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Abstract: Models for predicting acute myocardial infarction (AMI) at the prehospital stage were
developed and their efficacy compared, based on variables identified from a nationwide systematic
emergency medical service (EMS) registry using conventional statistical methods and machine
learning algorithms. Patients in the EMS cardiovascular registry aged >15 years who were transferred
from the public EMS to emergency departments in Korea from January 2016 to December 2018 were
enrolled. Two datasets were constructed according to the hierarchical structure of the registry. A
total of 184,577 patients (Dataset 1) were included in the final analysis. Among them, 72,439 patients
(Dataset 2) were suspected to have AMI at prehospital stage. Between the models derived using the
conventional logistic regression method, the B-type model incorporated AMI-specific variables from
the A-type model and exhibited a superior discriminative ability (p = 0.02). The models that used
extreme gradient boosting and a multilayer perceptron yielded a higher predictive performance than
the conventional logistic regression-based models for analyses that used both datasets. Each machine
learning algorithm yielded different classification lists of the 10 most important features. Therefore,
prediction models that use nationwide prehospital data and are developed with appropriate structures
can improve the identification of patients who require timely AMI management.

Keywords: acute myocardial infarction; prediction; machine learning; nationwide prehospital record

1. Introduction

Acute myocardial infarction (AMI) is a leading cause of mortality worldwide, despite
being one of the known diseases for which standard treatments are well established [1,2].
Early recognition of suspected AMI at the prehospital stage, which is the period between
the onset of patients” symptoms and their arrival at the hospital, and timely management in
the hospital, are key factors for improving the survival rate [3-5]. The accurate evaluation
of risk factors and the likelihood of AMI at the prehospital stage help to provide appropriate
prehospital management and rapid transportation to the most appropriate hospital for
treatment [6].

Predicting AMI and related events during hospitalization using factors derived from
hospital data by physicians has been studied extensively and systematically [7-12].

Conversely, to date, only a few studies have been conducted at the prehospital stage.
These studies were performed using only a few variables that influenced the prediction of
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AMI. Additionally, these efforts and data analyses were not based on organized databases
compiled at a national level [13-15].

Recently, studies have been conducted to predict critical events using machine learning
in the field of emergency medicine [16-18]. However, all of these predicted critical events
are based exclusively on information within the hospital and were conducted based on
a single or several centers. Clinical tools using machine learning may be more useful in
the pre-hospital stage, where advanced human resources are insufficient, than in hospitals,
where physicians with expertise are available. In this context, the Ministry of Science
and Information and Communications Technology in Korea has begun a major three-year
research project (connected network for emergency medical service (EMS) comprehensive
technical-support using artificial intelligence (CONNECT-AI)) to develop an EMS that
links information in real time using 5G technology and artificial intelligence spanning all
stages of emergency cases [19]. The present study was performed as the initial phase of this
project, and it aimed to develop a basic model for critical events at the prehospital stage
using machine learning.

In Korea, paramedics from the National Fire Agency are required to enter detailed
information for all transferred patients into the hierarchical structured electrical records in
a stepwise manner: EMS run sheets, EMS cardiovascular registry, and AMlI-specific records
in case of cardiovascular emergencies. Accordingly, we can deduct the decisional process
of paramedics to transfer patients to the optimal hospital.

Thus, this study was conducted to (a) develop and present models for predicting AMI
at the pre-hospital stage with variables obtained in the two different hierarchical datasets
from the nationwide systematic EMS registry, using conventional statistical methods and
machine learning algorithms, and (b) compare their performances.

2. Materials and Methods

The present study was conducted according to the STROBE and TRIPOD guide-
lines [20] and was approved by the institutional review boards of Severance Hospital
(4-2020-0110).

2.1. Study Design and Setting

This study was a retrospective observational study based on a prospectively collected
nationwide dataset from the National Fire Agency and National Emergency Medical
Center in Korea. In Korea, the National Fire Agency, which consists of 18 provincial fire
departments, oversees the public EMS system. All provincial fire departments operate
on a single-tiered and fire-department-based EMS system. The paramedics working at
the National Fire Agency comprise level-1 emergency medical technicians (EMTs), level-2
EMTs, and nurses, and are defined according to their qualifications and roles during
the transportations of patients from the scene to the hospital. Level-1 EMTs and nurses
provide a limited number of advanced treatment techniques, including intravenous fluid
administration, such as normal saline and glucose solution; advanced airway placement;
injections of specific medications with the supervision of medical directors at the prehospital
stage. All patients assessed by the fire-department-based EMS are transported to one of the
emergency departments (EDs) for which hospital resources and the distance from the scene
are considered optimal. A nationwide fire-department-based EMS quality management
program was established in 2011 for major emergency conditions, namely out-of-hospital
cardiac arrest, severe trauma, AMI, and acute stroke. With this program, the performance
of individual paramedics in each provincial fire department was evaluated, and feedback
was provided from the medical director. According to the Rescue and Fire EMS Act, every
year, all paramedics at the National Fire Agency are required to receive 40 h of mandatory
training in medical skills and knowledge [21].

In Korea, EDs are designated at levels 1, 2, or 3 by the Ministry of Health and Welfare.
This designation is based on the ED’s human resources, emergency equipment, and avail-
ability of medical service and specialists. By law, level-1 and level-2 EDs must be staffed
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24 h/day with board-certified emergency physicians [22]. EDs rated at levels 1 and 2 are
evaluated annually by the Ministry of Health and Welfare in accordance with the EMS Act
to confirm whether they can provide high-level emergency medical care. The designation
of levels 1 and 2 can change according to this result. In 2016, 2017, and 2018, the number of
sites designated as level-1 EDs and level-2 EDs were 31, 36, and 36, and 120, 119, and 118,
respectively [23].

2.2. Selection of Participants

Patients aged >15 years who were transferred by the fire-department-based EMS to
EDs from January 2016 to December 2018 were enrolled. Among them, patients whose
EMS cardiovascular registry had been activated were included. Patients whose diagnosis
code failed to match data from the National Emergency Department Information System
(NEDIS) were excluded.

