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ABSTRACT We present the modeling and characterization of a time-reversal routing dispersion code
multiple access (TR-DCMA) system. We show that this system maintains the low complexity advantage
of DCMA transceivers while offering dynamic adaptivity for practical communication scenarios. We first
derive the mathematical model and explain operation principles of the system, and then characterize its
interference, signal to interference ratio and bit error probability characteristics.

INDEX TERMS Dispersion engineering, phaser, time-reversal (TR), dispersion code multiple
access (DCMA), routing.

I. INTRODUCTION
Real-time Analog Signal Processing (R-ASP) is a new
paradigm for future millimeter-wave and terahertz high-
speed wireless communications [1]. It consists in pro-
cessing high-frequency ultrawide-band RF signals in real
time using dispersion-engineering electromagnetic compo-
nents called ‘‘phasers,’’ which are analog processor pro-
viding application-specific group delay responses [1], [2].
R-ASP applications reported to date include spectrum analy-
sis [3], spectrum sniffing [4], time-stretching based sampling
enhancement [5]–[7], time reversal [8], chipless RFID [9],
communication SNR enhancement [10] and dispersion code
multiple access (DCMA) wireless communication [11], [12].
Given its real-time nature, R-ASP technology is particularly
promising for 5G, where high capacity, low latency and small
consumption are essential requirements [13].

R-ASP DCMA is a novel wireless access point technol-
ogy, introduced [12], where each access point is assigned
a distinct dispersion code, or a specified group delay func-
tion, provided by a phaser, characterized by low transceiver
complexity, in addition to the aforementioned advantages of
high-capacity, low latency and small consumption inherent to
R-ASP [12]. However, the DCMA system [12] can only route
signals between fixed communication pairs. For dynamic
routing between arbitrary pairs, an adaptivity strategy must
be introduced. One solution may be to use active phasers that
reconfigure in real time to match the group delay profiles
between arbitrary access point pairs [14], but such phasers
are complex and still at an early development stage. For this
reason, we propose a routing station, or router, where routing

is performed using time reversal, previously used mainly for
acoustic and electromagnetic wave focusing [15], [16].

II. SYSTEM DESCRIPTION
Figure 1 shows a diagrammatic representation of the pro-
posed Time-Reversal Dispersion Code Multiple Access
(TR-DCMA) routing system with 2M access points (AP) and
the router with endowed with time reversal capability. Uplink
APUm, m ∈ {1, . . . ,M}, communicates with downlinkAPDn(m),
n(m) ∈ {1, . . . ,M}, via the router, where n(m) is a function of
m corresponding to the desired routing link from access point
m to access point n, with n(m1) 6= n(m2) for m1 6= m2.
For multiple access purpose, APU/Dk is assigned a specific

dispersion code, which is the group delay function τU/Dk (ω),
provided by the coding phaser [1] that is incorporated in
the AP system before/after the antenna. The phaser impulse
response gU/Dk (t) is found by inverse Fourier transforming
(F−1) the transfer function GU/D

k (ω) as

gU/Dk (t)=F−1
[
GU/D
k (ω)

]
=F−1

[
rect

(
ω−ω0

1ω

)
ejφ

U/D
k (ω)

]
,

(1a)

where

φU/Dk (ω) = −
∫ ω

ω0−1ω/2
τU/Dk (ω′) dω′, (1b)

and τU/Dk (ω) are the phaser transfer phase and group delay
(dispersion code), respectively, and ω0 = 2π f0,1ω = 2π1f
are the center frequency and bandwidth, respectively. The
wireless channel between the AP (after/before the phaser) and
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FIGURE 1. Diagrammatic representation of the proposed TR-DCMA system.

the router, denoted as wU/D
k (t), naturally includes the AP and

the router antenna impulse responses in the communication
direction and typically exhibits multipath fading [17].

