
Development of photocatalytic ceramic materials through the 
deposition of TiO2 nanoparticles layers  

J.O. Carneiro1, a, V. Teixeira1,b, S. Azevedo1, F. Fernandes1 and J. Neves2  
1
 Physics Department, University of Minho, Azurém Campus, 4800-058, Guimarães, Portugal 

2
                                                                         -               

Portugal 

acarneiro@fisica.uminho.pt, bvasco@fisica.uminho.pt  

 

Keywords: TiO2 nanoparticles, Dip coating, Ceramic materials, Photocatalytic activity 

Abstract 

Urbanism and communities centralization enlarges atmospheric pollution that affects both 

human beings as well as their constructed buildings. Different scientific and technological studies 

are being conducted, both in academic and construction industry, aiming the development of new 

construction materials with properties that can decrease visual pollution of cities, reducing also the 

number of cleanings required.  

The present research work aims the study and the production of self-cleaning ceramic surfaces in an 

economical and viable way without changing aesthetical aspect of material substrates used. The use 

of TiO2 nanoparticles (TiO2-NNPs) represents an attractive way to generate self-cleaning surfaces, 

therefore promoting the degradation of pollutant agents and reducing cleaning maintenance costs. In 

order to impart self-cleaning properties to ceramic surfaces, TiO2-NNPs based layers were 

deposited on different ceramic material substrates using the dip-coating method. The Photocatalytic 

activity (degradation of pollutants adsorbed on the surface) of the TiO2-NNPs based layers was 

characterized via the decomposition rate of an aqueous solution of Methylene blue (MB) under UV 

light irradiation. Colourless layers were successfully produced onto gray and white ceramic 

substrates using this sol-gel technique, without changing their aesthetical appearance. It was 

observed that the best photocatalytic activity was exhibited by the most porous ceramic substrate 

(gray); nevertheless, all the TiO2-NNPs coated ceramic surfaces showed good photocatalytic 

efficiency.  

1. Introduction 

The economical growth of countries has been encouraged people’s migration from rural to 

urban neighborhoods toward the enhancement of citizen’s quality of life. 

However, it is also a known fact that urbanism and communities centralization enlarges 

atmospheric pollution that affects both human beings as well as their constructed buildings [1]. 

Nowadays it is essential to plan metropolitan areas with sustainable approaches preserving and/or 

forecasting green spaces between buildings [2]. Meanwhile, urban populations have been rising, 

increasing the market need for bigger and comfortable available flats nearby city centers [1]. The 

construction of taller buildings appeared as a solution and, in fact, a large amount of skyscrapers 

have been built in the last 10 years. Currently, the façade soiling and staining is a concern given that 

they represent considerable maintenance costs [3,4]. Being migration a process intrinsically tied 

with countries economical growth it is important to suppress its negative consequences.  

Nanostructured materials will have a tremendous impact in some niche market of construction 

industry [5]. A lot of scientific and technological studies are being conducted, both in academic and 

industrial areas, aiming the development of new materials with properties that can decrease visual 

pollution of cities, reducing also the number of cleanings required. 
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Heterogeneous photocatalysis come up as a promising and potential technology to be applied 

for self-cleaning and de-pollution abilities which arise from the photocatalytic properties of 

materials employed [6]. Some semiconductor materials such as titanium dioxide (TiO2), when 

exposed to UV light, act as a catalyst promoting the photodecomposition of organic molecules 

adsorbed on its surface [7]. This semiconductor material is a target of several research works due to 

its powerful oxidation strength, chemical stability, non-toxic properties and availability [8,9].  

When the surface of titanium dioxide is irradiated with UV light, with energy higher than or 

equal to its band gap energy (3.0-3.2eV) – h  Egap – inter band transition is induced, creating 

photoelectrons (e
-
) and photoholes (h

+
) [10]. The standard chemical redox reactions involving TiO2 

photocatalysis is well described elsewhere [11,12]. Due to the presence of the band gap energy in 

semiconductor materials, rapid deactivation of excited electrons and hole pairs (e
-
/h

+
) is prevented, 

assuring a sufficient lifetime of (e
-
/h

+
) pairs so that they can participate in interfacial reactions [13]. 