2.3. Data Collection and Processing

The data for the present study were extracted from the following sources: EMS run
sheets and the EMS cardiovascular registry, which are managed by the National Fire Agency,
and NEDIS, which is operated by the National Emergency medical center in Korea. EMS
run sheets are electronically stored to provide a basic EMS operation information repository
in the National Fire Agency. The age, gender, past medical history, mental status, and
vital signs of the patient at the prehospital stage were extracted from the EMS run sheets.
In cases where the symptoms suggested cardiovascular emergencies at the prehospital
stage, based on the information recorded on the EMS run sheet, paramedics from the
National Fire Agency were required to enter detailed information for AMI screening in the
EMS cardiovascular registry. Cardiovascular emergencies are defined as cases in which
patients have chest pain, dyspnea, palpitations, syncope, or other suspected cardiovascular
events. The EMS cardiovascular registry is a two-step entry system. In the first step, chief
complaints, accompanying symptoms, and the onset of symptoms, as well as the location,
characteristic, intensity, radiation, duration, and aggravating and relieving factors of chest
pain, are evaluated. Based on this information, the paramedics record whether the AMI
was presumptive. In cases of suspected AMI, additional information is obtained from
the patient and recorded. This additional information includes the following: response of
sublingual nitroglycerin (NTG), 3-lead and 12-lead electrocardiographic (ECG) findings,
and thrombolysis in myocardial infarction (TIMI) risk score based on the exclusion of
cardiac enzyme marker findings. Since 2013, the EMS cardiovascular registry has been
amended four times by the quality management committee of experts. The EMS quality
management program is in progress, based on data from this registry.

NEDIS is a computerized system used to collect and analyze the medical information
of patients who visit EDs in Korea. This system was developed to evaluate the statuses
of the EDs in each medical institution and assess the quality of emergency care. These
data include different types of information, such as the emergency care and procedures
performed during ED visits, as well as the disposition and diagnosis of each patient at the
time of ED discharge. This registry is managed according to the standardized protocol
distributed by the National Emergency medical center, has been revised several times up
until January 2019, since its establishment in 2003, and has been updated to version 3.2.

In this study, the information from the EMS cardiovascular registry at the prehospital
stage was linked to the diagnosis code of NEDIS to confirm whether the patients had been
diagnosed with AMI upon admission to the EDs. The matching variables between the two
databases were age, gender, the location of the patient, and the time of arrival to the ED
(£10 min).

2.4. Model Development

We developed models to predict AMI diagnosis based on the use of conventional
logistic regression and machine learning algorithms. In cases where data were missing,
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multiple imputations were performed based on fully conditional specifications [24] with
SAS (version 9.4, SAS Inc., Cary, NC, USA). The study population was divided into training
and testing cohorts, and both subsets were used equally for conventional logistic regression
and machine learning analysis. The training and testing cohorts were random samples of
70% and 30% of the entire patient group in the EMS cardiovascular registry, respectively
(Dataset 1). The analysis was performed by splitting the training and testing cohorts of the
group of patients who were suspected by paramedics to experience an AMI at a ratio of 7:3
(Dataset 2) (Figure 1).

EMS Run sheet A-type model variables B-type model variables
« Age
¢ Sex
* Location

= Time from symptom onset to ED arrival
* Past medical histories

* Mental status

* Vital signs

* Blood sugar

* Chief complaint

EMS cardiovascular registry

* Chief complaint

gh:s‘ns:'" * Associated symptoms

P:Ip‘:tation + Situation of onset

3 * Painlocation AM I-specific variables
TS . + Pain characteristics

Othgr symptoms. suggesting o Fhaoh - o

cardiovascular disease If yes, - Radiating pain Administration of medication

Administration of nitroglycerin

* A ting fact
geravating factor ECG monitoring

“ s e e .

+ Durati
uration ECG rhythm findings
. N P L Thrombolysis in myocardial infarction
Pre-hospital impression: AMI suspected If yes, (TIMI) score
Patients with information above: Dataset 1 Patients with information above: Dataset 2

Figure 1. Flow chart for the derivation of datasets (EMS: emergency medical service; ED: emergency
department; AMI: acute myocardial infarction; ECG: electrocardiogram).

We derived A-type models with general information from EMS run sheets, and infor-
mation about cardiovascular symptoms from both datasets from the EMS cardiovascular
registry. B-type models were derived using AMI-specific variables from the EMS cardio-
vascular registry in Dataset 2, such as sublingual NTG administration, ECG findings, and
TIMI scores, which were added to the variables in the A-type models (Figure 1).

We developed prediction models using the following five machine learning algorithms:
multilayer perceptron (MLP), extreme gradient boosting (XGB), elastic net (EN), random
forest, and support vector machine. These algorithms provide calculation probability
methods, or functions that map the predictor value to a corresponding probability between
zero and one. MLP and XGB were selected for final model derivation, as they yielded
the best accuracies between all the algorithms used. MLPs were constructed by stacking
layers of perceptrons and were inspired from the neuronal structure of animals. MLPs
receive weighted sums of input features and convert them into output signals by using
activation functions such as the sigmoid or rectified linear unit. MLPs can effectively
capture complicated patterns of data in the form of a nonlinear model when trained with
large datasets. The XGB is a gradient-boosted trees model in which gradient boosting is an
ensemble method that repeatedly trains new predictors to minimize the residual error of
the previous predictor model. As a nonparametric algorithm, XGB is flexible and scalable
to various data problems.

