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bDepartamento de Matemática, Universidade de Aveiro, Portugal

Information

Keywords:
Clifford Analysis; Generalized Appell poly-
nomials; Number triangle; Central binomial
coefficient; Binomial identity.

Original publication:
Opuscula Math. 32, no. 4 (2012), 661-673.
DOI: 10.7494/OpMath.2012.32.4.661
www.opuscula.agh.edu.pl

Abstract

The recently growing interest in special Clifford Algebra
valued polynomial solutions of generalized Cauchy-Riemann
systems in (n + 1)-dimensional Euclidean spaces suggested
a detailed study of the arithmetical properties of their
coefficients, due to their combinatoric relevance. This
concerns, in particular, a generalized Appell sequence of
homogeneous polynomials whose coefficient’s set can be
treated as a one-parameter family of non-symmetric triangles
of fractions. The discussion of its properties, similar to those
of the ordinary Pascal triangle (which itself does not belong
to the family), is carried out in this paper.

1 Introduction

In [11, 18], we have considered for the first time the infinite array of numbers

T k
s (n) =

k!

n(k)

(n+1
2 )(k−s)

(k − s)!
(n−1

2 )(s)

s!
, n, k = 1, 2, . . . ; s = 0, 1, . . . , k,

where a(r) denotes the Pochhammer symbol, given by a(r) := Γ(a+r)
Γ(a) , for any integer r ≥ 1 and a(0) := 1,

as well as 0(0):= 1. These numbers were introduced in the framework of Clifford Analysis (cf. [4]), in order
to construct special polynomials in Rn+1. Their relation with the elements of the Pascal triangle is obvious,
since we can write them also in the form

T k
s (n) =

(
k

s

)
(n+1

2 )(k−s)(
n−1

2 )(s)

n(k)
.
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2 A note on a one-parameter family of non-symmetric number triangles

But considered in the form (1), they show their connection with the coefficients of the geometric series
and its higher degree relatives, namely with

1

(1− t)m
=

∞∑
r=0

m(r)

r!
tr, where t ∈ C,m > 0. (1)

Indeed, they are the product of two factors of the form
m(r)

r! and of a third factor, which is the reciprocal
of such an expression. The series expansion of complex holomorphic functions through the series expansion
of the Cauchy kernel in its integral representation is well known and relies on the geometric series (m = 1).
Analogously, Clifford Analysis deals with the series expansion of generalized holomorphic functions in Rn+1

through the series expansion of the generalized Cauchy kernel in their integral representation. Therefore it
seems obvious to expect some similar relation to geometric series (1) of degree m > 1. For readers familiar
with the basics of Clifford Analysis this connection surely comes not as a surprise, but so far as we know, it
has never been explicitly noticed before in this way.

Our main concern will be some arithmetical properties of the family of number triangles composed by
fractions T k

s (n) for different parameter values n in lines of height k = 0, 1, . . . , and ordered from s = 0 up to
s = k. Both representations (1) and (1) show that they are not symmetric triangles like the ordinary Pascal
triangle, because T k

s (n) 6= T k
k−s(n).

We will try to omit as much as possible details from Clifford Analysis, but due to the particular role
in Clifford Analysis we would like to stress in this introduction at least their origin as coefficients in the
construction of generalized Appell polynomials in that framework. Those generalized Appell polynomials have
recently received a lot of attention from several authors ([3, 8, 15, 16, 20]) due to their important role in
theory and applications ([6, 7, 9, 13]), specially in elasticity [3], PDE and Special Functions ([5, 12]), or
3D-quasiconformal mapping problems ([10, 11]).

