
University of Windsor University of Windsor

Scholarship at UWindsor Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

2023

Rapid Prototyping and Functional Verification of Power Efficient AI Rapid Prototyping and Functional Verification of Power Efficient AI

Processor on FPGA Processor on FPGA

Vivek Liladhar Ladhe
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

 Part of the Electrical and Computer Engineering Commons

Recommended Citation Recommended Citation
Ladhe, Vivek Liladhar, "Rapid Prototyping and Functional Verification of Power Efficient AI Processor on
FPGA" (2023). Electronic Theses and Dissertations. 8935.
https://scholar.uwindsor.ca/etd/8935

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F8935&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=scholar.uwindsor.ca%2Fetd%2F8935&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/8935?utm_source=scholar.uwindsor.ca%2Fetd%2F8935&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

RAPID PROTOTYPING AND FUNCTIONAL VERIFICATION OF

POWER EFFICIENT AI PROCESSOR ON FPGA

by

Vivek Liladhar Ladhe

A Thesis
Submitted to the Faculty of Graduate Studies

through the Department of Electrical and Computer Engineering
in Partial Fulfilment of the Requirements for
the Degree of Master of Applied Science at the

University of Windsor

Windsor, Ontario, Canada

© 2023 Vivek Liladhar Ladhe

Rapid Prototyping and Functional Verification of Power Efficient AI Processor on
FPGAs

by
Vivek Liladhar Ladhe

APPROVED BY:

I. Ahmad
School of Computer Science

E. Abdel-Raheem
Department of Electrical and Computer Engineering

M. Khalid, Advisor
Department of Electrical and Computer Engineering

January 23, 2023

Declaration of originality

I hereby certify that I am the sole author of this thesis and that no part of this thesis

has been published or submitted for publication.

I certify that, to the best of my knowledge, my thesis does not infringe upon

anyone’s copyright nor violate any proprietary rights and that any ideas, techniques,

quotations, or any other material from the work of other people included in my

thesis, published or otherwise, are fully acknowledged in accordance with the standard

referencing practices. Furthermore, to the extent that I have included copyrighted

material that surpasses the bounds of fair dealing within the meaning of the Canada

Copyright Act, I certify that I have obtained a written permission from the copyright

owner(s) to include such material(s) in my thesis and have included copies of such

copyright clearances to my appendix.

I declare that this is a true copy of my thesis, including any final revisions, as

approved by my thesis committee and the Graduate Studies office, and that this thesis

has not been submitted for a higher degree to any other University or Institution.

iii

Abstract

Prototyping a design on a Field Programmable Gate Array (FPGA) involves different

stages such as developing a design, performing synthesis, handling placement and

routing and finally generating the programming bit file for the FPGA. After successful

completion of the above stages, it is important to functionally verify the design.

This thesis addresses the challenges involved in rapid prototyping and functional

verification of a low power AI processor provided by the industry partner. This

research also addresses the methodology used in generating programming bit file and

testing the design. Traditional method of testing a design using RTL level testbench

utilises more time and relies on functioning of other components associated with

the design. This thesis incorporated a new technique of testing the design using

software programs focusing on verification of the functionality of a particular module

without depending on the other. This methodology reduced the time for functionality

verification for part of the design from approximately 1 month to about 2 weeks.

Finally, using the methodology mentioned above, the design was synthesized for two

FPGA kits, along with analysing the power consumption of the design. The results

show the low power nature of the design as it does not use any external memory

resulting in faster Arithmetic Logic Unit (ALU) operations thereby saving time to

access the data.

iv

Dedication

I would like to dedicate this thesis to my mom for her incredible love and support.

Because I believe that she is the real backbone of our family, this is to appreciate

her selfless hard work and efforts towards the family. Furthermore, I dedicate it to

my father to raise me like a son and give me the wings to fly. To my grandfather,

for always trusting me and supporting me in my hard times, without his encourage-

ment, nothing would have been easy. And to my entire family for their unconditional

affection towards me.

v

Acknowledgements

Firstly, I would like to express my deepest gratitude to my supervisor Dr. Mohammed

Khalid for giving me the opportunity to conduct my Master’s thesis research under

his supervision. I am very grateful for his patience, his kind support and assistance

during the project. His encouragement helped me to the surpass difficulties that I

have encountered during my research and study. I am grateful and fortunate to have

him as a mentor and supervisor.

I would like to thank Aarish Technologies and MITACS for providing me an

opportunity to witness industrial experience. I am very thankful to Mr. Pavel Sinha

and Aarish Technologies for providing the design of AI Processor and all the help

required to complete this thesis work.

I would like to thank Dr. Esam Abdel-Raheem and Dr. Imran Ahmad for taking

time from their busy schedule to be part of my thesis committee and for providing

insightful suggestions to improve my research.

And finally, I am dedicating my research to my parents, for their kind support in

all steps of my life and especially their continued support during this project.

vi

Contents

Declaration of Authorship iii

Abstract iv

Dedication v

Acknowledgements vi

List of Tables ix

List of Figures x

List of Abbreviations 1

1 Introduction 4

1.1 Motivation . 4

1.2 Thesis Objectives . 6

1.3 Contributions . 7

1.4 Thesis Outline . 7

2 Background and Related Work 9

2.1 Motivation for Rapid Prototyping using FPGAs 9

2.2 Rapid Prototyping Hardware design methodologies 11

2.3 Related Work . 13

vii

3 Rapid Prototyping and Functional Verification of AI Processor 16

3.1 Overview of Artificial Intelligence . 16

3.2 Overview of Convolutional Neural Network 17

3.3 Overview of low power AI processor 18

3.4 Operation of low power AI processor 24

3.5 Hardware platform and CAD tools used for rapid prototyping 27

3.5.1 Overview of Arty 7 Board . 28

3.5.2 Overview of Xilinx VCU118 kit 28

3.5.3 CAD tools used in FPGA Prototyping 30

3.5.4 FPGA Prototyping sequence 36

3.6 Functional Verification of the design 36

4 Experimental Results 42

4.1 Test Setup and Functional Verification 42

4.2 Jenkins Setup . 46

4.3 FPGA Resource Utilisation . 47

4.4 Power Analysis . 53

5 Conclusion and Future work 57

Bibliography

Vita Auctoris

viii

List of Tables

3.1 Pin Callout in Xilinx ARTY 7 Board [9] 29

3.2 Resources available in Xilinx VCU118 board [10] 32

3.3 Test cases for functional verification 41

4.4 Functional Verification Tests [14] [15] [16] 44

4.5 Packet operation codes . 46

4.6 VCU118 Resource Utilization . 48

4.7 Arty A7 Resource Utilization . 51

ix

List of Figures

2.1 Layout of FPGA [1] . 10

2.2 Structure of FPGA [6] . 11

2.3 Hardware Design Techniques [7] . 13

3.4 Context of Artificial Intelligence [5] 17

3.5 Connections to neuron [5] . 18

3.6 Convolutional Neural Network [5] . 19

3.7 Representation of Programmable Functional Array (PFA) [8] 21

3.8 Representation of Programmable Functional Unit (PFU) [8] 22

3.9 Simplified PFU [8] . 23

3.10 Architecture of CNN Processor [8] . 25

3.11 Architecture of CNN Processor [8] . 25

3.12 Arty 7 Board Layout [9] . 30

3.13 VCU118 Evaluation Board [10] . 31

3.14 CAD flow . 35

3.15 Test for UART module . 40

3.16 Waveform for UART smoketest . 40

4.17 Simulation Waveform . 43

4.18 Packet . 45

4.19 VCU118 Resource Utilization on individual modules 50

4.20 VCU118 Resource Utilization on individual modules 50

x

4.21 VCU118 Resource Utilization on individual modules 51

4.22 Arty A7 Resource Utilization on individual modules 52

4.23 Arty A7 Resource Utilization on individual modules 52

4.24 Arty A7 Resource Utilization on individual modules 53

4.25 Arty A7 Chip View . 54

4.26 VCU118 Chip View . 54

4.27 Power Analysis of VCU118 . 56

4.28 Power Analysis of Arty A7 . 56

xi

List of Abbreviations

CAD Computer-Aided Design

RTL Register Transfer Language

CNN Convolutional Neural Network

AI Artificial Intelligence

DNN Deep Neural Network

GPU Graphics Processing Unit

FC Fully Connected

CONV Convolution

LRN Local Response Normalization

MAC Multiply-Accumulate

PE Processing Engine/Element

EDA Electronic Design Automation

RF Register File

WS Weight Stationary

ADC Analog-to-Digital Converter

DAC Digital-to-Analog Converter

RAM Random Access Memory

IC Integrate Circuit

MLA Machine Learning Accelerator

MIPI Mobile Industry Processor Interface

PFA Performance Functional Array

1

PFU Performance Functional Unit

CC Core Compute

ISA Instruction Set Architecture

WNS Worst Negative Slack

TNS Total Negative Slack

DEF Data Exchange Format

FPGA Field Programmable Gate Array

SoC System on Chip

ASIC Application Specific Integrated Circuit

PFU Programmable Functional Unit

UART Universal Asynchronous Receiver-Transmitter

I2C Inter-Integrated Circuit

SPI Serial Peripheral Interface

GPIO General Purpose Input/Output

SRAM Static Random Access Memory

DM Debug module

CSI Camera Serial Interface

FIFO First-In First-Out

HLS High Level Synthesis

TCL Transaction Control Languages

DSP Digital Signal Processing

CPU Central Processing Unit

CLB Configurable Logic Block

LE Logic Element

ALM Adaptive Logic Module

LUT Lookup Table

FA Full Adder

FF Flip-Flop

2

HDL Hardware Description Language

ALU Arithmetic Logic Unit

3

Chapter 1

Introduction

1.1 Motivation

In 1965, Golden Moore predicted that the number of transistors in a single integrated

circuit will double after every eighteen months. Since last five decades this statement

has been proved correct [4]. In recent years, scaling down of transistor size has

become extremely difficult and in parallel to it the demand for high performance and

power efficient microprocessors is increasing. The main reason being applications

that are emerging in the fields of mobile computing, machine learning, data mining

and computer graphics. Simply adding more computational devices and memory

into a processor may not be an ideal solution of increasing throughput. Current

research efforts are focusing on using specialized hardware accelerators for speeding

up computationally intensive tasks.

