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Abstract: We investigated the spectral property changes in anti-adhesion films, which were cross-
linked and surface-modified through electron beam irradiation, using terahertz time-domain spec-
troscopy (THz-TDS). Polyethylene oxide (PEO), which is a biocompatible and biodegradable polymer,
was the main component of these anti-adhesion films being manufactured for testing. The terahertz
characteristics of the films were affected by the porosity generated during the freeze-drying and
compression processes of sample preparation, and this was confirmed using optical coherence tomog-
raphy (OCT) imaging. An anti-adhesion polymer film made without porosity was measured by using
the THz-TDS method, and it was confirmed that the refractive index and absorption coefficient were
dependent on the crosslinking state. To our knowledge, this is the first experiment on the feasibility
of monitoring cross-linking states using terahertz waves. The THz-TDS method has potential as a
useful nondestructive technique for polymer inspection and analysis.

Keywords: terahertz; anti-adhesion film; cross-linked; electron beam irradiation; spectroscopy

1. Introduction

The anti-adhesion barrier is a medical material used to prevent the excessive formation
of fibrous tissue or their adhesion to each other in the healing process of damaged tissues
caused by inflammation, wounds, surgery, etc. [1,2]. The most important properties of the
anti-adhesion barrier are biocompatibility, biodegradability, and mechanical properties;
therefore, film-type anti-adhesion barriers that can maximize these properties have been
developed and utilized [3,4]. As a type of anti-adhesion film, anti-adhesion hydrogel films
produced by dissolving various biocompatible polymers in a solvent, such as polylac-
tic acid (PLA), polyethylene glycol (PEG), and hyaluronic acid (HA), are being actively
developed [5–7]. Recently, synthetic polymer hydrogels have emerged as promising bioma-
terials for anti-adhesion films because of their biocompatibility, water absorption capability,
biodegradability and better mechanical properties than natural polymer hydrogels [8].
In addition, the cross-linking method has been fundamentally applied to develop anti-
adhesion films because it can improve the mechanical properties of anti-adhesion films to
prevent their quick dissolution in the body [9]. The crosslinking process can additionally
modify properties specific to polymer-based hydrogel films, such as the degree of swelling,
mechanical strength, vapor permeability and biodegradability.

Meanwhile, polyethylene oxide (PEO) is a good polymer candidate material for anti-
adhesion films because it has various advantages, such as biocompatibility, low toxicity, and

Polymers 2022, 14, 2008. https://doi.org/10.3390/polym14102008 https://www.mdpi.com/journal/polymers

https://doi.org/10.3390/polym14102008
https://doi.org/10.3390/polym14102008
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/polymers
https://www.mdpi.com
https://orcid.org/0000-0003-0116-4966
https://doi.org/10.3390/polym14102008
https://www.mdpi.com/journal/polymers
https://www.mdpi.com/article/10.3390/polym14102008?type=check_update&version=1


Polymers 2022, 14, 2008 2 of 10

water solubility. However, the use of PEO has been limited with regard to anti-adhesion
films, because of its disadvantages such as weak mechanical strength, adhesion, and
cell adhesion. These disadvantages of PEO have been overcome through mixing with a
natural polymer (sodium alginate (SLG)) and cross-linking by a chemical approach [10].
The chemical cross-linking method is a cost-efficient and simple method, but because it
requires toxic substances, such as sulfur, there are various biosafety problems caused by the
resulting residual substances of this method. To solve this problem, electron beam (E-beam)
irradiation was recently applied as a chemical free and simple crosslinking method [11].
This cross-linking method accelerated the hydrogel formation rates of anti-adhesion films
and increased the physical strength of PEO so that the biodegradation periods of the films
could be easily extended. The physical properties of anti-adhesion films can be adjusted by
controlling the amount of cross-linking through the control of the E-Beam dose. Currently,
the cross-linking state and its subsequent effects, such as changes in biodegradability,
can be evaluated by measuring swelling through the immersion method and conducting
preclinical experiments using mice [12]. These methods are invasive and nonquantitative;
therefore, there is a need for a nondestructive, noncontact performance inspection method
that can nondestructively monitor the degree of cross-linking of anti-adhesion films. To
develop an effective anti-adhesion film, a method for monitoring the cross-linking of the
anti-adhesion film is required along with cross-linking control technology.