The mentioned polynomial sequences in (n+ 1) real variables take their values in the real vector space of
paravectors of the corresponding Clifford algebra C`0,n. To understand what this means let {e1, e2, · · · , en}
be an orthonormal basis of the Euclidean vector space Rn with a non-commutative product according to the
multiplication rules

ekel + elek = −2δkl, k, l = 1, · · · , n,

where δkl is the Kronecker symbol. The set {eA : A ⊆ {1, · · · , n}} with

eA = eh1
eh2
· · · ehr

, 1 ≤ h1 < · · · < hr ≤ n, e∅ = e0 = 1,

forms a basis of the 2n-dimensional Clifford algebra C`0,n over R.
Let now Rn+1 be embedded in C`0,n by identifying (x0, x1, · · · , xn) ∈ Rn+1 with the algebra’s element

x = x0 + x ∈ An := spanR{1, e1, . . . , en} ⊂ C`0,n. Here

x0 = Sc(x)

and
x = Vec(x) = e1x1 + · · ·+ enxn

are the so-called scalar part resp. vector part of the paravector x ∈ An. The conjugate of x is given by

x̄ = x0 − x

and the norm |x| of x is defined by

|x|2 = xx̄ = x̄x = x2
0 + x2

1 + · · ·+ x2
n.

It follows that C`0,n-valued functions defined in some open subset Ω ⊂ Rn+1, in general, are of the form
f(z) =

∑
A fA(z)eA, where fA(z) are real valued.

The generalized Cauchy-Riemann operator in Rn+1, n ≥ 1, is defined by

∂ := 1
2 (∂0 + ∂x), ∂0 :=

∂

∂x0
, ∂x := e1

∂

∂x1
+ · · ·+ en

∂

∂xn
. (2)
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C 1-functions f satisfying the equation ∂f = 0 (resp. f∂ = 0) are generalized holomorphic functions, usually
called left monogenic (resp. right monogenic).

A monogenic function f is hypercomplex differentiable in Ω in the sense of [14], i.e. it has a uniquely
defined areolar derivative f ′ in the sense of Pompeiu in each point of Ω (for more details see also [17]). The
hypercomplex (areolar) derivative f ′ of a monogenic function is given by f ′ = 1

2 (∂0 − ∂x)f where

∂ :=
1

2
(∂0 − ∂x)

is just the conjugate generalized Cauchy-Riemann operator. If we recall the complex partial derivatives (also
called Wirtinger derivatives)

∂f

∂z̄
=

1

2
(
∂f

∂x
+ i

∂f

∂y
) and

∂f

∂z
=

1

2
(
∂f

∂x
− i∂f

∂y
)

then it is clear that the hypercomplex derivative f ′ is also a generalized hypercomplex Wirtinger derivative
f ′ = ∂f = 1

2 (∂0 − ∂x)f. There use is vital for the definition of a basic polynomial sequence. Since a

hypercomplex differentiable function belongs to the kernel of ∂, it follows that in fact f ′ = ∂0f = −∂xf
corresponding to the complex case of a holomorphic function where

df

dz
=
∂f

∂z
=
∂f

∂x
= −i∂f

∂y
.

After this excursion on the fundamentals of Clifford Analysis we can now recall the definition of a generalized
Appell sequence (cf. [2, 18]) of monogenic polynomials associated to ∂.

A sequence of monogenic polynomials (Fk)k≥0 is called a generalized Appell sequence with respect to ∂ if

1. F0(x) ≡ 1.

2. Fn(0) = 0.

3. ∂ Fk = kFk−1, k = 1, 2, . . . .

In [11, 18], we have shown for the first time that for all n ≥ 1 and T k
s (n) given by (1) the polynomials

Pn
k (x) =

k∑
s=0

T k
s (n)xk−s x̄s, (3)

form such a set of generalized Appell sequences. Moreover, we showed in those papers also how these Appell
sequences can be expressed in terms of several hypercomplex variables of the form zk = xk − x0ek;x0, xk ∈
R; k = 1, 2, . . . , n.