Artificial Intelligence is one of the fastest growing areas today. It is already

applied in fields such as data mining, computer vision, robotics, stock trading, image

and video, speech and language, medical, etc. However, most of the machine learning

algorithms are computationally intensive, running such algorithms on GPUs resulted

in high performance, but at the same time power consumption of those GPUs and

efforts to design cooling systems for handling heat dissipation become a challenge.

4

A new AI processor was designed by our industry partner Aarish Technologies for

low power applications in edge computing. This thesis deals with rapid prototyping

and functional verification of this power efficient AI processor on FPGA. Prototyping

is not a push-button process. Detailed consideration and care are required at various

phases of prototyping. The following points perfectly describe various highlights of

using FPGAs for prototyping [3].

1. High performance and accuracy - Only FPGA based prototyping provides both

speed and accuracy necessary to properly test many aspects of the design. For

example, a team can aim to validate some of the embedded software codes and

see how it runs at-speed on real hardware

2. Real-time dataflow - Part of the reason that verifying a design is hard because its

state depends on many variables like previous state, sequence of inputs, possible

feedback of the outputs. Running the design at real-time speed connected to

the rest of the system allows to see immediate effect on all of them.

3. Software Validation - Using FPGAs we can achieve speeds up to real time and

yet still be modelling at a level of full RTL cycle accuracy. This enables the

same prototype to be used not only for accurate models required by low-level

software validation, but also high-speed models required by high-level appli-

cation developers. The complete software stack can be modeled on the single

FPGA Prototype.

4. Interfacing benefit - Different modules can be interfaced with FPGA which helps

verifying the correct processing at each level to observe that correct output data

is generated.

5. Prototyping usage out of labs - One true unique aspect of FPGA based proto-

typing for validating a design is its ability to work standalone. This is because

FPGAs can be configured from FLASH EEPROM cards or other self contained

5

medium without supervision from a host PC. The prototype therefore can run

standalone and be used for testing design in different situations provided by

other modelling techniques such as emulation which completely relies on host

intervention.

1.2 Thesis Objectives

The goals of this thesis were: to prototype the Aarish AI processor on the FPGA,

perform functional verification of the design and to evaluate the power consumption

of the implemented design to verify power efficiency. The research goals were achieved

in the following phases.

1. Manual way of designing RTL required modifications to the design on daily

basis hence, to generate the build of the modified RTL and to perform func-

tional verification of the design frequently we integrated Jenkins pipeline for

automating the complete cycle.

2. Different FPGA boards were considered to synthesize the design, also due to

the memory limitations it was not possible to prototype the complete design,

hence a scaled downed design was synthesized on VCU118 and Arty A7 FPGA

kit.

3. Using Jenkins programming bit file was generated along with synthesizing and

implementing design on the FPGA kit.

4. Different software test programs were developed for verifying the functionality

of different modules involved in the design.

5. After running these software test programs simulation was checked to ensure

accurate functionality of the design under test.

6

6. Finally, after synthesizing the design power analysis was performed to evaluate

the power efficiency of the design using Xilinx vivado.

1.3 Contributions

This work explores the rapid prototyping and functional verification of AI processor

on the FPGAs. This AI processor provided by our industry partner is highly scalable

and aims at low power consumption. Due to its low power capability the design was

synthesized on the FPGAs.

Prototyping a design involves several steps hence while designing using register

transfer language (RTL) it is time consuming to modify RTL, perform placement and

route, synthesise the design and at last generate a programming bit file regularly.

Integrating Jenkins with the design helped to complete all these tasks at a much

faster pace. Usage of TCL scripting and Shell scripting for automating jobs has aided

the flow with increased time efficiency.

Testing the design is a crucial part while developing using the RTL approach.

Traditional method for testing a design is by using RTL-level testbench, but this

process is extremely time consuming. In this thesis software test programs using

C language were developed to verify the functionality of each module used in the

design. Usage of such test programs not only saved time but also provided us with

the flexibility in testing as it didn’t rely on the status of other modules. Adapting this

approach saved around 50 percent of the time as compared to traditional testbench

based methodology.

1.4 Thesis Outline

The remainder of this thesis is structured as follows:

7

Chapter 2 provides a review of background information about the Field Pro-

grammable Gate Arrays (FPGAs) and different hardware design methodologies avail-

able to develop a design.

Chapter 3 provides an overview on artificial intelligence along with highlighting

importance of convolutional neural network as the prototyped design is closely related

to it. An overview of low power AI processor provided by our industry partner is

provided in detail, highlighting different components involved in the design. Later,

complete working of the processor and functionality of different modules available in

the design are described briefly. Different hardware platforms and CAD tools that

were used in prototyping and verifying the design are described. Brief summary

on available resources is provided for two different FPGA kits that were used in

this research. Later, all the steps associated with generating the programmable bit

file required to program FPGA boards are explained with the help of flow diagram.

Finally, functional verification of the design using different methodologies is explained

with the help of table.

In chapter 4 test setup and test approaches are illustrated and later functionality,

performance and hardware realization results of the low power Aarish AI processor

are discussed in brief. The design was synthesized for FPGA kits mentioned above

and complete summary on utilization of the resources by individual modules are

highlighted with the help of tables and pie charts. Finally, this chapter displays

power consumption results obtained for both FPGA kits used in this thesis.

Finally, in chapter 5, we have concluded with a summary of this thesis and pro-

vided suggestions for further research and future work.

8

Chapter 2

Background and Related Work

2.1 Motivation for Rapid Prototyping using FP-

GAs

Field Programmable Gate Arrays (FPGAs) are semiconductor devices which are

based around a matrix of configurable logic blocks (CLBs) connected via programmable

interconnects. Fig 2.1 highlight CLBs, Programmable Interconnects and Input/Output

Blocks as mentioned above. The main advantage of using FPGAs is they can be re-

programmed to any application or design after manufacturing. This is what makes an

FPGA standout in comparison to Application Specific Integrated Circuits (ASICs)

which are manufactured only for a particular design or task [2].

Normally a logic block comprises of few logic cells (each cell is also termed as

adaptive logic module (ALM), a logic element (LE), slice, etc.). A typical cell com-

prises of a 4-input lookup table (LUT), a multiplexer and a D-type flip-flop (DFF)

as shown in Fig 2.2.

9

Figure 2.1: Layout of FPGA [1]

10

Figure 2.2: Structure of FPGA [6]

2.2 Rapid Prototyping Hardware design method-

ologies

Hardware design is done wither to execute a specific task (single purpose) or variety

of task (general purpose). Example of general-purpose IC (Integrated Circuit) is CPU

in a computer/laptop as it can execute multiple tasks in any given frame of time. One

such example of an IC dedicated to a fixed task is an IC used in image compression

and decompression. Designing hardware involves three main steps:

1. Analysis - This is the beginning where we define the algorithm of the system.

2. RTL generation and verification - Here coding and verifying reference model of

the system and coding and verifying RTL model from the reference model takes

place.

11

3. Physical Target - After successful completion of the above step the design is

either fabricated on an ASIC or programmed on to an FPGA.

In order to perform the step 2 there are two ways -

1. RTL (Register Transfer Level) - Here a hardware description language (HDL)

such as Verilog, system Verilog and VHDL is used to configure an FPGA at

RTL level. This is often referred to Manual flow of developing a design.

2. HLS (High Level Synthesis) - Here the FPGA is programmed using High Level

Synthesis, this is an automated way of generation an RTL.

The Fig 2.3 shows complete design flow. Both hardware design techniques have

their own advantages and disadvantages. HLS technique is believed to be a better

option in most of the designing applications because of its speed. Also using HLS

brings better reach among engineers because one can write the design in C, C++

or system C and perform high level synthesis to generate the RTL without knowing

VHDL or Verilog languages. Hence HLS automates generation of RTL and perform

floor planning, placement and routing in optimised way. On the other hand, the

manual way of design is a slow process of generating the RTL because unlike HLS,

engineers must manually code their complete design using VHDL, Verilog and system

Verilog languages, perform synthesis and generate RTL which is a very complex and

at the same time extremely time-consuming task. But the main advantage of manual

way of generating the RTL lies in the ability to program the design for any corner

condition which the HLS might not consider. This technique gives the programmer

flexibility to generate the design at the minute level of detailing which in turn in-

creases the performance and robustness of the design at the cost of some excess time.

