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Human articular cartilage functions under a wide range of mechanical loads in synovial joints, where hydro-
static pressure (HP) is the prevalent actuating force. We hypothesized that the formation of engineered cartilage
can be augmented by applying such physiologic stimuli to chondrogenic cells or stem cells, cultured in hy-
drogels, using custom-designed HP bioreactors. To test this hypothesis, we investigated the effects of distinct HP
regimens on cartilage formation in vitro by either human nasal chondrocytes (HNCs) or human adipose stem
cells (hASCs) encapsulated in gellan gum (GG) hydrogels. To this end, we varied the frequency of low HP, by
applying pulsatile hydrostatic pressure or a steady hydrostatic pressure load to HNC-GG constructs over a
period of 3 weeks, and evaluated their effects on cartilage tissue-engineering outcomes. HNCs (10x 10° cells/
mL) were encapsulated in GG hydrogels (1.5%) and cultured in a chondrogenic medium under three regimens
for 3 weeks: (1) 0.4 MPa Pulsatile HP; (2) 0.4 MPa Steady HP; and (3) Static. Subsequently, we applied the
pulsatile regimen to hASC-GG constructs and varied the amplitude of loading, by generating both low (0.4 MPa)
and physiologic (5 MPa) HP levels. hASCs (10x 10° cells/mL) were encapsulated in GG hydrogels (1.5%) and
cultured in a chondrogenic medium under three regimens for 4 weeks: (1) 0.4 MPa Pulsatile HP; (2) 5MPa
Pulsatile HP; and (3) Static. In the HNC study, the best tissue development was achieved by the pulsatile HP
regimen, whereas in the hASC study, greater chondrogenic differentiation and matrix deposition were obtained
for physiologic loading, as evidenced by gene expression of aggrecan, collagen type II, and sox-9; metachromatic
staining of cartilage extracellular matrix; and immunolocalization of collagens. We thus propose that both HNCs
and hASCs detect and respond to physical forces, thus resembling joint loading, by enhancing cartilage tissue
development in a frequency- and amplitude-dependant manner.

Introduction shear,® 2 may improve the development of cartilage tissue

in vitro. In vivo, articular cartilage is exposed to a wide range

HYDROSTATIC PRESSURE (HP) has long been considered a
variable influencing chondrocyte activity, since 1985,
when Lippiello and co-workers' first evaluated the in vitro
metabolic response of articular cartilage (AC) explants (both
bovine and human) to different levels of HP—75 to 375 psi
(0.5-2.5MPa). Data suggested that AC chondrocytes have
the capacity to rapidly and differentially transform me-
chanical signals derived from application of HP into meta-
bolic events, which are also determined by the magnitude of
the applied force.!

With the emerging of tissue engineering as an indepen-
dent research field, and the understanding that chondrocytes
are mechanically sensitive cells, >’ great efforts have been
made to comprehend how HP, and other mechanical stimuli
relevant for articular cartilage, such as compression*” and

of static and dynamic mechanical loads, ranging amplitudes
of about 5-6 MPa for gait, and as high as 18 MPa for other
movements such as running or jumping.'*'* In accordance to
the biphasic model of cartilage,” the solid components of the
extracellular matrix (ECM) support shear stress, whereas the
incompressible interstitial water is responsible for with-
standing compressive loading, by driving out of the tissue. In
view of this, 95% of the overall applied joint load is sup-
ported by interstitial fluid pressurization, so HP is the pre-
vailing mechanical signal governing normal articular
cartilage homeostasis.>'® Most studies'’ " have focused on
the effects of HP stimuli on chondrocyte-mediated synthesis
and degradation of cartilage matrix macromolecules, such as
proteoglycans, collagens, noncollagenous proteins, and gly-
coproteins. Articular chondrocytes, usually from animal
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source, respond positively to pulsatile (0.0125-1Hz) HP
loadings ranging 0.3-5MPa, by increasing glycosaminogly-
can (GAG) synthesis and deposition, as well as expression of
healthy AC markers such as collagen type II, aggrecan, and
sox-9 transcription factor.'”'*?*?* However, when high HP
magnitudes are applied, in the order of 50 MPa, cell apo-
ptosis is observed.”! The same outcome was observed when
culturing human osteoarthritic chondrocytes under physio-
logically normal pressure magnitudes (5 MPa).® In our
study, we consider two clinically relevant cell sources as
potentially responsive to HP dynamic culturing: human na-
sal chondrocytes (HNCs) have demonstrated to respond to
physical forces resembling joint loading;28 therefore, this cell
source was used as a proof of principle. Nasal cartilage tissue
is characterized as hyaline cartilage, containing differentiated
chondrocytes that express the ECM molecules typical of ar-
ticular cartilage,**° and is responsive to physical forces re-
sembling joint loading.®® Nasal septum cartilage may be
obtained under local anesthesia, through a procedure con-
sidered to be less invasive as compared to localized tissue
harvesting from non-load-bearing areas of the joint. This last
biopsy procedure is the one normally employed when
treating articular cartilage lesions using cell-based therapies
such as autologous chondrocyte implantation or matrix-in-
duced chondrocyte implantation.*"** We aim to understand
whether HNCs respond to HP loading, and consequently
improve in vitro cartilage tissue development. Furthermore,
and considering a more challenging approach, adipose tis-
sue-derived stem cells (ASCs) appear to be a promising al-
ternative cell source for cell-based therapies,33’35 as well as
for cartilage tissue regeneration® >’ due to their excellent
features. ASCs may be easily isolated from adipose tissue
(AT) and proliferate quickly, and their chondrogenic differ-
entiation potential has been proven.**** This known, we
additionally hypothesize if human adipose stem cells
(hASCs) respond to biomechanical stimuli, particularly HP,
and if this could be employed to enhance and ameliorate
cartilage tissue development in vitro, with the aim of re-
ducing the time to therapy, and ultimately increasing graft
implantation success. To achieve these outcomes, two cus-
tom-designed bioreactors were developed, allowing long-
term culturing and control of loading parameters. In this
study, we evaluated the effects of the loading amplitude (0.4
and 5MPa) and the frequency (pulsatile vs. steady pressur-
ization). Assays of the produced tissues evaluated the sig-
nificance of these treatments on cartilage tissue development,
as compared to a static culture condition (control condition).