2.5. Outcome

The primary outcome was a diagnosis of AMI at the time of ED discharge. AMI was
defined as the International Classification of Diseases-10 (ICD-10) code 121, which was
collected from NEDIS.
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2.6. Descrimination and Callibration Plot of the Model

The predicted performance was evaluated based on the calculation of the area under
the receiver operating characteristic curve (AUC), with 95% confidence intervals for each
prediction model, and the performances of the statistical method and machine learning
model were compared [25,26]. The predicted performance was also assessed based on
sensitivity, specificity, positive predictive value, and negative predictive value. All perfor-
mance indexes referred to one specific cut-off value, calculated to maximize the Youden
index (defined as sensitivity + specificity of 1). The model calibration was assessed by
comparing the observed and predicted event probabilities. By plotting two probabilities of
event occurrence and conducting the Hosmer-Lemeshow test—a measure of the fit of the
model—the observed and predicted risks were compared [27].

2.7. Analysis

The continuous variables were analyzed using the independent t-test or Wilcoxon
rank-sum test, and the categorical variables were analyzed and compared by the Chi-
squared or Fisher’s exact tests. Unadjusted odds ratios with 95% confidence intervals (CIs)
for each variable of the study outcome in the training cohort were calculated using the
logistic regression analysis. All statistical analyses were conducted with SAS software
version 9.4 (SAS Institute, Cary, NC, USA) and R Statistical Package version 3.4.3 (www.
R-project.org (accessed on 1 October 2022)). Furthermore, we used TensorFlow version
1.13.1 (www.tensorflow.org (accessed on 1 October 2022)) and scikit-learn version 1.0.2
(www.scikit-learn.org (accessed on 1 October 2022)) libraries in the python (version 3.6.9,
www.python.org (accessed on 1 October 2022)) programming environment for machine
learning modeling. The statistical significance criterion was set to be two-sided, and
p values < 0.05 were considered statistically significant.

3. Results
3.1. Characteristics of Study Subjects

By matching the data of 8,539,965 fire-department-based EMS-transferred patients and
4,227,444 patients who received emergency care in EDs with NEDIS data, 3,182,947 patients
were identified as full datasets. Among them, the number of patients in the EMS cardiovas-
cular registry was 184,557. During their transfer to the ED, 72,439 patients were considered
to have AMI at the prehospital stage (by paramedics), and 112,118 were considered to have
a low probability of AMI. Of the 72,439 patients who were suspected to have suffered AMI,
11,782 (8.0%) patients were confirmed to have AMI at the ED. By contrast, only 2.7% of
patients in the patient group that was assigned a low probability for suffering from AMI
were diagnosed with AMI (Figure 2). The baseline characteristics of the training and test
datasets are shown in Supplementary Table S1. Furthermore, we performed univariate
analysis of individual variables from Datasets 1 and 2, and the associations between each
variable and outcome were represented as odds ratios. The variables for analysis are shown
in Supplementary Table S2.

3.2. Main Results

The predictive performances and test characteristics of the models derived using
machine learning and conventional statistical analysis are presented in Table 1.

For models derived using the conventional logistic regression method in Dataset 2,
the AUC for the A-type model was 0.808, and the AUC for the B-type model was 0.824.
The predictive performance of the B-type models was significantly superior compared with
that of the A-type models (p = 0.02; Figure 3).
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Figure 2. Flow chart of conducted study (EMS: emergency medical service; ED: emergency depart-
ment; AMI: acute myocardial infarction).

Table 1. Discrimination and test characteristics of acute myocardial infarction prediction models.

Label Modeling AUROC Sensitivity  Specificity Accuracy PPV NPV
Method (950/0 CI) (950/0 CI) (950/0 CI) (950/0 CI) (950/0 CI) (950/0 CI)
0.843 0.750 0.785 0.785 0.241 0.972
Logistic (0.837, (0.737, (0.792, (0.782, (0.234, (0.971,
0.849) 0.762) 0.785) 0.789) 0.248) 0.974)
0.867 0.800 0.771 0.774 0.239 0.977
Dataset 1 A-type model XGB (0.860, (0.788, (0.768, (0.770, (0.232, (0.976,
0.874) 0.812) 0.775) 0.778) 0.245) 0.979)
0.863 0.800 0.756 0.759 0.227 0.977
MLP (0.856, (0.788, (0.752, (0.756, (0.220, (0.975,

0.870) 0.812) 0.760) 0.763) 0.233) 0.978)
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Table 1. Cont.
Label Modeling AUROC Sensitivity ~ Specificity Accuracy PPV NPV
Method (95% CI) (95% CI) (95% CI) (95% CI) (95% CI) (95% CI)
0.808 0.721 0.743 0.739 0.355 0.931
Logistic (0.801, (0.706, (0.737, (0.734, (0.344, (0.927,
0.816) 0.736) 0.749) 0.745) 0.366) 0.936
0.823 0.800 0.678 0.698 0.328 0.945
A-type model XGB (0.815, (0.787, (0.672, (0.692, (0.318, (0.941,
0.832) 0.813) 0.685) 0.704) 0.338) 0.949)
0.821 0.800 0.673 0.694 0.324 0.945
MLP (0.812, (0.787, (0.667, (0.688, (0.315, (0.941,
0.830) 0.813) 0.680) 0.700) 0.334) 0.949)
Dataset 2
0.824 0.777 0.722 0.731 0.354 0.943
Logistic (0.817, (0.763, (0.715, (0.725, (0.343, (0.939,
0.831) 0.791) 0.728) 0.737) 0.364) 0.947)
0.837 0.800 0.689 0.707 0.335 0.946
B-type model XGB (0.829, (0.787, (0.682, (0.701, (0.325, (0.942,
0.846) 0.813) 0.696) 0.713) 0.345) 0.950)
0.836 0.800 0.700 0.717 0.344 0.947
MLP (0.828, (0.787, (0.694, (0.711, (0.333, (0.943,
0.845) 0.813) 0.707) 0.723) 0.354) 0.951)

AUROC: area under the receiver operating characteristic curve; CI: confidence interval; PPV: positive predictive
value; NPV: negative predictive value; XGB: Extreme gradient boosting; MLP: Multilayer perceptron.

o
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Figure 3. Comparison of discriminative performance between A- and B-type models derived using
the conventional logistic regression method.

