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Management Summary 

Photovoltaic (PV) energy production has experienced strong growth over the past years 

and is forecasted to greatly contribute to the successful transition to renewable energy 

production as demanded by Switzerland’s Energy Strategy 2050. Several studies 

attempted to estimate the national PV potential on building rooftops but arrived at 

strongly varying results ranging from 15 to 53 TWh annually. To a vast extent, the 

differences can be explained by the application of varying rooftop utilization ratios which 

were extrapolated by all previous studies. Moreover, no comparison of the placement of 

existing PV installations to the suitability categorization from the sonnendach.ch project 

was yet carried out. Therefore, the aim of this master thesis was to develop and evaluate 

a prototype methodology to close the research gaps regarding rooftop utilization ratio and 

the efficiency of PV panel placement. The prototype methodology to answer these 

questions was developed in Python and leverages publicly available data from the Swiss 

government in conjunction with a Mask R-CNN for the accurate segmentation of PV 

panels on high resolution aerial imagery. A total of 1130 individual images of building 

rooftop were thereby collected in the canton of Aargau of which 974 were used to train 

the Mask R-CNN model. After four training iterations with varying dataset sizes, the 

segmentation performance of the Mask R-CNN achieved an iou_score of 0.74. Overall, 

the rooftop utilization ratio found in this thesis equated to 29%, suggesting that all PV 

potential studies systematically overestimate the extent of rooftop utilization. Moreover, 

the findings of this thesis suggest that the more suitable a rooftop area is, the greater its 

extent of utilization whereas previous studies assumed a uniform distribution of 

utilization ratio across all suitability categorizations. From the assessed building rooftops, 

2.8% have their PV panels suboptimally placed and therefore fail to efficiently exploit 

solar radiation. 71% of which were successfully detected by the model. Overall, the 

findings of this thesis proved that an automated, large-scale assessment of PV placement 

efficiency is technically feasible. This information could support national energy 

planning as well as PV incentive decision making. However, the segmentation 

performance of the Mask R-CNN achieved with the resources available to this thesis is 

currently insufficient for detailed quantitative analyses. Consequently, further studies to 

improve the Mask R-CNN performance should be conducted before applying the 

prototype methodology on a large scale.  
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1. Introduction 

1.1. Background 

Due to the decreases in the cost of PV cells, solar energy generation has experienced 

substantial growth in recent years. As such, PV installations have become an increasingly 

vital cornerstone to meeting the carbon emission goals in an effort reduce global climate 

change (Gupta et al., 2021). Despite being less radical compared to neighboring countries 

such as Germany, Switzerland set ambitious targets to reduce CO2 emissions. In early 

2017, Switzerland revised its energy law to subsidize renewable energies along with its 

Energy Strategy 2050 (Assouline et al., 2018). The goal is to compensate for the 

decommissioning of nuclear power, planned by 2035, with renewable energy and an 

overall reduction of CO2 emissions of 50 to 80% by 2050 (UEVK, 2017). Over 40% of 

Switzerland’s current overall energy demand results from the heating, ventilation, and air 

conditioning (HVAC) of buildings (Bundesamt für Energie, 2021b). Also, roughly 32% 

of the national electricity demand is caused by HVAC and lighting. To achieve the goals 

set by the Energy Strategy 2050, it is therefore critical that buildings become more 

energy-efficient and the remaining demand is satisfied by renewable sources (Assouline 

et al., 2018). PV installations on building rooftops have shown to be a reliable large-scale 

energy source for urban areas that can significantly contribute to decentralized renewable 

energy supply. In addition, PV installations require little to no changes in building 

infrastructure, therefore, being seen as an optimally suited solution to address urban 

electrification and boost renewable energy supply on a local level (Lonergan & Sansavini, 

2022). Subsequently, PV installations have the potential to drastically reduce CO2 

emissions and aid in achieving renewable energy goals (Walch et al., 2019) 

 

Despite the promising technology and strong growth with a CAGR of 39% between 2010 

and 2020, photovoltaic energy only accounted for 4.7% of Switzerland’s total energy 

production in 2020 (Bundesamt für Energie, 2021c). While 73% of new PV installations 

in 2020 were built on single-family houses, only 7% were built on industrial buildings. 

Due to the larger rooftop area available, the total electrical output of new PV installations 

on industrial buildings exceeds the total output of single-family houses with 173 and 138 

MWh, respectively. (Bundesamt für Energie, 2021c). 
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Figure 1 shows the growth in total solar electricity production in Switzerland since the 

turn of the millennium (Bundesamt für Energie, 2021c). 

 

Figure 1: Solar electricity production growth in Switzerland (in GWh) between 2000 and 
2019 (Bundesamt für Energie, 2021b) 

 

Figure 2: Number of newly built PV installations among different categories in 2020 (in 
thousands) (Bundesamt für Energie, 2021b) 

 

These developments have raised the question of how large the potential solar energy 

production in Switzerland could be, should all available building rooftop areas be 

maximally utilized for PV energy production. Several studies tried to answer this question, 

yet the estimates for the PV potential in Switzerland show greatly varying results ranging 

between 15 to 53 TWh. These discrepancies can primarily be traced back to strong 

variation in estimated available building rooftop areas (Walch et al., 2019). Moreover, 

the estimated rooftop utilization ratio which was extrapolated by all PV potential studies 

also varies greatly between the studies. No approach to determine the extent to which PV 

installation owners exploit the available rooftop area on a large scale has yet been 

developed.  
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Additionally, no granular information regarding the placement of PV panels within the 

rooftop area is currently available. This information would allow examining whether the 

PV panels are placed in the most optimally suited region of a given rooftop (placement 

efficiency). Thereby, two research gaps could be identified: (1) the available rooftop area 

utilization ratio on a large scale and (2) the placement efficiency of current PV 

installations. 

1.2. Problem definition 

As aforementioned in the Background section, the overall PV potential of Switzerland’s 

rooftop has been analyzed to a great extent. However, PV installation owners often do 

not fully utilize the entire available rooftop area in practice. As previous PV potential 

studies solely estimate the rooftop utilization ratio to account for partly used rooftop 

surfaces, they likely do not display a realistic picture. The negligence of this real-life 

factor might ultimately lead to problems in grid distribution or energy planning and thus 

threaten the achievement of the goals set by the Energy Strategy 2050. As part of the 

sonnendach.ch project, the Federal Office for Energy developed a model to identify the 

PV potential for every building rooftop in Switzerland. The model takes a variety of 

variables such as, inclination, orientation, and shading into account and calculates the 

potential PV energy output for all plane surfaces on building rooftops (Portmann et al., 

2016). This information should help PV owners to find the most efficient placement for 

their PV panels. Despite a large amount of high-quality data available from the Swiss 

government, existing PV panels are solely mapped to individual addresses. No granular 

mapping with the exact shape and position (segmentation) on the rooftops has been 

conducted. Comparing the actual placement of existing PV panels to the optimal 

placement according to the sonndach.ch model would allow drawing conclusions on 

whether PV installation owners have placed their PV panels correctly to maximally 

exploit the solar radiation available on their rooftop.  

1.3. Objective 

The objective of this master thesis is to develop and evaluate a prototype methodology 

that leverages publicly available data from the Swiss government to close the research 

gaps identified in the Background section regarding the extent of rooftop surface area 

exploitation (rooftop utilization ratio) and PV panel placement efficiency.  
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Therefore, the prototype model must be able to automatically identify buildings with PV 

installations, segment the PV panels precisely and assess whether the PV panels of a given 

rooftop are placed correctly to exploit the available solar radiation maximally. The 

optimal PV panel placement is thereby determined by the categorization of the 

sonnendach.ch project (Portmann et al., 2016). The prototype shall lay the foundation for 

a model able to conduct a country-wide assessment and serve as a proof of concept that 

can be utilized by energy companies for commercial reasons. 

1.4. Research question 

The research question (RQ) of this thesis is divided into three Sub-RQs which 

subsequently resulted in the three Tasks structure found in the Methodology section: 

• RQ: Can a large-scale prototype methodology be developed that detects and compares 

the placement of PV panels with the rooftop area suitability categorization according 

to the sonnendach.ch project? 

o Sub-RQ1: Can a prototype method be developed that allows to automatically crop 

high resolution aerial imagery to the shape of individual buildings?  

o Sub-RQ2: Can a Mask R-CNN be trained to accurately segment PV panels on 

rooftops? 

o Sub-RQ3: Can the masks from the Mask R-CNN be compared to the 

categorization of the sonnendach.ch project? 

1.5. Scope limitations 

The development of this prototype methodology is limited to a narrowly bounded region. 

While the methodology was developed to work for the entirety of Switzerland, the data 

collected and processed is limited to a few regions within the canton of Aargau. As this 

thesis has a proof-of-concept nature focusing on the functionality rather than outcome, 

certain parts of the methodology have potential for further optimization yet not conducted. 

Examples thereof are research on the tuning of Mask R-CNN hyperparameters (see 3.2.2) 

or the reduction of data noise in the PV placement assessment (see 3.3.2). Moreover, the 

assessment is limited to the suitability categorization and does not take into account other 

variables form the sonnendach.ch project. These scope limitations are translated into 

recommendations for further research in the Discussion section. 
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1.6. Contribution and relevance 

The primary relevance of this thesis is twofold. Firstly, it contributes to the existing body 

of academic knowledge by developing a prototype methodology to exactly measure the 

rooftop utilization ratio on a large scale. Thus, eliminating the need to rely on extrapolated 

rooftop utilization ratio as employed by previous PV potential studies. The thesis thereby 

contributes by delivering techniques and data needed to improve the accuracy of further 

potential estimates that are crucial to electrical planning and achieving the Energy 

Strategy 2050. Moreover, an accurate rooftop utilization ratio that can be exactly 

determined for any arbitrary region also aids in understanding the specific reasons why 

less than the available area is exploited. This information could help policy makers to 

strengthen inducements for PV owners. Secondly, the prototype methodology of this 

thesis allows catering to a range of commercial use cases related to the solar industry. By 

identifying the placement effectiveness and the extent to which a given address is 

exploiting the available area, (after-) sales initiatives can be launched. A possible use case 

could be that PV installer companies identify buildings that have suboptimally placed PV 

panels with the aim of selling their services. 

1.7. Structure of the thesis 

This thesis is divided into following structure: In the first two chapters, the state of 

research is shown on the basis of related work and the theoretical foundations needed for 

the development of the prototype methodology are discussed. In the following chapter, 

the developed methodology is explained in detail and respective Python code is linked. 

