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ABSTRACT

Predicting future successful teams of experts who can synergistically work in con-

cert with each other and en masse cover a set of required skills of a degree necessary

for the achievement of the desired outcome is challenging due to several reasons,

including 1) the magnitude of the pool of plausible expert candidates with diverse

backgrounds and skills, and 2) the drift and variability of collaborative ties of experts

and their level of expertise in each area in time. Prior works in team formation have

neglected the fact that experts’ skill, interests, and collaborative ties change over

time. We can categorize previous works in team formation based on their method

of optimization: 1) search-based, where the search for the optimum team is carried

over all the subgraphs of expert networks or via integer programming, however, these

works overlooked the temporal nature of human collaborations. 2) learning-based,

where machine learning approaches are used to learn the distributions of experts and

skills in the context of successful teams in the history to predict almost surely suc-

cessful teams in the future. However, they also fail to recognize the possible drift and

variability of experts’ skills, interest, and collaborative ties in time and its impact

on the prediction of future successful teams. Moreover, neural models are prone to

overfitting when training data suffers from the long-tail phenomenon, i.e., few experts

have a lot of successful collaborations and the majority have participated sparingly.

To overcome the aforementioned problems, i) we propose a streaming scenario train-

ing strategy for neural models to help the model in the prediction of future successful

teams of experts, where instead of shuffling our datasets, we train the models in an

orderly manner, to grasp the changes in experts’ skills, interests, and collaborations,

and ii) we propose an optimization objective that leverages both successful and virtu-

ally unsuccessful teams via various negative sampling heuristics, and iii) we conduct

experiments on four large-scale benchmark datasets with varying distribution of skills

and members namely, dblp, imdb, uspt, and github. Finally, we empirically demon-

strate how our proposed objective functions and training method, outperform the

state-of-the-art approaches in terms of effectiveness and efficiency.
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CHAPTER 1

Introduction

1.1 Importance of Team Formation

Being a master of one or a jack-of-all-trades in today’s world does not bring about

success if you cannot work as part of a team. Teamwork was less vital during the

industrial age than now, when most vocations were represented by individuals working

on a manufacturing line all day. On the other hand, the value of teamwork has

shown to be crucial in today’s interdisciplinary environment, like in academia [63],

manufacturing [13], law [55], freelancing [10], and the healthcare system [16]. Research

groups whose success can be measured by scientific publications and citations in the

scientific community, a group of inventors who create a product that meets market

demands, or crew members for the upcoming blockbuster sci-fi movie with a touch of

drama are a few instances of team formation.

Due to the sheer number of candidates with temporal backgrounds, cultural bonds,

skills, and personality traits, as well as an unknown synergistic balance among them,

it can be challenging to compose a successful team whose members can work to-

gether effectively and deliver the results within the designated constraints, such as

the planned budget and timeline. Not all teams with the best experts are necessarily

successful [56]. Furthermore, we all experience changes in our interests and abilities

during the course of our lives, sometimes out of our own volition and other times

due to circumstances. For instance, more and more individuals are required to learn

new skills like programming due to the development of technology and automation.

Consequently, the skills of any individual may or may not be relevant at any given

1



1. INTRODUCTION

time.

1.2 How teams have been formed

In the past, teams have been put together based on intuition and experience, which

occasionally leads to an inferior team composition due to insufficient candidate knowl-

edge and unacknowledged cognitive biases, among other things. Recently, novel team

formation strategies have been put forth to form expert teams that can work together

on a particular job while considering both human and non-human aspects, including

scheduling preferences, skill coverage, expert availability, budget, and team size.

The foremost algorithmic methods for team formation were developed in opera-

tions research (OR) [9, 60], where it is required to maximize several objective functions

while considering constraints for human and non-human aspects and scheduling pref-

erences. The goal is to identify the best composition for a team, or a team whose

success is virtually positively assured. In addition to budget limitations and team

size, other constraints include skill coverage and expert availability. However, such

work ignored the organizational and social links among experts and was predicated

on the mutual independence of expert selection.

In order to overcome this gap, researchers used social network analysis (SNA),

which incorporates interpersonal collaboration and social relationships aspects utiliz-

ing metrics like density, degree centrality, and closeness centrality. To this end, most

existing techniques characterize team member cooperation using a graph representa-

tion of the expert network, where there are direct and indirect relationships based

on previous expert collaboration. Wherein, to find an optimum team optimization

happens over all possible subgraphs based on, e.g., the diameter of the subgraph or

the sum of the distances between every pair of nodes within subgraphs of the network.

Wherein finding an optimum team optimization happens over all possible subgraphs

based on, e.g., the diameter of the subgraph or the sum of the distances between

every pair of nodes within subgraphs of the network.

The optimal synergistic integration of social network analysis for team formation is

2



1. INTRODUCTION

severely hampered by the enormous difficulty faced by socially driven team formation

approaches when efficiency is the primary consideration. Although heuristics have

been suggested as a means of reducing the search space, for example, Akiba et al. [5]

developed enhanced shortest path indexing approaches that speed up the computation

of proximity functions, the output teams are still sub-optimal, and lack accuracy

since the heuristics are often based on domain-specific or ill-posed assumptions and

rendered irrelevant in general circumstances.

Recently, researchers approached the team formation problem using a learning-

based methodology instead of search-based techniques. They have specifically pro-

posed machine learning methods that utilize neural architectures to discover correla-

tions between experts and their collaborative ties. Due to the fundamentally iterative

and online learning procedure in neural networks, they take into account all previous

successful team compositions as training samples to anticipate the best teams for a

given set of required skills to increase efficiency while preserving efficacy.

Among the first, Sapienza et al. [54] utilized a neural autoencoder to form an

ideal team with members who can collaborate effectively, promote one another’s de-

velopment, and enhance one another’s skills. However, autoencoders are prone to

overfitting and cannot recognize the uncertainty level in sparse data [12]. Moreover,

according to Rad et al. [50], training datasets for team formation suffer from the

long-tail phenomenon when a small number of experts successfully collaborate on a

limited set of skills while the remainder only rarely participates. As a result, popular

experts receive higher scores to the given skills than their ideal values and are recom-

mended more frequently leading to the popularity bias. To overcome this problem,

Rad et al. [50] employed a variational Bayesian neural model to relieve the long-tail

problem through introducing uncertainty on the weights of the neural model.

1.3 How we want to form teams

Even though they work successfully as they do, current neural models only take

into account teams who succeed and ignore those that don’t. Table 1.3.1 displays a

3



1. INTRODUCTION

Table 1.3.1: Sample research collaborations.

#
research topics

(skills)

members

(experts)

published

(success)

1
natural language processing

language modelling

Pennington

Manning

Socher

yes

2
natural language processing

machine translation

Pennington

Manning
yes

3
natural language processing

machine translation

John

Mary
no

4
evolutionary algorithms

genetic programming

Mary

John
yes

new
language modelling

machine translation
? ?

fictitious sample group of research teams for various research topics (skills) and their

researchers (experts), as well as whether or not their findings have been accepted for

publication in a peer-reviewed journal. As can be seen, if we choose to research on

{language modelling, machine translation} (last row), we may suggest {Pennington,

Manning, Socher} as the ideal team because their collaborations have so far been the

most effective on such research topics. Contrarily, proposing the team {John, Mary},

whose members failed the given research topics would not be a good idea. Proposed

neural models overlook the latter case and give a non-zero chance to {John, Mary}

when recommending a team for the given research topics.

1.3.1 Considering unsuccessful teams to prevent failure

It has been demonstrated in the literature that using both positive and negative

samples, such as connections in social networks or distrust, conveys complementary

signals to neural models and increases accuracy in various tasks related to social

network analysis, natural language processing, and recommender systems [34, 37,

4



1. INTRODUCTION

57, 49, 43, 53, 64]. Indeed, team formation can also be subsumed into recommender

systems where experts are recommended for the required skills. However, the majority

of real-world training datasets in the team formation domain lack explicit failure

teams (e.g., collections of rejected papers). Based on the closed-world assumption

and in the absence of unsuccessful teams, we assume that a group of experts is an

unsuccessful team if they have not already worked together for the required subset of

skills.

To this end, we develop three negative sampling heuristics: 1) uniform: where

subsets of experts are randomly selected with the same probability as samples of

unsuccessful teams, 2) unigram: where subsets of experts are chosen based on their

frequencies in the training set, and 3) smoothed unigram in training minibatches :

where we employed Laplace smoothing to calculate the unigram probability of subsets

of experts in each training minibatch. In unigram and smoothed unigram heuristics,

experts that have collaborated more often on skills different from the given input

skills will be chosen more frequently to diminish popularity bias.

We use negative samples during training to prompt neural models to learn vec-

tor representations (embeddings) for experts and skills in the same vector space so

that vectors of experts who have already collaborated for the required skills (have

been in the same teams) end up closer to each other whereas vectors of experts who

have not yet collaborated (virtually unsuccessful teams) end up farther apart. We

replicate the proposed Bayesian and non-Bayesian neural models under the use of

negative sampling heuristics and a lack thereof on two large-scale datasets from vari-

ous domains with varied distributions of experts and skills in teams, namely academic

papers (dblp)1 and movies (imdb)2. The empirical findings demonstrate that, for the

best team, Bayesian neural models constantly offer a greater prediction power when

integrating negative samples. Non-Bayesian neural models, on the other hand, are

sensitive to how teams are distributed, and negative samples have a discounting effect

as in imdb.

1aminer.org/citation
2imdb.com/interfaces/
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1. INTRODUCTION

𝑓𝜃1 𝑓𝜃2 𝑓𝜃𝑇
Trained 

Model

𝑣𝑠
0,𝑣𝑒

0 𝑣𝑠
1,𝑣𝑒

1 𝑣𝑠
2,𝑣𝑒

2

𝐶1

…𝑣𝑠
𝑇−1,𝑣𝑒

𝑇−1

Training

𝑣𝑠
𝑇,𝑣𝑒

𝑇

𝑠𝑇+1

𝑒𝑇+1

𝐶2 𝐶𝑇

Fig. 1.3.1: Streaming Training Strategy.