Different scientific studies report that titanium dioxide thin films have good photocatalytic activities 

when (a) there is an efficient photoinduced electron-hole pair generation and (b) there is an efficient 

charge separation, which, on the other hand, requires the production of crystalline TiO2 thin films, 

preferably with anatase phase [14,15]. However, it was also reported that some powders containing 

both anatase and small amounts of rutile crystalline phases have higher photocatalytic activity than 

that of pure anatase [16].  

There is a wide range of approaches used to deposit TiO2 layers on glass and polymer substrates 

such as physical and chemical vapor deposition, sol-gel and dip-coating techniques, among others 

[17-20]. Sol-gel technique arose as a promising technology to prepare TiO2 thin films [21-25]. 

Though, the produced TiO2 layers are amorphous being necessary an additional heat treatment at a 

relatively high temperature [26]. Nevertheless, from the industrial point of view, it is crucial the 

production of crystalline layers at low temperature. Among these deposition techniques, liquid 

phase deposition techniques such as spin-coating or dip-coating have come to get a particular 

interest since they can be used to prepare high quality TiO2-NNPs based layers, at low production 

costs and with relatively industrial scaled-up.  

The present research work deals with the study of the photocatalytic and self-cleaning properties 

of TiO2-NNPs coated ceramic surfaces obtained via dip-coating method.  

2. Experimental details 

Production of TiO2-NNPs based layers by dip coating 

The dip coating technique was used to produce TiO2-NNPs based layers on 505010 mm 

square ceramic material substrates, provided by Revigres®, (Table 1). 

 

        Table 1 - Characteristics of the tested ceramic samples 

Sample Code 
Characteristics 

Color Burnishing 

NP-G gray not-polished 

NP-W white not-polished 

P-W white polished 

 

Commercial TiO2-NNPs (Aeroxides® TiO2 P25 from Evonik industries) with a density of 3.8 

g/cm
3
 were mixed with distilled water in order to prepare an aqueous solution with a concentration 

of 0.5 g/L. The solution was then homogenized in a magnetic stirrer during 10 min. In order to 

produce the final TiO2-NNPs suspension, the previous solution was mixed with an anionic self 

cross-linking resin (PRIMAL
TM

 ECO-934TK from HORQUIM
®

), which had a pH value of 4.8 and 

a maximum viscosity of 200 mPa.s. 
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Then, the 505010 mm square ceramic substrates were dip coated on the suspension at room 

temperature. The substrates were fully immersed in the suspension during 30 min so that the 

sedimentation of TiO2 particles could occur. After that, the beaker was placed in a black chamber in 

order to prevent any contamination. The beaker was then placed in an oven (from memmert) at a 

temperature value of 85 ºC during 30 min. After this temperature stage, the ceramic substrates were 

cooled down at room temperature in the same black chamber. The ceramic samples were removed 

from the TiO2 suspension and dried in the same oven at a temperature value of 150 ºC during 5 min 

to finish the resin curing process. At the end of the whole process, substrates were rinsed again with 

distilled water and dried at room temperature. A thickness of about 5.5 µm of TiO2-NNPs based 

layer was obtained using this protocol. 

 

Characterization of the TiO2-NNPs coated ceramic surfaces 

X-ray diffraction (XRD) analyses were carried out to in order to evaluate the crystalline 

structure of both TiO2 powder and TiO2-NNPs based layers, deposited onto ceramic substrate. 

XRD 2 scans were recorded by using a Cukα radiation source in a Philips PW 1710 X-ray 

Diffractometer. Specific software was used to measure the precise 2 positions and the full with at 

half peak maxima (WHPM) of the diffraction peaks. The crystalline grain size was calculated from 

the XRD pattern according to the Scherrer equation [27]. 

 cosB94.0D hklhkl              (1) 

where Dhkl is the mean grain size with crystalline planes (hkl), Bhkl is the WHPM intensity in 

radians, and  is the wavelength of the CuK radiation source. 