All data used as part of the prototype methodology is detailed following the Methodology 

chapter. The achieved outcomes are then presented in the Results chapter. Like the RQs, 

the Methodology as well as the Results chapter are divided into the three main Tasks: 

data collection and preprocessing, Mask R-CNN for PV segmentation, and lastly, the 

comparison to SolkatDach suitability categorization. Finally, the results are taken up 

again and brought into context in the Discussion chapter and condensed in the Conclusion. 
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2. Literature review 

2.1. PV potential estimates for Switzerland 

As mentioned in the Background section, the eight studies that estimated the total 

electrical PV potential in Switzerland show strongly varying results: In an early study that 

was conducted by the International Energy Agency (IEA) in 2002, the PV potential of 

several European countries was analyzed by roughly calculating the available rooftop 

area derived from the building ground floor area. This rather rudimentary method 

estimated the total PV potential of Switzerland to be roughly 15 TWh (International 

Energy Agency (IEA), 2002). Years later in 2016, Switzerland’s Federal Office of Energy, 

Swisstopo, and MeteoSwiss funded the large-scale project sonnendach.ch. The project 

uses a geographic information system (GIS) based method jointly with rule of thumb 

approaches to estimate the PV suitability of building rooftops (Portmann et al., 2016). 

With relatively high a rooftop utilization ratio of 62%, the total PV potential of 

Switzerland was estimated to be 53 TWh (Walch et al., 2019) which is the highest 

estimate of all potential studies. The first analysis based on machine learning was carried 

out by EPFL in 2017. In this study GIS, machine learning algorithms, and support vector 

machines were used. The study conducted on a communal level estimated the 

countrywide PV potential to be 18 TWh (Assouline et al., 2017). Shortly after, Assouline 

et al. (2018) published another paper intending to improve the initial study of 2017. 

Random forest algorithms in combination with more accurate datasets were used. With 

an estimated PV potential of 16 TWh, the results are slightly below the initial study from 

2017 (Assouline et al., 2018). Buffat et al. (2018) conducted another PV potential analysis 

with the primary goal to compare different PV technologies. The model, which also 

accounted for panel and inverter inefficiencies, estimated Switzerland’s PV potential to 

41 TWh. Once the data generated by Portmann et al. (2016) was available for the entirety 

of Switzerland the association Swisssolar conducted another study. The comparatively 

new paper estimated the total PV potential of Switzerland to be approximately 49 TWh 

of which 23 TWh can be used in the short term (Remund et al., 2019). Through a very 

detailed approach using GIS and machine learning methods, Walch et al. (2020) 

conducted yet another potential estimate. Based on the extrapolated estimates for of 

approximately 9.6 million rooftops, the study estimated the nationwide PV potential to 

be 24 (±9) TWh.  
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The most recent study was published by the ZHAW Institute of Natural Resource 

Sciences in early 2021 which focuses to accurately estimate the rooftop utilization ratio. 

By manually assessing 99 rooftops in the Zurich area, the study estimated rooftop 

utilization ratio to be 50% which resulted in a countrywide PV potential of 39 TWh (Moro 

et al., 2021). As the rooftop utilization ratios and thus total potential estimates vary 

significantly between the studies, it becomes evident that no consensus has yet been 

reached. Table 1 provides an overview summary of the PV potential studies conducted in 

Switzerland.  

Table 1: Comparison of Swiss PV potential estimates 

Study 
Available 

rooftop area  
(in km

2 
) 

Rooftop 
utilization ratio 

(in %) 

Total potential  
(in TWh) 

International Energy Agency (2002) 251 55.0 15.0 
Portmann et al., (2016) 314 61.9 53.1 
Assouline et al., (2017) 328 60.5 17.9 
Assouline et al., (2018) 252 60.5 16.3 
Buffat et al., (2018) 485 70.1 41.3 
Remund et al., (2019) 252 50.0 49.1 
Walch et al., (2020) 267 56.4 24.6 
Moro et al., (2021) 231 50.0 38.8 

2.2. Detection and segmentation of PV installations 

Several studies investigating the feasibility of detecting PV panels on building rooftops 

using machine and deep learning indicate promising results (Golovko et al., 2017; Li et 

al., 2020; Malof et al., 2016). However, PV detection is no topic of further analysis of 

this thesis as the existing PV installations in Switzerland are already mapped by the 

Federal Office of energy and the data is publicly available. Therefore, no detection is 

needed and solely the precise delineation of PV panels as polygons through image 

segmentation is of interest. The following section focuses on research regarding the 

segmentation of PV panels though machine learning approaches. 

 

In an early study conducted by Malof et al. (2016), images from satellites with a resolution 

of 0.3 m were used to detect PV panels. However, the study also examined to what extent 

the model can segment PV sizes and shapes with an object-based approach using a 

random forest classifier. With a training set of approx. 2.7 thousand manually annotated 

PV panels, no sufficient results could be established. Another detection study that also 

assessed the segmentation of PV panels was conducted by Li et al. (2020).  
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As part of the SolarFinder project, the authors leveraged a k-means algorithm to segment 

individual rooftop images into objects and contours followed by a hybrid approach using 

support vector machine radial basis function and a convolutional neural network (CNN) 

model. Through this sophisticated model supported by a large-scale data set, the 

characteristics (size and shape) of PV panels could be accurately profiled. In a very recent 

study focusing on the extraction of PV panel characteristics, Souffer et al. (2022) used 

RGB as well as thermal imagery from unmanned aerial vehicles (UAV) combined with a 

random forest classifier to segment PV panels. Through the comparatively high data 

quality, a strong result with an average F1-score of 0.99 was achieved. By solely 

depending on thermal images and using a different approach, Wang et al. (2021) achieved 

a slightly lower F1-score of 0.86. He and Zhang (2020) developed a model to detect and 

segment PV panels using an R-CNN architecture (see 2.5.1). A training set of almost 6 

thousand rooftop images with a resolution of 0.3 m was used. The study conducted in the 

urban region of Manchester, UK claims to successfully delineate PV panels but provides 

no proof of performance for image segmentation tasks. Jiang et al. (2021) conducted a 

study using three different types of areal footage. As such, satellite images with a spatial 

resolution of 0.8 m and 0.3 m alongside high-resolution images (0.1 m) taken by UAVs 

were analyzed. The three datasets were then tested using the U-Net, RefineNet, and 

DeepLab v3+ algorithms. The Authors indicate that for PV segmentation on rooftops, the 

footage with a resolution of 0.1 m is most suited. The obtained F1 scores ranged from 

0.86 (U-Net) to 0.91 (DeepLab v3+) (Jiang et al., 2021). The training data of this study is 

freely available but will be of limited use as the buildings and surroundings in Switzerland 

vary from China.  

 

It must be noted that a direct comparison of the above studies is not feasible due to the 

large differences in data as well as algorithm choice and architecture. Nevertheless, it can 

be concluded that the field of PV panel detection was subject to extensive research while 

PV panel segmentation is mostly analyzed as a secondary by-product, not included in the 

main research focus. However, a study that focuses on segmenting PV panels from 

satellite imagery was published by Liang et al. (2020). The authors utilized the satellite 

imagery dataset provided as part of the DeepSolar project of Stanford University and 

manually annotated 2733 samples. The data was used to fine-tune a pre-trained Mask R-

CNN that was trained on the COCO dataset. 
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The overall performance of the Mask R-CNN was satisfactory, but the model had 

difficulties to accurately segment the edges of the rectangular shaped PV panels. This 

problem was eliminated through the application of a right-angle polygon fit algorithm. 

An in-dept literature review of Mask R-CNNs can be found in section 2.5. Also relying 

on a Mask R-CNN algorithm, researchers of the Institute of Geomatics at the University 

of Applied Sciences of Northwestern Switzerland conducted a study with very similar 

objectives as this thesis. The authors manually annotated 7’839 image tiles with a total 

31’401 polygons representing roughly 22’000 PV panels (averaging 20 images/ hour). 

Through the extensive amount of ground truth data, a relatively high performance was 

achieved (no comparable metrics published). The computational load associated with this 

amount of data, was distributed on four graphical processing units (GPU) (Nvidia Tesla 

V100 SXM2) supported by a HPE Apollo 6500 Deep Learning GPU server. With this 

hardware at hand, the authors estimated the total inferencing time for the entirety of 

Switzerland to be approximately ten days (Meyer, 2020). No other information regarding 

the results is publicly available. Because of this and the study’s similarity in terms of 

objectives and methodology, the authors were contacted multiple times in hopes for a 

knowledge exchange, but no answers have been received. 

2.3.  Image Segmentation 

As mentioned before, the intent of this master thesis is not to detect PV panels but to 

determine their exact size and placement on the rooftops, so their placement can be 

compared to the suitability categorization from the sonnendach.ch project. This problem 

can be solved using image segmentation which is defined as a set of specific image 

processing techniques applied to divide an image into one or more meaningful regions. 

In other words, image segmentation defines separate semantic entities within an image. 

On a more technical level, image segmentation is a sub-class of computer vision that 

assigns a label to each pixel with respect to its semantic meaning (Ghosh et al., 2020). 

Despite being less well researched as the field of object detection, image segmentation is 

used in multiple real-world applications such as traffic surveillance (autonomous 

driving), medical image processing (e.g., localization of abnormalities such as melanomas 

or aneurysms), defense guidance systems or forensics (Ghosh et al., 2020).  
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2.4. Deep learning techniques for image segmentation 

While several traditional approaches for image segmentation have been available for 

years, only with the surfacing of deep learning techniques fundamentally new 

segmentation algorithms evolved. Through the application of CNNs, that learn through 

back-propagation of convolutional kernels, the segmentation performance was greatly 

improved and, thus, new applications could be served (Ghosh et al., 2020). The progress 

in performance was supported, to a large extent, by powerful baseline systems such as the 

Fast or Faster Regional-CNN and Fully Convolutional Network (FCN) (He et al., 2017). 

In image segmentation, a convolution can be defined as a function that calculates a sum 

of product between input values and kernel weights while convoluting a smaller kernel 

over a larger image. The convolutional kernels of a conventional CNN thereby tend to 

generate activation maps with regards to specific properties of the objects. Because of the 

way activations work, they can be thought of as segmentation masks for object-specific 

features. Therefore, these output activation matrices already include the key to generating 

requirement-specific segmentation. The majority of image segmentation algorithms 

exploit this CNN capability to build the segmentation masks needed to solve the problem 

(Ghosh et al., 2020). Appendix 10.1 summarizes major deep learning-based segmentation 

algorithms in chronological order.  