Materials and Methods
Development of hydrostatic pressure bioreactors

Two original easy-to-use devices were developed to gen-
erate HP forces, which uniformly load constructs in culture.
The High Hydrostatic Pressure Bioreactor (HHPB) was de-
signed to generate physiological amplitudes of HP (up to
10MPa), and the Low Hydrostatic Pressure Bioreactor
(LHPB) was projected to load culturing constructs with
shorter HP amplitudes (up to 0.5 MPa). Both devices enclose
particular key characteristics, such as

(1) possibility to perform long-term culturing, up to sev-
eral weeks;
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(2) culture of multiple 3D constructs within a high range
of dimensions;

(3) tunable loading parameters: pressure amplitudes may
range 0-0.4MPa (for LHPB) and 1.5-10MPa (for
HHPB); frequency may range 0-1Hz;

(4) operation of devices inside standard biohazard hoods,
and CO, incubators at 37°C, in complete sterile con-
ditions;

(5) LHPB is disposable, composed by standard, off-the-
shelf components, whereas HHPB is reusable, com-
posed by sterilizable stainless steel components.

High-HPB. The High-HPB system (Fig.1A, B) consists of
a stainless steel device (15-cm diameterx18-cm height),
composed of a culture chamber (CC), an air chamber (AC),
and a piston. The air pressure-driven piston creates HP in the
CC, where constructs reside in the culturing medium. As
filtered compressed house air enters the AC, the piston is
pushed up. The ratio of the AC and CC area is 15:1, so that
15x the applied pressure is generated in the upper CC. A
pressure transducer (0-16 MPa; Swagelok) with a digital
display is connected to the lid of the CC, providing a real-
time pressure reading. Pulsatile pressurization is controlled
by a Programmable Logic Controller unit (PLC-OMRON
CPM1A-30CDR-A-V1) and a solenoid valve (Camozzi A331-
1C2). When nonpressurized, the culture medium is re-
plenished through the CC by a peristaltic pump (Ismatec),
from a standard 50-mL Schott bottle, with an adapted air
filter.

Low-HPB. During HP loading, cells (encapsulated in
gellan gum [GG] hydrogel) experience uniform normal
stress, without measurable tissue strain—this is schemati-
cally represented in Figure 1C and valid within both High-
and Low-HPB. The Low-HPB system (Fig.1D, E) is
composed by a 30-mL luer-lok polypropylene syringe (BD
Biosciences), where the rubber piston is used as a physical
division between the culture medium and compressed air,
used as mechanism of compression. An aluminum adapter is
connected at the top of the syringe, together with a semirigid
nylon tube (Legris) to conduct filtered compressed house air
inside the chamber. At the bottom of the syringe, Pharmed
BPT tubing (Masterflex) is connected to allow gas exchange.
The PLC and solenoid valve used with HHPB allow con-
trolled pulsatile pressurization of the culture medium. The
medium is replenished through the Pharmed BPT tubing,
using a syringe to avoid complex manipulation.