But in the form (3) these polynomials are special monogenic polynomials in the sense of [1], where a
monogenic polynomial P is said to be special if there exist constants aij ∈ An for which

P (x) =
∑
i,j

′x̄ixjai,j

(the primed sigma stands for a finite sum). This paper [1] is concerned with the extension of the theory of
basic sets of polynomials in one complex variable, as introduced by J. M. Whittaker and B. Cannon, and was
published 10 years before the introduction of the hypercomplex derivative in [14]. Hence, it has nothing to do
with Appell sequences.

In the following we prove several properties of the triangle numbers (1). In particular, we present results
that provide different constructive methods for obtaining the aforementioned fractional number triangles in
arbitrary dimensions n ≥ 2. We also derive results concerned with the sum and alternating sum of the rows
of the triangle (1) which play an important role in the context of Clifford Analysis.
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2 Pascal-like fractional number triangles

We start by first recalling some well known properties of the Pochhammer symbol, namely

a(r) = (a+ r − 1)a(r−1) and a(a+ 1)(r) = (a+ r)a(r). (4)

These properties can be used to derive straightway the following relations:(n+ 1

2

)
(k+1)

=
n+ 2k + 1

2

(n+ 1

2

)
(k)
, (5)

(n− 1

2

)
(s+1)

=
n+ 2s− 1

2

(n− 1

2

)
(s)
, (6)

and

(n− 1)
(n+ 1

2

)
(r)

= (n+ 2r − 1)
(n− 1

2

)
(r)
. (7)

It is also easy to conclude that, as already mentioned in formula (1)

T k
s (n) =

(
k

s

)∏k−s
i=1 (n+ 2i− 1)

∏s
i=0(n+ 2i− 1)

2kn(k)
,

i.e.
2kT k

s (n) =
(
k
s

)
Rk

s (n),

where Rk
s (n) is a rational function which is the quotient of two monic polynomials in n, both of degree k.

For n = 1 the only possible value of s is s = 0 and we have T k
0 (1) ≡ 1 for all k = 0, 1, . . . . On the other

end of the range of the parameter n we have T k
s (∞) = 2−k

(
k
s

)
as consequence of (1).

The last result reveals a connection between the infinite triangular table 2kT k
s (n), k = 0, 1, . . . , s =

0, . . . , k and the well known Pascal triangle which becomes more clear on Table 1, where we present the first
5 rows of the table and highlight (see the boldface numbers) the aforementioned relationship.

Table 1: The first 5 rows of 2kT k
s (n)

1

1(n+1)
n

1(n−1)
n

1(n+3)
n

2(n−1)
n

1(n−1)
n

1(n+5)(n+3)
n(n+2)

3(n+3)(n−1)
n(n+2)

3(n2−1)
n(n+2)

1(n+3)(n−1)
n(n+2)

1(n+5)(n+7)
n(n+2)

4(n+5)(n−1)
n(n+2)

6(n2−1)
n(n+2)

4(n2−1)
n(n+2)

1(n+5)(n−1)
n(n+2)

Moreover, computing the ratio of each number in (1) with its left-hand neighbor (as Pascal himself did in
[21]) it is not difficult to accept either the designation of Pascal-like triangle for the values (1) of T k

s (n) or to
guess a general law for the numbers in Table 2 (see formula (11)).

3 Properties

In this section we prove several properties of the number triangle (1). First of all, we deduce the relationships
of a given entry with its immediate neighbors.
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Table 2: A Pascal-like triangle

1
1

n−1
n+1

2
1

n−1
n+3

1
2

n+1
n+1

3
1

n−1
n+5

2
2

n+1
n+3

1
3

n+3
n+1

4
1

n−1
n+7

3
2

n+1
n+5

2
3

n+3
n+3

1
4

n+5
n+1

5
1

n−1
n+9

4
2

n+1
n+7

3
3

n+3
n+5

2
4

n+5
n+3

1
5

n+7
n+3

T k
s

Th 1

��

Th 2

##

Th 3 // T k
s+1

T k+1
s T k+1

s+1

Figure 1: The starting point T k
s

Theorem 1 For k = 0, 1, . . . and s = 0, . . . , k

T k+1
s (n) =

(k + 1)(n+ 2k − 2s+ 1)

2(k − s+ 1)(n+ k)
T k
s (n). (8)

Proof. From (1) we get

T k+1
s (n) =

(k + 1)!

n(k+1)

(n+1
2 )(k−s+1)(

n−1
2 )(s)

(k − s+ 1)!s!

and from relations (4) and (5) we have

T k+1
s (n) =

(k + 1)!

