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ABSTRACT

The development of deep learning algorithms has tremendously helped computer

vision applications, image processing methods, Artificial Intelligence, and Natural

Language Processing. One such application is image synthesis, which is the cre-

ation of new images from text. Recent techniques for text-to-image synthesis offer

an intriguing yet straight forward conversion capability from text to image and have

become a popular research topic. Synthesis of images from text descriptors has prac-

tical and creative applications in computer-aided design, multimodal learning, digital

art creation, etc. Non-Fungible Tokens (NFTs) are a form of digital art that is being

used as tokens for trading across the globe. Text-to-image generators let anyone with

enough creativity can develop digital art, which can be used as NFTs. They can

also be beneficial for the development of synthetic datasets. Generative Adversarial

Networks (GANs) is a generative model that can generate new data using a training

set. Diffusion Models are another type of generative model which can create desired

data samples from the noise by adding random noise to the data and then learning to

reverse the diffusion process. This thesis compares both models to determine which is

better at producing images that match the given description. We have implemented

the Vector-Quantized GAN (VQGAN) - Connecting Text and Images (CLIP) model.

It combines the VQGAN and CLIP machine learning techniques to create images

from text input. The diffusion model that we have implemented is Guided Language

to Image Diffusion for Generation and Editing (GLIDE). For both models, we use

text input from the MS-COCO data set. This thesis is an attempt to assess and

compare the images generated using text for both models using metrics like Inception

Score (IS) and Fréchet Inception Distance (FID). The semantic object accuracy score

(SOA) is another metric that considers the caption used during the image generation

process. We compute and compare the results for each label in the MS COCO data

set. We highlight the potential causes of why the models may not be able to generate

images through analysis of the results obtained. Our experimental results indicate

that the GLIDE model outperforms the VQGAN - CLIP for our task of generating
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images from text.
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CHAPTER 1

Introduction

1.1 Overview

Generative models have recently gained attention for their use in producing fake

images. The emergence of artificial intelligence (AI)-generated fake images, referred

to as “deep fakes” presents several challenges such as developing synthetic images

that look realistic, images with multiple objects, and reliable evaluation metrices

that align with human judgment [13]. However, new technologies appear promising

for image generation. Developing a system that can create images representing a

given textual description inspired by how humans perceive is a significant step towards

computer intelligence [13]. Prior to the development of generative models, the process

of creating an image from text relied on image querying. Which involved selecting the

best collection of images from an image database to illustrate text description. Recent

advances in artificial intelligence and computer vision have facilitated the creation of

images based on text descriptions. The goal of text-to-image synthesis is to generate

images from textual descriptions. Research on text-to-image creation has sparked

much interest due to its applications in art, marketing, business, and education,

among others. Several frameworks and improvements have been proposed to produce

more visually realistic images. The representation of an image as the numeric values of

its pixels is termed as image data distribution. If there is an image with the dimensions

m x n pixels. The image may be interpreted as a vector with m x n dimensions, which

is high dimensional data distribution. Image data distribution of high dimension

makes image creation a complex problem. The generated images should be visually

1



1. INTRODUCTION

realistic and semantically accurate for adequate text-to-image synthesis. Semantic

accuracy refers to the agreement between the content of the image and the text

description. Generative modelling is when we provide the model with a description of

what we want to generate, and the model returns an image. The model automatically

learns from the input data and replicates it with variety and accuracy. Suppose we

have a description using which we try to generate an image. The generated image

will resemble but not be identical to the input sample image because the model uses

input images to learn the image’s representation. That is why the representation is

unique each time and varies for different models.

There are different types of generative models like Autoencoders [16, 21], Gener-

ative Adversarial Network (GAN) [16], and Diffusion models [35] for text-to-image

generation that several authors have introduced over the years. These models have

been compared based on visual realism, diversity, and semantic alignment to under-

stand which model works better at generating an image related to the text used for

its generation [9].

1.2 Text-to-image Generation and its Applica-

tions

After being trained on image data, experiments have shown that producing fake but

photorealistic images is feasible. Ramesh et al. [32] showed text-to-image generation

based on an autoregressive transformer in terms of zero-shot learning. Zero-shot

learning implies creating samples for the text input without being trained on the same

input. Scaling can result in more accurate generalization compared to earlier domain-

specific techniques and the approach achieves the best frechet inception distance

[44] and the highest inception score [1] when qualitatively comparing samples from

proposed model to those from prior work [32]. This approach is used by the popular

text-to-image generation tool DALL.E [9], which became available for public use by

OpenAI shortly after the diffusion model was introduced. The diffusion model has

2



1. INTRODUCTION

been proven to generate high-quality images and give desirable characteristics like

distribution coverage, a stationary training aim of creating images from text, and

simple scalability [9]. With these improvements, they achieve a new state-of-the-art,

outperforming GANs on a variety of metrics and data sets [9]. DALL.E was released

in January 2021, followed by DALL-E 2, which was released later in November 2022.

Meanwhile, diffusion models gained popularity in the vision community. OpenAI chose

this method as the basis for DALL-E 2 because it uses simple image-denoising nets

to reduce a convex regression loss instead of a minmax.

DALL.E and other generative AI picture tools are the latest innovation that ven-

ture capitalists have been eager to try out. The use of non-fungible tokens (NFTs),

a kind of digital asset that can be in the form of digital art, has skyrocketed. NFT

artworks are already fetching millions of dollars [4]. With enough imagination, peo-

ple can create digital art using text-to-image generators, which can be utilized to

create NFTs. Creating realistic graphics from natural language can enable people

to produce rich and varied visual content. There has been impressive progress in

the first few years since Mansimov et al. [24] started with modern machine learning

approaches for text-to-image synthesis [32]. The approach has numerous commercial,

educational, and artistic applications. One of the commercial applications is the ex-

pensive production of video games and animated films, in which many production

artists are employed to perform very mundane tasks. Text-to-image models can cre-

ate and colourize characters automatically by giving their descriptions. The tool can

be used to generated images for books and for teaching which makes visual learning

easier and more accessible. The authors of short story books can use the tool for

creating images related to the stories. The artists can look up for inspiration for

their art and use images that are original. Developers can generate images and use

them for their websites or applications without having to spend money for images

or any copyright issues. The image generation can also be used for creating medical

image data set which can be used for training for tasks like detection of diseases.

Some other uses can also be to add variation to already existing data sets, generate

relevant images from chatbot interactions, and fulfill the scarcity of image data sets.

3



1. INTRODUCTION

The application possibilities for text-to-image generators in the future are limitless.

1.3 Generative Models

In terms of a probabilistic model, a generative model specifies how a data set can be

produced. We can generate fresh data by sampling from this model. For example,

consider a data set that includes pictures of cars. We want to create a model that,

after learning the fundamental principles governing a car’s appearance, can create

a brand-new image of a car that has never existed but still appears realistic. This

requires a data set containing many sample images of the object that is to be created

[12]. Each of the samples in the training data is referred to as an observation. Each

observation is made up of a variety of features. For an image generating issue, the

features are typically the various pixel values. The model trained on the observations

is able to produce new collections of features that appear to have been produced by

using the same set of rules as the original data. The resulting photos will consist of a

new collection of pixels that have been rearranged so that the item is identifiable as the

same object, but is not identical to the original observation. Given the vast number

of possible pixel assignments and the small number of feasible image layouts, this is a

challenging task for image synthesis. Additionally, a generative model should produce

probabilistic results rather than predetermined outcomes [12]. If a model just does a

fixed calculation, such as averaging the value of each pixel from the data set, it is not

generative because it constantly produces the same output [12]. The model should

be able to learn an approximation of the input distribution and then sample from it

to produce new, separate observations that appear similar to the initial training set

[12].

1.4 Thesis Objective and Contribution

Synthesizing images from text descriptions has lately gained attention as a research

topic due to the development of generative models. There are versatile methods for

4



1. INTRODUCTION

conditional image generation that have made major advancements in recent years in

terms of visual realism, diversity, and semantic alignment [13]. However, there are

still several issues that the area must address through additional research, such as

making it possible to generate high-resolution photos with several objects and creating

effective evaluation metrics that are correlated with human judgment. One of these

challenges is being able to tell how closely the image we make matches the text we use

to generate it. The performance of a model depends on the specific task we are using

it for. The assessment of generative models is crucial to understand where further

research is required. In this thesis, we are comparing to draw conclusion upon how the

two types of models, GANs and diffusion models, perform when we generate images

over the same textual data from the MS COCO [22] data set and compare them

using different available metrices. This thesis complements other previous research

by using a new metric, i.e., semantic object accuracy (SOA) [18], which to the best

of our knowledge has not been employed to compare GANs and the diffusion model.

