
BEFIB2012 – Fibre reinforced concrete 

Joaquim Barros et al. (Eds) 

� UM, Guimarães, 2012 

A DESIGN MODEL FOR FIBRE REINFORCED CONCRETE BENDIN G 
ELEMENTS WITH LONGITUDINAL PRE-STRESSED STEEL AND F RP 

BARS 

M. Taheri *, J.A.O. Barros † and H. Salehian ** 
*
 ISISE, Dep. Civil Eng., School Eng., University of Minho 

Campus de Azurém 4800-058 Guimarães, Portugal 
e-mail: taheri@civil.uminho.pt, web page: www.isise.net 

 
† ISISE, Dep. Civil Eng., School Eng., University of Minho 

Campus de Azurém 4800-058 Guimarães, Portugal 
e-mail: barros@civil.uminho.pt, web page: www.isise.net 

 
** ISISE, Dep. Civil Eng., School Eng., University of Minho 

Campus de Azurém 4800-058 Guimarães, Portugal 
e-mail: salehian@civil.uminho.pt, web page: www.isise.net 

 
 

Keywords:  Tensile-strain softening, tensile-strain hardening, pre-stressing, fibre reinforced concrete, 
moment-curvature response, load-deflection response. 

Summary:  A close form solution to calculate the moment-curvature and load-deflection response of 
strain-softening and strain-hardening fibre reinforced concrete (FRC) elements failing in bending and 
reinforced longitudinally with pre-stressed steel and fibre reinforce polymer (FRP) bars is presented. 
This hybrid reinforcement is used for the development of high durable pre-fabricated and cost 
competitive beams. Pre-stressed FRP bars are applied with the minimum concrete cover, in order to 
take into account the benefits derived from the relatively high tensile strength of these bars and their 
immunity to corrosion. Pre-stressed steel bars, with a larger concrete cover have the purpose of 
providing the necessary ductility and assure the resistance of the beam in case of a fire occurrence. 
To replace completely the steel stirrups, a high performance fibre reinforced concrete is used. The 
predictive performance of the model is assessed by taking advantage of FEMIX, a FEM-based 
computer program. The model is finally utilized in a parametric study in order to evaluate the impact of 
post-cracking performance of FRC and applied pre-stress percentage on structural performance of 
FRC beams.   

 
1 INTRODUCTION 

The inherent weakness of concrete in tension is being remedy by applying steel bars in the 
execution of reinforced concrete (RC) structures. However, penetration of corrosives agents through 
cracks formed since concrete early age, and through the porous nature of the concrete micro-
structure, affects negatively the reinforcement performance provided by steel bars, due to the 
corrosion of these bars and the consequent splitting of surrounding concrete. To avoid corrosion 
related problems, mainly in aggressive environments, the use of fibre reinforced polymer (FRP) bars 
has been investigated [1] as an alternative reinforcement system to conventional steel bars.  

When compared to steel, the FRPs have higher resistance to corrosion. Due to economic reasons, 
glass fibre reinforced polymer (GFRP) bars are the most used FRPs for the reinforcement of concrete 
structures. However, due to the relative low modulus of elasticity of GFRP bars, for the same 
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reinforcement ratio, FRP reinforced elements present higher deflection and strains, and larger crack 
widths than in the case where steel bars are used [2]. Furthermore, the high initial costs, the lack of 
ductility and the still reduced number of reliable design formulations for the prediction of the behaviour 
of FRP-RC elements [3, 4], are contributing for the relative low use of this reinforcement in concrete 
technology.  

