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ABSTRACT

A graph is a structure consisting of a set of vertices and edges. Graph construction has
been a focus of research for a long time, and generating graphs has proven helpful in
complex networks and artificial intelligence.

A significant problem that has been a focus of research is whether a given sequence
of integers is graphical. Havel and Hakimi stated necessary and sufficient conditions for
a degree sequence to be graphic with different properties. In our work, we have proved
the sufficiency of the requirements by generating algorithms and providing constructive
proof.

Given a degree sequence, one crucial problem is checking if there is a graph realization
with k-factors. For the degree sequence with a realizable k-factor, we analyze an algo-
rithm that produces the realization and its k-factor. We then generate degree sequences
having no realizations with connected k-factors. We also state the conditions for a degree
sequence to have connected k-factors.

In our work, we have also studied the necessary and sufficient conditions for a sequence
of integer pairs to be realized as directed graphs. We have proved the sufficiency of the
conditions by providing algorithms as constructive proofs for the directed graphs.

iv



DEDICATION

To all the people who have supported me in my whole academic journey.

v



ACKNOWLEDGEMENTS

I want to express my gratitude to my supervisor Dr. Asish Mukhopadhyay for his con-
tinuous interaction and support in teaching me concepts and helping me to write this
thesis. His ideas and theories have been a driving force for me to strive ahead in this
area of research. I would also like to thank my thesis committee members, Dr. Ahmad
Biniaz and Dr. Mehdi Sangani Monfared, for their valuable time for this thesis.

I also want to express my gratitude toward the Computer Science faculty members
and staff who have helped me in my journey of writing this thesis.

Finally, I would like to thank my parents, my sister, my cousin, and their family for
helping me in every way possible and encouraging me to move forward.

vi



CONTENTS

DECLARATION OF ORIGINALITY iii

ABSTRACT iv

DEDICATION v

ACKNOWLEDGEMENTS vi

LIST OF FIGURES ix

1 Introduction 1
1.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Graph Terminologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Constrained graphical sequences . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Operations on graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4.1 Edge switching . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.5 Graphicality of a sequence . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.5.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.5.2 Prior works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.6 Thesis organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Realizations of undirected graphs 8
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Generating a loopless multigraph . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Algorithm 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.2 Correctness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.3 Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Generating a connected graph . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.1 Algorithm 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.2 Some Implementation Details . . . . . . . . . . . . . . . . . . . . 12
2.3.3 Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Alternate Characterization . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5 Generating a graph without a cut-vertex . . . . . . . . . . . . . . . . . . 14

2.5.1 Algorithm 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.5.2 Correctness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.6 Generating a connected but separable graph . . . . . . . . . . . . . . . . 15
2.6.1 Algorithm 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

vii



2.6.2 Correctness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.6.3 Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 k-factors 17
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Generating k-factorable degree sequences . . . . . . . . . . . . . . . . . . 18

3.2.1 Complexity Analysis of Chen’s Algorithm . . . . . . . . . . . . . 21
3.3 Generating factorable graphic sequences with connected k-factors . . . . 22

3.3.1 Generalizing the result of Zverovich and Zvervich . . . . . . . . . 22
3.4 Generating factorable graphic sequences with disconnected k-factor . . . 23

4 Directed graphs 27
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2 Generating directed graphs based on Hakimi’s conditions . . . . . . . . . 27

4.2.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2.2 Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.3 A constructive proof of the Fulkerson-Ryser characterization of digraphic
sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.4 Digraph Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5 Conclusion 34
5.1 Future works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Bibliography 36

Vita Auctoris 38

viii



LIST OF FIGURES

1.1 Example of a graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 (a) Multigraph (b) Simple graph . . . . . . . . . . . . . . . . . . . . . . 2
1.3 (a) Graph G (b) Subgraph of G . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 (a) Graph G (b) Cycles in G (c) A Hamiltonian cycle of G . . . . . . . 3
1.5 (a) Graph G (b) A 3-factor of G . . . . . . . . . . . . . . . . . . . . . . 3
1.6 (a) A multigraph without loops (b) A connected multigraph without loops 4
1.7 A connected (a) separable multigraph (b) non-separable multigraph . . . 4
1.8 Edge switching for two components . . . . . . . . . . . . . . . . . . . . . 5
1.9 Edge switching for two components without cycles . . . . . . . . . . . . . 5
1.10 Edge switching for two components, with one edge as part of a cycle . . . 6
1.11 (a) Unrealizable sequence (3, 2, 2, 2) (b) Realizable sequence (3, 3, 2, 2) . . 6

2.1 A graph realizing the sequence d = (2, 2, 2, 2, 3, 3) . . . . . . . . . . . . 9
2.2 A graph realizing the sequence d = (1, 1, 1, 3, 4, 4, 4, 4, 4) . . . . . . . 10
2.3 Merging two components, one of which contains a cycle, by edge-switching 12
2.4 A non-separable, connected graph realizing the sequence d = (2, 2, 2, 2, 3,

3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.5 (a) A non-separable, connected graph realizing the sequence d = (2, 3, 3)

(b)A non-separable, connected graph realizing the sequence d = (1, 3, 3, 3) 16

3.1 Graphs A and B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Graphs C and D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3 Graph E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.4 New Graphs B and A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.5 A realization of (3, 3, 3, 3, 2, 2) and a 1-factor of this . . . . . . . . . . 21
3.6 Connected 3-factor for the degree sequence (10, 10, 10, 10, 9, 9, 9, 9, 8,

8, 8 , 8, 7, 7, 7, 7, 6, 4) . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.7 Graph for the degree sequence (15, 15, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 2, 2) 25
3.8 Graph for the degree sequence (13, 13, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4) . 25
3.9 Graph for the degree sequence (9, 9, 9, 6, 6, 6, 6, 6, 3, 3, 3) . . . . . . . 26
3.10 2-factors of the graph for the degree sequence(9, 9, 9, 6, 6, 6, 6, 6, 3, 3, 3) 26

4.1 Rewiring Step 1(a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.2 Rewiring Step 1(b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.3 Rewiring in Case 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.4 Rewiring in Case 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

ix



Chapter 1

Introduction

Due to their versatility, graphs have been studied for a long time. Graphs are used in wide
range of fields that includes modelling of optimal network connections, generating protein-
protein interactions, building complex networks etc. Due to different fields of applications,
several problems related to graph operations such as realizing degree sequences, number
of possible realizations, unique graphs, etc. are major topics of study. In this thesis we
study different necessary and sufficient conditions used for realizing integer sequences as
directed and undirected graphs while also discussing the k-factor properties of different
degree sequences.

1.1 Preliminaries

A graph is denoted by G = (V,E) and is a structure consisting of a set of vertices (V )
and a set of edges (E) connecting the vertices. Two vertices connected using an edge are
known as adjacent vertices. Figure 1.1 shows a graph with 5 vertices and 6 edges. Each
vertex has degrees associated to it and it is equal to the number of edges incident to that
vertex.

The degree of a vertex v in an undirected graph is represented using dv. For n vertices

v1v2

v3

v4 v5

Figure 1.1: Example of a graph
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v1

v2 v3

v4

v5 v1

v2 v3

v4

v5

Figure 1.2: (a) Multigraph (b) Simple graph

v1

v2

v3

v4

v5

v6

v7

v1

v2

v3

v4

v5

v6

v7

Figure 1.3: (a) Graph G (b) Subgraph of G

we represent the sequence of degrees in the form d1, d2, . . . , dn. The vertex degrees can
be represented in an increasing or decreasing order as seen in [5] and [7].

For directed graphs the degree of a vertex is represented using pairs of out-degrees
and in-degrees (vout, vin). The sequence of the pairs are arranged in lexicographically
increasing or decreasing order.