Many studies have been reported in which anti-adhesion films are monitored by
E-beam irradiation using noncontact methods, such as Fourier transform infrared spec-
troscopy (FT-IR), X-ray crystallography (XRD), and transmission electron microscopy
(TEM), but the use of these techniques to monitor the state of cross-linking has rarely
been reported. These methods are limited in regard to monitoring the cross-linking state
because the energy of cross-linking is lower than that of X-rays, or the porous structures
generated during the freeze-drying of the polymer composites restricts visible and infrared
spectroscopy due to scattering [13–15]. THz waves, which are in the 0.1–10 THz frequency
region, have a longer wavelength than the diameters of these porous structures. THz
frequency allows not only penetration of the polymer but also the collection of the spectra
of materials regardless of the scatterer, for instance, the porous structure. THz waves
have been employed for spectroscopic studies of various materials, such as gases, liquids,
semiconductors, proteins, and 2D materials. Moreover, since the molecular binding energy
of polymers lies in the THz frequency region, spectroscopy based on the THz frequency
has been used to classify the density or molecular structure of polymers, for instance, high-
and low-density polyethylene. The low energy of the THz wave of 0.4–40 meV enables
harmless spectroscopy for polymers that have weak molecular bonding. THz-TDS based on
THz pulses yields the complex optical constants of materials directly, unlike FT-IR, which
requires a fitting method to obtain complex optical constants. THz-TDS can measure both
amplitude signals and phase signals, unlike FR-IR, which only measures amplitude signals.
Because of this, THz-TDS has recently been applied in various industrial applications, such
as food inspection, security inspection, and cancer treatment and diagnosis [16–20].

In this paper, we report on terahertz spectral properties of PEO-based medical films
cross-linked by electron beam irradiation. This is significant because it shows the potentials
for novel technique to monitor of crosslinking state in polymer materials. The role of
crosslinking to improve the functionalization of polymers is very important. If more so-
phisticated crosslinking control becomes possible through the use of a crosslinking method
by electron beam irradiation and a method that can monitor crosslinking non-destructively
and quantitatively by THz-TDS, we expect that it can contribute to a breakthrough in the
functionalization of polymers. We investigated the possibility of using THz-TDS to monitor
the cross-linking state of anti-adhesion polymer films irradiated by an E-beam. We were
able to clearly distinguish between cross-linked and noncross-linked medical films, which
were manufactured with a PEO-based synthetic polymer, in our conducted experiments.
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2. Materials and Methods
2.1. Materials

The manufacturing process of the polyethylene oxide (PEO)-based anti-adhesion films
is divided into five steps: agitation, dispensing, freeze-drying, pressure and cross-linking,
as shown in Figure 1. The first step is agitation. PEO, SLG, and sterile distilled water were
mixed in a ratio of 2.1%, 0.9% and 97%, respectively. The mixed solution was stirred for
12 h to prepare an aqueous solution. In the second step, after complete agitation, 55 g of
the solution was dispensed into an SUS mold using a quantitative dispenser. The third step
is freeze-drying. Freeze-drying is a type of drying conducted by freezing a substance and
sublimating ice directly into steam by lowering the partial pressure of water vapor. In the
fourth step, the freeze-dried product was removed from the mold by pressing with an air
compressor. The shape of the product was made into a film by a calendaring process using
a roll-to-roll rolling machine to produce a film in the form of a sponge. The manufactured
product was cut into a certain size (105 mm × 105 mm) and vacuum-packed. Finally, the
film was cross-linked by irradiation with an E-beam. For E-beam processing, a commercial
E-beam irradiation facility located in Daejeon, South Korea, was used. The E-beam facility
generated an E-beam with an energy of 1.14 MeV and a current of 16 mA. The film was
irradiated with the E-beam at various doses of 0−200 kGy by controlling the exposure time
of the electron beam according to the moving speed of the conveyor belt.
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Figure 1. Diagram of the manufacturing process of polyethylene oxide (PEO)-based anti-
adhesion films.