Isolation, expansion, and cell encapsulation
in GG hydrogels

Human nasal chondrocytes. Nasal cartilage was ob-
tained as a surgical waste from an endoscopic endonasal
approach to the brain, by the neurosurgery department of
our local hospital. All patients (1=10, average age of 44
years) signed an informed consent document approved by
the Ethics Committee of Hospital S. Marcos (Braga). Dis-
sected nasal cartilage (average weight of 0.67 g) was cut and
digested with collagenase type II, according to a protocol
described elsewhere.*? Briefly, the tissue was washed with
sterile phosphate-buffered saline (PBS) (Sigma P4417), diced
into 2-3-mm-thickness cubes, immersed in 20 mL trypsin-



ENGINEERING CARTILAGE TISSUE WITH HYDROSTATIC PRESSURE

A H Digitaldisplay
= ®
(T r—’ b

Media Peristaltic pump t T 1 1
replenishment ¢ ot

Compressed air M
B

1981

C

Compressed air
[] — PLC f—

FIG. 1. Custom-designed hydrostatic pressure bioreactors (HPBs). (A) Schematic representation of High Hydrostatic
Pressure Bioreactor (HHPB); (B) photograph of HHPB; (C) schematic representation of hydrostatic pressure (HP) forces
applied to cell-encapsulated gellan gum construct; (D) schematic representation of Low Hydrostatic Pressure Bioreactor
(LHPB); (E) photograph of LHPB. Color images available online at www liebertpub.com/tea

EDTA solution (Invitrogen 25300-062), and incubated for
30 min at 37°C in a rotator. The trypsin-EDTA solution was
removed, and 20 mL of collagenase type II (2mg/mL; Sigma
C6885) was added and allowed to incubate for 15h at 37°C
in a rotator. The digested tissue was filtered and the cell
suspension centrifuged at 1200 rpm for 8 min. The cell pellet
was washed twice with PBS, and cells were counted with a
hemocytometer using the viability stain trypan blue (Sigma),
obtaining a cell yield of 3,500 cells/mg. Chondrocytes were
expanded until passage 3 in Dulbecco’s modified Eagle’s
medium (DMEM) high glucose (Sigma D5671); 1% nones-
sential aminoacids (1IXMEM Invitrogen 11140-035); 20 mM L-
alanyl-L-glutamine (Sigma G8541); 1% antibiotic/antimicotic
100 x (15240-062 Gibco); 10mM HEPES (Sigma H4034); and
10% Fetal Bovine Serum (Biochrom, heat-inactivated 30 min,
57°C), supplemented with basic fibroblast growth factor
(bFGF) 10ng/mL (Peprotek 100-18B). Chondrocytes were
further detached from the culture flask with the trypsin-
EDTA solution (Invitrogen 25300-062) and encapsulated in a
GG hydrogel and cultured for 3 weeks in a medium without
bFGF supplementation.

Human adipose-derived stem cells. hASCs were iso-
lated, according to previously described methods,** from li-
posuction aspirates of subcutaneous AT, donated with
written consent by patients undergoing elective liposurgery.
Briefly, AT was washed with PBS (1:1v/v) and centrifuged
200 g for 5min at room temperature (RT), and infranatants
were discarded. About 1 mL of 0.2U/mL collagenase solu-
tion (Collagenase NB 4 Standard grade; SERVA Electro-
phoresis, Cat. No. 17454) was added per gram of washed AT,
shaked vigorously, and incubated at 37°C for 45min in a
water bath with agitation at 200 rpm. Digested AT was fur-
ther centrifuged at 1200 g, 3min, at RT, and supernatants
were discarded, and the pellet (correspondent to the stromal

vascular fraction—SVF) was plated in cell culture plates.
Adhered cells (adipose stem cells-hASCs) were further ex-
panded to the third passage in a high-glucose DMEM
(GIBCO 11965) supplemented with 10% fetal bovine serum
(FBS) (GIBCO 26140), penicillin-streptomycin (1%) (GIBCO
15140), and 1 ng/mL bFGF (Peprotech 100-18B). hASCs were
further detached from the culture flask with the trypsin-
EDTA solution (Invitrogen 25300-062), encapsulated in a GG
hydrogel, and cultured for 4 weeks in a chondrogenic me-
dium: DMEM supplemented with 0.1nM dexamethasone
(Sigma D2915), 50 pg/mL proline (Sigma P5607), 1 mM so-
dium pyruvate (Invitrogen 11360-070), 1xITS+ (BD
Bioscience), 50 ug/mL ascorbic acid 2-phosphate (Sigma
A8960), penicillin-streptomycin (1%) (GIBCO 15140), and
10ng/mL TGF -83 (Invitrogen PHG9302). p0 cells were ex-
amined for surface marker expression using flow cytometry.
The presence of specific antigens such as CD105, CD45,
CD34, CD73, and CD90 was analyzed, as previously pub-
lished.***> hASCs were tested for their differentiation ca-
pacity into the osteogenic, chondrogenic, and adipogenic
lineages.

Cell encapsulation in GG hydrogels

GG is a water-soluble gelling agent commonly used in
food and pharmaceutical industry, due to its processing into
transparent gels resistant to heat and acid stress. The thick-
ness and hardness of the GG are determined by acetyl
groups present: with acetyl groups, the gel is soft and elastic;
without acetyl groups, firmer gels are obtained.*® Both form
thermoreversible gels with different mechanical properties in
the presence of metallic ions and upon temperature decrease.
Once GG presents a thermosensitive behavior,”” ** with ge-
lation close to body temperature, its application as an in-
jectable formulation, for repair of cartilage defects, is
prornising.so_53
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GG hydrogel was produced according to the procedure
described by Oliveira JT and Reis RL et al.”*>® Briefly,
powdered GG (Gelzan™ Sigma G1910) was dissolved in
distilled water into a 1.5% solution and heated up to 90°C.
Temperature was subsequently decreased down to 37°C-—
40°C, for cell encapsulation at a final concentration of 10x 10°
cells/mL. Cylindrical discs were made with a mold, and PBS
(Sigma P4417) was used as a cross-linking agent to stabilize
the hydrogel structure.