1.2 Graph Terminologies

Some of the terminologies used in this thesis are:

1. Multigraphs: are the graphs having multiple edges between at least one pair of
vertices. Figure 1.2(a) shows an example of a multigraph, where vertex pairs (v2, v3)
and (v4, v5) have multiple edges between them.

2. Simple graphs: are the graphs that do not have self loops or multiple edges.
Figure 1.2(b) shows an example of a simple graph.

3. Subgraph: A graph H = (V ′, E ′) is a subgraph of G if E ′ ⊆ E and V ′ ⊆ V . The
vertices at the ends of each edge in E ′ should be present in V ′. Figure 1.3 shows
an example of a graph G and a subgraph of G.

4. Maximally connected subgraph of G: is a subgraph H = (V ′, E ′) in which no
more edges from E can be added to E ′.

2



v1

v2

v3
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v1

v2

v3

v5

v6

v7

v1

v2

v3

v5

v6

v7

Figure 1.4: (a) Graph G (b) Cycles in G (c) A Hamiltonian cycle of G

v1

v2

v3

v4

v6

v5

v7

v8

v1

v2

v3

v4

v6

v5

v7

v8

Figure 1.5: (a) Graph G (b) A 3-factor of G

5. Component of a graph G: is a maximally connected subgraph that have path
from each vertex to all other vertices. In figure 1.3(a) the subgraph along the path
v3v1v2v3v4 is a component of G.

6. A path is a sequence of edges that connects a set of adjacent vertices. In figure
1.2(b) (v2, v5, v4, v3) is a path.

7. A cycle in G: is a path of edges that begins and ends at the same vertex. Figure
1.4(a) and (b) shows graph G and some of the possible cycles of in G.

8. A Hamiltonian cycle in G: is a cycle that visits each vertex of G exactly once.
Figure 1.4(c) shows a Hamiltonian cycle of G.

9. Spanning subgraph of G: is a subgraph having all the vertices in V and E ′ ⊆ E.

10. k-factor of G: is a k-regular spanning subgraph of G, where 1 ≤ k ≤ mini(di).
Figure 1.5 shows graph G and a 3-factor of G.
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v1

v2
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v4

v5

v6

v7

v1

v2

v3

v4

v5
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v7

Figure 1.6: (a) A multigraph without loops (b) A connected multigraph without loops

v1

v2

v3

v4

v5

v6

v7

v1

v2

v3

v4

v5

v6

v7

Figure 1.7: A connected (a) separable multigraph (b) non-separable multigraph

1.3 Constrained graphical sequences

There are several types of graphs that have different characteristics. Degree sequences
with constraints can be used to realize different types of graphs. In the chapter 2 of this
thesis, we focus on four types of constrained graphical sequences and their realizations.

1. Multigraphs without loops: These graphs can have multiple edges between a
pair of vertices. However, there will be no self loops for any vertex, where a loop is
an edge from a vertex to itself. Figure 1.6(a) is a multigraph without loops.

2. Connected multigraphs: These graphs have multiple edges and have a single
component. Figure 1.6(b) is a connected multigraph.

3. Connected separable multigraphs: These are connected multigraphs that has
one cut vertex. The cut-vertex when removed will make the graph non-connected.
Figure 1.4(a) shows an example of connected separable multigraph.

4. Connected non separable multigraph: These are connected multigraphs that
do not have a cut vertex which can be removed for non-connected multigraph.
Figure 1.4(b) is an example of a connected non-separable multigraph.

1.4 Operations on graphs

For a degree sequence to be realizable as a graph of certain properties, some operations
needs to be performed while generating the graph such that the degrees of the vertices

4



u

v

x

y

u

v

x

y

Figure 1.8: Edge switching for two components

b

x

a d

c

y

zw

b

x

a d

c

y

zw

Figure 1.9: Edge switching for two components without cycles

are unchanged when rewiring is done. These operations helps us to realize graphs easily.
One of the well defined operation for rewiring the edges in a graph is edge switching.

1.4.1 Edge switching

Let {u, v} and {x, y} be two independent edges between vertices u, v and x, y respectively
in graph G. These edges can be replaced with edges {u, y} and {v, x} (as shown in figure
1.8) while preserving the degrees of vertices.

Switching edges that are not part of a cycle

If edges {u, v} and {x, y} belong to different components of the graph and do not belong
to any cycle in graph G, after switching the edges to {u, y} and {v, x}, the resulting graph
will be having two different components. Figure 1.9 shows the result of edge switching
in case of two edges in different components and not a part of any cycles.

Switching edges that are part of a cycle

If edges {u, v} and {x, y} belong to different components of the graph and if any one of
the edge belong to any cycle in graph G, after switching the edges to {u, y} and {v, x},
the resulting graph will have a merged component as shown in figure 1.10.
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y
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zw

Figure 1.10: Edge switching for two components, with one edge as part of a cycle

v1

v2

v3

v4

v1

v2

v3

v4

Figure 1.11: (a) Unrealizable sequence (3, 2, 2, 2) (b) Realizable sequence (3, 3, 2, 2)

1.5 Graphicality of a sequence

A sequence of non-negative integers is graphic if at least one graph exists with vertex
degrees corresponding to the degree sequence. In the figure 1.11, the realization of the
sequence (3, 2, 2, 2) is not graphic, whereas the sequence (3, 3, 2, 2) is graphic as it can be
realized as a graph.

Erdős-Gallai [5] stated that a list of non-negative integers {d1, d2, . . . , dn} is graphic
if and only if the sum of the integers is even and for each integer 1 ≤ k ≤ n− 1

k∑
i=1

di ≤ k(k − 1) +
n∑

i=k+1

min(k, di) (1.1)

The equation 1.1 divides the set of integers into two parts with one part as the set of
integers with indices less than k and the second part as the set of integers with indices
greater than k. This equation specifies the left side of the inequality is the sum of first k
terms and it should be less than or equal to k(k− 1) +

∑n
i=k+1min(k, di). Here k(k− 1)

denotes the sum of all the degrees when all the vertices with the indices less than the k,
when the vertices form a complete graph.

∑n
i=k+1 min(k, di) denotes the upper limit of

the sum of all the outgoing edges from the subgraph formed by the first set of integers.

The necessity of the Erdős-Gallai Inequality(EGI) is straightforward. Tripathi et.
al [13] proved the sufficiency of EGI constructively by designing an algorithm that real-
izes graph with the given degree sequence by using this inequality.

6



1.5.1 Problem statement

Erdős-Gallai Inequality states the conditions for generating simple graphs, and Tripathi
et al. gave a constructive proof of graph generation for the simple graphs based on
EGI. However to generate graphs of other classes Hakimi et al. [7] stated necessary and
sufficiency conditions. In this thesis we take the cue from Tripathi’s constructive proof
to generate algorithms and constructively proving the conditions for each cases of graphs
specified by Hakimi.

1.5.2 Prior works

Graph realizations using degree sequences have a variety of applications. Several prob-
lems related to it have been studied in the past.

Koren [9] studied the sequences with unique graphs for the class of simple graphs.
Bender et al. [2] determined the asymptotic bound on the number of graphs realizable
using the degree sequences. Meanwhile, Arman et al. [1] studied the problem of obtaining
a graph realization uniformly at random for a given sequence.

1.6 Thesis organization

This thesis is divided into four chapters:

Chapter 1: In the first chapter, we define graphs, some associated terminologies
used throughout and some operations that can be performed to change the structure of
graphs while preserving the vertex degrees. We also discuss some previous works and the
motivation for the thesis.