These drawbacks can be overcome by combining FRP and steel bars [5], in which FRP bars are 
positioned near the outer surface of the tensile zone with the minimum concrete cover that assures the 
necessary FRP-concrete bond requisites, while steel bars are placed with a concrete cover thickness 
that provides high resistance to corrosion attack. The benefits of such hybrid reinforcement can be 
explored to decrease flexural deflections and maximum crack width [2, 5]. If pre-stressed steel and 
FRP bars are utilized, smaller distance and width of cracks, as well as higher steel yielding loads can 
be obtained [6]. Steel stirrups are the reinforcement elements more prone to corrosion since they are 
the closest ones to the external surface of the structural elements. Therefore, to replace steel stirrups, 
fibre reinforced cement composites (FRC) is recommended [7] since this material can also improve 
the bond behaviour of longitudinal tensile pre-stressed bars due to the reinforcement mechanisms 
provided by discrete fibres that offer resistance to the coalescence of micro- into macro-cracks. 
Depending on the type and volume of used fibres, and characteristics of cement based material, the 
FRC can present a strain softening (SS) or a strain hardening (SH) tensile behaviour [8]. The SSFRC 
has a post peak strength ( cstσ ) that is smaller than the stress at crack initiation ( crσ ), while a SHFRC 

develop a post-cracking strength that is higher than crσ . 

In the present paper the flexural behaviour of a FRC member reinforced longitudinally by pre-
stressed steel and FRP bars was investigated. Assuming simplified stress-strain responses for FRC in 
tension and compression, as well as for tensile steel and FRP bars, a closed form solution was 
developed to determine the moment versus curvature relationship ( M χ− ). By using the M χ−  

curve, the load versus deflection response of a statically determinate hybrid FRC beam of rectangular 
section can be determined. The accuracy of the proposed model was appraised by comparing the 
results with those obtained from a FEM based computer program capable of simulating the nonlinear 
behaviour of the constituent materials [9]. The model was finally utilized in a parametric study to 
investigate the effect of FRC post cracking performance and the applied pre-stress percentage on the 
moment-curvature and load-deflection response of beams that was assumed failing in bending. 

2 Numerical strategy for the evaluation of the mome nt-curvature and force-deflection 
of FRC-hybrid pre-stressed beams 

The model was developed for a rectangular cross section of width b and depth d (Fig. 1) that can be 
reinforced with steel and FRP bars, being s s sA / ( bd )ρ =  and f f fA / ( bd )ρ =  the reinforcement ratio 

of steel and FRP bars, respectively, where sA  and fA  are the cross sectional area of steel and FRP 

bars, and s sd d C= −  and f fd d C= −  are the internal arms of steel and FRP bars, respectively, being 

sC  and fC  the concrete cover for the steel and FRP bars. 
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Figure 1: Concept of FRC-hybrid reinforcing system, and variables involved in the analytical model. 

2.1 Constitutive laws for the intervening materials  

Stress-strain response in tension and compression considered for FRC is represented in Fig. 2a and 
2b, respectively [10]. The tensile behaviour of FRC is started by an elastic range defined by the 
elasticity modulus E , followed by a post-cracking modulus ( crE ) that can be obtained by using a post-
crack modulus parameter (η ). By setting η  to either a negative or a positive value, the same model 

can be used to simulate SS- or SH-FRCs, respectively. At the third region of the tensile response, 
tensile stress ( )σ cst  remains constant up to the ultimate tensile strain ( )ε tu  that is a multiple of the 

cracking strain, e.g. tu tu cr=ε β ε . Introducing the concept of residual strength parameter, µ , the cstσ  

can be defined as function of the stress at crack initiation, cst cr=σ µσ .  
 

