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Moisture effects on the bond strength of FRP-masonry elements
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Abstract
Moisture exposure has been observed to be one of the degrading environmental agents which
affect the durability of the FRP-strengthened elements by changing the constituent material or
bond properties. This paper presents the experimental investigation on the effects of moisture
on the pull-off bond strength of GFRP-strengthened brick specimens. The specimens have
been prepared following the wet lay-up procedure and exposed to constant moisture level of
100% R.H. at 23 C for eight weeks. The degradation in the bond performance has been
investigated by performing pull-off tests on the conditioned specimens after four and eight
weeks of exposure. The reversibility of the bond degradation has been also studied by storing
some specimens in the laboratory conditions for one week after conditioning and before
performing the pull-off tests. Comparative analysis has been performed and the main results
are presented and discussed.

Keywords: Bond, degradation, FRP composite, Masonry, Moisture, Pull-off.

1. Introduction

External strengthening of masonry structures with fiber reinforced polymers (FRPs) has
become a popular method in the last years. The efficiency and reliability of this strengthening
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technique depends intrinsically on the bond between the composite material and masonry
substrate.
Although previous studies have shown the advantages of using FRP composites in
strengthening the structures, the long-term performance of the bond behavior between the
FRP composite and masonry support is still unknown. Therefore, investigation of the long-
term durability of the bond is a key issue in performance prediction of the strengthened
structures in their service life [1-2]. Extensive experimental studies have been performed on
durability of bond in FRP strengthened concrete elements [3-6], while the available literature
on FRP-masonry elements is still few, see e.g. [7-9].
The most common environmental factors which a strengthened element is exposed to during
its service life are moisture variations, temperature variations, and alkaline and acidic
environments. Moisture has been observed to be one of the main deteriorating agents in the
bonded specimens. On the other hand, most of the environmental factors and deterioration
processes are dependent on or coupled with moisture. Therefore a full understanding of
deteriorating effects of moisture on the bond is a key step in durability modeling of FRP-
strengthened masonry elements [10].
In general, it has been observed that FRP materials can tolerate environmental conditions with
small reductions in mechanical properties, while the substrate and adhesive properties maybe
highly deteriorated. Temperature variations and moisture exposure conditions have already
been found to reduce bond shear strength, fracture energy, and peak slip in FRP strengthened
concrete elements. Moreover, the force-displacement diagrams of the bond behavior have
been observed to show a non-linear trend at a lower applied force. The change of the failure
mode from the cohesive failure to the substrate-adhesive interface failure has also been
observed. These changes are usually attributed to thermal incompatibility, extensive moisture
plasticization of the polymer adhesive, and additional breakage of the interfacial bonds. Since
the available experimental results on durability and degradation mechanisms in FRP
strengthened masonry elements is still rare, performing comprehensive experimental and
numerical studies is mandatory in this field.
The available information on FRP strengthened masonry elements shows that a significant
reduction of bond strength is expected after wet-dry cycles (see e.g. [7] and [9]). Briccoli Bati
and Rotunno [9] reported 17% reduction in shear strength in the CFRP strengthened masonry
elements after 48 wet-dry cycles (10 hours of exposure in total). Aiello and Sciolti [7]
reported 33% of reduction in shear bond strength in calcernite ashlar specimens strengthened
with CFRP after 50 days of immersion in water.
In this paper, the preliminary results of a comprehensive research attributed to the durability
of FRP-masonry components being carried out at University of Minho are presented. The aim
of the tests performed in this stage was to investigate the bond behavior in FRP strengthened
brick specimens subjected to moist environment. In this regard, the GFRP strengthened brick
specimens were immersed in water and the changes in the bond strength was monitored after
different periods of exposure. The effect of moisture conditioning was assessed using
standard pull-off tests. Conclusions are presented regarding bond strength capacity, bond
strength degradation with time, and observed failure modes.

2. Experimental tests
2.1 Test outline

The preliminary results of a comprehensive research attributed to durability of FRP-masonry
components being carried out at University of Minho are presented. The aim of the tests
performed in this stage was to investigate the bond behavior in GFRP-brick specimens
subjected to different moisture conditions. Two different moisture conditioning protocols



Page 3 of 8

have been considered, in addition to laboratory-stored control specimens. The latter provided
the baseline against the results obtained from the conditioned specimens. The laboratory
storage conditions were typical ambient conditions averaging 23 C and 60% RH.
The typical pull-off tests were used for investigating the tensile bond strength of the
specimens. The following paragraphs describe the specimens, the moisture conditioning and
the tests method considered in this study.