1.3.2 Predicting future successful teams

To the best of our knowledge, there has not been any research on the impact of tem-

porality on team formation, that is, how expert skills and collaborative ties change

over time or how societal demands change. The transient character of experts’ inter-

ests, skill, and collaborative ties as well as the constantly shifting demands of society

were not taken into consideration in any of the earlier studies. Additionally, while

some studies in the operation research literature utilize time as a constraint, in our

study we concentrate on the horizontal component of time where change and progress

occurs in experts’ activities and society’s demands. We propose a temporal neural

team formation to predict the ideal expert teams of the future. First, our methodol-

ogy involves temporality in contrast to non-temporal methods. Second, we examine

the horizontal character of time to take into account variation in expert behaviour,

in contrast to operation research literature that considers time as a constraint. Last

but not least, in contrast to earlier neural models for team formation, which aim to

predict expert teams that will work successfully and efficiently regardless of the time

of their collaborations, we aim to predict expert teams that will work optimally and

effectively for a specific set of required skills in the future.

Our objective is to predict future expert teams with a new set of required skills in

time interval T + 1, given a sequence of expert collaborations with the required set

of skills from time intervals 1 to T. In order to achieve this aim, we train our neural

models starting from the earliest expert collaborations with their required skills at

time interval 1 rather than using the traditional method of shuffling the dataset. We

then utilize the developed model to kick-start training on the following time interval,

6



1. INTRODUCTION

as shown in Fig. 1.3.1. We train our models in this way to account for the evolution

of experts’ interests, skills, and collaborative ties over time, ensuring that the model

has absorbed the most recent and up-to-date interests, skills, and collaborative ties

when training for time interval T is complete.

Our suggested training technique allows experts to adjust their vector locations

in latent space as their knowledge and relationships with others change over time.

It then records the change trajectories up to time interval T to correctly forecast

experts’ vector positions in the future time interval T+1. In contrast to non-temporal

approaches that use a bag of teams to train instances of teams and presume i.i.d [35,

28, 54, 50], our approach integrates temporality by streaming the teams over time

intervals throughout the training phase. Second, rather of approaching time as a

constraint, we investigate the horizontal aspect of time to understand the development

of expert skills and linkages between teams. In order to show the domain-free efficacy

of our suggested strategy, we conduct tests on four major datasets: scholarly papers in

computer science (dblp)3, movies (imdb)4, US patents (uspt)5, and github repositories

(github)6. Our findings demonstrate that taking into account the temporal evolution

of expert skills and cooperation links outperforms state-of-the-art approaches in terms

of identifying future effective expert teams. Concretely, our contributions are as

follows:

1. We propose and develop three negative sampling heuristics to incorporate vir-

tually unsuccessful teams in neural team formation.

2. We reproduce the state-of-the-art Bayesian neural models as well as non-Bayesian

neural models under the negative sampling heuristics and lack thereof to study

the effects of incorporating negative samples during neural model training.

3. We investigate the effect of negative sampling heuristics on training time speedup

vs. inference accuracy.

3aminer.org/citation
4imdb.com/interfaces/
5https://www.uspto.gov/ip-policy/economic-research/research-datasets
6github

7



1. INTRODUCTION

4. We critically assess neural models with and without negative sampling heuris-

tics on two large-scale datasets of scholarly papers (dblp) and movies (imdb),

that are from different domains with distinct statistical distributions of skills in

teams.

5. We demonstrate the effect of negative sampling heuristics for neural team for-

mation on a host of information retrieval and classification metrics such as map,

ndcg, as well as precision, recall, and rocauc.

6. We propose a streaming scenario training strategy to utilize the evolution of

experts’ interests, skills, and collaborative ties over time.

7. We examine the impact of our proposed streaming training strategy on the

state-of-the-art neural models’ abillity to predict future successful teams on four

large-scale datasets of (dblp), movies (imdb), US patents (uspt), and github

repositories (gith), that are from different domains with distinct statistical

distributions of skills in teams.

8. We showcase the impact of our streaming training strategy on prediction of

future successful teams using a host of information retrieval and classification

metrics such as map, ndcg, as well as precision, recall, and rocauc.
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CHAPTER 2

Related Works

Since Zakarian and Kusiak’s work [66], there has been an influx of literature in the

team formation domain that can be distinguished based on their optimization method:

1) search-based, where the search for the optimum team is carried over all the sub-

graphs of expert networks or via integer programming, and 2) learning-based, where

machine learning approaches are used to learn the distributions of experts and skills

in the context of experts’ past successful collaborations to form successful teams.

Even though literature in natural language processing [49, 43] and graph neural net-

work [34, 37, 57] has already shown that using negative samples can improve the

model’s efficiency during training and effectiveness during inference, no work has uti-

lized negative sampling in team formation. Moreover, literature related to the team

formation problem has ignored the impact of time and the temporal nature of experts’

interests, skills, and collaborative ties by and large despite widespread successful in-

corporation of temporality in other domains such as temporal information retrieval,

temporal knowledge graphs, and temporal recommender systems [20, 39]. There is

little work [9, 52] that studied time but as a constraint like the projects’ deadlines in

the optimization function. In this section, we review some of the remarkable works

in the team formation literature:

9



2. RELATED WORKS

2.1 Non-temporal Methods

2.1.1 Search-based Methods

The foremost methods of team formation was conceived in the Operations Research

(OR) where multiple objectives must be optimized simultaneously via integer or real

programming to find the optimum team, given constraints for human and non-human

factors as well as scheduling preferences. Based on the engineering characteristics

of the product and the importance of customer requirements, Zakarian et al.[66]

used the integer linear programming approach to form multi-functional teams. They

imposed integer constraints on applicants, such as a cap on the amount of projects

each team member may take on, the required number of teams, and when to join

which team. Wi et al. [60] presented a framework to analyze candidates’ ability for the

manager position and team members. They proposed a genetic algorithm and social

network measures to pick the team manager and the team members. More recently,

Neshati et al. [44] proposed an optimization framework based on the Facility Location

Analysis, a well-known branch in Operation Research, to form groups of experts to

perform a multi-aspected task. Even though the importance of effective cooperation

has been studied rigorously before [22, 15], these works, however, were premised on

the mutually independent selection of experts and overlooked the organizational and

social ties among experts.

Although Chen and Lin [15] were among the first to consider candidates’ inter-

personal relationships for team formation, they were Lappas et al. [35] who employed

social network analysis to fill the gap by incorporating social ties and interpersonal

collaboration features. They represented the experts’ social network with a graph

where nodes are experts with their set of skills, and edges represent the previous

collaboration between them. The optimum team hence can be found by a search

on all possible subgraphs. They proposed two algorithms based on the diameter of

the graph and the cost of the minimum spanning tree (MST) to find a subgraph in

which experts collectively hold the set of required skills and can collaborate effectively

with minimum communication cost. Finding a subgraph with a minimum diameter
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in MST, however, falls short to estimate the true cost of all the required communi-

cations. Kargar and An [28] claim that neither the diameter of the sub-graph nor

the cost of the minimum spanning tree measure the communication cost accurately.

The diameter function only calculates the communication cost between the two ex-

perts furthest away from each other. The MST function does not measure the cost

of all the required communication either. The other disadvantage of these functions

is their instability to slight changes in the graph, which results in a radical change

in the solution. To overcome these issues, they proposed two novel communication

cost functions that minimize the sum of distances function for teams with/without a

leader and an approximation algorithm to minimize the cost.

Later, Kargar et al. [30] further proposed to consider additional budget constraints

(expert salary) on top of communication costs as in real-world scenarios. Therefore,

they proposed an approximation algorithm to optimize two objectives: communi-

cation cost and salary. Li et al. [38] included additional factors by specifying the

number of required experts for each skill. They devised the generalized Enhanced

Steiner algorithm considering the number of experts, subsequently, they condense

the expertise information to a compact representation based on the required skills.

Also, they propose a density-based measure and embed it into their method, which

improves the effectiveness of the final teams.

Rahman et al. [51] adapted two criteria from organizational sciences and social

theories: affinity and upper critical mass. They defined affinity based on age and

geographical location and conducted experiments to reveal the importance of a limit

on the size of teams for successful collaboration. They proved that their problem

formulation is computationally expensive and unacceptable for a real-time crowd-

sourcing platform. Even after breaking down the problem into two stages, it is still

computationally intractable in the worst case, but it allows them to design optimal

exact algorithms for the average case and efficient approximation algorithms with

provable bounds. In the first stage, they form a group of workers with maximal intra-

affinity that also satisfies the required skills and cost constraint. In the second stage,

they break down the group into smaller cliques that satisfy the upper critical size
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constraint with maximal inter-affinity between smaller groups.

Khan et al. [32] introduced the problem of compact attributed group (AG) dis-

covery, which is another generalized version of the Team Formation problem, where

given a set of query keywords and the desired solution size, they aim to find closely

connected sub-graphs with the specific number of nodes where each node contains as

many query keywords as possible. They also proved that their objective is NP-hard

and therefore propose an approximation algorithm with a guaranteed ratio of two.

Since the total number of answers is exponential in the number of query keywords and

the size of the group, they proposed a method to find the approximate top-k groups

with polynomial delay. Kou et al. [33] disclose that the previous literature did not

take into account that team members with different skills/roles have different degrees

of communication. Therefore, they proposed a novel method that considers both the

structure and communication constraints based on the Constrained Pattern Graph

(CPG). First, they present a preprocessing method to normalize a CPG. Second, they

construct a Communication Cost Index (CCI) to accelerate the matching between a

CPG and its corresponding social network. Lastly, they proposed a CCI-based node

matching algorithm to minimize the total number of intermediate results.

Methods of efficient keyword search on attributed graphs have also been employed

for team formation [33, 32]. For instance, given a set of query keywords as skills and

the desired size of the subgraph as the team size, Khan et al. [32] aimed to find

closely connected subgraphs with the specific number of nodes wherein nodes contain

as many query keywords as possible. Since the total number of answers is exponential

in the number of query keywords and the size of the group, they proposed a method

to find the approximate top-k groups with polynomial delay.

