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Abstract— Augmented Reality is the concept of enhancing the 
real world with virtual objects or information with projections 
into a viewfinder or through specialized goggles. Simpler forms of 
Augmented Reality – like a heads-up display in a car – do not need 
to estimate the camera’s motion, an object, or the user. However, 
more elaborate implementations of Augmented Reality need to 
track things and, more importantly, the camera’s movement itself. 
The applications in which Augmented Reality could be leveraged 
range from social interaction over pedestrian navigation to various 
use cases in different professions. Multiple companies already 
have shown closed source or custom-tailored programming 
interfaces, either running on smartphones or shipped with 
industry-targeted goggles. The tracking of real-world objects or 
surfaces is possible with the provided interfaces, but the 
algorithms behind the different functions are corporate secrets. 
This paper describes an approach for an end-to-end pipeline in a 
prototype of an Augmented Reality platform without using 
commercial interfaces. A time-of-flight camera provides a depth-
image that allows reconstruction of the recorded scene as a cloud 
of SIFT features. Frame-by-frame analysis of the point cloud 
estimates the camera’s motion by highly parallel processing and a 
three-dimensional extension of the RANSAC algorithm. An 
accelerometer and a gyroscope provide additional data, fused with 
a Kalman filter to improve the motion estimation. A regular color 
camera acts as a viewfinder, and Vulkan renders the result to a 
monitor. Enhancing the matching quality of SIFT features 
between consecutive frames of a time-of-flight camera using a 
three-dimensional RANSAC algorithm led to over two times as 
many correct matches.  

Keywords—AR, augmented reality, time-of-flight camera, tof, 
RANSAC, SIFT, Kalman Filter 

I.  INTRODUCTION  
Augmented Reality - or AR – is the concept of projecting 

virtual objects into the real world. Phone screens, tablet 
computers, and specialized goggles render virtual objects over 
the camera image or display them on translucent screens. A form 
of Augmented Reality is a heads-up display, for example, in cars 
to project the current speed and navigation information to the 
windshield or in airplanes for comprehensive avionic 
information. 

In contrast, Virtual Reality – or VR – limits itself to entirely 
virtual worlds, into which the user dives. While Virtual Reality 

hardware is already available through off-the-shelf goggles, 
which lets users meet other people and play games in virtual 
worlds, Augmented Reality is mainly limited to smartphone 
applications. Currently, it lacks specialized off-the-shelf 
hardware, other than niche products specialized for specific 
industries. 

Augmented Reality faces numerous technical challenges. 
Projecting a virtual object – for example, a flowerpot – into the 
real world requires the system to recognize a table and find an 
unoccupied location. Apart from placing decoration or furniture, 
a pair of Augmented Reality goggles could project helpful 
information into the air. A mechanic could have virtual 
schematics or instructions floating beside his work, while 
another virtual monitor displays a video phone call with the 
customer. Hand detection and gesture control would enable 
interaction with virtual objects. Another example could be 
pedestrian navigation, projecting arrows to the street.  

AR goggles need to react in real-time to any motion of the 
user’s head. Any latency would break immersion as virtual 
objects lose the connection with their anchor point in the real 
world. A flowerpot would jump on the table, and arrows on the 
street would start to float and collide with walls. Fast and reliable 
motion tracking of the system itself is vital for avoiding visual 
glitches. 

Time-of-Flight (TOF) cameras provide depth information on 
its image, by measuring the distance on each camera pixel. The 
information provided by a TOF camera allows reconstructing 
the scene and estimating the motion of the camera between two 
camera frames. 

II. CONCEPT 
For demonstration of the developed motion estimation 

algorithm, a full AR pipeline was created, containing video 
capturing, stream-processing, sensor-fusion, and 3D rendering, 
implemented on a Nvidia Jetson Xavier AGX platform. The 
stream-processing reconstructs the camera image into a 3D 
cloud from which the rigid motion from the prior frame is 
estimated. The sensor-fusion mixes the estimated motion from 
the TOF camera with data of an IMU for enhancing the 
accuracy. 