2.5. Mask R-CNN 

2.5.1 Origins 

To understand functionality and architecture of the Mask R-CNN, it is pivotal to 

understand its origins which date back to the advent of CNNs. Back then, the question 

whether networks like AlexNet can be re-designed to detect the presence of multiple 

objects arose. The answer to this question was found in the development of R-CNNs 

(Ghosh et al., 2020). First introduced by Ross Girshick, R-CNNs utilize a selective search 

algorithm to extract region proposals that are then passed though the convolutional 

network before a category is assigned for a given image crop. As one forward pass for 

every region proposal (can be hundreds or thousands per image) is required, R-CNNs 

suffer from high computational costs. Moreover, as these region proposals vary in size 

and shape, achieving uniform-size features is impossible (Ghosh et al., 2020). With the 

introduction of the Fast R-CNN, Girshick addressed the downsides of traditional R-CNNs 

through the utilization of region-of-interest (ROI) pooling.  
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As such, ROIs are pooled dynamically to generate feature outputs of a fixed spatial extent 

(e.g., 6 x 6), leaving the selective search technique as the sole remaining bottleneck 

(Girshick, 2015). This approach also significantly improved detection speed. Shortly after 

inventing Fast R-CNN, Faster-R-CNN, which relies on intermediate activation maps to 

propose bounding boxes instead of external features, was invented (Ren et al., 2017). 

Faster R-CNN at its core, is composed of two stages. The first being the region proposal 

network (RPN) which proposes region object bounding boxes. The second stage, being 

somewhat identical to Fast R-CNN, extracts features using ROI pooling from each 

bounding box and performs a classification (He et al., 2017). The Faster R-CNN pathed 

the way for the development of today’s state of the art image segmentation algorithm: 

Mask R-CNN. 

2.5.2 Functionality and architecture 

Five years ago, He et al. (2017) presented the conceptually simple Mask R-CNN 

framework that remains the most widely accepted technique for image segmentation to 

date (Liang et al., 2020). The framework which leverages the Faster R-CNN method, was 

enhanced with a parallel branch that provided object specific binary classification on a 

pixel-based level, generating accurate segments (He et al., 2017). The first of the two-

stage approach (see 2.5.1) used in Faster R-CNN remains unchanged while the second 

stage was adapted. In Faster R-CNN, the second stage generates two outputs for each 

object (bounding-box and class label) while in Mask R-CNN another branch to 

accommodate the object mask is added. Figure 3 illustrates the architectural evolution 

from a simple R-CNN to a Mask R-CNN as used in this thesis.  
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Figure 3: Mask R-CNN architecture evolution illustrated (adapted from Ghosh et al., 2020) 

  



               Methodology 

Master Thesis | Assessing placement efficiency of photovoltaic installations using Mask R-CNN 13 

3. Methodology 

Following the three-split structure of the Sub-RQs (see 1.4), the Methodology is also 

divided into three main Tasks that can encompass multiple Subtasks. These Tasks are (1) 

data collection and processing, (2) training a Mask R-CNN for PV segmentation and 

finally (3) the comparison to the SolkatDach suitability categorization originating from 

the sonnendach.ch project.  

 

 

Figure 4: High-level process of the developed prototype methodology 

 

In this section, the three main Tasks as well as the Subtasks are explained in detail. The 

vast majority of steps in this prototype methodology were performed through Python 

scripts that were executed in the Google Colab environment directly mounted to google 

drive where the data was stored. The Python scripts can be accessed through the links to 

the GitHub repository provided at the beginning of each Subtask. The first two Tasks 

were both executed over four iterations. This means that for each iteration additional data 

was collected to train a Mask R-CNN by executing Task 1 again. The data from the first 

iteration was then included in the dataset for the second iterations and so forth. Unless 

stated otherwise, a Tesla P100-PCIE-16GB GPU was used for all steps of this master 

thesis. Figure 5 provides an overview of the code structure and all data required to execute 

the methodology within the google directory. The entire prototype methodology 

developed in this thesis is illustrated in Figure 7. 

Task 1: 
Data collection  
and processing 

Task 2: 
Mask R-CNN for PV 

segmentation 

Task 3: 
Comparison to 

SolkatDach 
suitability 

categorization 
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Figure 5: Directory tree of key elements as mounted in Google Colab 

3.1. Task 1: Data collection and processing 

As with any other machine learning model, a training dataset containing ground truth 

information is required to train the Mask R-CNN. In this case, the training dataset consists 

of images of building rooftops that have PV panels installed. Additionally, each image 

must have a mask that delineates the PV panels precisely. To generate the dataset as 

described, the images were downloaded and processed using multiple Python scripts and 

manually annotated. To ensure the actuality of the images, the data was collected within 

the canton of Aargau for which the most recently taken aerial images are available (see 

Figure 10). The exact location can be depicted in Appendix 10.2. The four steps required 

to fulfil this Task, are as follows: 
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3.1.1 Subtask 1: Identification of rooftops with PV panels 

To identify buildings that have PV panels installed, the dataset 

“ElectricityProductionPlants” (EPA) provided by the Federal Office of Energy was 

utilized (Bundesamt für Energie, 2021a). The dataset includes valuable information such 

as the coordinates, beginning of operation, or total power output of existing PV 

installations. Unfortunately, the EPA dataset lacks a vital information that is required for 

following Subtasks, the EGID (German: Eidgenössischer Gebäudeidentifikator, short 

EGID) (see 3.1.3). The EGID is a unique identification number that the Federal Office 

for Statistics assigns every building within the country which can be found as part of the 

Federal Register of Buildings and Dwellings (German: Gebäude- und Wohnungsregister, 

short GWR) dataset (Bundesamt für Statistik, 2021). Both datasets, EPA and GWR were 

then merged to obtain one single “.csv” file through the spatial position coordinates. The 

final dataset (EPA_GWR_merged) functions as the filter to determine which rooftops 

have PV panels installed and should thus be taken into account.  

3.1.2 Subtask 2: Obtaining high-resolution aerial imagery 

Link to code 

Before taking snapshots of individual rooftops with PV panels, high-resolution satellite 

imagery must be acquired. The digital color orthophoto mosaic of by the Federal Office 

for Topography (Swisstopo) covers the entirety of Switzerland with aerial images with a 

resolution of <10 cm (Bundesamt für Landestopografie, 2022). For the determined area, 

the individual tiles of one km2 were downloaded then merged to one large photomosaic 

image. The process of downloading individual orthophotos and merging them to one 

single “.tif” file was automated through a Python script. The merged photomosaic serves 

as the base image for collecting multiple individual rooftop images as described in the 

following Subtask. 

3.1.3 Subtask 3: Save individual image of each rooftop with PV panels 

Link to code 

To generate individual images of building rooftops with PV panels installed, the precise 

shape and location of each building rooftop must be determined. This information can be 

derived from the dataset “SolkatDach” which resulted from the sonnendach.ch project 

(Portmann et al., 2016).  

https://github.com/zhaw-iwi/ML-Photovoltaic/blob/main/Task_1_data_collection_and_processing/download_and_merge_imgs.ipynb
https://github.com/zhaw-iwi/ML-Photovoltaic/blob/main/Task_1_data_collection_and_processing/image_puncher.ipynb
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The dataset in form of a “.gpkg” file was then cropped to the dimensions defined in 

Subtask 2 and saved as a “.geojson” file using the QGIS Desktop application (Sutton & 

Dassau, 2022). The SolkatDach dataset does not contain one polygon per rooftop but a 

single polygon for each rooftop surface (one or multiple per building). For a given rooftop, 

which is identified through the EGID, all individual rooftop surface polygons must thus 

be merged iteratively. Once a single polygon per rooftop is created, an image can be 

cropped from the photomosaic obtained in Subtask 2. In order obtain a rectangular sized 

image, padding is added on the edges surrounding the rooftop structure. The information 

resulting from Subtask 1 (EGID of rooftops with PV panels) as well as the area 

dimensions defined in Subtask 2 thereby serve as filters to determine for which rooftops 

should be executed in Subtask 3. Similarly to the previous Subtask, this process was 

automated through a Python script. 

3.1.4 Subtask 4: Annotate the images individually to obtain image masks 

Link to annotator 

After collecting the images, it is necessary to create the annotation masks to establish a 

reliable ground truth. This process is time consuming since it must be undertaken 

manually. As The Mask R-CNN model solely processes “.jpg” image files, the individual 

rooftop images were converted from “.tif” to “.jpg” before annotating (link to code). For 

the annotation, the HTML based image annotation software VGG Image Annotator (VIA) 

was used. The images were annotated with one or multiple polygons, all belonging to the 

same class entitled “PV”. Once the manual process was completed, the annotations were 

extracted in the VIA-JSON format. These steps were carried out for the training and 

validation dataset.  

3.2. Task 2: Mask R-CNN for PV segmentation 

Link to the original Matterport implementation 

Link to the code of the adapted version 

To segment PV panels on individual rooftop images the Mask R-CNN architecture was 

chosen. This decision is supported by two primary reasons: Firstly, the Literature review 

shows that Mask R-CNN is the is most widely used algorithm in both academia and 

practice and can thus be considered state-of-the-art for image segmentation tasks. 

Secondly, the algorithm was successfully used by researchers that conducted studies with 

very similar objectives (Liang et al., 2020; Meyer, 2020). 

https://github.com/zhaw-iwi/ML-Photovoltaic/blob/main/Task_1_data_collection_and_processing/Oxford_VGG_Image_Annotator.html
https://github.com/zhaw-iwi/ML-Photovoltaic/blob/main/Task_1_data_collection_and_processing/tif_to_jpeg.ipynb
https://github.com/matterport/Mask_RCNN/
https://github.com/zhaw-iwi/ML-Photovoltaic/tree/main/Task_2_Mask_R-CNN_for_PV_segmentation
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The model used for this thesis is a slightly adapted version of the well-established 

Matterport Mask R-CNN Architecture (Waleed, 2018). Thereby, the model is very similar 

to the original implementation published by He et al. (2017). Apart from hyperparameters, 

the adaptations made to the code from Matterport’s Mask R-CNN are limited to structural 

changes and changes in terminology and designations. Subsequently, the model used in 

this thesis is functionally identical to Matterport’s original version. The model was trained 

multiple times with different datasets. Thereby a total of four iteration (each iteration with 

a different train dataset size) were trained. The results of the four iterations are analyzed 

in section 5.2.1.  

3.2.1 Matterport Mask R-CNN architecture 

The first module of the Mask R-CNN architecture implemented by Matterport utilizes a 

standard CNN backbone (in this case ResNet101) that functions as a feature extractor. 