Hence to summarise despite HLS appearing to be a better option for generating the

reference model and synthesis Aarish AI processor is developed using the manual way

of designing the RTL. HLS is still not believed to be ready for practical applications

to that extent for large scaled applications, reason being HLS flow doesn’t work with

12

templates. The area, speed and power consumption results provided by HLS may

not be acceptable for custom IC designs such as Aarish AI processor. RTL level

design, although time consuming and expensive allows for greater optimization of

design metrics such as area, power and speed consumption.

Figure 2.3: Hardware Design Techniques [7]

2.3 Related Work

ASIC designs continue to increase in size, complexity, and cost; at the same time

aggressive competition has made electronics markets extremely sensitive to time-to-

market pressures. A typical ASIC design cycle is in the order of 9-18 months, while

the window of opportunity for the introduction of a product using this device can be

as little as 2 to 4 months [?]. Failing to have a product available within this time

period may result in significant reduced revenue. These factors have dramatically

13

increased the pressure for ASIC designs to be “right-first-time” with no re-spins. In

turn, this has driven the demand for fast, efficient, and cost-effective verification at

both the chip and system levels using FPGAs. Several research works have been done

in recent years for implementing rapid prototyping of different processors on FPGA

and performing functional verification of the design. In this section some of the re-

search work related to FPGA prototyping and functional verification is reviewed.

In [?], a faster system level prototyping approach was used for IP using Xilinx Em-

bedded Development Kit (EDK) flow approach. In addition to prototyping this paper

used pre-verified standard designs along with design under test to validate IP. Pro-

posed method utilized Xilinx EDK to build system with microblaze processor on

FPGA, and Software Development Kit (SDK) to develop application on microblaze

which that could control the stimulus to IP.

In [?] lower-level Hardware Description Language (HDL) implementation of edge de-

tection algorithm was realized on FPGA and compared with its implementation in

CPU. Implementation was performed on Xilinx Spartan 3 FPGA, which is inexpen-

sive and not powerful FPGA and developed several micro processing units in parallel

inside FPGA to enhance its processing speed. Using FPGA hardware implementa-

tion, this research achieved 4.4 times faster performance in edge detection compared

to software implementation in CPU.

In [?] findings from multiple studies on functional verification trends are addressed

along with their impact into the state of FPGA market in terms of both design

and verification trends. This paper highlights various techniques used for functional

verification of a design and compared FPGA project results in terms of verification

effectiveness. This paper also described difficulties such as non-trivial bug escapes,

different types of flaws resulting in non-trivial bug escapes that were encountered due

to inefficient functional verification techniques.

In [?] P4FPGA, a new tool for developing and evaluating data plane applications is

presented. P4FPGA is an open-source compiler and runtime. The compiler extended

14

the P4.org reference compiler with a custom backend that generated the FPGA code.

P4FPGA supported different architecture configurations, depending on the needs of

application. This paper concluded that code generated by P4FPGA ran at line-rate

at all packet size with latencies comparable to commercial ASICS thereby providing

developers to rapidly prototype and deploy new applications.

In [25] a modified Non-Local Means (NLM) filter for speech enhancement was pro-

totyped on FPGA. The hardware architecture of the proposed method was designed

and verified by implementing it on Zynq-7000 FGPA using Xilinx system generator.

This research concluded with better performance results after successful completion

of prototyping modified design on the FPGA.

15

Chapter 3

Rapid Prototyping and Functional

Verification of AI Processor

In this chapter we provide an overview of artificial intelligence (AI) and convolutional

neural networks (CNNs) as the processor that we have used has an unique method of

training CNNs. Later we provide a detailed overview of this low power AI processor

provided by our industry partner.

3.1 Overview of Artificial Intelligence

Fig 3.4 shows the relationship of neural networks with the whole of artificial intel-

ligence. The insight of designing an effective machine learning algorithm is clear.

Instead of hundreds of trial-and-error approaches of developing a different, custom

application to solve each and every distinct problem in a domain, the single machine

learning algorithm just needs to learn via the approach called training, to take care

of every new problem occurring. The way artificial intelligence works is associated

with that of brain as it is often referred to brain-inspired computation. Any artificial

intelligence is associated with millions of neurons, the representation of one such neu-

ron is show in Fig 3.5. The neuron takes in a signal entering it via the dendrites later

16

performs computation on it and produces a signal on the axon. These incoming and

outgoing signals are referred as activations. The axon of one neuron branches out and

is connected to dendrites of many other neurons. The connection between a branch

of axon and a dendrite is called a synapse. The important highlight of synapse is

that it can scale the signal crossing it as shown in the fig 3.5. This scaling factor is

referred to as a weight.

Figure 3.4: Context of Artificial Intelligence [5]

3.2 Overview of Convolutional Neural Network

Fig 3.6 shows multiple layers present in the Convolutional Neural Network. In such

networks each layer generates a successively higher layer of abstraction of the input

data, called a feature map (fmap), which preserves essential yet unique information.

Modern CNNs can achieve superior performance by employing a very deep hierar-

chy of layers. Each of the CONV layers shown in the Fig 3.6 is composed of high

dimensional convolutions. In this computation the input activations of a layer are

structured as a set of 2-D input feature maps (ifmaps), each of which is called a

17

Figure 3.5: Connections to neuron [5]

channel. Each channel is convolved with a distinct 2-D filter from the stack of the

filters, one for each channel; this stack of 2-D filters is often referred to as a single 3-D

filter. Finally multiple input feature maps may be processed together as a batch to

potentially improve the reuse of the filter weights. In general, from five to more than

a thousand CONV layers are commonly used in recent CNN models. In addition to

CONV (convolutional) and FC (fully connected) layers, various optional layers are

present such as the nonlinearity, pooling and normalization.

3.3 Overview of low power AI processor

An important feature of this low power AI processor provided by our industry part-

ner, which is a CNN processor, is in the method used for training CNNs. This low

power AI processor comprises of core compute circuit elements and each element is

designed to perform certain CNN function. Each of these circuit elements comprises

of memory which holds the weight used to perform different CNN functions. The

18

Figure 3.6: Convolutional Neural Network [5]

architecture of CNN processor where the most of the computation takes place is as

shown in the Fig 3.7 which is called Programmable Functional Array or CNN pro-

cessor. It is comprised of four Programmable Functional Units (PFUs). Each PFU

as shown in the Fig 3.8 is comprised of 4 core compute elements. These elements

consist of Arithmetic Logic Units (ALUs) which have their own memory and control

logic and can communicate with each other. Also, there is an active memory buffer

also referred as intelligent memory buffer which stores results of computations per-

formed. Each of the core compute circuit elements are accessible through few read

and write ports of the memory buffer. PFU further includes an input data inter-

face and an output data interface. Input data received via the input data interface

and output data sent via output data interface could directly interface with a read

and write port, respectively, within the intelligent memory buffer. This allows other

PFU units to communicate with each other on a point-to-point basis via the read

and write ports based on a transmitter and receiver configuration. A read port and

a write port can also be used to serialize and de-serialize data to be communicated

over the serial to parallel interface such as an SPI, with the other PFUs on a different

19

chip. The SPI 308 in Fig 3.7 can provide a low power implementation of a commu-

nication channel between two PFUs across the chip boundary. The PFU displayed

is implemented using a single chip, data sent via the parallel interface within the

PFU chip can be serialized and transmitted over a PCB and then parallelized once

received at the destination chip (could be a second PFU). The serial link could be

any kind of serial link, from a simple SPI to a more complicated clock embedded

link. The PFU also includes an interface with an external memory buffer outside the

PFU for the core compute elements to access a larger pool of memory. In a typical

CNN, only a few layers need PFU configured with only enough weight memory to

store an average number of weights for processing/computing a CNN layer. When-

ever a core compute element needs to access a larger amount of weight memory, it

can fetch from the external larger pool of memory. However, the memory bandwidth

for the external memory may be sufficient to support two core compute elements

without any back pressure. Any larger number of core compute circuit element ac-

cessing the larger pool of weight memory may result in reduced throughput. When

a particular convolution operation does not fit in single core compute element due

to weight memory constraint, a convolutional transformation can also be utilised to

split the convolution across multiple core compute elements. This mechanism allows

regular PFUs to be restricted to a relatively low amount of weight memory, across

multiple core compute elements using convolution transformations. Generally, all the

traditional architectures use load/store architecture whereas the configurable CNN

processor uses dataflow architecture that makes the processor highly efficient. Fig 3.9

shows simplified PFU with an active memory buffer and core circuit elements. This

processor has many use cases such as:

1. Image Recognition

2. Object Detection

3. Lip Movement to Speech

20

Figure 3.7: Representation of Programmable Functional Array (PFA) [8]

21

Figure 3.8: Representation of Programmable Functional Unit (PFU) [8]

22

Figure 3.9: Simplified PFU [8]

23

3.4 Operation of low power AI processor

Fig 3.10 illustrates the complete CNN architecture. This architecture includes a con-

figurable PFA/CNN sub processor, a micro controller (RISC-V processor as shown)

the mobile industry processor interface (MIPI) subsystem and standard input output

devices such as universal asynchronous receiver-transmitter (UART), general purpose

input output (GPIO), serial peripheral interface (SPI) and inter-integrated circuit

(I2C). All the memory in the system (both the CNN sub-processor and the RISC-V

microcontroller) can be memory mapped and can be accessible by different masters

driving the internal memory bus. The programming of the PFA/CNN sub-processor

can be done in one of the two different modes available.