Figure 4 shows the comparisons of the predictive performances of each model derived
from machine learning and the conventional logistic regression model. The A-type models
derived from Dataset 1 with XGB and MLP yielded higher predictive performances than the
model derived with logistic regression (p < 0.01). In this case, the AUCs of XGB and MLP
were 0.867 (95% CI: 0.860-0.874) and 0.863 (95% CI: 0.856—0.870), respectively. Likewise,
in the A-type models derived from Dataset 2, the AUCs for the XGB- and MLP-derived
models were 0.823 (95% CI: 0.815-0.832) and 0.821 (95% CI: 0.812-0.830), respectively. Both
models exhibited significantly higher predictive performances than those derived from the
conventional logistic regression models (p = 0.01 and p = 0.03, respectively). In the B-type
models, the AUCs for the XGB- and MLP-derived models were 0.837 (95% CI: 0.829-0.846)
and 0.836 (95% CI: 0.828-0.845), respectively. The machine learning-derived models also
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exhibited statistically superior discriminative ability than the logistic regression-derived
models (p = 0.02 and p = 0.03, respectively).

b c

(a) 1.00 ( ) 1.00 ( ) 1.00

//
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2 050 2 050 2 050
§ 5 g
3 3 &
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Logistic (0.843) XGB (0.867) Logistic (0.808) XG8 (0.823) Logistic (0.824) XG8 (0.837)

HLP (0.821)

11LP (0.836)

MLP (0.863)

Figure 4. Receiver operating characteristic curves of A-type models with Dataset 1 (a) and
Dataset 2 (b), and B-type models with Dataset 2 (¢) (ROC: receiver operating characteristic; XGB:
Extreme gradient boosting; MLP: Multilayer perceptron).

For the XGB-derived model, the duration of chest pain, symptoms such as palpitation
and cold sweat, gender, and history of cardiovascular disease yielded high-importance scores.
In addition, ST segment elevation findings on ECGs yielded high-importance scores in the
B-type model. However, for the MLP-derived model, body temperature, age, heart rate,
respiratory rate, blood sugar, oxygen saturation, and systolic blood pressure yielded high-
importance scores. In addition, TIMI scores yielded high-importance scores in the B-type
model. The importance scores of the top 10 features for each machine learning algorithm
model are presented in Figure 5. Supplementary Figure S1 shows the calibration plot for all
of the tested models. The calibrations were appropriate for all models from both datasets.
The Hosmer—Lemeshow plot yielded an insignificant discrepancy between the observed and
expected event rates, thus indicating appropriate calibration outcomes for the models.

(a) (b)
Situation of symptom: Exercise Symptom: Syncope
Radiating pain: Left arm History of hepatitis
Pain duration>20min Pain scale

Svmptom: Syncope Systolic blood pressure

History of cardiovascular disease Saturation

Blood sugar
Symptom: Palpitation Respiratory rate
Svmptom: Cold sweat Heart rate

Svmptom: Chest pain

Pain
duration<5min

Body temperature

0.000 0.050 0.100 0.150 0.200 0.250 0300 o 0.02 0.04 0.06 0.08 01 0.12 0.14 0.16 0.18
Feature importance score Feature importance score
(c) (d)
Radiating pain: Left arm Situation of onset: Education
ECG finding: Normal sinus rhythm Pain scale
History of cardiovascular disease Systolic blood pressure

Gender Saturation

EGG finding:Others.

ST elevation on ECG

Symptom: Palpitation

Symptom: Cold sweat

Symptom: Chest pain

Body temperature

0 0.05 0.1 0.15 0.2 025 0 0.02 0.04 0.06 0.08 01 0.12 0.14
Feature importance score Feature importance score

Figure 5. Feature importance score of XGB derived A- (a) and B- (c) type models compared to MLP-
derived A- (b) and B- (d) type models (XGB: Extreme gradient boosting; MLP: Multilayer perceptron).
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4. Discussion

The public EMS system of Korea operates with the same authority and policy nation-
wide; as such, the EMS cardiovascular registry recorded by paramedics has homogeneous
characteristics. This was a retrospective study based on nationwide data, and the results
confirmed that the EMS cardiovascular registry was efficient in screening patients with
cardiovascular risk (predicted to have AMI) at the prehospital stage. In particular, the
models that included detailed variables related to cardiovascular risk, such as ECG rhythm
analysis, TIMI score, and NTG response, collectively yielded a superior discriminative
ability regarding the prediction of AMI. Given that acute coronary syndrome (ACS) is
a disease that develops acute and characteristic symptoms, recording the medical his-
tory and evaluating the patient’s condition are critical, especially at the prehospital stage.
Holmberg et al. [14] highlighted the association between the strength of chest pain and
final diagnosis or length of hospital stay. Furthermore, another retrospective study identi-
fied the factor that differentiated patients with acute cardiovascular risk among patients
without prehospital ECG based on multivariate analysis [15]. However, few previous
studies have used multiple variables that influenced the prediction of AMI. Accordingly,
the outcomes could not be representative for the entire population, as large-scale data had
not been used for analyses. One prospective validation study showed the effectiveness
of the history and ECG-only Manchester ACS decision among patients who visited EDs
with chest pain. This study revealed that risk stratification tools using non-laboratory
variables, including gender, systolic blood pressure, and five historical variables, could
exclude ACS in 9.4% of the patients classified in the very-low-risk group [9]. Moreover,
one population-based study was conducted to develop a scoring tool to predict sudden
cardiac arrest at the prehospital stage based on 8112 STEMI cases. According to this study;,
factors such as age, diabetes mellitus, obesity, shortness of breath, and the time interval
between the development of symptoms and EMS call were associated with 452 sudden
cardiac death cases [28]. Decision-making tools that do not require the measurement of
biomarkers to assess cardiovascular risk improve risk stratification and are more important
in pre-hospital settings. Thus, this study has the significance of developing models that
predict AMI through information that is systematically obtained in the pre-hospital stage.
In addition, we confirmed that this machine learning-based model had better performance
to predict AMI than the conventional method; therefore, it can be a useful tool to support
paramedics in making decisions.