(a) (b) 

(c) (d) 

Figure 2: Stress-strain diagrams of : a) SS- and SH-FRC in tension [10]; b) FRC in compression [10]; 
c) tensile steel bars; d) tensile FRP bars 
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Compressive response of FRC is assumed linear-elastic in the first phase that terminates at a 
“pseudo-yield” point ( )ε σcy cy, , and it is followed by a phase of constant compressive “yield” stress, 

cyσ , until the ultimate compressive strain, cuε . Young’s Modulus in compression ( cE ), can be 

determined from E  by using a normalized compressive stiffness factor (γ ): γ=cE E . In this model ω  

is the normalized compressive “yield” strain, and tuβ  and cuλ  are the normalized ultimate tensile and 
compressive strain, respectively. The transition between the tensile softening/stiffening to the constant 
residual tensile strength phase is defined by the α parameter, trn crε αε= . 
A bilinear stress-strain diagram is assumed for tensile steel bars as depicted in Fig. 2c, in which the 
first linear elastic branch ends at the yield strain ( )ε ζε=sy cr , followed by a perfectly plastic branch 

( sy s syE=σ ε ) up to attain the ultimate tensile strain ( su su crε ψ ε= ), after which the steel tensile strength 

capacity is assumed null. The steel modulus of elasticity ( s sE Eγ= ) is defined from the FRC tensile 

modulus of elasticity ( E ) by using the steel stiffness factor (
s
γ ).  

Fig. 2d shows the linear-elastic stress-strain diagram considered for FRP bars in tension that ends at 
the ultimate tensile strain ( fu fu crε ν ε= ) of the FRP bar. Using the FRP tensile stiffness factor ( fγ ), the 

modulus of elasticity of the FRP is defined from E ( f fE Eγ= ). 

2.2 Closed-formulation to determine the moment-curvatur e response  

The tensile and compressive stress relationships of the cross section components can be normalized 
by the FRC stress at crack initiation, crσ  ( crEε= ), according to the following equations: 
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The normalized compressive strain at the concrete top fibre ( λ ), and the normalized tensile strain of 
the steel (ψ ) and FRP (ν ) can be linearly correlated to the normalized tensile strain at the concrete 

bottom fibre ( β ): 

( )k / k ;λ β= −1 ( ) ( )sk / k ;ψ β= − − −1 Δ 1 ( ) ( )fk / kν β= − − −1 Δ 1
 

(5) 

where k , sΔ  and fΔ  are the neutral axis depth ratio, and the normalized central distance of steel and 
FRP bars from tensile face of section, respectively (Fig. 1). To apply a certain pre-stress level to both 
steel and FRP bars, two independent initial tensile strains are considered, designated by steel pre-
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stressing strain, pr
sε , and FRP pre-stressing strain, pr

fε , respectively. The pre-stress level for the steel 

and FRP bars is defined as the ratio between pr
sε and the steel tensile yield strain ( syε ), and the ratio 

between pr
fε  and the FRP ultimate tensile strain ( )ε fu , respectively. Assuming the variation of pre-

stress levels in the range [0-1] (for FRP bars the pre-stress level is, in general, limited to 0.6 [2]), pre-
stressed strains are restricted to the linear elastic region of steel and FRP tensile stress-strain 

response (Figs. 2c and 2d). Therefore, the pre-stress loads for the steel ( pr
sF ) and FRP ( pr

fF ) are 
obtained from the following equations: 

pr pr
s s s s sF E bd= ε γ ρ  (6) 

prpr
ff ff fF E bd= ε γ ρ  (7) 

Regarding to the depth of the neutral axis ( kd ), the bending moments corresponding to pre-stress 
loads are calculated by the following equations: 

    (1 )pr pr
s s sM F k dΔ= − −  (8) 

    (1 )pr pr
f f fM F k dΔ= − −  (9) 

To calculate the moment-curvature ( M χ− ) diagram, it is assumed that a plane section remains plane 

after bending, and shear deformation of the section can be ignored. A gradual increment is applied to 
the normalized tensile strain at the concrete bottom fibre ( β ), and corresponding values of λ , ψ , 

and ν  are obtained from Eqs. (5). 