Bioreactor cultivation of tissue constructs

HNC study. The experimental design is outlined in
Figure 2. HNCs encapsulated in GG hydrogel (HNC-GG)
were cultured up to 3 weeks in three conditions (Fig. 2A, B):
(1) Pulsatile Hydrostatic Pressure (PHP)-culture me-
dium pressurized between 0.1 MPa and 0.4MPa, at a fre-
quency of 0.1Hz, 3h/day, and 5 days/week; (2) Steady
Hydrostatic Pressure (SHP)—culture medium pressurized at
0.4MPa for 3h/day, and 5 days/week; (3) Static culturing
(Static)—constructs were cultured at atmospheric pres-
sure conditions (0.1 MPa) during the total culturing period.
Equal individual devices were used for each culturing
regime.
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hASC study. hASCs encapsulated in GG hydrogel
(hASC-GG) were cultured up to 4 weeks in three conditions
(Fig. 2C, D): (1) High HP (5 MPa)—culture medium pres-
surized between 0.5 MPa and 5 MPa, at a frequency of 0.5 Hz,
4h/day, and 5 days/week; (2) Low HP (0.4 MPa)—culture
medium pressurized at 0.4MPa, at a frequency of 0.5Hz,
4h/day, and 5 days/week; (3) Static culturing (Static)—
constructs were cultured at atmospheric pressure conditions
during the total culturing period.

Cell viability and proliferation assessment

Cell viability was evaluated by a Live/Dead assay. Live
cells (indicated by calcein AM; Invitrogen C3099) and dead
cells (indicated by propidium iodide; Alfagene P1304MP)
were imaged through a Zeiss Axioimage (RZ1M) florescence
microscope. Cell metabolic activity was assessed through an
MTS (3-(4,5-dimethylthiazol-2-yl)-5(3-carboxymethoxyphenyl)-
2(4-sulfofenyl)-2H-tetrazolium) assay (VWR G3580). Con-
structs were washed in PBS and incubated with the MTS
solution at 37°C for 3 h, after which 100 uL. was transferred to
a 96-well plate for optical density (OD) measurement at
490nm. OD is directly proportional to the cellular activity,
being a measure of mitochondrial activity.
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FIG. 2. HP profiles applied to constructs. Human nasal chondrocyte (HNC) study: (A) HP profile applied along 3 weeks of
culture (SHP-Steady Hydrostatic Pressure; PHP-Pulsatile Hydrostatic Pressure); (B) daily HP profile applied to constructs.
Human adipose stem cell (hASC) study: (C) HP profile applied along 4 weeks of culture; (D) daily HP profile applied to
constructs. Color images available online at www.liebertpub.com/tea
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Biochemical characterization

Constructs were harvested, washed in PBS, cut in half, and
weighed. For DNA assay, one-half was added to 1 mL of the
proteinase K digestion buffer (10 mM Tris, 1 mM EDTA, 0.1%
Triton X-100, and 0.1 mg/mL proteinase K) and incubated
overnight at 56°C for digestion. After centrifugation at 3000 g,
for 10 min, the supernatants were removed, diluted, pippeted
in duplicate into a 96-well plate, and 1:1 ratio of the picogreen
solution (Quant4T " PicoGreen® dsDNA Kit; Invitrogen) was
added. Sample fluorescence was measured with a fluorescent
plate reader at excitation ~480nm and emission ~520nm.
Lambda DNA was used to prepare the standard curve. For
GAG quantification, one-half of constructs was added to 1mL
of the papain digestion buffer (100mM sodium phosphate
buffer, 10 mM Na,EDTA, 1.5 mg/mL L-cysteine hydrochloride,
and 0.125 mg/mL papain) and incubated overnight at 60°C for
digestion. After centrifugation at 10,000 g, for 5min, 10 uL of
supernatant was removed and pippeted in duplicate into a 96-
well plate, and 250 uL. of DMB solution (Dimethylmethylene
blue) was added. Sample absorbance was measured with a
microplate reader at OD 530 nm. Chondroitin 6-sulfate C so-
dium salt was used to prepare the standard curve.

Histology and immunohistochemistry

Ten percent formalin was used to fix samples for 1 day,
and further dehydrated with a graded series of ethanol wa-
shes. Samples were embedded in paraffin, sectioned to 5 um,
and mounted on glass slides. To proceed to distinct stainings,
sections were deparaffinized with Clearite and rehydrated
with a graded series of ethanol washes.