III. MODELING
A. CALIBRATION PHASE
During this phase, the 2M APs sequentially send a known
beacon signal, sB(t), to the router. The router receives for
APU/Dk the signal

rB,U/Dk (t) =
[
(sB ∗ gU/Dk ) ∗ wU/D

k

]
(t)

=

(
sB ∗ cU/Dk

)
(t), (2a)

where

cU/Dk (t) = (gU/Dk ∗ wU/D
k )(t), (2b)

is the overall channel impulse response, corresponding to the
convolution (‘‘∗’’) of the corresponding guided-wave channel
(coding phaser) and wireless channel impulse response.

Since sB(t) is known, cU/Dk (t) can be determined from (2a)
by the router. This may be done either digitally or analogi-
cally. In the former case, themeasured signal rU/Dk (t) is stored,
then numerically deconvolved and flipped, i.e. cU/Dk (t) →
cU/Dk (−t), and finally reconverted to the analog domain. In the

latter case, which is more advantageous in terms of latency,
rU/Dk (t) is immediately deconvolved by the (known) time-
reversed version of sB(t), sB(−t), using a real-time con-
volver [18], yielding cU/Dk (t), which is itself time-reversed by
a real-time time reverser [8] into cU/Dk (−t).

B. COMMUNICATION PHASE
1) UPLINK TRANSMISSION
Assume the worst-case scenario where theM uplink APs are
sending their signals at the same time. Denoting sUm(t) the
signal sent from APUm, the signal received by the router is

rU(t) =
M∑
m=1

αUms
U
m(t) ∗ c

U
m(t), (3)

where αUm > 0 is the sent signal magnitude. The decoding of
the signal fromAPUm at the router consists in convolving rU(t)
with the time-reversed version of the corresponding channel
impulse response cUm(−t) constructed in the calibration phase
[Sec. (III-A)]. Thus,

zUm(t) = rU(t) ∗ cUm(−t) = s̃Um(t)+ x
U
m (t), (4a)

where

s̃Um(t) = α
U
ms

U
m(t) ∗ c

U
m(t) ∗ c

U
m(−t) ≈ α

U
ms

U
m(t), (4b)
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is an approximation of the desired signal, sUm(t), the approx-
imation (rather equality) being due to the finite calibration
time in (2b),1 and

xUm (t) = cUm(−t) ∗
M∑
k=1
k 6=m

αUk s
U
k (t) ∗ c

U
k (t), (4c)

is a distortion signal called multiple-access interfer-
ence (MAI).

2) ROUTER DETECTION
At this point, the uplink signal zUm(t) in (4), including the
desired information s̃Um(t) and interference from the other
channels xUm (t), is passed through a threshold detector in the
router (Fig. 1), which transforms it into the signal sDm(t).

3) DOWNLINK TRANSMISSION
In the downlink transmission process, the signal sDm(t) is to
be routed to APDn(m), the desired corresponding access point,
that generally varies in time. For this purpose, it is first
predistorted by convolution with the time-reversed version
of the corresponding downlink channel impulse response,
cDn(m)(−t). Then, theM predistorted signals are combined and
sent by the antenna of the router as

sD(t) =
M∑
m=1

αDms
D
m(t) ∗ c

D
n(m)(−t), α

D
m > 0. (5)

After passing the wireless channel wD
n(m)(t), this signal is

decoded by phaser gDn(m)(t) as

zDn(m)(t) = sD(t) ∗ wD
n(m)(t) ∗ g

D
n(m)(t)

= sD(t) ∗ cDn(m)(t)

= s̃Dn(m)(t)+ x
D
n(m)(t), (6a)

where

s̃Dn(m)(t) = α
D
ms

D
m(t) ∗ c

D
n(m)(−t) ∗ c

D
n(m)(t) ≈ α

D
ms

D
m(t) (6b)

and

xDn(m)(t) = cDn(m)(t) ∗
M∑
k=1
k 6=m

αDk s
D
k (t) ∗ c

D
n(k)(−t). (6c)

The following threshold detection (Fig. 1) yields sDn(m)(t).
Communication is naturally successful when the detected
downlink signal is identical to the transmitted uplink signal,
i.e. sDn(m)(t) = sDm(t) = sUm(t).