III. MOTION ESTIMATION FROM TOF IMAGE 
The TOF camera captures both a black-and-white image and 

a corresponding depth map of the same frame. To gain linearity, 
lens- and radial correction are required and applied to the image 
and the depth map. For estimating the motion between 
concurrent camera frames, individual feature points in both 
B/W-images need to be matched. This study utilizes the SIFT 
algorithm for feature extraction, but any other feature-point 
extractor should work, if a method for brute-force matching 
generates a significant subset of correct feature pairs.  

 
Fig. 1. Sample B/W-Image with drawn feature points, part of of a sequence in 

which the camera got rotated. 
Green dots: Frame k-1 
Red dots: Frame k  
Lines: Brute-Force matches 

As visible in Fig. 1, the brute-force matcher generated both 
correct and false matches, that need to be identified for reliable 
processing. Correct matches follow a rigid motion in 3D, which 
is a combination of rotation and translation. Identifying the 
correct matches also allows improving the matching quality of 
the bad matches, as gained information helps rematching the 
clouds. 

A. ToF depthmap to 3D transformation 
Mapping the image feature point clouds into 3D space by 

utilizing the TOF depth map, allows analysis of the matches 
regarding the rigid motion. A TOF depth map contains radial 
data, that needs to be rectified first, either by knowing the angle 
for each pixel or by measuring the cosine individually for each 
pixel by a measurement on a flat surface. 

After rectification, the de-projection of 2D feature points 
into a 3D map is linear, based on a distance calibration for the 
depth map and a focal length calibration on the TOF camera’s 
optics.  

B. Rigid Motion from three points 
In three-dimensional space, at least three matched point-

pairs are required to determine the applied rotation and 
translation between two consecutive point clouds 𝑃𝑘 and 𝑃𝑘−1. 
The following method also allows calculating the rigid motion 

on more than three matches. The calculation is a multi-step 
algorithm described in the following, with 𝑝𝑖,𝑘⃗⃗ ⃗⃗ ⃗⃗  being the 𝑖-th 
point of the 𝑘-th cloud and n being the number of matched point-
pairs. 

 

1) Calculate center points 𝑐  of both point clouds:  

ck⃗⃗  ⃗ =
∑ pi,k⃗⃗⃗⃗⃗⃗  n

i=1

n
  ck−1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  =

∑ pi,k−1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗n
i=1

n
 

2) Calculate centered point clouds 𝑄𝑘 and 𝑄𝑘−1: 
qi,k⃗⃗ ⃗⃗ ⃗⃗ = pi,k⃗⃗⃗⃗⃗⃗  − ck⃗⃗  ⃗   ; qi,k−1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = pi,k−1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ − ck−1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗     

  i  =  1,  2,  3,   …  ,  n 
3) Compute the covariance matrix of centered point clouds: 

S = [

∙ 
𝑞1,𝑘

 ∙

∙ 
  𝑞2,𝑘 

 ∙

∙ 
 𝑞3,𝑘

 ∙
  ⋯ ] ∙ [

∙ 
𝑞1,𝑘−1

 ∙

∙ 
  𝑞2,𝑘−1 

 ∙

∙ 
 𝑞3,𝑘−1

 ∙
  ⋯ ]

𝑇

 

4) Compute the singular value decomposition (SVD) of S: 
𝑆 = 𝑈Σ𝑉𝑇 

5) Calculate the rotation matrix R: 

R = V(
1 0 0
0 1 0
0 0 𝑑𝑒𝑡(𝑉𝑈𝑇)

)𝑈𝑇 

The term 𝑑𝑒𝑡(𝑉𝑈𝑇) in the intermediate matrix corrects the 
result, if the SVD led to a reflection instead of a rotation. This 
would be numerically sound but would not reflect the real 
behavior. 

6) Compute the translation: 
t = c𝑘⃗⃗  ⃗ − 𝑅c𝑘−1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   

The mathematical proof of this method can be found in [3]. 

C. 3D RANSAC algorithm 
Random Sample Consensus (RANSAC) is a well-known 

algorithm in 2D panoramic stitching to find good matches and 
allows correcting bad matches with new information. The 
standard approach uses regular images without depth map and 
allows finding the homology between two projections. Having 
brute-force matched features with 3D coordinates, and knowing 
that good matches fulfill a rigid motion, allows extending the 
RANSAC algorithm.  

