Synthesis of 2-N-Benzyl Carboxamide Derivates of 1-Azafagomine

Raquel Mendes, Vera C.M. Duarte, A. Gil Fortes, M. José Alves

Departamento de Química, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal.

*tec.raquelmendes@hotmail.com

Imino sugars, also known as azasugars, are a group of compounds that have received a lot of attention in recent years because they typically exhibit excellent inhibitory properties over a range of enzymes involved in carbohydrate recognizing receptors, widely found in living organisms. [1] The inhibition of α - and β -glucosidases by 1-N-phenyl carboxamide derivatives of 1-azafagomine 1 was studied in our laboratory indicating that they are new leads for the synthesis of glycosidase inhibitors. [2]

Our objective now is to synthesise new 1-N-phenyl carboxamide derivates of 1-azafagomine 1 bearing groups at the p- position of the aromatic ring with ability to form extra hydrogen bonds. The interest of this structural modification is based on molecular modelling studies, which predicted a higher inhibitory activity for the final products.

The synthesis of the 1-N-benzyl carboxamide derivatives **4** can be achieved from 1-azafagomine **2**, which can be converted into the partially protected compound **3**.[3] The introduction of benzyl carboxamide groups at position 1 have been achieved by reaction of compound **3** with different isocyanates to afford compounds **4** to be tested against a panel of glycosidases.

Scheme 1: Synthetic strategy for compound 4.

Acknowledgements:.

References:

[1] Alves, M. J., Azoia, N. G. (2008) In *Stereochemistry Research Trends*, Nova Science Publishers. [2] Alves, M. José Alves; Costa, Flora T.; Duarte, Vera C. M.; Fortes, António Gil; Martins, José A.; Micaelo, Nuno M., *J. Org. Chem.* 2011, 76, 9584-9592. [3] Lopez, O.; Bols, M., *ChemBioChem* 2007, 8, 657-661.

Title of the communication, Times New Roman, 14, bold, centered, line spacing 1.0. Title of the communication, Times New Roman, 14, bold, centered, line spacing 1.0.

First F. Author¹, Second S. Author^{2,*} and Nth N. Author³

¹Affiliation of first author, incl. country.

²Affiliation of second author, country.

³Affiliation of nth author, country.

*author@mailserver (email of author for contact)

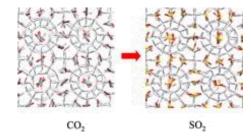
Place here the text, Times New Roman, 11, line spacing 1.0, justified.

Graphical abstracts: A graphical abstract captures the content of the work for readers at a single glance.

A Graphical Abstract is a single, concise, pictorial and visual summary of the main findings of the article. This could either be the concluding figure from the work or a figure that is specially designed for the purpose, which captures the content of the article for readers at a single glance.

Highlights: Highlights are a short collection of bullet points that convey the core findings and provide readers with a quick textual overview of the work. These three to five bullet points describe the essence of the research (e.g. results or conclusions) and highlight what is distinctive about it.

Do not exceed 1 page


(Please see the following example)

Molecular dynamics Gibbs free energy calculations for CO2 capture and storage in structure I clathrate hydrates in the presence of SO2, CH4, N2, and H2S impurities

Michael Nohra¹, Tom K. Woo^{1,*}, Saman Alavi^{1,2}, John A. Ripmeester²

¹ Centre for Catalysis Research and Innovation, Department of Chemistry, University of Ottawa, Ottawa, Ontario, Canada. ²Steacie Institute for Molecular Sciences, National Research Council of Canada, Ottawa, Ontario, Canada K1N 0R6.

*tom.woo@uottawa.ca

- Gibbs free energies of CO₂ substitution in the structure I hydrate with other guests are computed.
- Molecular dynamics based thermodynamic integration method is used.
- The pressure and temperature of the CO₂ substitution correspond with experimental hydrate synthesis conditions.
- SO₂ and H₂S are more stable in the structure I hydrate.
- The contributions to the electrostatic and van der Waals forces to the Gibbs free energies are evaluated separately.