1. by the internal microprocessor configuring the CNN processor from the SPI-

FLASH

2. by the application processor (shown in Fig 3.11) likely coupled to MIPI sink

through standard IO interfaces such as SPI, I2C and UART that are master

devices on the memory bus. In the second mode, the SPI-FLASH is eliminated.

In the first mode, the RISC-V internal processor is responsible for different house-

keeping functions and can also be used for computation when required. It keeps the

track of the state of the CNN sub-processor for interfacing with the outside world.

The RISC-V internal processor can also handle any kind of exception that may occur

in the system at runtime in a flexible way. In one aspect, the RISC-V processor can be

an instruction set architecture controller covered by an open-source license, making

the processor easy to adopt. The RISC-V processor is optional. In a case without the

RISC-V processor, the application processor could configure the configurable CNN

sub-processor via SPI/UART/I2C bus. In such case, the CNN sub-processor output

could be read by the application processor, or the CNN sub-processor could embed the

output onto MIPI frames and then send those to the application processor. Though,

having RISC-V processor makes the system flexible as it can program sub-processor

24

Figure 3.10: Architecture of CNN Processor [8]

Figure 3.11: Architecture of CNN Processor [8]

25

at power on directly from the SPI-FLASH without waiting on application processor

to do programming.

The MIPI system shown in Fig 3.10 is a technical specification for the mobile

ecosystem, particularly smart phones but including other mobile industries. It has

different components in the complete subsystem. First MIPI source inputs the image

sensor data for processing at CNN sub-processor. This image sensor data is sent

to CNN sub processor through MIPI CSI Rx and MIPI D-PHY. MIPI CSI Rx is

camera serial interface is a specification of the Mobile Industry Processor Interface

alliance which defines an interface between camera and host processor. MIPI D-

PHY is physical layer between camera and application processor. This disclosure

describes systems that can process the data in general and generate analytics. One

of the example applications is to process image/video data. Analytics could be in the

form of tasks such as object detection/recognition from a scene, image enhancement

form low lighting conditions or any form of intelligent tasks that are intended to be

computed either on a frame basis or on a group of frames defined as a video sequence.

Recognition of video sequence could include temporal dependencies such as action

recognition etc.

So far, we described a CNN processor configured for MIPI that inputs image

sensor data processes it at programmable functional array (after receiving it via MIPI

D-PHY and MIPI CSI-Rx). These processed analytics of the PFA/CNN sub-processor

could be provided in two forms.

1. In one form, the output analytics can be defined by a few data-words such as

classification result.

2. In the other form, the processed output can be defined in significant amount of

data.

These computed analytics can be sent to application processor in two different

ways.

26

1. In the first the analytics is sent over standard communication bus such as

SPI/UART/I2C to application processor.

2. In the second the computed data is directly embedded on MIPI CSI Tx to the

application processor and it successfully extracts the analytics form the MIPI-

CSI bus. This data is sent in form of MIPI frames.

Although the overall power of the system can be minimised by eliminating the

need of an application processor to transfer data specifically. This further reduces

the overall system latency. In sleep mode, the default dataflow path is from the input

to the output of the MIPI-CSI bus bypassing the PFA/CNN sub-processor. This

ensures that power for the CNN processor is consumed or is primarily consumed,

only when the PFA/CNN sub-processor is used to compute. In one aspect the MIPI

bus can be implemented using a flexible cable. In such case the CNN processor can

be disposed serially along the bus, and along the cable. In one aspect the CNN

sub-processor can be implemented using any of the PFAs described herein. In one

aspect the CNN sub-processor can be implemented using a traditional instruction set

architecture processor [e.g., load/store processor].

3.5 Hardware platform and CAD tools used for

rapid prototyping

Prototyping a design on a FPGA is an important step in verifying the functionality of

design, hence we have prototyped the design on Artix-7 and Virtex VCU118 FPGA

kits to test individual modules. To verify the functionality we have developed an

application based on C that can be used to communicate with the FPGA board.

Using this application, we can point to different registers and compare their present

value with the expected value. [11]

27

3.5.1 Overview of Arty 7 Board

Arty is a ready to use development platform designed around the Artix-7 FPGA

from Xilinx. Unlike other Single Board Computers, Arty isn’t bound to a single set

of processing peripherals. It is a communication powerhouse chock-full of UARTs,

SPIs, I2Cs and an Ethernet MAC, and next it has dozen 32-bit timers. This board

has following features.

1. It has 5200 slices (each slice contains four 6-input LUTs and 8 flip-flops)

2. 1800 Kbits of RAM

3. 90 DSP slices

4. 16MB Quad-SPI Flash

5. Programmable over JTAG and Quad-SPI Flash

6. USB-UART Bridge

Outline for Arty 7 FPGA board is presented in fig 3.12 and the pin callouts for

the board as highlighted in Fig 3.12 are displayed in Table 3.1.

3.5.2 Overview of Xilinx VCU118 kit

VCU118 is a general-purpose evaluation board for rapid-prototyping based on the

Zynq Ultrascale + XCVU9P-FLGA2104-21-E MPSoC (multiprocessor system-on-

chip). High speed DDR4 SODIMM and component memory interfaces, FMC ex-

pansion ports, multi-gigabit per second serial transceivers, a variety of peripheral

interfaces, and FPGA logic for user customized designs makes it a flexible prototyp-

ing platform. The block diagram for VCU118 board is as shown in Fig 3.13

Each FPGA board is capable of programming certain size of design. Resources

such as logic cells, CLB flip-flops, RAM, DSP slices together defines the capacity of

28

Callout Description

1 FPGA programming DONE LED

2 Shared USB JTAG / UART port

3 Ethernet connector

4 Power select jumper (Ext. supply
/ USB)

5 Power jack (for optional
ext.supply)

6 Power good LED

7 User LEDs

8 User slide switches

9 User pushbuttons

10 Arduino/chipKIT shield connec-
tors

11 SPI header (Arduino/chipKIT
compatible)

12 chipKIT processor reset jumper

13 FPGA programming mode
(JTAG/FLASH)

14 chipKIT processor reset

15 Pmod headers

16 FPGA programming reset button

17 SPI FLASH

18 Artix FPGA

19 Micron DDR3 memory

20 Analog devices ADP 5052 power
supply

Table 3.1: Pin Callout in Xilinx ARTY 7 Board [9]

29

Figure 3.12: Arty 7 Board Layout [9]

any FPGA board. The Table 3.2 presented below highlights the resource count of

Xilinx VCU118 FPGA board.

3.5.3 CAD tools used in FPGA Prototyping

CAD tools stands for computer-aided design tools for FPGAs, and they cannot be

underestimated. FPGAs have large blocks of RAM, processors or analog-to-digital

converters and all these features are not useful enough if they are not utilised to their

full potential. In order to enhance capabality of a FPGA CAD tools are used, they can

take a description of a digital circuit as input, along with constraints (e.g., on speed

performance, are of power), and automatically map the circuit into the hardware

blocks and perform the routing. These CAD tools optimize the speed performance,

area and power consumption of the circuit implemented on FPGAs. Working with an

FPGA involves use of CAD tools, and these tools are truly the ”face” of vendor seen

by engineers and designers in the field. CAD tools provide us with an environment

30

Figure 3.13: VCU118 Evaluation Board [10]

31

Feature Resource Count

CLB LUTs 1182240

CLB Registers 2364480

CARRY8 147780

F7 Muxes 591120

F8 Muxes 295560

CLB 147780

LUT as logic 1182240

LUT as Memory 591840

Block RAM Tile 2160

DSPs 6840

Bonded IOB 832

HPIOB-M 384

HPIOB-S 384

HPIOB-SNGL 64

HPIOBDIFFINBUF 720

BITSLICE-RX-TX 1560

GLOBAL CLOCK
BUFFERs

1800

MMCM 30

Table 3.2: Resources available in Xilinx VCU118 board [10]

32

which is closely relatable with the actual FPGA hardware wherein we can run the

design, test its functionality. We can also check the waveforms which provides us

the information about different registers and their state at a given time. Currently

there are two major vendors in the market who predominantly work on developing

such CAD tools. Vivado by Xilinx and Quartus Prime by Intel are the two well

known CAD tools used for building designs that are programmed on FPGAs. These

CAD tools supply a complete tool floe from RTL-to-bits, often free of charge to their

customers and to universities. Alternative third-party tools are also available for the

initial stages of the flow, such as the popular Synopsys (Synplicity) and Magma Design

Automation tools and are known to produce excellent results. Historically the use of

FPGA vendor tools has been mandatory for the back end of the flow, beginning with

packing, however that may be changing as Synplicity now offers a flow encompassing

packing, placement and physical synthesis. The functioning of these CAD tools is

described with the help of CAD flow that is shown in Fig 3.14. Though is not

shown in the Fig 3.14 simulation, testing and verification of the design can be done

at any stage. In practice, many customers simulate their initial design specification

(RTL Verilog or VHDL), and then do not simulate again. Rather designers leverage

FPGA reconfigurability to accelerate their verification. After routing a bitstream is

generated for the design, the FPGA is programmed, and verification is done in the

lab using the actual hardware. Such a verification flow is impossible for custom IC

technologies, yet it is feasible for programmable logic where designs can be modified,

and devices reconfigured following the discovery of the design flaws. This diagram

describes various steps involved in the CAD flow which are described below one by

one.