As three points are required for calculating a rigid motion in 
3D space, to each point-pair two additional point-pairs get 
randomly assigned, ensuring that each point-pair gets checked at 
least once. On each group of three point-pairs, the SVD 
algorithm gets performed to find the rigid motion individually 
for each point-pair trio.  

Each point-pair trio results in an individual rigid motion, that 
then gets tested on all brute-force matches. If a tested brute-force 
match fulfills the rigid motion calculated from the point-trio, it 
gets assigned to a list. The result with the most matches in the 
list wins the competition with the list containing the subset of 
correct matches. An additional calculation of the rigid motion 
using all the correct matches at once allows improving the 
estimated rigid motion from the brute-force matcher. 

A significant portion of data points, namely all false 
matches, would be left out, if no further action would be taken. 
The rigid motion from the random sample consensus allows 
discarding all the brute-force matches and re-matching the data-
points based on their position in 3D space. Due to noise and 
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changes in perspective, it is not guaranteed that every point can 
be assigned to a suitable counterpart. The rematched set of point-
pairs allows further improvement of the rigid motion, by 
performing the calculation on this larger set of matches. The 
result of this final step is the optimal rigid motion to extract from 
this set of features and used as the output of the TOF motion 
extractor.  

IV. SENSOR FUSION WITH IMU 
In any augmented reality platform, multiple sources for 

rotation and position estimation need to be combined, allowing 
more accurate readings. As a secondary data source, a low cost 
6-axis IMU is used. One possibility to perform sensor fusion for 
motion estimation is the use of a Kalman filter. A Kalman filter 
is a model-based predictor-corrector algorithm, whose model 
describes the relations between multiple inputs and outputs. The 
used notation for the Kalman filter is as follows: 

Prediction: 

𝑥 𝑘|𝑘−1 = 𝐹𝑘−1𝑥 𝑘−1 

𝑃𝑘|𝑘−1 = 𝐹𝑘−1𝑃𝑘−1𝐹𝑘−1
𝑇 + 𝑄𝑘−1 

Correction: 

𝐾𝑘 = 𝑃𝑘|𝑘−1𝐻𝑘
𝑇(𝐻𝑘𝑃𝑘|𝑘−1𝐻𝑘

𝑇 + 𝑅𝑘)
−1 

𝑥 𝑘 = 𝑥 𝑘|𝑘−1 + 𝐾𝑘(𝑧 𝑘 − 𝐻𝑘𝑥 𝑘|𝑘−1) 

𝑃𝑘 = (𝐼 − 𝐾𝑘𝐻𝑘)𝑃𝑘|𝑘−1 

In which 𝑥  is the system-state vector, containing positions, 
velocities, and accelerations for all three dimensions as well as 
the orientation and the rotation speed. F is the state-transition-
model, translating the prior state to the prediction. P is the 
estimate covariance, Q the covariance of the process noise, K the 
Kalman gain, H the observation model and R the covariance of 
the observation noise. The vector 𝑧  contains the sensor data of 
the current iteration. 

Rotational motion information from the gyroscope and the 
TOF algorithm get transformed into quaternions, to only have 
four values and numerical stability in the Kalman filter’s system-
state vector. The required Hamilton Product got implemented in 
matrix form for the state-transition-model F. 

𝑥𝑜𝑟𝑖,𝑘|𝑘−1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = 𝐹𝑜𝑟𝑖 ∙ 𝑥𝑜𝑟𝑖,𝑘 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 

(

𝑟𝑎
𝑟𝑏
𝑟𝑐
𝑟𝑑

)

𝑘|𝑘−1

= [

𝑟𝑎̇ −𝑟𝑏̇ −𝑟𝑐̇ −𝑟𝑑̇
𝑟𝑏̇ 𝑟𝑎̇ 𝑟𝑑̇ −𝑟𝑐̇
𝑟𝑐̇ −𝑟𝑑̇ 𝑟𝑎̇ 𝑟𝑏̇
𝑟𝑑̇ 𝑟𝑐̇ −𝑟𝑏̇ 𝑟𝑎̇

] ∙ (

𝑟𝑎
𝑟𝑏
𝑟𝑐
𝑟𝑑

)

𝑘−1

 

As both sensory inputs, gyroscope and TOF algorithm, 
provide the rotation speed, the correction step is duplicated, and 
the two inputs are chained one after another. For completeness, 
the rotation speed is also part of the system-state vector and 
translated in the state-transition-model with a 3x3 identity 
matrix. 