Articular cartilage ECM components, such as mucopoly-
saccharides and GAGs, respectively, were detected by safranin
O and Alcian Blue staining. Briefly, Safranin O stain was
performed by staining with Weigert’s iron hematoxylin, for
10min followed by running in tap water for 10 min. Slides
were then immersed in 0.02% fast green solution for 5min and
rinsed 10-15s in 1% acetic acid. Finally, samples were stained
with 0.1% Safranin O solution for 5 min. Regarding Alcian Blue
staining, slides were immersed in 0.01 g/mL Alcian Blue so-
lution for 30 min, and washed in running tap water for 2 min.
A counterstain with nuclear fast red was performed for 5 min.
Upon staining, sections were washed in running tap water,
dehydrated with a graded series of ethanol, cleared with
Clearite, and mounted with a resinous mounting medium.

For immunohistochemistry, sections were blocked with
normal horse serum (NHS), stained sequentially with a pri-
mary antibody (rabbit anti-human collagen type II poly-
clonal antibody, abcam ab34712 and rabbit anti-human
collagen type I polyclonal antibody, abcam ab292; NHS for
negative control) and a secondary antibody (Vectastain
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Universal Elite ABC Kit; PK-6200 Vector Laboratories), and
developed with the biotin—avidin system (DAB substrate kit;
SK-4100 Vector Laboratories). All histological and immuno-
histochemical assessments were performed blindly by three
independent researchers.

Quantitative real-time reverse
transcriptase—polymerase chain reaction

For RNA extraction, constructs were added to 800 pL. of
TRIzol (Invitrogen 15596-026) and disintegrated by a mortar
and pestle. Suspensions were centrifuged at 12,000 g for
10min at 4°C to remove tissue debris and extracted with
chloroform (JMGS C/4960/17). Colorless aqueous phase
containing RNA was removed and mixed with an equal
volume of isopropanol (Laborspirit 33539). Suspensions were
again centrifuged at 12,000 g for 8 min at 4°C, and super-
natant was discarded, and RNA pellet was washed with 75%
ethanol. Samples were centrifuged at 7500 g for 5min at 4°C,
and supernatant was removed, and pellet was air-dried and
dissolved with RNAase-free water (Invitrogen 10977035).
RNA was quantified using Nanodrop® ND-1000. Approxi-
mately 1pg of RNA was reverse-transcribed with random
hexameres using the qScript” ¢cDNA Synthesis Kit (Quanta
Biosciences 95047). Expression of collagen type II, aggrecan,
Sox-9, and the housekeeping gene glyceraldehyde-3-phos-
phatedehydrogenase (GAPDH) was quantified using Per-
feCTa" SYBR® Green FastMix (Quanta Biosciences 95072)
and the Mastercycler ep realplex” (Eppendorf). Primer se-
quences and amplicon size are described on Table I. The
expression data were normalized to GAPDH and presented
as average values for each group (n=3*standard deviation
[SDD.

Statistical analysis

Data are presented as average (1n=3)%SD. Statistical sig-
nificance was determined using an analysis of variance fol-
lowed by the Tukey’s HSD (honestly significant difference)
test using Prism software (Prism 4.0c; GraphPad Software
Inc.).

Results
Cell proliferation and viability

HNC metabolic activity was quantified by the reduction of
the MTS reagent at the beginning and end of culture (Fig.
3A). No significant differences were obtained from day 1 to
week 3 of culture, or among experimental groups. Live/
Dead imaging of HNCs encapsulated in GG hydrogels cor-
roborates with MTS data, as green viable cells are visualized
by fluorescence microscopy.

TABLE 1. PRIMERS USED FOR QUANTITATIVE REAL-TIME REVERSE TRANSCRIPTASE-POLYMERASE CHAIN REACTION

Gene Primer forward Primer reverse Amplicon
Collagen type 1I 5GACAATCTGGCTCCCAAC 5’ACAGTCTTGCCCCACTTA 257bp
Aggrecan 5TGAGTCCTCAAGCCTCCTGT 5TGGTCTGCAGCAGTTGATTC 129bp
Sox-9 5TACGACTACACCGACCACCA 5TTAGGATCATCTCGGCCATC 256 bp
GAPDH 5’ ACAGTCAGCCGCATCTTCTT 5’ACGACCAAATCCGTTGACTC 94bp

bp, base pairs; GAPDH, glyceraldehyde 3-phosphate dehydrogenase.
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DNA contents of hASCs encapsulated in GG hydrogels
were quantified at beginning and end of culture. The group
of hASCs cultured in static conditions proliferated more than
those cultured in 5MPa HP (p <0.05) and was the only group
that significantly increased the cell number relatively to be-
ginning of culture (p<0.01). The Live/Dead viability assay
allowed the observation, by fluorescence microscopy, of
green viable cells that enzymatically converted nonfluores-
cent cell-permeant calcein AM into the intensely fluorescent
calcein (Fig. 3B).