Chapter 2: In the second chapter, we take a cue from Tripathi’s constructive proof
of the sufficiency of the EGI and provide proof for by generating algorithms to construct
graphs for the following types of the graph given a sequence of non-negative integers:

1. A multigraph realization

2. A connected multigraph realization

3. A connected non-separable multigraph

4. A connected separable multigraph

Chapter 3: In the third chapter, we will analyze an elegant algorithm to find a
graphic realization and k-factor for a given degree sequence. We will also generate a
graphical sequence without any realization for connected k-factors and conditions to gen-
erate graphical sequences with connected k factors.

Chapter 4: In the fourth chapter, we look into the conditions by Fulkerson [6] for
directed graphs and prove the sufficiency of those conditions constructively using different
cases and by generating an algorithm to realize graphs using the degree pair sequences.

7



Chapter 2

Realizations of undirected graphs

2.1 Introduction

In this section, we look at some theorems by Hakimi [7] that give necessary and sufficient
conditions for the graphic realization of a sequence of non-negative integers. In what
follows, by a generation algorithm we will mean an algorithm that generates a graph
that realizes the given sequence. For each of these theorems, we propose a generation
algorithm whose existence and correctness is guaranteed by the sufficient conditions.

2.2 Generating a loopless multigraph

Let d =< d1, d2, . . . , dn > be a sequence of positive integers such that d1 ≤ d2 ≤ d3 ≤
· · · ≤ dn.

Theorem 1 [7] The necessary and sufficient conditions for positive integers d1, d2, . . . , dn
to be realizable (as the degrees of the vertices of a linear graph) are:
(i)Σn

i=1di = 2e, where e is an integer
(ii)Σn−1

i=1 di ≥ dn

A graph whose degrees satisfy the above conditions can have parallel edges, need not
be connected or have a vertex separator (cut-vertex).

2.2.1 Algorithm 1

Our algorithm is recursive. First, we consider the base cases. When n = 2, we must have
d1 = d2 from the assumption that d1 ≤ d2 and the second condition in the Theorem 1
above. A graph with two vertices and d1 edges between the two vertices is a realization.

When n = 3, it is easy to see that the following equations given the numbers of edges,
nij, between vertices i and j, 1 ≤ i < j ≤ 3.

8



n12 =
(d1 + d2 + d3)− 2d3

2

n13 =
(d1 + d2 + d3)− 2d2

2

n23 =
(d1 + d2 + d3)− 2d1

2

(2.1)

It is then easy to construct the graph. When n > 3, we reduce our construction to
the base cases this way. Consider the derived sequence d2, d3, . . . , dn− d1 of length n− 1.
If dn − d1 ̸= 0, it is easily seen that either dn − d1 or dn−1 is the largest of the reduced
sequence and satisfies all the conditions of Theorem 1. We now recursively construct a
graph for the reduced sequence, add a vertex 1 to the graph and join it to the n − 1-th
vertex with d1 parallel edges to obtain a graph, satisfying the given degree sequence.

If dn − d1 = 0, we recursively construct a graph on n − 2 vertices for the sequence
d2, d3, . . . , dn−1, add two new vertices to this graph and join them with d1 parallel edges.

Algorithm 1 shows the steps of generating graph for a given Integer sequence. Here
are the outputs for the sequences d = (2, 2, 2, 2, 3, 3) and d = (1, 1, 1, 3, 4, 4, 4, 4, 4)

4

23

1

5 0

Figure 2.1: A graph realizing the sequence d = (2, 2, 2, 2, 3, 3)

2.2.2 Correctness

For n = 3, with the help of Equation 2.1, we obtain the numbers of edges nij between
vertices i and j to obtain a graph that realizes the degree sequence < d1, d2, d3 >. For
n ≥ 3, assume that we can obtain a correct realization for smaller values of n ≥ 3.
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Algorithm 1 looplessMultigraph(vi)

Input: Non-negative, non-increasing integer sequence
Output: Looples multigraph
if n = 2 then

for i = 1 → v1[0] do
Add edge (v1, v2)

end for
return

end if
if n = 3 then

Compute
n12 =

(d1+d2+d3)−2d3
2

n13 =
(d1+d2+d3)−2d2

2

n23 =
(d1+d2+d3)−2d1

2

Add n12 edges between v1, v2
Add n23 edges between v2, v3
Add n34 edges between v3, v4
return

end if
vn[0] = vn[0]− v1[0]
v(1,n) = v1[0]
Shift vn
remove v1 from list
looplessMultigraph(vi)
for i = 0 → v(1,n) do

Add edge (v1, vn)
end for

4

7

6

8

5

3

2

1

0

Figure 2.2: A graph realizing the sequence d = (1, 1, 1, 3, 4, 4, 4, 4, 4)
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The proposed algorithm reduces the construction to a degree sequence of length n−1
or n− 2. In each case, by the assumption above the construction can be carried out cor-
rectly, and then the resulting graph augmented by introducing additional dn − d1 edges
between one new vertex, representing 1, and the vertex n or d1 edges between two new
vertices that represent the vertices 1 and n.

The generated graph is loop-free as no loops are created during the base case, and
none are created when we return from a recursive call, corresponding to the two cases
discussed above.

2.2.3 Complexity

The complexity of the algorithm is proportional to the size of the graph that is generated.
This is bounded above by Σn

i=1di = O(|E| + |V |), where E is the set of edges and V is
the set of vertices, in the generated graph. Since |E| > |V |, complexity = O(|E|)

2.3 Generating a connected graph

We see that each one of the graphs in Fig. 2.1 and Fig. 2.2 of the preceding section
have multiple edges between pairs of vertices, have cut-vertices and are disconnected.
The next theorem shows how to modify the conditions to ensure the generation of a
connected graph.

Theorem 2 [7] The necessary and sufficient conditions for a set of integers d1, d2, . . . , dn
to be realizable as a connected graph are:
(i) the set d1 ≤ d2 ≤ d3 ≤ · · · ≤ dn is realizable, that is, satisfies the conditions of
Theorem 1
(ii) Σn

i=1di ≥ 2(n− 1)

2.3.1 Algorithm 2

The generation algorithm relies on the idea of edge-switching. We first generate a graph
based on the Algorithm derived from Theorem 1. Assume this graph has r > 1 disjoint
connected components. If none of these components have a cycle then the total number
of edges in the graph is Σr

i=1ni − 1 = n− r, where ni is the number of vertices in the i-th
component. Thus the total degree of the graph is 2(n− r) which contradicts the second
condition of Theorem 2 as r > 1. Thus, at least one of the components contains a cycle.
We can pick an edge of a cycle from such a component and an edge from another compo-
nent (that may not have a cycle) and use edge-switching to merge the two components
into one. This is shown in Fig. 2.3. Unless we are reduced to a single component, we can
continue the process until there is only one connected component.

For an example, we observe that the graph in Fig. 2.1 has two disjoint components.
We can merge the two components into one, by removing an edge between the vertices 2
and 3 and an edge between 0 and 5, replacing this pair of edges with an edge between 2

11



u v

u′ v′

u v

u′ v′

Figure 2.3: Merging two components, one of which contains a cycle, by edge-switching

and 5 and another between 3 and 0.

We describe the algorithm formally. Let C =< C1, C2, . . . , Cr > be the list of disjoint
connected components in the graph G output by Algorithm 1. Search through the list
of components C, to find a component Ci with a cycle. Let Cj, i ̸= j, be any other
component. Pick an edge e of a cycle in Ci and and any edge e′ of the component Cj. By
edge-switching, as explained above, merge the components Ci and Cj into a new compo-
nent Cij and let C ′ = C−{Ci, Cj}∪{Cij} be the new list of disjoint components. Repeat
the above for the new component list C ′, unless |C ′| = 1, that is, only one connected
component is left.