In this study, we developed various models for the prediction of AMI at the prehospital
stage using machine learning, and verified that XGB and MLP yielded superior perfor-
mances compared with logistic regression models with conventional statistics. The model
that showed the best performance in predicting AMI at the prehospital stage using machine
learning algorithms was the XGB model. However, it is not clear why each machine learn-
ing method had different discriminant abilities. In addition, previous studies have reported
superior predictive performances in the classification or prediction of certain diseases using
machine learning; however, the reason for this has not been clarified yet [29-32].

Given that machine learning is known as a “black box” because of unclear intermediate
processes and uncertain interrelationships between variables, machine learning models
cannot be mutually applied in terms of diverse feature importance or in approaches for
determining risk scores, as these raise concerns in clinical use [33,34]. For this reason,
we developed models that could be as descriptive as possible and evaluated the feature
importance score for each model. However, it is difficult to compare two models completely
one-on-one due to the different directions of interpretation for each model, as well as their
different feature importance calculation methods. Thus, each model and its important
feature should be interpreted separately and used to emphasize the importance of the
variables for model interpretation and verification for application. The features with high-
import scores in the XGB-derived models were similar to those of the AMI risk factors
calculated with conventional statistical methods, while those that yielded high scores in
the MLP-derived models were not.
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XGB is a tree ensemble model used for supervised learning, consisting of multiple sets
of classification and regression trees. All possible decision-tree structures are added a setata
time, and these sets of trees provide a principled and unified method for optimization of the
model. The feature importance of the XGB model in this study was calculated as the result
of a relative comparison of the degree of contribution to the classification results for each
parameter. In other words, this method is used to calculate the extent of the improvement
of the performance when any additional feature is added to the algorithm. This is similar
to performance prediction based on conventional logistic regression modeling.

The MLP algorithm is a deep learning algorithm that changes the weight of the input
features simultaneously by calculating the sensitivity of changes in the output logit value. It
is critical to calculate the feature importance to explain the model because the intermediate
processes are unclear and show uncertain interrelationships between parameters, especially
in deep learning algorithms. It is assumed that input features with continuous or multi-
categorical characteristics that could reflect diversity are more affected, in the case of the
MLP algorithm in this study, than features with less variability, such as binary variables. For
example, our results indicated that logit values changed in a sensitive manner with respect
to changes in body temperature when each feature was compared in a relative manner.

The key differences between the XGB and MLP models are how features are used
to develop the model and how the feature importance is calculated. Statistically, it is
difficult to determine which one fits better. For example, the AUC for XGB was 0.867
(95% CI1 0.860-0.874) and, for MLP, it was 0.863 (95% CI 0.856-0.870) in the A-type model
from Dataset 1. Furthermore, each model and its important feature should be interpreted
separately and used to emphasize the importance of the variables for model interpretation
and verification for application in clinical settings. This result indicates that the types of
variables, interactions with other variables, and methods used to calculate their importance
can affect the results in each machine learning algorithm. Before machine learning is
applied as a clinical tool in the medical field, it should be verified that the features with
higher importance scores are suitable for clinical applications.

The method used in the present study setting, based on which prehospital data were
collected, proceeded as follows: the paramedics evaluated the patients, identified the
patient’s condition and disease severity, initiated the provision of emergency care by exam-
ining the patient during transportation to hospital, completed the patient transfer to the
appropriate hospital, then recorded the patient data in the EMS registry manually. Data loss
is likely to occur because the process depends on memory and on the instantaneous judg-
ment of the paramedics. Furthermore, the computerized system of prehospital evaluation
was not configured according to the logical rules of the systematically constructed registry.
Therefore, we devoted considerable efforts to data mining. For missing data, we did not
perform batch imputation. In other words, we analyzed datasets that were not entered
logically and those that should have been recorded but were missed. The assessment and
prediction at the prehospital stage should be completed for clinical use, and the emergency
physician should be notified before arrival at the ED. In the aforementioned CONNECT Al
project, data are collected quickly through automated systems. Patient assessment is then
performed with these data at the prehospital stage using the present predictive model, and
the results are shared with the hospital in real time. This study suggests that structured and
automated systems that handle missing data and errors will increase the clinical usefulness
of prehospital records.

The limitations of this study include the following. There is a possibility of bias due to
the retrospective design of the study. In particular, the analysis was registry-based rather
than being based on the accurate diagnosis from the definite diagnostic method of choice,
such as coronary angiography. Second, the NEDIS and EMS registry data could not be
merged perfectly, as the exact matching key for both datasets could not be used to ensure
the anonymity of the registry data. Third, there was a considerable amount of missing data
in the EMS registry owing to the nature of the data based on the retrospective collection
method. To solve these issues, the CONNECT-AI project is currently being implemented
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to prospectively collect prehospital data, using the recognition of voice, video clips of
patients, and automatic real-time recordings in ambulances, to predict critical disease by
machine learning for further studies. This novel project also aims to ensure consistency and
reliability by connecting the database before and after arrival at the hospital. Fourth, the
present study focused on the fire-department-based EMS with intermediate service levels
in Korea. Therefore, there may be differences in the service levels of EMS in other countries.
Thus, caution should be exercised in the generalization of the results of this study.

Lastly, these models have been validated with a retrospective dataset and not in real
scenarios. Accordingly, we are planning to conduct a prospective study and validate
the usefulness of the developed model to provide guidance for clinical assessment in the
prehospital phase.

5. Conclusions

This study demonstrates that prediction models that use nationwide prehospital data
and are developed with appropriate structures can improve the identification of patients
who require timely management. Accurate and rapid prehospital diagnosis and timely
treatment determine the clinical course of patients with AMI. The development of a system
with advanced technology that can apply our research results in the prehospital practice
will be beneficial in improving the clinical outcome of AMI patients.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/jcdd9120430/s1, Figure S1: the calibration plot for all the tested
models; Table S1: Patient demographics for Datasets 1 and 2; Table S2: Odds ratios for event.

