA9-mediated upregulated gene 

expression signature and frequent alterations in cancer. 

The cancer hallmarks represent some key alterations that cells acquire during 

the carcinogenic process6, and their alteration in HOXA9-positive cells could be 

indicative of an higher aggressive phenotype. Accordingly, several hallmarks were 

found to be altered, as the most fundamental trait of cancer cells: the sustained 

chronic proliferation6. Contrarily to normal tissues, which carefully control production 

and release of growth signals, cancer cells are able to deregulate these signals in order 

to become self-sufficient and to proliferate uncontrollably6. This important feature was 

represented in U87MG cell line by the enrichment of upregulated genes in pathways 

known to lead to increased proliferation, as “cell division”, “cell cycle”, among others 
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(Figure 3.3 and Table 3.3). In agreement with our finding, the upregulation of genes 

involved in cell proliferation have already been reported in an HOXA9 transcriptome 

analysis in hematopoietic cells157. Furthermore, GBM is known to be highly 

proliferative, and the exogenous overexpression of HOXA9 in GBM and human 

immortalized astrocyte cell lines was already reported as responsible for higher 

proliferation rates in comparison to HOXA9-negative cell lines63. 

Another important hallmark concerns active invasion and metastasis6, and 

although GBM rarely metastasizes to other organs, it diffusely infiltrates through the 

adjacent brain parenchyma21, a feature that frequently precludes its complete surgical 

resection158. Genes downregulated in GBM cell line U87MG-HOXA9 compared to its 

negative counterpart U87MG-MSCV enriched crucial processes during invasion, as 

“focal adhesion”, “cell adhesion” and “extracellular matrix organization” (Figure 3.3 

and Table 3.3), indicating higher invasion ability of HOXA9-positive cells. Similarly, the 

biological process analysis revealed that vasculature development and endothelial cell 

proliferation were enriched in downregulated genes from the U87MG-HOXA9 cell line 

(Table 3.3). Such features are unusual on GBM once it is known that this tumor present 

increased neovascularization and highly proliferating endothelial cells22,159. It is known 

that these characteristics might be induced by hypoxia, which is a common event in 

GBM160, through the effects of hypoxia-inducible factor (HIF) 1 on its downstream 

targets161. Also, HIF1 is known to be regulated by the oncogenic RAS protein, and when 

RAS is inactivated leads to the downregulation of HIF1162. Both “hypoxic response” and 

“RAS signal transduction pathway” were found to be enriched in downregulated genes 

(Figure 3.3 and Table 3.3), which is a possible reason for the negative enrichment of 

vasculature development and endothelial cell proliferation (Table 3.3). 

For the human immortalized astrocytes hTERT/E6/E7-HOXA9 in comparison to 

its control hTERT/E6/E7-MSCV, the enrichment of genes upregulated in pathways as 

“focal adhesion” and “cell interaction with extracellular matrix” (Figure 3.3) might 

indicate decreased invasion capacity of these cells. This result again implicates the 

context-dependence of HOXA9 transcriptome.  

Another important result reveals that the upregulated gene signature was 

enriched in genes involved in several pathways associated with metabolic processes 

(Figure 3.3 and Table 3.3). It is known that normal cells mainly metabolize glucose to 
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pyruvate for growth and survival, a process that requires oxygen, so when oxygen is 

restricted pyruvate is metabolized to lactate163. However, Otto Warburg164 

demonstrated that cancer cells are able to reprogram their glucose metabolism, and 

even in the presence of oxygen, cancer cells can limit their energetic metabolism 

mainly to glycolysis164. The rationale underlying the metabolic switch in cancer cells is 

not completely understood, however the hypothesis that increased glycolysis allows 

the deviation of glycolytic intermediates to several biosynthetic pathways is raising 

agreement165,166. Such pathways are related with the production of nucleosides and 

amino acids that facilitate the biosynthesis of macromolecules and organelles required 

for fast dividing cells166. Interestingly, we found some of these pathways enriched in 

our results (Figure 3.3 and Table 3.3). In this sense, our results might indicate that 

HOXA9-positive GBM cells present altered metabolism in order to manage the 

demands of highly proliferative cells. 

A second emerging hallmark of cancer concerns the role of the immune system 

in resisting or terminating the formation and progression of incipient neoplasias, late-

stage tumors, and micrometastases6. Interestingly, our results showed that “antigen 

processing and presentation” was one of the pathways presenting higher number of 

genes downregulated in U87MG-HOXA9 (Figure 3.3 and Table 3.3). The fact that 

cancer can still develop, even with this continuous surveillance, implies that tumors 

have gained the ability to avoid this detection or to limit immunological elimination167. 

Thus, our results seem to implicate that HOXA9-positive GBM cells are able to avoid 

immune system detection in a highly effective manner, precluding HOXA9-positive 

cancer cells elimination. Concerning the non-tumor human immortalized astrocytes 

hTERT/E6/E7-HOXA9, “cytokine-cytokine receptor interaction” and “chemokine 

signaling pathway” were found to be enriched in up and downregulated genes, 

respectively (Figure 3.3). In cancer, it is known that cytokines have a wide variety of 

roles, comprising cell invasion, proliferation, angiogenesis, migration, leucocyte 

infiltration, stimulation of neovascularization, and manipulation of the immune 

response; however, they may also be able to inhibit inhibit tumor growth92. 

Accordingly, the HOXA9-induced downregulation of genes involved in “cytokines 

interactions” might be required for the silencing those cytokines involved in growth 

inhibition, or even those involved in immune responses. Additionally, it is known that 
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chemokines act together with their cell surface receptors to direct cells to specific 

locations throughout the body168. In cancer, cell trafficking into and out of the tumor 

microenvironment require chemokines and their receptors169. Therefore, some 

chemokine receptors that are not present or functional in normal cells are reactivated, 

which is consistent with increased angiogenesis, survival, and metastatic activity93. In 

this sense, the HOXA9-induced upregulation of genes involved in “chemokine signaling 

pathway” might be associated with the already referred higher invasion of HOXA9-

positive GBM model cells observed in our group (data not shown; manuscript in 

preparation). Though some of our results are not easily explained regarding our 

hypothesis, in general they represent crucial traits in GBM aggressiveness, as shown by 

the HOXA9-induced regulation of several genes that are involved in pathways 

associated with cancer (as increased proliferation and invasion). 