The evaluation will also reveal how the models behave for different types of objects.

We discuss and analyze the reasons why a generative model is able and not able to

generate images for a certain object. The aim of this research is to see how the models

perform and which one is preferable when it comes to generating images from text.

1.5 Thesis Organization

Rest of the thesis is organized as follows:

Chapter 2 describes the literature on evolving text-to-image generation algorithms.

Chapter 3 describes our methodology in detail. Chapter 4 discusses the experiments

we have conducted and their outcomes. Finally, Chapter 5 discusses some future

directions and concludes our work.
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CHAPTER 2

Related Work

In this section, we briefly describe several previous research that this thesis is built

upon:

2.1 Overview of different Generative Models

There are four major categories to classify generative models. Which include GANs,

variational autoencoders (VAE’s), flow-based models, and diffusion models. We will

be discussing all of them in this section.

2.1.1 Generative Adversarial Networks (GAN)

Generative Adversarial Networks (GANs) have a generator neural network that cre-

ates what should be a realistic image from noise or from some useful conditioning

variable, such as a class label or text encoding. The success is determined by the dis-

criminator, which classifies the images as either a real image or a false image produced

by the generator. GANs have shown that it is possible to create fake but highly real-

istic images. To create images from text using GANs, the simplest way to train is to

treat text, image pairs as joint observations and train the discriminator to distinguish

between real and fake pairs [26]. If the model is trying to generate the sentence “A

yellow car”, here the conditioning information is the yellow colour of the car. Early

in training, the discriminator disregards the conditioning information and dismisses

samples from generator because they don’t seem realistic. The generator must get

better at aligning the images it creates, like the “car” in this example. As soon as

6



2. RELATED WORK

it becomes adept at creating convincing images, it must also learn to match those

images to the conditioning data [34]. There are different ways each model handles

the learning of this conditioning information. A common machine learning task is to

learn a density model, i.e., generating an estimate of a distribution based on observed

data. For the density model of any object ‘X’, it would accept some input and say yes

that’s ‘X’ or no that’s not ‘X’. GANs have been used to learn density models. Zhang

et al. [45] employed a collection of images with accompanying text labels as their

training data, and the objective is to create a conditional density model by instead

looking if there is a object ‘X’ given the condition ‘Y’. Which allows us to define the

features that is the conditional information that we desire in the resulting image.

For GAN to understand the text sentence, the model basically encodes the text

description into an embedding which represents the text sentence and is used by the

discriminator to identify ‘real image with right text’ , ‘real image and wrong text’ and

‘fake image and right text’. The weights are adjusted accordingly until the generator

is able to trick the discriminator into believing that the generated fake image is real.

Again, the way the text is encoded is varied for each model and is significant for

performance of the model.

Given the advancement and research on GANs, much efficient and improved mod-

els have been introduced that are far more effective at creating realistic-looking images

from text. Reed et al. [34] introduced Stack GAN, demonstrating that their model

could generate a photorealistic image from any text sentence. The model consists of

two stages. In the first stage, it takes a sentence as input and outputs an image with

primitive shapes and basic colours creating a low-resolution image. The stage 2 of

GAN takes that low-resolution image and the original sentence as input and generates

a much higher resolution version of that image by filling in all the details.

2.1.2 Variational Autoencoders (VAE)

A variational autoencoder (VAE) offers a probabilistic way to describe an observation

in latent space. They take the input and encode it, often compressing it to a latent

space of lower dimensionality [29]. The main goal of autoencoders is to efficiently

7



2. RELATED WORK

represent the data. Their task is to identify a low-dimensional representation of a

high-dimensional input that enables reconstruction of the original input with little

content loss. If the image is 784 pixels in size (28 x 28 pixels) in grayscale, the

autoencoder would discover a way to map the 784-dimensional space onto a 2D space

so that the compressed picture would only need to describe the X and Y coordinates

of a location on the map. The autoencoder would next attempt to recreate the

original 784 pixels using only the X-Y coordinates as input. Making a low-dimensional

representation that enables the autoencoder to recreate the original input is its task.

This makes sure that the latent space only contains the input features that are most

important for reconstructing the input and is free of noise and unimportant features.

It must have two components: the encoder, which takes the input image and reduces it

to a low-dim representation, and the decoder, which performs the opposite operation

by creating the original-sized image from the latent representation [29].

2.1.3 Flow-based Model

The class of models known as “flow-based models”, explicitly learn the data dis-

tribution. Flow-based models learn specific encoders and decoders: Similar to the

encoding stage in autoencoders, they apply a transformation “f”, parametrized by a

neural network, to the data. However, the decoder is not a brand-new neural network

that must independently learn the decoding procedure and it is the exact opposite

of the function. With neural networks, it takes quite a few methods to obtain this

invertibility of “f” [42].

2.1.4 Diffusion Model

The Diffusion model learns to establish a Markov chain of diffusion steps to gradually

introduce random noise to data, and then they learn to reverse the diffusion process

to create desired data samples from the noise [42]. In contrast to VAE or flow models,

diffusion models are trained using a predefined process, and the latent variable has

a high degree of dimension [42]. A Markov chain is a set of variables where each
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variable’s state solely depends on the previous event. Using a Markov chain, the

data is contaminated with random noise. Taking the image, we sequentially add a

particular amount of noise to it during the forward diffusion phase. At each step the

model generates the new image in the series by gradually increasing the noise and we

repeat this a specific number of times until the image becomes noise. The diffusion

process is reversed using a neural network. To create the image from diffusion step

t to step t − 1, the backward diffusion method uses the same network and weights

at each stage. Instead of letting the network anticipate the image, one might decide

to forecast the noise that has to be removed from the image at each step to further

simplify the issue. In any event, the neural network’s design must be chosen in a

way that maintains the dimensionality of the data. There isn’t much room for error

when returning from noise to the original image by repeatedly denoising. Similar

to GANs, the generation process passes through each of these checkpoints, adding

more and more information to the image that was once just noise but compared to

GANs, diffusion models are a more gradual, iterative, and controlled approach. The

following iteration, which was introduced by Nichol et al. [26], successfully incor-

porated textual information into the generation procedure, enabling us to generate

images using diffusion models from text. The data set consisting of images and their

captions is used. The images became noisier and noisier after the forward diffusion

process. Similar to the prior research from OpenAI, the diffusion model is trained

to reverse this process using a UNet-based architecture. For the backward diffusion,

the model takes the text caption into account as well. The authors took the text,

transformed it using a transformer, and then used the resulting token embedding as

a class-conditioning in the diffusion model. Each layer of the model’s attention layer

also pays attention to every text token that the transformer generates as it encodes

the text. To increase the text’s persuasiveness in terms of image formation from

text, the authors, Nicole et al. [26] experimented with Contrastive Language-Image

Pre-Training (CLIP)-guided diffusion. The concept behind this is to utilize a second

model to improve how well the generated image matches the text. The additional

model in this case is CLIP, a program from OpenAI that has been trained to estimate
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the similarity of an image and a text. Before generating an image with CLIP-guided

diffusion, the model is initially used to denoise the image based on text. They also

add a gradient of CLIP’s image-sentence similarity to the image, this shifts the initial

denoised image in the direction that CLIP predicts will result in a strong image text

match and is called as classifier-guided diffusion. The classifier-free advice employed

by the authors is another approach and it worked better for them. As the name

already implies, no additional model is required. It is an unique approach employed

at each level of diffusion to accentuate the text even more. The image is created

twice by the model, once with access to the text and once without. Then, using the

difference between the diffusion step with text and without text. This difference is

used to determine the way to proceed in order to transition from no-text to text. The

output of the model without text information is, therefore, strongly projected in the

direction of text information if we take the text-less generation and add this differ-

ence scaled by a large amount. Although Guided Language to Image Diffusion for

Generation and Editing (GLIDE) has approximately four times less parameters than

DALL-E and was trained using the same data as DALL-E, it excels in photorealism

[26]. The majority of participants in the human evaluation trials clearly favoured

GLIDE’s generations to DALL- E’s fuzzier and messier outputs [26].