To find a component with a cycle, we iterate through the list C. Given a component
Ci, we check if the number of edges of this component is equal to the number of its
vertices minus 1, in that case, it is a tree and we move on to the next component in the
list. If not, we search for a pair of vertices, connected by multiple edges. If such a pair
exists, any pair of edges constitute a cycle and serves our purpose; else, we use depth-first
search to find a cycle.

2.3.2 Some Implementation Details

To implement the above algorithm we maintain the following data structures:

1. An adjacency list for the graph G, with an additional field for each list node that
records edge-multiplicity.

2. For each component of the graph we maintain a record of the “root” vertex that
was used to visit all the other vertices of the component, a cyclic edge, if there are any
cycles in the component, and a non-cyclic edge, if any.

After the initial depth first search, each subsequent depth first search merges a com-
ponent with a cycle with another that may or may not contain a cycle. Two such
components are picked by going through the component records, making sure that one
of the components has a cyclic edge in its record. One of the edges is picked from each
component record so that at least one of the two is cyclic and the two edges are switched
by updating the adjacency information of the four end-points of the switched edges in
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the adjacency list. We now do a partial depth-first search, starting at the “root” ver-
tex of one of the components and create a record for the new component, arising out if
the merger of the two components. The previous records for the merged components are
deleted. The merging process is repeated until there is only one connected component left.

Algorithm 2 connectedMultigraph(vi)

Input: Non-negative, non-increasing integer sequence
Output: Connected multigraph
G =looplessMultigraph(vi)
components, multiedges = DFS(G)
while length(components) > 1 do

Choose component1 with multiple edge {u, v}
Choose component2 with edge {x, y}
component1 = {u, v} and {x, y} with {u, x} and {v, y}
Remove component2
multiedge1 = DFS(component1)

end while

2.3.3 Complexity

If the number of components in the graph output from the Algorithm based on Theorem
1 is equal to r. The complexity of producing a single connected component is O(r(|V |+
|E|)).

2.4 Alternate Characterization

An equivalent characterization of Theorem 2 is given in following Corollary.

Corollary 1 [7] The set of integers d1, d2, . . . , dn is realizable as a connected graph if:
(i) the set d1 ≤ d2 ≤ d3 ≤ . . . ≤ dn is realizable, and
(ii) d4 ̸= 1.

We show that the condition (ii) above implies condition (ii) of Theorem 2.

As d4 ̸= 1 and the di’s are all positive integers, d4 ≥ 2. Since, d4 ≤ d5 ≤ d6 ≤ . . .,
d4 + d5 + . . .+ dn ≥ 2(n− 3) as there are n− 3 terms in the sequence, each greater than
or equal to 2. Thus d1 + d2 + d3 + d4 + . . .+ dn ≥ 2(n− 3) + 3 (the 3 is for d1 + d2 + d3).

Now the right-hand side of the inequality is odd and hence equality cannot hold.
Therefore, LHS > 2(n− 3) + 3 or ≥ 2(n− 3) + 4 = 2(n− 1) as required.

An interesting problem is to be able to use the second condition as a stand-alone
criterion for generating a graph.
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2.5 Generating a graph without a cut-vertex

Hakimi [7] established the following theorem. Note that a graph is non-separable means
that it has no cut-vertex.

Theorem 3 [7] The necessary and sufficient conditions for a set of integers d1, d2, . . . , dn
to be realizable as a non-separable graph are:
(i) Σn

i=1di = 2e, where e is an integer.
(ii) di ̸= 1 for all i.
(iii) Σn−1

i=1 di ≥ dn + 2(n− 2)

2.5.1 Algorithm 3

It is easily shown that the derived sequence d′ = (d1 − 2, d2 − 2, . . . , dn − 2) is realizable,
satisfying all the conditions of Theorem 1. Thus we use Algorithm 1 to generate a graph
realizing the sequence d′. We superimpose on this graph a Hamiltonian cycle passing
through all the vertices, giving us a graph that is not separable.

Consider the degree sequence d = (2, 2, 2, 2, 3, 3). It satisfies all the conditions of The-
orem 3. However, the algorithm based on Theorem 1 generates the graph of Fig. 2.1. The
graph satisfying the reduced degree sequence d′ = (0, 0, 0, 0, 1, 1) consists of 4 isolated
vertices and a pair edges between the remaining two vertices.

Superposing a Hamiltonian cycle on all 6 vertices give us the non-separable, connected
graph of Fig. 2.4.

1 2 3 4 5 6

Figure 2.4: A non-separable, connected graph realizing the sequence d = (2, 2, 2, 2, 3, 3)

Algorithm 3 connectedNonseparableMultigraph(vi)

Input: Non-negative, non-increasing integer sequence
Output: Connected non-separable multigraph
for i = 1 → length(vi) do

vi[i] = vi[i]− 2
end for
G =looplessMultigraph(vi)
for i = 1 → length(vi) do

Add edge {vi, vi+1}
end for
Add edge {vn, v1}
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2.5.2 Correctness

The degree of each vertex in the input graph is greater than or equal to 2. After sub-
tracting 2 degrees from each vertex the graph constructed on the residual degrees is a
disjoint graph if the degrees of some of the vertices is reduced to 0. The Hamiltonian
cycle constructed on this graph will add the 2 subtracted degrees back to each vertex
and since the cycle is through all the vertices, there will be no cut vertex present in the
graph. Hence the resulting graph is non separable.

2.6 Generating a connected but separable graph

Hakimi [7] established the following theorem for a graph to be connected but separable.

Theorem 4 [7] A necessary and sufficient condition for a set of integers d1, d2, . . . , dn
that is realizable as a connected graph (satisfies conditions of Theorem 2) to be realizable
as a separable but connected graph is:
(i) If n = 3, d1 + d2 = d3.
(ii) If n = 4, there must exist among the integers a di and a dj such that di ̸= dj.
(ii) If n > 4, there must exist among the set an integer di ̸= 2

2.6.1 Algorithm 4

For a generation algorithm, we first deal with the base cases. For n = 3, we start with
three vertices corresponding to the three degrees, adding n13 = d1 edges between 1 and
3 and n23 = d2 edges between 2 and 3. The main idea underlying the construction is
to split the degree of a graph between two graphs and superimpose the vertices of split
degree. For n ≥ 4 we proceed by distinguishing two cases:

1. d1 = d2 = . . . = dn.
Since d1 ̸= 2, set d1 = 2+ d12. Consider now the sequences d′ = (2, d2, d3) and d′′ =
(d12, d4, . . . , dn). Both d′ and d′′ are realizable as connected graphs. Superposing
the vertices corresponding to the vertex of degree 2 in d′ and the vertex of degree
d12 in d′′ gives us a graph that is connected and has d1 as a cut vertex.

2. d1 ̸= dn.
In this case, the sequences d′ = (d1, d1) and d′′ = (d2, d3, . . . , dn − d1) are realizable
as connected graphs, Superposing the vertices corresponding to a degree d1 in the
first graph and the vertex of degree dn−d1 in the second graph gives us a connected
graph that has the vertex of degree dn, obtained by superposition, as a separable
vertex.

For an example, consider the degree sequence d = (3, 3, 3, 3, 3, 3), satisfying the first
case. The graphs obtained by splitting the degree of the first vertex correspond to the
sequences d′ = (2, 3, 3) and d′′ = (1, 3, 3, 3).