 It is widely recognized that one of the most important clinical features of GBM 

concerns to its high therapeutic resistance, and interestingly in pediatric GBM cell lines 

the reactivation of HOX genes expression was correlated with temozolomide 

resistance77. Therefore, and concerning all the features already stated that are possibly 

altered due to HOXA9, it seems reasonable to hypothesize that HOXA9 overexpression 

might be influencing cell response to therapy. Different mechanisms are recognized to 

drive drug-resistance in cancer cells, and interestingly our results showed enrichement 

of “ATP-binding cassette (ABC) transporters”, “hypoxia” and “DNA repair pathways” 

(Figure 3.3 and Table 3.3). Several ABC transporters are multidrug efflux pumps that 

play important roles in the uptake and distribution of therapeutics, so their increased 

expression is frequently associated with the efflux of drugs, and consequently with 

chemotherapy resistance170. It is also known that under hypoxic conditions alkylating 

agents may be less effective, mainly due to the increased production of nucleophilic 

agents that may compete with the target DNA for alkylation171. As HOXA9-induced 

downregulated genes enriched both ABC transporters and hypoxic response (Figure 

3.3), seem to implicate that these are not probable mechanisms mediating GBM 

resistance to therapy. 

Moreover, in U87MG-HOXA9 several pathways responsible for DNA damage 

repair were found to be enriched, as the cases of increased “DNA repair”, “DNA and 

“nucleotide excision repair”, among others (Figure 3.3 and Table 3.3). As previously 
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referred, the increased proliferation of cancer cells make proteins and signals involved 

on cell cycle triggering, important therapeutic targets. Cell proliferation may be 

targeted by mitotic spindle inhibitors172, growth signaling inhibition173, or by inducing 

damages on DNA (which is the most studied)174. These damages are able to cause cell 

cycle arrest and cell death either directly, or during the attempt of cells to replicate 

damaged DNA. Though, the effect of DNA-damaging drugs might be reduced by DNA 

repair pathways that eliminate DNA damages175, consequently leading to drug 

resistance. Our results are highly interesting, once they may indicate that GBM cells 

when overexpressing HOXA9 are more able to repair DNA damages than HOXA9-

negative. This together with the fact that the current GBM chemotherapy is based on 

temozolomide25, an alkylating agent that induces cell death by producing adducts on 

DNA176, implicates that these HOXA9-positive GBMs may be more resistant to therapy, 

possibly as consequence of the upregulation of genes involved in DNA repair 

pathways. These hypothesis warrant validation in future studies and highlight the 

urgent need to investigate the alterations of the enzymes involved on these pathways, 

in order to understand their role in therapy resistance. 

Additionally, this altered response to therapy also prompted us to understand if 

the differentially expressed genes have already been associated with pharmacological 

inhibitors. A preliminary analysis in Connectivity Map using part of the gene signature 

induced by HOXA9 in U87MG cell line, revealed that LY-294002, tanespimicyn and its 

analogue geldanamycin, and thrichostatin A (TSA) were able to reverse this gene 

signature (Table 3.4). In particular, LY-294002 is an inhibitor of the PI3K pathway95, 

which was pointed as responsible for HOXA9 reactivation in GBM63. So the use of PI3K 

inhibitors would indirectly lead to the silencing of HOXA9. As HOXA9-positive GBM 

patients present worse prognosis than those with HOXA9-negative GBM63, it is urgent 

to understand if the use of PI3K inhibitors in the treatment of the HOXA9-positive GBM 

would ameliorate the prognosis of these patients. So, the rational design of studies 

involving HOXA9-positive GBM and PI3K inhibitors is of great importance. 

Tanespimicyn and its analogue geldanamycin are heat-shock protein 90 (HSP90) 

inhibitors102,103. HSP90 proteins are involved in correct folding of several proteins 

crucial on carcinogenic process, as p53 and several kinases102. Our results suggests that 

these drugs are able to repress part of the HOXA9-induced transcriptome, possibly by 
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inhibiting the correct maturation of one or several proteins involved in PI3K pathway, 

or even the correct maturation of HOXA9 downstream targets. However effects of 

these drugs are not specific to HOXA9 or its targets, as they may inhibit a large panoply 

of proteins involved in several pathways. Equally important, TSA is an inhibitor of 

histone deacetylase (HDAC)96. HDACs are able to deacetylate lysine residues on 

histones and induce transcriptional repression through chromatin condensation. HDAC 

inhibitors are responsible for cell cycle arrest in G1 and/or G2 phases97, apoptosis97, 

cell differentiation98, transcriptional99 and morphological100 alterations and decreased 

angiogenesis101. So, it is possible that TSA inhibits part of the HOXA9-induced gene 

signature by leading to cell cycle arrest and thus to decreased proliferation. But may 

also point a role for HOXA9 in regulating HDACs, and consequently leading to altered 

acetylation levels. As TSA and other HDAC inhibitors are able to sensitize GBM cells to 

radiotherapy177, and to increase the cytotoxicity of anticancer drugs targeting the 

DNA178, these may be important adjuvants for the therapy currently used to treat 

GBM, especially of those presenting HOXA9 expression.  

A very interesting result concerns the enrichment of “non-coding RNA 

metabolic process” by HOXA9-induced upregulated genes from the U87MG cell line 

(Table 3.3). Non-protein coding RNAs (ncRNAs) have been reported as able to regulate 

gene expression42-45, and are being widely associated with the carcinogenic process. 

We searched the differentially expressed genes of both U87MG and hTERT/E6/E7 after 

HOXA9 overexpression, and found altered expression of some ncRNAs, of which 

several are yet to be characterized (Table 3.5). However, others have their roles on 

cancer well studied (Table 3.5), as the cases of HOTAIR and MALAT1 whose functions 

on several tumors were associated with higher aggressiveness, as increased 

proliferation and invasion105-108,110,118-124. NcRNAs may be divided into small or long 

according to their transcript length, and specially the long non-coding RNAs (lncRNAs) 

are thought to be “the missing links on cancer”179.  