2.2 Overview of GAN based Approach for Text to

Image Synthesis

Before GANs, Mansimov et al. [24] used a recurrent neural network to create images

from text captions. It focused on creating the image in multiple steps, similar to

DRAW by Gregor et al. [16]. Reed et al. [34] later demonstrated improved image

generation using a generative adversarial network rather than a recurrent variational

auto-encoder [45]. Progress was made over the next few years using various methods,

which included modifying the generative model architecture. The work done since

Mansimov et al. [24] has resulted in appreciable improvements in visual quality.

10
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However, severe defects such as object deformation, incorrect item placement, or an

unnatural blending of foreground and background elements can still appear in some

examples [32].

Constructing image pixels from text human written descriptions is a complex task.

In order to address the challenge, we need to understand how to learn text feature

representations that will have visual details and to use these features to generate

images that are real enough to trick a person. Image generation using generative

adversarial networks (GANs) was introduced by Goodfellow et al. [15] . The GANs

consist of a generator and a discriminator that play the minmax game [15]. This

minimax game helps them by challenging each other and, thus, training them to be

able to generate better images. While at first, the samples are not good and are

rejected with confidence by the discriminator, the generator trains itself to be better

over time [15].

Fig. 2.2.1: GAN Architecture

The Minimax Game [15]:

min
G

max
D

V (D,G) = Ex∼pdata (x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))] (1)

The generator and the discriminator are competing against each other during the

training process. While the generator is attempting to deceive, the discriminator

is attempting not to be deceived. When combining both aspects together, a min-

max game is placed between the generator(G) and the discriminator(D) with value

11
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function V. While the discriminator is trained, it classifies both the real and fake data

from the generator.

x is data representing an image. pz(z) is the input noise variable, and G(z) is

generation of data with random noise z as input. D(x) is trained to identify gen-

erated and real instance. It represents the probability that x came from the data

rather than generator. The model penalizes itself for misclassifying a real instance as

fake, or a fake instance (created by the generator) as real, by maximizing equation

1. The likelihood that the generator correctly classifies the real image is denoted

by log(D(x)). Maximizing log(1−D(G(z)) would aid in correctly labelling the gen-

erated fake image. The generator’s loss is then calculated from the discriminator’s

classification, and it gets rewarded if it successfully fools the discriminator and pe-

nalized otherwise. Generated instances serve as negative training examples for the

discriminator, which learns to distinguish between fake and real data and penalizes

the generator for producing unconvincing results.

In terms of creating synthetic images from real-world images, generative adver-

sarial networks (GANs) have demonstrated promising outcomes [15]. GAN must first

be trained to produce high-resolution, photorealistic images from text descriptions,

which is an extremely challenging task. In modern GAN models, simply adding more

upsampling layers to generate high-resolution (e.g., 256×256) pictures typically leads

to training instability and provides meaningless outputs [45].

Gregor et al. [16] presented a Deep Recurrent Attentive Writer (DRAW) neural

network design for generating images. The encoder network compresses the real

images shown during training, while the decoder network reconstructs images after

receiving the codes. These two recurrent neural networks are the foundation of the

DRAW architecture. The encoder and decoder are both recurrent networks, which

allows them to exchange a series of code samples. Additionally, the encoder has

access to the decoder’s prior outputs, allowing it to modify the codes it transmits in

accordance with the decoder’s past behavior. Instead of emitting this distribution all

at once, the outputs of the decoder are sequentially added to the distribution that will

finally create the data. The input region that the encoder observes and the output
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region that the decoder modifies are both constrained by a dynamically updated

attention mechanism. MNIST [7] database is a massive collection of handwritten

digits. The experiments demonstrated the models ability to outperformMNIST image

generation and generate realistic images.

Mansimov et al. [24] introduced the AlignDRAW model, which uses a soft atten-

tion method to create a generative model of images from captions. The alignDRAW

model used a deterministic laplacian pyramid adversarial network [8] to refine the

images produced by the model in a post-processing stage. This approach was built

on an extension of the Deep Recurrent Attention Writer (DRAW) [16], which repeat-

edly creates patches while paying attention to the pertinent description words [24].

The model, which combines an alignment model over words with a recurrent vari-

ational autoencoder, was successful in producing pictures that match a given input

caption. The model benefited from various factors due to the intensive use of atten-

tion processes. In other words, by using the visual attention mechanism, the authors

were able to break down the challenge of creating images into a series of steps rather

than a single forward pass, and by using attention over words, they were able to gain

insight whenever the model was unable to produce a pertinent image. Furthermore,

the algorithm produced images with captions that went outside the training set, such

as unexpected circumstances that are extremely unlikely to occur in real life.

Reed, Akata, Yan, et al. [34] proposed a text-to-image generation approach that

aims to scale up the model to higher resolution images and add more types of text.

The model was able to combine a variety of logical visual interpretations of a given

text caption [34]. The study demonstrated how style and content could be separated,

as well as the posture and backgrounds could be transferred from images to written

descriptions [34]. The text characteristics are stored via a hybrid character-level con-

volutional recurrent neural network and then trained into a deep convolutional gen-

erative adversarial network (DC-GAN). The discriminator is taught to differentiate

between authentic and fraudulent image-text combinations. The text characteristics

are stored via a hybrid character-level convolutional recurrent neural network and

then trained into a DC-GAN. Feed-forward inference is carried out by the generator
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network and discriminator network based on the text feature. The model is unique

in that it is entirely a GAN rather than employing GAN just for post-processing, and

can frequently produce aesthetically convincing 64×64 pictures conditioned on text.

Prior to encoding the text query using a text encoder, it samples from the noise in

the generator. A fully connected layer is utilized to compress the description em-

bedding to a minimal dimension, which is then followed by leaky-ReLU before being

concatenated to the noise vector z. Then, inference happens as it normally would

in a deconvoluted network. Pass it forward to the generator to create the synthetic

image x. Using query text and a noise sample as inputs, the generator performs feed-

forward inference to generate images. Multiple layers of stride-2 convolution with

spatial batch normalization and leaky ReLU are used in the discriminator. To reduce

the description’s dimensionality following correction by embedding it in another fully

connected layer. Lastly to compute the final score from discriminator, use a 1 × 1

convolution followed by rectification and a 4 × 4 convolution. With the help of the

findings from the MS-COCO data set, it was shown how generalized the method was

for creating images with various objects and changing backgrounds.

Following research suggested the use of several stacked generators to enable text-

to-image models to synthesize better quality images [13]. In StackGAN [45], the

authors introduced a brand-new stacked generative adversarial network to generate

photorealistic images from text descriptions. It greatly enhances the state of the

art by breaking down the challenging task of producing high-resolution pictures into

smaller, more manageable subproblems [45]. The first stage of StackGAN [45] uses

a text conditioning vector and a random noise vector to build a coarse 64× 64 pixel

picture. A second generator takes this initial image and the text embedding and

generates a 256 × 256 pixel image. A discriminator is taught to tell the difference

between image-text pairings that match and which do not at both phases [13]. The

authors present easy-to-use but powerful stacked generative adversarial networks to

generate high-resolution images with photorealistic features. It divides the process of

generating images from text into two steps [45]. Stage-I GAN creates a low-resolution

image by first sketching the basic shape and colours of the item based on the text
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description provided and then laying out the backdrop using a random noise vec-

tor. Stage-II GAN creates a high-resolution, photo-realistic image by fixing flaws in

the low-resolution image from Stage-I and finishing the object’s features by reading

the text description once more. Zhang et al. [45] further enhanced the architec-

ture (StackGAN++) with an end-to-end framework in which three generators and

discriminators are collaboratively trained to simultaneously approximate the multi-

scale, conditional, and unconditional image distributions [13]. Instead of using the

fixed text embedding produced by a pre-trained text encoder, the authors of At-

tnGAN [43] used Skip-Thought vectors [21] and StackGAN [45]. The authors also

demonstrated the inferiority of conventional text representations like Word2Vec which

is a algorithm that uses a neural network model to find connections between words

in a large text corpus. The latent variable is sampled at random from a Gaussian

distribution, where the text embedding determines the mean and covariance matrix.