Due to the specificities of the constitutive laws of the intervening materials, nine strain configurations 
need to be considered [11]. For each strain configuration the value of k parameter can be obtained by 
the equations presented in Table 1 [11]. With respect to the ik (the neutral axis depth in the ith stage) 

the normalized resisting moment (  = /  i i crM M M′ ) and the corresponding curvature ( /'i i cr=χ χ χ ) are 

obtained from equations in Table 2 [11], where crM and crχ  are the cracking moment and the 
corresponding curvature, respectively: 

( )2 / 6cr crM bd Eε=  (10) 

2 /cr cr d=χ ε
  
 (11) 

2.3 Model to estimate the force-deflection relationship  

The force-deflection response of a statically determinate beam failing in bending is determined by 
the algorithm schematically represented in Figure 3. According to this approach, for successive iχ of 

the M − χ relationship of the beam’s mid-span cross section the corresponding iM is read, and the 

total applied load iP is determined by equilibrium of the beam, as well as the beam bending diagram 

iM . Decomposing the beam in small segments, the bending moment in a generic cross section at a 

distance x  can be determined, ( )iM x , and from the M − χ  relationship of this cross-section, the 

corresponding flexural stiffness ( )iEI x  is obtained, as well as the bending moment in this section for 

the base system corresponding to the evaluation of the deflection at the beam mid-span, ( )M x .  
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Table 1 - Equations for the evaluation of the depth of the neutral axis parameter, k , for stage i [11]. 
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By applying the Virtual Work Method, the mid-span deflection of the beam for the ith loading step, 
( )mid i
δ , is determined, as well as its corresponding force iP  that constitute a point of the P δ− curve.  
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Table 2 - Equations for the evaluation of the normalized moment, 'M , and normalized curvature, 'χ , for 
stage i [11]. 
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Figure 3: Numerical approach to simulate the force-deflection response of simple supported beams 
failing in bending 

 

3 Model assessment 

The load carrying capacity predicted by the proposed model for a simply supported hybrid reinforced 
FRC beam (Fig. 4) was evaluated by performing a material nonlinear analysis with the FEMIX 
computer code [9]. For this simulation the smeared crack model described in detail elsewhere [12] was 
used. 

  
 

Figure 4: Geometry, reinforcement data, and mesh details of the beam used in model assessment and 
parametric study (dimensions in mm). 

In Fig. 4 is also depicted the finite element mesh adopted, where FRC was simulated by using 
Plane Stress 2D elements, while Truss 2D elements were considered for both FRP and steel bars. 
Table 3 includes the values that characterize the intervening materials, in which two distinct values 
were utilized for the α and µ parameters, and for pre-stress levels ( /pr

f fuε ε  and /pr
s syε ε for steel and 

FRP bars, respectively).  

Table 3: Values for the parameters properties adopted in the model assessment 

crε (‰)  E ( GPa)  α
 

μ
 tuβ

 

ω
 

γ
 

cuλ
 

ζ
 

sγ
 

/pr
s syε ε  suψ

 

fuν
 

fγ
 

/pr
f fuε ε  

0.1 35 50 
100 

0.4 
0.8 

150 20 1 35 75 5.71 0.25 
0.50 

150 166.7 1.71 0.25 
0.50 
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Figure 5: Load-Deflection responses predicted by the model and FEMIX software for: (a) 50α = , 

0 4µ .=  and Pr=25%; (b) 100α = , 0 8µ .=  and Pr=50%. 

In Fig. 5 the results of the model are compared with those obtained from FEMIX, where it is visible 
that the closed-formulation is capable of predicting with high accuracy the deformational response of 
this type of structural elements. 

4 Parametric study 

To assess the influence of the relevant mechanical properties of FRC, and the pre-stressed level 
applied to FRP and steel bars, on the moment-curvature relationship and on the force-deflection of the 
adopted hybrid reinforcement, a parametric study was carried out on a beam type with the geometry, 
the reinforcement arrangement and the loading conditions represented in Fig. 4. Three distinct pre-
stress levels were considered, 0% (non pre-stressed), 25%, and 50%. For the influence of the FRC 
post-cracking performance, the values of 1.01, 10, 50, and 150 for the normalized transition strain (α ) 
were adopted, maintaining constant the normalized residual strength of 0.6=µ . The values of the 
parameters that define the constitutive laws of the intervening materials in the performed parametric 
study are indicated in Table 4. 