Nonetheless, the above proposed optimization models for the task of team for-

mation were all computationally intractable and had to be followed by polynomial

heuristic solutions such as Multichoice [7] for subgraph identification with shortest

diameter in [35] or simulated annealing [9], branch-and-cut, genetic algorithms [60],

and balanced placement [22] for those based on integer programming (IP). Indeed, IP

is NP-hard and subgraph optimization can be reduced to the decision version of the
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Steiner-tree problem which is proved to be NP-Hard [31]. Moreover, network changes

due to the constant emergence of new collaborations lead to frequent changes in the

shortest paths, which requires the expensive recalculation of indexed shortest paths

for all pairs of experts. Inevitably, all such methods undergo heuristics to efficiently

find the optimum team most of which are based on ill-posed assumptions such as

minimizing communication costs necessarily yields in successful teams. Indeed, to

the best of our knowledge, no search-based methods have evaluated their heuristics

(assumptions) intrinsically on a labelled dataset of successful teams.

2.1.2 Learning-based Methods

Contrary to search-based methods, little work has been proposed recently to use

machine learning to overcome these issues. Wherein, all past successful team compo-

sitions are considered as training samples to machine learning algorithms to automat-

ically form optimum teams from a large pool of experts to accomplish required tasks

successfully. Sapienza et al. [54] employed a deep neural autoencoder to form teams

and proposed a computational framework to capture which teammates foster growth

of their peers. However, when data is sparse, such as in the case of Team Formation,

where a few teams have successful collaboration for a specific set of skills, autoencoder

neural networks are prone to overfitting and cannot assess the uncertainty in data

effectively [12].

Rad et al. [50] proposed a Variational Bayesian neural architecture to overcome

these shortcomings. However, their model was trained on published scholarly papers

in computer science and lacks observing unsuccessful research (rejected papers). Lit-

erature in natural language processing [49, 43] and graph neural network [34, 37, 57]

has already shown that utilizing positive and negative instances in tandem carries

complementary signals to the model in order to deviate from the popularity bias and

can improve the model’s efficiency during training (i.e., the model converges sooner to

the minimum loss) and effectiveness during inference. To this end, we aim at exploit-

ing not only successful teams but also unsuccessful ones and studying how they would

fare in the context of neural team formation. We demonstrate that neural models
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that take advantage of unsuccessful instances (negative samples) are more efficient

in training, also more effective in inference. we aim at exploiting not only successful

teams but also unsuccessful ones. We show that learning-based models that utilize

unsuccessful instances of teams (take advantage of negative samples during training)

are able to excel at both effectiveness during inference and efficiency by discriminating

successful teams from unsuccessful ones during training.

2.2 Time as a constraint

There has been little work on the impact of time as a constraint. Given hard-crisp

constraints such as the team candidates’ availability and salaries (human factors),

as well as time constraints for start and due dates (non-human factors), Baykasoglu

et al. [9] introduced a fuzzy bi-objective optimization model, namely team size, and

suitability, which maximizes members’ fit to the team based on their degrees of com-

petence (skill). They employed a simulated annealing (SA) approach to solve the

suggested fuzzy team formation model utilizing a max-min operator.

When forming real-time, on-demand, ad hoc teams of experts from various sources,

Durfee et al. [19] take into account scheduling constraints or preferences in a two-

step team formation process. Teams are built first and foremost in the matchmaking

optimization stage using integer linear programming, taking into account not only the

required skills and knowledge but also the ability to be more readily (re)scheduled

in accordance with the timing requirement. In the scheduling optimization stage,

time slots are allotted to the team for completing the work using integer nonlinear

programming optimization in a way that minimizes the total of the starting times of

all the members while satisfying sequential and concurrent ordering constraints.

Rahmanniyay et al. [52] studied various factors that can change the duration of a

project like weather conditions can delay the delivery of material to a manufacturing

company. They benchmark different scenarios for the required amount of time that

is needed to accomplish an activity in a project. Yang et al. [62] apply integer

programming to determine the optimum group of experts available at a certain point
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in time. Their temporal scheduling technique considers the social distance between

group members to avoid lacking too many direct links.

Contrary to these works, we investigate the temporality of experts’ skills and

collaboration ties and utilize how they evolved through time to predict their future

teams. Further, such work is again based on exhaustive search in multidimensional

integer space as in integer programming and hence, is computationally prohibitive.
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CHAPTER 3

Problem Definition

In this chapter, we will define the problem of team formation in two parts: i) Team

Formation and ii) Temporal Team Formation.

3.1 Team Formation

Our goal is to assemble the best possible team of experts who can successfully col-

laborate on a task that requires a set of skills. Let S and E be the set of skills and

experts, respectively. C = {((s, e), y); s ⊆ S, e ⊆ E , s, e ̸= ∅, y ∈ {0, 1}} be the set

of all collaborations where (s, e) is a team whose members are a subset of experts

e that collectively hold the subset of skills s and has been either successful y : 1

or a failure y : 0. Given a subset of skills s and all the previous collaborations C,

we aim at identifying an optimal subset of experts e such that their collaboration

in the predicted team (s, e) will be successful, that is ((s, e), y = 1), and avoiding

subset of experts e′ that ((s, e′), y = 0). More concretely, we aim to estimate a map-

ping function f of parameters θ from a subset of skills and experts to a boolean set;

fθ : P (S)× P (E) → {0, 1}.

3.2 Temporal Team Formation

We aim to incorporate the evolution of experts’ skills and collaborative ties over

time in order to predict future successful teams of experts who collectively hold a set

of required skills and can effectively cooperate toward a shared goal based on their
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gained experience through time. Let S and E be the sets of skills and experts and

Ct = {(s, e, y)t|s ⊆ S, e ⊆ E , 1 ≤ t ≤ T, y ∈ {0, 1}} be the set of collaborations at

time t where (s, e) is a team whose members are a subset of experts e that collectively

hold the subset of skills s and has been either successful y = 1 or a failure y = 0,

and t is a discrete entity showing the time intervals. Intuitively, Ct is a snapshot of

all teams of experts over skills during the time interval t and [C1..Ct..CT] streams the

dynamic distribution of experts over skills within T consecutive time intervals in the

context of teams. Given the stream of collaboration sets [Ct]1≤t≤T in the past, we

aim to recommend a new team of experts e′ for a given subset of skills s′ at a yet-

to-be-seen time interval T+1 whose collaboration has a high chance of success, i.e.,

(s′, e′, 1)T+1. More formally, we aim to estimate a mapping function f of parameters

θ from the stream of collaboration sets and a subset of skills to a subset of experts

whose collaboration in a team is almost surely successful for the one-step-ahead future

time interval T+1; that is, f([Ct]t≤T, s
′; θ) = e′ such that (s′, e′, 1)T+1.
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CHAPTER 4

Methodology

In this chapter, we will explain the methods we used to tackle the problems introduced

in the Problem Definition section.

4.1 Neural Team Formation with Negative Sam-

pling

Given all previous collaborations C, we maximize the average log probability of teams’

success or failure:

1

|C|
∑

((s,e),y)∈C

log P(y|(s, e) (1)

where (s, e) is a team of experts e who collectively hold the set of skills s and can

either work successfully together or fail otherwise. We propose to learn vector rep-

resentations (embeddings) for experts and skills in the same vector space with the

expectation that vectors of experts whose teams have been successful for the required

skills will end up closer to each other in the vector space while vectors of experts

whose teams for the required skills have been unsuccessful will end up farther from

each other. We estimate the P(y|(s, e) through pairwise cosine similarities of vector

representations for the skills ∀i ∈ s and experts ∀j ∈ e. Specifically, for a success-

ful team ((s, e), y = 1), we estimate P(y = 1|(s, e) by learning vs =
∑

i∈s vi and

ve =
∑

j∈e vj that are close in the vector space and have high cosine similarity while

for an unsuccessful team ((s, e), y = 0), we estimate P(y = 0|(s, e)) by learning vs and
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ve that are far from each other and have low cosine similarity. Formally, P(y|(s, e))

can be formulated using the sigmoid function σ:

P (y|(s, e)) = σ(v⊤e · vs) (2)

where vs and ve are the vector representations of the skill and expert subsets, respec-

tively.

4.1.1 Negative Sampling Heuristics

We have only data for successful teams for the team formation problem. The dblp

dataset only contains published research papers in computer science and does not have

rejected submissions. In the imdb dataset of movies, it remains controversial what

constitutes a failure for a movie; its reception by the people (box office) or critical

reviews. In the absence of unsuccessful training instances, we follow the closed-world

assumption that no currently known successful team for the required skills is con-

sidered unsuccessful. We presume that teams of experts e who have little or no

collaborative history, i.e., few or no (s, e), have a low chance at yielding success. For

instance, given s = {natural language processing, machine translation}, an accurate

estimator f would recommend e = {Pennington, Manning, Socher} who collectively

hold the skills in s and have already collaborated in successful publications. In con-

trast, f would not recommend team of researchers e = {Banzhaf, Nordin} who have

not had a shared publication related to skill subset s. Inspired by [43, 34, 37, 57, 49],

we propose an optimization function that discriminates successful from unsuccessful

teams through negative sampling from a distribution over the subsets of experts:

∑
((s,e),1)∈C

[log σ(v⊤e · vs) +
k∑

(s,e′)∼P:(s,e′ )̸∈C

log σ(−v⊤e′ · vs)] (3)

where P is the probability distribution from which we draw k subsets of experts e′ as

negative samples for a given subset of skills s where (s, e) ∈ C but (s, e′) ̸∈ C. We

present three different negative sampling distributions, two static negative sampling

19



4. METHODOLOGY

distributions [43] and an adaptive noise distribution [17, 4, 49], and study their effects

on neural models:

1. uniform distribution, where each subset of experts e′ is chosen with the same

probability from the uniform distribution over all subsets of experts P(E) , i.e.