Many of the text-to-image methods that came after this one utilized this method.

OpenAI launched a revolutionary deep neural network that learns visual ideas via

natural language supervision. Two encoders make up CLIP (Contrastive Language-

Image Pretraining), one for texts and one for images. It is sufficient for each image

to verify whether the text description “a photo” or “photo of X” is more likely to be

matched with the image of an item X in an image collection [14]. The authors Galatolo

et al. [14] introduced a CLIP-based framework called CLIP-guided Generative Latent

Space Search (CLIP-GLaSS), which is used to produce the best images matching a

target caption. After being explored by a genetic algorithm, this ideal image (or text)

is generated by a generative network. Models like StyleGAN2 and generator GPT2

have been used in preliminary experiments of the proposed CLIP-guided generative

latent space search (CLIP-GLaSS) for the text-to-image tasks. The results show that

the suggested framework has a lot of potential in terms of the quality and usefulness

of the picture or text that comes out, which calls for more comparative research.
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2.3 Overview of Diffusion Model Approach for Text

to Image Synthesis

Diffusion models are a new category of cutting-edge generative models that produce

a variety of high-resolution pictures. There are currently a variety of models based on

diffusion. The initial denoising diffusion technique was developed by Sohl-Dickstein

et al [39]. They create a technique that simultaneously provides adaptability and

manageability. The basic idea, which comes from non-equilibrium statistical physics,

is to use an iterative forward diffusion process to systematically and gradually get rid

of structure in a data distribution. Then, they discovered a reverse diffusion process

that recovers data structure, resulting in a highly flexible and tractable generative

data model. This method permits the quick learning, sampling, and evaluation of

probabilities in models with hundreds of layers or time steps, as well as the computa-

tion of conditional and posterior probabilities under the learned model. The result is

an algorithm that can learn to fit any data distribution, is easy to train, test, and cre-

ate samples from, and makes it easy to change conditional and posterior distributions

[39].

In diffusion models, a distribution is sampled by reversing a slow noise process.

Each timestep t corresponds to a different level of noise, x0 is signal and xt is a

signal mixed with noise, with the signal-to-noise ratio determined by the timestep t

[10]. Sohl-Dickstein et al. [39] suggested diffusion probabilistic models that learn to

reverse a laborious, multi-step noise process to suit a data distribution [27]. Ho et al.

[19] developed a novel explicit relationship between diffusion models and denoising

score matching, which resulted in a reduced, weighted variational bound objective for

diffusion models. The diffusion model creates a Markov chain of latent variables x1,...

xT by gradually adding Gaussian noise q(x0) to a sample from the data distribution

x0 [26].

q (xt | xt−1) := N (xt;
√
αtxt−1, (1− αt) I) (2)
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The posterior q(xt−1|xt) is clearly defined if the magnitude 1–α1..αT of the noise

supplied at each step is large enough [26]. xt is well approximated by N . These

qualities propose learning p(xt−1|xt) to approximate posterior by the below given

equation 3 [26].

pθ (xt−1 | xt) := N (µθ (xt) ,Σθ (xt)) (3)

It is possible to use it to generate samples of the form x0 ∼ pθ(x0) by beginning

with Gaussian noise of the form xt ∼ N (0, I) and then progressively lowering the noise

in the form of a series of steps xt−1, xt−2, ..., x0 [26]. To create samples xt ∼ q(xt|x0)

by adding Gaussian noise to x0 in order to compute this surrogate goal, and then

train a model to anticipate the additional noise using a common mean-squared error

loss.

Diffusion models seem to have good inductive biases for image data. The best re-

sults came from training on a weighted variational bound that was made based on a

new connection between diffusion probabilistic models and denoising score matching

with Langevin dynamics. The models naturally allowed a progressive lossy decom-

pression scheme that can be thought of as a generalization of autoregressive decoding.

According to Ho et al. [19], the basic mean-squared error goal performs better in real-

ity than the actual variational lower bound determined by interpreting the denoising

diffusion model as a VAE [9]. Denoising Diffusion Probabilistic Models (DDPM)

are an attractive choice for generative modeling since they combine log-likelihoods,

high-quality samples, and reasonably fast sampling with a well-grounded, stationary

training objective [27]. The authors, Nichol et al. [27], found that DDPMs can match

the sample quality of GANs while achieving much better mode coverage as measured

by recall. Denoising diffusion implicit models (DDIMs), introduced by Song et al.

[40], are an implicit generative model trained with denoising auto-encoding and score

matching objectives. It can generate high-quality samples much more efficiently than

existing DDPMs. The non-markovian forward process shown here seems to suggest

continuous forward processes that are not gaussian, which can not be done in the

original diffusion framework.

17



2. RELATED WORK

Nichol et al. [26] introduced Guided Language to Image Diffusion for Generation

and Editing (GLIDE) with classifier-free guidance that is capable of generalizing to

a wide variety of text prompts. The model can generate realistic shadows and reflec-

tions, as well as high-quality textures. It is also capable of producing illustrations in

various styles, such as the style of an artist or painting. GLIDE outperforms classifier-

free guidance when it comes to matching the prompt. The model achieves competi-

tive FID on MS-COCO without ever explicitly training on this dataset. GLIDE was

trained with roughly the same training computation as DALL-E but with a much

smaller model. Diffusion models have been improved in various recent papers. Ope-

nAI, Nvidia, and Google have successfully trained large-scale models, which have

received considerable interest. GLIDE [26], DALLE-2 [31], and Imagen [36] are com-

plete open-source tools that are examples of designs that are based on diffusion models

[20].

2.4 Comparison of Generative Models

Most of the previous research has mostly concentrated on analyzing generative models

of single or few object scenarios or facial features. Comparatively less work has been

done to evaluate how well the generative model can generate scenes with a higher

level of complexity [34]. The development of automatic metrics that are consistent

with human judgment and that enable rankings of models that are accurate as well as

meaningful is a problem that must be met [9]. Frolov et al. [13] presented a review of

the generative adversarial methods with emphasis on text-to-image synthesis. These

new areas of research includes the creation of improved data sets and evaluation

metrices to the possibility of advancements in architectural design and model training.

In addition to this, they investigated the most frequently assessment methods in

order to evaluate image quality and the image-text alignment. The use of automated

measures such as the Inception score [1], Frechet inception distance [3], and SOA [18]

has made the process of evaluating models much more straightforward.

Crowson et al. [5] employed human subjects who were asked to assign a score
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on a scale ranging from one (low) to five (high) to indicate how well text and image

combinations are aligned. They were told to rate higher-quality pictures that didn’t

match the prompt lower than lower-quality pictures that did align with the text

caption. By calculating the average score per text caption used for each model,

they determined that, the participants believe that the generations that utilized their

model are more aligned with the text captions.

Using SOA introduced by Hinz et al. [18], evaluation of several state-of-the-art

approaches demonstrated that no method used at the moment can provide accurate

background elements for the 80 classes in the MS COCO data set. Some models are

adequate for common objects but they all fail for unusual objects or those without an

easily recognizable appearance. Using SOA to evaluate text-to-image models offers

more precise information about how well they perform for different object classes or

image captions and is aligned with human evaluation.

2.5 Data sets

Deep learning algorithms require large, high-quality data sets to be successful. Oxford-

102 Flowers [28] and CUB-200 Birds [41] are two of the most popular text-to-image

data sets. They are relatively simple to use and contain approximately 10,000 im-

ages with five human-generated captions per image. Both the CUB-200 Birds and

the Oxford-102 Flowers data sets are also referred to as “single item data sets” be-

cause they contain only one item per image [18]. CelebA-HQ [23] is another data

set with a single object. The captions or code to replicate for the CelebA-HQ data

set are not open-sourced yet [18]. MS COCO, on the other hand, contains 123,000

images, where each image may contain multiple objects, and there are associated

single-sentence captions [13]. Over time, generative models have progressed from

generating single-object picture data sets like the CUB-200 data sets to multi-object

image data sets like the MS COCO. The more advanced models are utilizing data

from the internet which gives them an upper hand on previously trained models. The

type of output expected from the generative model depends on the data we used to
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train it. A model trained on the data set for CUB-200 birds won’t be able to generate

images of faces. It’s not necessary for the input caption used for the generation to

match with the training data set. Although the model is expected to manage the

variety of text input and generate images, it can not generate an object that it has

not been trained on.
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CHAPTER 3

Methodology

3.1 Motivation

Within the last five years or so, the area of text-to-image generation has evolved

considerably and quickly in terms of the complexity of the data sets employed, the

resolution of the generated images, and their quality. This technology marks a sig-

nificant shift since it eliminates the need for technical work and manpower in the

creation of images. Instead, they look for original thinking and curatorial judgement.