While the early layers detect trivial features such as edges and corners, the higher layers 

detect more complex features. The feature extraction is then improved using a feature 

pyramid network (FPN) which takes an arbitrarily sized input image and generates 

proportionally sized feature maps as output (Lin et al., 2017). The second module of the 

model, a region proposal network (RPN), is a lightweight neural network, that scans the 

feature maps in a window-like manner for regions, called anchors, that contain target 

objects. The top anchors (ROIs) are then passed to the next module that generates two 

outputs per ROI that is passed through: a classification (in this case PV or background) 

and a bounding box refinement which further specifies the location and shape of the 

object. Parallel to that, another CNN that takes the ROIs as input and generates one 

segmentation mask per object (He et al., 2017). Combined, the classifications, bounding 

boxes, and masks are the final outputs of the model (Waleed, 2018). Figure 6 illustrates 

the architecture of the Mask R-CNN implementation by Matterport as well as the loss 

functions detailed in section 3.2.3. 
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Figure 6: Matterport Mask R-CNN architecture and loss functions (adapted from Bobba, 
2019)  

3.2.2 Key hyperparameters 

Alongside the commonly found hyperparameters that the Mask R-CNN shares with most 

other CNN algorithms, it also carries a set of hyperparameters that are unique to its 

functionality. The key hyperparameters specific to Mask R-CNN are listed below. An 

exhaustive list of all hyperparameters and their respective settings can be found in 

Appendix 10.3. 

• Backbone: Defines the CNN that is used in the first step of the Mask R-CNN. 

Matterport supports three backbone options: ResNet50, Resnet101, and 

ResNext101. To include the necessary layer-depth but not suffer from excessive 

computational loads, a Resnet101 backbone with pretrained weights from the 

COCO model was chosen. 

• Train_ROIs_Per_Image: Defines the maximum number of ROIs which are 

generated by the RPN for a given image.  

• Max_GT_Instances: Defines the maximum number of instances (in this case PV 

panels) which can be segmented per image. Default value is 200. 

• Detection_Min_Confidence: Defines the confidence threshold at which the 

detection is made by the model or not. Default value is 0.9. 
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• Image_Min_Dim and Image_Max_Dim: Defines the image size. As per the 

default settings, images are resized to squares of 1024 x 1024. This setting is 

crucially relevant as it determines the dimensional changes that are needed for 

comparing the masks to the SolkatDach dataset. 

• Loss weights hyperparameter: The model optimizes its parameters based on five 

loss functions (see 3.2.3). The default weight of each loss function is set to 1, 

meaning all loss functions are weighted equally to optimize the model. 

3.2.3 Loss functions 

Matterport’s Mask R-CNN implementation uses a weighted sum of different loss 

functions that are optimized at each state of the model (see Figure 6). The five individual 

loss functions are as follows: 

• Rpn_class_loss: Defines the anchor box classification accuracy (absence/ 

presence of objects) or in other words, how well the backgrounds and objects are 

separated from each other by the RPN. 

• Rpn_bbox_loss: Defines the RPN’s bounding box localization accuracy or, in 

other words, how well the RPN can localize objects. 

• Mrcnn_class_loss: Defines the classification accuracy or, in other words, how 

well the Mask R-CNN recognizes each class of objects. 

• Mrcnn_bbox_loss: Defines the mask bounding box localization accuracy or, in 

other words, how well the model can localize objects through the masks. 

• Mrcnn_mask_loss: Defines the loss attributed to pixel level masks or, in other 

words, how well the Mask R-CNN segments objects. 

3.2.4 Image augmentation 

Image augmentation was used to further extend the dataset. By using the imgaug library, 

5/6 randomly selected images of the train datasets were augmented through either a 

horizonal or vertical flip, altering the rotation or scale. It is worth noting that the Mask R-

CNN by Matterport categorizes only certain image augmentations techniques as safe (see 

mrcnn.model.py). The image augmentation was directly implemented to the train 

function found in the PVseg.py module as of iteration 3. 

 

https://github.com/zhaw-iwi/ML-Photovoltaic/blob/main/Task_2_Mask_R-CNN_for_PV_segmentation/mrcnn/model.py
https://github.com/zhaw-iwi/ML-Photovoltaic/blob/main/Task_2_Mask_R-CNN_for_PV_segmentation/PVseg/PVseg.py
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3.2.5 Performance metrics 

Link to code 

In their Mask R-CNN implementation, Matterport included some performance metrics 

functions within the mrcnn.utils module. However, these functions are solely based on 

the bounding boxes, which is suboptimal for PV segmentation. To analyze the model 

performance on a mask level, new performance metrics that function on a pixel level were 

developed. The performance of the model was analyzed (see 5.2.2) through the following 

performance metrics whereby the calculations were performed for each picture and then 

averaged to represent the entire validation dataset: 

𝑇𝑝 = 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠,  𝑇𝑛 = 𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠, 

𝐹𝑝 = 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠,  𝐹𝑛 = 𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 

• iou_score (intersection over union score): Pixel level comparison of the 

intersection and the union of ground truth masks (gt_masks) and predicted masks 

(pred_masks). This is the first and foremost important metric used to evaluate the 

Mask R-CNN model in this thesis. 

𝐼𝑂𝑈(𝑝𝑖𝑥𝑒𝑙−𝑙𝑒𝑣𝑒𝑙) =
𝑎𝑟𝑒𝑎 𝑜𝑓 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛

𝑎𝑟𝑒𝑎 𝑜𝑓 𝑢𝑛𝑖𝑜𝑛
=   

Equation 1: IOU (pixel level) 

 

• mask_precision: Defines the ability of the model to only segment relevant object 

which is the percentage of correct positive predictions among all positive 

predictions (Padilla et al., 2021). 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑝𝑖𝑥𝑒𝑙−𝑙𝑒𝑣𝑒𝑙) =  
∑ 𝑇𝑝

𝑛
𝑖=1

∑ 𝑇𝑝 + 𝐹𝑝
𝑛
𝑖=1

 =  
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑡𝑜𝑡𝑎𝑙 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 

 
Equation 2: Mask precision (pixel level) 

 

https://github.com/zhaw-iwi/ML-Photovoltaic/blob/main/Task_2_Mask_R-CNN_for_PV_segmentation/PVseg/PVseg_model_inspect_TCB.ipynb
https://github.com/zhaw-iwi/ML-Photovoltaic/blob/main/Task_2_Mask_R-CNN_for_PV_segmentation/mrcnn/utils.py
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• mask_recall: Defines the ability of the model to segment relevant cases which is 

the percentage of correct positive predictions among all actual positive (Padilla et 

al., 2021). 

𝑅𝑒𝑐𝑎𝑙𝑙(𝑝𝑖𝑥𝑒𝑙−𝑙𝑒𝑣𝑒𝑙) =  
∑ 𝑇𝑝

𝑛
𝑖=1

∑ 𝑇𝑝 + 𝐹𝑛
𝑛
𝑖=1

=
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑡𝑜𝑡𝑎𝑙 𝑎𝑐𝑡𝑢𝑎𝑙 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 

Equation 3: Mask recall (pixel level) 

 

• mask_accuracy: Defines the number of correct predictions among the total 

predictions. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝑝𝑖𝑥𝑒𝑙−𝑙𝑒𝑣𝑒𝑙) =  
∑ 𝑇𝑝 +𝑛

𝑖=1 𝑇𝑛

∑ 𝑇𝑝 + 𝑇𝑛 +𝑛
𝑖=1 𝐹𝑝 + 𝐹𝑛

=
𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑡𝑜𝑡𝑎𝑙 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
 

 
Equation 4: Mask accuracy (pixel level) 

 

• mask_f1: Defines the harmonic mean of precision and recall. 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒(𝑝𝑖𝑥𝑒𝑙−𝑙𝑒𝑣𝑒𝑙) = 2 ∗
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑠 + 𝑟𝑒𝑐𝑎𝑙𝑙
 

 
Equation 5: Mask F1 (pixel level) 

3.3. Task 3: Comparison to SolkatDach suitability categorization 

With the Mask R-CNN model functioning, the last step, the comparison to the SolkatDach 

suitability categorization can be undertaken. This step contains only two Subtasks; (1) the 

Mask R-CNN is utilized to generate PV segmentation masks which are then (2) compared 

to the SolkatDach model originating from the sonnendach.ch project. 

3.3.1 Subtask 1: Inferencing and generation of PV segmentation masks 

Link to code 

This step is fairly straight forward. The final (iteration 4) Mask R-CNN model is loaded 

and used to generate binary segmentation masks. As the model creates a separate mask 

for every PV panel cluster it detects, all masks of a given picture were merged and then 

flattened to a one-dimensional array with binary values representing the presence or 

absence of PV panels for a given pixel. The arrays where then saved as “.jpg” images 

alongside their respective EGID. This was conducted for the pred_masks as well as the 

gt_masks. 

https://github.com/zhaw-iwi/ML-Photovoltaic/blob/main/Task_3_comparison_to_SolkatDach_suitability_categorization/save_pred_and_gt_masks.ipynb
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3.3.2 Subtask 2: PV placement assessment 

Link to code 

The concluding step of this prototype methodology compares the pred_masks from the 

final model to the rooftop surface suitability categorization dataset SolkatDach. Unlike 

the model performance evaluation undertaken in Task 2 (see 3.2), this step requires 

dimensional changes to the categorization polygons from the SolkatDach. This is 

indispensable as the size and shape of the input images is altered inside the Mask R-CNN 

model resulting in dimensional differences between the masks (pred_mask and gt_mask) 

and the suitability categorization polygons from the SolkatDach. This challenge was 

solved by rasterizing the SolkatDach “.geojson” file and then converting it to a three-

dimensional RGB image containing the suitability categorization number (1= low to 5= 

top) as its RGB code on a pixel level. The image could then resized following the logic 

of the resize_image function from the mrcnn.utils module. The image was then flattened 

to a one-dimensional array, thus, becoming dimensionally identical to the corresponding 

masks (see Appendix 10.6). By multiplying this one-dimensional array containing the 

suitability categorization with the pred_mask and gt_mask, the extent of rooftop 

exploitation could be estimated based on the pixel level frequency. The values of this 

pixel-level frequency of occurrence were then saved as a “.csv” file for further analysis. 

This concludes the prototype methodology developed in this thesis. 

 

https://github.com/zhaw-iwi/ML-Photovoltaic/blob/main/Task_3_comparison_to_SolkatDach_suitability_categorization/pv_placement_assessment.ipynb
https://github.com/zhaw-iwi/ML-Photovoltaic/blob/main/Task_2_Mask_R-CNN_for_PV_segmentation/mrcnn/utils.py
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Figure 7: Overview of the prototype methodology developed (including data sources) visualized in Signavio 
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4. Data sources 

All data sources used in the development of the prototype methodology outlined in the 

previous chapter are entirely open source and provided by the Swiss government. Table 

2 provides an overview of the data sources detailed in this chapter. 