P(e′) = 1
|P(E)|

2. unigram distribution, where each subset of experts e′ is chosen regarding

their frequency in all previous teams, i.e. P(e′) = |(s′,e′)|
|C| and (s′, e′) is a team

with skill subset s′ ̸= s. Intuitively, subsets of experts that have been in previous

teams for other subsets of skills will be given a higher probability and chosen

more frequently as negative samples to dampen the effect of popularity bias.

3. smoothed unigram distribution in training minibatch , where we em-

ployed the add-1 or Laplace smoothing when computing the unigram distribu-

tion of the experts in each training minibatch, i.e. P(e′) = 1+|(s′,e′)|
|b|+|E| , where b is

a minibatch subset of C, and (s′, e′) is a successful team including expert e′ in

each training minibatch. Minibatch stochastic gradient descent is the de facto

method for neural models where the data is split into batches of data, each of

which is sent to the model for partial calculation in order to speed up training

while maintaining high accuracy. Since only a few teams of experts exist in

each minibatch, we employ the Laplace smoothing so that no subsets of experts

have zero probability.

4.2 Streaming Learning for Future Team Predic-

tion

Let [Ct]1≤t≤T be the ordered list of all previous collaborations at each time interval t

until T in which experts’ collaborations over skills in teams are evolving over time.

We aim to estimate f using a neural model that maximizes the average log probability

of successful subsets of experts:
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1

|CT+1|
∑

((s,e),y)∈CT+1

log p(y|(s, e) : T + 1) (4)

where CT+1 is the collection of yet-to-be-formed unseen (un)successful teams ((s, e), y)

in the future time interval T+1. Since CT+1 is unseen, we optimized eq. 4 through

observed teams of ((s, e), y) in the past:

1

|[Ct]1≤t≤T|

T∑
t=1

∑
((s,e),y)∈Ct

log p(y|(s, e) : t) (5)

The same team (s, e) may experience instances of success and/or failure in different

time intervals. Therefore, p(y|(s, e) : t) depends on the time interval information.

To maximize eq. 5, we map each subset of skills s and each subset of expert e to a

low-rank d-dimensional vector in the same latent space, denoted by vs and ve, whose

positions up until time interval T depend on the preceding movements in the latent

space since the first time interval via observation of [C1..Ct..CT] while imposing the

following assumptions: (i) skills and experts change their latent representations over

time, (ii) subsets of experts who collaborated in teams over similar subsets of skills

within [Ct]1≤t≤T remain close in latent space, (iii) subsets of experts and skills who

are close in latent space at their final positions in the latent space are presumably

the optimum teams whose successes are almost surely guaranteed in the future time

interval T+1.

4.2.1 Streaming Learning

Previous works in team formation assume i.i.d property among teams and followed

the bag of teams approach during model training on a shuffled dataset [9, 52, 35, 28,

29, 54, 50]. In this work, however, we train a neural model incrementally through

an ordered collection of teams in [C1, ..Ct, ..CT]. As seen in Fig. 1.3.1, after random

initialization of skills’ and experts’ embeddings, we start training the model on the

teams in the first time interval C1 for a number of epochs, then we continue with

training on the second time interval C2 using the learned embeddings from the first
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time interval and so forth until we finish the training on the last training time interval

CT. We believe that using this approach, will help the model understand how experts’

skills and collaborative ties evolve through time and the final embeddings are their

optimum representation in the latent space to predict future successful teams.

At each time interval t, we estimate p(y|(s, e) : t) through pairwise cosine simi-

larities of embeddings for the subset of experts e and subset of skills s through all

successful and unsuccessful teams at time interval t in Ct. More specifically, we esti-

mate p(y = 1|(s, e) : t) by learning ve and vs that are close (high cosine similarity) in

the latent space if the subset of experts e has successful collaborations in Ct with the

subset of skills s during the time interval t and estimate p(y = 0|(s, e) : t) by learning

ve and vs that are distant (low cosine similarity) otherwise. Hence, p(y|(s, e) : t) can

be formulated with the sigmoid function σ:

p(y|(s, e) : t) = σ(v⊤e · vs) (6)

When no unsuccessful team is available in the training set, we again follow the closed-

world assumption to generate virtually unsuccessful teams (negative samples), that is,

if no successful team for the subset of skills s is known for a randomly selected subset

of experts e′ at time interval t, i.e., (s, e′) /∈ Ct, the team is considered to be unsuc-

cessful (s, e′, 0). To this end, we employ an optimization function that discriminates

successful and unsuccessful teams through negative sampling from a distribution over

the subsets of experts:

∑
1≤t≤T

[
∑

((s,e),1)∈Ct

[log σ(v⊤e · vs) +
k∑

(s,e′)∼P:(s,e′) ̸∈Ct

log σ(−v⊤e′ · vs)]] (7)

where P is the probability distribution from which we randomly draw k subsets of

experts e′ as negative samples for a given subset of skills s.
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Experiments and Results

In this chapter, we lay out the details of our experiments and expound on how we

examined our proposed methods for the team formation problem. More concretely,

we want to address the following research questions:

RQ1: Does negative sampling improve the effectiveness of neural models for the

task of team formation? To this end, we benchmark the state-of-the-art Bayesian

neural model [50] as well as non-Bayesian neural baselines with our proposed negative

sampling heuristics compared to lack thereof.

RQ2: Are the impacts of negative sampling heuristics robust across different training

datasets with diverse statistical characteristics? We benchmark baselines for the

proposed negative sampling heuristics on computer science publications (dblp) and

movies (imdb).

RQ3: How does negative sampling help efficiency of neural models during training

while improving inference effectiveness?

RQ4: Does moving embeddings of experts and skill through time improve the per-

formance of neural models for the prediction of future successful teams? To this end,

we benchmark state-of-the-art variational Bayesian neural network [50] that utilizes

negative sampling heuristics with our proposed streaming scenario training approach

and lack thereof.

RQ5: Does adding time explicitly to the input embeddings of skills boost neural

models performance? We compare the performance of neural models with and without

utilizing temporal skills in the input.

RQ6: Is the impact of our proposed training strategy consistent across different train-
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ing data with distinct statistical distributions? We benchmark our proposed training

approach on computer science publications (dblp), movies (imdb), US patents (uspt),

and github repositories (gith).
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5.1 Setup

5.1.1 Dataset

Our testbed includes four datasets, namely, dblp, imdb1, uspt2, and gith. Compared

to Rad et al.’s [50] work, we used the more recent and large-scale version of dblp.v123,

where each instance is a publication in computer science consisting of authors, fields

of study (fos), and the year it was published, including published papers from 1979 to

2018. We map each publication to a team whose authors are the experts and fields of

study are the set of skills. In imdb, each instance is a movie consisting of its cast and

crew such as actors, director, and producers, as well as the movie’s genres and the

year it was published spanning from 1914 to 2020. We consider each movie as a team

whose members are the cast and crew, and the movie’s genres are the teams’ required

skills. In uspt, each instance is a patent invention in the United States Patents and

Trademarks consisting of inventors (experts) and subcategories (skills) and the time

the patent is issued, consisting of patents from 1976 to 2019. In github (gith)4, each

instance is a repository consisting of the contributors of the repository (experts), the

title and programming languages of the project (skills), and the time of the project’s

release, consisting of repositories from 2008 to 2022.

Like Rad et al. [50], we filter out members who participated in less than 75 teams

and teams with less than 3 members for dblp, imdb, and uspt, and filter out members

who particiate in less than 10 teams and teams with less than 3 members for gith due

to its smaller size compared to the other three datasets. In all datasets, we can observe

long tails in the distributions of teams over experts. As shown in the left side of

Figures 5.1.1, 5.1.3, 5.1.5, 5.1.7 before filtering and in Figures 5.1.2, 5.1.4, 5.1.6, 5.1.8

after filtering, many experts (researchers in dblp, cast and crew in imdb, inventors

in uspt, and developers in gith) have participated in very few teams (papers in

dblp, movies in imdb, inventions in uspt, and repositories in gith). For instance,

1imdb.com/interfaces/
2uspto.gov/ip-policy/economic-research/research-datasets
3aminer.org/citation
4https://console.cloud.google.com/marketplace/details/github/github-repos

25



5. EXPERIMENTS AND RESULTS

101 103

#teams

101

103

105

#m
em

be
rs

102 105

#teams

101

103

#s
ki

ll
s

Fig. 5.1.1: Distribution of teams over skills and members in computer science publi-
cations (dblp).
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Fig. 5.1.2: Distribution of teams over skills and members in computer science publi-
cations (dblp) after filtering.

the left side of Figure 5.1.1 shows that close to 106 researchers have participated

in 1 team only (top-left corner) while few researchers have co-authored more than

103 papers (bottom-right corner). With respect to the set of skills, dblp/uspt and

imdb/gith are clearly following different distributions. While dblp and uspt suffer

further from the long-tailed distribution of skills in teams as shown in the right

sides of Figures 5.1.1 and 5.1.5(before filtering), and Figures 5.1.2 and 5.1.6(after

filtering), imdb and gith follow a more fair distribution as shown in the right sides

of Figures 5.1.3 and 5.1.7(before filtering), and Figures 5.1.4 and 5.1.8. Specifically,

imdb and gith have a limited variety of skills (genres and programming languages)

which are, by and large, employed by many movies and repositories.
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Fig. 5.1.3: Distribution of teams over skills and members in movies (imdb).
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Fig. 5.1.4: Distribution of teams over skills and members in movies (imdb) after
filtering.
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Fig. 5.1.5: Distribution of teams over skills and members in U.S. patents (uspt).
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Fig. 5.1.6: Distribution of teams over skills and members in U.S. patents (uspt) after
filtering.