The long-term implications are hard to predict, but these algorithms point to a new,

democratic way of expressing ideas that may lead to a huge increase in the number

of pictures made by humans, just like the camera and digital camera did [11].

For the majority of image generating tasks, GANs have been the most advanced

technique. AlignDRAW, a variational recurrent autoencoder built upon DRAW pro-

posed by Gregor et al. [16], is not entirely based on the generative adversarial network

approach, but it uses GAN to only sharpen the generated image. We now have various

versions of GAN available with much improvement in performance for image genera-

tion and the quality of the generated image. GANs are sometimes challenging to train

because they collapse in the absence of precisely chosen hyperparameters [9]. Later,

the diffusion models were introduced, which turned out to be better than GANs at

creating images from text [13, 9]. However, changes were made to the GAN model,

which led to a variation of GAN outperforming diffusion models by making better-

looking images than earlier, less flexible methods [5]. This field has also developed

quantitative evaluation metrics that are used to evaluate the quality of text-to-image
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synthesis models. Frechet inception distance [3] and Inception Score [1] are examples

of metrices used to evaluate generative models. While some papers have not em-

ployed all possible metrics and others haven’t employed any quantitative metrics at

all, there are other metrics like Semantic Object Accuracy (SOA) that evaluate the

model while also taking the text used to generate it into account. In this thesis, we

have set up a way to evaluate these two different generative models. This evaluation

takes into account the quality of the image and how well it fits with the meaning of

the text.

3.2 Proposed Method

After reviewing the preceding chapters about generative models, in this section we

now seek to investigate the modification of the GAN model which is VQGAN - CLIP

and the diffusion model GLIDE that we are going to use in our comparative analysis.

We will also shine some light on text encoders, and the data set used. The methodol-

ogy for the evaluation comprises of three steps: we start with the implementation of

both the aforementioned models, then progress onto the generation of image data sets

utilising captions from the MS COCO data set. We then leverage these generated

images to assess the model’s capacity to produce high-quality images and analyze

these images against the captions from the aforementioned data set.

Fig. 3.2.1: Process Flowchart

We use the generated samples for the evaluation of both the models using metrics

like Inception Score, FID and SOA which will be discussed further in this chapter.
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3.2.1 VQGAN

VQGAN is a GAN modification that produces images with higher visual quality

than diffusion models [5]. It consists of two machine learning models combined and

was introduced by Esser et al. [10]. Fig. 3.2.3 shows the graph integrating GAN,

VQ-VAE, and transformers to construct the VQ-GAN model. The approach aims

to understand both the long-range dependencies between the phrases in a sentence

and the visual elements of an image. They have employed transformers to teach

dependencies, and a GAN to learn the visual components. The transformers scale

quadratically and calculate the pairwise inner product between each pair of tokens

because of the attention mechanism [25]. It uses this technique to discover long-term

relationships between tokens or visual components.

Fig. 3.2.2: VQGAN Architecture [10]

To encode the feature map of the visual portions of the images, the feature map

of the image data is first directly supplied to a GAN. Then, this image data is “vector

quantized,” a type of signal processing that organizes vector groups into clusters that

may be accessed by a representative vector designating the centroid and is referred to

as a “codeword” (Algorithm. 3.2.1). The vector quantized data is encoded and stored

as a codebook, or dictionary of codes, as depicted in Fig. 3.2.2. The image data is
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first represented by the codebook, which serves as an intermediary representation,

and is then entered as a sequence into a transformer [25]. After that, the transformer

is trained to simulate the composition of these encoded sequences as high-resolution

images. The generator follows an encoder-decoder architecture. This setup is similar

to autoencoders, where the goal is to have a decoder properly reconstruct the input

[25]. If the reconstruction is perfect, then the encoder has found a good way to

represent the data.

Fig. 3.2.3: VQGAN Architecture [10]

3.2.2 CLIP

The CLIP model was developed to evaluate how well a caption fits with an image

when compared to the other captions in the collection. Since CLIP is capable of

zero-shot learning, it can function successfully even with untested data [30]. CLIP

is particularly good at determining whether a picture and a brief bit of text go to-

gether or not. It is not limited to the classes in the data set but knows mostly all

english terms, allowing it to formulate ImageNet classes into prompts that include

more language than simply the classes. It can model a concept based on its meaning,

expanding its capabilities far beyond a limited set of classes and demonstrating ex-

cellent zero-shot performance on previously unseen data sets [30]. As a result, CLIP

never loses or forgets additional components of the image that were not caught in

class, such as the wall or sky in the background, because it is never constrained dur-
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ing training to compress an image to a single notion or word [17]. The model takes

a set of images and a collection of textual descriptions that go with them. Both the

text and the images are encoded using either a ResNet or a Transformer [17]. The

encoder then computes an image vector for each image in the batch, with the first

image corresponding to vector I1, and the subsequent images to vector In. The same

is true for the textual description, with the first textual sequence being encoded by

one vector T1 and the subsequent descriptions by Tn. Between each of these image

and text vectors, n squared similarities are calculated. As a result, since I1 fits with

T1, I2 fits with T2, and so on, CLIP should maximize the diagonal elements. The

off-diagonal elements should be reduced in a contrastive manner since we believe it is

highly improbable that an image I1 would fit with any random description other than

its own. CLIP’s can predict similarities between images and textual descriptions, as

well as contrastive training. When these image and text encoders are transformed, a

lot of computations can run in parallel [17]. CLIP has been trained to forecast high

similarity for suitable image-text pairs and low similarity for random ones, and it is

ready to be applied to a variety of tasks, including image recognition.

3.2.3 VQGAN - CLIP

When combined, VQGAN - CLIP (Fig.3.2.4) develops the model that can be used to

produce images from text. CLIP can assess the quality of generated images compared

against a user input caption, and the output scores can be used as weights to guide

the learning of the VQGAN to match the subject matter more accurately through

recursive iteration [25].

25



3. METHODOLOGY

Fig. 3.2.4: VQGAN - CLIP Architecture [5]

Algorithm 3.2.1 Algorithm of the VQGAN - CLIP Model [5]

Input: image i, text t, number of steps S
Initialize: encoder(e), decoder(d), generator(N), discriminator(D), Vector Quantiza-
tion Module(V Q)
i → N(e,d) →g(i)
VQ(g(i))→ codebook
codebook → transformer(to learn interaction between visual features)
codebook → decoder → reconstructed(i)
update reconstruction loss
update VQ loss
reconstructed(i)→ D → Real or Fake
Update D loss
reconstructed(i)→ CLIP
t→ CLIP (similarity score)→ average loss
update N(e,d) with average loss
Repeat for multiple epochs (S) until the models converge

The VQGAN initially creates a random noise image that is vector quantized and

encoded in a codebook to create these images. The codebook is then used as input

to a transformer that produces the new image from the encoded signals. The output

is then used to assess the image’s accuracy to the input prompt using CLIP, and the

scoring is then sent back to the VQGAN to update the image generation model to

reflect the prompt more closely.

26



3. METHODOLOGY

3.2.4 GLIDE

GLIDE is trained on a 3.5 billion parameter diffusion model that uses a text encoder

to condition on natural language descriptions [26]. Using human and automated

evaluations, the authors found that using classifier-free guidance yields higher quality

images [26]. The model can render a wide variety of text prompts, but it can have

difficulty producing realistic images for complex prompts [26]. Nichol et al. [26]

trained a 3.5 billion parameter text-conditional diffusion model at 64 × 64 resolution

for primary experiments, and a text-conditional upsampling diffusion model with 1.5

billion parameters and increased resolution to 256 × 256. According to Dhariwal

and Nichol [9], samples from class-conditional diffusion models can frequently be

enhanced with classifier guidance. The CLIP guidance model has been trained to

use classifier guidance on GLIDE [26]. For fast sampling, the base model employs

100 diffusion steps, followed by another 27 for upsampling. GLIDE leverages its

own implementation of the diffusion model to perform its image generation. Forward

diffusion and reverse diffusion are the two stages of its operation. During the backward

diffusion process, the model learns to reverse the effect of the added noise on the

images and guide the generated image towards its original form [26].