Author Contributions: Conceptualization, A.C., M.J.K. and J.H.K,; Data curation, A.C., ] M.S., S.K.
and J.H.K,; Formal analysis, S.K., ].L. and H.H.; Funding acquisition, H.-J.C.; Methodology, ] M.S.;
Project administration, ].H.K. and H.-J.C.; Supervision, M.]. K. and H.C.K.; Writing—original draft,
A.C. and ] HK,; Writing—review & editing, M.J.K. and ].H.K., A.C. and M.J.K. equally contributed to
the study. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the 2019 IT Promotion fund (Development of Al based
Precision Medicine Emergency System) of the Korea government (Ministry of Science and ICT) under
grant number 51015-19-1001 and also by AI Ambulance project for digital healthcare of precision
medicine SW development through the National Fund of the Korea government (Ministry of Science
and ICT).

Institutional Review Board Statement: The study was conducted in accordance with the Declaration
of Helsinki and approved by the Institutional Review Board of Yonsei University College of Medicine,
Severance Hospital (4-2020-0110).

Informed Consent Statement: Patient consent was waived due to the retrospective study design.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available due to the Personal Information Protection
Act in Republic of Korea.

Acknowledgments: The authors thank Ui Jun Gwon, MS, and Se Jin Moon for their technical support.

Conflicts of Interest: The authors declare no conflict of interests. The funder had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

1. Murray, C.J.L.; Vos, T.; Lozano, R.; Naghavi, M.; Flaxman, A.D.; Michaud, C.; Ezzati, M.; Shibuya, K.; Salomon, ]J.A.; Abdalla,
S.; et al. Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990-2010: A systematic analysis for the
Global Burden of Disease Study 2010. Lancet 2012, 380, 2197-2223. [CrossRef] [PubMed]

2. Steg, PG.; Bonnefoy, E.; Chabaud, S.; Lapostolle, E; Dubien, P-Y.; Cristofini, P.; Leizorovicz, A.; Touboul, P. Impact of Time to
Treatment on Mortality After Prehospital Fibrinolysis or Primary Angioplasty: Data from the CAPTIM randomized clinical trial.
Circulation 2003, 108, 2851-2856. [CrossRef] [PubMed]


https://www.mdpi.com/article/10.3390/jcdd9120430/s1
https://www.mdpi.com/article/10.3390/jcdd9120430/s1
http://doi.org/10.1016/S0140-6736(12)61689-4
http://www.ncbi.nlm.nih.gov/pubmed/23245608
http://doi.org/10.1161/01.CIR.0000103122.10021.F2
http://www.ncbi.nlm.nih.gov/pubmed/14623806

J. Cardiovasc. Dev. Dis. 2022, 9, 430 12 of 13

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Antman, EM.,; Anbe, D.T.; Armstrong, PW.; Bates, E.R.; Green, L.A.; Hand, M.; Hochman, ].S.; Krumholz, H.M.; Kushner, EG,;
Lamas, G.A.; et al. ACC/AHA Guidelines for the Management of Patients With ST-Elevation Myocardial Infarction—Executive
Summary: A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines
(Writing Committee to Revise the 1999 Guidelines for the Management of Patients With Acute Myocardial Infarction). Can. J.
Cardiol. 2004, 20, 977-1025. [PubMed]

Canto, J.G.; Zalenski, R.J.; Ornato, ].P.; Rogers, W.J.; Kiefe, C.I.; Magid, D.; Shlipak, M.G.; Frederick, P.; Lambrew, C.G.; Littrell,
K.A,; et al. Use of Emergency Medical Services in Acute Myocardial Infarction and Subsequent Quality of Care: Observations
from the National Registry of Myocardial Infarction 2. Circulation 2002, 106, 3018-3023. [CrossRef] [PubMed]

Park, YH.; Kang, G.H.; Song, B.G.; Chun, WJ.; Lee, ] H.; Hwang, S.Y.; Oh, ].H.; Park, K.; Kim, Y.D. Factors Related to Prehospital
Time Delay in Acute ST-Segment Elevation Myocardial Infarction. J. Korean Med. Sci. 2012, 27, 864-869. [CrossRef]

O’Connor, R.E; Al Ali, A.S.; Brady, W.J.; Ghaemmaghami, C.A.; Menon, V.; Welsford, M.; Shuster, M. Part 9: Acute Coronary Syn-
dromes: 2015 American Heart Association Guidelines Update for Cardiopulmonary Resuscitation and Emergency Cardiovascular
Care. Circulation 2015, 132, S483-S500. [CrossRef]

Bruyninckx, R.; Aertgeerts, B.; Bruyninckx, P.; Buntinx, F. Signs and symptoms in diagnosing acute myocardial infarction and
acute coronary syndrome: A diagnostic meta-analysis. Br. J. Gen. Pract. 2008, 58, e1-e8. [CrossRef]

Shin, S.D.; Suh, G.J.; Ahn, K.O.; Song, K.]J. Cardiopulmonary resuscitation outcome of out-of-hospital cardiac arrest in low-volume
versus high-volume emergency departments: An observational study and propensity score matching analysis. Resuscitation 2011,
82, 32-39. [CrossRef]

Alghamdi, A.; Howard, L.; Reynard, C.; Moss, P; Jarman, H.; Mackway-Jones, K.; Carley, S.; Body, R. Enhanced triage for patients
with suspected cardiac chest pain: The History and Electrocardiogram-only Manchester Acute Coronary Syndromes decision aid.
Eur. ]. Emerg. Med. 2019, 26, 356-361. [CrossRef]

Body, R.; Carley, S.; McDowell, G.; Pemberton, P.; Burrows, G.; Cook, G.; Lewis, P.S.; Smith, A.; Mackway-Jones, K. The Manchester
Acute Coronary Syndromes (MACS) decision rule for suspected cardiac chest pain: Derivation and external validation. Heart
2014, 100, 1462-1468. [CrossRef]