Table 4 : Values for the parameters of the materials adopted in the parametric study 

Concrete (tension) Concrete 
(compression) 

Steel bar FRP bar 

crε (‰)  E ( GPa) α
 

μ  

tuβ  
ω  

γ  

cuλ  
ζ  

sγ  suψ  fuν  fγ  

0.1 35 [1.01, 10, 50, 150] 0.6 150 20 1 35 75 5.71 150 166.7 1.71 

 
The results of the parametric study are presented in Figs. 6 and 7, where the points corresponding 

to the concrete crack initiation and the steel yield initiation are signalized in the moment-curvature and 
in the force-deflection curves. As expected, for the considered statically determinate beam the 
variation of load-deflection follows the variation of the corresponding moment-curvature. For each 
adopted pre-stress level of FRP and steel bars, the influence of α  FRC-related parameter in terms of 
moment-curvature and load-deflection responses is represented in Figures 6a-c and 6d-f, respectively. 
Since α  is a post cracking parameter of FRC, it has no effect in the responses before crack initiation. 
However, after crack initiation the flexural capacity of the cross section and the load carrying capacity 
of the beam are significantly increased with the increase of α  parameter. In fact, the moment and the 
load at yield initiation of steel bars increase withα , and this tendency is also observed for the 
corresponding curvatures and deflections.  
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Figure 6: Effect of the α  parameter on the moment-curvature and load-deflection responses for 

0.6μ = , and steel and FRP bars pre-stressed at: (a) 0.0, (b) 25, and (c) 50%. 

The influence of the pre-stress percentage on the moment-curvature and load-deflection responses 
is illustrated in Figure 7a-d and 7e-h, respectively, for the different values of α  considered. As 
expected, for a given α  value, the moment and the load at crack initiation have increased with the 
applied pre-stress, but the moment and the load at yield initiation of the steel bars was not significantly 
affected by the pre-stress level. However, due to the initial tensile strain introduced in the steel bars 
when pre-stress is applied, the curvature and the deflection at yield initiation decrease with the 
increase of the pre-stress level, being this effect as pronounced as high is the pre-stress level.  

5 CONCLUSIONS 

In this work a design oriented model was proposed for the determination of the moment-curvature 
and the load deflection response of rectangular cross section of FRC members failing in bending, and 
reinforced with longitudinal pre-stressed steel and FRP bars. By using a trilinear stress-strain diagram 
for the tensile behaviour of FRC, the proposed model is capable of simulating both strain softening 
and strain hardening FRC materials.  
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Figure 7: Effect of the pre-stress level on the: (a-d) moment-curvature response; (e-h) load-deflection 

response; for 0.6μ =  and α  equal to 1.01, 10.0, 50.0 and 150.0. 

The good predictive performance of the model was assessed by using the FEM-based FEMIX 
software. The parametric studies executed by using the proposed model have revealed that the 
flexural capacity and the load carrying capacity of the beam are significantly increased with the 
increase of the α  parameter, which defines the continuous decrease of residual strength of a FRC 
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just after the crack initiation phase. Furthermore, by increasing the pre-stress level to the steel and 
FRP bars, the curvature and the deflection at steel yield initiation, as well as the curvature and the 
deflection at failure have decreased. Therefore, since the deflection at crack initiation is not affected 
significantly by the pre-stress level applied, the deflection amplitude between crack initiation and steel 
yield initiation has decreased with the increase of the pre-stress level, reducing the ductility of the 
response of the beams. However, the FRC can be optimized in order to provide values for the α  
parameters that guarantee the aimed degree of ductility when applying a certain pre-stress level in a 
hybrid reinforced beam. 
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