In addition to the benefits inherent to R-ASP, the proposed
time-reversal routing scheme offers the following advantage
when performed analogically, as discussed in Sec. III-A.
In this case, it is naturally performed at the physical layer of
the base station. This eliminates the routing latency produced
by the transfer to the protocol layer in conventional routing
schemes (e.g. Evolved Packet Core in LTE [19]) [13], [19].

1If the calibration time were infinite, then we would have an equality from
the identity cUm(t) ∗ c

U
m(−t) = δ(t). In practice, cUm(t) in (4b) is a truncated

version of the ideal cUm(t) function.

IV. SYSTEM CHARACTERIZATION
This section characterizes the proposed time-reversal routing
DCMA system in terms of MAI, signal to interference ratio
(SIR) and bit error probability (BEP) for the case of On-
Off Keying (OOK) modulation and Chebyshev dispersion
coding. Note that, since uplink and downlink signals are
described by mathematical expressions, Eqs. (4) and (6),
of the same form, we shall consider here only the uplink case,
the downlink and overall transmission being immediately
deducible from it.

A. MODULATION AND CODING
Assuming OOK modulation, the transmitted signal is the
pulse train

sUm(t) =
∑
`

dUm`δ(t − `Tb − t
U
m ), (7)

where dUm` = 1 or 0 is the `th base-band bit, δ(·) is the Dirac
function, Tb is bit period and tUm is a random time offset.
Following [12], we choose odd Chebyshev dispersion cod-

ing [τUm (ω)] for AP
U
m, ∀m, corresponding to

τUm (ω) = τ0 +
1τ

2
Ti(m)

(
ω − ω0

1ω/2

)
, (8)

where 1τ is group delay swing over the band 1ω, Ti(m)
is i(m)th order Chebyshev polynomial of the first kind, and
where we define T−i(m) = −Ti(m) for i(m) > 0. The code set
of the M uplink access points may then be written

C = {i(1), . . . , i(m), . . . , i(M )}, i(m) odd and i(m) ≥ 3. (9)

In the forthcoming computations, we consider the CM3 type
(4–10 m NLOS) indoor multipath channel [20] for wU

m(t).

B. MAI PROBABILITY DENSITY FUNCTION
In [12], we have shown that in a LOS wireless channel,
the MAI corresponding to all-odd Chebyshev dispersion cod-
ing (9) follows a normal distribution. We shall show here that
the same is true for non-LOS.

Figure 2 plots uplink simulation results of an M = 5
TR-DCMA system for three different bit periods (Tb) in the
worst-case interference scenario where all the transmitters
continuously send the bit ’1’, i.e. dUm` = 1, ∀m, `, in (7). All
the results are normalized as follows: for each m, αUm is set
such that |s̃Um(t)|max = 1 in (4b) and xUm (t) is divided by that
αUm in (4c). As expected, the interference (MAI) floor [xUm (t)]
decreases with increasing Tb due to decreasing overlap of
MAI interferences of adjacent bits. The probability density
function (PDF) of xUm (t) are found (third column in the figure)
to closely follow the normal distribution PDF

PDF(xUm ) =
1

√
2πσ 2

exp
[
−
(xUm − µm)

2

2σ 2
m

]
, (10a)

whereµm is the mean of xUm , which is 0 due to the symmetric-
bipolar nature of MAI, and σ 2

m is the variance,

σ 2
m=

1
Tb

∫
Tb

∣∣∣xUm (t)−µU
m

∣∣∣2 dt= 1
Tb

∫
Tb

∣∣∣xUm (t)∣∣∣2 dt, (10b)
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FIGURE 2. Uplink simulation results in the worst-case interference
scenario, where dU

m` = 1, ∀m, `, in (7) for M = 5 TR-DCMA with
1f = 10 GHz, 1τ = 10 ns, coding C = {3,−3,5,−5,7} and identical
energy αU

m = const. in (3). All the results are normalized as follows: for
each m, αU

m is set such that |s̃U
m(t)|max = 1 in (4b) and xU

m(t) is divided by
that αU

m in (4c). First column: desired signal, s̃U
m(t) (red-solid curve), and

MAI, xU
m(t) (blue-dotted curve), computed using (4b) and (4c),

respectively. Second column: total encoded signal, zU
m(t), computed

using (4a). Third column: probability density function (PDF) of the MAI
values, obtained by counting the occurrences of the sample values (blue
stripes) and compared against the normal distribution PDF (green curve)
[Eq. (10a)] with mean µm = 0, ∀m, and variance σ2

m in (10b). (a) Tb = 1τ ,
(b) Tb = 21τ , and (c) Tb = 41τ .