(n+ k)n(k)

n+ 2(k − s) + 1

2

(n+1
2 )(k−s)(

n−1
2 )(s)

(k − s+ 1)!s!

=
(k + 1)(n+ 2k + 1)

2(k − s+ 1)(n+ k)
T k
s (n).

�

Theorem 2 For k = 0, 1, . . . and s = 0, . . . , k

T k+1
s+1 (n) =

(k + 1)(n+ 2s− 1)

2(s+ 1)(n+ k)
T k
s (n). (9)

Proof. From (1) we get

T k+1
s+1 (n) =

(k + 1)!

n(k+1)

(n+1
2 )(k−s)(

n−1
2 )(s+1)

(k − s)!(s+ 1)!
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and from relations (4) and (6) we have

T k+1
s+1 (n) =

(k + 1)!

(n+ k)n(k)

n+ 2s− 1

2

(n+1
2 )(k−s)(

n−1
2 )(s)

(k − s)!(s+ 1)!

=
(k + 1)(n+ 2s− 1)

2(s+ 1)(n+ k)
T k
s (n).

�

Theorem 3 For k = 1, 2, . . . and s = 0, . . . , k − 1

T k
s+1(n) =

(k − s)(n+ 2s− 1)

(s+ 1)(n+ 2k − 2s− 1)
T k
s (n). (10)

Proof. We make use of (5) in the equivalent form(n+ 1

2

)
(k−s−1)

=
2

n+ 2k − 2s− 1

(n+ 1

2

)
(k−s)

in order to obtain

T k
s+1(n) =

k!

n(k)

(n+1
2 )(k−s−1)(

n−1
2 )(s+1)

(k − s− 1)!(s+ 1)!

=
n+ 2s− 1

n+ 2k − 2s− 1

k − s
s+ 1

T k
s (n). �

Corollary 1 If Qk
s+1(n) denote the numbers presented in Table 2, then

Qk
s+1(n) =

(k − s)(n+ 2s− 1)

(s+ 1)(n+ 2k − 2s− 1)
, k = 1, 2, . . . , s = 0, . . . , k. (11)

Proof. The result follows at once from Theorem 3, since

Qk
s+1(n) =

T k
s+1(n)

T k
s (n)

.
�

The recursive use of formulae (8)-(10) provides an easy way of constructing the triangle in Table 1. The
scheme in Figure 1 summarizes the above properties and Figure 2 contains an example illustrating the relations
between the elements of the first 4 rows of the Pascal-like triangle (1).

The next result shows a n-independent relation between adjacent elements in the row k and an element
in the row k − 1.

Theorem 4 For k = 1, 2 . . . , and s = 0, . . . , k − 1

(k − s)T k
s (n) + (s+ 1)T k

s+1(n) = kT k−1
s (n). (12)

Proof. Using Theorem 3 we obtain

(k − s)T k
s (n) + (s+ 1)T k

s+1(n) = (k − s)T k
s (n)

(
1 +

n+ 2s− 1

n+ 2k − 2s− 1

)
= 2(k − s) n+ k − 1

n+ 2k − 2s− 1
T k
s (n).

The use of Theorem 1 in the form

T k
s (n) =

k(n+ 2k − 2s− 1)

2(k − s)(n+ k − 1)
T k−1
s (n)

yields the final result. �

Finally, the next relation underlines once more the lack of symmetry of the triangle under consideration.
In fact, in each row k of the triangle, we can relate the element in position (k, k − s) with the element in
position (k, s) as follows:
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T 0
0

n+1
2n

��

n−1
2n

!!
T 1

0

n+3
2(n+1)

��

n−1
n+1

//

n−1
n+1

!!