2.2 Test specimens

The specimens were made of hand-made masonry clay bricks with dimensions of
200x100x50 mm. Unidirectional glass fibers (MapeWrap G UNI-AX) were applied on the
brick surface following a wet lay-up procedure. The surface of the bricks was cleaned and two
layers of primer (MapeWrap Primer 1) were applied on the brick surface before application of
the GFRP sheets. The GFRP sheets were glued on the prepared surface with a compatible
epoxy resin (MapeWrap 31). The specimens were cured in the laboratory conditions for 15
days before exposure to moisture conditions.

2.3 Material characterization

The mechanical properties of masonry bricks were obtained according to the test standards
UNI EN 771-1[11] and UNI EN 8942-3[12] in terms of compressive strength, fcb, tensile
strength, ftb, and elastic modulus, Eb.
Regarding the composite materials, the mechanical properties of GFRP coupons were
obtained according to ISO 527-1[13] in terms of tensile strength, ftf, and elastic modulus, Ef.
Mechanical and thermal properties of the epoxy resin were investigated on samples
previously cured for 15 days at room temperature. The basic tensile properties were obtained
following the standard tensile tests, ISO 527-1[13]. The glass transition temperature (Tg) of
the epoxy resin was obtained by means of the DSC (Differential Scanning Calorimetry)
method. The epoxy samples were cured at room temperature 15 days before performing the
tests. The thermal scans were carried out between 5°C and 200°C with a heating rate of
10°C/min. The Tg was calculated as the mean value of four tests.
Experimentally determined material properties of the bricks and composite material are
presented in Table 1. Here, C.o.V. is the coefficient of variation.

(a) (b) (c)
Figure 1. Material characterization tests; (a) Brick specimens; (b) GFRP coupons; (c) Epoxy resin

specimens.
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Table 1. Material properties.

Masonry brick C.o.V.(%)

Average compressive strength fcb (MPa) 19.8 2.5

Average tensile strength ftb (MPa) 1.95 4.0

Average elastic modulus Eb (GPa) 1.12 3.8

GFRP coupons

Average tensile strength ftf (MPa) 1350 11.9

Average elastic modulus Ef (GPa) 77.1 5.3

Ultimate deformation ε (%) 1.86 20.2

Thickness t (mm) 0.17 -

Epoxy resin

Average tensile strength ftm (MPa) 31.2 5.4

Average elastic modulus Em (GPa) 1.89 5.85

Average shear modulus Gm (GPa) 1.64 6.1

Glass transition temperature Tg ( C) 70 3.2

2.4 Moisture conditioning

The selected exposure is intended to investigate the influence of moisture on the bond
behavior in FRP-strengthened masonry components. The test specimens were exposed to
constant condition of 100% R.H. at 23 C for duration of 4 and 8 weeks. The 100% R.H. at
23 C was provided by immersing the specimens in a water tab in a temperature controlled
environment.
For each exposure condition, five specimens were tested immediately after the exposure and
another five were stored in laboratory conditions for one week before performing the pull-off
tests. In the latter case, the aim was to investigate the reversibility of the observed degradation
after moisture conditioning. Two pull-off tests were performed on each specimen resulting in
ten tests in total for each moisture conditioning. Five specimens were also tested without any
moisture conditioning to provide a baseline for the moisture exposed specimens.
The complete conditioning plan is shown in Table 2.

Table 2. Conditioning program.