LncRNAs represent spliced and polyadenylated transcripts that modify the genome in a 

highly tissue-specific manner, which can silence gene expression through different 

mechanisms, such as chromatin remodeling, transcriptional and post-transcriptional 

regulation43,180,181. Most of the known lncRNAs regulate the expression of neighboring 

genes (in cis). However, the scope of lncRNAs in gene regulation had a big advance 
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when HOX Transcript Antisense Intergenic RNA (HOTAIR) was found to exhibit trans-

regulatory functions, which allows it to reprogram chromatin organization throughout 

the genome44. HOTAIR is transcribed at the HOXC locus (between HOXC11 and 

HOXC12) and interacts with the Polycomb Repressive Complex 2 (PRC2), a histone 

methylating complex, resulting in transcriptional repression of a 40 kb region of the 

HOXD cluster on chromosome 2 by epigenetic control of chromatin180. Though, Tsai et 

al.182 reported that HOTAIR not only functions as a molecular scaffold to bind PRC2 

complex but also to lysine specific demethylase 1/REST corepressor1/RE1-silencing 

transcription factor (LSD1/CoREST/REST) protein complexes. Biochemically, the 5’ 

domain of HOTAIR binds to PRC2, while the 3’ domain binds to the LSD1/CoREST/REST 

demethylating complex (Figure 4.1), mediating the enzymatic methylation promoted 

by PRC2 and the H3K27 methylase EZH2, and also the demethylation of histoneH3 

dimethyl lysine 4 (H3K4Me2) mediated by LSD145,182. The relevance of HOTAIR in 

cancer was first reported by Gupta and co-workers105, where they report a correlation 

between HOTAIR expression and increased metastatic potential and diminished OS in 

breast cancer patients105. In patients with hepatocellular carcinoma following liver 

transplantation, Yang et al.108 showed that HOTAIR levels are higher in cancer tissues 

than in non-cancerous adjacent regions, and that its expression was associated with 

tumor recurrence. Additionally, HOTAIR expression was associated with increased 

chemotherapy resistance and invasion, and decreased apoptosis108. Recently, HOTAIR 

expression was also evaluated in colorectal cancer106 and gastrointestinal stromal 

tumors (GIST)110, where its expression was correlated with worse patient survival and 

increased metastatic potential. Specifically for GIST, HOTAIR expression was 

accompanied by overexpression of miR196a and related with tumor cell 

invasiveness110. A very recent report associated the overexpression of HOTAIR in 

pacreatic cancer with increased proliferation and invasion, decreased apoptosis, and 

was associated with shorter OS109. Together, these studies shed light into the biological 

and clinical significance of HOTAIR expression in different tumor types. However, no 

studies have been performed in human gliomas until now. 

Using publicly available datasets (Oncomine83 and REMBRANDT78) we assess 

the molecular status of HOTAIR in glioma patients, showing that this lncRNA is
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Figure 4.1| HOTAIR as a molecular scaffold for the binding of PRC2 and 

LSD1/CoREST/REST complexes. The 5’ domain of HOTAIR binds to PRC2, while the 3’ 

domain binds to the LSD1/CoREST/REST leading to the trimethylation of H3K27 and 

demethylation of H3K4, respectively. (Adapted from Prensner and Chinnaiyan, 2011
183

, 

and Flynn and Chang, 2011
184

) 

 

overexpressed in a subset of high-grade gliomas, particularly GBMs (Table 3.5); in 

contrast, HOTAIR expression is not frequent in LGGs (Table 3.5), suggesting HOTAIR 

expression is grade-specific and associated with more malignant gliomas. Importantly, 

our findings have putative clinical implications as GBM patients with high HOTAIR 

expression presented a statistically significant worse prognosis when compared to low 

HOTAIR-expressing patients in 2 large independent datasets of GBM patients, 

independently of patients’ age, sex and KPS (Figure 3.8 and Table 3.9). 

Because our data suggests HOTAIR as a new independent prognostic biomarker 

in GBM, it is critical to understand the molecular mechanisms underlying HOTAIR 

activation in these tumors. To address this, we investigated the presence of copy 

number chromosomal aberrations and alterations in DNA methylation levels on the 

HOTAIR locus, which could lead to aberrant gene expression (data not shown; 

manuscript submitted). We found HOTAIR gene amplification is a rare event in GBM, 

and the methylation levels of the HOTAIR region (~20kb including the HOTAIR gene 

and spanning from HOXC12 to HOXC11) did not significantly correlate with HOTAIR 

expression, indicating that other molecular mechanisms may be regulating HOTAIR 
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reactivation (data not shown; manuscript submitted). We next questioned which 

genes are frequently co-expressed with HOTAIR in the context of gliomas, and 

observed that several HOXA, HOXB, HOXC, and HOXD genes are frequently co-

expressed with HOTAIR in these tumors, an event consistently observed in 4 

independent datasets54,55,132,133 (Figure 3.4 and Table 3.7). Not surprisingly, HOXC 

genes are among the most co-expressed genes, which is likely related to the fact that 

HOTAIR is located within the HOXC chromosomal cluster180. Similar to the microarray 

data, we found that the transcription factor HOXA9 is frequently co-expressed with 

HOTAIR in high-grade gliomas (Figure 3.4 and Table 3.7). Interestingly, our results show 

that co-expression of HOTAIR and HOXA9 is associated with increased grades of 

malignancy, as this concomitant overexpression occurs almost exclusively in high-

grade gliomas (Figure 3.4). Remarkably, we did not observe the same co-expression of 

HOTAIR and HOXA9 in different tumor types available at TCGA (Table 3.8), indicating 

that this co-expression may be exclusive of gliomas. Both coding and non-coding genes 

share similar functional features regarding the existence of common transcription 

factors in their promoter regions, suggesting that they may be controlled by the same 

transcriptional regulatory machineries185. Taking this into account, together with the 

fact that HOTAIR is upregulated in HOXA9-overexpressing GBM cells and they are co-

expressed in high-grade gliomas, we questioned if HOXA9 could directly regulate 

HOTAIR in GBM cells. Indeed, our chromatin immunoprecipitation (ChIP) results 

indicate that there is a direct regulation of HOTAIR by HOXA9 (Figure 3.6). 

In contrast to the majority of HOTAIR studies in cancer, where the focus has 

been put on the downstream effects of HOTAIR105,106,108,110, the present work provides 

novel insights on its transcriptional regulation, widening our understanding of the 

HOTAIR-associated mechanisms of aggressiveness and malignancy in gliomas. 

Interestingly, interpreting our findings at the light of other studies further supports the 

classic intrinsic tissue-specificity of lncRNAs186. For example, HOTAIR was described to 

be directly regulated by HOXA13 in normal fibroblasts187. Additionally, in contrast to 

Rinn and co-workers’ study180 describing HOTAIR-mediated silencing of HOXD8-11 

genes in fibroblasts, we found that some HOXD genes are frequently co-expressed with 

HOTAIR in GBM. Indeed, Rinn et al180 showed HOTAIR represses HOXD genes by 

binding to PRC2 and recruiting it to the target loci. Considering that the PI3K pathway 
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is aberrantly activated in >80% of GBMs26, which in turn inhibits the formation of PRC2 

complex by phosphorylating EZH2188, it is reasonable to speculate that despite HOTAIR 

being overexpressed in some GBMs, it will not target the same genes (e.g. HOXD 

genes) as the PRC2 partner complex is not functional. This further supports a tissue-

specificity expression and function of HOTAIR.  