Figure 2 compares the expansion of the anti-adhesion film using the traditional immer-
sion method to confirm the performance of the prepared anti-adhesion films. In Figure 2a,
the thin film shows a large expansion in the horizontal and vertical directions. In Figure 2b,
even in the thick film, the expansions of the cross-linked film and the noncross-linked
film are clearly distinguished. It can be seen that the noncross-linked film on the left
side in the photo in Figure 2 dissolves in water over time. To measure the changes in the
refractive index and the absorption coefficient by monitoring the cross-linking observed in
the THz region of the anti-adhesion film by using THz-TDS, the anti-adhesion film was
manufactured in the same way as the end product.

2.2. Method (Terahertz Time-Domain Spectroscopy System)

THz-TDS was used to measure the changes in the PEO-based polymer films by E-beam
irradiation. A femtosecond laser with a pulse width of 80 fs and a center frequency of
800 nm was used for the THz-TDS system [21]. The laser beam was split into two beams
through a beam splitter (BS) and used for the generation and detection of THz waves. THz
waves were generated by focusing a 340 mW laser pulse on a p-Type InAs wafer at an
incident angle of 70 degrees. THz waves are generated by the photo-Dember (PD) [22]
effect, in which an electric field is generated inside the InAs and the movement of carriers is
caused by the surface electric field existing on the InAs surface [23]. As shown in Figure 3a,
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the THz waves were collimated using two parabolic mirrors. The collimated THz waves
were focused by a diameter of 3 mm or less using a Plano-convex TPX lens [24]. The fs laser
beam split on the BS was irradiated to a photoconductive antenna (PCA) with a 10 mW
power for THz wave detection [25]. The THz waves were measured by amplifying the PCA
current with a pump-probe method using a split fs laser [26]. The antenna fabricated on
LT-GaAs has a line width and line spacing of 10 µm and 5 µm, respectively [27]. The dipole
spacing of the antenna was 5 µm, which was used to measure broadband THz waves [28].
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(b) Thick anti-adhesion film (866 µm).
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Figure 3. (a) Illustration of the THz-TDS measurement scheme. The THz pulse is generated by the
InAs wafer. The THz pulse is detected by using PCA. Reference THz pulse propagation through air
is measured. (b) Time domain signal. (c) Fast Fourier Transform (FFT) of (b).
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3. Results and Discussion

The anti-adhesion film was manufactured by applying a 0–200 kGy E-Beam in a
vacuum-packed environment, and THz-TDS measurements were performed immediately
after opening. For the THz-TDS measurements, a moisture-free environment was main-
tained by using dry air to remove water absorption in the THz regime [29,30]. The refractive
index and absorption coefficient of each sample were calculated by using Equations (1)−(3).
The reference passes through only air, and the THz signal passes through the sample.
The complex frequency spectra of reference Sr( f ) and sample Ss( f ) are calculated using
numerical Fourier transforms in the experiment. [31].

Ss( f )
Sr( f )

= p( f ) e−jφ( f ) (1)

n( f ) = 1 +
φ(f)× c0

2π f L
(2)

k( f ) =
c0

2π f L
· ln

(
4n( f )

p( f ) · (n( f ) + 1)2

)
(3)

Expressions in n( f ) and k( f ) can be written as magnitude p( f ) and phase φ( f ) of
ratio of Ss( f ) and Sr( f ). In Equation (2), The refractive index is an intrinsic constant of a
material and should be independent of the thickness, so it was calculated by dividing the
measured thickness value of the samples. The power absorption coefficient α (cm−1) can be
obtained from the relationship between the imaginary part of the refractive index, k( f ) in
Equation (3) and ks( f ) = c0α( f )/4π f where n( f ) and α( f ) denote the refractive index and
absorption coefficient, respectively, and c0, f, and L denote the speed of light, frequency,
and thickness of the film, respectively. When a sample is sufficiently thick to distinguish the
THz main pulse and the Fabry–Perot (FP) echo in the time domain window, the refractive
index and absorption coefficient can be extracted by removing the FP echo [32]. When
the THz main pulse and multiple FP echo passing through a thin sample are overlapped,
the material extraction technique is required numerically [33]. In this paper, the correct
refractive index and absorption coefficient values were calculated using an algorithm that
finds the minimum value between the multivariate function and the measured values [34].