Cartilage tissue development

HNC study. Cartilage tissue developed by HNC-GG
cultured under 0.4 MPa PHP or SHP was evaluated after 3
weeks, and compared with static culturing. Cartilage ECM
components, namely collagen type II (Col II) and GAGs,
were localized in cross-sections of constructs (Fig. 4). Sa-
franin O and Alcian Blue staining revealed the presence of
negatively charged GAGs in cultured constructs.

We observed that PHP induced a great increase in GAG
deposition as shown by intense Safranin O staining and
higher Alcian Blue staining, as compared to constructs
cultured under SHP, or under static culturing conditions.
Also, deposition of collagen type II, the major component of
articular cartilage, was increased in the PHP group,
whereas the least deposition was observed for the SHP
group. Collagen type I was not detected in any of the ex-
perimental groups, which is a positive marker of develop-
ment of healthy articular cartilage (Fig. 4). The gene
expression profile corroborates with these observations
(Fig. 5). Collagen type Il-relative gene expression was
overexpressed in cells cultured under PHP conditions, sig-
nificantly different (p <0.05) than SHP or Static groups. Sox-
9 gene expression, an important transcription factor in
chondrogenesis, was also upregulated in the PHP group,
statistically different than SHP and Static groups. Among
these, SHP culturing did not improve either collagen type
II- nor Sox-9-relative gene expression over Static cultur-
ing. Aggrecan gene expression, though, was significantly
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inferior (p <0.05) in cells cultured under SHP as compared
to Static conditions.

hASC study. Safranin O staining and Alcian Blue stain-
ing were performed to detect GAGs in hASC-GG constructs
cultured under high (5MPa) or low (0.4MPa) PHP, and
compared to static culture conditions (Fig. 6). Both dyes
stained intensely the GAGs present in constructs cultured
under 5 MPa of PHP. Moreover, it was evident the presence
of cells in lacunae, a characteristic of articular cartilage tissue,
as observed in correspondent stainings of human native
cartilage (Fig. 6, right column). Less stain intensity was ob-
served for constructs cultured under 0.4MPa of PHP in
comparison to the 5-MPa group, yet higher than the one
observed for constructs cultured under static conditions.
The same trend was observed for immunolocalization of
collagen type II (Fig. 6): higher deposition of this articular
cartilage protein was observed in constructs of the group
5MPa, relatively to constructs of the 0.4-MPa group, which
per se, demonstrated higher collagen II deposition than in
constructs that were not mechanically stimulated (Static
group).

Regarding collagen type I, all groups demonstrated col-
lagen type I deposition, with the highest intensity observed
for the Static group, considerably higher than that detected
in native articular cartilage (Fig. 6). Herein, the opposite
trend was observed: constructs of Static group demonstrated

1985

Static

FIG. 4. HNC study: Carti-
lage development evaluation
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and 2nd row) Histological
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ly glycosaminoglycans
(GAGsS) (by Safranin O and
Alcian Blue); (3rd and 4th
row) immunohistochemical
localization of collagen type
IT and collagen type I. Scale
bar=100 um. Color images
available online at www
Jiebertpub.com/tea
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deposition of this protein to a higher extent than constructs
cultured under low PHP (0.4-MPa group), whereas con-
structs of the 5-MPa group demonstrated the smaller depo-
sition of collagen type I. The increased deposition of collagen
type Il and low deposition of collagen type I are indicative of
the development of mature and healthy articular cartilage.
The relative expression of genes encoding for major articular
cartilage ECM components, such as collagen II and aggrecan,
was determined by quantitative real-time reverse transcriptase—
polymerase chain reaction and found to be consistent with
histology staining (Fig. 7). Aggrecan-relative gene expression
(GE) of cells exposed to 5-MPa PHP was significantly higher
(p<0.05) than GE quantified for both 0.4-MPa and Static
groups. Regarding collagen type II, the highest expression
was obtained for cells exposed to 0.4 MPa, which was found
to be significantly different from GE quantified for both 5-
MPa and Static groups. Regarding GE of Sox-9 transcription
factor, no significant differences were detected between
culturing groups. The ECM components were also directly
quantified by biochemical assays. The amount of quantified
GAGs in the constructs was superior for the 5-MPa group
and found to be significantly different (p<0.05) than that
observed for static culturing (Fig. 8). Although in our best
condition we obtained ~0.55pg/mg GAG, this is yet 50
times lower the amount quantified in human articular car-
tilage, whose dense matrix contains about 25-30pg/mg
GAG (54).