T 1
1

n+1
2(n+1)

!!

n+1
n+1

��

T 2
0

n+5
2(n+2)

��

2(n−1)
n+3

//

3(n−1)
2(n+2)

!!

T 2
1 n+2

2(n+2)

//

3(n+3)
4(n+2)

��

3(n+1)
2(n+2)

!!

T 2
2

n+3
2(n+2)

!!

3(n+1)
2(n+2)

��

T 3
0

3 n−3
n+5

// T 3
1 n+1

n+3

// T 3
2 1

3
n+3
n+1

// T 3
3

Figure 2: Relations between the first triangle elements

Theorem 5 For k = 0, 1, . . . and s = 0, . . . , k

T k
k−s(n) =

2s+ n− 1

2(k − s) + n− 1
T k
s (n). (13)

Proof. From relation (7) we obtain

T k
k−s(n) =

k!

(n)(k)

(n−1
2 )(s)(

n+1
2 )(k−s)

s!(k − s)!
(2s+ n− 1)(n− 1)

(n− 1)(2(k − s) + n− 1)

=
2s+ n− 1

2(k − s) + n− 1
T k
s (n).

�

Figure 3 contains an illustration of Theorems 4 and 5.

Theorem 6 For k = 0, 1, . . .
k∑

s=0

T k
s (n) = 1. (14)

Proof. Denote by σk(n) the sum σk(n) :=

k∑
s=0

T k
s (n). By using (12), we get

k−1∑
s=0

(k − s)T k
s (n) +

k−1∑
s=0

(s+ 1)T k
s+1(n) = k

k−1∑
s=0

T k−1
s (n),

i.e.

k

k−1∑
s=0

T k
s (n) +

k−1∑
s=0

[
(s+ 1)T k

s+1(n)− sT k
s (n)

]
= kσk−1(n)
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T k−1
s

⊕
OO

T k
s

k−s
k

OO

T k
s+1

s+1
k

ee T k
k−s

2s+n−1
2(k−s)+n−1

99
...... T k

s

Figure 3: Relations between consecutive and distant neighbors

or

k

k−1∑
s=0

T k
s (n) + kT k

k (n) = kσk(n) = kσk−1(n).

We have just proved that σk(n) = σk−1(n), which means that

σk(n) = σk−1(n) = σk−2(n) = · · · = σ0(n) = 1. �

Remark 1 Theorem 6 can also be obtained as a particular case of the well known Vandermonde Convolution
Identity for Pochhammer symbols

(a+ b)(k) =

k∑
s=0

(
k

s

)
a(k−s)b(s).

In fact, using a = n+1
2 and b = n−1

2 as well as writing
(
k
s

)
as k

(k−s)!k! we get automatically by division of the

left side by (a+ b)(k) = n(k) that

1 =

k∑
s=0

k!

n(k)

(n+1
2 )(k−s)(

n−1
2 )(s)

(k − s)!s!
=

k∑
s=0

T k
s (n), (15)

for n = 1, 2, . . . ; k = 0, 1, . . . ; s = 0, . . . , k.

Finally, we present a property concerned with the alternating sum of the elements of a row of the Pascal-like
table (1).

Theorem 7
k∑

s=0

(−1)sT k
s (n) = ck(n), where

ck(n) =


k!!(n−2)!!
(n+k−1)!! , if k is odd

ck−1(n), if k is even

(16)

Proof. From Theorem 4, we conclude that

k−1∑
s=0

(−1)s(k − s)T k
s (n) +

k−1∑
s=0

(−1)s(s+ 1)T k
s+1(n) = kck−1.
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Reordering the sums, we obtain

kck(n) + 2

k−1∑
s=0

(−1)s(s+ 1)T k
s+1(n) = kck−1(n). (17)