Algorithm 3.2.2 Algorithm of the GLIDE Model [26]

Input: noised image n(i), text t, number of steps S
Output: image i
initial image = n(i)
objects(o), attributes(a) ← transformer(t)
for each-step in range(1,S):

predictions(pred)← DiffusionStep(i)
diff ← CLIP (pred, o, a)
n(i)← update(i, diff)

return i

The model starts with a noise image and a text description as input. GLIDE offers

some level of control over the result of the picture production process by parsing the

text input prompts. This is accomplished by training the transformer model on a

sizable data set made up of pictures and the descriptions that go with them [38].

The text is first converted into a string of tokens, which are then used as conditions.
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The transformer model is then fed these tokens. There are then two uses for the

transformer’s output. The class embedding for the diffusion model is first replaced

with the final token embedding obtained after conversion. Embedding is translating

something from high dimensional space to low dimensional space. The last layer

of the token embeddings, which is a series of feature vectors, is then independently

projected to each attention layer’s dimensions in the model and concatenated to each

attention layer’s context [38]. This information is then used to guide the generation of

the image, by iteratively updating the pixels in the noise image based on the desired

properties specified in the text description (Algorithm 3.2.2). At each iteration, the

model uses a set of steps to process the image and make predictions about the desired

properties. The model then compares these predictions to the desired properties

specified in the text description, and adjusts the pixels in the image accordingly.

This process is repeated until the generated image is deemed photorealistic enough,

or until a maximum number of iterations has been reached.

This enables the model to create an image from novel combinations of related

text tokens in a distinctive and photorealistic way by using its learned understanding

of the input words and their associated images. This text-encoding transformer has

over 1.2 billion parameters and employs 24 building blocks, each with a size of 2048

[38]. The up-sampler diffusion model, which includes 384 base channels and a text

encoder with a size of 1024 and has around 1.5 billion parameters.

3.3 Dataset

We are using the MS COCO data set for our evaluation. We choose all image captions

from the MS COCO validation set that specifically refer to one of the 80 major object

categories (such as “human,” “dog,” “car,” etc.) [18]. The data set consists of more

than 80,000 images. The data set is created by compiling typical complicated scenes

of everyday items. There are at least five captions for each image. We are selecting

one caption for each image. It is crucial for our experiment that the chosen caption

includes the object class in the sentence.
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3.4 Evaluation Metrics

It is crucial to have access to automatic evaluation criteria that fairly compare per-

formances and measure improvement. Evaluating generated images is particularly

difficult because there are so many characteristics that resemble a good image, such as

visual realism and diversity [13]. A good text-to-image model, however, encompasses

more than just producing realistic visuals. The semantic alignment of generated im-

ages and text descriptions is a crucial additional consideration. The training data

distribution should be accurately portrayed in the images created from text descrip-

tions. We are using the matrices , Inception Score and Fréchet Inception Distance.

Barratt et al. [1] demonstrated Inception score provides beneficial guidance when

evaluating and comparing models. Heusel et al. [17] introduced the FID score which

more accurately represents how similar generated images are to real images. We will

discuss about another metric which we have used i.e., the semantic object accuracy

(SOA). Unlike the majority of the existing evaluation measures, this metric focuses

on specific elements and components within an image and also takes the caption into

account when rating a picture. Often explicitly or indirectly, image captions describe

the objects that can be observed in an image, such as an “A person using a cell

phone” is the description of the photo should show a person and a cell phone to-

gether [18]. The evaluation metrices that we have used for our comparative analysis

and experimentation will be discussed.

3.4.1 Inception Score (IS)

An algorithm for measuring the effectiveness of image generative models is called the

Inception Score. This metric is shown to correlate well with human scoring in terms

of the realism of generated images. It uses an Inception v3 network that has already

been trained on ImageNet and figures out statistics about the network’s results when

applied to images that were made by a computer [12].

IS(G) = exp(Ex∼pgDKL(p(y|x) || p(y)) (4)
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The images generated should contain clear objects, i.e., the images should be sharp

rather than blurry, or p(y|x) should have low value. In other words, the Inception

Network should be highly confident that there is a single object in the image [1]. The

generative algorithm should output a high diversity of images from all the different

classes in ImageNet, or p(y) should have high value. The KL-divergence is statistical

distance that quantifies the differences between two probability distributions. If a

generative model has both of the aforementioned characteristics, we would expect a

large KL-divergence between the distributions of p(y) and p(y|x), which would lead

to a large IS [1].

3.4.2 Frechet inception distance (FID)

FID is a statistic that measures the distance between the feature vectors of real and

fake images generated by the model. Heusel et al. [17] first presented it in 2017. A

higher quality and closer resemblance to real images are indicated by a lower FID

score for the generator. The foundation of FID is an image’s feature vector. If FID

is your performance metric, attempt to keep it as low as possible, but having a very

low score can also mean that the images are very similar and cause a lack of diversity

in the data set we are trying to generate. Fréchet inception distance (FID) is a

measurement used to evaluate the quality of the generated images.

d2 = ||µ1–µ2||2 + Tr(C1 + C2–2 ∗ sqrt(C1 ∗ C2)) (5)

The score is denoted by the symbol d2, indicating that it is a distance in square

units. The terms µ1 and µ2 designate the feature-wise means of the actual and arti-

ficial images, respectively. These vectors have 2,048 elements each, each representing

the mean feature that was seen across the images [3]. The covariance matrices, C1

and C2, represent the real and produced feature vectors, respectively. The expression

||µ1 − µ2||2 denotes the total squared difference between the two mean vectors. The

linear algebra operation Tr stands for the sum of the elements in the square matrix’s

major diagonal [3]. An Inception v3 model that has already been trained is loaded
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before calculating the FID score. The output is taken as the activations from the

final pooling layer, a global spatial pooling layer, after the output layer of the model

has been removed [3]. Each image is projected to have 2,048 activation characteris-

tics since this output layer has 2,048 activations. This is referred to as the image’s

coding vector or feature vector. Then, in order to demonstrate how genuine images

are represented, a 2,048 feature vector is projected for a selection of real photos from

the issue domain. Then, feature vectors for newly created photos can be computed.

Two collections totaling 2,048 feature vectors for both real and created photos is the

result [3].

3.4.3 Semantic Object Accuracy (SOA)

Most evaluation metrics do not take the image caption into account and do not

evaluate individual areas or objects within an image. To address this, Hinz et al.

[18] introduced a novel evaluation metric based on a pre-trained object detection

network. This metric is called Semantic Object Accuracy (SOA), which measures

directly whether objects mentioned in the caption are recognizable in an image as

well as whether the image contains them. Similar techniques have been employed in

several earlier publications to assess the quality of the generated images [18]. But

since the contents of the caption aren’t taken into account, any detection with a high

level of confidence is still good, even if the object being detected doesn’t make sense

in the context of the caption [18]. Images are generated for each of the 80 objects

in the MS COCO data set by analyzing the captions in the validation set. Captions

are filtered for keywords that are related to the available labels for objects. It uses

all captions that imply the existence of each object in the data set to produce three

images for each object [18]. The YOLOv3 network [33], pre-trained on the MS COCO

data set, is then applied to each of the generated photos to see if it can identify the

specified object [18]. They presented the recall as a class average (SOA-C) (equation

6), which represents the average number of images per class in which the YOLOv3

detects the given object (equation 7) and image average (SOA-I), which represents

the average number of images in which the required object was detected [18].
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SOA− C =
1

|C|
∑
c∈C

1

|Ic|
∑
ie∈Ie

YOLOv3 (ic) (6)

SOA− I =
1∑

c∈C |Ic|
∑
c∈C

∑
ic∈Ic

YOLOv3 (ic) (7)

ic ∈ Ic are images that are supposed to contain an object of class c.