1986 CORREIA ET AL.
30+
25
T ® -
® 2 20
= &
g o
&2 104 *
35 '
© *
04 B
PHP SHP Static
0.04- —
o
FIG. 5. HNC study: Relative = & 0.03-
. . T ®
gene expression obtained after T2
culture. Collagen II, aggrecan, and = g 0.02-
sox-9 gene expression relative to S35
glyceraldehyde 3-phosphate de- Q@
hydrogenase (GAPDH). n=3, 25 |
*p<0.05. Qs 0
0.00- faleSatele e T
PHP SHP Static
2.5+
c
® .0
=N
® 0
s
20 ¥
52 1
N o
o
L -
PHP SHP Static
Discussion term culture and stimulate cell-encapsulated/cell-seeded

Dynamic culturing has long been adopted®™ >’ as a strat-
egy to improve the development of cartilage tissue in vitro as
opposed to standard static culturing techniques. We under-
stand dynamic culturing, as the use of biomechanical stimuli
that are relevant to the tissue being engineered. Articular
cartilage tissue in joints such as the hip or the knee is sub-
jected to intermittent cyclic stress that can either be com-
pressive or shear.” However, a major joint load is supported
by interstitial fluid pressurization.>*® HP is so essential for
cartilage homeostasis such that joint immobilization or de-
creased loading results in cartilage thinning.””* HP is a
fundamental mechanical stimulus governing the normal
functioning of articular cartilage, which has justified its
broad exploitation in our study. Two custom bioreactor
systems were developed, being capable of generating and
applying this mechanical stimulation to 3D tissue-engineer-
ing constructs (Fig. 1). These systems are novel and distin-
guish themselves from other systems described in the
literature by several features, namely the possibility to long-

constructs in the same device up to 4 weeks (maximum
evaluated). Other studies have explored HP pressurization
for shorter periods, such as a few hours (1, 4, or 24h)19_
21232427 5 up to 2 weeks.®?222526 Carver et al. 1999,'7 and
lately, Gunja and coworkers 2010,°! cultured constructs up to
5 and 4 weeks, respectively, although requiring higher
technical complexity. Our devices are user-friendly, and can
be operated inside standard hoods and incubators during
complete experimental periods, which is a feature not com-
monly observed in other studies.'®?!2%2426:27.61

To validate the purpose of using HP to improve cartilage
tissue development in vivo, we performed a preliminary
study using healthy chondrocytes from a hyaline cartilage
source (nasal septum cartilage). Nasal septum was chosen as
an alternative model of healthy articular cartilage, as HNCs
have proven to respond to mechanical stimulation.?® In our
study, very positive outcomes were obtained, even under
low levels of HP (0.4 MPa). This finding supported the sub-
sequent study using hASCs. Our major aim was to under-
stand if hASCs respond positively to this mechanical
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FIG. 6. hASC study: Cartilage development evaluation after 4 weeks of culture. (1st and 2nd row) Histological stainings of
cartilage ECM, namely GAGs (by Safranin O and Alcian Blue); (3rd and 4th row) immunohistochemical localization of
collagen type II and collagen type I. Scale bar=100 pm. Color images available online at www .liebertpub.com/tea

stimulation and develop cartilage tissue with increased
properties than those obtained under standard culturing
conditions, for similar culturing periods. Furthermore, we
questioned if higher levels of HP within the physiological
range found in human joints (5-6 MPa for gait)'*'* would
improve cartilage formation. In both studies, GG hydrogel™
was used for cell encapsulation because of its proven per-
formance on supporting cartilage tissue development
in vitro®®" and in vivo>® with chondrocytes and ASCs.* For
both studies, the cell viability was assessed. We observed
that HP amplitudes of 0.4MPa under both pulsatile and
steady state regimes were not deleterious for HNCs, as no
significant differences were obtained as compared to static
conditions (Fig. 3A). Furthermore, for the hASC study, DNA
content for all groups measured at the end of culture was
superior than the initial, which demonstrated that both 0.4
and 5MPa pulsatile-loading regimes were not harmful to
cells (Fig. 3B). Although, only hASCs cultured under static
conditions proliferated (p<0.01 to day-1 values), indicating
that lack of HP allowed higher cell division in detriment of
chondrogenic differentiation stimulation. Cell numbers used
in this study compare to those quantified for native cartilage:
the biopsies collected (n=10) yielded 28.0+5.8ng DNA/mg
tissue, whereas DNA quantification of cultured constructs
demonstrated 20.5+2.9ng/mg construct.

Regarding chondrogenic matrix deposition, we observed
that HP culturing seemed to induce cartilage-like tissue de-

velopment in a frequency- and amplitude-dependant man-
ner. In the HNC study, more than questioning if HP would
improve cartilage tissue development by these cells, we
questioned whether pulsatile or steady loading would pro-
vide increased tissue formation. Therefore, HNC-GG con-
structs were cultured under 0.1Hz or 0Hz, 0.4-MPa HP
loading. Higher ECM production and deposition, identified
by increased GAG staining by Safranin O and Alcian Blue, as
well as collagen type II immunolocalization, were obtained
for pulsatile culturing (PHP group). Moreover, steady HP
culturing (SHP group) seemed to suppress any chondrogenic
development once very low histological detection and gene
expression were obtained for this group, even lower than for
static culturing (Figs. 4 and 5). To our knowledge, HNC re-
sponse to HP mechanical stimulation has not been yet fully
explored. In the context of mechanical stimulation, Candrian
and colleagues® evaluated HNC response to distinct com-
pression-loading regimens and observed that these ex-
pressed collagen II, aggrecan, and hyaluronan to different
extents as a response to those specific regimes. Bouchet
et al.®? cultured HNCs in spinner flasks, demonstrating that
this stimulation improved aggrecan and collagen type II
gene expression and deposition on Cellagen™ beads. Al-
though we have used HNCs as a cell model, we also rec-
ognize its interest as a possible heterologous approach for the
treatment of cartilage focal lesions. In fact, the use of HNCs
(1) avoids the need of biopsy harvesting of hyaline cartilage
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from nonbearing articular sites; and (2) allows good cell re-
sponse to mechanical stimuli that are physiological relevant,
anticipating a good adaptation of the engineered tissue to the
implantation-site environment. From this preliminary study,
we conclude that (1) HNCs respond to HP mechanical
stimulation by increasing the cartilage formation outcome as
compared to engineered constructs cultured under static