1. The first step involves building a design specification using Very High-Speed

Integrated Circuit(VHSIC) Hardware Description Language (.VHDL), Verilog

(.v) or system Verilog (.sv) at the register-transfer level (RTL). While not en-

tirely independent of the target FPGA, the early steps of the flow tend to be

33

more generic, while the later steps are specifically targeted to the specific hard-

ware available.

2. The second step involves including constraints in the design. These are the .xdc

files which contains complete information of the pin constraints for the design

with respect to the device targeted.

3. The RTL synthesis step parses the input and transforms the VHDL/Verilog

into a block-level circuit description, usually consisting of large blocks such as

multipliers, adders, multiplexers, state machines, RAMs and chunks of generic

Boolean logic. Logic synthesis later optimizes the circuit at the level of Boolean

equations.

4. Next step is technology mapping, here the circuit is mapped from a generic

form into an equivalent circuit composed of basic logic elements available on

the target device, e.g., LUTs, registers and multiplexers. In this is also under-

goes packing, which is also referred to as clustering, in which elements of the

technology mapped circuit are packed into the logic blocks.

5. Next comes the place and route, in placement stage it is decided where each logic

block should be located on the two-dimensional FPGA and these decisions are

made with respect to increase the overall efficiency by taking in consideration

factors such as speed, size etc. Routing forms the desired connections between

the placed logic blocks. Finally, the bitstream is generated for programming

the FPGA device.

Also the diagram shows a block named analysis, all the steps in CAD flow have

an impact on the circuit speed and power therefore the tools must have access to

such analysis data. Exact analysis of timing and power is impossible before routing

is complete, so estimates are used at the earlier phases of the flow.

34

Figure 3.14: CAD flow

35

3.5.4 FPGA Prototyping sequence

Till now we have discussed different techniques used to design hardware in section

2.2 along with differnt CAD tools used as highlighted in section 3.5.3. This thesis

prototyped low power AI design using Xilinx Vivado Lab Edition which is a compact

and standalone product targeted for use in the lab environments. It provides aid

for programming and logic/serial IO debug of all Vivado supported devices. Two

important aspects of this design were hardware and software. First to prototype the

design on hardware it was important to program the design on target FPGA board

and to do so a programming (.bit file) file was required. Fig 3.14 highlights flow

diagram that was followed for generating .bit file. To generate this file we have used

Transaction Control Language (TCL) script which carried all the steps presented in

the Fig 3.14. The hardware design was written in Verilog and compiled using Vivado.

This TCL script instructed Vivado framework and performed the three main stages

like synthesis, implementation and bitstream generation. This generated .bit file only

contained hardware design; it was missing with software information related to the

design. In early stages of development and debug we want to include the software in

.bit file so that the system starts running even if the external interfaces of the design

are not working. Software aspect of the design infers to the information related to

functional verification of the design which is discussed in the next section.

3.6 Functional Verification of the design

To improve efficiency of FPGA prototyping, verification engineer must have a well

planned and carefully thought-out verification plan. The verification plan should

clearly state which parts of the design will be subjected to code or functional coverage

and which parts will be exercised on FPGA. For those areas where FPGA is the

focus, a detailed description of how to accomplish verification is required. It may

seem like conservative approach to ignore the FPGA prototype when verifying the

36

design but when you are trying to reduce time to market it makes sense to approach

verification holistically. It is better to apply effort in untested areas than to duplicate

it verifying the same things in different ways. The traditional directed test verification

should concentrate on the aspects of the design that cannot be accurately prototyped

on FPGA. Almost all the design-for-test (DFT) areas and memories available in

FPGAs fall in this category. The interface to these memories should be checked

by traditional methods. With the increasing size and complexity of FPGA devices,

there is a need for more efficient verification methods. Timing simulation can be

the most revealing verification method; however, it is often one of the most difficult

and time consuming for many designs. Timing simulations that traditionally were

measured in days or weeks, can now for some projects be measured in few hours

sometimes minutes, using standard desktop computers requiring high-powered 64-bit

servers. This cuts into the time-to-market and cost-of-implementation advantages of

using FPGAs in the first place. One of the biggest challenges that FPGA design

and verification engineers face today is time and resource constraints. With FPGAs

growing in speed, density and complexity, there is a lot of taxation not only on

manpower but also on computer processors and available memory to complete a full

timing verification. A research proved that there is an increase in requirement of

verification engineers, latest study reported that in an FPGA market, requirement

of design engineers increased by 4 percent while the requirement for test engineers

increased by 10 percent. This increase in the requirement of test engineers highlights

the importance of verifying a design to prevent re-spins thereby decreasing time-to-

market and many more problems. Furthermore, there is an escalating challenge for

the design and verification engineer (which many times can be the same person) to

get proper testing of today’s FPGA designs in shorter timeframes with an increased

confidence of first-pass success [12]. The traditional FPGA verification methods are:

1. Functional simulation -: Functional simulation is a very important part of the

37

verification process, but it should not be the only part. When performing func-

tional simulation, only functional capabilities of the RTL design are tested. It

does not include timing information, nor does it take into consideration changes

occurred to the original design due to implementation and optimization.

2. Static Timing Analysis / Formal Verification -: Most engineers see this as the

only technique needed to verify that the design fulfills timing. There are lot

of drawbacks in using this as the only timing analysis methodology. Static

analysis cannot find any of the problems that can be seen while running a design

dynamically. This analysis will only be able to show if the design can meet setup

and hold requirements and generally is only as good as the timing constraints

applied. In a real system, dynamic factors can cause timing violations on the

FPGA. One example of this can be provided as Block Ram collisions. With the

introduction of Dual Port Block Rams in FPGA devices, care should be taken

not to read and write to the same location at the same time, as this would

result in incorrect data being read back. Static analysis tools will never be able

to find this problem. Similarly, if there are misconstrued time specifications,

static timing analysis cannot find this problem.

3. In-System Testing -: Virtually every engineer relies on this method as the ulti-

mate test. If the design works on the board and passes the test suites, then it

is ready to be released. This is definitely a very good test, but it may not catch

all the problems right away. At times the design needs to be running for quite

some time before corner-case issues will manifest. Issues like timing violations

may not manifest themselves in the same way in all chips. Usually by that time

the design is in the end-customer’s hands. This means high costs, downtime

and frustration to try to figure out the problem. In order to get proper in-

system testing completed, all the hardware hurdles will need to be realized such

as problems with SSO, cross talk and other board related issues. If there are

38

external interfaces that needs to be connected prior to commencement of the

in-system testing, this test will increase the time to market of the product [13].

So till now we have discussed need for functional verification and listed different

FPGA verification methods [17]. Here we have described use of software based veri-

fication technique to perform functional verification of low power AI processor. Fig

3.10 indicates different modules that are involved in the design. Hence it becomes

very important to verify that all these components are functioning accurately. To

ensure that we verify the design completely, we developed different tests that allowed

us to check correctness of each module. Fig 3.15 describes an example of a test case

developed to verify functionality of uart module present in the design. These tests are

software programs developed using C. Using software based verification methodology

it becomes possible to access simulation of the test performed. Fig 3.16 describes sim-

ulation waveform for the test. In this example the UART module is configured with

the default values to transmit random data and at the receiver side it is checked if the

data received is the same as data transmitted. Fig 3.16 contains two signals - .rdata

and .wdata. Similarly, the purple area in the waveform highlights modules involved

in the test, by selecting a module all the signals defined in it can be monitored. The

left section in the figure presents all the modules available in the design, by selecting

a module we can check status of any desired signal or register. By looking at the

waveform, it is concluded that data sent and data received are correct. Also, these

waveform helps to understand number of clock cycles required to perform any test.

All this information is considered while developing test cases to increase the efficiency

of functional verification.

Table 3.3 shown below highlights different tests developed to ensure the functional

verification [14] [15] [16]. This table only describes few tests but in order to perform

the verification of each module associated with the design there are many different

tests developed to ensure the functionality check covering all the corner cases in the

39

Figure 3.15: Test for UART module

Figure 3.16: Waveform for UART smoketest

40

design.

Test Name Description

Smoke Test This test ensures the simple
transaction of the device, for ex-
ample in UART it will check if the
device send the data and success-
fully receive the data.

Interrupt Test This test checks if the respective
interrupt is triggered while exe-
cution of a task, for example in
qspi it will check kTopMidasPli-
cIrqIdQspiComplete interrupt id
when a transaction is initiated.