101 103

#teams

101

103

105

#m
em
be

rs

102 103 104

#teams

10 1

100

101

#s
ki
ll

s

Fig. 5.1.7: Distribution of teams over skills and members in GitHub repositories
(gith).
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Fig. 5.1.8: Distribution of teams over skills and members in GitHub repositories
(gith) after filtering.
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Table 5.1.1: Statistics of the raw and preprocessed dblp.v12 dataset: #teams with
≥75 members, #members with ≥3 teams.

dblp.v12 raw preprocessed

#publications (teams) 4,877,383 99,375

#unique authors (experts) 5,022,955 14,214

#unique field of study (skills) 89,504 29,661

average #author per publication 3.06 3.29

average #fos per publication 8.57 9.71

average #publication per author 2.97 23.02

average #fos per author 16.73 96.72

#publication w/ single author 768,956 0

#publication w/ single fos 5,569 56

Table 5.1.2: Statistics of the raw and preprocessed imdb dataset: #teams with ≥75

members, #members with ≥3 teams.

imdb raw preprocessed

#movies (teams) 507,034 32,059

#unique castncrew (experts) 876,981 2,011

#unique genre (skills) 28 23

average #castncrew per movie 1.88 3.98

average #genre per movie 1.54 1.76

average #movies per castncrew 1.09 62.45

average #genre per castncrew 1.59 10.85

#movie w/ single castncrew 322,918 0

#movie w/ single genre 315,503 15,180
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Table 5.1.3: Statistics of the raw and preprocessed uspt dataset: #teams with ≥75

members, #members with ≥3 teams.

uspt raw preprocessed

#patents (teams) 7,068,508 152,317

#unique inventors (experts) 3,508,807 12,914

#unique subgroups (skills) 241,961 67,315

average #inventors per patent 2.51 3.79

average #subgroup per patent 6.29 9.97

average #patent per inventor 5.05 44.69

average #subgroup per inventor 19.49 102.53

#patent w/ single inventor 2,578,898 0

#patent w/ single subgroup 939,955 8,110

Table 5.1.4: Statistics of the raw and preprocessed gith dataset: #teams with ≥10

members, #members with ≥3 teams.

gith raw preprocessed

#repositories (teams) 132,851 11,312

#unique developer (experts) 452,606 2,686

#unique programming language (skills) 20 19

average #developer per repository 5.52 7.53

average #pl per repository 1.37 1.57

average #repository per developer 1.62 31.72

average #pl per developer 2.03 5.18

#repository w/ single developer 0 0

#repository w/ single pl 69,131 6014
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5.1.2 Baselines

5.1.2.1 Neural Team Formation with Negative Sampling

Our testbed includes two neural architectures that have previously been used for

the team formation problem and one temporal recommender system baseline due to

the lack of a temporal neural team formation baseline: i) feed-forward non-Bayesian

(non-variational) neural network (fnn), ii) (variational) Bayesian neural network [50]

(bnn), and iii) recurrent recommender networks [61] (rrn), where we recommend ex-

perts for input skills. All models include a single hidden layer of size d=128, ReLU and

sigmoid are the activation functions for the hidden and the output layers, respec-

tively, and Adam is the optimizer. The input layer of the neural models are either

(i) sparse occurrence vector representations for skills of size |S|, (ii) pre-trained dense

vector representations (emb) for the subsets of skills as suggested by Rad et al. [50],

where we consider each team as a document and the skills as the document’s words,

or (iii) temporal dense skill vector representations (dt2v) using temporal word em-

bedding method using Doc2Vec, where we consider each team as a document and the

skills and the year as the document’s words to directly incorporate temporal evolu-

tion of skills into the underlying neural model in addition to our proposed streaming

strategy. We used the distributed memory model to generate the real-valued embed-

dings of the subset of skills with(out) year for both (ii) and (iii) with dimension of

d=100. The output layer of the model is sparse occurrence vector representations for

experts of size |E|. We train the models with a learning rate of 0.1 over 20 epochs

including minibatches of size 128. To evaluate the impact of our proposed objective

function (negative sampling) on effectiveness and efficiency of both (non-)Bayesian

neural models, we conducted our experiments on them with and without our proposed

negative sampling heuristics (-uniform, -unigram, -unigram-b) on dblp and imdb.

To examine the effect of our proposed streaming training strategy and temporal skill

embeddings, we used the optimum model based on our experiments regarding the

impact of negative sampling on neural models, we conducted our experiments with

and without our proposed training strategy and temporal embeddings.
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5.1.3 Evaluation Strategy and Metrics

To demonstrate the synergy of negative sampling heuristics in prediction effectiveness,

we randomly select 15% of teams in the datasets for the test set and perform 5-

fold cross-validation on the remaining teams for model training and validation that

results in one trained model per each fold. Given a team (s, e) from the test set,

we compare the ranked list of experts e′, predicted by the model of each fold, with

the observed subset of experts e and report the average performance of models on

all folds in terms of information retrieval metrics including normalized discounted

cumulative gain (ndcg), and mean average precision (map) at top-{2,5,10} as well

as classification metrics including precision (pr), recall (rec), and area under the

receiver operating characteristic (rocauc) using pytrec eval5 and scikit-learn6. To

evaluate how negative sampling helps with the efficiency of neural models during

the training phase while maintaining inference efficacy, we train the baselines on an

increasing number of epochs {1,..,20} and evaluate them on the test set at each

epoch.

To test the impact of the streaming training strategy and incorporation of time

information to the input embeddings in the prediction of future successful teams, we

took the last year of each dataset for the test set. To ensure the effectiveness of our

approach, we perform 5-fold cross-validation on the teams in each year for model

training and validation. Given a team (s, e)T+1 from the test set, we compared the

ranked list of predicted experts e′ by the model of each fold with the observed subset

of experts e and report the average performance of models in all folds by the same

metrics mentioned earlier.

5github.com/cvangysel/pytrec eval
6scikit-learn.org
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5.2 Results

In this section, we explain our findings in response to our research questions. First,

we will address RQ1-3 and then we will explain the results for RQ4-6:

5.2.1 Impact of Negative Sampling

In response to RQ1, i.e., whether negative sampling improves the effectiveness of

neural models, from Table 5.2.1 and 5.2.2, we can observe that (1) all negative sam-

pling heuristics improve Bayesian neural baselines on dblp and imdb in terms of all

our evaluation metrics. In comparison, Bayesian baselines with no negative sampling

(bnn and bnn-emb) are the weakest neural models. Specifically, smoothed unigram

negative sampling in minibatches (bnn-unigram-b and bnn-emb-unigram-b) consis-

tently outperforms all other neural baselines on dblp and imdb in terms of ndcg for

top-{2,5,10} and rocauc.

Contrary to Bayesian baselines, non-Bayesian baselines (fnn-*) do not show a

consistent similar trend across datasets which bring us to our second research question

RQ2, i.e., whether the impact of negative sampling heuristics is consistent across

training data from diverse statistical distributions. From Table 5.2.1, we can see

that negative sampling heuristics improve non-Bayesian baselines in dblp in terms of

all evaluation metrics. However, in imdb, we cannot observe a consistent synergistic

trend by using negative sampling heuristics. Indeed, non-Bayesian baseline without

negative samplings (fnn) is the strongest baseline in terms of map, ndcg, precision

(pr) and recall (rec) for top-{2,5}.

We attribute the inefficiency of negative sampling heuristics for neural models

on imdb to the small size of skill set (genres) and uniform distribution of teams

(movies) over skills (almost all the skills are fairly adopted by many movies), as seen

in Figure 5.1.3. The fact that dense vector representations for skills are not effective

for non-Bayesian baselines in imdb is further cementing this view. Overall, (2) we

conclude that the effect of considering unsuccessful teams via negative sampling in

non-Bayesian neural models depends on the underlying distribution of teams over
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skills in the training set (dblp vs. imdb). Moreover, (3) in our experiments, that

Bayesian neural models outperform non-Bayesian ones, reported earlier by Rad et al.

on dblp, could not be generalized to and reproduced on imdb.

In response toRQ3, i.e., whether negative sampling increases the efficiency of neu-

ral models during training while improving inference effectiveness, from Figure 5.2.1

and 5.2.2, we can observe that (4) Bayesian neural models that benefit from negative

samples outperforms other models in less number of training epochs for sparse and

dense vector representation across all datasets in terms of ndcg10.7

With respect to the non-Bayesian neural models, we can observe similar synergistic

effects of negative sampling heuristics on obtaining the best inference effectiveness

with a fewer training epochs over dblp. However, we cannot observer similar trend

over imdb. In fact, (5) non-Bayesian neural models without negative sampling (fnn

and fnn-emb) could gradually gain the momentum and achieve the stellar performance

at epoch 7 and after over imdb. This observation further explains that when teams

are well-distributed over a limited set of skills (e.g., movies over genres), overly usage

of negative samples in many epochs of training decouples the vectors of experts and

skills that should have been stayed close for their participation in successful teams,

and consequently degrades the inference performance.