Superposing the vertex 0 of the left and right figures we get a separable, connected
graph realizing the sequence d = (3, 3, 3, 3, 3, 3) with a cut-vertex at 0.
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2

1

0

2

0

13

Figure 2.5: (a) A non-separable, connected graph realizing the sequence d = (2, 3, 3)
(b)A non-separable, connected graph realizing the sequence d = (1, 3, 3, 3)

Algorithm 4 connectedseparableMultigraph(vi)

Input: Non-negative, non-increasing integer sequence
Output: Connected separable multigraph
if v1 = vn then

Set v1i = 2, d2, d3
Set v2i = d4, . . . , dn−1, dn − 2
connectedMultigraph(v1i)
connectedMultigraph(v2i)
Overlap 2 from v1i to dn − 2 vertex of v2i

else
Set v1i = d1, d1

Set v2i = d2, . . . , dn−1, dn − d1
connectedMultigraph(v1i)
connectedMultigraph(v2i)
Overlap d1 from v1i to dn − d1 vertex of v2i

end if

2.6.2 Correctness

The graph degree is split into two subgraphs degrees on a vertex that is the cut vertex.
Two connected graphs are generated using the two sets of degrees. These connected
graphs might or might not have a cut vertex. However, once the two subgraphs are
joined via the cut vertex the resulting graph is guaranteed to have a cut vertex that is
the vertex whose degrees were split between the two sequences.

2.6.3 Complexity

The complexity of this algorithm is dominated by the construction of a connected graph
for the longer sequence in each of the two cases and is therefore O(r(|V | + |E|)), where
r is the number of components in the graph obtained by applying Algorithm 1 to the
longer sequence.
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Chapter 3

k-factors

3.1 Introduction

Let dG(v) denote the degree of a vertex v of a graph G = (V,E). Given a map
f : V → N ∪ {0} where f is a function, an f -factor of G is a spanning subgraph H
such that dH(v) = f(v) for each v ∈ V . The f -factor theorem of Tutte [14], gives neces-
sary and sufficient conditions for the existence of an f -factor.

The degree sequence problem we discussed in Chapter 2 can be interpreted as a spe-
cial case of Tutte’s theorem: Given that f = ⟨f(v1), f(v2), . . . , f(vn)⟩, this sequence is
graphical if there exists an f -factor of the complete graph Kn on the n vertices of G.

For a constant k, a k-factor is a k-regular spanning subgraph of G. A graphic degree
sequence (d1, d2, . . . , dn) is said to be k-factorable if there exists a realization that has a
k-regular spanning graph as a subgraph.

In this chapter we focus on various aspects of k-factorable graphic degree sequences.

Rao and Rao [11] made the following conjecture:

Conjecture 1 Given a constant k, a graphic degree sequence (d1, d2, . . . , dn) is k-factorable
if and only if the sequence (d1 − k, d2 − k, . . . , dn − k) is graphic.

Kundu [10] proved the slightly more general version of this conjecture:

Theorem 5 Let (d1, d2, . . . , dn) and (d1−k, d2−k, . . . , dn−k) be two graphical sequences
with the property that for some k ≥ 0, k ≤ ki ≤ k+1 for all i. Then there exists a graph
with degree sequence (d1, d2, . . . , dn), containing a (k1, k2, . . . , kn)-factor.

We first consider the problem of generating graphic degree sequences that are k-
factorable. That requires us to solve, in the first place, the problem of generating graphic
sequences.

We can try to solve the Erdos-Gallai Inequalities (EGI) to determine a sequence d
that satisfies these. However, the min-function on the right-hand side of these inequal-
ities is problematic. What comes to our rescue are a set of sufficient conditions in [15]
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that make no direct reference to the EGI.

Choose integer parameters a and b such that a ≥ b > 0, and let K(a, b) denote the
class of sequences d such that:

a ≥ d1 ≥ d2 ≥ . . . ≥ dn ≥ b > 0 (3.1)

The following result that shows each sequence in the class K(a, b) to be graphic.

Theorem 6 [15] Let K(a, b) be a class of degrees such that a ≥ b > 0. If degree sequence
d ∈ K(a, b) and n = |d| ≥ (a+ b+ 1)2/4ab = l, then d is graphic.

An intuitive interpretation of Theorem 6 is that if we choose a sequence d longer l,
then d is going to be graphic.

In the next section discuss an algorithm due to Chen [4] that gives a constructive
method for generating a k-factorable graphic sequence by producing a k factor of a
graphic realization. Interestingly, its implementation requires graphic sequences as input,
which is why we discussed a method for doing this earlier. Other reasons for discussing
this algorithm is that (a) it brings together in an interesting cocktail the problems of
graphicality of degree sequences, packing degree sequences and k-factorability of degree
sequences; (b) there seems to be no analysis available of the complexity of this algorithm.

3.2 Generating k-factorable degree sequences

Chen [4] gave a very simple and elegant proof of Kundu’s result using graph packing
technique. This proof also suggests an algorithm for the construction of a k-factor. We
first explain the algorithm with the help of an example and then describe the algorithm
formally.

Graph packing: Let α = (a1, a2, . . . , an) and β = (b1, b2, . . . , bn) be two graphic
sequences. Simple graphs A and B that realizes the degree sequences α and β are said
to pack if A and B are edge disjoint and degA(vi) = ai, degB(vi) = bi [12].

This example is based on the algorithm suggested in Theorem 16 of Section 3.2 in
Tyler Seacrest’s thesis [12]. This theorem is based on Chen’s proof. Below, we will follow
the notations of this thesis.

Consider the graphic degree sequence: π = (3, 3, 3, 3, 2, 2) so that n = 6. Let k = 1.

The graph A of Fig. 3.1 is an initial realization of the sequence: π − k = π − 1 =
(2, 2, 2, 2, 1, 1). while the graph B of Fig. 3.1 is an initial realization of the sequence:
n− 1− π = 6− 1− π = (2, 2, 2, 2, 3, 3).

Superposition of the initial realizations of the graphs A and B is the multigraph C of
Fig. 3.2.
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Figure 3.1: Graphs A and B
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56

Figure 3.2: Graphs C and D

We remove one of the edges of the multi-edge between the vertices 5 and 6 from the
graph B, by switching the edges {1, 2} and {5, 6} in this graph by adding the replace-
ment edges {6, 2} and {5, 1} to the same graph. This also removes one of the edges in
the multi-edge between 1 and 2 and gives us the graph D of Fig. 3.2.

Remark: Why should edge-switching be possible? Recall that the vertices involved
in this edge-switching are u, v, x and y, where there is no edge between v and x, and there
is a multi-edge between u and v. Let the total degree of x be expended by joining the
set of vertices, say, Vx, each of which is connected to x by one or two edges. Note that v
is not in Vx.

Now, since u is joined to v by two edges and x is not joined to v, the total degree of
both u and x being the same, u cannot be joined to the vertices in X to match that of x.
Thus there must a exist vertex y in X such that x is joined to y by one edge and there is
no edge joining u to y, or x is joined to y by two edges, and u is joined to it by at most
one edge.

In the first case, edge-switching removes one of the two edges between u and v. In the
second case, one of the edges between each of the pairs {u, v} and {x, y} is removed and
possibly an edge is introduced between u and y to make it a multi-edge. In each case,
however, there is a net reduction of the total number of multi-edges.

Consider the graph C of Fig. 3.2. Let u = 6 and v = 5. Since the total degree of v is 4
with degrees used up bu the edges from the vertex u into it, the remaining 2 degrees are
spread among vertices 1, 2, 3 and 4. Thus there exists a vertex it is not joined to. In this
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case these are vertices 1 and 4. Set x = 1. The total degree 4 of 1 is distributed among
the vertices {6, 2, 4}. This is Vx. Note that v = 5 is not in Vx. Since u = 6 is joined to
v = 5 with 2 edges and is also joined to 1, it has only 1 more degree to expend on the
vertices 2 and 4 in Vx − {6}. On the other hand, 1 has three more degrees to expend on
the vertices 2 and 4. Hence there exists a vertex in Vx − {6} that 6 is not connected to.
In this case it is 2. 2

We still have a multi-edge between 3 and 4 in the superposed graph. We switch the
pair of edges {1, 2} and {3, 4} in the graph A with the replacement pair {1, 3} and {2, 4}.
This gives us the graph E of Fig. 3.3.