Body, R.; Carlton, E.; Sperrin, M.; Lewis, P.S.; Burrows, G.; Carley, S.; McDowell, G.; Buchan, I.; Greaves, K.; Mackway-Jones,
K. Troponin-only Manchester Acute Coronary Syndromes (T-MACS) decision aid: Single biomarker re-derivation and external
validation in three cohorts. Emerg. Med. ]. 2017, 34, 349-356. [CrossRef] [PubMed]

Backus, B.; Six, A.; Kelder, J.; Bosschaert, M.; Mast, E.; Mosterd, A.; Veldkamp, R.; Wardeh, A.; Tio, R.; Braam, R; et al. A
prospective validation of the HEART score for chest pain patients at the emergency department. Int. J. Cardiol. 2013, 168,
2153-2158. [CrossRef] [PubMed]

Stopyra, ].P,; Harper, W.S.; Higgins, T.].; Prokesova, ].V.; Winslow, ].E.; Nelson, R.D.; Alson, R.L.; Davis, C.A.; Russell, G.B.; Miller,
C.D,; et al. Prehospital Modified HEART Score Predictive of 30-Day Adverse Cardiac Events. Prehospital Disaster Med. 2018, 33,
58-62. [CrossRef]

Holmberg, M.; Andersson, H.; Winge, K.; Lundberg, C.; Karlsson, T.; Herlitz, J.; Sundstrém, B.W. Association between the
reported intensity of an acute symptom at first prehospital assessment and the subsequent outcome: A study on patients with
acute chest pain and presumed acute coronary syndrome. BMC Cardiovasc. Disord. 2018, 18, 216. [CrossRef] [PubMed]

Frisch, A.; Heidle, K.J.; Frisch, S.O.; Ata, A.; Kramer, B.; Colleran, C.; Carlson, J.N. Factors associated with advanced cardiac care
in prehospital chest pain patients. Am. . Emerg. Med. 2017, 36, 1182-1187. [CrossRef] [PubMed]

Cho, K.-J.; Kwon, O.; Kwon, ].-M.; Lee, Y.; Park, H.; Jeon, K.-H.; Kim, K.-H.; Park, J.; Oh, B.-H. Detecting Patient Deterioration
Using Artificial Intelligence in a Rapid Response System. Crit. Care Med. 2020, 48, €285-€289. [CrossRef] [PubMed]

Kwon, ].-M.; Jeon, K.-H.; Kim, HM.; Kim, M.J.; Lim, S.-M.; Kim, K.-H.; Song, P.S.; Park, J.; Choi, R K.; Oh, B.-H. Deep-learning-
based out-of-hospital cardiac arrest prognostic system to predict clinical outcomes. Resuscitation 2019, 139, 84-91. [CrossRef]
Kwon, J.; Lee, Y.; Lee, Y.; Lee, S.; Park, J. An Algorithm Based on Deep Learning for Predicting In-Hospital Cardiac Arrest. J. Am.
Heart Assoc. 2018, 7, e008678. [CrossRef]

The Ministry of Science and Information and Communications Technology in Korea. Connected Network for EMS Comprehensive
Technical-Support Using Artificial Iintelligence (CONNECT-AI) Project. 4 June 2019. Available online: https://www.msit.go.kr/
SYNAP/sn3hev /result/f361d62dcd23e5e79bb0e4e18b68edOc.view.xhtml (accessed on 1 October 2022).

The PLOS Medicine Editors. Observational Studies: Getting Clear about Transparency. PLoS Med. 2014, 11, e1001711. [CrossRef]
Ro, Y.S.; Shin, S.D.; Lee, Y.J.; Lee, S.C.; Song, K.].; Ryoo, HW.; Ong, M.E.H.; McNally, B.; Bobrow, B.; Tanaka, H.; et al. Effect of
Dispatcher-Assisted Cardiopulmonary Resuscitation Program and Location of Out-of-Hospital Cardiac Arrest on Survival and
Neurologic Outcome. Ann. Emerg. Med. 2017, 69, 52—61.el. [CrossRef]

Kim, E.N.; Kim, M.J.; You, J.S.; Shin, H.J.; Park, I.; Chung, S.P.; Kim, ].H. Effects of an emergency transfer coordination center on
secondary overtriage in an emergency department. Am. J. Emerg. Med. 2019, 37, 395-400. [CrossRef] [PubMed]

Korean Statistical Information Service Operation of Level-1 and Level-2 Emergency Department. Available online: https:
/ /kosis.kr/statHtml/statHtml.do?orgld=411&tblId=DT_41104_411 (accessed on 1 October 2022).

Van Buuren, S. Multiple imputation of discrete and continuous data by fully conditional specification. Stat. Methods Med. Res.
2007, 16, 219-242. [CrossRef] [PubMed]

Delong, E.R.; Delong, D.M.; Clarke-Pearson, D.L. Comparing the Areas under Two or More Correlated Receiver Operating
Characteristic Curves: A Nonparametric Approach. Biometrics 1988, 44, 837-845. [CrossRef] [PubMed]