In summary, these results suggest that (a) HOTAIR is overexpressed in a subset 

of high-grade gliomas, independently of gene copy number and DNA methylation 

levels; (b) co-expression of HOTAIR and HOXA9 occurs mostly in high-grade glioma; (c) 

this co-expression is specific of gliomas; (d) HOTAIR presents prognostic value in GBM 

patients; and (e) HOTAIR and HOXA9 may be useful biomarkers to integrate a 

molecularly-based stratification of GBM patients. We anticipate that HOTAIR may be 

one of the effector mechanisms by which HOXA9 creates a more aggressive and 

therapy-resistant form of GBM. Future studies are warranted to identify HOTAIR 

cellular functions and downstream target genes at the genome-wide level in GBM, in 

an attempt to better understand the mechanisms by which HOTAIR affects survival of 

patients, and ultimately investigate new therapeutic opportunities. 

The interesting results obtained for the HOXA9 direct-target HOTAIR and the 

fact that HOXA9 may be mediating several potentially oncogenic pathways through its 

direct-targets, prompted us to find new genes directly regulated by HOXA9. Until now 

the number of identified HOXA9 direct-targets already identified is scarce, which has 

precluded the definition of the mechanism underlying HOX protein target specificity157. 

We performed a genome-wide in silico analysis of promoter regions, in order to 

understand which genes possess HOXA9 binding sites, and crossed this information 

with the lists of differentially expressed genes of both cell lines. Such analysis retrieved 

a large number of putative direct-targets of HOXA9 (Table 3.10). A few HOXA9 direct 

targets have already been reported and interestingly, our in silico analysis presented 

cytochrome b-245-β (CYBB) as a putative direct-target. In myeloid differentiation, CYBB 

has already been reported to present HOXA9 binding sites on its promoter region189. 

However, other genes that are known to have binding sites for HOXA9 on their 

promoter region, as EPHB4190, SOX4157 or MYB157, were not pointed as putative direct-

targets on the genome-wide analysis. Moreover, SELE, which was reported to be 

present HOXA9 binding sites85, as well as the newly identified direct-target HOTAIR, 
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which were shown by our results to be immunoprecipitated by anti-HOXA9 antibody 

(Figures 3.6 and 3.7), were not identified on the in silico analysis. It is known that 

transcription factor binding sites can exhibit some variability, however they are 

commonly modeled as position weight matrices that have significant limitations191. 

Therefore, our analysis might be biased leading us to disregard some important 

putative direct-targets of HOXA9, and a future approach to circumvent these 

limitations would be the genome-wide prediction of HOXA9 binding sites using weight 

matrices calculated with different algorithms. Nonetheless, WNT6 was considered by 

this in silico analysis as a putative direct-target of HOXA9 (Table 3.10), which was 

confirmed by our ChIP analysis (Figure 3.9).  

Interestingly WNTs are a family of glycoproteins that control several signal 

transduction pathways and may promote a wide range of cellular processes, as 

proliferation, polarity, differentiation, adhesion and migration135. Also, aberrant WNT 

signaling have been implicated in several tumor types136,137; specifically in GBM, WNT 

pathway has been suggested as a molecular mechanism able to confer GBM radio-

resistance, and is pointed as an important therapeutic target138. Our study concerning 

WNT6 features in GBM is very preliminary, however as it is direct-target of HOXA9, its 

roles as a contributing effector of HOXA9 aggressiveness in GBM must be explored. 

Also, the potential of pharmacological inhibition of WNT6 may prove to be a feasible 

therapeutic approach in overcoming the worse prognosis of HOXA9-positive GBMs. 

In this work, we initiated the unraveling of the complex transcriptome of 

HOXA9 in GBM. Our results indicate that HOXA9 is influencing several crucial features 

related with GBM aggressiveness (as proliferation, invasion and therapy resistance), 

thus implicating the importance of circumventing HOXA9 effects in GBM. For this we 

propose several alternatives, either via indirect inhibition of HOXA9 (as for instance 

PI3K inhibitors) or of its downstream targets, as HOTAIR and WNT6. 
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5. Concluding Remarks and Future Perspectives 

 

Glioblastoma (GBM) is the most malignant and common type of tumor in the 

adult CNS, for which no curative therapies are available. It is known that the lack of 

well-established prognostic markers contributes to GBM patient poor prognosis, as a 

consequence of the lack of therapeutic adaptation to each patient. So, there is the 

urgent need to establish new prognostic biomarkers that are able to stratify patients 

into cohorts regarding molecular biomarkers, which will lead to the rationalization of 

therapeutic decisions. In this sense, we intend to identify a set of genes differentially 

expressed in our microarray data, with prognostic and/or therapy response predictive 

value, which may help clinicians to direct patients to the most appropriate treatments. 

Furthermore, we anticipate that a combination of prognostic biomarkers will be more 

efficient in predicting patient prognosis than single genes. 

Nonetheless, the reactivation of HOXA9 expression in GBM has recently 

emerged as a putative prognostic marker; however, the mechanisms by which HOXA9 

associates with patient survival are poorly understood. The transcriptome of HOXA9 in 

GBM is still unknown and the understanding HOXA9´s cellular roles may explain its 

association with clinical outcome. Bioinformatics analysis of the microarray data of 

HOXA9-positive and negative GBM cell line U87MG and in human immortalized 

astrocytes hTERT/E6/E7 cells, allowed the identification of alterations in typical 

hallmarks of cancer, as increased proliferation, invasion and therapy resistance. 

Interestingly, our results seem to support the theory of increased therapy resistance 

due to the upregulation of genes involved in DNA repair pathways. As these can be 

pharmacologically inhibited, possibly leading to the sensitization of GBM cells to 

chemotherapy, their evaluation at the protein level in both HOXA9-positive and 

negative cell lines is important, and may help to understand the chemotherapy 

resistance of GBMs. Moreover, it would be of great importance to verify if the use of 

DNA repair enzymes inhibitors can lead to a sensitization of HOXA9-positive tumor 

cells to the current chemotherapy, and consequently to tumor remission. In the future, 

we also intend to continue exploring the microarray data of both U87MG and 

hTERT/E6/E7, especially by using other software, as those that enable the 
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understanding of relevant co-expression between genes groups in a high throughput 

manner (for instance, Gene Set Co-Expression Analysis). 