For translation, the standard procedure is utilized for each 
dimension separately, estimating the position, velocity, and 
acceleration. This step is performed for each dimension once, as 

motion in one direction does not affect the motion in the other 
direction. 

𝑥𝑡𝑟𝑎𝑛𝑠,𝑘|𝑘−1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = 𝐹𝑡𝑟𝑎𝑛𝑠 ∙ 𝑥𝑡𝑟𝑎𝑛𝑠,𝑘 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 

(
𝑝
𝑣
𝑎
)

𝑘|𝑘−1|

= [
1 Δt

Δt2

2
0 1 Δt
0 0 1

] ∙ (
𝑝
𝑣
𝑎
)

𝑘−1

 

 

Merging the three 3x3 translation system-state matrices with 
the orientation and rotation speed matrices as sub-matrices, the 
resulting state-transition-model is of dimension 17x17. 

𝐹 =

[
 
 
 
 
𝐹𝑡𝑟𝑎𝑛𝑠,𝑥 0 0 0 0

0 𝐹𝑡𝑟𝑎𝑛𝑠,𝑦 0 0 0

0 0 𝐹𝑡𝑟𝑎𝑛𝑠,𝑧 0 0

0 0 0 𝐹𝑜𝑟𝑖 0
0 0 0 0 𝐼3𝑥3]

 
 
 
 

 

For translational motion, the piecewise white noise model 
was used for the process noise, while for the rotation, values got 
estimated heuristically.  

V. IMPLEMENTATION 
The described methodology was implemented and tested on 

a Nvidia Jetson Xavier (8GB) system, using a PiEye Nimbus 3D 
camera as data source. The processing system features a 6-core 
ARM64 CPU and a 384-Core Volta GPU, that can be utilized 
with Nvidia CUDA. Its 8GB of LPDDR4x RAM can both be 
accessed by the CPU and GPU, allowing the use of shared 
variables to avoid time-costly memory copy commands. The 
Nvidia Jetson Xavier system is mounted on a custom baseboard, 
allowing an additional color camera to be used via FPDLink 
III.[4] 

As the PiEye Nimbus 3D camera relies on a Raspberry Pi as 
its host system, a simple UDP/IP server-client socket between 
the Nvidia Jetson Xavier and the Raspberry Pi serves as video 
input. The TOF camera lens correction and the radial 
recalculation to achieve linearity in the data is solved by multiple 
lookup tables that get accessed by CUDA kernels. For the 
extraction and matching of SIFT features [1], and for the 3x3 
matrix SVD on CUDA [2], third-party libraries have been used, 
the surrounding algorithmics were developed in C++ and 
CUDA.  

The implementation parallelizes the algorithm, wherever 
possible using CUDA. The limited resolution of the used TOF 
camera limits the number of extracted features, so that – 
depending on the scene – around 300-500 parallel SVDs get 
performed. The estimated TOF motion is fused with the IMU 
data in the Kalman filter for the sake of having a complete 
pipeline. For demonstration, a virtual rectangle gets drawn into 
a viewfinder window using Vulkan. The rectangle reacts to the 
spatial position and orientation of the camera head, as it were a 
stationary object in the real-world space.  

The processing time for the entire pipeline lies around 15ms, 
which would be sufficient for 60fps. Although, the frame rate of 
the TOF camera limits the system to 15-20fps. The performance 
may drop when using a higher resolution TOF camera.  