YOLOv3(ic):

1 if YOLOv3 detected an object from class c

0 otherwise

In order to determine whether generated photos contain objects that are specifi-

cally referenced in the image caption, we employ a pre-trained object detector. An

object detector for the provided data set is all that is required for this. There are

many of good pre-trained object detectors accessible for the MS COCO data set. To

calculate the semantic object accuracy, we obtain all captions that expressly refer to

each of the 80 foreground objects that are given a label in the MS COCO data set

[18]. For each caption, we generate images using both the generative models. Use

the object detector to determine whether the generated images has the object that

it ought to contain. This object detector is a pre-trained YOLOv3. Calculate the

frequency with which a particular object was found in the images generated for each

label. The SOA fixes issues like considering the image caption, analyzes images using

an object detector that has already been trained on the same domain. Additionally,

it takes into account the foreground objects of the images and avoids overfitting the

model during training [18].
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CHAPTER 4

Experiments and Results

4.1 Implementation and Tools

In this section, we will go through the tools that we utilized to carry out the research

study. Here are the development tools, followed by the implementation environment.

Development Tools:

• Platforms: Google Collaboratory- NVIDIA Tesla K80, Jupyter Notebooks, Ana-

conda

• Programming Language: Python 3.7

• Libraries: Sklearn, OpenCV, Scipy, Numpy, Pandas, Keras, pytorch

Implementation Environment:

• Operation system: 64-bit Windows 10

• System type: x64 based processor

• CPU: Intel Core i7-8565U CPU

• RAM: 16 GB

• GPU: NVIDIA GeForce RTX 2080
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4.2 Results and Discussion

4.2.1 Inception Score Results

We run experiments using the samples created from the two models, which are the

VQGAN - CLIP and the GLIDE. For our analysis, 90 images are generated for each

class from the MS COCO data set. We are creating three images from each caption.

We are using a total of 30 captions for each category. We also combine all the images

and then compute the overall Inception score.

Fig. 4.2.1: Inception Scores for VQGAN - CLIP and GLIDE

Although there has been significant development in recent years in producing im-

ages from captions, the process of creating images of complicated scenes with several

items that may interact with one another is still highly challenging. We utilize the

model’s output, to calculate the IS. The overall entropy over the classification outputs

for all images should be large, indicating that the generated images contain objects

of different classes, while the values for each of the generated images should be small,

indicating that the network is confident that there is one specific object in the image.

According to our results, the classes “bird”, “book”, “person” and “racket” have the

highest inception score for the GLIDE model relative to other class objects. While

the object that the images of particular class is supposed to contain is not visible

in the sample images generated, the score seems good for the data set generated for

the class “person” because the inception model can detect other objects in the im-
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ages. For the class “book,” the models are generating images that depict the objects

stated in the text, align with the caption, and offer variety to the data set. The

VQGAN - CLIP model scored lower than GLIDE because the items were easier to

recognize and identify using the inception model. For the “bird” and “racket” classes,

the model generates more distinct objects, and the generated image focuses on one

object, which leads to a higher IS for GLIDE. Because the images created are blurry,

VQGAN - CLIP receives relatively lower scores for the same classes. The images pro-

duced by GLIDE are unquestionably more visually appealing. For VQGAN - CLIP,

“handbags”, “potted plants”, “elephant”, and “bananas” are the highest. The cap-

tion type also plays a significant role in the image generation process. For example,

a “bird” with “ground” as the background is relatively easier to create than a “cat”

in a “handbag”.

Original Image VQGAN - CLIP GLIDE

Fig. 4.2.2: Set of books sitting next to a small black clock.

Fig. 4.2.3: A bird sitting on the ground.
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Fig. 4.2.4: A cat sleeping in a red handbag.

Fig. 4.2.5: A dog is sitting between two large potted plants.

The lowest scores for VQGAN - CLIP are, for classes, “keyboard”, “skateboard”,

“microwave”, and “baseballbat”. We observe that for all these objects the caption

we are using has more than one uncommon objects. For example, for “mircowave”,

the captions, “A microwave on top of a fridge in a kitchen.” or “Microwave on top of

a small refrigerator with shelves above”. The model tries to generate one object at

a time, resulting in generation of distorted images. These distorted images will have

low inception scores as the models could not generate a coherent representation from

these features and instead distributed them throughout the image. We can only see

the texture and pattern generated for most of them, and not distinct objects. The

lack of image text pairs while training of models with both objects together can be

one of the reason that the model is unable to generate the image.

For the GLIDE model, lowest-scoring object classes are “elephant”, “zebra”, “stop

sign”, and “toilet”. Although most of images generated contain objects the score is
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relatively lower than other classes. The score for these classes is also low because

most of them are single object images and the object detection model used by IS only

detects one object and scores accordingly.

Model Name IS Score

VQGAN - CLIP 12.86

GLIDE 19.26

Table 4.2.1: Overall IS Scores

The above Table. 4.2.1 gives the overall IS Score for both models. The GLIDE

model has a higher overall IS for the images, which tells us it is more effective in

producing images. The IS can be substantially greater for simpler data sets. Addi-

tionally, we see that the score rises as the size of the data set increases.

4.2.2 FID Results

The FID represents the distance between two images. It is used to calculate the

distance between the true image and the generated images. The FID still has the

issue that the image statistics are derived using a network that was previously trained

on ImageNet [6], which is an extensive image database but may not be a representative

data set, for more complicated data sets.

Fig. 4.2.6: FID Scores for VQGAN - CLIP and GLIDE

37



4. EXPERIMENTS AND RESULTS

Further discussion will be on the visuals for both high and low peaks in the graph

presented above. Beginning with the items with the highest distance between the

original image and the generated image for the VQGAN - CLIP model, the bottle

and teddy bear image generated by the VQGAN - CLIP model contains bottles but

was unable to recreate the teddy bear as in the original image. The image distribution

created by generator will be random every time. The generator focuses on generation

of image using caption given to it and tries to recreate from what it has learned

during training. The models are trained on various images other than the original

image and that is why the generated image has high FID score. We can observe that

VQGAN - CLIP is recreating the donuts , but they look different than the original

image for the same reason. Next is “sheep”, where the VQGAN - CLIP model can

only generate the fur texture of the sheep , but the sheep is not visible in the picture.

The reason being that model focused on the words “hairy sheep” from the caption

and the image distribution created only contains that portion of the caption. While

the GLIDE was able to reconstruct the sheep but not with the same texture of fur as

the original image. For “sandwich”, both the models the did not take into account

the second part of the sentence, i.e., “a bowl of soup,” for the generation of the image.

For the FID scores, we are generating single zero shot images for captions but if we

try again the image distribution may contain the “bowl of soup” which is why for the

IS and SOA score we are using the same caption to generate 3 images and take the

possibility of model generating the other objects into consideration.

Ground Truth VQGAN - CLIP Generated GLIDE Generated

Fig. 4.2.7: A brown teddy bear sitting next to bottles of person care items.
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Fig. 4.2.8: A variety of donuts and pastries in a box.

Fig. 4.2.9: A large hairy sheep standing on a lush green field.

Fig. 4.2.10: A table topped with a couple of sandwiches and a bowl of soup.

Even though the images created by GLIDE appear better, they are very different

from the original image, giving us variety in the data set. The below-given samples

are low FID scores for the VQGAN model. We notice that the “monitor” and “hair

dryer” in the samples are created. The GLIDE model can create a similar background
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for “trucks” and “airplanes” but not the object mentioned. As we learned earlier

about the training process of generative models they try to create the objects first

and then work on conditioning, here the model focuses on creation of background as

it is mentioned in the caption and then tries to add the other objects mentioned. The

model may implicitly place more weight on certain parts of the text description if they

are more important for generating the desired image. It appears that VQGAN - CLIP

only creates a screen-like structure for the “monitor” class and nothing else. On the

other hand, GLIDE recreates a proper desk and monitor and also creates additional

objects which belong to the desk as the model has learned that from the training data

set for either monitor or keyboard or desk and if all of them are together. Both models

cannot create the “hair dryer” and “dog” mentioned in the caption. The models are

trying to recreate the objects which is tricking the CLIP to believe similarity to

caption but the image is not visually correct. The image generated for the “truck”

by VQGAN - CLIP also does not contain the object mentioned but is similar to the

overall image, while the GLIDE created a normal road rather than a steep dirt road.

Ground Truth VQGAN - CLIP Generated GLIDE Generated

Fig. 4.2.11: A desk with a computer monitor and a keyboard.
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Fig. 4.2.12: Trucks driving down a steep narrow dirt road.