Loopback Test This test check if a device can
transmit random data to another
device and then again receive the
same data from the device where
the data was sent intially to en-
sure loopback mechanism.

Illegal access Test This test checks if a certain op-
eration is performed in a given
boundary or not. For example an
error is detected in an event of ac-
cessing a register outside the valid
address domain.

Random reset Test This test checks if can operate
properly if a sudden reset com-
mand is applied to it.

Table 3.3: Test cases for functional verification

41

Chapter 4

Experimental Results

In this chapter, we present the results generated by synthesizing the design for

VCU118 [10] and Arty7 [9] FPGA kits. Resource utilization and performance re-

ports for individual modules are compared and described in detail. This chapter also

presents all the test programs that were developed for functional verification of the

design. Finally, it describes the power consumption reports in detail and compares

the values obtained for both the FPGA kits.

4.1 Test Setup and Functional Verification

The design provided by the industry partner was functionally verified by running all

the test cases described in Table 4.4. The traditional RTL-level testbench methodol-

ogy is time consuming and involves complex architecture. Hence, the modern tech-

nique of testing a design was used by developing different test programs based on the

software language C. These test programs were easy to design and saved around 40

percent of time compared to using the traditional method of testing a design using

testbench. These test programs provided a ”black box” interface, thereby focusing

on a particular module of the design under test. This enabled us to test a module

immediately after designing it, increasing time efficiency. The RTL-level test bench,

42

on the other hand, is dependent on the status of other modules associated with the

design. The tests in Table 4.4 were written with the help of OpenTitan documenta-

tion. [16] [14] [15].

The tests highlighted in Table 4.4 were executed by the RISC-V microcontroller.

These tests had flags indicating ”Test Passed” or ”Test Failed” after completion of

each test. Verifying the design using software programs allowed us to verify the

correctness of the test with the help of simulation. Fig 4.17 describes simulation

result of a random test. All these tests were cross-verified with the help of simulation

by pointing to any register value and comparing it with the expected value. These

software programs can be tested on actual FPGA as well. There are two ways to run

the program. First is .hex and the second is .img. .hex creates a hex file as the output

of the operation while the .img creates an image of the test and runs the program

through bootloader by loading the application. Aarish team have developed a software

Figure 4.17: Simulation Waveform

application based on C called as ”UART-APK” with an aim to interact with FPGA

43

Test Description

Loop back test This test checks if few bytes transmit-
ted and received are the same

CSR (control and status registers) test This test is to program CSR through
write operation and check the FIFOs

Random reset test This test checks if the module performs
certain operation correctly after per-
forming reset

FIFO test This test perform checks on the length
of FIFOs by sending data within and
over the constrained limit

Delay test This test checks if the operation is per-
formed correctly after adding delays to
it

Interrupt test This test checks if an interrupt is trig-
gered by writing random values to
interrupt enable CSRs and verifying
through interrupt state CSRs

Out of bound test This test verifies if the design triggers
an error/warning at times when a ad-
dress outside the range is read or writ-
ten to

Illegal Access test This test alerts if a read only register is
written any value or a write only regis-
ter is read

Stress test This test checks if the CSR opera-
tions are performed accurately when
performed one after the other in con-
tinuous sequence with random reset

Table 4.4: Functional Verification Tests [14] [15] [16]

44

when running the design on it. This application can point to any register value, status

of interrupt at a given time and cross check it’s present value with the expected one.

Hence, this application provided us the ability to check the functionality of any module

present in the design at any random clock cycle. The working of this application is

by sending data from host to FPGA in the form of packets. This packet comprised

of about six components, each signifying specific importance with respect to design.

By sending such packets it was possible to capture any register value, timer status,

interrupt status, bus status etc. Example of one such packet is shown in the Fig 4.18

Figure 4.18: Packet

The operation byte in the packet decides which module to trigger for instance

Fig 4.18 highlights I2C write operation, there are few other modes as well which are

presented in Table 4.5

45

Instruction Code Operation

R Simple Read Code

W Simple Write Code

Q QSPI Write Code

I I2C Read Code

O I2C Write Code

Table 4.5: Packet operation codes

4.2 Jenkins Setup

Jenkins is a self-contained, open-source automation server which was used to auto-

mate tasks related to building, testing and delivering or deploying a job or software.

As an extensible automation server, Jenkins can be used as a Simple Continuous

Integration server or turned into the Continuous Delivery hub for any project [18].

Jenkins is a self-contained Java-based program, ready to run out-of-box, with pack-

ages for Windows, Mac OS X and other Unix-like operating systems. Jenkins can

be easily set up and configured via its web interface, which includes on-the-fly error

checks and built-in help. With hundreds of plugins in the Update Center, Jenkins

integrates with practically every tool in the continuous integration and continuous

delivery toolchain. Jenkins can be extended via its plugin architecture, providing

nearly infinite possibilities for what Jenkins can do. Jenkins can easily distribute

work across multiple machines, helping drive builds, tests and deployments across

multiple platforms faster. In this thesis Jenkins was integrated to build and test the

design at regular intervals. Using Jenkins, we designed a pipeline that helped us to

build RTL and test it with the help of an automated script using Shell scripting and

TCL scripting. These automated scripts instructed Jenkins to run all the tests that

are mentioned above and to evaluate functionality of the design. After successful com-

pletion of functioanlity verification the script would instruct Jenkins for building .bit

46

file for the design with the help of TCL script. In case of any errors that may occur in

the pipeline we designed a automated script that could extract the error messages and

alert the development team which helped to debug the issue with reduction in time.

Setup for the Jenkins was created in such a way that whenever there was a change in

the RTL or if any new test case was added to the flow Jenkins pipeline was triggered,

and completed the operation as mentioned above. Traditionally to perform all the

steps illustrated above it would take 4-5 hours to complete, but with the inclusion of

Jenkins this time went down to 2.5 hours thereby reducing time needed by about 50

percent.

4.3 FPGA Resource Utilisation

As highlighted in section 4.2 a .bit file was generated after completing placement,

routing, synthesis and implementation of the design which provided us the reports

on resource utilization. This process is performed for both the FPGA boards and

the results were displayed as follows. In this section setup for implementing the

functional verification and generating bit stream is illustrated in detail. Resources

used by individual modules are compared and presented with the help of pie charts.

Finally, detailed description is provided for power utilization on both the boards and

difference between static and dynamic power consumed by the boards is explained.

Table 4.6 highlights total resources available and used in VCU118 FPGA Kit,

while Table 4.7 shows similar data for Arty A7 kit. Among all the resources utilised,

the important ones are presented in detail. Fig 4.19, Fig 4.20 and Fig 4.21 highlights

CLB, LUT as logic, F7 Muxes, F8 Muxes, CLB LUTs and CLB Registers utilised

in different modules of the design like RISC-V, QSPI, UART, GPIO, I2C e.t.c. im-

plemented on VCU118 design. Similarly Fig 4.22, Fig 4.23 and Fig 4.24 represents

similar results obtained for Arty A7 board. These charts clearly specify that most of

the resources used are within the elements like CLB LUTs, CLB Registers, F7 Muxes,

47

Resource
Name

Resources
Utilized

Total Re-
sources Avail-
able

CLB LUTs 17293 (1.46 per-
cent)

1182240

CLB Registers 9988 (0.42 per-
cent)

2364480

CARRY8 212 (0.14 per-
cent)

147780

F7 Muxes 681 (0.12 per-
cent)

591120

F8 Muxes 184 (0.06 per-
cent)

295560

CLB 3511 (2.4 per-
cent)

147780

LUT as logic 16965 (1.43 per-
cent)

1182240

LUT as Memory 328 (0.06 per-
cent)

591840

Block RAM Tile 20 (0.92 percent) 2160
DSPs 1 (0.01 percent) 6840
Bonded IOB 31 (3.7 percent) 832
HPIOBM 13 (3.4 percent) 384
HPIOBS 15 (4 percent) 384
HPIOBSNGL 3 (4.7 percent) 64
HPIOBDIFFINBUF1 (0.14 percent) 720
BITSLICERXTX 10 (0.6 percent) 1560
GLOBAL
CLOCK
BUFFERs

6 (0.33 percent) 1800

MMCM 1 (3.33 percent) 30

Table 4.6: VCU118 Resource Utilization

48

F8 Muxes, LUT as logic and CLBs. CLB stands for configuration logic block and it

is the basic repeating logic block on an FPGA. There are hundreds of CLBs available

within a FPGA connected via routing resources, the purpose of these CLBs is to

implement combinational and sequential logic. VCU118 board had total of 147780

CLBs out of which 3511 were utilised by the design. Three essential CLB components

are Flip-Flops, Look-up-Tables and Multiplexers. Flip flop is a single bit storage ele-

ment available in FPGA. LUT which is called as Look-up Table is considered as the

heart of FPGA. It contains all the logically possible outputs of the design. LUT is

a mux-based architecture in which the inputs are the possible outputs based on the

correct selection on the multiplexer select lines. Multiplexers are basically a circuit

which does the transition between different outputs based on select line inputs. If the

LUTs uses Flip-Flops in the logic, then it is described ”LUT as Memory”, otherwise

it is described ”LUT as Logic”. The next important resources utilized were the F7

Muxes and F8 Muxes. VCU118 board has about total of 591120 F7 Muxes while

Arty A7 has about 31700 out of which only 680 were utilised in the design. Similarly,

VCU118 board had about total of 295560 F8 Muxes while the Arty A7 board had

about 15850 F8 Muxes out of which only 180 were utilised. The purpose of F7 Mux

is to combine the output of two 6-input LUTs to create a 7-input function, inputs

to F7 Muxes are the output of LUTs immediately adjacent to them. Purpose of F8

Muxes is to combine the output of two F7 Muxes to create a 8-input function.