Additionally, using the Connectivity Map platform, we provide evidence 

suggestive of the ability of particular drugs, including LY-294002, trichostatin A, 

tanespimicyn and its analogue geldamycin, to inhibit the HOXA9-induced gene 

expression signature in GBM. These drugs warrant further analysis, as they may prove 

to be crucial in the reversion of the more aggressive phenotype induced by HOXA9 in 

GBM cells. Furthermore, we also plan to enlarge the Connectivity Map analysis to the 

HOXA9-induced downregulated genes of U87MG cell lines, but also to hTERT/E6/E7.  

The genome-wide in silico analysis revealed a vast number of putative direct 

targets of HOXA9, which include the WNT6 gene. Our chromatin immunoprecipitation 

(ChIP) analysis proved that WNT6 is, in fact, a direct target of HOXA9, so it might be 

one of the key downstream molecules mediating the higher aggressiveness of HOXA9-

positive GBMs. Here we present a very preliminary analysis of WNT6 in GBM; however, 

it highlights the importance of assessing its roles in mediation of HOXA9 effects, as it 

may represent a new therapeutic target. So, the consequences of its pharmacological 

inhibition on important cancer features (as proliferation, invasion and apoptosis) must 

be evaluated. Though, the in silico analysis requires further analysis as there are 

probably other unknown direct-targets of HOXA9 in GBM So, it is imperative to 

continue unraveling other genes that are directly regulated by HOXA9, as they may 

represent crucial prognostic and/or predictive of therapy response biomarkers, or 

therapeutic targets. 

Our work also shows HOTAIR, a long non-coding RNA that has recently been 

implicated in the aggressiveness of several cancers, as almost exclusively 

overexpressed in GBMs as compared to normal and low-grade gliomas. We also show 

that HOTAIR and HOXA9 are frequently co-expressed, especially in higher glioma 

grades (III and IV). Mechanistically, we proved that, HOXA9 binds to the promoter 

region of HOTAIR and induces its transcription in GBM cells. Importantly, we provide 

the first evidence on the molecular players regulating aberrant HOTAIR expression in 

GBM, and implicate HOTAIR overexpression as a novel independent prognostic marker 

for these patients. In this sense, HOTAIR and HOXA9 may be useful biomarkers to 

integrate a molecularly-based stratification of GBM patients. 
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We intend to analyze HOTAIR expression in primary GBM samples, and to 

assess its concomitant expression with HOXA9. Functionally, HOTAIR may be 

controlling several pathways involved in tumor progression and aggressiveness, so we 

plan to modulate HOTAIR expression (both with silencing and overexpressing 

approaches) in GBM cell lines in order to understand its role in several hallmarks of 

cancer (including proliferation, invasion and apoptosis). From a therapeutic 

perspective, HOTAIR downstream effects may be inhibited by the use of PRC2 or LSD1 

inhibitors. However, as previously referred, the PI3K pathway is overexpressed in more 

than 80% of GBMs, which inhibits the formation of PRC2 complex by phosphorylating 

EZH2. In this sense, HOTAIR’s effects in GBM are likely to be mainly mediated by LSD1 

complex. So, the use of LSD1 inhibitors may silence HOTAIR, and thus limit its 

downstream effects and reverse its aggressive phenotype. 

In summary, our study provides the first characterization of HOXA9 

transcriptome in the context of GBM, suggest putative mechanisms by which HOXA9 

renders GBM cells with a more malignant phenotype, and identifies new clinically-

relevant prognostic biomarkers. Together, our findings may help to rationalize therapy 

decisions and to identify new molecular targets for GBM therapy. 
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Annex I 

Supplementary Table 1| Sequence of primers used for PCR analyses. 

Gene Primer Sense Primer Antisense Primer 
Tm (ºC) 

ICAM2 GGATCCCAGAGCTACCCTTC CGTGTCATGGGAGATGTTTG 59 

BAMBI CTTGCAAGCACGACAGACAT GAAGTCAGCTCCTGCACCTT 58 

ANGPT2 ATAAGCAGCATCAGCCAACC CCTTGAGCGAATAGCCTGAG 61 

PDGFRB ATAAGCAGCATCAGCCAACC CCTTGAGCGAATAGCCTGAG 57 

RAC2 CAGCACACCCATCATCCTG CCTCTCTGGGTGAGAGCTGA 61 

CXCL1 AGGGAATTCACCCCAAGAAC TGTTCAGCATCTTTTCGATGA 60 

NDRG1 CTCGCTGAGGCCTTCAAGTA AGAGAAGTGACGCTGGAACC 60 

TOX2 CTTCCCGCACATCTCTGAGT TGAGGTAGAGCGATTTGTCC 58 

HOXA9 GCCCGTGCAGCTTCCAGTCC GAGCGCGCATGAAGCCAGTTG 61 

hGUS CCTGTGACCTTTGTGAGCAA GTGCCCGTAGTCGTGATACC 57 

HOTAIR CAGTGGGGAACTCTGACTCG GTGCCTGGTGCTCTCTTACC 60 

WNT6 CGAAATGGAGGCAGCTTCT GACGAGAAGTCGAGGCTCTTT 60 

HOTAIR (ChIP) ATGGACGCTCTCGTTTGTTC CGGGTGCAAGATAAACCACT 60 

WNT6 1 CAGGGGCATCAAAGACATTT TCAAGAGATCGAGGGGTCAG 60 

WNT6 2 CAGGCCAACTTCCTCTCTTG GAAGGGCTGGGAAGAAGAGT 60 

SELE 1 GCATCGTGGATATTCCCGGGAAAG CAGCTGAACACTACTTCGGCTGAGG 68 

SELE 2 CTACCACAACTACATGAGAGACACTAC CTTTCCCGGGAATATCCACGATGC 58 

SELE 3 ATCTACCTTGTGAGTCATTC TAGTTGTGGTAGTAATTAGAAT 46 

 

For all genes tested, the PCR parameters were as follows: 4 minutes at 94ºC, 35 

cycles of denaturation for 30 seconds at 94ºC, annealing for 30 seconds (at specific 

primer Tm temperature), extension at 72ºC for 30 seconds, and final extension at 72ºC 

for 8 minutes. For qPCR, all parameters were identical to conventional PCR, except the 

number of cycles that was extended to 45, and final extension was performed by 

increasing the temperature in 1ºC each 5 seconds from 65ºC to 95ºC.

http://www.stabvida.net/clients.php
http://www.stabvida.net/clients.php
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Supplementary Table 2| Top 50 of the differentially expressed genes upregulated on the microarray data of U87MG-HOXA9 against its negative counterpart U87MG-MSCV. 