The surface morphology of the produced TiO2-NNPs based layers was observed by scanning 

electron microscopy (SEM) in a Leica Cambridge S360 instrument and by atomic force microscopy 

(AFM) from Digital Instruments controlled by Nanoscope III software. The optical reflectance and 

transmission spectra were recorded with a UV-visible scanning spectrophotometer, Shimadzu UV 

3101 PC, in the spectral wavelength range from 300 nm to 700 nm. 

In order to study the photocatalytic performance of TiO2-NNPs based layers, a Methylene blue 

aqueous solution blue (C16H18N3SCl) was prepared with an initial concentration of 0.5 mg/L. 

Methylene Blue dye is a heterocyclic aromatic chemical compound which has been widely used for 

photodegradation studies since it is an oxidation-reduction indicator. The TiO2-NNPs coated 

ceramic samples were immersed in this solution in an open-top beaker with the irradiation 

perpendicular to the samples surface. UV lamps with a power of 12 W/m
2
 (measured with Quantum 

Photo Radiometer HD9021 Delta Padova equipment) were used as the source of ultraviolet light 

and were positioned 30 cm from the beaker. After the irradiation experiments, performed for 

specific periods of time (namely 15, 30, 60, 120 and 240 minutes), a MB solution aliquot of 10 ml 

was placed in an open-top quartz cell, and the solution concentration was monitored by recording 

the transmittance spectrum using a Shimadzu 3101 PC spectrophotometer. 
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3. Results and discussion 

The results obtained and their discussions are as follows. 

 

Structural characterization 

 

The crystalline phases of TiO2 nanoparticles were evaluated by XRD (X-ray diffraction) and 

the obtained results are shown in Fig. 1.  
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Fig.1. XRD diffraction patterns of TiO2 nano-powder. 

As shown in the diffractrogram, the TiO2 nanoparticles present evident diffraction peaks 

characteristic of the anatase phase. The polycrystalline anatase structure is mainly confirmed by the 

presence of (101), (004) and (200) diffraction peaks. Based on FWHM of (101) plane diffraction 

peak (2 = 25.29º) the average crystalline size of TiO2 nanoparticles was determined to be about of 

30nm. XRD analyses were also performed in order to evaluate the crystalline structure of TiO2-

NNPs coated ceramic samples. In Fig. 2 are presented the obtained diffraction patterns for NP-G 

and NP-W ceramic substrates coated with TiO2-NNPs based layers. 
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Fig.2. XRD diffraction patterns of TiO2-NNPs based layers deposited onto NP-G and NP-W 

ceramics samples 
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It is possible to observe the appearance of new crystalline phases, which results from the 

substrate’s material contribution. For example, in the NP-G sample it can be highlighted the 

presence of quartz, whereas for the NP-W sample, anorthite corresponds to the most intense peak. 

Nevertheless, the ceramic surfaces coated with the TiO2-NNPs based layers also present traces of 

(101) anatase diffraction peaks. We believe that the “apparent” decrease of the anatase intensity 

peaks, results from the huge thickness differences between the substrate material and the TiO2-

NNPs based layer. 

 

Surface characterization 

 

The porosity and the roughness of the bare ceramic substrates have high influence not only in 

the adhesion between the TiO2-NNPs based layers and the ceramic surfaces, but also in their self-

cleaning and photocatalytic performance [28,29]. SEM evaluated the surface morphology of the 

bare ceramic substrates and the TiO2-NNPs coated substrates in order to infer how TiO2 

nanoparticles are dispersed on the ceramic surfaces. Fig. 3 shows a SEM micrograph of the 

uncoated and TiO2-NNPs coated ceramic surfaces. 
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Fig.3. SEM micrographs of: (a)-(c) bare substrates; (d)-(f) TiO2-NNPs coated ceramics substrates 
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The surface finishing of the bare ceramic substrates is quite dissimilar. As it can be inferred 

from Fig. 3(a), NP-G ceramic substrate presents a huge amount of surface defects with large pores. 

In the case of the NP-W, Fig. 3(b) shows that for this sample the surface finishing is a bit better but 

still has some surface defects. As expected, the P-W ceramic substrate presents the highest surface 

quality (Fig. 3(c)). 