 

VI. RESULTS 

A. 3D RANSAC algorithm and rigid motion extraction 
The 3D RANSAC feature matching was tested without 

motion, and against rotational motion as well in translational 
motion alongside and perpendicular to the optical axis. Across 
multiple frames during the motion, the total number of extracted 
features, the number of correctly paired brute-force matches and 
the number of RANSAC matches are compared in Fig. 2. Both 
regular image noise and depth noise of the TOF camera 
influence the matching performance negatively. The threshold is 
the size of a sphere, in which a matched feature is considered 
correct. 

 
Fig. 2. Comparison of the feature matching performance between the brute-

force matcher and the RANSAC algorithm without motion. 
Blue dots: Total features 
Red dots: RANSAC matches  
Grey dots: correct Brute-Force matches 

The chosen threshold of 0.0005 translates to a sphere of 
about 4.4cm in diameter of real-world space. On this threshold, 
the matching performance in motion was tested and the 
measurements listed in Fig.3. 

TABLE I.   

Measurement (avg) Rotation Translation X Translation X 

Total Features 435.9 400.0 488.4 

Brute-force Matches 117.9 104.2 112.6 

RANSAC Matches 280.2 262.5 284.3 

Fig. 3. Per-Frame average perfocmance of the feature matching approaches 

As visible in Fig. 2 And Fig. 3, the RANSAC algorithm 
consistently leads to an improvement of the matching quality of 
more than 100% compared to the brute-force matches. A direct 
comparison is shown in Fig 4, where in contrast to Fig. 1 the 
RANSAC features are shown. 

The motion extraction of the TOF camera can easily be 
compared to the IMU by performing rotation different axis as 
shown in Fig 5. The rotation speed extraction roughly follows 
the gyroscope output but is tainted by more noise. Fig. 6 shows 
the extracted velocity of two consecutive translational motions 
– forth and back – in a single direction.  

From the results, it becomes apparent that the camera noise 
of the TOF camera bleeds into the speed and rotation estimation. 
The low resolution of about 205x265 pixels of the lens corrected 
image and the slow frame rate of about 15-20fps negatively 

influence the result as well. As visible in Fig. 6, noise spikes 
negatively influence the integration results.  

 

 
Fig. 4. Sample B/W-Image with drawn feature points, part of of a sequence in 

which the camera got rotated. Note that only features, whose have 
gotten matched by the brute-force-matcher got drawn, but there are 
more in the database. At the end of every line, there should’ve been a 
green dot. 
Green dots: Frame k-1 
Red dots: Frame k  
Lines: RANSAC matches 

 
Fig. 5. Comparison of rotation output between the TOF algorithm (red) and the 

IMU (blue) when rotating the camera head in each axis.  

 
Fig. 6. Plot (purple) and integration (integration) of the translational motion in 

two separate directions. In each direction, a fast motion and a slow 
motion were performed and measured.  
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B. Kalman filter for sensor fusion 
The Kalman filter outputs were only tested in a rough 

manner, as there was no equipment available for reference 
measurements. Like with the results of the TOF camera 
algorithm, the camera head was rotated and translated around 
and along the three axes. Fig. 7 shows how the Kalman filter for 
rotation speed provides a stable rotation output. The rotation 
speed outputs follow the gyroscope more closely, than the TOF 
camera, which lies in the measured noise values of the two data 
sources. 

 
Fig. 7. Plot of the rotation speed (top three) and the rotation (bottom row) of 

the Kalman filter. Top three: Blue: Gyroscope, red: TOF rotation and 
green: Kalman Filter output. 
Bottom row: red: x-axis, purple: y-axis, blue: z-axis. 

For translational motion, the Kalman filter gets tainted by the 
hysteresis of the accelerometer. The generated offset provided 
by the hysteresis leads the acceleration to drift away, which leads 
the accelerometer’s raw double integration for the position to 
quickly diverge, as seen in Fig. 8. The Kalman filter is able to 
correct that, but its output is worse than the raw integration of 
the TOF camera algorithm.  

 

Fig. 8. Plot of the translational motion. On top the position, in the middle the 
velocity and on bottom the acceleration. In blue, the accelerometer and 
raw integrations for velocity and position. In red: ToF camera velocity 
output and its raw integration. In green: Kalman filter output. 
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