Different report and compilation result files are generated after hardware compi-

lation including the synthesis report, RTL description of the design, placement and

routing, programming bit file and etc. The testing setup also provided us with the

diagram indicating implementation of the design on FPGA. This chip view diagram

allowed us to analyse resource utilization of design in more detail and visualize the

implementation of the FPGA design. The chip view displays actual placement of

the modules used in the design on the FPGA board, thereby enabling us to access

49

Figure 4.19: VCU118 Resource Utilization on individual modules

Figure 4.20: VCU118 Resource Utilization on individual modules

50

Figure 4.21: VCU118 Resource Utilization on individual modules

Resource
Name

Resources
Utilized

Total Re-
sources Avail-
able

Slice LUTs 18341 (29 per-
cent)

63400

Slice Registers 10536 (8 per-
cent)

126800

F7 Muxes 689 (2 percent) 31700
F8 Muxes 184 (1 percent) 15850
Slice 6360 (40 per-

cent)
15850

LUT as Logic 17989 (28 per-
cent)

63400

LUT as Memory 352 (2 percent) 19000
Block Ram Tile 20 (15 percent) 135
DSPs 1 (0.4 percent) 240
Bonded IOB 123 (59 percent) 210
ILOGIC 8 (4 percent) 210
OLOGIC 5 (2 percent) 210
BUFGCTRL 7 (22 percent) 32
MMCME2ADV 1 (17 percent) 6

Table 4.7: Arty A7 Resource Utilization

51

Figure 4.22: Arty A7 Resource Utilization on individual modules

Figure 4.23: Arty A7 Resource Utilization on individual modules

52

Figure 4.24: Arty A7 Resource Utilization on individual modules

detailed information of the implementation at the lowest level component in the de-

sign. Fig 4.26 shows the chip view of the design implemented on VCU118 board.

By zooming-in the chip view, the device architecture and configuration of FPGA can

be analysed, including Adaptive Logic Modules (ALM), Phase-Lock Loops (PLL),

DSP blocks, RAM blocks and Memory Cells. The area displayed in blue represents

the components available in design along with its routing and placement. While the

remaining black section in the rectangular box is the part of FPGA that was not

utilized. All these components are routed specifically to form the desired logic.

4.4 Power Analysis

Designing for low power in today’s high-speed FPGA designs is more important than

ever. Knowing the final design’s power usage early in the design process is neces-

sary for making power supply design and power budgeting decisions. Vivado power

analysis tool was used in this thesis to perform highly accurate estimates of power

usage. The two main features in understanding power are Static power and Dynamic

power. Dynamic Power depends on capacitance, voltage and switching activity of

the resources utilized in FPGA i.e., models the power consumed during charging and

53

Figure 4.25: Arty A7 Chip View

Figure 4.26: VCU118 Chip View

54

discharging the capacitive load associated with the resource. Hence more the uti-

lization of the resources more would be the dynamic power consumption. Dynamic

Power consumption also occurs as a result of short circuit created when an output

transitions from logic 0 to 1 or vice versa. Hence to summarise this if switching is

more in the design it is expected to consume more dynamic power. Static Power is

consumed when there is no circuit activity for example power consumed by D Flip-

flop when neither clock nor D input are active [19], [20], [21]. Figures 4.27 and 4.28

refers to power analysis results obtained for VCU118 and Arty A7 boards respectively.

VCU118 board provided about 2.585 W of total power consumption, out of which

Dynamic power was 0.113 W and static power was 2.471 W. Here the Dynamic Power

is less as compared to static power, as described above the Dynamic power is related

to resources used in comparison to the total resources available and in VCU118 FPGA

board the resources are less utilised as compared to total resources available. Static

power of such large boards is expected to consume about 10 W of power, hence con-

suming just 2.471W shows that the design is power efficient. Ideally Dynamic power

is expected to be in the range of 50-60 percent of the total power. Fig 4.28 describes

this behaviour as the design on Arty a7 board consumes 0.121 W of Dynamic power

and 0.098 W of Static Power. These figures also represent the power consumed by in-

dividual components of an FPGA. Clocks, Signals, Logic, BRAM, DSP, MMCM and

I/O are the ones highlighted. DSP stands for digital signal processing and operate on

instructions and code and can include branching operations and high-level decision

trees. Using DSPs it is possible not only to perform individual mathematical oper-

ations but also to accommodate entire signal processing algorithms. MMCM stands

for Mixed-Mode Clock Manager. The MMCM primitive is used to generate multiple

clocks with defined phase and frequency relationships to a given input clock. BRAM

stands for block random access memory; they are used for storing large amount of

data inside the FPGA.

55

Figure 4.27: Power Analysis of VCU118

Figure 4.28: Power Analysis of Arty A7

56

Chapter 5

Conclusion and Future work

This thesis addresses prototyping and functional verification of a low power AI pro-

cessor on FPGA. The FPGA kits targeted were VCU118 and Arty A7. The power

consumption of the AI processor for these two FPGA kits was also evaluated and

compared. This thesis also discussed different methodologies for hardware design

such as register transfer language (RTL) and High-Level Synthesis (HLS). For effi-

cient processor design, RTL based methodlogy is still preferred as it provides better

quality of results, i.e. area, speed and power consumption.

Performing functional verification of a complex processor design can especially be

difficult and time consuming if it is carried out using traditional method of using

RTL-Level testbench. It requires accurate functioning of all the modules in the de-

sign. It relies on the status of other components in the design which may not be

related to it. Software test programs developed in this thesis enabled functional veri-

fication of the design without relying on the status of other modules thereby allowing

a module to be tested immediately after its development. This is because these soft-

ware test programs operate based on their driver (software program in which all the

signals and functions are defined). The software test programs are developed using C

language which made it faster to design and test thereby increasing time efficiency.

These software programs displayed simulation results which helped to understand the

57

design under test in much more detail.

To prototype a design on FPGA using RTL method of hardware design requires

completion of few stages at frequent intervals. This slows the process and involves

repetitive work. This thesis integrated Jenkins and automated the process of gen-

erating programming bit file and performing functional verification of the design for

every modification in the design. Integrating Jenkins supported fetching errors in the

pipeline and that resulted in increased time efficiency. The experimental results shows

reduction in time needed by about 40 percent. Shell scripting and TCL scripting were

used to run the Jenkins pipeline which provided with an ability to add triggers and

automation for designing efficient pipeline. Using Jenkins, the design was synthesized

for VCU118 and Arty 7 FPGA kits.

High power dissipation is one of the major disadvantages of FPGAs. A main part of

the power consumed is caused by glitches. The design provided by industry partner

did not use external memory. This resulted in achieving low power values of about

0.22W and 2.5W for Arty7 and VCU118 FPGA kits respectively. The experimental

power results proved that the design provided by our industry partner was power

efficient. Preventing use of external memory also resulted in faster arithmetic logic

unit (ALU) operations as the time to access data got reduced.

This thesis can be further extended by implementing the design on FPGA and per-

forming functional verification of the design with the help of actual FPGA. Additional

test cases can be added in the functionality testing. The test programs defined in the

thesis are developed on C, moving these programs to software language like Python

would help in saving more time. The scope of prototyping such processor on FPGA

could be using it in small scale applications of Image recognition, Lip movement to

speech conversion and Object detection.

Bibliography

[1] “Internal Structure of an FPGA,” https://digitalsystemdesign.in/

wp-content/uploads/2019/05/fpga.png?is-pending-load=1, Last Accessed

Sep 7,2022.

[2] “Xilinx Documentation,” https://www.xilinx.com/products/

silicon-devices/fpga/what-is-an-fpga.html, Last Accessed Sep 7,2022.

[3] By Doug Amos, René Richter, Synopsys and Austin Lesea, Xilinx,“What can

FPGA-based prototyping do for you?,” https://www.techdesignforums.com/

practice/technique/what-can-fpga-based-prototyping-do-for-you/,

Last Accessed Sep 8,2022. 2012.

[4] Moore, Gordon E.,“Cramming more components onto integrated circuits,

Reprinted from Electronics,” IEEE Solid-State Circuits Society Newsletter, vol-

ume 38, number 8, pp.114 ff, 2006.

[5] Sze, Vivienne and Chen, Yu-Hsin and Yang, Tien-Ju and Emer, Joel S.,“Efficient

Processing of Deep Neural Networks: A Tutorial and Survey” Proceedings of the

IEEE, vol. 105, no. 12, p. 2295–2329, 2017.