Regarding the ceramic samples coated with the TiO2-NNPs based layers, it can be observed 

that all of them present a highly pored surface structure in which the TiO2 nanoparticles tend to 

aggregate, forming clusters. However, some differences can be highlighted: for example, the coated 

NP-G ceramic sample shows the most heterogeneous TiO2 nanoparticles agglomeration (Fig. 3(d)) 

whereas in the case of the P-W ceramic sample, the particles agglomerations are more 

homogeneous and exhibit clusters with smaller sizes (Fig. 3(f)). 

In order to evaluate the dispersion way and the average roughness of the TiO2-NNPs based 

layers, an additional flat glass sample was prepared, using the same experimental protocol. Fig. 4 is 

shows a 3D AFM surface image of a TiO2-NNPs based layer, deposited on the surface of a glass 

substrate. 

 

Fig.4. AFM image of a TiO2-NNPs coated glass surface, prepared by the dip-coating method 

The TiO2-NNPs coated glass surface reveals a certain degree of roughness (Ra~33.8nm). In 

addition, it can be also identified the presence of some heterogeneous particles agglomeration 

imbibed in regions with high structural densification. 

 One of the major concerns in this work is the development of ceramic surfaces with self-

cleaning and photocatalytic ability, without damaging their aesthetical feature. In order to monitor 

the changes on the aesthetical characteristics (eventually promoted by the TiO2-NNPs based layers) 

of the coated ceramic surfaces, optical reflectance spectra were used as quality control tool. The 

reflectance spectra of the bare ceramic samples and the TiO2-NNPs coated substrates are shown in 

Fig. 5. 
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Fig.5. Optical reflectance spectra of bare and TiO2-NNPs coated ceramic surfaces. 

 

 

 As expected, nevertheless the kind of the material burnishing, white ceramics samples present 

the highest value of optical reflectance in the visible region of electromagnetic spectrum. 

Furthermore, it can be observed that for the all TiO2-NNPs coated samples, the optical reflectance 

did not change. Thus, it can be concluded that the surface aesthetical appearance has been 

maintained. 

 

Photocatalytic activity 

 

 The photocatalytic behaviour of the TiO2-NNPs based layers was assessed by combined 

ultraviolet irradiation and transmittance measurements. Fig. 6 shows the increase in transmittance of 

the MB aqueous solution after irradiation and photocatalytic action by the coated NP-G ceramic 

sample. The observed photodecomposition of the aqueous solution (organic pollutant) can be seen 

in the UV/Vis spectrum by the increase of the minimum transmittance (monitored at 664 nm) with 

irradiation time. 
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Fig.6. Transmittance spectra of MB aqueous solution taken at five times during irradiation and 

under the photocatalytic action of TiO2-NNPs based layers. 

 

 

 The colour of the dye changes from bright blue to colorless during this process, hence 

indicating that the chemical oxidation-reduction mechanisms are taking place on the surface of the 

TiO2 NNPs coated ceramic sample. It should be noted that, under similar UV irradiation conditions, 

the absence of a photocatalyst material did not affect the dye’s concentration. From the transmission 

data it is possible to obtain the decrease in the solution concentration as a function of UV irradiation 

time. 

 At low concentrations, the Beer–Lambert law dictates that the transmittance, T, is related to the 

solution concentration through the following equation: 

 

clεT ln                                               (2) 

 

where ε is the molar extinction coefficient, l the optical path length, and c is the concentration of the 

absorbing compound in the solution. Since the two parameters ε and l are constant, then: 

 

00
ln

ln

c

c

T

T
                                    (3) 

 

where the subscript 0 is related to time zero (t = 0). The rate constant for this process, k, can be 

calculated by means of a pseudo-first-order reaction [30]: 

 

tk
c
c 
0

ln                                    (4) 
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 The photocatalytic activities of the TiO2 NNPs coated ceramic samples can be compared by 

using k values, calculated from the slopes of the fitting lines represented in Fig. 7.  
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Fig.7. Photodegradation of the MB aqueous solution under the irradiation of UV light. 