Denoting by ϑk(n) the alternating sum ϑk(n) :=

k−1∑
s=0

(−1)s(s+ 1)T k
s+1(n), we prove now that

ϑk(n) =


0, if k is even

1
2
k(n−1)
n+k−1

k−1∑
s=0

(−1)sT k−1
s (n), if k is odd

(18)

In fact, supposing first that k = 2m, m ∈ N, we get

ϑ2m(n) =

m−1∑
s=0

(−1)s(s+ 1)T 2m
s+1(n) +

2m−1∑
s=m

(−1)s(s+ 1)T 2m
s+1(n)

=

m−1∑
s=0

(−1)s(s+ 1)T 2m
s+1(n) +

m−1∑
s=0

(−1)2m−1−s(2m− s)T 2m
2m−s(n)

=

m∑
s=1

(−1)s−1
(
sT 2m

s (n)− (2m− s+ 1)T 2m
2m−s+1(n)

)
.

Applying (10) and (13) we can write

ϑ2m(n) =

m∑
s=1

(−1)s−1 (2m− s+ 1)(n+ 2s+ 1)

n+ 4m− 2s+ 1
T 2m
s−1(n)

−
m∑
s=1

(−1)s−1(2m− s+ 1)
n+ 2s+ 1

n+ 4m− 2s+ 1
T 2m
s−1(n) = 0.

On the other hand, if k = 2m+ 1, m ∈ N, by the use of Theorem 2, we can conclude that

ϑ2m+1(n) =

2m∑
s=0

(−1)s
(2m+ 1)(n+ 2s− 1)

2(n+ 2m)
T 2m
s (n),

which means that

n+ 2m

2m+ 1
ϑ2m+1(n) =

1

2

2m∑
s=0

(−1)s(n− 1)T 2m
s (n) +

2m∑
s=1

(−1)ssT 2m
s (n)

=
1

2

2m∑
s=0

(−1)s(n− 1)T 2m
s (n)−

2m−1∑
s=0

(−1)s(s+ 1)T 2m
s+1

=
n− 1

2

2m∑
s=0

(−1)sT 2m
s (n)− ϑ2m(n).

Since ϑ2m(n) = 0, result (18) is proved and can be used in (17) in order to obtain

k(ck−1(n)− ck(n)) =


0, if k is even

k(n−1)
n+k−1ck−1(n), if k is odd
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or equivalently,

ck(n) = ck−1(n), if k is even and ck(n) =
k

n+ k − 1
ck−1(n), if k is odd.

The last relations can be used to obtain

c2m−1(n) =
2m− 1

n+ 2m− 2
c2m−2(n) =

2m− 1

n+ 2m− 2
c2m−3(n)

=
(2m− 1)(2m− 3)

(n+ 2m− 2)(n+ 2m− 4)
c2m−4(n) = · · ·

=
(2m− 1)(2m− 3) · · · 3

(n+ 2m− 2)(n+ 2m− 4) · · · (n+ 2)
c1(n).

But c1(n) = T 1
0 (n)− T 1

1 (n) = n+1
2n −

n−1
2n = 1

n and hence

c2m−1(n) =
k!!

(n+ k − 1)!!
(n− 2)!!.

�

Remark 2 At the end we would like to mention that the case n = 2 leads to

c2m(2) =
1

22m

(
2m

m

)
=

1

22m−1

(
2m− 1

m− 1

)
= c2m−1(2),

calling the attention to the special role of the central binomial coefficient. It is also worth to underline the
similarity of the sequence (c2m(2))m≥0 and the Catalan numbers

Cm =
1

m+ 1

(
2m

m

)
.

Whereas the Catalan numbers are the ratio of the central binomial coefficient
(

2m
m

)
in the 2m− th row of the

Pascal triangle and the total number of binomial coefficients in the m − th row, the c2m(2) are the ratio of
the same central binomial coefficient and the sum of all binomial coefficients in the 2m− th row.
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[3] S. Bock and K. Gürlebeck, On a generalized Appell system and monogenic power series, Math. Methods
Appl. Sci., 33(4) (2010), 394–411.