 

Table 2: Overview of data sources (URL linked to source) 

Name EPA GWR SWISSIMAGE 10 cm SolkatDach 
Source swisstopo  housing-stat swisstopo  swisstopo  

Format .csv .csv .tif .gpkg 

Variables XTF ID 
 

EGID areal image (10 cm 
resolution) 

Plane 
polygons 

  Post code Post code  Suitability 
  Municipality Municipality  Rooftop area 
  Canton Canton  Orientation 
  Beginning of 

operation 

Class of building 
 

Financial 
return Year of construction 

Type of heating Inclination 
  
  
  
  
  
  
  

Initial power Area 

 
 
 
 
  

 
 
 
 

Total power Status 
Main category Number of levels 
Subcategory Renovations 

Plant category Longitude 
Longitude Latitude 
Latitude others 

 

4.1. ElectricityProductionPlants (EPA) 

As described in section 3.1, the EPA dataset encompasses all electricity production plants 

registered in Switzerland. This includes large plants such as the nuclear power plants as 

well as small-scale privately owned PV installations that are of interest in this thesis. For 

each plant information such as the address, coordinates, beginning of operation or power 

output is available. Solely electricity production plants that are currently operational are 

included in the dataset. A supplementary dataset entitled PlantDetail contains additional 

information such as the orientation and inclination of PV installations (Bundesamt für 

Energie, 2022b). However, this does not contribute to the objectives of this thesis. All 

information can be freely accessed in the form of “.csv” files via the opendata.swiss portal 

(Bundesamt für Energie, 2021a). Figure 8 shows a visualized excerpt of the 

ElectricityProductionPlants dataset. 

https://map.geo.admin.ch/?lang=de&topic=ech&bgLayer=ch.swisstopo.pixelkarte-farbe&layers=ch.swisstopo.zeitreihen,ch.bfs.gebaeude_wohnungs_register,ch.bav.haltestellen-oev,ch.swisstopo.swisstlm3d-wanderwege,ch.astra.wanderland-sperrungen_umleitungen,ch.bfe.elektrizitaetsproduktionsanlagen&layers_opacity=1,1,1,0.8,0.8,1&layers_visibility=false,false,false,false,false,true&layers_timestamp=18641231,,,,,
https://www.housing-stat.ch/fr/madd/public.html
https://www.swisstopo.admin.ch/de/geodata/images/ortho/swissimage10.html
https://map.geo.admin.ch/?lang=de&topic=ech&bgLayer=ch.swisstopo.pixelkarte-farbe&layers=ch.swisstopo.zeitreihen,ch.bfs.gebaeude_wohnungs_register,ch.bav.haltestellen-oev,ch.swisstopo.swisstlm3d-wanderwege,ch.astra.wanderland-sperrungen_umleitungen,ch.bfe.elektrizitaetsproduktionsanlagen,ch.bfe.solarenergie-eignung-daecher&layers_opacity=1,1,1,0.8,0.8,1,1&layers_visibility=false,false,false,false,false,false,true&layers_timestamp=18641231,,,,,,&E=2694793.20&N=1256067.47&zoom=4
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Figure 8: ElectricityProductionPlants (EPA) dataset visualized 

4.2. Federal Register of Buildings and Dwellings (GWR) 

In order obtain the EGID, which is needed for the precise determination of the shape and 

location of each building rooftop (see 3.1.3), the Federal Register of Buildings and 

Dwellings was utilized. The GWR contains information on construction projects, 

buildings, apartments, building entrances and streets and can be freely accessed through 

the housing-stat.ch platform (Bundesamt für Statistik, 2021). The EGID plays a crucial 

role as it functions as the primary key that allows for interlinking all other data used in 

this thesis.  

 
Figure 9: Federal Register of Buildings and Dwellings (GWR) dataset visualized 

4.3. SWISSIMAGE 10 cm 

The aerial images used in this thesis originate from the publicly available orthophoto 

mosaic SWISSIMAGE 10 cm. An orthophoto is an aerial image in which the inclination 

influences of the camera and the terrain were corrected. In the case of the SWISSIMAGE 

10 cm dataset, the images were taken by plane while all image data was taken in the nadir 

(perfectly orthogonal relative the ground).  
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The images with a ground resolution of 10 cm in the plain areas and 25 cm over the alpine 

regions are updated on a triannual basis. Therefore, some PV installations included in the 

EPA dataset might not yet be shown in the aerial images from SWISSIMAGE 10 cm. 

Due to the actuality of the images, the canton of Aargau was chosen for image collection. 

SWISSIMAGE 10 cm is accessible in image tiles of 1 km2 each. The tile numbering 

corresponds to the kilometer coordinates of the southwest corner point of a tile. The tiles 

can be downloaded freely via the swisstopo portal (Bundesamt für Landestopografie, 

2022). Figure 10 displays the current state of the SWISSIMAGE 10 cm orthophoto 

mosaic which served as the criteria for identifying suitable regions. 

 

Figure 10: Actuality of SWISSIMAGE 10 cm orthophoto mosaic (as of April 2022) 

4.4. SolkatDach 

As aforementioned in section 2.1, the Federal Office of Energy, the Federal Office of 

Topology, and MeteoSwiss funded the large-scale project sonnendach.ch. The aim of this 

study was to analyze the total potential power production of PV installations as well as 

developing a model that provides a PV potential estimate of each building in Switzerland. 

The model is based on the swissBUILDINGS3D 2.0 vector dataset that represents 

buildings as 3D models with individual rooftop and facade surfaces including their 

overhangs. The 3D information was then converted into 2D rooftop surfaces (birds-

perspective) and enriched with various additional information such as a terrain model, 

climate data as well as digital elevation models from the Shuttle Radar Topography 

Mission.  
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The project resulted in a dataset that contains the suitability (rated from 1= low to 5= top), 

the area in m2, the orientation as well as the inclination of each individual rooftop surface 

(Klauser, 2016). This information serves two purposes: Firstly, the polygons of the 

rooftop surfaces are used to obtain the training images (see 3.1.3). Secondly, the rooftop 

suitability categorization is used to assess whether PV panels are placed optimally (see 

section 3.3).The dataset can be downloaded as a “.gpkg” file that can be freely accessed 

from the Federal Office of Energy through the geocat.ch portal (Bundesamt für Energie, 

2022a). Figure 11 show the SolkatDach dataset as visualized on the geoadmin platform 

as well as in its raw form. 

 

 
Figure 11: SolkatDach as visualized on the geoadmin platform and in raw form 
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5. Results 

Analogous to the Methodology section, the Results section is split into three parts. Firstly, 

the dataset obtained through Task 1 is detailed (Sub-RQ1). Following this, the training 

and inferencing performance of the Mask R-CNN are discussed in detail (Sub-RQ2). 

Lastly, the outcomes from the placement assessment associated with answering Sub-RQ3 

are elaborated.  

5.1. Results of data collection and processing 

Through the scripts outlined in the Methodology section 3.1, several hundred individual 

images of rooftops with PV panels were downloaded by specifying the dimensions of a 

desired region. The process is solely limited by the excessive computational load resulting 

from the merging of the individual image tiles to one single photomosaic. These merged 

photomosaics quickly reach a file size of >100 GB which exceeds the computational 

capacity of the available RAM (see chapter 3) by far. Overall, a total of 1130 individual 

images of rooftops that have PV panels installed were collected. Approximately 9% of 

all downloaded rooftop images contain no visible PV panels hand where thus deleted. 

This error can be attributed to placements of PV panels elsewhere than on the rooftop 

itself (e.g., in the garden, or self-standing buildings adjacent to the main roof). In very 

few cases, the error can also be explained by wrongful information in the EPA, GWR or 

SolkatDach datasets. Depending on the nature of the rooftop, a single image can contain 

one up to approximately 80 polygons (e.g., large industrial buildings), each representing 

individual PV panel cluster. On average, a single rooftop image contains 2.5 polygons. 

Relative to residential buildings, industrial buildings typically have a much more complex 

structure and, thus, far more polygons. At approximately 50 images per hour, the speed 

at which images could be annotated was roughly twice as fast compared to previous 

studies but still time consuming and can thus be considered another limitation (Meyer, 

2020). Given the successful application of the data collection methodology developed in 

this thesis, Sub-RQ1 can be answered affirmatively. Table 3 provides an overview of the 

characteristics of each dataset per iteration.  
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Table 3: Train and validation dataset characteristics per iteration 

Variable Images Polygons Polygons / 
image 

Train / test 
split 

iteration_1     

train 131 345 2.6 90% 
validation 15 26 1.7 10% 

iteration_2     

train 271 781 2.9 87% 
validation 42 120 2.9 13% 

iteration_3     

train 501 1313 2.6 89% 
validation 60 159 2.7 11% 

iteration_4     

train 974 2512 2.6 86% 
validation 156 367 2.4 14% 

Test set     

Equal for all iterations 156 367 2.4  
     

Total annotated 1130 2879 2.5  

 

5.2. Results Mask R-CNN 

As mentioned in the Methodology, the development and training of the Mask R-CNN 

model was conducted iteratively. The four iterations differ solely in terms of the training 

dataset size. While the size of the validation dataset used during model training was 

roughly proportional to the size of the train dataset (see Table 3), the model performance 

was evaluated using the same test dataset for all four iterations. This should facilitate an 

unbiased comparison between the performance of each iteration. All hyperparameters, 

remain constant throughout the iterations unless stated otherwise. Experiments with 

tweaking hyperparameters (see 10.3) were undertaken but showed little to no positive 

impact on model performance and where thus set to the specifications outlined in 

Appendix 10.3 for all iterations. 

5.2.1 Mask R-CNN training 

The first model implemented, iteration 1, indicated a typical overfit learning curve. This 

was caused by a vastly insufficient training dataset of merely 131 train images (see Figure 

12). By doubling the size of the training dataset to 271 images for iteration 2, the strong 

overfit scenario could be slightly reduced, but not yet fully eliminated (see Figure 12).  
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With a dataset of just over 500 train images and image augmentation implemented, 

iteration 3 appeared to have reached the critical mass to overcome the risk of overfitting. 

By doubling the train dataset again to 974 images and increasing the epoch from 30 to 45, 

the model reached the loss plateau with the available data. The model eventually 

approximated a train as well as validation loss of ≈ 0.2 (all loss weights being equal see 

3.2.2). Figure 12 shows the train and validation curves for each iteration. 

 

5.2.2 Mask R-CNN model validation 

As mentioned in section 3.2.5, the performance metrics included in Matterport’s Mask R-

CNN implementation are calculated based on the bounding boxes of every detection and 

not on a mask level. Due to this limitation the model’s performance was analyzed using 

the performance metrics specified under 3.2.5. The model’s inference performance 

progresses similarly to the train and validation losses. That is, improvement as a result of 

increased training dataset size.  