7Similar trend has been observed for other metrics. Full results are available at our codebase.
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ndcg@10 fnn fnn-uniform fnn-unigram fnn-unigram_b fnn-emb fnn-emb-uniform fnn-emb-unigram fnn-emb-unigram_b

1 0.03682871 0.228833202 0.227307701 0.240770845 0.034596902 0.315655968 0.316499275 0.312977086

4 0.03682871 0.324285789 0.380537738 0.349143336 0.034596902 0.509075293 0.511384876 0.475656136

7 0.03682871 0.285623417 0.294132993 0.274387402 0.034596902 0.458210648 0.473135127 0.482072333

10 0.03682871 0.231374498 0.203698633 0.218130369 0.034596902 0.488529352 0.50024644 0.466602658

13 0.03682871 0.197654336 0.172231489 0.203995488 0.034596902 0.507033391 0.492937888 0.49330157

16 0.03682871 0.175801389 0.182289531 0.181289966 0.034596902 0.497894364 0.515309799 0.483909057

19 0.03682871 0.176112748 0.173520648 0.176192361 0.034596902 0.502513267 0.524605223 0.476972673

20 0.036881319 0.199320267 0.190747163 0.18462542 0.042822447 0.271601747 0.28025989 0.26066474

map@10

1 0.015545234 0.108598618 0.108426859 0.111399442 0.015545234 0.151433269 0.148794679 0.148130807

4 0.015545234 0.149905418 0.184820863 0.164240969 0.015545234 0.261673695 0.259986454 0.239548382

7 0.015545234 0.136254092 0.135861749 0.13136005 0.015545234 0.228419719 0.240904973 0.248071077

10 0.015545234 0.106696217 0.092323519 0.101185105 0.015545234 0.248575265 0.252906072 0.234290186

13 0.015545234 0.094136599 0.078548056 0.097368633 0.015545234 0.261881848 0.257537988 0.251374184

16 0.015545234 0.081804587 0.085471688 0.082919112 0.015545234 0.250807853 0.264459097 0.241039633

19 0.015545234 0.081225857 0.080717592 0.080737326 0.015545234 0.253135615 0.271213971 0.241951192

20 0.015545234 0.094283247 0.08800703 0.084665653 0.015545234 0.13048718 0.135640358 0.127727067
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Fig. 5.2.1: Effect of negative sampling on training time vs. inference accuracy on
dblp.v12 dataset.

ndcg@10 fnn fnn-uniform fnn-unigram fnn-unigram_b fnn-emb

1 0.572470796 1.155169905 1.144775903 1.064620455 0.57462826

4 0.705384853 0.945792301 0.975836775 1.007190158 0.993713492

7 0.881225968 0.901742334 0.913853375 0.881617467 1.412914714

10 0.938868063 0.895830733 0.884252377 0.916020271 1.300226376

13 1.0157492 0.88486024 0.9391875 0.960682897 1.228630878

16 1.162785287 0.904483 0.918203526 0.96336736 1.162619476

19 1.184763425 0.896680792 0.906408034 0.898294524 0.987727345

20 1.133052917 0.911581934 0.877281483 0.936318017 1.180503738

map@10

1 0.223060529 0.511448157 0.517598708 0.461991901 0.224735243

4 0.328379562 0.42372146 0.447542401 0.467532722 0.461814942

7 0.450342276 0.409960369 0.421928173 0.405668339 0.609727305

10 0.466085906 0.413448526 0.400248334 0.425651252 0.542625685

13 0.514704155 0.4165552 0.439536671 0.448857822 0.536344647

16 0.578100982 0.419598082 0.418473074 0.441795532 0.491161411

19 0.614015977 0.411271878 0.41961026 0.411957899 0.405701352

20 0.566303785 0.419058412 0.400310796 0.432913959 0.497664624
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Fig. 5.2.2: Effect of negative sampling on training time vs. inference accuracy on
imdb dataset.
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Table 5.2.1: Average performance of 5-fold (non-)Bayesian neural models on test
set with(out) negative sampling in computer science publicaiton (dblp).

%pr 2 %pr 5 %pr10 %rec2 %rec5 %rec10 %ndcg2 %ndcg5 %ndcg10 %map2 %map5 %map10 %aucroc

fnn-nons 0.0067 0.0188 0.0188 0.0045 0.0307 0.0612 0.0082 0.0227 0.0369 0.0045 0.0113 0.0155 50.0000

fnn-uniform 0.1020 0.1030 0.0986 0.0597 0.1522 0.2913 0.1074 0.1350 0.1993 0.0487 0.0741 0.0943 65.1200

fnn-unigram 0.0932 0.0985 0.0971 0.0552 0.1447 0.2854 0.0952 0.1249 0.1907 0.0437 0.0677 0.0880 65.0500

fnn-unigram b 0.0993 0.0979 0.0932 0.0569 0.1429 0.2702 0.1005 0.1249 0.1846 0.0436 0.0665 0.0847 65.0000

fnn-emb-nons 0.0134 0.0255 0.0215 0.0084 0.0402 0.0688 0.0134 0.0302 0.0428 0.0073 0.0174 0.0209 50.0000

fnn-emb-uniform 0.1543 0.1505 0.1346 0.0870 0.2179 0.3925 0.1537 0.1901 0.2716 0.0668 0.1043 0.1305 63.1300

fnn-emb-unigram 0.1523 0.1500 0.1378 0.0884 0.2194 0.4038 0.1564 0.1942 0.2803 0.0700 0.1084 0.1356 63.3100

fnn-emb-unigram b 0.1415 0.1374 0.1291 0.0830 0.2011 0.3770 0.1444 0.1782 0.2607 0.0656 0.1015 0.1277 63.2200

bnn-nons 0.0101 0.0161 0.0195 0.0061 0.0254 0.0569 0.0123 0.0204 0.0365 0.0061 0.0107 0.0155 50.0000

bnn-uniform 0.4005 0.3555 0.3102 0.2297 0.5124 0.8974 0.3997 0.4627 0.6434 0.1746 0.2554 0.3110 71.5000

bnn-unigram 0.3401 0.3067 0.2816 0.1971 0.4469 0.8194 0.3488 0.4070 0.5823 0.1539 0.2249 0.2782 71.3200

bnn-unigram b 0.3904 0.3402 0.3017 0.2256 0.4929 0.8774 0.3983 0.4505 0.6312 0.1757 0.2499 0.3039 71.6800

bnn-emb-nons 0.0168 0.0201 0.0201 0.0112 0.0326 0.0634 0.0175 0.0267 0.0413 0.0089 0.0145 0.0186 50.0000

bnn-emb-uniform 0.3656 0.3405 0.2909 0.2121 0.4934 0.8463 0.3715 0.4426 0.6076 0.1622 0.2397 0.2894 71.2300

bnn-emb-unigram 0.3783 0.3298 0.2858 0.2213 0.4802 0.8313 0.3862 0.4400 0.6049 0.1720 0.2448 0.2966 70.7700

bnn-emb-unigram b 0.3938 0.3518 0.3033 0.2252 0.5065 0.8775 0.3976 0.4593 0.6340 0.1730 0.2517 0.3062 70.9000

Table 5.2.2: Average performance of 5-fold (non-)Bayesian neural models on test
set with(out) negative sampling in movie (imdb).

%pr 2 %pr 5 %pr10 %rec2 %rec5 %rec10 %ndcg2 %ndcg5 %ndcg10 %map2 %map5 %map10 %aucroc

fnn-nons 1.0252 0.7927 0.5556 0.4681 0.9187 1.2931 1.0322 0.9760 1.1331 0.3639 0.5009 0.5663 50.6100

fnn-uniform 0.5760 0.5664 0.5219 0.2634 0.6593 1.2292 0.5802 0.6470 0.9116 0.2038 0.3272 0.4191 59.3000

fnn-unigram 0.5386 0.5190 0.5078 0.2492 0.6054 1.1884 0.5522 0.6035 0.8773 0.1977 0.3085 0.4003 59.2400

fnn-unigram b 0.5864 0.5598 0.5377 0.2767 0.6551 1.2788 0.5911 0.6448 0.9363 0.2141 0.3329 0.4329 59.4100

fnn-emb-nons 0.7028 0.6970 0.7024 0.3243 0.8082 1.6275 0.7057 0.7898 1.1805 0.2487 0.3784 0.4977 55.8500

fnn-emb-uniform 0.7049 0.6979 0.6467 0.3278 0.8029 1.4972 0.6979 0.7817 1.1083 0.2476 0.3872 0.4961 60.6300

fnn-emb-unigram 0.6654 0.6338 0.6026 0.3110 0.7381 1.3961 0.6758 0.7344 1.0442 0.2433 0.3703 0.4740 60.7500

fnn-emb-unigram b 0.7507 0.6654 0.6267 0.3443 0.7776 1.4650 0.7559 0.7807 1.1027 0.2678 0.3929 0.4974 60.6400

bnn-nons 0.1560 0.3327 0.4200 0.0842 0.3775 0.9536 0.1301 0.3027 0.5725 0.0490 0.1227 0.2231 50.0000

bnn-uniform 0.8193 0.7261 0.6484 0.3863 0.8431 1.5104 0.8560 0.8735 1.1833 0.3167 0.4441 0.5397 63.0500

bnn-unigram 0.7320 0.6563 0.5673 0.3347 0.7711 1.3280 0.7423 0.7651 1.0246 0.2568 0.3749 0.4550 63.0400

bnn-unigram b 0.6883 0.6654 0.6001 0.3226 0.7795 1.3931 0.6954 0.7673 1.0580 0.2483 0.3810 0.4670 63.1300

bnn-emb-nons 0.1643 0.3194 0.3531 0.0834 0.3696 0.8102 0.1695 0.3124 0.5180 0.0642 0.1334 0.2024 50.0000

bnn-emb-uniform 0.7424 0.6355 0.5548 0.3544 0.7575 1.3128 0.7739 0.7766 1.0370 0.2855 0.3970 0.4730 62.6200

bnn-emb-unigram 0.7819 0.7569 0.6675 0.3620 0.8767 1.5490 0.7969 0.8727 1.1852 0.2820 0.4243 0.5256 63.1300

bnn-emb-unigram b 0.8858 0.7802 0.7053 0.3982 0.9002 1.6341 0.9207 0.9272 1.2662 0.3267 0.4692 0.5728 64.7000
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5.2.2 Impact of Streaming Training Strategy and Temporal

Skills

We should note that we have initiated our experiments for evaluation of our streaming

training strategy and temporal skills using Bayesian neural network with smoothed

unigram distribution in each training minibatch negative sampling heuristic, hence

*bnn* is actually *bnn*-unigram b. Models starting with tbnn* have utilized our

streaming scenario training strategy and tbnn dt2v emb uses temporal skills embed-

dings as input. Here we have used two more datasets, namely uspt and gith, com-

pared to our experiments on negative sampling.