[4] F. Brackx, R. Delanghe, and F. Sommen, Clifford analysis Pitman, Boston-London-Melbourne, 1982.

[5] Isabel Cação, Complete orthonormal sets of polynomial solutions of the Riesz and Moisil-Teodorescu
systems in R3. Numer. Algorithms, 55(2-3) (2010), 191–203.



Maria Irene Falcão and Helmuth R. Malonek 11

[6] I. Cação, M. I. Falcão, and H. R. Malonek, Laguerre derivative and monogenic Laguerre polynomials: An
operational approach. Math. Comput. Model., 53(5-6) (2011), 1084–1094.

[7] I. Cação, M. I. Falcão, and H. R. Malonek. On generalized hypercomplex laguerre-type exponentials and
applications, In B. Murgante et al. (eds.) Lecture Notes in Computer Science, Vol. 6784, Springer-Verlag
Berlin Heidelberg, (2011), 271–286.

[8] I. Cação and H. Malonek, On complete sets of hypercomplex Appell polynomials In Th. E. Simos et al.
(eds.) AIP Conference Proceedings, Vol. 1048, (2008), 647–650.

[9] I. Cação and H. R. Malonek, On an hypercomplex generalization of Gould-Hopper and related Chebyshev
polynomials, In B. Murgante et al. (eds.) Lecture Notes in Computer Science, Vol. 6784, Springer-Verlag
Berlin Heidelberg, (2011), 316–326.

[10] C. Cruz, M. I. Falcão, and H. R. Malonek, 3D Mappings by Generalized Joukowski Transformations,
In B. Murgante et al. (eds.) Lecture Notes in Computer Science, Vol. 6784, Springer-Verlag Berlin
Heidelberg, (2011), 358–373.

[11] M. I. Falcão, J. Cruz, and H. R. Malonek, Remarks on the generation of monogenic functions, In: K.
Gürlebeck and C. Könke, (eds.), Proc. of the 17-th Inter. Conf. on the Application of Computer Science
and Mathematics in Architecture and Civil Engineering, Bauhaus-University Weimar, ISSN 1611-4086,
2006.

[12] M. I. Falcão and H. R. Malonek, Generalized exponentials through Appell sets in Rn+1 and Bessel
functions In Th. E. Simos et al. (eds.) AIP Conference Proceedings, Vol. 936, (2007), 738–741.

[13] M. I. Falcão and Fernando Miranda, Quaternions: A Mathematica package for quaternionic analysis,
In B. Murgante et al. (eds.) Lecture Notes in Computer Science, Vol. 6784, Springer-Verlag Berlin
Heidelberg, (2011), 200–214.

[14] K. Gürlebeck and H. Malonek, A hypercomplex derivative of monogenic functions in Rn+1 and its
applications, Complex Variables Theory Appl., 39 (1999), 199–228.

[15] Norman Gürlebeck, On Appell sets and the Fueter-Sce mapping, Adv. Appl. Clifford Algebr., 19(1)
(2009), 51–61.
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[21] B. Pascal. Traité du triangle arithmétique, avec quelques autres petits traitez sur la mesme matiere.
(posthumously) Guillaume Desprez, Paris, 1665.

Maria Irene Falcão
email: mif@math.uminho.pt

Center for Research and Development in Mathematics and Applications
University of Aveiro



12 A note on a one-parameter family of non-symmetric number triangles

Department of Mathematics and Applications
University of Minho,
Campus de Gualtar, 4710-057 Braga, Portugal

Helmuth R. Malonek
email: hrmalon@ua.pt

Center for Research and Development in Mathematics and Applications,
Department of Mathematics
University of Aveiro
Campus Universitário de Santiago, 3810-193 Aveiro, Portugal


	Introduction
	Pascal-like fractional number triangles
	Properties