  

  

 
Figure 12: Train and validation curves per model iteration 
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Over all 156 images of the test dataset, the average iou_score (see 3.2.5) improves from 

0.60 to 0.74 from the first to the fourth iteration respectively (see Figure 13). Interestingly, 

the standard deviation of the predicted iou_scores only decreases following iteration 3 

(see Table 10). This observation aligns with the elimination of the overfit scenario 

detailed in section 5.2.1. We can also note that the model iou_scores range from 0.13 to 

0.94, indicating that the model never fails to segment PV panels entirely but has 

difficulties to segment the entirety of the panels (see Table 10). This is likely linked to 

the weakness of Mask R-CNN to accurately segment rectangular shapes and corners as 

found by Liang et al. (2020). 

Likewise improve the metrics mask_precision, mask_recall and, subsequently mask_f1 

with every iteration (see Figure 14). The mask_accuracy witnesses only light 

improvements as this metric also takes Tn pixels into account which dampens the results. 

The improvements over the four iterations become slightly more pronounced when 

looking at the median which improved from 0.66 to 0.82 from iteration 1 to iteration 4. 

In the final model, iteration 4, the average mask_precision and mask_recall are almost 

equal with 0.86 and 0.85 respectively (see Figure 14). This indicates that Fn, and Fp errors 

are represented equally frequent.  

 
 Figure 13: Mask R-CNN per image IOU score distribution per iteration 
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Figure 14: Mask R-CNN performance metrics averages per iteration 

While the Mask R-CNN model still has room for improvement (see Discussion), accurate 

PV segmentation is possible for most simple rooftop structures. However, the 

segmentation performance weakens as the rooftop complexity increases (e.g., through 

roof windows, conservatories, or HVAC) (see Figure 30). As a result, Sub-RQ2 can be 

answered affirmatively in principle but not unconditionally. Depending on the use case, 

the segmentation performance might be insufficient (see Discussion). All performance 

metric evaluations can be found in Table 10 in the Appendixes section. A selection of 

randomly selected prediction masks for each iteration can be found in section 10.5. 
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Figure 15: Mask R-CNN prediction masks (pred_mask) over input image from iteration 4 

preview (randomly selected) 

5.3. Results of comparison to SolkatDach suitability categorization 

Following the procedure outlined under 3.3.1 and 3.3.2 both the pred_masks and 

gt_masks were compared to the rooftop suitability categorization of the SolkatDach 

dataset. The test dataset alongside the dataset used to train the Mask R-CNN were 

assessed which theoretically could contribute to biased results as the Mask R-CNN 

conducts inferencing on images already considered during training. However, the 

outcome differences between the test and train dataset were non-significant. Nevertheless, 

the data presented in this section originates solely from test dataset to ensure methodical 

correctness unless states otherwise. The combined outcomes from both the test and train 

dataset can be found in Appendix 10.7. Also, it must be noted that the obtained results 

exclusively stem from a very narrowly bounded region and are, thus, not representative. 
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The first and foremost observation is that from buildings with existing PV installations, 

only 29% of the total aggregated rooftop area is occupied by PV panels. When calculated 

on a per-roof-basis, the rooftop utilization ratio increases to 33%. Both numbers were 

calculated based on gt_masks exclusively and are therefore not affected by imperfect 

prediction by the Mask R-CNN model. Nevertheless, the distribution of available rooftop 

utilization does not differ between greatly between the pred_mask and gt_mask as can be 

derived from Figure 16 (or Figure 32) meaning that on an aggregated level, the model can 

be deemed accurate. 

 
Figure 16: Distribution of available rooftop area utilization (comparison pred_mask and 

gt_mask, test dataset only) 

From the average rooftop size of the test dataset of 334 m2 only 105 m2 are exploited for 

PV panels. The distribution of available rooftop area also follows a positively skewed 

distribution. When paired with the MAPE, calculated by comparing the rooftop utilization 

ratio from the pred_masks to the gt_masks, two things become evident: The model 

performs relatively constant for rooftops sized <1500 m2 averaging a MAPE of 16% 

(excluding outliers >1.0). However, above this threshold, the performance decreases 

rapidly to >50% (unsmoothed) as illustrated in Figure 17. 
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Figure 17: Distribution of available rooftop area in relation to rooftop area utilization 

MAPE between pred_mask and gt_mask (test dataset only) 

The identification of buildings with rooftops that are equipped with PV panels which are 

not optimally placed, was determined by the following to criteria; (1) the given building 

does not have any PV panels installed in the highest available rooftop area category and 

(2) the highest available rooftop area category amounts to ≥10% (threshold) of the total 

available rooftop area. When both criteria are fulfilled, a building is categorized as 

“critical” meaning that the existing PV panels are not optimally placed to maximally 

exploit solar radiation. The sensitivity analysis in Table 4 shows that with an increasing 

threshold, the categorization performance decreases suggesting the use of a low threshold. 

In practice however, few homeowners will invest in PV installations to solely cover a 

marginal percentage of the available rooftop area. Taking this into account, the threshold 

should be adapted to the specific use case requirements. When using a threshold of 10% 

a total of 31 buildings are categorized as critical which amounts to 2.8% of total buildings 

assessed. The Mask R-CNN model manages to detect 22 of which, resulting in a recall of 

0.71. Figure 18 shows an excerpt of rooftop buildings that have suboptimally placed PV 

panels and were detected by the model. The transparent colors thereby correspond to the 

categorization according to the suitability categorization from SolkatDach (blue= low to 

red= top). The location of existing PV panel is demarked with green boundaries. 

Additional images can be found in the Appendixes. 
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Table 4: Sensitivity analysis of detection of rooftops with misplaced PV panels 
(“critical”) depending on thresholds 

Threshold Accuracy Precision Recall F1 TP FN Total 
critical 

5% 0.97 0.54 0.77 0.63 33 10 43 
10% 0.96 0.36 0.71 0.48 22 9 31 
15% 0.95 0.26 0.67 0.38 16 8 24 
20% 0.95 0.18 0.61 0.28 11 7 18 
25% 0.95 0.16 0.67 0.26 10 5 15 
30% 0.95 0.11 0.64 0.19 7 4 11 
35% 0.95 0.08 0.56 0.14 5 4 9 

 

 
Figure 18: Excerpt of buildings with suboptimally placed PV panels detected by the model 

(categorized critical), green boundaries indicate existing PV panels 

Given the successful comparison to the suitability categorization of the sonnendach.ch 

project, Sub-RQ3 can be answered affirmatively too. As all three Sub-RQs could be 

principally confirmed, the overarching RQ can also be positively answered in principle. 

 

When looking at the average categorization of all 1108 images investigated, one can note 

that roughly two thirds of all rooftop areas are categorized as good (3) or very good (4). 

More interestingly however, is that the rooftop utilization ratio grows almost linearly over 

the suitability categories, meaning that the more suitable a rooftop area is, the greater its 

extents of exploitation (see Figure 19 and Table 5). 
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Figure 19: Growth of utilization ratio (from gt_masks) over suitability categorization 

 

This finding motivated an extrapolation of PV potential estimate for all of Switzerland, 

despite this not being the primary focus of this work. The potential estimate is based on 

the average rooftop categorization as well as the average utilization derived from the 

gt_masks. Given the electric output defined by the SolkatDach categories as well as the 

total available rooftop surface of 252 km2 indicated by Assouline et al. (2018), the 

estimated total annual PV potential in Switzerland ranges from 35.4 to 41.4 TWh. This 

estimate is brought into context in the Discussion.  

 
Table 5: Extrapolation of total annual PV potential in Switzerland based on 252 km2 total 
available rooftop area as found by Assouline et al. (2018) 

Variable Low 
(1) 

Mean 
(2) 

Good 
(2) 

Very good 
(4) 

Top 
(5) 

PV placement assessment      
average rooftop categorization 11% 20% 32% 34% 3 % 
average utilization from gt_masks 8% 25% 29% 47% 56% 

SolkatDach      

min KWh / year / m2 - 800 1000 1200 1400 
max KWh / year / m2 800 1000 1200 1400 - 

Extrapolation 
available rooftop area (in m km2) 28.2 50.4 80.5 85.7 7.3 
utilized rooftop area (in m km2) 2.3 12.4 23.2 40.6 4.0 
min energy potential (in TWh) 0.0 2.4 6.7 23.1 3.2 
max energy potential (in TWh) 0.2 3.1 8.0 27.0 3.2 
average energy potential (in TWh) 0.1 2.8 7.4 25.0 3.2 
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6. Discussion 

With the prototype methodology developed in this thesis, the feasibility of a large-scale 

detection and comparison of existing PV panels to the suitability categorization of the 

sonnendach.ch project was technically proven. As such, several hundred images from 

building rooftops with existing PV panels installed can be downloaded for a given area 

with only approximately 9% of the images not containing any PV panels. The reasons 

therefore are placements outside the main rooftop boundaries or wrongful information in 

the underlying datasets. Nevertheless, it must be noted that the merging of the orthophotos 

into a single photomosaic as required by the data collection process results in file sizes 

that rapidly lead to unmanageable computational loads. This may be considered a 

potential bottleneck of the process but could be solved by employing additional 

computational power comparable to the FHNW project (Meyer, 2020). Moreover, despite 

being roughly twice as fast as previous studies, manually annotating the PV panels on 

rooftop images is time consuming. Overall, the annotation of all 1130 images consumed 

approximately 25 hours. Through that, the Mask R-CNN which was trained on a total of 

974 images improved its performance progressively over the four iterations conducted 

and achieved a final iou_score of 0.74. The predicted masks were then successfully 

compared to the rooftop area suitability categorization from the sonnendach.ch project. 

Thus, all three Sub-RQs defined in section 1.4 were answered affirmatively in principle. 

However, whether or not the segmentation performance of the Mask R-CNN is sufficient 

depends on the comparison use case. Is the goal to identify buildings that have their PV 

panels placed suboptimally for commercial reasons, the performance of the final model 

can be considered acceptable. This is the case as from the entire dataset 22 out 31 critically 

misplaced PV panels could be identified (recall of 0.71 (see 5.3)) which might be 

considered sufficient for commercial use cases such as the launching of after-sales 

initiatives. When the use case requires more than a binary categorization, the performance 

of the Mask R-CNN model might not be sufficient. This is particularly the case when 

assessing industrial regions as the model has difficulties in segmenting PV panels on more 

complex rooftop structures that are frequently found in non-residential areas (see 5.2). 

 

As mentioned in section 5.3, the average rooftop utilization ratio of 29% did not differ 

greatly on an aggregate level between the pred_masks and gt_masks.  
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As the distributions also follow similar patterns, we can conclude that the Mask R-CNN 

model is sufficiently accurate for aggregate estimates such as the average rooftop 

utilization ratio (see Figure 16 vs Figure 32). However, when looking at the averages of 

each suitability category individually, the results differ vastly which indicates that the 

model’s performance is non-satisfactory for detailed analyses. This can mostly be 

explained by outlier values. Also, it must be noted that the obtained results are based on 

a limited number of rooftops in a relatively narrowly bounded region in canton of Aarau 

(see Figure 21). Subsequently, the results of this assessment are not representative for the 

entirety of Switzerland. The results should be seen as an indication to what the developed 

prototype methodology is capable and considered under the circumstances outlined in this 

thesis. While many error sources exist, it is vital to emphasize that the quality of the 

comparisons exceedingly depends on the segmentation performance of the Mask R-CNN. 