3.1. Thin Anti-Adhesion Film

Figure 4 shows the THz-TDS measurement results of the thin anti-adhesion films.
The THz-TDS measurement was repeated by changing the positions of the cross-linked
and noncross-linked films. The thickness of the thin film was measured repeatedly four
times and averaged, resulting in a thickness of 145–167 µm depending on the position
of the film. The reference signal passing through only air and the THz signal passing
through the film were measured three times and were averaged. The refractive index and
absorption coefficient of the film were calculated using the average value of THz-TDS
measurements. In Figure 4, the red lines (cross-linked film) and the blue lines (noncross-
linked film) represent the measurement results of the same film but at different positions.
Note that the difference in the refractive index and the absorption coefficient does not
change, due to the thickness difference because the thickness information is included in the
calculation formula and its effect on the THz measurement was removed.
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To analyze the cause of the nonuniform refractive index and absorption coefficient of
the thin anti-adhesion film, we obtained OCT images of the film, as shown in Figure 5a.
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Figure 5. (a) Optical coherence tomography (OCT) images of the thin anti-adhesion film. (b) Graph
of the measured refractive index and void ratio of the thin film. The light red region represents the
void ratio of the film calculated from the refractive index of the cross-linked film (n = 1.791). The light
black region represents the void ratio of the film from the refractive index of the noncross-linked film
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Figure 5a shows the OCT images of the inner cross-section of the thin anti-adhesion
film. The two layers in the x-y view show the cross-sections of a tape which was used
to simply fix the sample on the stage and an anti-adhesion film. It can be confirmed that
the empty spaces in the film are irregularly distributed compared to the tape layer. The
focused THz spot size on sample surface which is measured by knife-edge measurement
was 1 mm diameter. As shown in Figure 5a, the size of the pores was mm in size, so the THz
measurements were inevitably affected by the pores. Because the sample manufacturing
process included freeze-drying, the porous nature of the thin anti-adhesion film varied
considerably, that property made the variation of the THz-TDS measurements shown in
Figure 4a,b. The refractive indices of the thin anti-adhesion films were calculated between
1.4 and 1.6, as shown in Figure 4a.

The void ratio of the thin film was calculated as the refractive index (1.4–1.6) of the
film measured at 1 THz, indicated by the dotted line in Figure 4a. In Figure 6, the refractive
indices of the cross-linked and noncross-linked thick films without voids were measured
to be 1.791 and 1.708 at 1 THz, respectively. The ratio of void causing the refractive index
of the thin film was calculated as the refractive index of the thick film without voids. The
light red areas in Figure 5b represent cross-linked films, and the light black areas represent
noncross-linked thin films. Figure 5b shows that the produced thin films do not have the
same properties due to their different void ratios. Therefore, in the case of a thin film, it is
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difficult to measure the difference between the refractive indices and absorption coefficients
of the cross-linked and the noncross-linked forms of the film.
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Figure 6. THz measurement results of the thick anti-adhesion films. (a,b) are OCT images of the
thick film samples. (c) Time domain THz pulse signal. (d) THz spectrum of (a), which is transformed
by FFT. The black line represents the THz signal passing through only air as a reference. The blue
line represents the THz signal of the noncross-linked film. The red line represents the THz signal
of the film cross-linked by irradiation with an E-beam at 180 kGy. (e) Calculated refractive indices.
(f) Calculated absorption coefficients. The blue lines indicate the results of the noncross-linked film
(0 kGy). The red lines are the THz measurements of the film cross-linked by irradiation with an
E-beam 180 KGy. The pink region are the THz measurements of films cross-linked at dose of E-beam
with 10–200 kGy. The variation in THz measurements according to the irradiation dose of the E-beam
was small.