http://www.ncbi.nlm.nih.gov/pubmed/15332148
http://doi.org/10.1161/01.CIR.0000041246.20352.03
http://www.ncbi.nlm.nih.gov/pubmed/12473545
http://doi.org/10.3346/jkms.2012.27.8.864
http://doi.org/10.1161/CIR.0000000000000263
http://doi.org/10.3399/bjgp08X277014
http://doi.org/10.1016/j.resuscitation.2010.08.031
http://doi.org/10.1097/MEJ.0000000000000575
http://doi.org/10.1136/heartjnl-2014-305564
http://doi.org/10.1136/emermed-2016-205983
http://www.ncbi.nlm.nih.gov/pubmed/27565197
http://doi.org/10.1016/j.ijcard.2013.01.255
http://www.ncbi.nlm.nih.gov/pubmed/23465250
http://doi.org/10.1017/S1049023X17007154
http://doi.org/10.1186/s12872-018-0957-3
http://www.ncbi.nlm.nih.gov/pubmed/30486789
http://doi.org/10.1016/j.ajem.2017.12.003
http://www.ncbi.nlm.nih.gov/pubmed/29217178
http://doi.org/10.1097/CCM.0000000000004236
http://www.ncbi.nlm.nih.gov/pubmed/32205618
http://doi.org/10.1016/j.resuscitation.2019.04.007
http://doi.org/10.1161/JAHA.118.008678
https://www.msit.go.kr/SYNAP/sn3hcv/result/f361d62dcd23e5e79bb0e4e18b68ed0c.view.xhtml
https://www.msit.go.kr/SYNAP/sn3hcv/result/f361d62dcd23e5e79bb0e4e18b68ed0c.view.xhtml
http://doi.org/10.1371/journal.pmed.1001711
http://doi.org/10.1016/j.annemergmed.2016.07.028
http://doi.org/10.1016/j.ajem.2018.05.060
http://www.ncbi.nlm.nih.gov/pubmed/29861365
https://kosis.kr/statHtml/statHtml.do?orgId=411&tblId=DT_41104_411
https://kosis.kr/statHtml/statHtml.do?orgId=411&tblId=DT_41104_411
http://doi.org/10.1177/0962280206074463
http://www.ncbi.nlm.nih.gov/pubmed/17621469
http://doi.org/10.2307/2531595
http://www.ncbi.nlm.nih.gov/pubmed/3203132

J. Cardiovasc. Dev. Dis. 2022, 9, 430 13 of 13

26.

27.

28.

29.

30.

31.

32.

33.

34.

Hanley, ].A.; Hajian-Tilaki, K.O. Sampling variability of nonparametric estimates of the areas under receiver operating character-
istic curves: An update. Acad. Radiol. 1997, 4, 49-58. [CrossRef]

DeFilippis, A.P; Young, R.; Carrubba, C.J.; McEvoy, M.]J.W.; Budoff, M.].; Blumenthal, R.S.; Kronmal, R.A.; McClelland, R.L.;
Nasir, K.; Blaha, M.J. An Analysis of Calibration and Discrimination Among Multiple Cardiovascular Risk Scores in a Modern
Multiethnic Cohort. Ann. Intern. Med. 2015, 162, 266-275. [CrossRef]

Karam, N.; Bataille, S.; Marijon, E.; Giovannetti, O.; Tafflet, M.; Savary, D.; Benamer, H.; Caussin, C.; Garot, P; Juliard, ].-M.; et al.
Identifying Patients at Risk for Prehospital Sudden Cardiac Arrest at the Early Phase of Myocardial Infarction: The e-MUST Study
(Evaluation en Medecine d’Urgence des Strategies Therapeutiques des infarctus du myocarde). Circulation 2016, 134, 2074—-2083.
[CrossRef]

Sung, ] M.; Cho, L.-].; Sung, D.; Kim, S.; Kim, H.C.; Chae, M.-H.; Kavousi, M.; Rueda-Ochoa, O.L.; Ikram, M.A ; Franco, O.H.; et al.
Development and verification of prediction models for preventing cardiovascular diseases. PLoS ONE 2019, 14, e0222809.
[CrossRef]

Al-Zaiti, S.; Besomi, L.; Bouzid, Z.; Faramand, Z.; Frisch, S.; Martin-Gill, C.; Gregg, R.; Saba, S.; Callaway, C.; Sejdi¢, E. Machine
learning-based prediction of acute coronary syndrome using only the pre-hospital 12-lead electrocardiogram. Nat. Commun. 2020,
11, 3966. [CrossRef]

Lee, Y.; Kwon, J.-M.; Lee, Y.; Park, H.; Cho, H.; Park, J. Deep Learning in the Medical Domain: Predicting Cardiac Arrest Using
Deep Learning. Acute Crit. Care 2018, 33, 117-120. [CrossRef]

Kwon, J.-M.; Jeon, K.-H.; Kim, HM.; Kim, M.J.; Lim, S.; Kim, K.-H.; Song, P.S.; Park, J.; Choi, R K.; Oh, B.-H. Deep-learning-based
risk stratification for mortality of patients with acute myocardial infarction. PLoS ONE 2019, 14, e0224502. [CrossRef]
Holzinger, A.; Langs, G.; Denk, H.; Zatloukal, K.; Miiller, H. Causability and explainability of artificial intelligence in medicine.
WIREs Data Min. Knowl. Discov. 2019, 9, €1312. [CrossRef] [PubMed]

Goldstein, B.A.; Navar, A.M.; Carter, R.E. Moving beyond regression techniques in cardiovascular risk prediction: Applying
machine learning to address analytic challenges. Eur. Heart ]. 2017, 38, 1805-1814. [CrossRef] [PubMed]


http://doi.org/10.1016/S1076-6332(97)80161-4
http://doi.org/10.7326/M14-1281
http://doi.org/10.1161/CIRCULATIONAHA.116.022954
http://doi.org/10.1371/journal.pone.0222809
http://doi.org/10.1038/s41467-020-17804-2
http://doi.org/10.4266/acc.2018.00290
http://doi.org/10.1371/journal.pone.0224502
http://doi.org/10.1002/widm.1312
http://www.ncbi.nlm.nih.gov/pubmed/32089788
http://doi.org/10.1093/eurheartj/ehw302
http://www.ncbi.nlm.nih.gov/pubmed/27436868

	Introduction 
	Materials and Methods 
	Study Design and Setting 
	Selection of Participants 
	Data Collection and Processing 
	Model Development 
	Outcome 
	Descrimination and Callibration Plot of the Model 
	Analysis 

	Results 
	Characteristics of Study Subjects 
	Main Results 

	Discussion 
	Conclusions 
	References