 

 From the experimental data in Fig. 7, it is observed that the coated NP-G sample shows the 

highest photoactivity; this sample, presents the highest photodegradation rate constant                     

( 13 min106.9  ). Possible explanations could be based on the fact that this coated sample has a 

rougher TiO2 nanoparticles aggregation with a highly pored surface. In this case, MB aqueous 

solution can intrude the pores, and then being easier absorbed into deeper levels of the deposited 

TiO2 layer in order to participate in chemical redox reactions. Meanwhile, the coated P-W sample, 

which contained the lowest surface porosity, did not show a particularly high decrease ( 24%) of 

the rate constant with respect to the coated NP-G sample. We believe that the reason why this 

phenomenon is occurring is related with another kind of competitive contribution. For the coated P-

W sample, the TiO2 nanoparticles agglomerations are more homogeneous and exhibit clusters with 

smaller sizes (see Fig. 3(f)); therefore, as the grain size of these clusters is decreased, the surface-to-

volume ratio is increased and the photo-generated electrons and holes could undergo a short 

pathway to migrate to the surface. Thus, the (e
-
/h

+
) volume recombination rate should decrease, 

giving rise to an improvement in photocatalytic activity. The analysis of the transmittance data also 

allows us to obtain the photocatalytic efficiency ( %) according with the following equation: 

 

100
ln

ln
1(%)

0













T

T
η                                  (5) 

where T is the solution transmittance at t = 240 min and the subscript 0 is related to time zero (t = 

0). From Eq. (5) the calculated photocatalytic efficiencies of the coated NP-G, P-W and NP-W 

samples, are respectively 83%, 76% and 67%. 
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Wettability (self-cleaning) properties 

 Surface wettability was evaluated via contact angle measurements in a dynamic mode using 

Young La Place method (Contact Angle System S.A data physics) with 5µl/s of distilled water 

droplets. Contact angle (CA) formed by water on samples surfaces was measured in order to assess 

how samples wettability changed after UV irradiation. Fig. 8 (a) is an image that shows the changes 

in CA that have been obtained (after UV light irradiation) for the coated NP-G ceramic sample, and 

Fig. 8 (b) presents for all the coated samples the percentage variation (decrease) of CA, referred to 

their initial value.  
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Fig.7. (a) Changes in the water CA and (b) percent decrease of CA of water on the tested samples. 

 All tested samples have hydrophilic surfaces and thus they allow the surface to be more 

easily cleaned by rain (self-cleaning effect). In addition, after UV irradiation they show a slightly 

decrease of CA value: in any case, once more the best result (most hydrophilic) was obtained with 

the coated NP-G sample which shows the higher percentage decrease of the CA value, and also 

present the highest photocatalytic efficiency. Nevertheless the coated P-W sample presents 

moderate photocatalytic efficiency it didn’t show a moderate decrease of CA values after UV 

irradiation. However, these results indicate that porosity and roughness affects the surface 

wettability. 
 

4. Conclusions 

 Colorless TiO2-NNPs based layers were successfully deposited onto gray and white ceramic 

substrates, using the dip-coating method without changing their aesthetical look. Prior to TiO2 

nanoparticles deposition, both the precursor powders and the substrates were characterized so that 

their influence could be analyzed. All the produced TiO2-NNPs based layers showed the anatase 

crystal phase, however the highest photocatalytic performance was achieved for the coated gray 

ceramics; a photodegradation rate of 6.910
-3

 min
-1

 and a
 
photocatalytic efficiency of 83% was 

found. The mentioned coated sample allowed the attainment of a moderate self-cleaning ability and 

a noticeable photodegradation capacity. The obtained results were discussed taking into account the 

different surface morphologies of the produced surfaces: the surface wettability of TiO2-NNPs 

coated ceramic materials are influenced by porosity and roughness.  
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With this work it is believed that in a near future, an interesting solution may be presented 

aiming the reduction of high maintenance costs related with the preservation of building pavements 

and facades. At the same time environmental quality can be improved by reducing the use of toxic 

reagents for cleaning. 
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