In response to RQ4, i.e., whether the streaming training strategy improves the

predictive power of state-of-the-art neural models, from Tables 5.2.3, 5.2.4, 5.2.5, and

5.2.6, comparing bnn and bnn emb with tbnn and tbnn emb respectively, we can ob-

serve that streaming training strategy increases neural models’ relative performance

between 10 to 20 percent on dblp and uspt in terms of the classification metrics

(aucroc). Even though, we do not see the same performance improvement from our

training strategy in terms of aucroc on imdb, we can see that it increases the per-

formance of neural models in terms of the information retrieval metrics (up to 300

percent). Moreover, our training strategy increases neural models’ relative perfor-

mance on the information retrieval metrics between 100 and 200 percent on dblp and

uspt as well.

In response to RQ5, i.e., whether adding time explicitly to the input of the neural

model improves its performance while utilizing the streaming training strategy, from

Tables 5.2.3, 5.2.4, 5.2.5, and 5.2.6, comparing tbnn emb with tbnn dt2v emb, we can

see that the models that utilize temporal skills in the input gain relative performance

of between 20 to 50 percent in terms of map, ndcg, precision (pr) and recall (rec)

for top-{2,5,10} on dblp, uspt, and gith and up to 100 percent on imdb on some

metrics.

Regarding RQ6, i.e., whether the impact of our proposed streaming training

strategy is consistent across different datasets with distinct distributions of skills and
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Table 5.2.3: Average performance of 5-fold neural models with(out) streaming learn-
ing and temporal skills on test set in dblp.

%pr 2 %pr 5 %pr10 %rec2 %rec5 %rec10 %ndcg2 %ndcg5 %ndcg10 %map2 %map5 %map10 aucroc

bnn 0.0570 0.0663 0.0710 0.0351 0.0993 0.2118 0.0538 0.0806 0.1330 0.0242 0.0411 0.0558 0.6352

bnn emb 0.1124 0.1290 0.1251 0.0668 0.1909 0.3699 0.1083 0.1555 0.2397 0.0474 0.0792 0.1033 0.6681

rrn 0.0570 0.0391 0.0472 0.0380 0.0630 0.1552 0.0478 0.0523 0.0959 0.0217 0.0281 0.0446 0.5073

tbnn 0.1189 0.1413 0.1664 0.0706 0.2090 0.4984 0.1126 0.1689 0.3031 0.0484 0.0845 0.1223 0.7308

tbnn emb 0.2996 0.2938 0.2811 0.1816 0.4433 0.8431 0.3048 0.3860 0.5721 0.1411 0.2095 0.2635 0.7483

tbnn dt2v emb 0.4299 0.3973 0.3612 0.2601 0.5963 1.0801 0.4284 0.5221 0.7465 0.1947 0.2864 0.3520 0.7701

Table 5.2.4: Average performance of 5-fold neural models with(out) streaming learn-
ing and temporal skills on test set in imdb.

%pr 2 %pr 5 %pr10 %rec2 %rec5 %rec10 %ndcg2 %ndcg5 %ndcg10 %map2 %map5 %map10 aucroc

bnn 0.7994 0.8164 0.7533 0.3541 0.9167 1.7064 0.8046 0.9022 1.2736 0.2746 0.4386 0.5500 0.6429

bnn emb 0.4255 0.5106 0.6383 0.2837 0.8511 1.9574 0.3292 0.5923 1.1358 0.1418 0.2813 0.4389 0.5182

rrn 0.0000 0.8511 0.8511 0.0000 1.4184 2.8369 0.0000 0.8163 1.4606 0.0000 0.3191 0.6265 0.5222

tbnn 0.8511 1.5319 1.4043 0.5319 2.4610 4.4965 0.7548 1.7381 2.6829 0.3369 0.8215 1.1674 0.6346

tbnn emb 0.8511 1.1064 1.0638 0.5674 1.7518 1.3262 0.9474 1.4848 2.2007 0.4965 0.8138 1.0099 0.6687

tbnn dt2v emb 1.9149 1.1915 1.4468 1.2411 1.9504 4.5532 1.8667 1.8703 3.0303 0.9043 1.1099 1.4293 0.6656

experts, from Tables 5.2.3, 5.2.4, 5.2.5, and 5.2.6, we can see a positive impact on

the model’s predictive power in terms of information retrieval metrics for dblp, imdb,

and uspt. However, for gith, we can see that Bayesian neural networks using our

proposed streaming training strategy have a positive impact when using sparse vector

representations as input and a small decrease in performance when using embeddings

(*emb*) generated by Doc2Vec. More specifically, in terms of aucroc, the improve-

ment is more significant on dblp and uspt compared to imdb and gith.

Finally, from Tables 5.2.3, 5.2.4, 5.2.5, and 5.2.6, we can see that the results of our

proposed training strategy and incorporation of temporal skills are superior compared

to the temporal recommender system baseline [61] (rrn) on all four datasets for all

of the classification and information retrieval metrics.

5.2.3 Hyperparameter Study

We also conducted a hyperparameter study on the optimum neural model based

on our experiments in Section 5.2.1. To this end, we used the bnn emb-unigram b
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Table 5.2.5: Average performance of 5-fold neural models with(out) streaming learn-
ing and temporal skills on test set in uspt.

%pr 2 %pr 5 %pr10 %rec2 %rec5 %rec10 %ndcg2 %ndcg5 %ndcg10 %map2 %map5 %map10 aucroc

bnn 0.0657 0.0769 0.0910 0.0353 0.0976 0.2212 0.0655 0.0883 0.1481 0.0266 0.0433 0.0592 0.6454

bnn emb 0.3663 0.4123 0.3748 0.1608 0.4509 0.8141 0.3652 0.4531 0.6094 0.1212 0.2027 0.2583 0.6985

rrn 0.0239 0.0383 0.0654 0.0140 0.0500 0.1370 0.0221 0.0408 0.0868 0.0096 0.0186 0.0340 0.5160

tbnn 0.1843 0.1841 0.2029 0.0933 0.2321 0.5158 0.1794 0.2152 0.3481 0.0681 0.1056 0.1429 0.7544

tbnn emb 0.8272 0.7539 0.7042 0.3970 0.9021 1.6933 0.8457 0.9057 1.2657 0.3104 0.4533 0.5679 0.8359

tbnn dt2v emb 1.2268 1.0583 0.9324 0.6037 1.2928 2.2518 1.2322 1.2960 1.7348 0.4626 0.6659 0.8118 0.8534

Table 5.2.6: Average performance of 5-fold neural models with(out) streaming learn-
ing and temporal skills on test set in gith.

%pr 2 %pr 5 %pr10 %rec2 %rec5 %rec10 %ndcg2 %ndcg5 %ndcg10 %map2 %map5 %map10 aucroc

bnn 3.0693 2.8515 2.6931 1.2164 2.8846 5.1174 3.1365 3.2893 4.2340 1.0104 1.5706 2.1633 0.5618

bnn emb 7.3267 4.7129 3.3861 3.5441 5.1580 6.1885 6.4753 5.8418 6.2665 2.3424 3.0822 3.3837 0.6265

rrn 0.0000 0.1980 0.0990 0.0000 0.0619 0.0619 0.0000 0.1679 0.1090 0.0000 0.0206 0.0206 0.5226

tbnn 3.8614 2.8515 2.3564 1.8801 3.1525 4.5754 4.3319 3.9721 4.5031 1.8025 2.3978 2.8768 0.5665

tbnn emb 4.9505 3.5248 3.1287 1.9434 3.0770 4.3718 5.0849 4.4715 4.9844 1.6957 2.1431 2.5949 0.6220

tbnn dt2v emb 5.7426 4.5941 3.8020 2.1874 3.8474 4.7855 5.6081 5.3287 5.6670 1.7131 2.4258 2.7858 0.6489

with a single hidden layer of size d=128 as the baseline, with ReLU and sigmoid

as the activation functions for the hidden and the output layers, respectively, and

Adam as the optimizer with learning rate of 0.1 with 20 epochs. We conducted

our experiments on dblp and imdb datasets only because uspt and gith datasets

have similar distribution of teams over experts and skills to dblp and imdb datasets,

respectively, and models perform similarly on them.

5.2.3.1 Model Size

We experimented with size of the model first, i.e., we increased the number of layers

and the number of nodes in the model. To this end, we tried models with lay-

ers/#nodes of [128,64,128], i.e., first hidden layer has 128 nodes, second hidden layer

has 64 nodes, and the third hidden layer has 128 nodes, and with layers/#nodes of

[256,128,64,128,64]. As can be seen, in Tables 5.2.7, 5.2.8, we can see increasing the

size of the model decreases its performance on both datasets.
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Table 5.2.7: Average performance of 5-fold neural models with different model sizes
on test set in dblp.

Layers/Nodes %pr 2 %pr 5 %pr10 %rec2 %rec5 %rec10 %ndcg2 %ndcg5 %ndcg10 %map2 %map5 %map10 %aucroc

[128] 0.1124 0.1290 0.1251 0.0668 0.1909 0.3699 0.1083 0.1555 0.2397 0.0474 0.0792 0.1033 0.6681

[128,64,128] 0.0309 0.0373 0.0325 0.0190 0.0599 0.1034 0.0312 0.0482 0.0679 0.0145 0.0269 0.0337 0.5015

[256,128,64,128,256] 0.0456 0.0502 0.0482 0.0288 0.0802 0.1564 0.0485 0.0672 0.1017 0.0236 0.0364 0.0495 0.5003

Table 5.2.8: Average performance of 5-fold neural models with different model sizes
on test set in imdb.