Gene Name Gene Symbol Log Fold-Change p-value 

NK2 homeobox 1 NKX2-1 5,72 3,10E-05 
intercellular adhesion molecule 2 ICAM2 3,65 5,69E-07 
sidekick homolog 2 (chicken) SDK2 3,48 3,09E-05 
BMP and activin membrane-bound inhibitor homolog (Xenopus laevis) BAMBI 3,38 1,04E-06 
serpin peptidase inhibitor, clade B (ovalbumin), member 2 SERPINB2 3,29 7,19E-04 
serine peptidase inhibitor, Kazal type 1 SPINK1 3,17 1,23E-05 
hypothetical protein LOC283454 LOC283454 3,13 3,03E-06 
chromosome 1 open reading frame 133 C1orf133 3,06 5,00E-06 
serpin peptidase inhibitor, clade B (ovalbumin), member 2 SERPINB2 3,03 4,83E-05 
FYVE, RhoGEF and PH domain containing 3 FGD3 3,00 1,78E-05 
transmembrane protein 47 TMEM47 2,94 1,23E-06 
protein phosphatase 1, regulatory (inhibitor) subunit 14C PPP1R14C 2,90 1,97E-04 
harakiri, BCL2 interacting protein (contains only BH3 domain) HRK 2,86 2,58E-08 
SH2 domain containing 5 SH2D5 2,85 8,44E-06 
ring finger protein 43 RNF43 2,74 1,10E-06 
C1q and tumor necrosis factor related protein 2 C1QTNF2 2,70 7,49E-06 
selenocysteine lyase SCLY 2,69 7,85E-06 
uridine phosphorylase 1 UPP1 2,68 1,97E-07 
heparan sulfate (glucosamine) 3-O-sulfotransferase 2 HS3ST2 2,65 6,68E-06 
frizzled homolog 8 (Drosophila) FZD8 2,62 3,79E-05 
lymphocyte cytosolic protein 1 (L-plastin) LCP1 2,62 2,06E-07 
prostate transmembrane protein, androgen induced 1 PMEPA1 2,57 1,00E-05 
claudin 14 CLDN14 2,56 6,57E-04 
protein phosphatase, Mg2+/Mn2+ dependent, 1F PPM1F 2,51 1,43E-07 
C1q and tumor necrosis factor related protein 2 C1QTNF2 2,50 8,70E-05 
RRS1 ribosome biogenesis regulator homolog (S. cerevisiae) RRS1 2,48 2,09E-07 
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chemokine (C-C motif) ligand 3 CCL3 2,45 2,00E-05 
matrix metallopeptidase 1 (interstitial collagenase) MMP1 2,40 9,63E-08 
interleukin 22 receptor, alpha 1 IL22RA1 2,38 6,99E-05 
sphingosine kinase 1 SPHK1 2,37 1,59E-04 
pleckstrin homology domain containing, family G (with RhoGef domain) member 3 PLEKHG3 2,36 3,17E-07 
G0/G1switch 2 G0S2 2,35 1,47E-05 
histone cluster 1, H1a HIST1H1A 2,34 5,46E-04 
hypothetical LOC284344 LOC284344 2,34 3,76E-05 
ribosomal RNA processing 9, small subunit (SSU) processome component, homolog (yeast) RRP9 2,32 7,94E-04 
SMAD family member 7 SMAD7 2,28 1,41E-05 
BMP and activin membrane-bound inhibitor homolog (Xenopus laevis) BAMBI 2,27 2,98E-07 
solute carrier family 7, (cationic amino acid transporter, y+ system) member 11 SLC7A11 2,24 9,82E-06 
pregnancy specific beta-1-glycoprotein 4 PSG4 2,24 2,20E-07 
vitamin D (1,25- dihydroxyvitamin D3) receptor VDR 2,18 1,09E-04 
protein phosphatase, Mg2+/Mn2+ dependent, 1F PPM1F 2,17 7,48E-06 
spindle and kinetochore associated complex subunit 1 SKA1 2,15 5,16E-06 
tribbles homolog 3 (Drosophila) TRIB3 2,15 4,24E-04 
chromosome 20 open reading frame 82 C20orf82 2,14 7,06E-06 
glycine-N-acyltransferase-like 1 GLYATL1 2,12 6,99E-07 
lymphocyte cytosolic protein 1 (L-plastin) LCP1 2,08 1,84E-03 
Rho family GTPase 3 RND3 2,08 3,2E-03 
chromosome 16 open reading frame 57 C16orf57 2,08 3,50E-07 
chromosome 14 open reading frame 34 C14orf34 2,05 4,49E-05 
PSMC3 interacting protein PSMC3IP 2,04 1,32E-04 
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Supplementary Table 3| Top 50 of the differentially expressed genes downregulated on the microarray data of U87MG-HOXA9 against its negative counterpart U87MG-
MSCV. 

Gene Name Gene Symbol Log Fold-Change p-value 

angiopoietin 2 ANGPT2 -6,41 1,57E-11 
fer-1-like 4 (C. elegans) FER1L4 -5,31 2,84E-07 
chromosome 10 open reading frame 10 C10orf10 -4,66 1,86E-06 
chromosome 10 open reading frame 10 C10orf10 -4,65 1,67E-05 
olfactomedin-like 2A OLFML2A -4,61 1,41E-06 
fibronectin 1 FN1 -4,22 1,28E-05 
fibronectin 1 FN1 -4,20 1,49E-07 
family with sequence similarity 133, member A FAM133A -4,06 2,09E-07 
selenium binding protein 1 SELENBP1 -3,84 5,70E-08 
yippee-like 4 (Drosophila) YPEL4 -3,82 4,01E-08 
family with sequence similarity 133, member A FAM133A -3,81 1,73E-07 
apolipoprotein H (beta-2-glycoprotein I) APOH -3,72 1,26E-06 
sema domain, seven thrombospondin repeats (type 1 and type 1-like), transmembrane domain 
(TM) and short cytoplasmic domain, (semaphorin) 5B SEMA5B -3,66 1,79E-07 
proline-rich transmembrane protein 2 PRRT2 -3,65 3,31E-04 
apolipoprotein E APOE -3,60 7,63E-07 
lymphocyte-specific protein 1 LSP1 -3,50 3,58E-06 
nuclear factor (erythroid-derived 2), 45kDa NFE2 -3,49 4,82E-06 
C-type lectin domain family 3, member B CLEC3B -3,48 3,04E-07 
Janus kinase 3 JAK3 -3,46 2,91E-05 
platelet-derived growth factor receptor, beta polypeptide PDGFRB -3,45 1,79E-07 
death associated protein-like 1 DAPL1 -3,32 4,01E-08 
major histocompatibility complex, class II, DR alpha HLA-DRA -3,27 3,94E-06 
acetyl-CoA acetyltransferase 2 ACAT2 -3,26 7,62E-09 
cadherin 7, type 2 CDH7 -3,24 1,59E-07 
zona pellucida glycoprotein 1 (sperm receptor) ZP1 -3,23 4,20E-05 
MACRO domain containing 2 MACROD2 -3,23 2,61E-06 
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WNT1 inducible signaling pathway protein 2 WISP2 -3,23 9,50E-05 