Table 6 provides a critical overview of the challenges experienced in the development of 

the prototype methodology and weights them according to their estimated severity. 
 

Table 6: Challenges experienced in the development of the prototype methodology 

Origin Challenges Est. severity 
(1-5) 

Datasets Imprecise mapping between SolkatDach and SWISSIMAGE 10 cm 5 
Datasets Rooftop inclination affecting m2 calculation 2 
Datasets Incorrect information in EPA / GWR dataset 2 
Datasets SWISSIMAGE 10 cm not taken from nadir 1 
Datasets Reflections from sun 1 
Datasets Warped imaging 1 
Logic/others  PV panels placed outside rooftop boundaries (e.g., in garden) 4 
Logic/others Hardware limitations 5 
Logic/others Noise associated with the resizing of raster data 1 
Mask R-CNN Complex rooftop structures 5 
Mask R-CNN Segmentation of rectangular corners 5 
Mask R-CNN Visual similarity to solar heating systems 3 
Mask R-CNN Squared rooftop patterns (often resulting from tiling) 2 

 

When bringing the findings of this thesis into the context of existing PV potential studies, 

it becomes evident that critical underlying assumptions for country-wide extrapolations 

might be conflicting. This thesis found that the average rooftop utilization ratio equates 

to 29% while previous studies estimated the ratio to be between 50% and 70% (see Table 

1). The rooftop utilization ratio is thus likely to be systematically overestimated by all 

studies analyzed as part of the literature review (see section 2.1). However, the reducing 

effects this has on the total PV potential estimates are partly compensated by the non-



            Discussion 

Master Thesis | Assessing placement efficiency of photovoltaic installations using Mask R-CNN 40 

uniform distribution of rooftop utilization ratios across different suitability 

categorizations. In other words, while previous studies assume the same rooftop 

utilization ratio for all buildings, this thesis found that the rooftop areas with a higher 

suitability categorization are exploited to a greater extent than those with a low suitability. 

Thereby, the rooftop utilization ratio grows almost linearly across the suitability 

categorizations (see Table 5). Subsequently, this thesis estimates the total PV potential of 

Switzerland to be between 35.4 and 42.4 TWh annually, which is greatly below the 

potential estimate conducted by the sonnendach.ch project (Portmann et al., 2016) but in 

line with the most recent findings by Moro et al. (2021) (see Table 1). Other sources of 

differences between the studies include the disregard of small rooftop surfaces or such 

with a low suitability categorization, varying estimates of the total available rooftop area 

or the efficiency of the PV cells. 

 

The reason for PV installation owners merely exploiting roughly one third of the available 

rooftop areas is tightly linked to the pricing dynamics behind private solar electricity 

exchange. When the PV electricity generation exceeds the maximal electricity 

consumption of a building, excess electricity can be sold back to the grid at a regionally 

specified feed-in tariff. The problem thereby is that energy providers are buying the 

electricity at a discount so substantial that producing excess electricity becomes 

uneconomical (see Appendix 10.9) (VESE, 2021). Subsequently, the prototype 

methodology developed in this thesis could be used to design a dynamic incentive system 

that aims at financially motivating PV installation owners that still have relatively high 

solar potential unexploited to fully utilize their rooftop area. On the other hand, the 

methodology can aid in assessing regional differences in terms of rooftop exploitation by 

assessing the consequences of federally planned incentive systems in place (e.g., rooftop 

utilization compared to feed-in-tariffs or electricity prices etc.) currently. Today, the 

incentive systems maximally subsidize new PV installations with 30% of the acquisition 

cost (Swissolar, 2022). 

 

The prototype methodology developed in this thesis lays the foundation to scrutinize 

Switzerland’s rooftop utilization on a national scale. Doing so would allow to draw 

invaluable conclusions that support the decision-making regarding energy distribution or 

storage. The recommendations suggested in Table 7 should serve as a starting point to 

improve the model quality and extend the prototype methodology to a national scale. 
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Table 7: Recommendations for further research to improve the prototype methodology 

Origin Recommendations for further research 
Data collection Expand rooftop polygon before cropping images so the entire rooftop is saved 

(problem as SWISSIMAGE 10 cm and SolkatDach are not perfectly aligned) 
Data collection Combine Python scripts to facilitate data collection 
Data collection Eliminate the need to merge orthophotos into single photomosaic so that the file 

sizes stay within manageable levels 
Mask R-CNN Enlarge training data set (to approx. 10’000 images as Meyer (2020)) particularly 

with: 
• More images of complex rooftop structures 
• More images with solar heating 
• More images with shadows 
• More images of other similar looking object (e.g., conservatories) 

Mask R-CNN Perform grid search on Mask R-CNN hyperparameters, particularly: 
• Image_Max_Dim (eliminate as performance decreased for large images) 
• Train_ROIs_Per_Image (to lower computational load) 
• Max_GT_Instances (to lower computational load) 
• Loss weights hyperparameter (give more weight to mrcnn_mask_loss to 

favor masks over other loss functions) 
Mask R-CNN Improve rectangular / corner segmentation with right-angle polygon fit algorithm as 

implemented by Liang et al. (2020) 
Mask R-CNN Expand Mask R-CNN to segment multiple classes (incorporation of rooftop 

structures such as chimneys and roof windows or solar heating panels) 
Comparison to 
SolkatDach 

Combine Python scripts to incorporate both inferencing and comparison to 
SolkatDach 

Comparison to 
SolkatDach 

Extract all available information from the SolkatDach dataset and enrich with EPA 
dataset to extract further insights 

Comparison to 
SolkatDach 

Conduct geo-referenced polygon-based comparison rather than pixel level to 
improve accuracy and enable further fitting options 

Others Acquire suitable hardware (e.g., Nvidia Tesla V100 SXM2 with a HPE Apollo 
6500 Deep Learning GPU server or Amazon SageMaker instance with comparable 
power) 

7. Conclusion 

As part of this thesis, a prototype methodology that can detect and compare the placement 

of PV panels with the rooftop area suitability categorization according to the 

sonnendach.ch project was developed. This was achieved by leveraging publicly 

available data in conjunction with a Mask R-CNN architecture facilitating accurate PV 

segmentation. With the methodology, 1130 images of individual rooftops were 

automatically collected and then manually annotated. The Mask R-CNN was trained with 

974 images over four iterations of which the final achieved an iou_score of 0.74. The 

segmentation performance of the Mask R-CNN is sufficient for commercial use cases 

requiring binary classification such as the identification of suboptimally placed PV 

panels. However, for detailed quantitative analyses, the performance achieved with the 

resources of this thesis is insufficient. The final Mask R-CNN model performs best when 

rooftop structures are simple and uniform.  
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However, when complexity in form of roof windows, conservatories, HVAC, or other 

obstacles arise, the model experiences prediction difficulties. Given the functionality of 

the developed prototype methodology, all three Sub-RQs, and thus the overarching RQ 

can be answered affirmatively in principle but further research with the aim of improving 

the segmentation accuracy of the Mask R-CNN is required to allow for detailed analyses.  

 

The findings from the comparison to the suitability categorization of the sonnendach.ch 

project propose that the average rooftop utilization ratio is 29%, suggesting that 

previously conducted studies overestimate the extent of rooftop utilization systematically. 

Thus, the assumptions used by the PV potential studies are likely not displaying a realistic 

picture. The low utilization ratio might be explained as the production of excess electricity 

is uneconomical since the locally defined feed-in-tariffs are vastly below the cost of 

electricity. The exact reasons for PV installation owners not maximally exploiting the 

available rooftop area were not investigated as part of this thesis. Hence, qualitative 

research to understand the motives behind this phenomenon should be conducted 

alongside quantitative assessments such as developed in this thesis. Moreover, while 

previous studies assumed the same utilization ratio across all suitability categorizations, 

the findings of this thesis suggest that the more suitable a rooftop area is, the greater its 

extent of utilization. This non-uniform distribution of rooftop utilization ratios across the 

suitability categories has not yet been considered by previous PV potential studies. 

Overall, this thesis proved that a large-scale assessment of PV placement efficiency is 

technically feasible and that previous PV potential estimates might be extrapolated on 

inaccurate assumptions. By implementing the improvements to the prototype 

methodology as outlined in Table 7, valuable insight could be obtained on a country wide 

level. On one hand, this would allow to display a realistic picture of the current placement 

efficiency in Switzerland but also allow assessing the effectiveness of regionally differing 

incentive systems. Hence, further research that compares the placement efficiency to 

incentive systems or electricity feed-in-tariffs on a regional level should be carried out. 

However, as the quality of the results excessively depends on the accuracy of PV 

segmentation masks, further studies should be conducted after improving the 

segmentation performance of the Mask R-CNN. It is therefore suggested that the Mask 

R-CNN improvements recommended in Table 7 serve as a starting point for another 

research project aiming at the improvement of the Mask R-CNN performance. 
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10. Appendixes 

10.1. Overview of deep learning based image segmentation algorithms 

S W U I P SO MO AD SM CL IN RN
N

E-D

Global Average Pooling 2013 🗸 🗸 🗸 Object-specific soft segmentation
DenseCRF 2014 🗸 🗸 🗸 Using CRF to boost segmentation
FCN 2015 🗸 🗸 🗸 Fully convolutional layers

DeepMask 2015 🗸 🗸
Simultaneous learning for segmentation and 
classification

U-Net 2015 🗸 🗸 🗸  
Encoder-decoder with multi-scale feature 
concatenation

SegNet 2015 🗸 🗸 🗸  
Encoder-decoder with forwarding pooling 
indices

CRFasRNN 2015 🗸 🗸 🗸 🗸 Simulating CRFs as trainable RNN modules

Deep Parsing Network 2015 🗸 🗸
Using unshared kernels to incorporate higher-
order dependency

BoxSup 2015 🗸 🗸 Using bounding box for weak supervision

SharpMask 2016 🗸 🗸 🗸  
Refined Deep Mask with multi-layer feature 
fusion

Attention to Scale 2016 🗸 🗸 🗸 Fusing features from multi-scale inputs
Semantic Segmentation 2016 🗸 🗸 🗸 Adversarial training for image segmentation
Conv LSTM and Spatial 
Inhibition