Fig. 4.2.13: A big airplane flying in the big blue sky.

Fig. 4.2.14: Two people are using a hair drier on a small dog.

The sample images in Figures 4.2.15 , 4.2.16, 4.2.17 have low FID scores for

VQGAN - CLIP, and the bus is recreated very similarly to the original image. The

other class “bowl” is easy to recreate as it contains only one object, and the ‘spoon’

mentioned in the caption is not visible in either of the images created.
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Ground Truth VQGAN - CLIP Generated GLIDE Generated

Fig. 4.2.15: A yellow school bus parked in a parking lot.

Fig. 4.2.16: Some suitcases and a hat laying on a carpeted floor.

Fig. 4.2.17: A bowl of veggie soup with a spoon in it.

These below given samples of bed (Fig.4.2.18) and apple (Fig. 4.2.19) are highly

similar and hence have low scores. It is also because the images contain single ob-

jects that are easier to recreate and the objects are not interacting. For “bench”
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(Fig.4.2.20) the scores are relatively lower than other objects. Overall, the GLIDE

model outperforms the VQGAN - CLIP model at scene recreation.

There will be differences between the original image and the generated images,

even if the model is performing well. This is because the generated images are typi-

cally based on a noise image and a text description, rather than being an exact copy

of the original image. As such, the generated images may contain some variations or

deviations from the original image. Comparing the original image to the generated

images can provide valuable insights into the performance of the image generation

model, but it is important to consider the limitations of the generated images as well.

Ground Truth VQGAN - CLIP Generated GLIDE Generated

Fig. 4.2.18: A room with a bed that has white and red pillows.

Fig. 4.2.19: A apple with a bite in it on a table.
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Fig. 4.2.20: Two park benches that are overlooking a valley.

4.2.3 SOA Scores

Fig. 4.2.21: SOA Scores for VQGAN - CLIP and GLIDE

We can observe that, for only a few classes, the models are able to recreate the

objects mentioned in the captions. Most of the sentences used for the generation

contain more than one object, and the objects might sometimes be interacting with

each other, which makes it even more challenging for the model. The VQGAN -

CLIP is able to generate items like “pizza”, “hotdog”, “cake”, and “banana”, which

are common objects. If we had a caption in which the objects interact with other

objects the models may not be able to create images this well as observed for other

classes. For GLIDE, “pizza” , “cake” , “stop sign” and “horse” are on top. The

images in GLIDE also provide more variety than the VQGAN - CLIP model. The
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images generated by the VQGAN model appear very similar the images generated by

GLIDE appear different for the three cases.

VQGAN - CLIP Generated GLIDE Generated

Fig. 4.2.22: Generated Images: Pizza

Fig. 4.2.23: Generated Images: Cake

Fig. 4.2.24: Generated Images: Bananas
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Fig. 4.2.25: Generated Images: Stopsign

Model Name SOA-C ↑ SOA-I ↑

GLIDE 25.83 32.29

VQGAN - CLIP 23.73 29.67

Table 4.2.2: SOA Scores

Both models perform better on common items but have trouble producing un-

common ones. There is a difference between the SOA-I and SOA-C values. Since the

SOA-I is based on the average of images, it is skewed by things that are frequently

seen in captions and images, which is why the SOA-I values are higher [18]. GLIDE

performs better for both cases proving that there is higher the occurrence of the ob-

ject in the total images generated. Nevertheless, it is more challenging to construct

complicated statements, which are statements with multiple objects in the sentence,

using common things than simple phrases with unusual objects.

4.3 Analysis

There are several reasons why a generative model might not be able to generate a

certain object:

• Insufficient training data: Generative models require a large amount of training

data in order to learn to generate realistic images. If the training data does
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not contain examples of the object that the model is being asked to generate,

it may not be able to generate that object.

• Unbalanced training data: If the training data is unbalanced (e.g., it contains

a disproportionate number of examples of certain types of objects), the model

may be biased towards generating those types of objects and may have difficulty

generating other types of objects.

• Limited model capacity: Generative models have a limited capacity and may

not be able to generate all possible objects if they are too complex or varied.

For example, a model trained on a dataset of small, simple images may not be

able to generate large, detailed images.

• Overfitting: If the model overfits to the training data (i.e., it performs well

on the training data but poorly on new, unseen data), it may not be able to

generate objects that are not present in the training data.

For both models, we can deduce that there is lack of training data when the object

to be generated is small in size for example “ball” or “baseball bat”. These items are

often referred as a small part of a scenery in background. It is tough for the model to

understand and generate with respect to the scenery. More emphasis is required on

training models with images which have more than two objects and a background. It

is also important that correct captions are given while training otherwise the model

might learn to associate a cat as some other object. The model performs good if

the focus is on one or two objects like “apple” or “pizza” which take up most of the

space in the image generated. We can observe that for most of objects with high SOA

scores the models are overfitted. The models will only generate the object for which

it has most training examples, ignoring other parts of the sentence. For example, if

the caption is “A person eating pizza and salad at a table.”. The model will recognize

“pizza” immediately and generate an image just containing a pizza (Fig. 4.3.2), which

gives us a high SOA but is not semantically accurate image.

Both the models focus on the caption used for the generation of the image and

use it to guide the image generation process. It is important that the caption used

47



4. EXPERIMENTS AND RESULTS

contains enough details about the image to be generated. The sentence should have

correct spellings of objects for the model to understand as it was trained with correct

examples. A very complex sentence with more than two objects makes the models

generate images and merge them without focusing on interaction between the objects.

The resulting image is distorted which will give a low IS, large FID Score and low

SOA Score (Fig. 4.3.1). If the model is trained with enough examples for complex

sentences the models may be able to generate better samples.

Fig. 4.3.1: A boy swinging a baseball
bat at a ball.

Fig. 4.3.2: Generated Image: A person
eating pizza and salad at a table.
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CHAPTER 5

Conclusion and Future Work

Although there has been significant progress, more can still be done to improve auto-

mated analytics and standardize research. There is still more work to be done before

the models can produce images of higher quality that more closely resemble the se-

mantics of the input text. While the models are pretty good at recreating art work

and imaginative statements it’s still a challenge to be able to recreate multiple objects

in a picture from text to image. Even for data sets like CUB or Flowers data set it

is relatively easier to recreate as, for most part, they only contain single objects and

most of the image created is occupied by them. We can also observe that the objects

which have a clear pattern are also easier to detect by the object detector used and

can take the texture for object making SOA unreliable for some instances. Although,

both models are designed to generate high-quality images from text descriptions, and

which one is better depends on the specific task. For our task of generating images

from the MS COCO data set the GLIDE model performs better than the VQGAN

- CLIP. As a result of our experiments, we were able to determine that the diffusion

model GLIDE performed much better for IS and for SOA. While VQGAN - CLIP

did perform slightly better for FID, the samples generated by the GLIDE model are

semantically accurate and have good IS and SOA scores. The peaks and lows in

the results for FID (Fig. 4.2.6) tells us which class objects have more common pixel

representation with original data set. This information can be used to determine for

which classes the models need more training and attention. The samples generated

by GLIDE are very different from the original image giving a high FID score. Given

all of this evidence, we can claim that the GLIDE model performs better than the
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VQGAN - CLIP model. The images generated by the GLIDE model offers variety by

generating unique each time for the same text input. Although there is not a measure

to consider how much variety a generative model can offer, we can observe that the

images generated by the GLIDE offers more variety when generating a new data set.

Both the models are over fitted and biased towards some object classes due to dis-

proportionate number of images in the training data as. For instance, the generated

images for pizza the models ignore the other items in the caption and instead focus

on generating just pizza pattern in a different way. There is also currently a lack of

clarity on the extent to which generative models memorize the training data.

5.1 Future Work

For future work, the researchers can generate images utilizing new approaches such

as DALL-E 2 and Imagen for comparison. In order to obtain an even more accurate

assessment, the size of the image data set for each class can be increased. The

evaluation of the models can benefit from the introduction of new matrices that

quantify qualities like variation in generated images. More research can be done to

understand how the model memorizes training data. There can be more variation

in the data set used. The captions can be taken directly from the people instead of

using pre-defined captions. Generative model assessment is critical, and we need this

information in order to comprehend the direction in which more work is required.
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