hypothetical LOC197187 MGC23284 -3,22 1,01E-07 
MRS2 magnesium homeostasis factor homolog (S. cerevisiae) MRS2 -3,15 2,91E-05 
odz, odd Oz/ten-m homolog 2 (Drosophila) ODZ2 -3,15 2,28E-05 
SH3 and cysteine rich domain 2 STAC2 -3,12 1,13E-06 
aldolase C, fructose-bisphosphate ALDOC -3,10 4,44E-05 
kelch-like 4 (Drosophila) KLHL4 -3,07 1,80E-08 
DIRAS family, GTP-binding RAS-like 1 DIRAS1 -3,07 3,30E-08 
family with sequence similarity 46, member A FAM46A -3,04 7,83E-07 
carbonic anhydrase IX CA9 -3,02 4,95E-04 
fibronectin 1 FN1 -2,98 3,33E-05 
calcyphosine CAPS -2,95 2,57E-05 
WAP four-disulfide core domain 10B WFDC10B -2,95 1,96E-07 
SLIT and NTRK-like family, member 6 SLITRK6 -2,94 3,08E-07 
collagen, type I, alpha 1 COL1A1 -2,92 3,49E-05 
chitinase 3-like 1 (cartilage glycoprotein-39) CHI3L1 -2,90 1,08E-05 
CAP-GLY domain containing linker protein 3 CLIP3 -2,90 5,07E-07 
eEF1A2 binding protein DKFZp434B1231 -2,89 2,28E-03 
neurexin 2 NRXN2 -2,87 4,52E-06 
amiloride-sensitive cation channel 2, neuronal ACCN2 -2,85 1,73E-04 
glucosidase, alpha; acid GAA -2,84 9,12E-04 
apolipoprotein C-I APOC1 -2,81 5,35E-05 
sperm associated antigen 4 SPAG4 -2,79 7,31E-06 
interleukin 1 receptor accessory protein-like 1 IL1RAPL1 -2,79 1,02E-04 
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Supplementary Table 4| Top 50 of the differentially expressed genes upregulated on the microarray data of hTERT/E6/E7-HOXA9 against its negative counterpart 
hTERT/E6/E7-MSCV. 

Gene Name Gene Symbol Log Fold-Change p-value 

chemokine (C-X-C motif) ligand 1 (melanoma growth stimulating activity, alpha) CXCL1 4,51 1,43E-05 
natriuretic peptide receptor C/guanylate cyclase C (atrionatriuretic peptide receptor C) NPR3 4,50 1,95E-04 
ras-related C3 botulinum toxin substrate 2 (rho family, small GTP binding protein Rac2) RAC2 4,12 2,31E-07 
ribosomal protein L39-like RPL39L 3,97 3,40E-09 
serine/threonine protein kinase MST4 MST4 3,75 2,08E-06 
elastin microfibril interfacer 2 EMILIN2 3,68 1,15E-05 
placenta-specific 8 PLAC8 3,60 4,24E-06 
placenta-specific 8 PLAC8 3,54 1,32E-05 
collagen, type III, alpha 1 COL3A1 2,99 1,98E-07 
natriuretic peptide receptor C/guanylate cyclase C (atrionatriuretic peptide receptor C) NPR3 2,95 5,06E-05 
ras-related C3 botulinum toxin substrate 2 (rho family, small GTP binding protein Rac2) RAC2 2,94 1,26E-06 
hypothetical LOC100506305 LOC100506305 2,85 1,91E-06 
cytochrome b5 reductase 2 CYB5R2 2,76 1,76E-05 
O-6-methylguanine-DNA methyltransferase MGMT 2,72 1,53E-07 
DENN/MADD domain containing 2D DENND2D 2,67 6,47E-07 
beta-site APP-cleaving enzyme 2 BACE2 2,64 1,73E-05 
platelet-derived growth factor receptor-like PDGFRL 2,62 4,68E-08 
beta-site APP-cleaving enzyme 2 BACE2 2,60 2,75E-05 
collagen, type I, alpha 2 COL1A2 2,49 2,02E-05 
syndecan 2 SDC2 2,24 1,04E-05 
protocadherin 17 PCDH17 2,19 1,52E-05 
chromosome X open reading frame 57 CXorf57 2,11 8,22E-06 
desmocollin 3 DSC3 2,05 3,91E-04 
desmoplakin DSP 1,97 1,87E-04 
zinc finger protein 558 ZNF558 1,92 6,25E-07 
melanoma antigen family D, 4B MAGED4B 1,89 2,81E-04 
ankyrin 1, erythrocytic ANK1 1,85 1,94E-04 
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cyclin-dependent kinase inhibitor 2B (p15, inhibits CDK4) CDKN2B 1,84 3,2E-04 
zinc finger protein 469 ZNF469 1,84 1,31E-04 
chemokine (C-X-C motif) ligand 6 (granulocyte chemotactic protein 2) CXCL6 1,82 1,40E-05 
hypothetical LOC100287221 LOC100287221 1,79 7,77E-06 
surfactant associated 1 (pseudogene) SFTA1P 1,75 4,61E-05 
phosphatidic acid phosphatase type 2B PPAP2B 1,72 1,67E-05 
cadherin 6, type 2, K-cadherin (fetal kidney) CDH6 1,71 5,31E-05 
ABI family, member 3 (NESH) binding protein ABI3BP 1,70 2,14E-04 
cadherin 6, type 2, K-cadherin (fetal kidney) CDH6 1,60 6,01E-09 
sarcoglycan, alpha (50kDa dystrophin-associated glycoprotein) SGCA 1,53 1,24E-05 
hairy and enhancer of split 1, (Drosophila) HES1 1,52 6,69E-05 
arylsulfatase family, member J ARSJ 1,50 1,90E-05 
zinc finger, C4H2 domain containing ZC4H2 1,50 5,24E-07 
hypothetical protein LOC731479 LOC731479 1,48 2,58E-04 
collagen, type XI, alpha 1 COL11A1 1,39 1,13E-06 
inhibitor of DNA binding 3, dominant negative helix-loop-helix protein ID3 1,36 5,49E-06 
AE binding protein 1 AEBP1 1,35 3,28E-04 
coiled-coil domain containing 80 CCDC80 1,32 4,23E-04 
hypothetical LOC100505894 LOC100505894 1,31 1,01E-04 
chemokine (C-X-C motif) ligand 5 CXCL5 1,28 2,46E-05 
inhibitor of DNA binding 4, dominant negative helix-loop-helix protein ID4 1,28 2,38E-04 
desmocollin 3 DSC3 1,26 1,30E-07 
chromodomain helicase DNA binding protein 7 CHD7 1,25 4,20E-05 
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Supplementary Table 5| Top 50 of the differentially expressed genes downregulated on the microarray data of hTERT/E6/E7-HOXA9 against its negative counterpart 
hTERT/E6/E7-MSCV. 