Layers/Nodes %pr 2 %pr 5 %pr10 %rec2 %rec5 %rec10 %ndcg2 %ndcg5 %ndcg10 %map2 %map5 %map10 %aucroc

[128] 0.4255 0.5106 0.6383 0.2837 0.8511 1.9574 0.3292 0.5923 1.1358 0.1418 0.2813 0.4389 0.5182

[128,64,128] 0.1890 0.2292 0.1852 0.0887 0.2825 0.4587 0.1772 0.0459 0.3233 0.0593 0.1113 0.1335 0.5098

[256,128,64,128,256] 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.4888

5.2.3.2 #Bayesian Samples

Second, we conducted experiments on the number of samples for Bayesian neural net-

works. Bayesian neural networks learn a distribution for parameters through training

instead of learning a single parameter for each edge between two nodes like feed-

forward neural networks. To do this, they learn a mean and a standard deviation for

each edge, and for each train/validation/test instance, they sample a set of parame-

ters based on the learned distribution of parameters and use that for inference. For

instance, if we set the number of samples to 3, it means that the model samples the

parameters 3 times and infers 3 probabilities for each expert, we then take the average

probability of each expert and use that for evaluation. As can be seen in Tables 5.2.9

and 5.2.10, the impact of #bs depends on the distribution of the dataset. On dblp,

increasing the number of Bayesian samples to bs = {3} have a positive impact of the

performance of the model, but with higher number of Bayesian sampling, the model’s

performance start to diminish, but on imdb, even increasing the number of Bayesian

samples up to bs = {3} will degrade the model’s performance.

5.2.3.3 Embedding Size

Third, we aim to see if increasing the size of real-valued learned embeddings using

Doc2Vec for the input layer will help improve model’s performance. To this end,
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Table 5.2.9: Average performance of 5-fold neural models with different number of
Bayesian samples on test set in dblp.

%pr 2 %pr 5 %pr10 %rec2 %rec5 %rec10 %ndcg2 %ndcg5 %ndcg10 %map2 %map5 %map10 %aucroc

#bs = 1 0.1124 0.1290 0.1251 0.0668 0.1909 0.3699 0.1083 0.1555 0.2397 0.0474 0.0792 0.1033 0.6681

#bs = 3 0.2003 0.1856 0.1814 0.1185 0.2737 0.5403 0.2058 0.2473 0.3706 0.0924 0.1346 0.1702 0.6656

#bs = 5 0.1352 0.1088 0.1055 0.0780 0.1597 0.3150 0.1318 0.1451 0.2164 0.0565 0.0782 0.0988 0.6078

#bs = 10 0.1205 0.1120 0.1104 0.0726 0.1681 0.3296 0.1168 0.1441 0.2188 0.0532 0.0780 0.0996 0.5948

Table 5.2.10: Average performance of 5-fold neural models with different number of
Bayesian samples on test set in imdb.

%pr 2 %pr 5 %pr10 %rec2 %rec5 %rec10 %ndcg2 %ndcg5 %ndcg10 %map2 %map5 %map10 %aucroc

#bs = 1 0.4255 0.5106 0.6383 0.2837 0.8511 1.9574 0.3292 0.5923 1.1358 0.1418 0.2813 0.4389 0.5182

#bs = 3 0.2128 0.2553 0.3830 0.1418 0.4255 1.0496 0.2609 0.3768 0.6884 0.1418 0.2175 0.3080 0.5264

#bs = 5 0.0000 0.0851 0.2979 0.0000 0.0851 0.8794 0.0000 0.0622 0.4064 0.0000 0.0213 0.1095 0.5256

#bs = 10 0.2128 0.1702 0.4255 0.1418 0.2270 1.2482 0.2609 0.2555 0.7249 0.1418 0.1589 0.2982 0.5371

we experiment with input embedding sizes of d = {100, 200, 300, 500}. Note that

d = {100} is the baseline. As can be seen from Tables 5.2.11 and 5.2.12, increasing

the dimension of Doc2Vec embeddings for input skills, will generally result in a lower

performance in terms of both information retrieval and classification metrics.

5.2.3.4 #Negative Samples

Finally, we want to examine the impact of increasing the number of negative samples

on the performance of Bayesian neural networks. The default number of negative

samples (nns) is 3, which is the minimum size of teams after filtering. We have con-

ducted experiments on nns = {5, 10, 20, 50} and have observed that increasing nns up

to 20 can lead to a higher performance in terms of all metrics, however, nns = {50}

resulted in poorer performance compared to nns = {20}, which shows that if we

Table 5.2.11: Average performance of 5-fold neural models with different input em-
bedding sizes on test set in dblp.

%pr 2 %pr 5 %pr10 %rec2 %rec5 %rec10 %ndcg2 %ndcg5 %ndcg10 %map2 %map5 %map10 %aucroc

d = 100 0.1124 0.1290 0.1251 0.0668 0.1909 0.3699 0.1083 0.1555 0.2397 0.0474 0.0792 0.1033 0.6681

d = 200 0.1352 0.1094 0.1120 0.0792 0.1612 0.3308 0.1377 0.1499 0.2284 0.0610 0.0824 0.1045 0.6588

d = 300 0.1205 0.0997 0.0964 0.0727 0.1499 0.2893 0.1168 0.1332 0.1978 0.0517 0.0720 0.0904 0.6520

d = 500 0.0651 0.0840 0.0918 0.0400 0.1289 0.2807 0.0666 0.1044 0.1748 0.0306 0.0537 0.0737 0.6465
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Table 5.2.12: Average performance of 5-fold neural models with different input em-
bedding sizes on test set in imdb.

%pr 2 %pr 5 %pr10 %rec2 %rec5 %rec10 %ndcg2 %ndcg5 %ndcg10 %map2 %map5 %map10 %aucroc

d = 100 0.4255 0.5106 0.6383 0.2837 0.8511 1.9574 0.3292 0.5923 1.1358 0.1418 0.2813 0.4389 0.5182

d = 200 0.0000 0.3404 0.3404 0.0000 0.5106 0.9645 0.0000 0.3214 0.5585 0.0000 0.1277 0.1986 0.5087

d = 300 0.4255 0.3404 0.3830 0.2270 0.4539 1.1631 0.4255 0.4097 0.7318 0.1560 0.2057 0.2998 0.5086

d = 500 0.0000 0.1702 0.2979 0.0000 0.1915 0.8440 0.0000 0.1389 0.4569 0.0000 0.0525 0.1484 0.5075

Table 5.2.13: Average performance of 5-fold neural models with different number of
negative samples on test set in dblp.

%pr 2 %pr 5 %pr10 %rec2 %rec5 %rec10 %ndcg2 %ndcg5 %ndcg10 %map2 %map5 %map10 %aucroc

#nns = 3 0.1124 0.1290 0.1251 0.0668 0.1909 0.3699 0.1083 0.1555 0.2397 0.0474 0.0792 0.1033 0.6681

#nns = 5 0.1677 0.1557 0.1593 0.0994 0.2313 0.4718 0.1629 0.2010 0.3145 0.0719 0.1067 0.1389 0.6755

#nns = 10 0.2215 0.2247 0.2000 0.1318 0.3379 0.6009 0.2185 0.2858 0.4075 0.0972 0.1506 0.1852 0.6789

#nns = 20 0.2638 0.2495 0.2189 0.1556 0.3716 0.6547 0.2704 0.3301 0.4608 0.1209 0.1783 0.2163 0.6793

#nns = 50 0.2003 0.1915 0.1788 0.1207 0.2865 0.5364 0.2036 0.2513 0.3672 0.0922 0.1364 0.1692 0.6748

use too many negative samples for each training instance, instead of giving compli-

mentary signals to the model, we are confounding it, i.e., the model will take vector

representations of negative sampled experts farther from possibly relevant skills. You

can see the results of our experiments on dblp and imdb in Tables 5.2.13 and 5.2.14.

Table 5.2.14: Average performance of 5-fold neural models with different number of
negative samples on test set in imdb.

%pr 2 %pr 5 %pr10 %rec2 %rec5 %rec10 %ndcg2 %ndcg5 %ndcg10 %map2 %map5 %map10 %aucroc

#nns = 3 0.4255 0.5106 0.6383 0.2837 0.8511 1.9574 0.3292 0.5923 1.1358 0.1418 0.2813 0.4389 0.5182

#nns = 5 0.0000 0.0851 0.1277 0.0000 0.1418 0.3688 0.0000 0.0860 0.2006 0.0000 0.0355 0.0686 0.5238

#nns = 10 0.6383 0.3404 0.3404 0.3688 0.5106 1.0213 0.5902 0.4940 0.7454 0.2553 0.2837 0.3593 0.5195

#nns = 20 0.6383 0.6809 0.5106 0.4255 0.9645 1.4184 0.5902 0.8515 1.0719 0.2837 0.4520 0.5331 0.5408

#nns = 50 0.2128 0.1702 0.5532 0.1418 0.2837 1.6738 0.1646 0.2032 0.8637 0.0709 0.0993 0.3105 0.5470
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CHAPTER 6

Conclusion and Future Work

In this paper, we proposed i) a streaming training strategy for neural models to

learn the evolution of experts’ skills and collaborative ties to predict future successful

teams, ii) an objective function that utilizes negative sampling heuristics to bring

embeddings of experts and skills that have been part of successful collaborations

closer to each other while taking embeddings of experts and skills that have not

been part of previous successful collaborations farther from each other. We produce

negative samples using three negative sampling heuristics based on the closed-world

assumption where we consider no currently known team of experts for the required

skills as an unsuccessful team. We performed extensive experiments on four large-

scale datasets with distinct distributions of skills and experts over teams within time.

Our experiments show that (1) our proposed streaming training strategy improves the

predictive power of neural models for future successful teams, (2) neural models that

leverage temporal information in the input obtain better performance compared to

lack thereof, (3) neural models utilizing our proposed training strategy with or without

incorporation of temporal information outperform the temporal recommender system

baseline, (4) negative sampling improves the effectiveness of Bayesian neural models

for the task of team formation, (5) depending on the distribution of teams over skills,

while improving the performance of non-Bayesian neural baselines in datasets with

a large variety of skills (e.g., dblp), negative sampling may discount the efficacy

of neural models in datasets with limited skill set (e.g., imdb), and (6) negative

sampling helps with efficiency during training while improving inference effectiveness

for Bayesian neural models. In regard to non-Bayesian neural models, the contribution
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of negative sampling heuristics depends on the statistical distribution of skills in the

underlying dataset. For future work, we aim to compare our models with other

temporal recommender system baselines and identify real unsuccessful teams, e.g.,

based on their sleeping time in arXiv1 for research publications or budget-box office

ratio for movies.

1arxiv.org
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