No.
of

specimens
Conditioning

5 No conditioning

5 100% R.H., 23°C (4 weeks)

5 100% R.H., 23°C (4 weeks)+laboratory conditions (1 week)

5 100% R.H., 23°C (8 weeks)

5 100% R.H., 23°C (8 weeks)+laboratory conditions (1 week)

2.5 Pull-off tests

The pull-off tests were performed based on a partial coring technique. In this method the
tensile load is applied to the partial core through an aluminum disk bonded to the overlay with
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a structural adhesive, see Figure 2. A loading device with a reaction frame applies the tensile
force at a constant rate to the aluminum disk.
In this study, 50 mm cores with an approximate depth of 10 mm were drilled on the brick
surfaces by means of a rotary core cutting drill with diamond bits. To avoid damage in the
bricks, special care has been devoted to ensure uniform pressure when the core is being
drilled. Afterwards, the aluminum disks were glued on the core surfaces by means of a
structural adhesive.
The loading were applied with a DYNA Z15 instrument at a rate of 0.05±0.01 N/mm2S-1. This
equipment has a capacity of 16 KN and an accuracy of 2%.

(a) (b)

(c)
Figure 2. (a) Test specimen; (b) schematic of the pull-off test; (c) test setup.

3. Test results and discussion
Average bond strengths obtained from 10 pull-off tests for each conditioning type are
normalized by the baseline specimens in Figure 3. It can be seen that a relatively large
reduction is found in the bond strength after four and eight weeks. On the other hand, the
bond strength was not recovered significantly after one week laboratory storage, which can be
due to the irreversibility of the observed degradation in the bond strength.
The mean values of the bond strengths and their corresponding standard deviation and
coefficient of variation (C.o.V.) are presented in Table 3. A relatively large scatter is found on
the bond strength values which is common in this type of experimental test [14]. The strength
reductions comparing to the baseline specimens are also presented in this table. In particular
the reduction of the strength was 15% and 23% for four and eight weeks of immersion in

Pull-off force

Aluminum disk

200

30 50 40 50 30

Drilled core
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water, respectively. It can be seen that the reduction rate has been decreased in the period of
four to eight weeks of exposure comparing to the period between commencement of the test
and four weeks. Moreover, the bond strength was recovered about 3% in both exposure
periods, after one week of laboratory storage.
As it can be observed in Figure 4, the reduction in the bond strength during the investigated
period can be expressed with a linear formula. However, since the reduction rate has been
reduced with time increment using an exponential decay curve with respect to the immersion
time seems more reasonable, Eq. (1). Although, performing experimental tests with longer
immersion times is necessary for a better understanding of the decay trend.

tE

base

e
P

P )41.2(  (1)

where P is the bond strength after t hours of immersion in water and baseP is the baseline
bond strength.
A typical failure mode of fracture in the upper layer of the bricks was observed in all the dry
specimens, see Figure 5. However, the failure was mainly observed in primer-brick interface
in the moisture conditioned specimens.

Figure 3. Average pull-off bond strength of specimens exposed to different moisture conditions.

Table 3. Average values of pull-off strengths and their variation after moisture conditioning.

Condition
Non-

conditioned
Water
(4 w)

Water
(4 w)+

Lab. (1 w)

Water
(8 w)

Water
(8 w)+

Lab. (1 w)

Average 0.90 0.75 0.78 0.68 0.71

Std. Dev. 0.11 0.10 0.12 0.15 0.13

C.o.V. 7.8 13.3 15.4 21.8 17.8

Strength reduction (%) 15 12 23 20
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Figure 4. Bond strength decay with water immersion time.

Figure 5. Typical failure mode in the specimens.

4. Conclusions
The results of the preliminary tests performed on GFRP strengthened masonry elements
exposed to moisture environment presented. The specimens were exposed to 100% R.H. at
23 C for four and eight weeks. The non-conditioned specimens provided the baseline against
the moisture exposed specimens. The specimens were tested immediately after the exposure.
The reversibility of the bond strength degradation has also been studied by storing some
specimens in the laboratory conditions before performing pull-off tests.

In particular a large reduction of bond strength was observed in the conditioned specimens
being 15% and 23% for the specimens immersed in water for 4 and 8 weeks, respectively. The
bond strength recovered 3% for the specimens that were stored in the laboratory conditions
before performing the pull-off test. Based on the observed degradation of the bond strength in
time, an exponential decay relation was proposed.

A typical failure mode of fracture in the upper layer of the bricks was observed in all the dry
specimens. However, the failure was mainly observed in primer-brick interface in the
moisture conditioned specimens.
The results obtained showed that moisture can reduce the bond strength of the FRP-masonry
elements largely within a short period of exposure (two months). However, further
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investigation is required to validate the obtained results.
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