which is equivalent to the MAI average power over one bit.
In a realistic scenario, where bits ’1’ and ’0’ alternate in the
wireless channel, the interference would naturally be less,
leading to smaller σ 2

m values. In the forthcoming results,
the same worst-case scenario has been assumed for the PDF,
and practical results would then be better than what will be
shown.

C. STATISTICAL AND ANALYTICAL SIR
The SIR may be statistically found by taking the ratio of
|s̃Um(t)|max to the MAI variance given by (10b), using the
normalization indicated in the caption of Fig. 2, which yields

SIRU
m
′
=

1
σ 2
m
. (11)

This quantity can also be obtained analytically as [12]

SIRU
m =

21fTb

α2m(M − 1)
, (12a)

where

α2m =
1

M − 1

M∑
k=1
k 6=m

(
αUk

αUm

)2

(12b)

is the mean of the normalized MAI energies.2

Figure 3 compares the analytical [Eq. (12)] and statistical
[Eq. (11)] SIRs. Good agreement is observed, with deviation
smaller than 2 dB. Therefore, we will directly use (12) to
avoid statistical testing over many bits in the remainder of
the paper.

The downlink MAI also follows normal distribution, and
the corresponding SIRD

n(m) is also approximated by (12) with
αUk and αUm replaced by αDn(k) and α

D
n(m).

2In (12b), k = m is excluded from the sum as it corresponds to the signal.

FIGURE 3. SIR versus the number of transmitters (M) with 1f = 10 GHz,
1τ = 10 ns, coding C = {3,−3,5,−5, . . .}, identical energy (αU

m = const.
∀m) in (3), and different Tb. Solid curves: Eq. (12), ‘*’ markers: Eq. (11)
with (10b) and (4c) for 500 bits.

FIGURE 4. BEP versus the number of simultaneous communication links
(M) in the TR-DCMA system in Fig. 1 for APs with identical energy
(αU

m = α
D
n(m) = const. ∀m), computed using (14) (curves), and compared

against the BEP of the corresponding DCMA system without time-reversal
routing [12] (circles), for different 1fTb values.

D. OVERALL BEP PERFORMANCE
The BEP for MAI with normal distribution is [12]

BEPUm =
1
√
2π

∫
+∞

√
SIRU

m/2
exp

(
−
x2

2

)
dx, (13)

where SIRU
m is given by (12). The downlink BEPDn(m) is found

by replacing SIRU
m in (13) with SIRD

n(m).
Communication is overall successful if both the uplink and

downlink transmissions are successful, corresponding to the
overall BEP

BEPm = 1−
(
1− BEPUm

) (
1− BEPDn(m)

)
= BEPUm + BEPDn(m) − BEPUmBEP

D
n(m)

≈ BEPUm + BEPDn(m). (14)
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Figure 4 plots the BEP (same for all m’s) of the TR-
DCMA system for APs with identical energy, and compared
against that of the corresponding DCMA system without
time-reversal routing. Due to the two-step (uplink and down-
link) transmission phases, the BEP is approximately dou-
bled, or degraded by an order of log10 2 ≈ 0.3. This graph
shows that the BEP is not affected by the dynamic TR routing.
The convergence of the 3 curves asM increases is due to accu-
mulation of interference, or SIR degradation towards 0. The
convergence value can be found by setting SIR = 0 in (13),
which results in BEPUm = 0.5 = BEPD(m), then inserting this
result into (14), which leads to 0.75 (−0.125 dB).

V. CONCLUSION
A TR-DCMA routing system has been presented and char-
acterized in terms of MAI statistical distributions, SIR, and
BEP. The system may find its applications in dynamic wire-
less communications requiring low-complexity transceivers
and negligible latency.
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