2016 🗸 🗸 🗸 🗸
Using spatial inhibition for instance 
segmentation

JULE 2016 🗸 🗸 🗸 🗸 Joint unsupervised learning for segmentation
ENet 2016 🗸 🗸 🗸 Compact network for real-time segmentation
Instance-Aware 
Segmentation

2016 🗸 🗸 🗸 Multi-task approach for instance segmentation

Mask R-CNN 2017 🗸 🗸 🗸 Using region proposal network for segmentation

Large Kernel Matters 2017 🗸 🗸 🗸  
Using larger kernels for learning complex 
features

RefineNet 2017 🗸 🗸 🗸  
Multi-path refinement module for fine 
segmentation

PSPNet 2017 🗸 🗸 🗸
Multi-scale pooling for scale-agnostic 
segmentation

Tiramisu 2017 🗸 🗸 🗸  Dense Net 121-feature extractor

Image-to-Image Translation 2017 🗸 🗸 🗸  
Conditional GAN for translation image to 
segment maps

Instance Segmentation with 
Attention

2017 🗸 🗸 🗸 🗸 Attention modules for image segmentation

W-Net 2017 🗸 🗸 🗸  
Unsupervised segmentation using normalized 
cut loss

Polygon RNN 2017 🗸 🗸 🗸 🗸 Generating contours by RNN

Deep Layer Cascade 2017 🗸 🗸 🗸
Multi-level approach to handle pixels of 
different complexity

Spatial Propagation Network 2017 🗸 🗸 🗸 Refinement using linear label propagation

DeepLab 2018 🗸 🗸 🗸
Atrous convolution ,spatial pooling pyramid, 
dense CRF

SegCaps 2018 🗸 🗸 Capsule networks for segmentation

Adversarial Collaboration 2018 🗸
Adversarial collaboration between multiple 
networks

Superpixel Supervision 2018 🗸
Using super-pixel refinement as supervisory 
signals

Deep Extreme Cut 2018 🗸 🗸 🗸
Using extreme points for interactive 
segmentation

Two Stream Fusion 2019 🗸 🗸
Using image stream and interaction stream 
simultaneously

SegFast 2019 🗸 🗸 🗸  
Using depthwise separable convolution in 
SqueezeNet encoder

DescriptionMethod Year

S, supervised; W, weakly supervised; U, unsupervised; I, interactive; P, partially supervised; SO, single-objective opti-
mization; MO, Multi-objective optimization; AD, adversarial learning; SM, semantic segmentation; CL, class-specific seg-
mentation; IN, instance segmentation; RNN, recurrent neural network modules; E-D, encoder-decoder architecture; GAN,
generative adversarial network; CRF, conditional random field.

LearningSupervision Type Modules

Figure 20: Chronological overview of the development of deep learning based image segmentation 
algorithms adapted from Ghosh et. al (2020) 
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10.2. Areas of image collection 

 
Figure 21: Areas of image collection visualized (map from geoadmin.ch) 

 
Table 8: Areas of image collection detailed information 

Iteration Saved in Coordinates Area UB_N LB_N UB_E LB_E 
1 data_col_folder_1 1’251 1’247 2’657 2’650 Lenzburg  
2 data_col_folder_2 1’261 1’256 2’668 2’663 Nussbaumen, Baden, Wettingen  
3 data_col_folder_3 1’263 1’257 2’663 2’653 Brugg AG, Untersiggenthal,  
4 data_col_folder_4 1’252 1’243 2’650 2’642 Aarau, Suhr  
4 data_col_folder_5 1’247 1’243 2’643 2’633 Olten, Trimbach, Dulliken  
4 data_col_folder_6 1’243 1’235 2’640 2’632 Oftringen, Rothrist, Zofingen  

UB = upper bound, LB = lower bound, N = north, E = east 
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10.3. Mask R-CNN hyperparameters 

Table 9: Mask R-CNN hyperparameter configuration 

Mask R-CNN hyperparameter configuration 
 

BACKBONE resnet101 
BACKBONE_STRIDES [4, 8, 16, 32, 64] 
BATCH_SIZE 2 
BBOX_STD_DEV [0.1 0.1 0.2 0.2] 
COMPUTE_BACKBONE_SHAPE None 
DETECTION_MAX_INSTANCES 100 
DETECTION_MIN_CONFIDENCE 0.90 
DETECTION_NMS_THRESHOLD 0.30 
FPN_CLASSIF_FC_LAYERS_SIZE 1024 
GPU_COUNT 1 
GRADIENT_CLIP_NORM 5 
IMAGES_PER_GPU 2 
IMAGE_CHANNEL_COUNT 3 
IMAGE_MAX_DIM 1024 
IMAGE_META_SIZE 14 
IMAGE_MIN_DIM 800 
IMAGE_MIN_SCALE 0% 
IMAGE_RESIZE_MODE square 
IMAGE_SHAPE [1024 1024    3] 
LEARNING_MOMENTUM 0.9 
LEARNING_RATE 0.001 
LOSS_WEIGHTS {'rpn_class_loss': 1.0, 

'rpn_bbox_loss': 1.0, 
'mrcnn_class_loss': 1.0, 
'mrcnn_bbox_loss': 1.0, 
'mrcnn_mask_loss': 1.0} 

MASK_POOL_SIZE 14 
MASK_SHAPE [28, 28] 
MAX_GT_INSTANCES 100 
MEAN_PIXEL [123.7 116.8 103.9] 
MINI_MASK_SHAPE (56, 56) 
NAME PV 
NUM_CLASSES 2 
POOL_SIZE 7 
POST_NMS_ROIS_INFERENCE 1000 
POST_NMS_ROIS_TRAINING 2000 
PRE_NMS_LIMIT 6000 
ROI_POSITIVE_RATIO 0.33 
RPN_ANCHOR_RATIOS [0.5, 1, 2] 
RPN_ANCHOR_SCALES (32, 64, 128, 256, 512) 
RPN_ANCHOR_STRIDE 1 
RPN_BBOX_STD_DEV [0.1 0.1 0.2 0.2] 
RPN_NMS_THRESHOLD 0.7 
RPN_TRAIN_ANCHORS_PER_IMAGE 256 
STEPS_PER_EPOCH 100 
TOP_DOWN_PYRAMID_SIZE 256 
TRAIN_BN False 
TRAIN_ROIS_PER_IMAGE 200 
USE_MINI_MASK True 
USE_RPN_ROIS True 
VALIDATION_STEPS 50 
WEIGHT_DECAY 0.0001 
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10.4. Mask R-CNN detailed loss curves 

 
Figure 22: Mask R-CNN iteration_1 training and validation loss indexed at 1.0 

 
Figure 23: Mask R-CNN iteration_2 training and validation loss indexed at 1.0 

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

2.25

2.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

Lo
ss

 (i
nd

ex
ed

 a
t 1

)

Epoch

mrcnn_bbox_loss mrcnn_class_loss
mrcnn_mask_loss rpn_bbox_loss
rpn_class_loss val_mrcnn_bbox_loss
val_mrcnn_class_loss val_mrcnn_mask_loss
val_rpn_bbox_loss val_rpn_class_loss

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

2.25

2.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Lo
ss

 (i
nd

ex
ed

 a
t 1

)

Epoch

mrcnn_bbox_loss mrcnn_class_loss
mrcnn_mask_loss rpn_bbox_loss
rpn_class_loss val_mrcnn_bbox_loss
val_mrcnn_class_loss val_mrcnn_mask_loss
val_rpn_bbox_loss val_rpn_class_loss



            Appendixes 

Master Thesis | Assessing placement efficiency of photovoltaic installations using Mask R-CNN 52 

 
Figure 24: Mask R-CNN iteration_3 training and validation loss indexed at 1.0 

 
Figure 25: Mask R-CNN iteration_4 training and validation loss indexed at 1.0 
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10.5. Mask R-CNN detailed performance analysis 

Table 10: Mask R-CNN key performance metrics per iteration 

Variable iou_ 
score 

mask_ 
precision 

mask_ 
recall 

mask_ 
accuracy 

mask_ 
f1 

average      

iteration_1 0.604 0.779 0.725 0.939 0.725 
iteration_2 0.647 0.800 0.766 0.945 0.758 
iteration_3 0.682 0.818 0.796 0.951 0.787 
iteration_4 0.745 0.861 0.847 0.961 0.838 

median      

iteration_1 0.661 0.872 0.819 0.957 0.796 
iteration_2 0.705 0.893 0.860 0.966 0.827 
iteration_3 0.769 0.911 0.865 0.970 0.870 
iteration_4 0.816 0.931 0.896 0.974 0.899 

standard deviation      

iteration_1 0.225 0.224 0.223 0.049 0.207 
iteration_2 0.227 0.211 0.225 0.049 0.203 
iteration_3 0.218 0.214 0.190 0.047 0.189 
iteration_4 0.187 0.163 0.155 0.042 0.149 

range      

iteration_1 0.004-0.918 0.075-1.000 0.004-0.989 0.768-0.996 0.008-0.957 
iteration_2 0.005-0.919 0.008-1.000 0.012-0.983 0.742-0.996 0.010-0.958 
iteration_3 0.000-0.949 0.000-1.000 0.000-0.971 0.742-0.997 0.000-0.974 
iteration_4 0.126-0.943 0.128-1.000 0.205-0.981 0.738-0.998 0.224-0.971 
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Figure 26: Mask R-CNN prediction masks (mask_pred) over input image from iteration 1 

(randomly selected) 
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Figure 27: Mask R-CNN prediction masks (mask_pred) over input image from iteration 2 

(randomly selected) 
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Figure 28: Mask R-CNN prediction masks (mask_pred) over input image from iteration 3 

(randomly selected) 
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Figure 29: Mask R-CNN prediction masks (mask_pred) over input image from iteration 4 

(randomly selected) 



            Appendixes 

Master Thesis | Assessing placement efficiency of photovoltaic installations using Mask R-CNN 58 

 
Figure 30: Rooftops where the Mask R-CNN experiences difficulties (randomly selected) 
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10.6. Dimension tests mask_gt / SolkatDach 

 
 

Figure 31: gt_masks over SolkatDach rasterized (with EGID) to inspect dimensional fit 
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10.7. Comparison to SolkatDach 

 
Figure 32: Distribution of available rooftop area utilization (comparison pred_mask 

inferenced on train and test dataset and gt_mask)  

 

 
Figure 33: Distribution of available rooftop area in relation to rooftop area utilization 

MAPE between pred_mask inferenced on train and test dataset and gt_mask  
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10.8. Misplaced PV panels 

 
Figure 34: Buildings with suboptimally placed PV panels detected by the model (categorized 

critical) 
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10.9. Feed-in Tariffs for PV electricity 

 
Figure 35: The feed-in tariffs for PV electricity across Switzerland in cents / KWh (communal 

level) (VESE, 2021) 

 