Gene Name Gene Symbol Log Fold-Change p-value 

X (inactive)-specific transcript (non-protein coding) XIST -6,44 1,71E-10 
chromosome 10 open reading frame 35 C10orf35 -4,52 2,74E-07 
chemokine (C-X-C motif) receptor 7 CXCR7 -4,41 3,51E-06 
N-myc downstream regulated 1 NDRG1 -3,59 9,06E-05 
TOX high mobility group box family member 2 TOX2 -3,49 1,56E-08 
HtrA serine peptidase 3 HTRA3 -3,46 3,47E-08 
mannosidase, alpha, class 1C, member 1 MAN1C1 -3,30 2,95E-06 
transmembrane protein 158 (gene/pseudogene) TMEM158 -3,25 1,68E-05 
insulin-like growth factor 2 (somatomedin A) IGF2 -3,15 3,50E-07 
CUB domain containing protein 1 CDCP1 -3,14 4,88E-06 
extracellular leucine-rich repeat and fibronectin type III domain containing 2 ELFN2 -3,12 1,78E-07 
G0/G1switch 2 G0S2 -3,03 3,34E-06 
cellular repressor of E1A-stimulated genes 1 CREG1 -3,03 2,29E-06 
G protein-coupled receptor 68 GPR68 -2,99 2,03E-07 
docking protein 7 DOK7 -2,96 9,07E-05 
paraneoplastic antigen MA3 PNMA3 -2,94 5,06E-05 
bradykinin receptor B1 BDKRB1 -2,87 6,03E-05 
IMP (inosine 5'-monophosphate) dehydrogenase 1 IMPDH1 -2,80 1,80E-05 
bradykinin receptor B1 BDKRB1 -2,78 0,000169435 
paralemmin PALM -2,76 4,12E-06 
tumor protein p53 inducible protein 11 TP53I11 -2,69 0,00026756 
eEF1A2 binding protein DKFZp434B1231 -2,62 4,77E-05 
coagulation factor III (thromboplastin, tissue factor) F3 -2,62 3,71E-06 
leucine zipper, putative tumor suppressor 1 LZTS1 -2,56 3,17E-06 
glucose-fructose oxidoreductase domain containing 1 GFOD1 -2,53 7,98E-06 
protein tyrosine phosphatase, receptor type, E PTPRE -2,49 0,000383438 
collagen, type XIII, alpha 1 COL13A1 -2,49 0,00018848 
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collagen, type XIII, alpha 1 COL13A1 -2,46 0,000209884 

inhibin, beta B INHBB -2,41 1,32E-06 
cathepsin H CTSH -2,37 5,38E-07 
sparc/osteonectin, cwcv and kazal-like domains proteoglycan (testican) 1 SPOCK1 -2,35 2,98E-05 
midline 2 MID2 -2,33 4,10E-05 
cell growth regulator with EF-hand domain 1 CGREF1 -2,33 1,38E-05 
family with sequence similarity 134, member B FAM134B -2,25 6,57E-05 
RALBP1 associated Eps domain containing 2 REPS2 -2,22 1,42E-08 
hypothetical gene supported by BC013438 LOC375295 -2,20 6,99E-05 
glutathione S-transferase mu 3 (brain) GSTM3 -2,16 9,20E-06 
glutathione S-transferase mu 3 (brain) GSTM3 -2,16 4,81E-05 
bradykinin receptor B2 BDKRB2 -2,16 2,61E-06 
carboxypeptidase A3 (mast cell) CPA3 -2,13 2,39E-06 
chromosome 14 open reading frame 132 C14orf132 -2,12 1,05E-06 
vitamin D (1,25- dihydroxyvitamin D3) receptor VDR -2,06 0,000339465 
ST6 (alpha-N-acetyl-neuraminyl-2,3-beta-galactosyl-1,3)-N-acetylgalactosaminide alpha-2,6-
sialyltransferase 5 ST6GALNAC5 -2,04 8,42E-08 
interferon regulatory factor 5 IRF5 -2,01 2,86E-08 
solute carrier family 30 (zinc transporter), member 3 SLC30A3 -1,95 7,95E-05 
lectin, galactoside-binding, soluble, 3 LGALS3 -1,93 0,000265902 
Kv channel interacting protein 3, calsenilin KCNIP3 -1,92 6,06E-05 
Down syndrome critical region gene 1-like 2 DSCR1L2 -1,91 7,04E-06 
colony stimulating factor 2 (granulocyte-macrophage) CSF2 -1,90 2,97E-06 
solute carrier organic anion transporter family, member 4A1 SLCO4A1 -1,90 2,62E-05 
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Supplementary Figure 1 (previous page)| Kaplan-Meier overall survival curves of patients from 

REMBRANDT
78

 dataset that presented expression of the genes with higher log fold-change in the 

microarray data of U87MG (A) and hTERT/E6/E7 (B) cell lines. The overexpression of ICAM2, BAMBI, 

CXCL1, RAC2 and XIST in GBM patients is not associated with overall survival (ICAM2, p=0.133; BAMBI, 

p=0.371; CXCL1, p=0.140; RAC2, p=0.09; XIST, p=0.599). 
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