3.2. Thick Anti-Adhesion Film

To overcome the problem of porosity with regard to the THz measurements, we
manufactured thick-film samples. The thickness of the anti-adhesion film was controlled
by adjusting the mixing ratio and pressing process; as a result, the sample was no longer
porous, as shown in the inset OCT images in Figure 6. In the process of film compression,
the thickness of the film increased by 700−900 µm, but a film with no voids and a uniform
shape capable of resulting in accurate THz-TDS measurements was produced. The thick
film samples were cross-linked by an E-beam at 0, 10, 30, 90, 120, 150, 180, and 200 kGy.

Figure 6a shows the THz-TDS signals passing through the thick films. Compared to
the reference signal passing through air, the THz signals passing through the cross-linked
film and the noncross-linked film clearly show a time delay and a decrease in amplitude.
In the time domain, to minimize and compare the difference in time delay and signal size
reduction due to the thickness of the film, the noncross-linked film (0 kGy, 839.2 µm) and the
crosslinked film having the most similar thickness (180 kGy, L = 841.4 µm) were compared.
The THz signal passing through the crosslinked film was measured with a 0.233 ps time
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delay compared to the THz signal passing through the noncross-linked film. The signal
passing through the crosslinked film was more delayed even though the films were almost
similar thickness, this means that the refractive index of the crosslinked film is larger than
that of the noncross-linked film. This property is clearly shown in Figure 6c, in which
the calculated refractive indices are depicted in the THz regime. This result shows the
potential that THz-TDS can be used to distinguish the cross-linking states of anti-adhesion
films that are irradiated by an E-beam. The refractive indices of the cross-linked film were
approximately 0.1 greater than those of the noncross-linked film in the range of 0.1 to
2 THz.

Figure 6b shows the spectrum properties of the thick films at THz frequencies up
to 4 THz. The THz signal passing through the sample exists up to approximately 2 THz
due to the high absorption in the high frequency region of the films. Figure 6d shows the
calculated absorption coefficient difference of the measured samples. At low frequencies
(0.1–0.5 THz), there was no change due to cross-linking, but in the high frequency regime,
the difference in the absorption coefficients was larger. This result also shows the potential
that THz-TDS can be used to distinguish the cross-linking states of anti-adhesion films.

4. Conclusions

The properties of PEO-based anti-adhesion films (cross-linked and noncross-linked)
were investigated nondestructively using THz waves. The refractive indices and absorption
coefficients of the thin medical film showed some change when changing the measurement
position. It was confirmed that the variation caused by the voids inside the sample was
different depending on the position of the sample using OCT imaging. Due to the difference
in the void ratio for each manufactured thin film, the measured refractive index and
absorption coefficient were measured differently. Therefore, we made 700–900 µm thick
medical films to minimize the effect of voids on the films. Using THz-TDS measurements,
a clear difference was observed in the refractive indices and absorption coefficients of the
cross-linked film and the noncross-linked film that were irradiated by an E-beam.

To our knowledge, this is the first experiment to suggest the possibility of monitoring
cross-linking states using terahertz waves. Although we have not confirmed the terahertz
characteristic change according to the irradiation dose of the E-beam, this method has the
potential to nondestructively monitor cross-linked and noncross-linked films. To confirm
that THz-TDS is more useful as a cross-link monitoring technology, various characteristics,
such as microscopic changes in electron beam irradiation dose, electron beam irradiation
intensity, and moisture characteristics, will be investigated through follow-up studies. In
addition, we will study how the refractive index changes according to PEO and SLG ratios
in the film synthesis and will correlate these changes with mechanical properties of the film
in our follow-up studies. The THz-TDS method has potential as a useful nondestructive
technique for polymer inspection and analysis.
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