[6] “A Simple Logic Block of FPGA, Lec Notes - Dr. Khalid”, 2022.

https://digitalsystemdesign.in/wp-content/uploads/2019/05/fpga.png?is-pending-load=1
https://digitalsystemdesign.in/wp-content/uploads/2019/05/fpga.png?is-pending-load=1
https://www.xilinx.com/products/silicon-devices/fpga/what-is-an-fpga.html
https://www.xilinx.com/products/silicon-devices/fpga/what-is-an-fpga.html
https://www.techdesignforums.com/practice/technique/what-can-fpga-based-prototyping-do-for-you/
https://www.techdesignforums.com/practice/technique/what-can-fpga-based-prototyping-do-for-you/

[7] Joonas J rviluoma,“Rapid prototyping from algorithm to FPGA prototype,”

2015

[8] Pavel Sinha,“Configurable Processor for implementing convolutional neural

networks,” https://patentscope.wipo.int/search/en/detail.jsf?docId=

IN355932989 2022

[9] Xilinx, “Arty Board User Guide,” https://reference.digilentinc.com/

arty:refmanual 2022 Last Accessed Sep 22, 2022.

[10] Xilinx, “Virtex Board User Guide,” https://www.xilinx.com/support/

documents/boards_and_kits/vcu118/ug1224-vcu118-eval-bd.pdf 2022

Last Accessed Nov 14, 2022.

[11] Jason H. Anderson and Tomasz S. Czajkowski, “Computer-Aided Design for

FPGAs: Overview and Recent Research Trends,” 2014

[12] Ron Landry, AMI Semiconductor, Inc., “FPGA Prototyping as a Verification

Methodology,”

[13] Premduth Vidyanandan, Xilinx Inc., “Verification Techniques For FPGA

Designs,” 2008 https://www.electronicdesign.com/technologies/fpgas/

article/21787381/verification-techniques-for-fpga-designs Last Ac-

cessed Sep 24, 2022.

[14] “OpenTitan documentation, lowRISC contributors,” https://docs.

opentitan.org/hw/ip/uart/doc/dv/ Last Accessed Sep 24, 2022.

[15] “OpenTitan documentation, lowRISC contributors,” https://docs.

opentitan.org/hw/ip/spi_device/doc/ Last Accessed Sep 24, 2022.

[16] “OpenTitan documentation, lowRISC contributors,” https://docs.

opentitan.org/hw/ip/i2c/doc/ Last Accessed Sep 24, 2022.

https://patentscope.wipo.int/search/en/detail.jsf?docId=IN355932989
https://patentscope.wipo.int/search/en/detail.jsf?docId=IN355932989
https://reference.digilentinc.com/arty:refmanual
https://reference.digilentinc.com/arty:refmanual
https://www.xilinx.com/support/documents/boards_and_kits/vcu118/ug1224-vcu118-eval-bd.pdf
https://www.xilinx.com/support/documents/boards_and_kits/vcu118/ug1224-vcu118-eval-bd.pdf
https://www.electronicdesign.com/technologies/fpgas/article/21787381/verification-techniques-for-fpga-designs
https://www.electronicdesign.com/technologies/fpgas/article/21787381/verification-techniques-for-fpga-designs
https://docs.opentitan.org/hw/ip/uart/doc/dv/
https://docs.opentitan.org/hw/ip/uart/doc/dv/
https://docs.opentitan.org/hw/ip/spi_device/doc/
https://docs.opentitan.org/hw/ip/spi_device/doc/
https://docs.opentitan.org/hw/ip/i2c/doc/
https://docs.opentitan.org/hw/ip/i2c/doc/

[17] “System Verilog reference verification methodlogy,” https://www.eetimes.

com/systemverilog-reference-verification-methodology-rtl/ Last Ac-

cessed Nov 25, 2022.

[18] “Jenkins,” https://www.jenkins.io/ Last Accessed Nov 25, 2022.

[19] “FPGA Dynamic Power,” https://1library.net/article/

fpga-dynamic-power-fpga-power-consumption.q78x4dvz Last Accessed

Nov 25, 2022.

[20] “Xilinx,” https://docs.xilinx.com/r/en-US/

ug949-vivado-design-methodology/Dynamic-Power Last Accessed Nov

25, 2022.

[21] “Xilinx,” https://docs.xilinx.com/r/en-US/

ug949-vivado-design-methodology/Static-Power Last Accessed Nov

25, 2022.

[22] “Xilinx,” https://www.xilinx.com/developer/products/vivado.html Last

Accessed Nov 25, 2022.

[23] Bellizia, Davide and Hoffmann, Clément and Kamel, Dina and Liu, Hanlin

and Meaux, Pierrick and Standaert, François-Xavier and Yu, Yu,“Learning

Parity with Physical Noise: Imperfections, Reductions and FPGA Proto-

type” IACR Transactions on Cryptographic Hardware and Embedded Systems,

10.46586/tches.v2021.i3.390-417, 2021.

[24] Gschwind, M. and Salapura, V. and Maurer, D.,“FPGA prototyping of a RISC

processor core for embedded applications” IEEE Transactions on Very Large

Scale Integration (VLSI) Systems, volume 2, number 2, 2001.

https://www.eetimes.com/systemverilog-reference-verification-methodology-rtl/
https://www.eetimes.com/systemverilog-reference-verification-methodology-rtl/
https://www.jenkins.io/
https://1library.net/article/fpga-dynamic-power-fpga-power-consumption.q78x4dvz
https://1library.net/article/fpga-dynamic-power-fpga-power-consumption.q78x4dvz
https://docs.xilinx.com/r/en-US/ug949-vivado-design-methodology/Dynamic-Power
https://docs.xilinx.com/r/en-US/ug949-vivado-design-methodology/Dynamic-Power
https://docs.xilinx.com/r/en-US/ug949-vivado-design-methodology/Static-Power
https://docs.xilinx.com/r/en-US/ug949-vivado-design-methodology/Static-Power
https://www.xilinx.com/developer/products/vivado.html

[25] Vumanthala, Sagar and Kalagadda, Bikshalu,“Modified Nonlocal Means Filter-

ing for Speech Enhancement and Its FPGA Prototype” Circuits, Systems, and

Signal Processing, volume 40, 10.1007/s00034-021-01750-5, 2021.

[26] Dueck, Stuart,“A power evaluation framework for FPGA applications

and CAD experimentation” https://open.library.ubc.ca/collections/

ubctheses/24/items/1.0073893 Electronic Theses and Dissertations (ETDs)

2008+, 2013.

[27] Albert Reuther and Peter Michaleas and Michael Jones and Vijay Gadepally and

Siddharth Samsi and Jeremy Kepner,“Survey of Machine Learning Accelerators”

https://arxiv.org/abs/2009.00993 CoRR, abs/2009.00993, 2022.

[28] Foster, Harry D.,“2018 FPGA Functional Verification Trends” Circuits, Systems,

and Signal Processing, 10.1109/MTV.2018.00018 2018.

[29] Li Du and Yuan Du,“Hardware Accelerator Design for Machine Learn-

ing” = https://doi.org/10.5772/intechopen.72845 IntechOpen, 10.5772/inte-

chopen.72845, 2017.

[30] Luthra, Siddhant and Khalid, Mohammed A.S. and Moin Oninda, Mo-

hammad Abdul,“FPGA-Based Evaluation and Implementation of an Auto-

motive RADAR Signal Processing System using High-Level Synthesis” 2020

IEEE Canadian Conference on Electrical and Computer Engineering (CCECE),

10.1109/CCECE47787.2020.9255725 2020.

https://open.library.ubc.ca/collections/ubctheses/24/items/1.0073893
https://open.library.ubc.ca/collections/ubctheses/24/items/1.0073893
https://arxiv.org/abs/2009.00993
=

Vita Auctoris

NAME: Vivek Liladhar Ladhe

PLACE OF BIRTH: Dombivli, Maharashtra, India

YEAR OF BIRTH: 1997

EDUCATION: Ramrao Adik Institute of Technology
Nerul, Maharashtra, India
2015-2019, Bachelor of Engineering
Electronics and Telecommunication Engineering

University of Windsor,
Windsor ON, Canada
2021-2022, Master of Applied Science
Electrical and Computer Engineering

	Rapid Prototyping and Functional Verification of Power Efficient AI Processor on FPGA
	Recommended Citation

	Declaration of Authorship
	Abstract
	Dedication
	Acknowledgements
	List of Tables
	List of Figures
	List of Abbreviations
	Introduction
	Motivation
	Thesis Objectives
	Contributions
	Thesis Outline

	Background and Related Work
	Motivation for Rapid Prototyping using FPGAs
	Rapid Prototyping Hardware design methodologies
	Related Work

	Rapid Prototyping and Functional Verification of AI Processor
	Overview of Artificial Intelligence
	Overview of Convolutional Neural Network
	Overview of low power AI processor
	Operation of low power AI processor
	Hardware platform and CAD tools used for rapid prototyping
	Overview of Arty 7 Board
	Overview of Xilinx VCU118 kit
	CAD tools used in FPGA Prototyping
	FPGA Prototyping sequence

	Functional Verification of the design

	Experimental Results
	Test Setup and Functional Verification
	Jenkins Setup
	FPGA Resource Utilisation
	Power Analysis

	Conclusion and Future work
	Bibliography
	Vita Auctoris