1 2

34

56

Figure 3.3: Graph E

The new realizations of the graphs B (figure on left) and B (figure on right) are now
shown in Fig. 3.4.

1 2

34

56

1 2

34

56

Figure 3.4: New Graphs B and A

The complement of the new graph B is a realization of π = (3, 3, 3, 3, 2, 2). Both this
graph (figure on left) and a 1-factor (figure on right), which is the graph B\A, are shown
in Fig. 3.5.

We give a formal description of the algorithm below.

Algorithm k-Factor

Step 1. Compute a realization of a graph A that is a realization of the sequence
(d1 − k, d2 − k, . . . , dn − k).
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A realization of (3, 3, 3, 3, 2, 2) A 1− factor

Figure 3.5: A realization of (3, 3, 3, 3, 2, 2) and a 1-factor of this

Step 2. Compute a realization of a graph B that is a realization of the sequence
(n− 1− d1, n− 1− d2, . . . , n− 1− dn).

Step 3. Compute a superposition of the graphs A and B and make a list L of the
multiple edges in the graph A ∪B.

Step 4. While there is a multi-edge {u, v} in A ∪B do:

Step 4.1. Find a vertex x that is not joined to v and a vertex w that is connected by
at most one edge with u.

Step 4.2. Perform edge-switching by switching edges {u, v} and {x, y} with new edges
between {v, x} and {u,w} in one of the graphs A or graph B.

We have implemented the above algorithm in Python. In the next section, we give
an analysis of the complexity of this algorithm.

3.2.1 Complexity Analysis of Chen’s Algorithm

Though an algorithm is implied by Theorem 16 of Seacrest’s thesis, an analysis of the
algorithm is missing. Such an analysis is useful for coming up with an efficient algorithm.

We first have to consider the complexity of finding overlapping edges in the superpo-
sitions of the graphs A and B. This can be done by taking a logical AND of the entries of
the adjacency matrices of A and B and then scanning the entries of the resulting matrix
for 1’s.

The next step is to consider the complexity of removing multiple edges. For each
multi-edge {u, v}, we have find vertices x and y to perform edge switching in one of the
graphs A or B. Finding vertices x and y takes O(n) time, while edge-switching can be
done in O(1) time.

After each multiple edge removal we might have to update the list of multiple edges
as we might remove two multiple edges and add a new one.
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This preliminary analysis seems to suggest that the complexity of this algorithm is
O(n2 +mn), where m is the initial number of multiple edges found by the logical AND
operation of the adjacency lists of the graphs A and B.

3.3 Generating factorable graphic sequences with con-

nected k-factors

In [11] it is shown that a graphical degree sequence (d1, d2, . . . , dn) with a k-factor has a
connected k-factor if the following condition holds for s < n/2.

Σs
i=1di < s(n− s− 1) + Σs−1

i=0dn−i (3.2)

The following trial-and-error heuristic can be used to generate a sequence that is
graphic with a connected k-factor.

Step 1. Choose parameters a and b such that a ≥ b > 0 and an integer k ≥ 2.

Step 2. Choose a sequence satisfying Condition (3.1) that is longer than l as in The-
orem 6.

Step 3. Verify that d− k is also graphic. If not, pick another sequence.

Step 4. If both d and d − k are graphic check if all the inequalities in Equation 3.2
are satisfied.

Step 5. If so, return this sequence, else go to to Step 2.

For a = 10 and b = 3, n ≥ 17; set k = 3. The following sequence d = (10, 10, 10, 10, 9, 9,
9, 9, 8, 8, 8, 8, 7, 7, 7, 7, 6, 4) has a connected 3-factor as seen in a realization, shown in
Fig. 3.6.

3.3.1 Generalizing the result of Zverovich and Zvervich

For generating graphical sequences we have used the result of theorem 6. We use this
result to pick graphical sequences that have connected k-factors.

From the inequality 3.2 we can say that a graph will have connected k-factors if it
satisfies this inequality for each s < n/2. That is:

Σs
i=1di < s(n− s− 1) + Σs−1

i=0dn−i, where s < n/2

By maximizing the left hand side and minimizing the right hand side of the inequality
we can say that
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Figure 3.6: Connected 3-factor for the degree sequence (10, 10, 10, 10, 9, 9, 9, 9, 8, 8, 8
, 8, 7, 7, 7, 7, 6, 4)

Σs
i=1di = sa and Σs−1

i=0dn−i = sb

So, the inequality now becomes:

sa < s(n− s− 1) + sb, or

a− b < n− s− 1

For further minimizing the right-hand side, we can maximize the value of s. Since
s < n/2 set s = n/2− 1. Plugging in this value of s we have:

a− b < n/2 or n > (a− b)/2

Using Theorem 6, we know that n ≥ (a+ b+ 1)2/4b. Therefore,

Theorem 7 For generating a graphical sequence with connected k-factor choose a se-
quence of length n > max(2(a− b), (a+ b+ 1)2/4b)

3.4 Generating factorable graphic sequences with dis-

connected k-factor

We examine the problem of constructing examples of factorable graphic sequences with
disconnected k-factors. In the following claim, we identify a class of such sequences for
k=2.

Let d = (n− 1, ..., n− 1, x, ...x, s, ..., s) be a sequence whose leading s terms are n− 1,
trailing s terms are s and all intermediate terms are x.
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For an s < n/2, from the equation above we get:

(n− 1) ∗ s < s(n− s− 1) + s ∗ s,

which is false for all s < n/2.

Claim 1 For n even and 5 ≤ x ≤ n− 3, the sequences d = (n− 1, n− 1, x, ...x, 2, 2) are
2-factorable with disconnected factors.

Proof: We show that both d and d − 2 are graphic. We saturate the degrees of the
first two vertices by joining them to each other and to all the remaining vertices. This
reduces the degree sequence to (x− 2, x− 2, ..., x− 2) of length n− 4.

Since n was assumed to be even, and x ≤ n − 3, we can construct an x − 2-regular
graph on n − 4 vertices vertices, unless x − 2 = 1, when we can construct a perfect
matching.

The sequence d− 2 = (n− 3, n− 3, x− 2, ..., x− 2) is also graphic since there exists
a graph on n− 2 vertices, where each of the vertices of degree n− 3 is each joined to the
remaining n− 4 vertices and to each other.

This reduces the degree of each of the trailing n− 4 vertices by 2 and it is easy con-
struct a regular graph on these vertices so that each is of degree x− 4, unless x− 4 = 1,
when we construct a perfect matching.

Remark: We can reformulate and prove the above claim, stated in terms of a param-
eter s ≥ 2, with s+3 ≤ x ≤ n−5+s for sequences d = (n−1, ..., n−1, x, x, ..., x, 2, 2, ..., 2),
with n − 1 as the first s terms, followed by n − 2s terms x, and s trailing 2’s, bringing
up the rear.

For d = (15, 15, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 2, 2), the Fig. 3.7 and Fig. 3.8 below show
graphic realizations of d and d− 2, produced by a program that we wrote.

Are there other choices of s and the unspecified n− 2s intermediate values for which
the sequences are graphic, with disconnected k factors for suitable choices of k ?

For example, by experimentation, using software we have developed, we found that for
n = 10 and s = 3, the sequences d = (9, 9, 9, 6, 6, 6, 6, 3, 3, 3), and d = (9, 9, 9, 5, 5, 5, 5, 3,
3, 3) are graphic and have disconnected 2-factors.

In Fig. 3.9 and Fig. 3.10, respectively, a realization of the graphic sequence d =
(9, 9, 9, 6, 6, 6, 6, 3, 3, 3) and its 2-factor, consisting of two disjoint cycles, are shown.