0.4 MPa Static

conditions; (2) pulsatile HP stimulated HNCs to secrete
cartilaginous ECM, whereas SHP appears to suppress carti-
lage development. Therefore, pulsatile HP at 0.4 MPa was
chosen to stimulate hASCs in GG hydrogels toward chon-
drogenic differentiation and hyaline cartilage tissue forma-
tion. Herein, more than hypothesizing the ability of hASCs to
sense and respond to pulsatile HP mechanical stimulation at

0.6
0.5+

0.4+
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0.4MPa by increasing chondrogenic differentiation and im-
proving cartilage tissue development, we also questioned the
influence of physiologic levels of HP (5MPa) on the magni-
tude of these outcomes. Both hypotheses were proven. Data
shown demonstrate increased aggrecan gene expression, in-
tense GAG staining, and correspondent increased GAG
quantification for the 5-MPa group, relatively to both 0.4-
MPa and Static groups (Figs. 6-8). Moreover, same outputs
were found greater for the 0.4-MPa group as compared to the
Static group, indicating an amplitude-related response of
hASCs to HP, since cartilage-related outputs were found to
vary proportionally to the HP magnitude: 5MPa > 0.4 MPa
> Static. Some mechanotransduction mechanisms may play
an important role in justifying these outcomes. Hydrostatic
loading does not result in macroscopic deformation of the
tissue once the solid matrix is incompressible, but an increase
in the interstitial fluid flow and/or increased cytoskeleton
changes®® promoted by a pulsatile loading might be some of
the mechanisms triggering cell response over steady pres-
surization. Additionally, by increasing loading amplitudes,
up to 5MPa, major mechanotransduction mechanisms
should respond proportionally by (1) increasing integrin-
mediated responses, majorly by o581 that performs as a
primary bridge between the ECM and actin cytoskeleton and
playing an important role on MAPK activation®; and (2)
enhancing molecular conformational changes transduced to
the nucleus and consequently changing accessibility of ge-
nomic DNA for transcription®; and (3) rising the direct ef-
fects on the cell membrane ion pumps and channels—with
loading, the Na/K pump is inhibited, and intracellular Ca?t
wave function as one of the major signal transduction
mechanism.®>%°

Yet, our results are additive to those obtained by Ogawa
and coworkers,® which remain, to our knowledge, the only
study that previously explored the response of hASCs to HP.
In this work, hASCs were exposed to pulsatile low HP
(0.5MPa) for 1 week, followed by 3 weeks of static culturing,
and evidenced increased collagen II, aggrecan, and sox-9
gene expression and ECM staining in the pressurized group,
as compared to the Static group. We suggest that physiologic
levels of HP (10 x higher) and longer loading periods provide
a more mature tissue, which is better adapted to the envi-
ronment found in vivo. Given this, we conclude that (1)
hASCs sense and respond to PHP stimulation at both low
(0.4MPa) and physiologic (5MPa) pressure amplitudes; (2)
physiologic HP amplitudes promoted a higher and better
tissue matrix distribution, which resembles native articular
cartilage.

Conclusions

By aiming the improvement of in vitro engineering of
cartilage tissue, two custom-made bioreactor systems were
developed being capable of generating and applying, in a
controlled manner, HP as biomechanical stimuli—at high
and low magnitudes—to 3D tissue-engineering constructs. In
addition, HNCs and hASCs were encapsulated in GG hy-
drogels (ASC-GG), and cultured under several HP regimens
to evaluate cartilaginous tissue formation. We observed that
HNCs enhance secretion of cartilaginous ECM when cul-
tured under pulsatile low HP, whereas same levels of HP
(0.4MPa) applied continuously inhibit ECM secretion.

1989

Moreover, hASCs cultured under same pulsatile low HP
(0.4 MPa) secrete less chondrogenic ECM than under pulsa-
tile physiologic levels of HP (5MPa). We conclude that
hASCs not only sense and respond to HP loading but also
respond in different proportions in accordance to magnitude
of the loading applied. Further experimental studies are
needed to understand the mechanotransduction mechanisms
occurring that lead to the observed cell response.
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