Are there other choices of s and the unspecified n− 2s intermediate values for which
the sequences are graphic, with disconnected k-factors for suitable choices of k?

For example, by experimentation, using software we have developed, we found that for
n = 10 and s = 3, the sequences d = (9, 9, 9, 6, 6, 6, 6, 3, 3, 3), and d = (9, 9, 9, 5, 5, 5, 5, 3, 3,
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Figure 3.7: Graph for the degree sequence (15, 15, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 2, 2)

Figure 3.8: Graph for the degree sequence (13, 13, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4)

3) are graphic and have disconnected 2-factors.

It is interesting to note that the two disjoint cycles that make up the 2-factor cannot
be merged into a single cycle. This is because of the structure of the subgraph C1 on the
vertices {0, 1, 2, 7, 8, 9}. Let A1 = {7, 8, 9} be the vertices at an even distance from 8, and
A2 = {0, 1.2} at an odd distance from 8 in this subgraph. Then the vertices of A1 are
independent in the parent graph and the induced subgraph on vertices of A2 is complete
and each of its vertices is joined to all the vertices of the induced subgraph C2 on the
vertices {3, 4, 5, 6}. The notation C1 → C2 is used to denote this relationship between
C1 and C2.

Rao and Rao [11] proved the following interesting result.
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Figure 3.9: Graph for the degree sequence (9, 9, 9, 6, 6, 6, 6, 6, 3, 3, 3)

Figure 3.10: 2-factors of the graph for the degree sequence(9, 9, 9, 6, 6, 6, 6, 6, 3, 3, 3)

Theorem 8 Let G be a graph with a k-factor F consisting of two components C1 and C2.
Let k ≥ 2 and let C1 and C2 be bi-coherent. If the degree sequence of G is not connected
k-factorable then either C1 → C2, or C2 → C1.
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Chapter 4

Directed graphs

4.1 Introduction

For a set of non-negative integer pairs of the form d = [(d+i , d
−
i ) : i = 1, 2, . . . , n] in

lexicographically decreasing order, does there exist a graph G = (V,E) with vertices
(d+1 , d

−
1 ), (d

+
2 , d

−
2 ), . . . , (d

+
n , d

−
n ), where d+i is the outdegree and d−i is the indegree for a

vertex vi of G. If there exists a graph G corresponding to the degree sequence, then d is
said to be graphic and G is the realization of d.

In this section, we look at a theorem by Hakimi [8] that give necessary and sufficient
conditions for a non-negative set of integer pairs to be graphic. For these conditions, we
propose a generation algorithm whose correctness is ensured by sufficient conditions.

Following the algorithm for graph realization based on Hakimi’s conditions for graph-
icality of a sequence, we will see how to prove the sufficiency of the theorem by Fulkerson-
Ryser [6].

4.2 Generating directed graphs based on Hakimi’s

conditions

Let d =< (d+1 , d
−
1 ), (d

+
2 , d

−
2 ), . . . , (d

+
n , d

−
n ) > be a sequence of positive pairs of integers,

such that the sequence is in lexicographically decreasing order.

Theorem 9 The set of pairs of positive integers (d+i , d
−
i ),∀1 ≤ i ≤ n can be realized as

the directed graph if and only if:
(i) Σn

i=1d
+
i = Σn

i=1d
−
i

(ii) Σn−1
i=1 (d

+
i + d−i ) ≥ d+n + d−n

4.2.1 Algorithm

This algorithm works on degree sequences in lexicographically decreasing order. We take
the highest integer pair and reduce its outdegree one by one by adding an edge start-
ing from the next highest in lexicographic order and reducing their indegree. Once the
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outdegree of the highest pair is saturated, the sequence is rearranged to be in decreasing
order again.

Rearranging the sequence ensures that the condition Σn−1
i=1 (d

+
i + d−i ) ≥ d+n + d−n is al-

ways satisfied. The algorithm ends when the outdegree of the highest pair is zero, and the
outdegrees have been saturated. Due to the condition Σn

i=1d
+
i = Σn

i=1d
−
i , the indegrees

also have been saturated.

Algorithm 5 directedGraphRealization(vi)

Input: Non-negative integer pair sequence(lexicographically decreasing order): vi =
[(ovi, ivi)]
Output: Directed graph
while v1[0] > 0 do

for i = 2 → v1[0] do
Add edge v1 → vi

end for
Rearrange vertices in lexicographically decreasing order.

end while

4.2.2 Complexity

The complexity of the algorithm is proportional to the size of the graph that is generated.
This is bounded above by Σn

i=1di + n2 = O(|E|+ n2), where E is the set of edges in the
generated graph and n2 is the time taken for rearranging the vertices after saturation.

4.3 A constructive proof of the Fulkerson-Ryser char-

acterization of digraphic sequences

Given a sequence of nonnegative integer pairs of the form d = ⟨(odi, idi)⟩, i = 1, 2, . . . , n
in lexicographically decreasing order, does there exist a digraph G = (V,E) whose degree
sequence is (od1, id1), (id2, id2), . . . , (odn, idn), where odi is the outdegree and idi is the
indegree, respectively, of the vertex vi of G.

If there exists such a graph G then d is said to be digraphic and G is a realization of
the sequence d.

Tripathi et al. [13] gave a short constructive proof of the Erdos-Gallai characterization
of graphic sequences [5]. In this section, we show that an analogous construction can be
given for digraphic sequences based on the Ryser-Fulkerson characterization of such (see,
for example, [3]).
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Theorem 10 A sequence (id1, od1), (id2, od2), . . . , (idn, odn) of nonnegative integers in
non-increasing lexicographical order is realizable as a digraph if and only if:

idi ≤ n− 1, odi ≤ n− 1,∀i 1 ≤ i ≤ n

Σn
i=1idi = Σn

i=1odi

Σr
i=1odi ≤ Σr

i=1min{r − 1, idi}+ Σn
i=r+1min{r, idi},∀r 1 ≤ r < n

4.4 Digraph Construction

The necessity of the inequalities is strightforward. The total outdegree ot the vertices in
the leftSet can be accounted for by directed edges going from a vertex in the leftSet to
a vertex in the rightSet (second term on the right-hand side of the inequality) and by
outgoing edges from a vetex in the leftSet to another in the same set (first term on the
right-hand side of the inequality).

The role of the min function is also easy to understand. For example, we have
min{r, idi} as the a maximum of r edges can originate from vertices in the leftSet and
upto a maximum of its indegree idi. Hence we will have the minimum of the two values.

The problem is to construct a directed graph (digraph) G on n vertices v1, v2, . . . , vn
such that vi has outdegree odi and indegree idi. We construct G incrementally, starting
with an empty graph on n vertices. The outdegree and indegree of a vertex vi at an
intermediate stage will be denoted by od(vi) and id(vi) respectively. Clearly, od(vi) ≤ odi
and id(vi) ≤ idi always holds.

We maintain three sets, S1, S2 and S3 of degree pairs (od(vi), id(vi)). In the first set
S1 all outdegrees and indegrees are fully saturated, that is od(vi) = odi and id(vi) = idi
for each i in this set; in the second set, S2, the outdegrees are but not the indegrees, that
is od(vi) = odi and id(vi) ≤ idi for each i ; in the third set, S3, the outdegrees are fully
unsaturated and the indegrees partially saturated, that is od(vi) = 0 and id(vi) ≤ idi
for each i. In each set, the degree pairs are lexicographically ordered. Below, the term
leftSet (respectively rightSet) will stand for S1 ∪ S2 (S3). Furthermore, if vi and vj are
two vertices in S3, there no edge connecting them.

Let r be the largest index such that for all i in 1 ≤ i < r, od(vi) = odi. We add
outgoing edges to vr till od(vr) = odr, when vr is said to be saturated. When adding
edges, several cases arise as discussed below.

Case 0: If there exists an i such that vr ̸→ vi and id(vi) < idi we add the edge vr → vi .

In Case 0, we explored vertices vi for which either od(vi) = 0 or the vertices for which
od(vi) = odi but id(vi) < idi. That is, we explored vertices in the right and middle sets.
If vr could not be joined to vi then that is because of two possibilities:

(a) vr is already joined to vi and id(vi) ≤ idi.
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(b) vr cannot be joined to vi as id(vi) = idi.

Assume one of the possibilities (a) or (b) is true. Now, we have to look to the left set,
that is, vertices for which id(vi) = idi and od(vi) = odi. There are two cases to consider:

Case 1: There exist a vi ∈ leftSet such that vi ̸→ vr.

This case can be divided into two cases.

Case 1.1 idr − id(vr) > 0: in this case, we find an edge vr → u such that u ̸∈ N(vr)
and replace it with edges {vi → vr, vr → u}, as shown in Fig. 4.1.

The existence of such an u follows from the fact that od(vi) = odi ≥ odr > od(vr).

vi u

vr

Figure 4.1: Rewiring Step 1(a)

Case 1.2 idr − id(vr) = 0 and idr > 0: in this case, we find edges {vi → u, vk → vr}
and replace them with the edges {vi → vr, vr → u}, as shown in Fig. 4.2.

The existence of vk follows from the fact that indegree of vr is saturated; since there
is no outgoing edge from any of the vertices in the rightSet, there has to be a vertex
vk ̸= vi such that vk → vr.

The existence of u such that there is an edge vi → u but vr ̸→ u follows from the
same inequalities as in Case 1.1.

vi u

vrvk

Figure 4.2: Rewiring Step 1(b)

Case 2: There exists k > r such that id(vk) < min{r, idk}.
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The condition id(vk) < min{r, idk} ensures that vk is not saturated. There exists a
vertex vi in the left set such that vi ̸→ vk as it cannot be vr. There also exists vertex u
for which id(u) = idu and vr ̸→ u. This is guaranteed by the inequalities invoked in Case
1.1 and which still hold.

We now replace vi → u with {vr → u, vi → vk} as in Fig. 4.3.

vi

vk

vr

add

remove

add

u

leftSet rightSet

Figure 4.3: Rewiring in Case 2

Case 3: For each vertex vi in the leftSet, we have vi → vr, and the condition
id(vj) < min{k − 1, idj} for some j ensures that there exists vi such that vi ̸→ vj.

We argue as before that there exists u in the right set such that vi → u but vr ̸→ u.
We then replace vi → u with {vr → u, vi → vj}.

The rewiring is schematically shown in Fig. 4.4.

vi

vj

vr

add remove

add

u

leftSet rightSet

Figure 4.4: Rewiring in Case 3

If none of the above cases hold, then id(vi) = min(r − 1, idi) for i = 1, 2, . . . , r and
id(vi) = min(r, idi) for i = r+1, r+2, . . . , n. Now Σn

i=1id(vi) = Σn
i=1od(vi) is an invariant

of the construction process. Then from the Ryser-Fulkerson inequalities, it follows that
Σr

i=1odi ≤ Σr
i=1od(vi). However, od(vi) ≤ odi for each i = 1, . . . , r, which implies that

Σr
i=1odi ≥ Σr

i=1od(vi). Hence Σr
i=1odi = Σr

i=1od(vi). From the choice of r, it follows that
the first r − 1 terms on either side of the equality are equal and therefore od(vr) = odr,
Since vr is outdegree-saturated we add it to the leftset, increment r by 1, and continue.
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Algorithm 6 fulkersonRyserRealization(vi)

Input: Non-negative integer pair sequence(lexicographically decreasing order): vi =
[(ovi, ivi)]
Output: Directed graph
S1, S2 = []
S3 = vi
while length(S3) > 0 do

ri = pop S3[0]
Call fulkersonRyserCase0()
Call fulkersonRyserCase1()
Call fulkersonRyserCase2()
Call fulkersonRyserCase3()

end while

Algorithm 7 fulkersonRyserCase0

Input: S1, S2, S3, ri
for each item in S3 do

if ori = 0 then
break

end if
if S3 has vi where ivi > 0 and ri ̸→ vi then Add ri → vi
end if

end for
for each item in S1 ∪ S2 do

if ori = 0 then
break

end if
if S1 or S2 has vi where ivi > 0 and ri ̸→ vi then

Add ri → vi
end if
ori := ori − 1

end for
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Algorithm 8 fulkersonRyserCase1 (vi)

Input: S1, S2, S3, ri
while ori > 0 do

if ori = 0 then
break

end if
if S1 or S2 has vi and S3 has u and iri > 0 and ri ̸→ u and vi → u then

Remove vi → u
Add vi → ri and ri → u

else if S1 or S2 has vi, vk and S3 has u and iri = 0, vk → ri, vi → u, and ri ̸→ u
then

Remove vi → u and vk → ri
Add vi → ri and ri → u

end if
end while

Algorithm 9 fulkersonRyserCase2 (vi)

Input: S1, S2, S3, ri
while ori > 0 do

if ori = 0 then
break

end if
if S1 or S2 has vi and S3 has vk, u and vi → u, vi ̸→ vk and ri ̸→ u then

Remove vi → u
Add vi → vk and ri → u

end if
end while

Algorithm 10 fulkersonRyserCase3 (vi)

Input: S1, S2, S3, ri
while ori > 0 do

if ori = 0 then
break

end if
if S1 or S2 has vi, vj and S3 has u and vi → u, vr ̸→ u and vi → u then

Remove vi → u
Add vi → vj and vr → u

end if
end while
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Chapter 5

Conclusion

This thesis provides a comprehensive review of various criteria that can determine the
graphicality of a sequence. We begin by going through some criteria for the sequence
to be realized as an undirected graph with vertex degrees corresponding to the integer
sequences, then prove their sufficiency by generating algorithms capable of constructing
graphs based on the integer by treating them as degree sequences.

We discussed necessary and sufficient conditions for the integer sequences to be re-
alized as the undirected graph with specific properties, as stated by Hakimi. We have
proposed algorithms to generate graphs whose vertex degrees are a given sequence of pos-
itive integers d =< d1, d2, . . . , dn >, under different sets of sufficient conditions. Each set
of sufficient conditions guarantee that the generated graph satisfy some property (prop-
erties).

Degree sequences that satisfy specific conditions can have k-factors. We look at the
conditions stated by Kundu for detecting such sequences and implement Seacrest’s algo-
rithm for realizing graphs and their k-factors for a given degree sequence. We analyze
the complexity of the algorithm to measure its efficiency. Using the result by Rao and
Rao to detect if the sequence can have realizations with connected k-factors, we gener-
ate a pattern that can construct sequences that do not have realizations with connected
k-factors. Further, we use Zverovich’s result to create a condition to ensure that the
sequence always has connected k-factors.

We then take the necessary and sufficient conditions given by Hakimi and Ryser-
Fulkerson characterization for realizing the integer pair sequence as directed graphs and
generate algorithms for realizing graphs and proving the sufficiency of the theorems dis-
cussed.

All the algorithms have been implemented in Python 3.

5.1 Future works

Section 3.4 specifies conditions for which the sequence will have disconnected k-factors.
An open problem is to use these conditions to generate integer sequences that can be

34



realized as a degree sequence of a graph.

The k-factors discussed in this thesis focuses on the undirected graphs and the condi-
tions to generate sequences apply to the undirected graphs. One open problem is to use
these conditions and extend them to realize directed graphs and its k-factors.
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